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ABSTRACT

This thesis represents a quantitative synthesis of present knowledge in tuna ecology, including 

the development of complex behavioural and life-history models incorporating this knowledge. 

An underlying goal is to work towards methods that could be used with satellite data in order to 

predict fish locations. It is not based on field or laboratory experiment carried out by the author, 

but on extensive analysis of the literature documenting the work of others, analysis of data 

collected by scientific observers over many years, and collaborative work in the building of 

theoretical models. It brings together somewhat disparate disciplines in order to develop a 

system-level understanding of tuna ecology with the aim of developing new data analysis and 

fisheries management tools. The diversity of fields covered by this thesis is most apparent in 

Chapter 1, which gives an overview of the underlying philosophy and present level of 

understanding of the research. The role of modelling in science and the capabilities of different 

types of model are discussed. The academic sub-disciplines within which this thesis may be 

categorised are defined. The ecology of tunas is described as are satellite sensors that have been 

or could be used for fisheries applications. Case studies of such applications are reviewed. For 

Chapter 2 ,1 analysed a large data set from the New Zealand surface longline fisheries for tuna, in 

order to identify whether and at what spatial scales tunas are aggregated. I applied methods that 

have not previously been used in the analysis of longline data and determined that these adult 

tunas are often caught in loose schools within a larger, sub-mesoscale area in which they are 

aggregated. In Chapter 3, I review present knowledge in tuna physiology and sensory biology, 

and develop and apply analytical models to determine reaction distances. This was an essential 

pre-cursor to the development of theoretical models in Chapters 4 & 5. The optimal foraging 

model had been previously anticipated in the literature but had not previously been realised. It 

provides a framework for addressing a long-standing and still unresolved debate as to what is 

‘controlling’ tuna behaviour at ocean fronts. In Chapter 5, I describe and apply an important 

methodological synthesis for fisheries oceanography. While still requiring further development, 

this work nonetheless proves that it is possible to combine behavioural models for fish with 

whole-ocean circulation and production models that incorporate data from satellite sensors. 

Chapter 6 discusses further work that might follow from this thesis. Successful proposals have 

been made to the European Space Agency and the New Zealand Foundation for Research Science 

& Technology, which may now build on the work carried out here. I strongly advocate that 

further work to develop models linking fish distributions with environmental properties should 

include sea-going studies of pelagic trophic dynamics in specific areas of interest.
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PREFACE

I applied to do this PhD in the summer of 1996. At that time, prospective students applied for studentships 
that already had a title, a rationale, and funding. The studentship for which I applied was entitled, ‘Use o f space data 
to detect oceanographic features of relevance to fisheries,’ and it had funding from both the Natural Environment 
Research Council and VEGA Group PLC, a software development company specialising in satellite systems. The 
overall aim was to develop tools to guide fishing effort, based on the detection o f oceanographic features from 
satellite-based platforms and the association of these features with species targeted in commercial fisheries.

Two very different fields are immediately apparent in the title o f the studentship: satellite-based detection of 
oceanographic features; and determination of the relevance of such features to fish species o f commercial interest. I 
started with a com prehensive review o f the peer-reviewed scientific literature, as well as the ‘grey’ literature 
available, and it soon became obvious that research projects such as mine, though topical internationally, were at an 
early stage of development. Moreover, they were invariably led by scientists whose not inconsiderable expertise 
often lay in the field of satellite remote sensing or physical oceanography. What this has meant is that much attention 
has been given to methods o f measuring ocean variables from satellites, with the questions to do with habitat 
preferences of target species being largely neglected or treated as trivial.

Meanwhile, on different research programmes and from a different perspective, fish biologists and fisheries 
scientists have been struggling, with varying degrees of success, to relate both the fine scale behaviour o f individual 
fish and the large scale dynamics of fish populations, to the properties and dynamics o f the ocean environment. 
Research to establish correlations between recruitment strength or relative abundance and oceanographic/climatic 
variables is the most obvious starting point, especially given the long time series o f data that are often available from 
fisheries and oceanographic/meteorological institutes. At the other end o f the spectrum o f relevant spatial scales, 
there has been considerable research effort into fish early life history, especially quantitative estimates o f larval 
mortality and factors affecting larval feeding success.

A common contribution that physicists make to ecology is to bring a higher level o f mathematical skill to 
particular problems than is inherent in the discipline of biology itself. What is often missing, with some notable 
exceptions, is a deeper appreciation of biological science, especially with regard to cognitive and adaptive behaviour, 
and the evolutionary basis of ecological interactions. Whilst often oblivious to the com plexities of geophysical fluid 
dynamics, the better and more successful research efforts in fisheries ecology have focused on a mechanistic 
understanding of the interactions between fish and environment. Ideally we would be able to identify simple, clear 
and robust relationships between variables, and for management and commercial purposes, such relationships are 
undoubtedly the goal. But we cannot trivialise the questions, and must work with the complexity of the natural world 
in order to improve our level o f understanding, prior to claiming predictive ability and consequent economic benefit. 
We must often simplify, if only to make some kind o f progress, to inch back the borders o f our ignorance and have 
something to show for our effort. But we simplify only our methods; it is the height o f human arrogance and 
ignorance to trivialise the very real complexity o f nature.

The research chapters o f the thesis could therefore have focussed on anything from atmospheric correction 
to animal physiology, physical oceanography to fish early life history, sensory biology to spatial statistics, all of 
which are relevant to the development of useful satellite based systems for fisheries management. I chose to focus on 
the ecological interactions underpinning the association between fish and environment. I make no overblown claims 
about the findings of this research. I never reached the stage of being able to provide useable forecasts for the fishing 
industry and I remain very sceptical o f those organisations and individuals who make such claims. In the commercial 
world, bluffing is acceptable; in science it should not be, the commercialisation/privatisation o f scientific institutions 
notwithstanding. What I have done is to address some o f the weaker links in the arguments concerning the 
interactions o f fish with their environment, to fill some gaps flagged in the published literature, to flag some 
additional gaps that may be addressed by others, and to apply som e new and innovative techniques to topical 
problems in fisheries oceanography. This thesis is very much the product of my own thought, but I remain indebted 
to those who have helped me by way of stimulating discussion, constructive criticism and practical assistance. I have 
learned a great deal both from you and through you.

ANARCHIST EVENING ENTERTAINMENT 
ENTRANCE NOT FOR EVERYBODY 

FOR MADMEN ONLY 
PRICE OF ADMISSION —  YOUR MIND 

The Steppenwolf, Hermann Hesse

v



CHAPTER 1 

INTRODUCTION



CONTENTS

1.1. MODELLING & SCIENTIFIC METHOD 3

1.2. ECOLOGY & FISHERIES OCEANOGRAPHY 6

1.3. THE ECOLOGY OF TUNAS 7

1.3.1. Tropical tunas 9

1.3.2. Temperate tunas 11

1.4. SATELLITE REMOTE SENSING & FISHERIES 13

1.4.1. Visible and infrared radiometers 13

1.4.2. Passive microwave radiometers 16

1.4.3. Active microwave radiometers 17

1.4.4. Case studies in remote sensing for fisheries 22

1.5. RESEARCH CHAPTERS 26

1.6. PEER-REVIEWED PAPERS 26

2



1.1. MODELLING & SCIENTIFIC METHOD

Science concerns the pursuit of knowledge through reasoning, observation, analysis 

and evaluation, through the generation and falsification of hypotheses. The method by which 

it is done distinguishes the endeavour from non-science by its rigorous self-discipline, its 

openness and its insistence on framing ‘facts’ such that they are, at least in principle, testable 

by comparison with evidence gathered by further observation. Indeed the concept of a ‘fact’ 

does not sit easily in the vocabulary of scientists; Popper (1979) allows us only ‘conjectures’ 

that have not yet been ‘refuted’. Platt (1964) gives us ‘strong inference,’ responding to 

C ham berlain’s (1890) urge to use ‘m ultiple working hypotheses,’ a method that, 

‘...distributes the effort and divides the affections’, thus lessening the danger of favoured 

consideration for the scientist’s own pet theories; ‘...an adequate explanation often involves 

the co-ordination of several causes...The true explanation [may be] necessarily complex, and 

the elements of the complex [may be] constantly varying’ Chamberlain (1890).

It is useful to categorise models as either logical, statistical or theoretical; any of these

may also become useful application tools (Loehle 1983, Fiksen 1997). Logical models are

purely mathematical and are always true under the assumptions made. In themselves they are

not open or subject to experimental verification, although their usefulness as application tools

will depend on their ability to explain and predict observations. Statistical models are driven

by data and seek to identify and perhaps describe the form of relationships that exist within

the data. A statistical model cannot be true or false, but can only describe relationships well or

badly. As it cannot explain why relationships exist, it has no explanatory power, although it

may have considerable predictive power if it is able to describe relationships well, with the

assumption that relationships extend past measured values. Theoretical models are not used to

establish the existence of relationships, but posit mechanisms that connect variables. In this

way they can be true or false, right or wrong. They can have both explanatory and predictive

power. Failure to distinguish between statistical and theoretical models consitutes the ‘error of

pseudo-explanation’ (Loehle 1987). A good statistical model will identify important
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relationships, allowing one to then consider responsible mechanisms and to construct a 

theoretical model to explore and explain the relationships.

Models themselves can be evaluated against various criteria, depending on the type of 

model under consideration. Goodness of fit to data is the most obvious and the ultimate test of 

a model’s predictive power. It is not however the only criterion by which models should be 

judged. A theoretical model must be able to explain the mechanism and process of the 

problem at hand and should first be evaluated for internal logic, elegance and explanatory 

power. If a consistent theory does not favourably compare with data, one must also reconsider 

the data and the way in which the data were acquired before rejecting the theory. Instead of 

talking about whether models are true or false, models are better considered as good or bad, 

based on both their explanatory powers and their predictive abilities. Good models may 

continue to be very useful, at least as conceptual tools, even if observation does not confirm 

their validity. And if a model has a good theoretical basis, we should not ignore it in favour of 

a simpler relationship simply because of lack of data, but should rather use the theory to 

suggest investigations that will find the data that is lacking. This is an important spin-off from 

adopting a theoretical approach, as the importance of the missing data may not have been 

appreciated before the attempt to model the process occurring.

Returning to Chamberlain (1890), there are 2 additional aspects of his essay that are

relevant to this thesis, namely the concepts of ‘primary study’ and ‘complex thought’.

Primary study is distinguished from secondary, acquisitive or imitative study by requiring

individual thought; ‘The endeavour is to discover new truth or make a combination of truth or

at least to develop by one’s own effort an individualised assemblage of truth.’ Of originality

he writes, ‘It is not necessary to this mode of study that the subject matter be new. Old

material may be reworked. But it is essential that the process of thought and its results be

independent and individual, not the mere following of previous lines of thought ending in

predetermined results.’ Complex thought, ‘... is contra-distinguished from the linear order of

thought that is necessarily cultivated in language and mathematics because their modes are
4



linear and successive. ...The mind appears to become possessed of the power of simultaneous 

vision from different points of view. The power of viewing phenomena analytically and 

synthetically appears to be gained.’ In this thesis I present a series of models that investigate 

the physiology, behaviour and spatial dynamics of tunas in relation to their oceanic 

environment. The subject matter is not new, but the thesis constitutes an individualised 

assemblage of truth that results from an independent process of thought whereby natural 

phenomena have been viewed both analytically and synthetically.

1.2. ECOLOGY & FISHERIES OCEANOGRAPHY

Ecology concerns the relationships between organisms and their environment. 

‘Fisheries ecology’ may be defined as the study of interactions between the biology of 

exploited fish populations and their marine or freshwater environment. Depending on the time 

and space scales of interest, physiological, behavioural and evolutionary ecology may be 

important perspectives on fish population dynamics. ‘Systems ecology’ is concerned with 

identifying mechanistic links between organisms and the environment as components of an 

integrated system. Within these sub-disciplines are many associated paradigms (e.g. optimal 

foraging theory) and methods (e.g. stochastic dynamic programming) that may be applied. 

‘Fisheries oceanography’ is concerned with the production and dynamics of fish populations 

in relation to the marine environment, with emphasis on the exploration and identification of 

m echanism s affecting recruitm ent and controlling abundance. Studies in fisheries 

oceanography are inherently interdisciplinary, often involving meteorology, physical, 

chemical and biological oceanography, as well as fish biology and fisheries economics or 

social science. They bring together key ideas from relevant schools of thought, accepting that 

oceanographic variability at various spatio-temporal scales may affect spatial population 

dynamics, and seeking to understand how and why this occurs. The challenge in fisheries 

oceanography is to identify important physical characteristics of a particular environment and 

to consider how these relate to obligate physiological processes and life-history characteristics
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of the species of interest. Temperature effects on egg and larval survival, and on metabolic 

rates and stress for adults are examples of important bio-physical interactions. Water mass 

dynamics may be important for nutrient enrichment, concentration of food and retention of 

larvae and adults in favourable habitats (Bakun 1996). Different systems have different 

dynamics, and biological processes, even within species, may be locally adapted. Thus there 

is a still a need for local study of ‘pure’ marine biology and physics, before an understanding 

of the whole system may emerge.

1.3. THE ECOLOGY OF TUNAS

Tunas (family Scombridae, subfamily Scombrinae, tribe Thunnini) (Klawe 1977) are 

the most highly specialised of fishes with regard to sustained high speed swimming, and they 

are negatively buoyant, ram ventilators (Magnuson 1978). They are often highly migratory 

(Nakamura 1969) and are found in the surface waters of all the world’s oceans, from 40°N to 

40°S, by volume one of the largest habitats on the planet. The principal market species 

together constitute one of the world’s largest commercial fisheries, landing over 3 million 

tonnes annually (Table 1.1). These fish generally have reproductive and growth rates capable 

o f sustaining this high level of fishing mortality (but see Kearney 1991, Safina 1993 for 

Bluefin), in addition to high natural mortality (Murphy & Sakagawa 1977, in Brill 1996), 

even though they are apex predators living in a low energy environment where food is widely 

scattered (Blackburn 1965, Sund et al. 1981).

Table 1.1 Global catch o f principal market tunas in 1994 (FAO 1997)

Species Code Global Catch 1994 
(million tonnes)

Skipjack Katsuwonuspelamis SKJ 1.5

Yellowfin Thunnus albacares YFN 1.1

Bigeye Thunnus obesus BIG 0.3

Albacore Thunnus alalunga ALB 0.2

Northern Bluefin Thunnus thynnus NBT 0.05

Southern Bluefin Thunnus maccoyii SBT/STN 0.02
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Tunas are thought to have a common origin as inshore tropical fishes, which through 

biochemical and morphological adaptations extended their ranges, becoming less dependent 

on environmental fluctuations and reducing competition (Sharp & Pirages 1978). The genus 

Thunnus is sub-divided into 2 main groups, the tropical tunas or Neothunnus and the 

temperate tunas or Bluefin group (Gibbs & Collette 1967, Collette 1978). Tropical tunas are 

more closely associated with warmer latitudes and, with the exception of Bigeye, shallower 

depths; their ranges are limited vertically by the base of the thermocline, and horizontally by 

frontal boundaries with colder waters (Nakamura 1969, Sund et al. 1981, Block et al. 1997). 

Temperate tunas have higher latitudinal ranges and forage in deeper waters (Sund et al. 1981, 

Holland et al. 1990, 1992, Dewar et al. 1994) reflecting their adaptation to colder waters.

Tunas have the ability to maintain muscle tem perature above ambient water 

temperature, which is the result of heat exchange in the countercurrent rete of the vascular 

system to the trunk musculature (Kishinouye 1923, Carey & Lawson 1973, Sharp & Vlymen 

1978, Stevens & Neill, 1978). A recent paper argues that ‘Coevolutionary changes in red 

muscle distribution and quantity and in vascular specializations for heat conservation have 

lead to different macroevolutionary trajectories among the now 5 genera and 14 species of 

tunas and appear to reflect the influence of changing paleoecological and paleoceanographic 

conditions, including cooling, that occurred in the Tertiary’ (Graham & Dickson 2000). Tunas 

are also capable of controlling heat production and dissipation, in addition to both passive and 

behavioural thermoregulation (Dizon & Brill 1979, Holland et al. 1992, Dewar et al. 1994). 

There may be several advantages to tunas of warm body temperatures and large thermal 

inertia. Foraging range may be increased in both horizontal and vertical dimensions, by the 

ability to maintain body temperature (Neill et al. 1976, Graham & Deiner 1978). This facility 

may also be useful when escaping from predators. High muscle temperature may also result in 

greater power availability from a given muscle mass, due to more efficient chemical to 

mechanical energy conversion, thus enabling higher maximum swimming speeds (Carey et al.



1971, Bone 1978, Carey 1982, Altringham & Block 1996). Elevated body temperatures have 

been related to increased swimming speed, although the direction of the cause and effect 

relationship was unclear (Brill 1978). Recent reviews (Brill 1994a, 1996) suggest that the 

high performance physiology of tunas, of which elevated body temperature is a result, has 

evolved to permit rapid somatic and gonadal growth, rapid digestion, and rapid recovery from 

exhaustive exercise, abilities which are all central to success in the pelagic environment.

Tunas are predominantly visual predators (Nakamura 1967, Kawamura et al. 1981), 

feeding opportunistically and unselectively on micro-nekton, including epipelagic fish, 

molluscs and crustaceans, and the larvae of these groups (Blackburn 1968). Albacore are 

thought not to feed actively at night (Iverson 1962) although they will take prey if it is 

encountered, as evidenced by occasional catches using lures. Yellowfin have been observed to 

swim closer to the surface at night (Holland et al. 1990), which was attributed to searching, 

using available moonlight, for squid and shrimp that come up from greater daytime depths. 

The role of water clarity in determining visual feeding efficiency may also be important for 

tunas (Murphy 1959), highlighting the need to distinguish between prey abundance and prey 

availability when characterising habitats and seeking to understand behaviour (Marr 1951).

The foraging behaviour of tunas includes vertical excursions within the surface waters, 

into and below the thermocline, and horizontal excursions within the same water mass or into 

and across frontal boundaries between water masses (Holland et al. 1990, Block et al. 1997, 

Brill et al. 1999). The extent of these movements outside the warm surface waters is limited 

by the acute reductions in water temperature that are experienced. Despite the mechanisms of 

heat conservation available to tunas, temperature limitation of foraging range is suggested by 

laboratory experiment (Dizon et al. 1977, Barkley et al. 1978, Brill et al. 1998) and apparent 

in field observations (Blackburn 1965, Sund et al. 1981, Brill 1994a, Brill et al. 1999).



1.3.1. Tropical tunas

Skipjack Katsuwonus pelamis (Linnaeus, 1758). Skipjack (Fig. 1.1) are cosmopolitan in 

tropical and warm-temperate waters (15°C to 30°C; 58°S to 47°N) although they are not 

found in the eastern Mediterranean Sea and the Black Sea. The species is highly vagile, but 

not necessarily highly migratory (Kearney 1991). These fish are found in offshore waters, and 

their larvae are restricted to waters with surface temperatures of at least 25°C. Skipjack 

exhibit a strong tendency to school in surface waters, and are often found associated with 

birds, drifting objects, sharks and whales. They feed on fishes, crustaceans, cephalopods and 

molluscs, and cannibalism is common. In turn they are preyed upon by large pelagic fishes. 

They are usually fished by purse seine or by trolling.

Yellowfin Thunnus alhacares (Bonnaterre, 1788). Yellowfin (Fig. 1.2) have a worldwide 

distribution in tropical and subtropical seas (15°C to 31°C; 45°S to 45°N) but are absent from 

the Mediterranean. They are a highly migratory oceanic species. They school primarily by 

size, often in association with floating objects, and larger fish frequently school with 

porpoises. They are sensitive to low concentrations of oxygen and so are often limited to 

depths <200 m. Peak spawning occurs in batches during summer.

Bigeye Thunnus obesus (Lowe, 1839). Bigeye (Fig. 1.3) are found in tropical and subtropical 

waters of the Atlantic, Indian and Pacific oceans. Preferred surface water temperatures are 

from 13°C to 29°C, and are optimal between 17°C and 22°C. Variation in occurrence is 

closely related to seasonal and climatic changes in SST and thermocline depth. Juveniles and 

small adults school at the surface in mono-specific groups or with other tunas, and may be 

associated with floating objects. Adults occupy deeper waters but may also come to the 

surface. Bigeye are considered to be highly migratory and vulnerable to over-exploitation.
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Fig. 1.1 Skipjack Katsuwonus pelamis
max. size: 110 cm; max. weight: 35 kg

Fig. 1.2 Yellowfin Katsuwonus pelamis
max. size: 280 cm: max.weight: 200 kg

Fig. 1.3 Bigeye Thunnus obesus
max. size: 250 cm; max. weight: 210 kg



1.3.2. Temperate tunas

Northern bluefin tuna Thunnus thynnus  (Linnaeus, 1758). Bluefin (Fig. 1.4) are highly 

migratory oceanic fish with a subtropical distribution (70°S to 40°N). In the western Atlantic 

they are found off Canada, in the Gulf of Mexico (where they spawn) and in the Caribbean 

Sea, down to Venezuela and Brazil. In the eastern Atlantic they are found from the Lofoten 

Islands off Norway to the Canary Islands, including the Mediterranean and the southern Black 

Sea. They are also reported from Mauritania and there is a subpopulation off South Africa. 

They school by size, sometimes with other tunas. They seasonally come closer to shore and 

can tolerate a wide range of temperatures. They are commercially cultured in Japan, and are 

utilised fresh for sashimi (but are also canned). Northern Bluefin in the Pacific is recognised 

as a sub-species, Thunnus thynnus orientalis Temminck & Schlegel (1844). Distribution in 

the North Pacific is from the Gulf of Alaska to southern California and Baja California and 

from Sakhalin Island in the southern Sea of Okhotsk south to northern Philippines. An 

epipelagic, usually oceanic fish that seasonally comes close to shore, the sub-species migrates 

between June and September in a northward direction along the coast of Baja California, 

Mexico and California. There are also some substantiated records of this subspecies in the 

southern hemisphere, off Western Australia, New Zealand, in the eastern South Pacific 

(37°1 l'S, 114°41'W) and Gulf of Papua.

A single stock of Southern Bluefin tuna Thunnus maccoyii Castelnau (1872) inhabits 

the temperate and cold seas of the southern hemisphere, mainly between 30°S and 50°S, but 

to nearly 60°S. It is a highly migratory and critically endangered species (Kearney 1991). By 

maturity, most southern bluefin tuna lead an oceanic, pelagic existence but during spawning, 

large fish (max. size: 245 cm; max. weight: 260 kg) migrate to tropical seas up to 10°S, off 

the north-west coast of Australia, where surface temperatures are between 20°C and 30°C. As 

much as 98% of the global catch is shipped to Japan and consumed as sashimi. Efforts to farm 

SBT caught by purse seine have been successfully developed in Australia, with production at 

4700 tonnes in 1998.
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A lbacore Thunnus alalunga (Bonnaterre, 1788). Albacore (Fig. 1.5) are cosmopolitan in 

the tropical and temperate waters (45°S to 50°N) of all oceans, including the Mediterranean 

Sea, but are not found at the surface between 10°N and 10°S. A highly migratory epi- and 

mesopelagic species, they are abundant in surface waters of 15.6°C to 19.4°C; deeper 

swimming, large albacore are found in waters of 13.5°C to 25.2°C, although temperatures as 

low as 9.5°C may be tolerated for short periods. They form mixed schools, which may be 

associated with floating objects, including sargassum weeds. Albacore meat is not of sashimi 

quality but forms the basis of commercial fisheries for canned tuna.

Fig. 1.4 Northern bluefin tuna Thunnus thynnus 
max. size: 458.0 cm; max.weight: 684 kg

Fig. 1.5 Albacore Thunnus alalunga 
max. size: 130cm; max. weight: 45kg

Tuna illustrations from Raver (1984)



1.4. SATELLITE REMOTE SENSING & FISHERIES

1.4.1. Visible and infra-red radiometers 

Advanced Very High Resolution Radiometer (AVHRR). The AVHRR is a scanning 

radiometer with 5 detectors in the visible and infra-red wavelengths. The 3 channels in the 

infra-red band detect heat radiation from the sea surface. On account of the intervening 

atmosphere, the sea surface appears cooler from above by several degrees, for which a very 

accurate correction must be made; sea surface temperature may then be calculated. AVHRRs 

have been flown on NOAA satellites since the mid-1970s. These polar-orbiting satellites 

always operate as a pair, passing close to both poles in an almost north-south orbit, ensuring 

that data for any region of the Earth are no more than 6 h old.

Table 1.2 Sensor characteristics for AVHRR

1 0 .5 8  - 0 .6 8 v is ib le  (g r e e n )

2 0 . 7 2 5 -  1 .0 0 r e f le c te d  in frared

3 3 .5 5  - 3 .9 3 r e f le c te d /th e r m a l in fra red

4 1 0 .3  - 1 1 . 3 th erm a l in frared

5 11 . 5  - 1 2 . 5 th erm a l in frared

Along Track Scanning Radiometer (ATSR). The ATSR is an advanced imaging radiometer 

flown on the European Space Agency satellites, ERS 1 & 2. The main objective for ATSR 

was to measure global SST with the high levels of accuracy required for climate research. In 

order to achieve this, ATSR-1 had 3 thermal infra-red channels matching those of the 

AVHRR plus a reflected infra-red channel in order to detect clouds by day. ATSR-2, 

launched in April 1995 on ERS 2, has 3 extra channels used to develop applications of data 

over land. Atmospheric correction is achieved principally by viewing the Earth at 2 angles. As 

the 2 views of the same scene are taken through different atmospheric path lengths, it is 

possible to correct for the effect of atmospheric absorption. The combination of radiometric 

sensitivity, stability and the dual-angle viewing geometry enables SST to be measured to an 

accuracy of 0.2-0.3°K. There will be an ‘advanced ATSR’ (AATSR) on ENVISAT-1.
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Fig. 1.6 Viewing Geometry for ATSR & AATSR

ATSR Instrument

Sub-satellite trad;

Nadir view swath 
(555 nadir pixels: 
1 km2 resolution)

Flight ion

Forward view swath 
(371 along track pixels: 

1.5 km x 2 km resolution)

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS). SeaWiFS has 8 bands in the visible 

and near-infrared wavelengths (Table 1.3) and is designed to measure ocean colour, a physical 

property largely determined by biological (photosynthetic) processes. The sensor is a successor 

to the Coastal Zone Colour Scanner (CZCS), which operated from 1978 to 1986. The CZCS 

was a ‘proof-of-concept’ mission, which established the feasibility of global monitoring o f bio- 

optical variability, data that is critical for the study of oceanic primary production and global 

biogeochemistry.

Table 1.3 Sensor characteristics for SeaWiFS

0 . 402-0  .422 V io le t D isso lv ed  organ ic s

0 .4 3 3 -0  .453 B lu e C hlorophy 11

0 .4 8 0 -0  .500 B lu e /g reen Ch lorophy 11 /  k490

0 .5 0 0 -0  .520 Green C hlorophy 11

0 .5 4 5 -0  .565 Green /y e llo w C hlorophy 11

0 .6 6 0 -0  .680 R ed A e roso Is

0 .7 4 5 -0  . 785 N ea r  infrared A e roso Is

0 .8 4 5 -0  .885 N ea r  infrared A e roso Is
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SeaWiFS contains specific enhancements both in terms of its engineering capabilities and in the 

algorithms used for atmospheric correction and derivation o f pigment concentrations. Whereas 

the CZCS calculated ‘total photosynthetic pigment’, SeaWiFS is able to distinguish different 

classes o f pigment (i.e. chlorophyll-a versus carotenoid) and estimate concentrations of different 

classes of phytoplankton.

Correction for atmospheric effects is much more important for SeaWiFS data than for AVHRR 
infrared data because up to 90% of the visible radiation received by the sensor originates in the 
atmosphere rather than at the sea surface. SeaDAS, the software package for processing 
SeaWiFS data, calculates corrected radiances using a database o f climatologies for ozone 
concentration, surface wind speed, atmospheric pressure and relative humidity. The main 
outputs are the normalised water-leaving radiances in bands 1-5, the atmospheric aerosol 
radiances in bands 6—8, the aerosol optical thickness in band 8, the coefficient o f  diffuse 
attenuation at 490 nm, chlorophyll-a concentration and ‘CZCS-type’ total pigment 
concentration. There will be multiple ocean colour sensors in the near-future, thus minimising 
the repeat cycle between measurements o f  the same area. These will be flown on board 
satellites carrying other sensors, thus allowing coincident multi-sensor imaging.

Fig. 1.7 SeaWiFS Image o f Diffusion 
Attenuation Coefficient (k4go) o ff the West Coast 
of the U S A  Land and cloud are masked white. 
Coastal upwelling filaments (turbid waters, 
orange/red) and ocean fronts (transition from red 
to green, turbid to clear water) are clearly visible 
—  albacore aggregate at these fronts (Laurs et al. 
1984). & 490 is an important parameter affecting 
the visual range and therefore hunting efficiency 
of tunas (Kirby et al. 2000, Chapter 4). k490 is 
higher in the plankton-rich coastal waters, which 
are also colder and may be rich in food.



1.4.2. Passive microwave radiometers

Measurement o f SST by satellite microwave radiometers has been an elusive goal for many years. 
The important feature o f microwave retrievals is that SST can be measured through clouds, a 
distinct advantage over infrared SST observations that require a cloud-free field o f view. 
Microwave retrievals are unaffected by aerosols and insensitive to atmospheric water vapour, 
although they are sensitive to sea-surface roughness. Early radiometers were poorly calibrated 
and later radiometers lacked the low frequency channels needed to retrieve SST. At present 
there are passive microwave sensors capable o f measuring SST, although their use by ocean 
scientists is not widespread, and ocean areas with persistent cloud coverage can now be viewed 
on a daily basis. The Special Sensor Microwave /Imager (SSM/I) is a 7 channel, 4 frequency 
system carried on Defense Meteorological Satellite Program (DMSP) satellites, measuring 
atmospheric, ocean and terrain microwave brightness temperatures. These data are used to 
derive: SST, land surface temperature, ocean surface wind speed, areal cover by ice, age o f ice, 
ice edge, precipitation, cloud liquid water, integrated water vapour, soil moisture and snow 
cover. In 1997, a well-calibrated radiometer with a 10.7 GHz channel was launched aboard the 
Tropical Rainfall Measuring Mission (TRMM) satellite, a joint program between NASA and 
NASD A. A primary function of the TRMM Microwave Imager (TMI) SST retrieval algorithm 
is the removal o f surface roughness effects. A further passive microwave sensor (AMSR) will be 
launched on ADEOS 2.

Tropical Rainfall Measuring Mission (TRMM)
16:337, 2nd December 1997, centered on 1S6.6W, 20.75N, Hawaii

• NASOA

TRMM Microwave Imager (TMI) Special Seneor Mlcrowave/lmaper (SSM/1)

1*0 100 200 210 220 2*0 210 2*0 200 270 (K) - 37 GHl  H p d

Fig. 1.8 Simultaneous images 
from TMI & SSMI. Note finer 

spatial resolution o f TMI

1*



1.4.3. Active microwave radiometers

Synthetic Aperture Radar (SAR). SAR provides the spatial pattern of reflected microwave 

energy from an elliptical area or ‘footprint’ on the Earth's surface and imagery is built up from 

the time delay and strength of the returned signals. It is thought that resonance between the 

radar and surface capillary waves is the primary mechanism for backscattering radar pulses. 

Capillary waves have wavelengths of less than 10 cm, and form in response to wind stress.

The SAR directly images the spatial distribution of the Bragg-scale capillary waves, 

referred to as sea surface roughness. This may be affected by longer gravity waves and other 

oceanographic and atmospheric features, such as: variable wind speed, changes in 

stratification in the atmospheric boundary layer, and variable currents associated with fronts, 

eddies, internal waves and bottom topography. SARs are currently carried on RADARSAT 

and ERS-2. There will be an Advanced SAR (ASAR) on ENVISAT.

Radar altimeter (RA). Sea level, undisturbed by waves or tides etc., is an equipotential 

surface of the Earth’s gravitational field. Density differences within the solid earth distort the 

equipotential, leading to departures from the standard ellipsoid. The real resulting 

equipotential surface is the Geoid. The permanent, time-averaged ocean currents cause the 

real sea surface to be different from the marine geoid by a few tens of centimetres. Satellite 

radar altimeters are designed to measure this departure from the geoid by measuring the 

distance between the satellite and the nadir point to within a precision of a few centimetres. A 

short pulse of microwaves is transmitted vertically downwards, which illuminates a footprint 

on the sea surface of 2-12 km in width, depending on sea state. The echoes from these 

transmissions are received and the distance covered by the pulse is calculated using the time 

delay. Corrections are applied to account for refraction by the atmosphere and for the effect of 

sea state. Sea surface height measurements may be used to monitor the permanent ocean 

circulation and the large scale temporal variations that may be exhibited. Mesoscale current 

systems may also be studied, and the RA is particularly useful for measuring the dynamic
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topography associated with meandering, vortex shedding and the migration of eddies. The 

geostrophic currents associated with these features may then be calculated from the sea 

surface slope. In addition to measuring sea level anomaly, RAs may also be used to deduce 

wave height, by measuring the slope of the return pulse, and to calculate wind speed, from the 

fraction of power returned to the sensor. RAs are presently flown on ERS-2, 

TOPEX/POSEIDON, and the GFO satellites and there will be an RA on ENVISAT I.

? AVHRR 
1 2 M arch 1

The Gulf of Tehuantepec, M exico, is an 
important area for yellowfin tuna fisheries. 
Blackburn (1962, 1963) has described how 
tuna abundance increases ~3 mo after 
upwelling events; this lag is attributed to 
the time required for the development of 
micronektonic food for the tunas.

The AVHRR image above (Fig. 1.9) 
show s the response o f the G ulf of 
Tehuantepec, Mexico to a cold, northerly 
wind burst. An anti-cyclonic eddy is 
formed in the western Gulf and the central 
Gulf waters are cooled by mixing and 
upwelling. The SAR frames left (Fig. 1.10) 
show the warm-core eddy 2  days later, 
with high radar backscatter (bright) and the 
colder m ixed waters (dark). C ircles 
illustrate concentric bands of current shear. 
Lines point to a baroclinic instability at the 
eddy boundary. The area of the SAR 
frames is outlined on the AVHRR image. 
From Kirby et al. (1997).
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Fig. 1.11 Sea-surface temperature and current 
anomaly com posites for 26 July to 5 August 1996. 
Temperatures are a 10 d composite matching the 10 d 
T opex-Poseidon cycle from which the current 
patterns are deduced. These currents are indicated by 
stream lines. Their strength is measured by the 
gridded small arrows: the longer the arrows the 
stronger the current. SST data are from the NIWA 
SST Archive (Uddstrom & Oien 1999) extracted and 
co-located with SSH by Andrew Laing, NIWA

26 July to  5 August 1996 (UTC)

This image captures important oceanographic features 
around the North Island of New Zealand that are related 
to fisheries for tunas to the north (Bigeye occupy the 
warm waters of the East Auckland Current, EAC) and 
north-east (Southern Bluefin occupy cooler waters 
around the edge of the East Cape Eddy, ECE), and for 
squid to the south-west (found in cool upwelled waters 
in the Taranaki Bight, TB). In addition, the Wairapa 
Eddy (WE) off the east coast is thought to retain larvae, 
supporting coastal populations o f rock lobster Jasus 
edwardsiii (Chiswell & Booth 1999)
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Radar Scatterom eters. Winds over the ocean modulate air-sea changes in heat, moisture, 

gases and particulates, regulating the crucial bond between atmosphere and ocean that 

establishes and maintains global and regional weather and climate. In the past, weather data 

could be easily acquired over land but knowledge of surface winds over oceans had to come 

from ships and buoys. ‘Radar scatterometers’ have their origin in early radar used in World 

War II. Measurements over oceans were corrupted by noise and it was not known at that time 

that this was the radar response to winds over the oceans. Radar response was first related to 

wind in the late 1960s. The first spacebourne scatterometer flew as part of the ‘Skylab’ 

missions in the early 1970s. The Seasat-A Satellite Scatterometer (SASS) operated from June 

to October 1978 and proved that accurate wind velocity measurements could be made from 

space. A single-swath scatterometer flew on ERS-1 and the first dual-swath scatterometer to 

fly since Seasat was the NASA Scatterometer (NSCAT) on board ADEOS-1. Since the 

demise of ADEOS-1, QuikSCAT has been developed and launched by NASA as a quick 

recovery mission. The SeaWinds instrument on the QuikSCAT satellite is a specialised 

microwave radar that measures near-surface wind speed and direction under all weather and 

cloud conditions over the Earth's oceans. It uses a rotating dish antenna with 2 spot beams that 

sweep in a circular pattern, radiating microwave pulses at a frequency of 13.4 GHz. The 

instrument collects data over ocean, land and ice in a continuous 1800 km swath, covering 

90% of the Earth’s surface each day. A SeaWinds scatterometer will also be launched on 

ADEOS II. Scatterometers are not yet widely used for fisheries research. However, the fact 

that much coastal upwelling is wind-driven, either directly or indirectly, and wind-generated 

turbulence, proportional to wind speed cubed (w?), has significant influence on larval fish 

feeding success (Fiksen et al. 1998) survival and recruitment (Cury & Roy 1989) may mean 

that more attention is given to these data in the future. The ‘Pelagic Fisheries Research 

Program’ in Hawaii is studying the effect of oceanographic variability on bigeye tuna catch- 

per-unit-effort (CPUE), and will consider satellite scatterometer data along with other relevant 

variables (J. Polovina pers. comm, URL: www.soeast.hawaii.edu/PFRP).

http://www.soeast.hawaii.edu/PFRP


Fig. 1.13 Positions o f  squid jigging  
operations (•) recorded over 1 0  d and 
plotted on SST composite for same period. 
Effort concentrated on plume o f  cold  
water resulting from coastal upwelling. At 
th is tim e (Feb/M ar) adult  squid  
(.N o to to d a ru s  g o u l d i i ) are slow ly
migrating northwards to their spawning 
grounds. SST data are from NIW A SST 
archive (Uddstrom  & O ien 1999) 
extracted and collocated with fisheries 
data by David S. Kirby

Fig. 1.12 ERS scatterometer wind data 
(28 Feb 96) overlaid on 10 d SST 
com posite for w est coast o f  N ew  
Zealand. This area supports an important 
squid fishery. South-westerly winds are 
favourable to coastal upw elling, and 
squid fishing in the South Taranaki Bight 
(top-centre) is often targeted around - 1 0  

day old ed d ies  gen erated  with 
frequencies determined by variability in 
the coastal current, determined in turn by 
local wind forcing and the spring-neaps 
tidal cycle (Bowman et al. 1983) (black, 
SST > 20°C; white, cloud/land/SST < 
15°C). SST data are from NIW A SST 
archive (Uddstrom  & O ien 1999) 
ext ract ed and c o l l o c a t e d  wi th  
scatterometer data by Andrew Laing
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1.4.4. Case studies in remote sensing for fisheries

Satellite sea surface temperature (SST) data have been available to fishermen in the USA

since the mid-1970s and maps of thermal fronts have been produced from AVHRR data. In

1981 NASA and NOAA initiated a 2 yr fisheries demonstration program where a variety of

remotely sensed and numerically simulated data types were collected as ‘Fisheries-aid Charts’

and faxed or radioed to participating vessels (Montgomery et al. 1986). These charts mapped

and gave a 5 d forecast for critical SST for selected fish species, surface wind speed and

direction, combined wave heights and direction, location of fronts, centres of low and high

atmospheric pressure, coastal SST and mixed layer depth. The study concluded that,

‘...conventional and satellite derived data of the marine environment can, when properly

combined and correlated, offer the commercial fisherman tactical tools which can result in the

selection of fishing strategies for more efficient and economical operations.’

Japan has developed a Fisheries Information Service based on satellite technology

(Yamanaka et al. 1988). The history of the forecasting service can be traced back to the mid-

1930's when the Japan Broadcasting Corporation broadcast a fisheries forecast once a week as

part of the news report. The present day system divides the forecasting role into 2 temporal

perspectives: short-term forecasting, which considers the immediate ocean physical state and

likely effects on fish locations, and long-term forecasting which considers changes in

catchability and total fisheries production through the monitoring and estimation of factors

such as spawning, larval survival and recruitment. Long-term forecasting is carried out chiefly

by the national fisheries research institutes in collaboration with local experimental stations.

Short-term forecasting is carried out by the Japan Fisheries Information Service Centre

(JAFIC), a central Government agency, in collaboration with research institutes. Short-term

forecasting is based on the location of ocean fronts, a principle known locally as ‘Kitahara's

Law’ (after Kitahara 1922, in Yamanaka et al. 1988) which supported the fishermen’s premise

that fish gather where 2 different seas converge. Where the warm Kurishio Current from the

South Pacific meets the cold Oyashio current from the Kuril Islands, a fishery is supported
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that produces 15% of world fish products (Tameishi et al., 1993). The predictive system 

which assists the exploitation of this fishery is based principally around preferred 

temperatures and temperature gradients for given fish species. Once the analysis has been 

carried out, maps of fishing potential are then transmitted to vessels and other subscribers, 

including research institutes and fishing administrations. The system was applied to SST data 

from the NOAA satellites and tested against skipjack tuna catch data. For the years 1982-85, 

fishing potential F  was positive in 82% of productive fishing grounds and was negative for 

94% of unproductive areas. The system may have been developed further since this time but 

details have not been published.

The tuna, swordfish and sardine fisheries off continental Portugal and the Azores are 

supported operationally by the University of Lisbon Oceanography Group (Santos & Fiuza 

1992). The operational support consists of the provision of SST charts based on satellite 

(AVHRR) observations and the annotation of these charts to include gradient analysis for the 

location of thermal-fronts. The group is also investigating the relationships between fish 

aggregations and the distributions of oceanographic variables. There is evidence that 

swordfish concentrate in warm, clear water at intermediate distances from the strong thermal 

front separating upwelled waters from the open ocean during periods of relaxation in coastal 

upwelling. Inter-annual variability in swordfish catch is inversely correlated with the strength 

of coastal upwelling. The reverse is true for bigeye and albacore tuna, which aggregate just 

seaward of upwelling filaments. The tunas are assumed to aggregate at the fronts in order to 

feed, as there is evidence that sardines are found in, ‘moderately cool, relatively old upwelling 

waters’ on the inside of thermal fronts (Santos & Fiuza 1992).

There has been considerable research into the physical and biological variability of the 

Upwelling Zone off the coast of North West Africa. There is year-round Ekman upwelling in 

the major part of this zone with seasonal upwelling to the South dependent on the extent of 

the northerly winds. This upwelling supports significant fishing grounds for tuna and for 

many other species of fish, cephalopods and Crustacea. Until the 1960s the Spanish fleet was
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the only foreign fleet in the area but since that time it has been joined by other European and 

oriental fleets from over 25 countries (Clemente-Colon et al. 1992).

This is certainly a promising area for the application of remote sensing for operational 

fisheries forecasting. International fleets already direct their effort towards waters that have 

been advected downstream of their point of origin at the surface, and satellite sensors of both 

SST and ocean colour could provide useful tools for tracking these waters (Clemente-Colon et 

al. 1992). The highest Catch per unit effort (CPUE) for skipjack tuna is recorded at upwelling 

fronts (Ramos et al. 1992). In the Canary Isles, the persistent eddies associated with the island 

wake behind Gran Canaria can constitute a thermal boundary for further northward movement 

of skipjack. The fishing ground is compressed by the cold core eddy towards the warmer 

island wake. As the SST is homogenised, the surface wake extinction determines the 

spreading of fishing locations around the island (Ramos et al. 1991).

Scientists from the French ‘Scientific Research Institute for Development and Co­

operation’ (ORSTOM), supporting French fleets from the South Pacific to the North Atlantic, 

have developed a variety of forecasting aids with which to assist and direct fishing effort. 

(Clemente-Colon et al. 1992). In the Eastern Tropical Atlantic, a model called ‘PREVI- 

PECHE’ is used (Stretta 1991). The fishing potential of an area is calculated by comparing the 

evolution o f tem perature distribution with an ‘ideal thermal scenario’. Sea surface 

temperature on the day of catch is not thought to be the sole determinant of tuna distribution; 

instead the evolution of a water mass over time is considered, with regard to whether it is 

likely to support concentrations of tuna forage. The delay between the onset of upwelling and 

the presence of tuna forage has been estimated as ~4-6 wk (Mendelsshon & Roy 1986). A 

high concentration of tuna could therefore be expected in an area where a decrease in SST at 

the start of the enrichment process is followed by a regular increase in temperature over this 

time period.
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Longer term forecasting requires relationships between ocean variables and fish life 

history characteristics to be identified at larger spatio-temporal scales. Apparent shifts in the 

distribution of Pacific skipjack tuna may be linked to large zonal displacements of the 

convergence zone marking the boundary of the western Pacific warm pool (Lehodey et al. 

1997). These displacements occur during ENSO events and so it should be possible to predict, 

months in advance, the region of highest skipjack abundance. For the South Atlantic squid 

(Illex argentinus) links between recruitment variability and the environment have recently 

been examined (Waluda et al. 1999). Correlation analyses show that when temperatures are 

colder in the spawning grounds of the northern Patagonian shelf during the period of 

hatching, better catches arise in the fishery in the following season. No significant correlation 

was obtained between squid catches and SST co-incident with the period of the fishery. 

Further analysis showed that cross-correlation exists between SST anomalies in the western 

Pacific and in the spawning grounds of the northern Patagonian shelf after a lag of 4.5 to 5 yr. 

Therefore, not only can year class strength be predicted 8 mo in advance from SSTs observed 

in the spawning grounds, but planning may be enabled some 6 yr in advance based on these 

longer spatio-temporal correlations.

By using altimeter data to compute geostrophic surface currents, larval transport 

dynamics can be investigated (Polovina 1999, Chiswell & Booth 1999). By seeding the 

circulation with a passive tracer representing the larvae, Chiswell & Booth (1999) are able to 

conclude that an anticyclonic eddy is responsible for larval retention which may in turn be 

responsible for maintaining a population of rock lobster Jasus edwardsii off the New Zealand 

coast. They also conclude that geostrophic advection alone cannot explain the presence of 

lobsters at the coast and suggest that larvae may develop swimming capabilities at an earlier 

stage than has previously been demonstrated.

25



1.5. RESEARCH CHAPTERS

This thesis is concerned with literature study, data analysis and the development and 

evaluation of models for the physiology, behaviour and spatial dynamics of tunas in relation 

to their oceanic environment. Following this introduction there are 4 research chapters, 

reflecting the different components of the study undertaken. In Chapter 2, exploratory data 

analysis is carried out on a 6 yr time series of observed catch data from surface longline 

fisheries in New Zealand waters in order to determine scales at which tunas are aggregated. In 

Chapter 3, various models for the physiology and sensory biology of tunas are developed 

from the available literature. These are then used as components of behavioural (Chapter 4) 

and life history (Chapter 5) models. In Chapter 6 the individual components detailed in the 

preceding research chapters are brought together in a general discussion and the main 

conclusions of this study are presented.

1.6. PEER-REVIEWED PAPERS

Much of this thesis has been submitted, in the form of papers, to peer-reviewed publications:

1. Kirby DS, Hart PJB (1998) A dynamic optimisation model for the behaviour of tunas at 
ocean fronts. EOS Trans Am Geophys Union, 79:1, Ocean sciences meeting suppl. OS53 
(abstract only)

2. Kirby DS, Fiksen 0 ,  Hart PJB (2000) A dynamic optimisation model for the behaviour of 
tunas at ocean fronts. Fish Oceanogr 9(4):328-342

3. Kirby DS (in press) Remote sensing and fisheries applications: an overview. In: Morales J 
(ed) Scientific and operational applications of remote sensing and integrated information 
systems for coastal and marine fisheries. Coastal region & small island papers, UNESCO, 
Paris

4. Kirby DS (2001) On the integrated study of tuna behaviour and spatial dynamics: tagging 
and modelling as complementary tools. In: Sibert JR, Nielsen J (eds) Electronic tagging 
and tracking in marine fisheries. Kluwer Academic Publishers, The Netherlands, p 
407-420

5. Kirby DS, Abraham ER, Uddstrom MJ, Dean H (submitted) Tuna aggregations observed 
in surface longline data 1993-8. Can J Fish Aquat Sci

6. Kirby DS, Huse G, Lehodey P, Hart PJB (in prep.) A spatial life history model for Pacific 
skipjack tuna Katsuwonas pelamis.
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CHAPTER 2 

TUNA AGGREGATIONS OBSERVED 

IN SURFACE LONGLINE DATA 1993 to 1998
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2.1. SUMMARY

This work was carried out from Feb 1999 to Sep 2000, while I was working as a 

Visiting Scientist on the Remote Sensing for Fisheries Programme at the National Institute of 

W ater and Atmospheric Research (NIWA), Wellington, New Zealand. The purpose of the 

project as a whole is to develop satellite-based forecasting systems for the NZ tuna fishing 

industry. Exploratory data analysis was carried out as a pre-cursor to the development of 

empirical models attempting to relate patterns in fish catch distributions to oceanographic 

features apparent in satellite data. A high resolution (hook-by-hook), 6 yr time series of 

observed longline catch data for tunas was used to investigate fine-scale spatial patterns along 

individual sets that may be indicative of social behaviour (i.e. schooling) and/or the response 

of individual fish to favourable extrinsic conditions (i.e. aggregation). Distinguishing between 

these patterns and understanding the processes that contribute to their formation is likely to 

enable better forecasting of fish distributions in relation to satellite data. Methods of spatial 

data analysis (nearest neighbour analysis) that have previously been applied in other sciences 

(e.g. forestry & astronomy) were used here. Mean Nearest Neighbour Distances (NNDs) are 

found to be 100-200 m, compared with 200-700 m predicted by a non-homogeneous Poisson 

process on the same sample space. In addition, I decided to calculate the furthest distance 

between species of interest, in order to estimate the largest scale within which tunas are 

aggregated. Mean Furthest Neighbour Distances (FNDs) are between 20 and 50 km, 

compared to the range of 10 to 20 km predicted by the Poisson process, and to the length of 

the longlines (50-150 km). The results for NNDs imply that these adult tunas may actually be 

schooling, while the results for FNDs suggest that these schools are aggregated within scales 

that may relate to mesoscale oceanographic processes. Further investigation to identify 

favourable habitat characteristics should therefore focus on the biophysical and trophic 

dynamics at the sub-mesoscale (50-100 km). This is the first time that such fine-scale 

analysis has been carried out for pelagic longline catch data using such a large dataset.
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2.2. INTRODUCTION

Questions concerning how and why fish use the space available to them in the oceans 

are central to understanding the ecological interactions that impact on marine fisheries. For 

high-value, low catch-per-unit-effort (CPUE, see 2.3.1) fisheries, these questions assume even 

greater importance. Sharp (1978) estimated that if yellowfin tuna in the eastern tropical 

Pacific were randomly and uniformly distributed there would only be one 10 kg fish per 2.8 

km2 of ocean. He concluded that ‘If tunas were truly uniformly distributed in their habitat they 

would be so rarely encountered as to be virtually non-existent.’ Some species of tuna are 

normally found in association with many other conspecifics e.g. skipjack (Bayliff 1988, 

Hilborn 1991), yellowfin (Klimley & Holloway 1999), and young albacore (Laurs et al. 

1984), while others are thought to be solitary, at least when not forming spawning 

aggregations (Winkler et al. 1983) e.g. older albacore, bigeye and adult northern and southern 

bluefin. The degree of association between con-specifics is of great relevance to fisheries, as 

it will clearly determine gear type and/or the timing and location of effort. In New Zealand 

tuna fisheries, schools of skipjack and young albacore are targeted with seine nets and trolling 

gear respectively, while adult southern bluefin, bigeye and yellowfin are targeted by surface 

longlines. The degree of association between con-specifics is determined by a number of 

factors, both intrinsic (i.e. evolved behaviour) and extrinsic (i.e. response to environmental 

conditions). The ways in which marine predators respond to their environment are likely to be 

scale-dependent, and if variability in population density has a characteristic spatial scale, 

subsequent research to determine the conditions favouring aggregation can focus on this scale 

(Schneider 1994). In this chapter. I explore the spatial patterns that exist in longline catch data 

for tunas at the finest scale possible. By identifying fine scale patterns, we begin to find out 

more about both social behaviour and interactions between fish and environment. It may then 

become possible to use such knowledge for monitoring and prediction in the fishery.
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2.2.1. Definition of terms

Various terms are used in the behavioural ecology and fisheries literature to describe 

spatial patterns observed in animal distributions. Schooling, shoaling, clustering, aggregating 

and congregating are all terms that have been deployed, often inter-changeably, to describe 

non-uniform or apparently non-random spatial patterns. These words may describe similar 

patterns but it is useful to let them have different meanings, in order to distinguish the 

different causes that can have the same effect. Fish may come together in order to minimise 

predation risk or to maximise encounter rates with prey or potential mates (Pitcher & Parrish 

1993). This bio-social attraction is best considered as schooling or shoaling. Individuals may 

also come together as a direct response to extrinsic environmental conditions. Such behaviour 

is best termed aggregation. Individuals are considered to be acting independently of each 

other, and are instead responding in a similar way to some other factor or combination of 

factors, e.g. prey density.

2.2.2. Observed longline catch data

Under the New Zealand Ministry of Fisheries Scientific Observer Programme, an 

observer is placed on board all visiting foreign licensed surface longline vessels and also a 

percentage of domestic licensed vessels. The fisheries target large adult tunas of 2 species: 

Southern Bluefin (STN) and Bigeye (BIG). Albacore (ALB) and Yellowfin (YFN) are not 

formally targeted but are a significant and saleable bycatch. Surface longline fishing vessels 

follow a general pattern of operation over a 24 h period. Larger vessels set the fishing gear in 

the early hours of the morning to soak the baits during the hours preceding dawn. This 

operation usually requires 4-8 h and may be followed by 4-5  h of waiting before the gear is 

retrieved, although longer lines may be retrieved after a shorter interval. The catch is 

processed during the next 12 h. The whole operation is quicker for the smaller vessels of the 

domestic fleet. A large vessel will set 120-150 km of longline; smaller vessels set 40-80 km 

of line. From the longline, 2500-3500 snood lines are suspended, each with a single baited
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hook. Emphasis is placed on getting good information on catch, rather than on the setting 

operation. The main aspects of the setting operation are nevertheless recorded, including start 

and finish times and positions, the number of hooks, length of line set, vessel speed, line 

feeder speed, distance between marker buoys, number of baskets, and basic weather 

information. At the start and finish of the haul, and at hourly intervals throughout, time and 

position and basic weather information are recorded. As each specimen is landed on deck, the 

time is recorded and the specimen identified, weighed, measured and sexed. Positions of each 

landed specimen are subsequently determined as follows:

1. An array representing all hooks is constructed with blank position and time details.

2. The first hook is assigned the start-of-haul position and time, and the last hook is assigned 

the end-of-haul position.

3. Times are calculated for every other hook, assuming a constant speed while hauling.

4. Hooks closest in time to the hourly haul records are flagged.

5. Between each hook flagged with an hourly haul position, the position of each intervening 

hook is interpolated by great circle path navigation, using the time assigned.

6. Each recorded specimen is placed on the hook closest to its recorded landing time; if that 

hook is already occupied, the specimen is placed on the nearest unoccupied hook.

2.2.3. Hypothesis generation

Where point events of interest occur completely at random within a sample space, this 

can be formally described as a Poisson process. The presence or absence of an event at a 

particular location is not influenced by any other event, and if the process is homogeneous, no 

part o f the sample space is any more likely to contain point events than another. A non- 

homogeneous Poisson process allows for such variation, but the events themselves are still 

independent. Such processes provide a base against which to compare other processes where 

either clustering or inhibition of events are thought to occur (Cox et al. 2000).
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Tunas are not randomly distributed throughout New Zealand waters all year round. 

We would expect this from a basic understanding of ocean biogeography and the evolution of 

fish life histories. The largest scale at which this non-homogeneity is apparent can be inferred 

from the areas where fishers have come to target their effort (Fig. 2.1). Detailed analysis of 

individual fishing sets shows that even after deliberate targeting by experienced fishers, 

CPUE is still an over-dispersed quantity, i.e. variance is greater than the mean (Fig. 2.2 and 

Richardson et al. submitted). We can therefore view CPUE for tunas as being the result of a 

non-homogeneous Poisson process, whereby different areas, within the larger area of 

preferred habitat, are more likely to contain more fish, but where the occurrence of each 

individual is independent of the occurrence of another. We can test this hypothesis by 

measuring the distances between individual fish in the observed catch data, and comparing the 

frequency distribution of these distances with the distribution that results from a non- 

homogeneous Poisson process. If the fish are found to be randomly distributed along the set, 

then the set scale (50-150km) is the finest scale at which they can be considered aggregated, 

and the targeting of research and fishing effort should focus on this scale. But if they are 

aggregated within the scale of the set, we should focus on the environmental heterogeneity 

that may exist on this smaller scale for an explanation of their spatial dynamics. Our 

hypothesis is therefore that tunas are aggregated relative to a random distribution along a set, 

and we seek to identify the spatial scale or scales at which such aggregations occur.
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Fig. 2.1 Locations o f  observed surface longline sets 

bluefin STN and (b) bigeye BIG

in New  Zealand waters
1993 to 1998, targeting (a) southern

(a)

r^~'45°S

175°E

38° S

40°S
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2.3. DATA ANALYSIS

Fields of interest were extracted from the MFish database held at NIWA Wellington, 

and the positions of individual fish were calculated as described above. ASCII files were 

generated detailing this information, and the analysis described below was then carried out.

2.3.1. Nominal catch-per-unit-effort (CPUE)

CPUE for surface longline fisheries is nominally defined as the number of fish caught 

per thousand hooks. There are many factors that can determine the likelihood of a particular 

hook catching a fish, including depth of the hook, bait type, and of course the timing and 

location of effort. Nominal CPUE is therefore only a gross measure of relative abundance that 

may confound the effects of contributing factors. Fishing is also as much a non-random 

method of sampling as the fisher can make it. For the purpose of the analysis presented here, 

where we are interested primarily in the locations of point events, no estimate has been made 

of the effectiveness of fishing effort. Implicit in the analysis is the assumption that all hooks 

have the same likelihood of catching a subject should one be present at that point during the 

fishing period. This may not be the case in reality. This does not undermine the analysis 

because we are primarily concerned with discovering aggregations within the scale of the set, 

rather than identifying causes of variation in CPUE between sets. If no aggregations were 

apparent, we would conclude that fishers are targeting effort as efficiently as possible, and 

that the finest scale on which tunas may be considered aggregated is that of the set itself.

2.3.2. Set-scale probabilities

For target species, the probability of catching at least 1 fish represents the extent of 

fishers’ prior knowledge, i.e. how well they are targeting areas preferred by the fish. For all 

species, the probability of catching more than 1 subject, and the conditional probability of 

catching an additional subject having already caught a first, are preliminary measures of fish 

aggregation on the scale of the set.
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Fig. 2.2 Frequency distributions of nominal CPUE (catch/1000 hooks) for observed surface longline sets in New 
Zealand waters 1993-8, by Subject Species, Target Species and Area. Species codes as given on p 31.
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2.3.3. Nearest & furthest neighbour distances

For each longline set that caught more than one subject, the distances between each 

subject and all the other subjects were calculated by Great Circle Path geometry. The Nearest 

Neighbour Distance is the distance from 1 subject to the nearest other; the Furthest Neighbour 

Distance is the distance from 1 subject to the furthest other. Each subject has 1 NND and 

1 FND, although 2 fish may have each other as their nearest or furthest neighbour. Once the 

distances have been measured for the ‘real’ data, synthetic data are generated by ‘Monte 

Carlo’ simulation, as for a non-homogeneous Poisson process. The CPUE for the subject 

species on that set is used to determine the probability of each hook catching a fish; this 

probability is then compared with a random number, to determine whether or not that hook 

catches a fish. NNDs and FNDs are then measured as for the real data. This is repeated 1000 

times for each set. The geometry of the set is preserved in the generation of the synthetic data, 

so that the permitted values of gap distances will be the same as for the real data (Fig. 2.3).

REAL DATA SYNTHETIC DATA

Fig. 2.3 Schematic representation of the calculation of distances between fish. The line represents the set, stars 
represent the locations of fish, and small arrows represent the distances measured between them. On the left, 
representing an actual set, 4 fish are clustered. On the right, representing the results of 3 Monte Carlo 
simulations, the geometry of the set is preserved and the actual CPUE for that set is used to obtain a similar 
number o f subjects distributed at random along the line. Nearest Neighbour Distances (NNDs) (small arrows) 
and Furthest Neighbour Distances (FNDs) (not shown) are then measured
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The CPUE for each set is used in preference to the aggregated mean for the fishery, bearing in 

mind that .what is considered to be a clustered pattern with the assumption of homogeneity 

in force could also be the result of heterogeneity’ (Ripley 1981). This reduces our chances of 

Type 1 error, where we might believe that there is aggregation within the set, when the effect 

is in fact caused by spatial variation in CPUE at the scale o f  the set.

2.4. RESULTS

Frequency histograms of nominal CPUE for the data used in this analysis are 

presented in Fig. 2.2. For the BIG fishery, which takes place in the warm waters off the north­

eastern region (Fig. 2.1), nominal CPUE is most frequently zero, with occasional catches up 

to 10 fish per thousand hooks. For the STN fishery in northern waters, nominal CPUE is also 

most frequently low (<2), but in 10% of cases nominal CPUE is at least 10, and in a few cases 

is at least 20. In southern waters, nominal CPUE for STN is rarely greater than 10, but there 

are less cases of nominal CPUE being zero, and more cases where nominal CPUE is greater 

than 2. Nominal CPUE for ALB is most frequently zero and always low in southern waters. In 

northern waters however, nominal CPUE for ALB is rarely zero and can be extremely high 

(>50 fish) in both the STN and the BIG fisheries. Nominal CPUE for YFN is most frequently 

zero, but is often greater than zero and less than 20.

The set-scale probabilities of catching the formal target species (i.e. STN or BIG) and 

other subject species (e.g. ALB & YFN) are given in Table 2.1. The proportion of sets that 

caught at least 1 [p(fish > 0)] and more than 1 subject [p(fish >1)]  are detailed, followed by 

the conditional probability of catching an additional subject having already caught a first 

[p(fish2 | fishl)]. It is apparent in these data that fishers are quite effective at targeting STN 

[p(STN) = 80-90% ] and that these are not usually found alone [p(STN2 | STN1) = 90%]. 

When BIG are targeted, the probability of catching at least 1 target is much lower [p(BIG) ~ 

60%] and there is only a 50% chance of catching another BIG on the same set.
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Table 2.1 Set-scale probabilities for catching at least 1 subject, more than 1 subject, and conditional probability of catching a second subject having caught a first. The mean 
number of subjects caught on the subset o f longlines with 2 or more subjects, their mean Nearest Neighbour Distances (NND), and the mean NNDs for the Poisson process are 
are then reported. Mean Aggregation Index (Al) is calculated as: (1 -  meanNND/meanRanNND), and scales between -1  and 1; values near 1 indicate strong aggregation. Mean 
Furthest Neighbour Distances (FNDs) are a measure of the maximum scale within the sample space of the longline within which the subject species is present

Subject Target Area h > m ntfish > -n nffkh21 f k h l j  Mean Mean Mean Mean Mean Mean
Species Species (Island) R  ; PK ; R  1 } N(fish) NND (m) RanNND (m) Al FND (km) RanFND (km)

BIG BIG NORTH 0.59 0.31 0.52 4 97 279 0.63 22.1 10.3

STN STN NORTH 0.79 0.67 0.85 12 156 560 0.67 38.2 17.3

STN STN SOUTH 0.93 0.84 0.91 10 170 652 0.71 50.4 21.8

ALB STN NORTH 1.00 0.99 0.99 39 155 465 0.63 54.4 22.0

ALB BIG NORTH 0.99 0.98 0.99 37 72 267 0.70 28.1 11.2

ALB STN SOUTH 0.37 0.18 0.50 4 163 557 0.69 36.1 16.7

YFN BIG NORTH 0.60 0.41 0.69 6 71 205 0.61 17.5 7.3
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The probability of catching at least 1 YFN is the same as for the formal target species 

BIG [p(YFN) « p(BIG) ~ 60%], but it is more likely that more than 1 YFN will be caught on 

the same set [p(YFN2 | YFN1) * 70%]. ALB are apparently ubiquitous in both the BIG and 

STN fisheries off the North Island [p(ALB) -  100%; p(ALB2 | ALB1) -  100%]. This 

provides fishers with their basic income, which is then supplemented by less frequent but 

more lucrative catches of the target species. ALB are caught less frequently in the longline 

fisheries off the South Island [p(ALB) * 40%], where they are often caught on their own 

[p(ALB2 | ALB1) = 50%]. There are separate fisheries for younger Albacore in these waters 

that are able to target discrete schools using trolling gear.

For each species, NND and FND calculations were carried out for sets that caught 

more than 1 subject; the mean number of fish in this subsample is listed. The NNDs are 

generally around 100 m, which is the same order of magnitude but 25-50%  shorter than the 

NNDs resulting from the Poisson process (RanNND). The frequency distributions for the real 

and synthetic data are presented in Fig. 2.4. In all cases the NNDs are skewed to the shorter 

distances, mostly less than 200 m. If the subjects were distributed randomly along the set, as 

they are in the synthetic data, the NNDs would be more variable and generally greater.
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Fig. 2.4 Frequency distributions for Nearest Neighbour Distances (NNDs) by Subject species, Target species and
Area.
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An Aggregation Index (Al) was defined as: 1 -  (mean NND/mean RanNND). This 

scales between -1  and 1, with values approaching 1 indicating strong aggregation, zero 

indicating random distribution, and negative values indicating repulsion. The AIs are 

calculated for each set and the mean Al for each subject is listed in Table 2.1. In all cases, the 

mean A l ranges from 0.6 to 0.7. The cumulative frequency distributions of AIs for all 

individual sets are presented in Fig. 2.5. The validity of the Aggregation Index in this context 

is illustrated by comparing the cumulative frequency distributions for the real AIs with those 

calculated from two independent Monte Carlo simulations on the same set. The AIs for the 

synthetic data are normally distributed about zero in all cases. The AIs for the real data are 

skewed relative to these, and are normally distributed about peaks at 0.3 to 0.6.

The FNDs for the synthetic data show that were tunas randomly distributed along the 

set, they should not be more than 10-20 km apart on average; the FNDs for the real data show 

that they can in fact be up to 20-50 km apart (Table 2.1, Fig. 2.6). That they are not further 

apart than this is also significant, given that the maximum possible FND is the length of the 

set (50-150 km; Table 2.2).

Table 2.2 Furthest neighbour distances (FNDs) compared with mean GCP distance between start and end of set,
a conservative estimate of line length

SUBJECT
TARGET

AREA

NUMBER 
OF SETS

MEAN LINE 
LENGTH  

(KM)

MEAN
FND
(KM)

MAX. LINE 
LENGTH  

(KM)

MAX.
FND
(KM)

BIG BIG 
NORTH 85 49 22 95 82

STN STN 
NORTH 176 75 36 130 90

STN STN 
SOUTH 1126 73 17 132 46

ALB STN 
NORTH 257 73 53 140 109

ALB BIG 
NORTH 256 38 28 105 93

ALB STN 
SOUTH

222 72 35 117 101

YFN BIG 112 33 17 91 46
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Fig. 2.5 Cumulative frequency distributions for Aggregation Index (Al) by Subject Species, Target Species and
Area
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Fig. 2.6 Frequency distributions for Furthest Neighbour Distances (FNDs) by Subject Species, Target species
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2.5. DISCUSSION

For spatial point processes (as opposed to distributed continuous variables, for which 

geostatistical methods might be more suitable — see Pelletier & Parma 1994) the Poisson 

process plays a role corresponding to that of the normal distribution within probability 

distributions (Cox et al. 2000). Here a non-homogeneous Poisson process was used as a base 

against which to compare the spatial properties of longline catch data for tunas, in order to 

establish whether clustering of fish along sets was apparent. The Poisson process was chosen 

because it is the most obvious way to generate stochastic point events within a limited 2 

dimensional space, and variable expectations obtained from measured values of CPUE could 

be used in order to prevent the variability of CPUE between sets confounding the 

interpretation of results.

Nearest neighbour distances (NNDs) were calculated for real and synthetic data and 

the resulting frequency distributions were compared. An aggregation index (AI) was defined 

that is identical to that of Clark & Evans (1954) (i.e. the ratio of mean NNDs for the real data 

to the expected mean NNDs for a random process) except for the scaling (-1 to 1) introduced 

here by subtracting the NND ratio from unity. Furthest neighbour distances (FNDs) were also 

calculated for both datasets, yielding information about the maximum spatial scale inhabited.

In both respects (NNDs & FNDs) the properties of the real and synthetic data were

different. In the real data, NNDs are much shorter and FNDs much longer than those

predicted by a Poisson process with the same heterogeneity as nominal CPUE. The NNDs,

being on such a small scale (100-200m) are probably determined by individual behaviour in

relation to con-specifics and are therefore indicative of schooling behaviour. The FNDs, on

the other hand, denote the spatial scale of an aggregation, valid for the temporal scale of the

fishing operation i.e. the area within which tunas were definitely present. From the

com parison of set lengths and FNDs (Table 2.2) it is possible to conclude that these

aggregations are often within a sub-mesoscale area that is smaller than the scale of the set.

The FNDs may relate to mesoscale and sub-mesoscale oceanographic features and processes
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that have concentrated tuna prey (i.e. micronekton), which may present an odour field to 

which tunas respond.

Adult tunas may therefore be more social than has traditionally been thought. 

However, we should recall that NND and FND analysis has only been carried out for sets 

where >1 subject was caught; the results must be interpreted alongside the set-scale 

probabilities for catching 1 and >1 fish. An alternative interpretation would be that favourable 

microhabitats at the scale of the NNDs have been sampled, within the larger area of 

unfavourable habitat represented by the scale of the set. The distribution of tuna prey is 

indeed likely to be patchy, and shoals of forage fish may have diameters similar to the NNDs. 

However, tunas are more highly mobile than their prey and are not likely to be phase-locked 

with them in time and space. They have to cross comparatively empty space in between prey 

encounters and would be more likely to take a baited hook during this time than when they are 

feeding on a shoal of forage fish. The microhabitat hypothesis becomes more implausible 

when one considers the scale of physical features in the ocean that might enhance habitat and 

be attractive to tunas —  ocean processes on scales of 100-200 m are not likely to have an 

effect on habitat suitability for large pelagic predators. It is also possible that tunas are 

conducting non-trophic m igrations through New Zealand waters and that proximate 

environmental conditions are to be endured whether or not they especially favourable.

Data have only been considered in the horizontal dimension, while longline fishing 

gear is targeted at tunas with varying and variable depth preferences. Longlines are set deeper 

for BIG, therefore they are shorter for the same gear/vessel that might previously have been 

fishing for STN. The volume of data analysed here prevents detailed consideration of these 

factors but the analysis has been stratified by target species and area for this reason. 

Considering some hypothetical scenarios, clusters of catches might be apparent along a 

fishing line that was only effectively targeting tuna habitat with e.g. the deepest hooks. The 

spacing of such clusters would be comparable to the distance between surface floats.
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Alternatively, hooks at intermediate depth might be most effective; in this case the 

there might be 2 clusters in between floats. The average distance between floats is 340 m. The 

NNDs are shorter and the FNDs longer than this. The behaviour of fish that have been caught 

might modify the potential for nearby hooks to catch fish; such a tendency would, however, 

make aggregations less, rather than more likely. Similarly, a school of fish might swim along 

the line and so catches might then appear to be randomly distributed, i.e. they could occur 

along the line with equal likelihood. Such behaviour would indeed result in spatial patterns 

analagous to those produced by the Poisson process; aggregation index as we have defined it 

here would therefore be zero (as shown in Fig. 2.5). But such behaviour is allowed for in our 

definition of aggregation as being FNDs smaller than the maximum length scale available (i.e. 

the length of the set). That much closer clusters are also detected along the set (i.e. NNDs 

shorter than if the catches were randomly distributed) indicates that within the larger scale 

aggregation there is finer scale schooling.

The presence of fish other than tuna (i.e. fish bycatch) would interfere with the data in 

that a hook that has already been taken by a shark, for example, would no longer be available 

to a tuna. Although it is the case that the majority of the total fish catch on a longline is 

bycatch, it is also the case that the majority of hooks do not catch anything at all (Francis et al. 

2000). It is therefore unlikely that there is any systematic bias in the data due to bycatch.

Issues concerning spatial and temporal scale arise frequently in discussions on the 

behaviour and spatial dynamics of tunas (Hunter et al. 1980). Tagging studies often report 

either long-distance movements or fine-scale behaviour (Kirby 2001), but behaviour in 

relation to con-specifics has rarely been reported. We still struggle with how to use 

knowledge of physiology and behaviour in order to understand movement patterns and 

population dynamics. Modelling studies have tried to address the conditions under which 

school formation may occur, based on food intake requirements (Dagorn et al. 1995), 

swimming efficiency (Stocker 2000) and social interaction (Dagorn & Freon 1999).
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The real world is always more complicated than a model, and fisheries data are fraught 

with imperfections; here we can do little more than speculatively transfer ideas between 

model and natural environments. The animals forming the basis of this study were, until the 

time of capture at least, sensing and moving through their natural environment in the search 

for food, driven by the need to grow, stay healthy and reproduce. Further work might try to 

assess in more detail the factors motivating their behaviour and spatial dynamics, with the 

understanding that such knowledge would prove useful in the management of tuna resources. 

Specifically, the trophic dynamics of fishing grounds should be investigated (e.g. Roger 1994, 

Young et al. 1996a, 1996b, 1997) in relation to observations of surface oceanography (e.g. 

Uddstrom & Oien 1999, McClatchie & Coombs submitted). Experimental fishing, with 

simultaneous measurement of in situ variables, would start to address cause and effect 

relationships determining the relative adundance of tunas. Such an exercise would also reduce 

uncertainty in hook locations and would allow hook depth to be included in the analysis.

2.6. CONCLUSIONS 

CPUE for tunas in surface longline fisheries in New Zealand waters varies throughout 

the EEZ. It varies greatly between fishing sets even after targeting of key species by 

experienced fishers. A possible reason for this is that tunas are not randomly distributed 

throughout the EEZ, or even on finer scales such as the fishing areas targetted or along the 

fishing lines set. This work has determined that they are in fact patchily distributed, and has 

determined the scales at which this occurs. Tunas in New Zealand waters are forming loose 

schools, on the scale of 100-200m between individual fish, that are in turn aggregated over 

length scales of 20-50 km. The motivations for these aggregations (i.e. the environmental 

properties that are independently attractive to many individual tuna) have not been determined 

in this study, but they may be a direct response to local prey concentrations, which in turn 

may be the result of local ocean dynamics and enrichment processes at scales less than 100 

km, i.e. sub-mesoscale. Further research to investigate these hypotheses is strongly advocated, 

with sampling focussed on the biophysical and trophic dynamics at these scales.
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CHAPTER 3 

TUNA PHYSIOLOGY AND SENSORY BIOLOGY
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3.1. SUMMARY

This chapter represents a quantitative synthesis of available knowledge on the 

physiology and sensory biology of tunas. It is based on a comprehensive review of the 

relevant literature and also includes the development and application of analytical models. 

Vision, olfaction, bioenergetics and thermal stress are examined, which allows reaction 

distances and vital rates to be used in the behavioural and life history models presented later 

(Chapters 4 & 5 respectively).

3.2. REACTION DISTANCES

The detection and location of prey are key processes determining habitat selection and 

the spatial distribution of predators. Tunas are highly visual predators (Nakamura 1967, 

Kawamura et al. 1981), yet they also have a well developed nose and olfactory nerve 

(Gooding 1962, in Atema et al. 1980), which is likely to enable detection and identification of 

prey at a distance, prior to visual search, prey location and final attack (Atema 1980, Atema et 

al. 1980). The reaction distances enabled by these sensory systems have never been reported 

for tuna. Reaction distances are important components of foraging models (Kirby et al. 2000, 

Chapter 4) and of ecological processes in general. They will determine encounter rates and 

habitat profitability, energy budgets and transfer rates, and so play a significant role in 

oceanic ecosystems. The lack of information on reaction distances is therefore a significant 

barrier to better understanding of tuna species. In this chapter, and in order to develop the 

foraging and life history models detailed later in this theseis (Chapters 4 & 5 respectively), I 

have taken what information is available in the literature and attempted to calculate reaction 

distances for prey detection by vision and olfaction. The essential parameters relevant to the 

calculation of visual range and different methods for their determination are briefly discussed. 

Different approaches to calculating visual range itself are also considered. Previous 

experimental work and new considerations of the dispersion of tracers in the surface ocean 

are used to estimate reaction distances for prey detection by olfaction.
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3.2.1. Visual range

Visual range depends on the ability of the eye to detect and resolve objects; pattern 

recognition and prey selection may then follow. Visual acuity is normally defined as the 

minimum angle which a stimulus can subtend at the eye and yet still be resolved. It can be 

determined either theoretically, by means of histological measurements of cone density at the 

retina of the eye, or behaviourally, by determining the smallest stimulus size that will elicit a 

partcular response. Such determinations have been made for tunas (Nakamura 1967, 

Kawamura et al. 1981, Table 3.1).

Table 3.1 Minimum separable angle and maximum visual acuity for tuna eyes. Methods: 1 = histology 
(Kawamura et al. 1981); 2 = experiment (Nakamura 1968); 3 = experiment (Nakamura 1967)

Species Fork
length
(cm)

Method / 
reference

Minimum separable angle 

(minutes of arc)

Maximum visual acuity

(1 / min. separable 
angle)

Albacore 97 1 2.09 0.48

105 1 2.04 0.49

Bigeye 111 1 2.52 0.40

139 1 2.27 0.44

Bluefin 120 1 3.57 0.28

52 1 3.67 0.27

Skipjack - 2 5.56 0.180

Yellowfin 49 & 59 3 3.65 0.274

105 1 2.06 0.49

Visual acuity for tunas (Table 3.1) is the highest among fishes and their retinae are 

considered to be particularly well adapted for movement perception (Kawamura et al. 1981). 

Within tuna species, the larger fish tends to have better acuity (with the exception of Bluefin). 

This is consistent with the general consensus that fish eyes continue to grow (asymptotically) 

throughout life and that acuity increases with increasing eye size (Pankhurst et al. 1993).
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The acuity of Albacore, Bigeye and large Yellowfin is high, reflecting their use of

for both small and larger Bluefin are not so consistent with what is understood of their habitat 

preferences (Chapter 1), although the younger tuna had more numerous single cones than the 

adult (single cones being lower in sensitivity than double cones or rods) suggesting a 

shallower habitat for the former (Kawamura et al. 1981). While light intensity at the surface is 

strong, particularly in the tropics, ambient light is extremely limited below 200 m. The 

angular distribution of the lightfield at depth is predominantly downward and the spectral 

distribution is constrained to blue (Jerlov 1970). Colour vision is of no use here but sensitivity 

is likely to be critical. It is therefore understandable and adaptive that tunas are colourblind 

and that Yellowfin and Bigeye have maximum spectral sensitivity in the blue (458-492 nm). 

The highest cone density in tunas was in the ventral retinal region, with the implication that 

vision is most acute when tunas look upwards (Kawamura et al. 1981). Bigeye, whose 

physiological adaptations to colder waters are discussed later in this Chapter, also has the 

largest eye among the tunas and a dense ‘tapetum lucidum’ in the pigment epithelium layer; 

this acts as a mirror, increasing the effectiveness of photoreceptors. These adaptations would 

enable the deeper foraging that is characteristic of this species.

M aximum distance of resolution (i.e. visual range) can be calculated from the 

minimum separable (also called ‘visual’) angle as follows (Nakamura 1967): bisection of the 

visual angle 0 yields a right angle; the tangent of half the visual angle, in minutes of arc,

equals half the width of the object d, divided by reaction distance r (Fig. 3.1). This is solved 

for reaction distance thus:

deeper waters, while it is lower for the surface-dwelling Skipjack. The low values observed

Eq. 3.1
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Fig. 3.1 Calculation of visual range using minimum visual



The reaction distances calculated by this method are reported in Table 3.2 for the minimum 

visual angles in Table 3.1.

Table 3.2 Visual range (m) for acuity values reported in Table 3.1. Values for skipjack (bold) used to limit visual 
range in the foraging and life-history models developed later (Chapters 4 & 5); see p 56

Object
diameter

for
SPECIES 
c length (cm)

ALB1 ALB 2 BIG1 BIG2 STN1 STN2 SKJ YFN1/2 YFN3
(m) 97 105 111 139 120 52 - 49/59 105
10 274 281 227 252 160 156 103 157 278
9 247 253 205 227 144 140 93 141 250
8 219 225 182 202 128 125 82 126 222
7 192 197 159 177 112 109 72 110 195
6 164 168 136 151 96 94 62 94 167
5 137 140 114 126 80 78 51 78 139
4 110 112 91 101 64 62 41 63 111
3 82 84 68 76 48 47 31 47 83
2 55 56 45 50 32 31 21 31 56
1 27 28 23 25 16 16 10 16 28

0.9 25 25 20 23 14 14 9 14 25
0.8 22 22 18 20 13 12 8 13 22
0.7 19 20 16 18 11 11 7 11 19
0.6 16 17 14 15 10 9 6 9 17
0.5 14 14 11 13 8 8 5 8 14
0.4 11 11 9 10 6 6 4 6 11
0.3 8 8 7 8 5 5 3 5 8
0.2 5 6 5 5 3 3 2 3 6
0.1 3 3 2 3 2 2 1 2 3

The results in Table 3.2 suggest that a school of fish of 10 m diameter might be 

detectable to a foraging tuna at a distance of 100-300 m and that an individual prey item of 

length 10 cm might be detected only in the immediate vicinity (1-3 m) of the crusing 

predator. However, acuity-based calculations are known to considerably overestimate reaction 

distances of piscivores (Breck 1993). Images decay quite rapidly underwater because of 

scattering and absorption of photons by seawater and its constituents. For piscivorous fish 

searching visually for large prey items, reactive distance is therefore more likely to be limited 

by contrast than by visual acuity, and to be only minimally dependent on prey size (Eggers 

1977, Breck 1993, Giske et al. 1998). Acuity-based calculations are nonetheless useful for at 

least ‘capping’ expected visual range for tunas; this is why they have been presented here. A
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more detailed mechanistic model for aquatic visual feeding has been derived (Aksnes & 

Giske 1993, Aksnes & Utne 1997), which includes much detail on the properties of the 

predator’s eye, the optical properties of the water and prey characteristics. These are largely 

undetermined for tunas and their prey, so in order to derive and apply a model for visual 

range in relation to the ocean environment, the missing parameters have been collected into a 

single constant ch and visual range varies in relation to water clarity (diffuse attenuation 

coefficient, k), surface solar irradiance S , and depth z:

5), for surface waters visual range r was integrated over the first attenuation depth h and for 

the deeper habitats r was calculated at depth h :

Visual range was integrated over the first attenuation depth because this approximates the 

vertical habitat of tunas and because depth is not explicitly resolved in the foraging model 

(Chapter 4), which would increase the dimensionality beyond computational limits. In models 

where depth selection is the focus of study, visual range is calculated for each available depth 

level and habitat choice is made accordingly (e.g. Rosland & Giske 1994, 1997). The peak 

wavelength for the spectral sensitivity of yellowfin tuna is 490 nm (Kawamura et al. 1981); 

the diffuse attenuation coefficient at 490 nm (k49Q) is therefore used here. This is directly 

measurable from space with the SeaWiFS ocean colour sensor (Chapter 1, Fig. 1.7). In the 

foraging model (Kirby et al. 2000, Chapter 4) the magnitude of the parameter cx was adjusted 

around O(10"3) so that visual range scaled between 1 and 30 m, depending on k490 and time of 

day (i.e. surface solar irradiance S), consistent with the acuity-based results for skipjack (bold, 

Table 3.2. The relationship that follows between visual range and k is illustrated in Fig. 3.2.

Eq. 3.2

When using this model in the foraging and life history models developed later (Chapters 4 &

Eq. 3.3

r Eq. 3.4



Fig. 3.2 Visual range r varies with diffuse attenuation coefficient k. Eq. 3.3 integrated over first attenuation depth h 
(i.e. depth at which irradiance is 1% of that incident at the surface) h = ln(l/100)/k, c, = 0.01, S = 1000 pE irf2 s '1
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The surface irradiance experienced is not constant during the day and a correction to S by a 

simple sine wave was applied in order to allow for this.1

Fig. 3.3 Coefficient s, applied to peak surface solar irradiance Smax depending on time of day
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In the foraging and life history models (Chapters 4 & 5 respectively), stochastic foraging is 

represented by a Poisson process, where the probability p  of finding food during any time 

stepis calculated from the deterministic encounter rate, E  between the tuna and its prey:

p  = 1- exp {-Et), Eq. 3.5

for:

E  = 0.5 (7cr2vN) Eq. 3.6

This representation has often been used in foraging models (e.g. Gerritsen & Strickler 1977, 

Breck 1993, Rosland & Giske 1994, 1997). The factor 0.5 in Eq. 3.6 applies to predators that 

are prospecting half a circular area, i.e. looking forwards and upwards.

1 This is only strictly valid at the equator. For other latitudes see Eqs 2 & 3 o f  Rosland & Giske (1994)
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Encounter rate therefore depends on swimming speed, prey concentration and visual 

range, which is itself time-varying with S and dependent on water clarity k (Figs. 3.4 -  3.6). 

Fig. 3.4 Visual range and encounter probability for tuna foraging in turbid water (k = 1)
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Fig. 3.5 Visual range and encounter probability for tuna foraging in clearer water (k = 0.1)
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Fig. 3.6 Visual range and encounter probability for tuna foraging in very clear water (k = 0.01)
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Figs 3.4-3.6 illustrate how the variation of encounter rate, as a function of visual 

range, determines the probability of finding food in any 1 hr time-step. For a constant food 

concentration and swimming speed, incident solar radiation (i.e. time of day) and water 

clarity (i.e. k490) determine visual range, with upper and lower limits of 1 and 30 m 

respectively (see Table 3.2 and discussion on p. 56). In turbid water the probability of finding 

food at any time of day is near-zero (Fig. 3.4); in clear waters it is near-unity. Encounter rate 

may be increased by faster swimming, but this has consequent energy costs (see 3.3.3).

3.2.2. Olfaction

Although vision provides greater search volume and offers more precise orientation to prey 

than other sensory systems, information about distant objects must still be sensed by other 

means. Fish can sample a large area quickly, and can actively intercept an odour plume in 

which eddies and filaments present a dynamic stimulus pattern that may contain information 

about distance and direction of the source (Atema 1985). There have been comparatively few 

studies on olfaction in tunas (Atema et al. 1980, Williams et al. 1992). These studies went a 

good way towards answering the standard questions posed, i.e. what are the agents 

responsible for prey detection, what is the threshold concentration detectable by the predator, 

does the predator have any obvious preferences for different prey odours or show any signs of 

acclimation to an odour field? Another question that is seemingly obvious to ask when 

considering the role of olfaction in ecological interactions is: what is the range at which a 

hungry predator can detect a potential meal? With smaller fish, this question can be answered 

by direct measurement of range and response under controlled conditions. For larger animals 

such as tunas, solution to the questions asked above may still yield an answer to the question 

of range, but only after further mathematical treatment. Fortunately, the question is analogous 

to many others concerning dilution, diffusion and transport of tracers in fluid systems. Here I 

have defined and described some simulations based on the laboratory experiments noted 

above (Atema et al. 1980) and obtain length-scales for prey detection by olfaction in the open 

ocean.
59



3.2.2.1. Experimental work 

The experimental work that these simulations are based on was carried out by Atema 

et al. (1980) at the Kewalo laboratory of the US National Marine Fisheries Service, Hawaii. 

The researchers tested the behavioural responses of captive Yellowfin tuna to the odour of 

inshore anchovy Stolephorus purpureus, a very effective live bait and close relative of the 

tuna's most common Hawaiian open ocean prey, the ‘offshore nehu’ S. buccaneeri. In 

responding to a strong food odour the tuna displayed a predictable behavioural repertoire that 

was used as the standard for evaluating their responses to test stimuli.

3.2.2.2. Modelling dispersion in the ocean 

The ocean is an aqueous solution of chemical compounds that is also highly energetic. 

Horizontal stirring and vertical mixing are brought about by fluxes of heat and momentum 

and the energy cascades from basin through to viscous length scales (Mann & Lazier 1993). 

Across distances greater than a few mm, turbulent eddies mix water far more effectively than 

does molecular motion (Okubo 1980). It is often assumed that the flux of a constituent C is 

dependent on the gradient of C and a turbulent diffusion constant, termed the eddy viscosity 

or eddy diffusivity K. We therefore obtain an analogue to Fick's law, where in 1 dimension:

a c _  drC
dt * dx—  E o-3-7

The values of K  vary greatly throughout the ocean. In the deep ocean, horizontal eddy 

diffusivity is orders of magnitude greater than vertical diffusivity, and the diffusion of a 

tracer, such as a pheromone, may be considered in planar geometry (Jumper & Baird 1991). 

In the surface mixed layer, eddy diffusion is high in all directions and so it is better to model 

diffusion in both horizontal and vertical dimensions, or to assume a vertically mixed surface 

layer. The addition of terms in extra dimensions and solving for C, enables one to calculate 

the 3-dimensional spreading from a point source of a discrete mass P of conservative tracer:

P
C(x,y,z ,0  =  y  ; • exp<

(4 n t) * J K xKyK z
* 2 ]

 ̂ o \
y~

 ̂ o \
f

W A W A \
Eq. 3.8
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Atema et al. (1980) released 20 ml of 0.1 pg.ml-1 Tryptophan solution; therefore P = 2 pg. 

The threshold of detection C was (9(10-6 pg m l-1). The detection front profile for the 

dispersion of this threshold concentration over time is shown in Fig. 3.7.

150

100

E«O)
c
CO

time(mins)

Fig. 3.7 Detection front profiles (i.e. horizontal range from source) for 3-dimensional turbulent diffusion of a 
point source emission of Tryptophan. Solid line, 10"5pg ml“‘ contour; dotted line, 10-6 pg ml 1 contour

This representation is only valid for the case of a point source that is discharging 

discrete quantities of a tracer and is stationary with respect to the fluid. This is acceptable for 

pheromone release in deep-sea fish (Jumper & Baird 1991) but not for predator-prey 

interactions, where the odour of a school of forage fish is unlikely to be emitted discretely, 

even if this were the case for individual fish. Furthermore, the definition of micronekton, the 

size class of organisms that includes tuna prey, is that they are capable of swimming speeds 

greater than the velocity of the surrounding fluid. They may therefore sustain their position in 

the presence of a current. In order to determine an extreme range of prey detection by 

olfaction we should therefore use equations that describe a continuous source that is 

stationary with respect to the surrounding fluid.

Two different representations of the problem were considered. Both assume a steady 

state regime (i.e. t = x  m-1) and a vertically mixed layer, with the odour diffusing as a Gaussian



distribution in the y  direction (cross-stream) while being advected in the x direction (along- 

stream). The first case, for diffusion of a continuous point source Q g s_1 in a current u m s -1, 

the concentration at any point C(x,y) is given by:

C(x,y) = • exp{- ^ U } Eq. 3.9
V '  ^ 4 n K yxu [ 4K yx \

The second model incorporates an effective strain rate, a property of fluid flow that acts to 

limit cross-stream diffusion and stretch a tracer along-stream (Haidvogel & Keffer 1984, 

Ledwell et al. 1993, 1998, Schneider 1994, Abraham et al. 2000). The solution with strain has 

not often been used in such studies, largely because of the absence of measurements for the 

effective strain rate. Recent work has provided measurements of surface strain rate (Abraham 

et al. 2000), that compare well with theoretical values (Haidvogel et al. 1984) and with those 

derived from tracer release experiments on the ocean interior (Ledwell et al. 1993, 1998). An 

exact analytical solution for diffusion with strain was derived (E.R. Abraham pers. comm.) 

and applied here. For diffusion with an effective strain rate y = 5 x 10_7s_1 the Gaussian

solution is:

C ( * , y ) = | ^ . e x p { - - ^  1 Eq. 3.10
2x<Jhu [ 2<J J

where

CT2
K.

7
K.

7
• ex p j—̂ 1  Eq. 3.11

The same values for horizontal diffusivity Ky (10 m s ), current velocity u (0.1 m s ) and 

mixed layer depth h (200 m) were used in both cases.

3.2.2.3. Results

Plots for turbulent diffusion and strain of a vertically mixed odour plume are given in 

Fig 3.8. Sim ulations are for a continuous emission of Tryptophan, with threshold 

concentrations of (9(10^ pg ml-1) as determined by Atema et al. (1980).
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Fig 3.8 (a) horizontal spreading of 10 5 pg ml 1 contour; (b) horizontal spreading of 10 6 pg 
ml-1 contour. Dotted lines for diffusion, solid lines for diffusion with strain. Odour emitted at 
1 g s '1, vertically mixed to 200 m. Effective strain rate, 5 x  10'7s '‘; horizontal diffusivity, 10
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3.2.2.4. Discussion

The various representations of odour dilution and dispersion are all idealised, and 

mixing processes in the surface ocean are complex. Allowing for disruption of the odour 

plume due to finer scale turbulence, represented here only through the eddy diffusivities, the 

detectable range for olfaction may well be less than that predicted. Uncertainty in the results 

reported previously, particularly with regard to elution rates of amino acids from prey fish and 

also with regard to the threshold concentration for amino acid detection, carries through to 

uncertainty in the reaction distances calculated. The lower limit suggested as the detection 

threshold (10-6 pg ml-1) propagates for 0 (100 km) from the source and in reality would 

probably blend into background concentrations. Even if it were detectable, to embark on a 

search based on chemical cues over this distance would probably be futile, given that prey is 

mobile and that the ocean is much more dynamic than represented here. The dilution of the 

upper limit suggested (10~5pg ml-1) is much less diffuse, and the maximum length scale that 

is predicted here is -3 0  km. Tuna may well be able to navigate towards a signal over this 

distance. Swimming cross-stream when searching for the odour and up-stream in the presence 

of the odour is then an efficient way to locate the prey source (G Huse & R Vabo unpubl.).

Horizontal diffusion of tracers in the presence of strain is limited to a scale of -5  km,

determined by even if the tracer is non-conservative, e.g. phytoplankton (Martin 2000). 

The width of filaments in the model regime here (K = 10 m2 s-1, y = 5 x 10~7 s~‘) is 4.5 km.

The width of the detectable odour plume depends on the sensitivity of the predator and is 

predicted here to be -1  km for the 10~5 pg mT1 contour (Fig. 3.7a). In the vertical dimension 

odours may not be well-mixed, due to stratification of the water column. In such 

circumstances an odour trail may be longer and more concentrated but harder to initially 

detect. The ‘dive & glide’ behaviour observed in tunas (Weihs 1973, Carey & Olson 1982, 

Holland et al. 1990, Block et al. 1997) whereby a rapid powered ascent is followed by a
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slow, lift-based glide, may not only be a way of conserving energy but may also represent an 

efficient search strategy, permitting sampling of different depth strata for odour trails.

3.2.3. Summary

Reaction distances for prey detection by vision and olfaction have been calculated 

using 2 different analytical models in each case. The purpose of this exercise was to identify 

horizontal limits to the efficiency of these sensory systems. Conclusions are confounded by 

the lack of published information on visual capacity and other important properties of tuna 

eyes and the inherent contrast of different prey types (cf Aksness & Giske 1993, Aksnes & 

Utne 1997), elution rates of detectable odours (i.e. amino acids) from forage fish and the 

im precise determination of the sensitivity threshold for prey detection by olfaction. 

Nonetheless, it is possible to use ‘sensible’ estimates of these parameters in the analytical 

models available in order to estimate maximum values for each case. I conclude that tunas are 

able to detect their prey by vision at a range of 1 to 30 m, depending on turbidity and prey 

(shoal) size, and by olfaction at a range of up to 20-30 km, depending on prey concentration, 

currents and the degree of stratification. These estimates are used to constrain predator-prey 

encounter rates in the foraging model (Chapter 4) and life-history model (Chapter 5) that 

follow.

3.3. ACTIVE METABOLIC RATE

Tunas have metabolic rates up to 5 times higher than those of other comparable 

teleosts (e.g. salmon and trout, Brett & Glas 1973; Gooding et al. 1981, Brill 1979, 1987, 

Dewar & Graham 1994, Brill 1996). The active metabolic rate is the sum of standard 

metabolic rate, specific dynamic action and energy cost due to locomotion, and experiments 

have been carried out to determine the relative contributions of these components to total 

energy cost.
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3.3.1. Standard metabolic rate

Standard metabolic rate (SMR) is the metabolic rate of an animal completely at rest at 

a temperature to which it has adapted. The SMRs of Skipjack and Yellowfin tuna have been 

determined (Brill 1979, 1987 respectively and for both species by Dewar & Graham 1994) at 

their preferred temperature of 25°C, and the effects of body size and acute temperature 

change were studied. Allometric equations relating SMR to body mass were derived from 

experimental data, with the form: SMR = aAf1*, where M  is body mass and both a and b are

fitted parameters. The curves that follow from this relationship, with parameters fitted for 

Skipjack (a = 412 ± 27.1, b = 0.563 ± 0.07, Brill 1987) and Yellowfin (a = 286.8 ± 26.9, b =

0.573 ± 0.116, Brill 1989), are shown in Fig. 3.9, with SMR converted from mg 0 2 t f 1 to kJ 

h r1 (1 mg 0 2 = 14.054 J). The effect of body mass on SMR is not significantly different 

between the 2 tuna species but the exponents in the allometric equation are lower than for 

other teleosts, indicating that weight-specific SMR for tunas decreases more rapidly as body 

size increases (Brill 1987).

Fig. 3.9 SMR by body mass for Skipjack and Yellowfin (Brill 1987, 1989)
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3.3.2. Specific dynamic action

‘Specific dynamic action’ is the energetic cost of converting food into useable energy 

and is a direct function of stomach fullness; there is a sharp increase in metabolic rate shortly 

after ingestion of a meal, peaking at ~2 times the pre-feeding rate within a few hours and 

falling off to the pre-feeding level over the time that it takes for the stomach to empty (Jobling 

1994). This has been modelled using a step-function with 2 linear relationships: over the first 

2 h following ingestion SDA increases from zero (i.e. no food is being converted) to a value 

equivalent to the SMR; metabolic energy costs therefore double and then decrease to the 

normal SMR over the next 8 h (Fig. 3.10).

3.3.3. Cost of locomotion

The energy cost due to locomotion EL is a function of body length L, swimming speed 

cubed v3and drag Cd (Sharp & Francis 1976, after Streeter 1962):

El = 2.59 x 10~5 L2 v3 Cd (mg 0 2 h r 1) Eq. 3.12

The drag coefficient Cd is also a function of body length and velocity (Gerritsen 1984, after 

Webb 1975) and can be approximated as:

Cd = 0.55 L  ~1/2 v ~1/2 Eq. 3.13

which, when substituted into Eq. 3.12 and converted to Joules (1 mg 0 2 = 14.054 Joules) 

gives:

El = 2.002 x KT* L15 v25 Eq. 3.14

The energy cost of foraging is compared with the encounter rate for various velocities in 

Fig.3.11. This illustrates the trade-offs that operate, as encounter rate is a linear function of v 

(Eq. 3.5) and energy cost varies with v25 (Eq. 3.14).
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Fig. 3.10 Variation of metabolic rate with stomach fullness (i.e. standard metabolic rate plus specific dynamic action)
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3.4. ENERGY ABSORPTION & GASTRIC EVACUATION

Experimental work has shown that when food is available, tuna will feed until satiated in 

less than 1 h (Olson & Boggs 1986). Tunas also have exceptionally high digestion rates 

(Magnuson 1969, Olson & Boggs 1986, Brill 1987, 1996) evacuating their stomachs within 

10-14 h after ingestion (Magnuson 1969, Olson & Boggs 1986). Other piscivores of similar 

body length require 4 to 5 times longer than Skipjack to evacuate a meal (Magnuson 1969). 

This facility is advantageous for species that must be able to exploit potentially short-lived 

aggregations of food whenever they are encountered. Rapid energy absorption may then occur 

for low energy prey items (Olson & Boggs 1986, Andersen 1999) and in warmer waters 

where metabolic rate and therefore absorption efficiency is higher (Jobling 1994).

The foraging model (Kirby et al. 2000, Chapter 4) allows the stomach to be refilled to 

capacity at each prey encounter. Rather than fixing a linear or logarithmic rate of gastric 

evacuation, it is instead determined by the rate of energy absorption from the stomach (Fig. 

3.12). The amount of energy in the stomach is determined by the relative amounts of the 

possible prey types and their respective energy densities. The stomach is capable of absorbing 

a fixed amount of energy in each time step. The amount of energy actually absorbed is 

determined by the absorption coefficient q2, which varies directly with metabolic rate (SMR + 

SDA). Previous work (Kitchell et al. 1978) found that absorption efficiency (i.e. energy 

absorbed from energy ingested) was 90% for a diet of fish and 80% for a diet of invertebrates. 

Here 100% absorption is assumed, an approximation that allows the energy absorbed per time 

step to determine the rate of gastric evacuation (Figs. 3.12 & 3.12, see Chapter 4 for more 

details). While the slopes for gastric evacuation are the same, the time taken to empty the 

stomach is less for lower energy food (cf citations above). This implies that energy absorption 

is a continuous process but gastric evacuation is not. The small accumulation of waste then 

precedes a pulse of evacuation.
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Fig. 3 .12  Energy absorption from the 
stomach and subsequent gastric evacuation. 
Starting with a full stomach (X„) with 
maximum stomach energy (Ymax), a pro­
portion (q2 Y,nax)  is absorbed during the first 
time step. An amount o f stomach contents 
is then evacuated, such that the energy 
density o f  the stomach contents (Y/X) is 
unchanged. The amount o f energy abs­
orbed in each time step varies because the 
absorption coefficient (q2) depends on met­
abolic rate. This doubles 2 h after feeding 
and then decreases to the pre-feeding rate
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densities at different temper­
atures. N ote the rapid evac­
uation o f  stomach contents 
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the slower absorption and ev­
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3.5. THERMAL STRESS

W hen experiencing acute temperature changes, SMR responds with a Q w ~ 2, i.e. it 

doubles (halves) for every 10°C increase (decrease) in ambient temperature (Brill 1987). This 

is similar to values reported for other teleosts, despite the mechanisms of heat conservation 

available to tunas (see Chapter 1). This has been a puzzle until recent experiments showed 

that water temperature has a direct effect on heart rate (Brill 1997, Brill et al. 1998). The heart 

is effectively ‘outside’ the heat-exchange system (Brill et al. 1994b) and the temperature of 

the heart will therefore immediately relect changes in ambient temperature. Experiments on 

Yellowfin have shown that an acute reduction in temperature results in an immediate decrease 

in heart rate (Q l0 = 2.37, Korsmeyer et al. 1997a; Brill 1997, Brill et al. 1998). Unlike most 

teleosts, tunas depend more on increased heart rate than increased stroke volume when 

elevated levels of cardiac output are needed (Farrel 1991, Farrel et al. 1992, Korsmeyer et al. 

1997a,b) yet they have no apparent ability to counteract the decreased heart rate and cardiac 

output that results from acute reduction in temperature (Brill 1997, Brill et al. 1998). This 

means that although they might be able to maintain oxygen delivery at low swimming speeds 

they would not be able to sustain higher swimming speeds at low temperatures. Such 

temperature limitation may be fatal. Captive skipjack could not survive more than a few hours 

in waters only 5°C outside the optimal temperature range, i.e. 15°C and 35°C (Dizon et al. 

1977, Barkley et al. 1978). The cause of death under thermal stress is most likely due to 

falling heart rate and cardiac output rather than effects on muscle temperature and efficiency 

and energy losses (Brill et al. 1998). Bigeye tunas are able to tolerate colder waters for longer 

periods of time than other tropical tunas, which has been attributed to rapid increase in blood 

temperature when in warmer waters (Holland et al. 1992, Dewar et al. 1994) and also to the 

unique properties of Bigeye blood itself (Brill 1997), which has a significantly higher 0 2 

affinity than the blood of other tunas (Lowe et al. 2000).
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In the foraging model (Kirby et al. 2000, Chapter 4) this subject is treated separately 

from the other bioenergetic state variables. A state variable Q is incremented with time spent 

in waters outside the preferred temperature range and decreased when the fish returns to 

warmer waters. The rates of increment (Table 3.3) are set such that Q reaches the lethal 

maximum in the time given by the experiments referred to above (Dizon et al. 1977, Barkley 

et al. 1978). The rates of increment and recovery may be non-linear and variable (e.g. Holland 

et al. 1992). The recovery rate for Q is therefore greater than the rate of increment by a factor 

of 10 (Table 3.3). A direct effect of Q on overall fitness was also included (Chapter 4).

Table 3.3 Increment/decrement of state variable Q by coefficient q} (see Eq. 4.6) that results after 1 h at given 
temperatures. Tuna dies (Q = 5) after 5 h in water 5°C colder than minimum value of preferred temperature 
range. Time permitted in colder waters based on these rates are given. Recovery from thermal stress is rapid i.e. 
q3 is large and negative in warm waters

Water Temperature Hourly increment/decrement Time until death
(°C) of thermal stress, Q (Le. q3) (h)

15 1 5

16 0.64 8

17 0.36 14

18 0.16 31

19 0.04 125

20 0

21 -2

22 -4

23 -5

24 -5

25 -5

A summary of characteristics used to define a model tuna in the behavioural and life history 

models developed later on (Chapters 4 & 5) is given in Table 3.4.
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Table 3.4 Characteristics of the artificial tuna (ARTU) used in the optimal foraging model (Chapter 4) compared to published data. Omissions occur where no published 
information is available. ARTU is derived to have characteristics similar to those measured for Skipjack & Yellowfin

Property Units ARTU Skipjack Yellowfin Albacore Bigeye S. Bluefin
Maximum length2 cm 100 110 280 130 250 225
Maximum weight1 kg 20 35 200 45 210 200
Stomach capacity / body mass % 5 - 5.46-5 .973 - - -
Maximum somatic energy density kJ.g1 6 6.24 6.03 - - -
Minimum somatic energy density k J .g1 3 3 .13 3.73 - - -
Maximum swimming speed lengths.s'1 10 14.45 104 - - -
Minimum swimming speed lengths.s'1 1 1.56 1.3s - l . l 5 -
Preferred (Optimal) temperatures °C 20-30 17 (20-29) 30 7 18 (24-30) 3 16 11 (16 -1 9 )2 5  6 11 (23-28) 28 6 10 (1 3 -1 5 ) 28 6
Standard Metabolic Rate for 20kg fish kJ.hr1 22 308 227 159 - -
Lethal limits of temperature (Time @ Temperature) hrs, °C 5. 15 5. 151(1 - - - -
Q l(, for temperature effect on SMR - 2 2.27 2.27 - - -
Visual range m 1-30 - - - - -

2 Collette & Nauen 1983
3 Olson & Boggs 1986
4 Boggs & Kitchell 1991
5 Yeun 1966
6 Magnuson 1973
7 Freon & Misund 1999
8 Brill 1987
9 Brill unpubl. in Graham & Laurs, 1982.
10 Dizon et al. 1977, Barkley et al. 1978
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4.1. SUMMARY

In this chapter I present a model that simulates the foraging behaviour of tunas in the 

vicinity of ocean fronts. Stochastic dynamic programming is used to determine optimal 

habitat choice and swimming speed in relation to environmental variables (water temperature 

and clarity) and prey characteristics (abundance and energy density). By incorporating sub­

models for obligate physiological processes (gastric evacuation, standard and active metabolic 

costs) and sensory systems (visual feeding efficiency) described in Chapter 3, many of the 

factors that have long been argued to explain the aggregation of tunas at ocean fronts are 

integrated into a single fitness-based model. The modelling technique describes fitness 

landscapes for all combinations of states and makes explicit, testable predictions about time- 

and state-dependent behaviour. Enhanced levels of searching activity when hungry and 

towards the end of the day are an important feature of the optimal behaviour predicted. The 

model is particularly representative of the behaviour of tropical tunas and young temperate 

tunas that are often observed to aggregate near fronts. For adult temperate tunas plus the 

tropical Bigeye tuna, for which extended vertical migrations are a significant and as yet 

unexplained component of behaviour, the model is able to reproduce observed behaviour by 

adopting the lower optimal temperature and standard metabolic rate of Albacore. The model 

is the first detailed attempt to predict tuna behaviour from physiology and environment. It 

cannot explain why physiological differences exist between and within species, but it does 

show how differences in susceptibility to thermal stress will permit different behaviour.
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4.2. INTRODUCTION

Ocean fronts are broadly understood to mark the boundary between 2 different water 

types (Fig. 1.7) and are therefore usually manifested as a region of strong horizontal gradients 

in temperature, salinity, and chlorophyll, and concentration of zooplankton and micronekton. 

Blackburn (1965) noted that fronts are very important in the ecology of tunas and other 

macronekton, but that the reasons for this were rather poorly understood. Even now there are 

no datasets that allow a definitive assessment of trophic interactions at fronts, particularly 

with regard to the behaviour of tunas (Olson et al. 1994). Whilst it is generally accepted that 

tunas aggregate at fronts, presumably to feed (Laurs et al. 1984, Fielder & Bernard 1987) field 

observations do not show for all cases that tunas and their prey are more abundant in or at 

fronts than in adjacent waters (Sund et al. 1981, Power & May 1991). The reasons offered as 

to why such association occurs, include the following (listed in Laurs et al. 1984): 

confinement to a physiologically optimum temperature range (Thompson 1917, Sund et al. 

1981), utilisation of frontal gradients for thermoregulation (Neill 1976), limitation of visual 

hunting efficiency due to the effects of water clarity (Magnuson 1963, Murphy 1959), and the 

availability of appropriate food (Pinkas et al. 1971). Other authors have subsequently referred 

to Laurs et al. (1984) as defining the behaviour of tunas in relation to ocean fronts, using 

statements such as, ‘tunas aggregate at temperature fronts in order to feed (Laurs et al. 1984)’. 

As noted in Chapter 1, the confusion between establishing associations and proving cause and 

effect constitutes ‘the error of pseudo-explanation’ (Loehle 1987). While Laurs et al. (1984) 

discussed the role of the environmental variables listed above, they did not investigate their 

relative importance nor establish any causal links between them and the distribution of tunas. 

This model was developed as a tool that might aid such investigation and help to guide and 

interpret future observations, thus providing a deeper level of understanding of the association 

between tunas and ocean fronts.
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4.2.1. Context & objectives

Tuna behaviour is investigated in the context of optimal foraging theory, where the individual 

is seeking to maximise energy return from foraging activity in a heterogeneous environment 

(M acArthur & Pianka 1966, Emlen 1966, Stephens & Krebs 1986, Schoener 1987). The 

objective of the exercise was to develop a model system for a generic tuna that would predict 

optimal foraging behaviour in relation to the biophysical environment. Environmental cues 

and functional responses are linked through the mechanisms that operate, and obligate 

physiological processes are represented at an appropriate level of detail. Through this work I 

wished to suggest a methodology for integrating tuna physiological and behavioural ecology 

within a quantitative framework, with a sound theoretical basis, and ultimately a predictive 

capability. The model was developed with two essential questions in mind:

1. Is the observed aggregation of tunas at ocean fronts predicted by any single property or 

combination of properties of the fish themselves or of their environment?

2. Are the observed inter- and intra-specific variations in behaviour also predictable?

By investigating these questions I hoped to provide explanations for tuna behaviour that went 

beyond the present level of understanding, placing observations in a theoretical context and 

identifying requirements for further observational and experimental study.

4.3. THE MODEL

4.3.1. Environment

The ocean environment is represented in 2-dimensional space and time, with two vertical 

layers and two surface water masses with a frontal zone between them (Fig. 4.1). The fish 

may therefore inhabit any 1 of 7 possible habitats at any given time. As the time-step used in 

the model is 1 h, the fish is allowed to move between all possible habitats without constraint. 

The properties of these habitats (Table 4.1) are used as inputs to the model.
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Figure 4.1 Schematic representation of habitat choice for tunas in the vicinity of a coastal upwelling front
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Table 4.1 Some realistic values for habitat properties at the frontal zone: estimated values for food quantity (N) 
and quality (PED), turbidity and temperature are used. For different simulations these quantities were varied.

Patch k(m  ') T (°C) Prey (shoals.m'3) P E D (k J .g ‘)

1 - - - -

2 0.04 18.00 0.40E-07 6

3 0.0325 19.00 0.20E-07 5.5

4 0.025 20.00 0.10E-08 5.5

5 0.0175 21.00 0 -

6 0.01 22.00 0 -

7 - - - -

Temperature relates to the rate of various physiological processes, which are described 

in more detail below. Prey abundance and water clarity affect the rate of food encounter 

whilst prey quality in terms of caloric (energy) density, affects the rate of energy return. The 

energy density of northern anchovy Engraulix mordax, a favourite prey of albacore foraging 

at the coastal upwelling fronts off California (Fiedler & Bernard 1987), is ~7 kJ.g-1 (Boggs 

1991). Here prey quality is varied by decreasing energy density from this level. Tunas are 

predominantly visual predators, feeding opportunistically and unselectively on micro-nekton, 

including epipelagic fish, molluscs and crustaceans, and the larvae of these groups (Blackburn 

1968). For reasons largely concerning the difficulty of sampling micronekton (i.e. small, fast- 

swimming fish) direct assessment of tuna forage has not yet been possible (Roger 1994). Prey 

abundance is therefore estimated as follows: taking prey concentration as approximately 

1-10 g m-2 (as used by Dagorn 1995) over a 200 m surface layer this gives prey density of 

5 x 10"5 to 5 x 10^ kg.m"3. The feeding model described below simplifies prey encounter such

that if a shoal of forage fish is encountered, up to 1 kg of food is consumed. Assuming a shoal 

of forage fish to have an average mass of 1000 kg, prey densities of 5 x 10~8 to 5 x 10~7 shoals

m“3 are obtained, which is the range of abundance used in this model. In clear water with 

realistic swimming speeds this gives an encounter rate and frequency of feeding of 1-2 meals 

day-1.
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4.3.2. Physiology & sensory biology

The physiology of the fish is the state space of the model, described in more detail in 

Chapter 3 and below as the evaluation of fitness is discussd. The behavioural options 

optimised in the model in relation to environmental properties and state variables determine 

the probability of finding food. Prior knowledge of environmental properties, including food 

type and concentration, is implicit in the modelling technique. Olfaction might explain this —  

the reaction distance is then determined by visual range.

The technique used for the study is stochastic dynamic programming (SDP). The 

outputs of an SDP model are the state- and time-dependent choices that maximise some 

measure of fitness, and the technique is particularly appropriate to behavioural studies 

incorporating different components of fitness (McFarland 1977, Mangel & Clark 1988, Krebs 

& Davies 1991, Giske et al. 1998). The fitness criterion used here is not a true measure of 

Darwinian fitness but is a proxy for the general health of the fish, and therefore its 

reproductive ability. Issues regarding allocation of energy to somatic and gonadal growth 

have not been considered but the model works on the assumption that at low levels of total 

body energy, growth, reproduction and migration are limited.

The ‘Terminal Fitness Function’ (Mangel & Clark 1988) was therefore defined such 

that fitness F  is scaled according to the level of somatic energy density above a critical level:

where x, y, z and Q are the state variables described above, H  is the time horizon and zmax and 

zcrit are the maximum and minimum (critical) levels of body energy. The shape of the 

Terminal Fitness Function can be varied by raising it to various powers £ — higher body

energy is then required to obtain high fitness — motivation for foraging is then increased 

(Eq. 4.1, Fig. 4.2).

4.3.3. Evaluation of fitness

max Eq. 4.1

0
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By backward iteration from terminal fitness, fitness values for all combinations of 

state, habitat /, and swimming speed 5 over time t are obtained using the ‘Dynamic 

Programming Equation’ (Mangel & Clark 1988):

F(x,  y ,  z , Q , t ,  H)  =  <
max q

i ,s  4

p xF ( x \ y \ z \ Q \ t  + \ , H )  +

(1 -  p x) F ( x ' \ y ' \ z ' \ Q ' \ t  +  1 , H )

0 for z < zcrit

for z > zcrit
Eq. 4.2

where p, is the probability of finding food, and the dynamics of the state variables are:

If food is encountered (with probability p,):

x  = X0 Eq. 4.3a

i.e. stomach is filled;

y = y - q  2 ymM + (X0- X )  pE Eq. 4.3b

i.e. energy is absorbed from the stomach and new energy is ingested.

If food is not encountered (with probability 1— pi):

y " = y - < h y max Eq. 4.4a

x " = y " xy~' Eq. 4.4b

i.e. energy is absorbed from the stomach and the new stomach energy, y determines the new

stomach fullness (see Fig. 3.2), as waste (i.e. mass with negligible energy) is evacuated.

For all cases:

z = z = z + q2 ym ax -  «  Eq- 4 -5

i.e. body energy is incremented by absorption from the stomach, minus total energy costs;

Q = Q = Q + q3 Eq. 4.6

i.e. thermal stress changes depending on ambient temperature (Table 3). The level of thermal

stress may then have a direct, non-linear effect on fitness through the coefficient q4 (Fig. 4.3):

= (Cn«x -  Q)/Qmax Eq- 4'7a

94 = 1 - ( e / a ™ ) 2 Eq. 4.7b
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Fig. 4.2 The Terminal Fitness Function (linear & quadratic)
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Once the fitness values for all possible solutions are calculated, the optimal solutions (i.e. 

optimal habitat and swimming speed for any combination of states and time) are saved. An 

individual based model (IBM) can then run forwards in time, simulating foraging with 

stochastic prey encounter; the state dynamics and behaviour may be recorded. Some results 

for fitness landscapes, optimal behaviour and foraging simulations are presented below.
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4.4. RESULTS

4.4.1. Foraging at Fronts

4.4.1.1. Fitness landscapes

These represent the fitness values for combinations of the 4 state variables over time

and are illustrated in Fig. 4.4. In Fig. 4.4a, fitness for different values of stomach fullness X  

over time is shown for different levels of body energy Z. Fitness decreases slightly with 

stomach fullness and there is a small diurnal effect, such that fitness is lower for an unfilled 

stomach towards the end of the day than it is for the same level of stomach fullness at the start 

of the day. These fitness landscapes are significantly affected by the level of body energy; if 

body energy is high it matters little whether or not the stomach is full. As body energy 

decreases, variations in stomach fullness become more important determinants of fitness. In 

Fig. 4.4b, fitness for different values of body energy Z over time is shown for different levels 

of thermal stress Q. At any time t there is significant variation in fitness as body energy is 

varied, and as thermal stress increases, all fitness values are reduced.

4.4.1.2. Optimal habitat choice and swimming speed 

For conditions where only single properties varied between habitats, the results are 

simply described. For scenarios where all properties vary between habitats (Table 4.1), plots 

of optimal habitat and swimming speed and of foraging simulations are included. Swimming 

speed greater than the minimum value indicates active foraging.

Effect o f  temperature variations: If food quality and quantity do not vary between habitats, 

but temperature varies from 25°C offshore to 15°C inshore, the optimal habitat to inhabit is 

the one where temperature is just above the threshold for the accumulation of thermal stress. 

Here metabolic energy costs are lowest and no thermal stress is incurred.

Role o f  food  quantity and quality: If there is food in only 1 habitat and all other conditions are 

equal, then it is optimal to be in that habitat. If there is equal abundance in all habitats but 

food quality varies, then the optimal habitat is the one with the most energetic food. If there is 

an unequal distribution of food and quality also varies, then the best place to be is an 

intermediate habitat which has good quality food and higher than average abundance.
84



Fig. 4.4 (a) Fitness for different values of stomach fullness X over time, at different levels o f body energy Z; 
thermal stress Q is zero. There is a small diurnal effect, such that fitness is lower for an empty stomach at the end 
o f the day than in the morning. In general fitness values are fairly constant with stomach fullness, but are 
significantly affected by the level of body energy, (b) Fitness for different values of body energy Z over time, at 
different levels o f thermal stress Q; stomach fullness is 50%. There is significant variation in fitness as body 
energy is varied; as thermal stress increases all fitness values are much reduced

Z = 1 0  

Z = 5

Z = 2

Stomach fullness (%)

Body energy (MJ)
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Effect o f visual range and light: Swimming speed is generally faster during the day, when 

light intensity and therefore visual range are high. If food has not been encountered as 

daylight is fading, swimming speed may increase for a few hours before falling again, a 

prediction that follows from the fitness landscapes described above. At night, when visual 

range is near zero, swimming speed usually dropped to the minimum value. Diffuse 

attenuation coefficient k, being in the exponent of the visual feeding model, was a major 

determinant of foraging behaviour.

Foraging sim ulations fo r  a quasi-realistic scenario: Simulations were run for the

environmental properties listed in Table 4.1 with 3 different representations of the effect of

thermal stress. In the first case (Fig. 4.5) Q was treated just like the other state variables in the

Dynamic Programming Equation (Eq. 4.2) i.e. there was no direct effect on fitness (q4= 1).

Active foraging occurred only during daylight hours but the fish stayed in colder waters for

the majority of the time, only occasionally returning to warmer waters to reduce Q. I did not

consider this original formulation to be well representative of the physiological mechanisms

acting and the behaviour that resulted did not seem very realistic. I therefore incorporated a

direct and linear effect of Q on fitness through Eq.l6a, representing the immediate effect of

temperature change on heart rate (Brill et al. 1998, 1999). This resulted in much more

conservative behaviour (Figs. 4.6 & 4.7). The optimal solutions (Fig. 4.6) show that tuna

should only actively forage in coastal waters if the stomach is empty and during the middle

4 h of the day (10:00-14:00); the rest of the time they should stay in warmer offshore waters,

swimming at their minimum speed. Foraging is still a diurnal activity, peaking around

midday, but time spent in colder waters is extremely limited (1-2 h, Fig. 4.7). Again, this

behaviour did not seem very realistic. I then varied the shape of the function determining the

direct effect of Q on fitness, implementing Eq. 4.7b rather than Eq. 4.7a (Fig. 4.3). This

prolonged the time permitted in colder waters (Fig. 4.8 & 4.9) and behaviour is then not so

conservative. Active foraging occurs from 07:00-17:00 when stomach fullness is less than

70%; if stomach fullness is below 20% between 09:00 and 15:00, the fish should also move to
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the coastal waters (Fig. 4.8a,b). At night, active foraging does not occur; the warmest offshore 

waters (Habitat 6) are occupied if there is food (> 20%) in the stomach, otherwise the fish 

should stay in Habitat 4. Within the constraints of the model environment this best represents 

the motivation, physiological imperatives and behavioural options for tunas foraging at fronts 

and that the resulting behaviour is as realistic as it can be.

4.4.2. Vertical Movements

Further simulations were then run in order to investigate vertical movements. Initially, food 

was made available in surface and deeper habitats. In this case, however, it was never 

profitable to forage at depth, presumably because encounter rates were much lower due to 

limited visual range. I then made food only available in the deeper, cold habitats. Varying the 

optimal temperature and metabolic rates provoked different patterns of behaviour, analogous 

to the differences between the behaviour of tropical and temperate tunas. The same 

representation of thermal stress that was used above was implemented i.e. thermal stress was 

incurred slowly, had a direct effect on fitness and recovery rate in warmer waters was rapid 

(see Eq. 4.7b, Fig. 4.3). The behaviour that results is analogous to that of tropical tunas, with 

most time spent in the surface waters and occasional excursions into deeper, colder waters 

(Fig. 4.10). In the second case, metabolic rate and optimal temperature for Albacore were 

used, both of which are significantly lower than those of Skipjack (Table 3.4). ARTU then 

spent most time in deep waters with occasional vertical excursions to surface waters (Fig. 

4.11). This is consistent with the behaviour of adult Albacore, as well as the depth-tolerant 

behaviour of Bigeye and Bluefin, for which metabolic rate measurements are not available.
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Fig. 4.5 Foraging simulation with no direct effect o f thermal stress (i.e. q 4 = 1). The top graph tracks the 
bioenergetic state dynamics, the next 2 graphs track optimal habitat and swimming speed respectively, and the 
bottom graph tracks thermal stress Q. Habitat characteristics vary across the front (Table 4.1). The fish is 
predicted to inhabit the cooler, food-rich waters of Habitat 2 most of the time, increasing its swimming speed to 
actively forage during daylight hours. Because there is no direct effect of Q the fish can stay in Habitat 2 even 
under high stress levels. This is not very realistic and so a direct effect o f Q on fitness was implemented
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Fig. 4.6 (a) Optimal habitat and (b) optimal swimming speed for varying time and hunger state (stomach 
fullness); body energy is low (72 MJ) and thermal stress is zero. The implementation o f a direct linear effect of 
Q on fitness leads to very conservative behaviour, with active foraging only predicted from 10:00-14:00 hrs 
when the stomach is completely empty. At all other times the fish should stay in Habitat 4
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Fig. 4.7 Foraging simulation for the direct linear effect o f Q on fitness. Time spent in colder water is extremely 
limited (1 -2  h). This behaviour seemed overly constricted and so a direct quadratic effect o f Q on fitness was 
subsequently implemented
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Fig. 4.8 (a) Optimal habitat and (b) optimal swimming speed for varying time and hunger state (stomach 
fullness); body energy is low (72 MJ) and thermal stress is zero. The implementation of a direct quadratic effect 
of Q on fitness leads to less conservative behaviour, with active foraging predicted from 07:00-17:00 hrs if 
stomach fullness is less than 70%. At most other times the fish should stay in Habitat 4, unless it still has food in 
its stomach prior to dawn; then it should seek warmer waters where digestion is more efficient and it may absorb 
stomach energy more quickly before foraging again
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Fig. 4.9 Foraging simulation for the direct quadratic effect o f Q on fitness. Time spent in colder water is less 
limited (1 -6  h). This behaviour is more realistic
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Fig. 4.10 Foraging simulation for vertical movements. Only the open ocean habitats are available. Food is only 
available in deeper waters, where the temperature is 8° less than the surface. With metabolic rate and optimal 
temperature similar to Skipjack and Yellowfin, ARTU spends most o f the time in the surface waters, with short 
excursions to deeper water to forage.
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Fig. 4.11 Foraging simulation for vertical movements. Only the open ocean habitats are available. Food is only 
available in deeper waters, where the temperature is 8°C less than the surface. With metabolic rate and optimal 
temperature similar to Albacore, ARTU spends most o f the time in the deeper waters with short excursions to 
shallow water to obtain a ‘gulp of heat’ (cf Brill 1994a)
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4.5. DISCUSSION

The main achievement of this model is the integration of environment, physiology and 

behaviour within a single, quantitative framework, thus providing a theoretically sound 

perspective from which to make and try to understand observations. I was able to make 

realistic simulations of observed behaviour by having a slow increment and fast decrement of 

thermal stress, representing the well-documented thermal inertia of tunas (Neill et al. 1976, 

Holland et al. 1992), and by including the effect of thermal stress directly on fitness. In 

reference to the questions asked at the start of the exercise (p. 78) I can say that the observed 

aggregation of tunas at ocean fronts is not predicted by temperature alone, and when turbidity 

is high on the cold side of the front it is not profitable to be in those waters unless they are 

higher in food abundance or quality than the warmer waters. By varying optimal temperatures 

and the representation of thermal stress in the determination of fitness, it was possible to 

generate differences in behaviour that are akin to the observed differences between surface 

dwelling tropical tunas such as Skipjack and Yellowfin and deeper foragers such as Bigeye 

and Bluefin. The model has therefore met its design criteria by representing mechanism and 

process to the best of our knowledge, and predicting behaviour from physiology. Its structure 

and detail are biologically meaningful, and its predictions are, in principle, measurable.

An inherent property of dynamic optimisation models is that at each stage, the 

individual has perfect knowledge of the fitness values of its present and future states and the 

consequences of alternative behaviours. Learning and physiological cues would explain 

knowledge of the past and present, and olfactory sense could be offered as an explanation for 

knowledge of future prey concentrations, through medium to long-range detection of prey 

prior to visual encounter (Atema 1980, Atema et al. 1980). The encounter rate between 

predator and prey is then determined by the visual feeding model (Aksnes & Giske 1993, 

Aksnes & Utne 1997). This is yet to be fully parameterised for tunas. It would be necessary to 

measure the visual capacity and sensitivity threshold of tuna eyes, as well as to characterise 

the inherent and apparent contrasts of their prey.
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The model also makes predictions regarding state-dependent behaviour that have not 

yet been investigated in the field or laboratory. Simultaneous measurements of both state and 

environmental variables (stomach contents, heart rate, temperature, light) as well as the 

behaviours predicted (location, swimming speed, swimming mode) would provide a more 

detailed picture of the behavioural ecology of tunas than presently exists. Some work has been 

done in this area (e.g. Holland et al. 1992, Brill et al. 1999) but in no study have all relevant 

variables been measured simultaneously. By contrast, for Weddell seals Leptonychotes 

weddelli, heart rate, body temperature, depth and swimming velocity have been measured 

during free-diving, while a peristaltic pump withdrew blood samples and injected radio­

labelled metabolites (Guppy et al. 1986, Hill 1986). Although more difficult for fish than 

mammals, such work could be repeated for tunas with measurements logged and transmitted 

by acoustic or satellite telemetry (e.g. Lutcavage et al. 1999).

The degree of convergence between model predictions and observations to date is

encouraging but there are sufficient gaps in our present understanding of tuna biology that its

predictions must only be seen as what could be achieved with further development and

accurate parameterisation. Better information on the interplay of vital rates would justify more

detailed modelling efforts. A smaller time-step than that used (1 h) would allow burst and

cruise swimming to be more clearly resolved and additional habitats would add spatial

resolution. Food types and concentrations will vary over time and water mass structure is

dynamic. There will be a time and energy cost associated with moving between discrete

habitats, which would depend on the scale of the ocean front. Instant escape to a favourable

habitat may not be possible, and this will limit foraging range. The conservative nature of the

behaviour predicted here may therefore be an artefact of the model environment. The main

limit to implementation of a more dynamic physical scenario is the ‘curse of dimensionality’

whereby the task of solving all possible solutions becomes computationally overwhelming.

The effect of this can be limited by interpolation of the state dynamics (Mangel & Clark

1988) but a fully 3-dimensional physical oceanographic model would increase the overall
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dimensionality of the model beyond the scope of the computational power available to the us. 

An individual based dynamic optimisation model with stochastic prey encounter, such as has 

been derived here, has its limits and it would be necessary to use alternative techniques to 

investigate the complexities of group dynamics and its fitness consequences. Progress would 

indeed be made if we could simulate density-, frequency- and state-dependent aspects of 

behaviour in a single foraging model with the level of mechanistic detail incorporated here 

but in a more physically realistic model environment. For this to be achieved, an adaptation 

approach (Giske et al. 1998) for fish foraging in a time-varying oceanographic environment 

may be more suitable in terms of both tractability of derivation and computational efficiency.

Behaviour was simulated from individual motivation to optimise energy balance in the 

presence of various factors that must be traded off against each other. In life-history models, 

spatial population dynamics derive from evolutionary motivation through the use of a truly 

Darwinian fitness measure (e.g. Fiksen et al. 1995, Huse & Giske 1998). Further work, 

considering populations of individuals over large space and time scales should seek to 

interface the biophysical dynamics of the oceanic environment with fish behaviour motivated 

by evolutionary as well as physiological imperatives (see Chapter 5 for an attempt at this and 

Chapter 6 for extended discussion and proposals for further work).
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4.6. CONCLUSIONS

An established paradigm in behavioural ecology, with an associated computational 

method, was applied to a new situation in order to investigate some fundamental questions 

about the foraging behaviour of tunas in relation to their environment. In doing this, 

competing hypotheses were brought together into a single model, thus improving our 

understanding of why tunas and other fish may aggregate at fronts. This work has been 

anticipated in the literature for some time (see p 30 of Hunter et al. 1986a) but has not 

previously been realised. By working from mechanism up, rather than from data down, it has 

been possible to predict time- and state-dependent optimal foraging behaviour (i.e. slow 

swimming in warm clear waters when not foraging, and foraging excursions into colder 

waters when hungry) that is broadly consistent with observation (Block et al. 1997) and other 

modelling work (Dagorn et al. 1995). Sharp & Francis (1976) commented that, ‘The utility of 

simulation studies lies in the process of linking together observations, using generalised 

principles where possible, to generate testable hypotheses which ultimately lead to resolution 

of cause and effect relationships.’ Here a modelling framework is suggested that, if developed 

further and properly parameterised, would allow testable hypotheses to be made and cause 

and effect relationships to be clearly resolved. Areas of research into tuna vision and 

physiology, which will facilitate progress in tuna behavioural ecology, have been identified, 

and investigations that will allow theoretical predictions to be tested for free-living animals 

have been suggested. I would emphasise the importance of time- and state-dependent aspects 

of behaviour, predicted by the model and observed in living tunas, and the need to identify 

and account for all relevant biological and physical properties of the ocean environment.
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CHAPTER 5 

A SPATIALLY EXPLICIT LIFE HISTORY 

MODEL FOR PACIFIC SKIPJACK TUNA
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5.1. SUMMARY

In this chapter the biological properties detailed in Chapter 3, and ecological 

interactions incorporated in Chapter 4 are extended into a ‘whole ocean’ and ‘whole 

population’ scale. A life history model, which is driven by adaptation and evolution, has been 

developed in relation to environmental variables derived from satellite and in situ observation 

and from numerical simulation. The spatial domain is the Pacific Ocean. The time period 

studied is open-ended, with results depicted for 1 yr. The number of agents for which detailed 

biological modelling is carried out is -2000; each agent represents up to 1 million individual 

fish, and mortality rates derived from environmental variables are applied.

The model is presented here as a proof-of-concept exercise. The methodology adopted 

for modelling fish behaviour is different from that used in Chapter 4. Programming 

techniques from the field of ‘artificial life’ are used to study ‘real’ life. There are few 

examples of these techniques applied to marine ecology yet they permit an important 

methodological synthesis, uniting oceanography and ecology within a framework that might 

find useful practical application in fisheries science. The aim is to show that it is possible to 

model fish population dynamics on a whole-ocean scale by deliberate inclusion of relevant 

biological detail such that interactions of individuals with the environment are explicitly 

considered in a mechanistic manner, as are the proximate and ultimate motivations for 

behaviour and spatial dynamics. The intention is to support a new approach in fisheries 

ecology that seeks management tools which are better-based on ecological theory and which 

incorporate interactions between individuals and their heterogeneous environment. Such work 

is likely to have a significant impact on fisheries forecasting methods; given the ever- 

improving capabilities of computing facilities and the ocean circulation and production 

models that can run on them, it will no longer be acceptable to ignore important ecological 

and evolutionary processes that impact on fish stocks.
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5.2. INTRODUCTION

Studies of marine fisheries ecology are studies of complex adaptive systems. A system 

is considered to be complex when it is not possible to understand it through simple cause-and- 

effect relationships or other standard methods of systems analysis. Complexity theory is 

evolving from several major fields (mathematics, physics, biology, economics, organisational 

theory, computer science) in response to 2 realisations: that modern science often reflects only 

that part of reality which is observable, controllable, ordered, linear, and predictable; and that 

disciplinary specialisation runs counter to the major need for integration of knowledge in 

order to resolve contemporary issues, particularly those concerning resource management.

Spatially explicit modelling of fish population dynamics has been carried out in 

various ways (e.g. Bertignac et al. 1998, Huse & Giske 1998, Sibert et al. 1999). As yet the 

input of remotely sensed environmental data to the models remains limited. The advection- 

diffusion model of Bertignac et al. (1998), for the spatial population dynamics of Pacific 

skipack tuna, relies on earlier models for general circulation (Blanke & Delecluse 1993), 

biogeochemistry and new production (Stoens et al. 1998) and tuna forage production 

(Lehodey et al. 1998). Satellite data are input at different levels; weekly winds from the ERS- 

1 scatterometer are used to drive the circulation model; monthly chlorophyll climatologies 

from the CZCS are assimilated into the new production model. In this way the model as a 

whole is prognostic for tuna. Here I have used the same levels of oceanographic modelling for 

the Pacific Ocean as were used above (i.e. data derived from Blanke & Delecluse 1993, 

Stoens et al. 1998, Lehodey et al. 1998) but instead of a model based on an advection- 

diffusion equation (Bertignac et al. 1998, Sibert et al. 1999) I have developed a spatially 

explicit life history model using programming techniques from the field of ‘artificial life’.

‘Artificial life’ (A-life) has emerged from the broader field of ‘artificial intelligence’. 

The essential properties of living organisms (self replication and open-ended evolution, Ray 

1995) are recreated in a model environment with at least some of the complexity of the 

natural environment. ‘Autonomous agents’ are used to simulate the behaviour of real animals;
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these agents are further described as ‘adaptive’ when their competence can improve with 

experience (Maes 1995). Individual-based modelling in ecology and autonomous agent 

research have evolved independently yet there is increasing convergence between these fields 

(Taylor & Jefferson 1995, Parrot & Kok 2000, Huse et al. in press). In this work, a genetic 

algorithm (GA, Holland 1975, Goldberg 1989, Mitchell & Forrest 1995) is used to train an 

artificial neural network (ANN, Dayhoff 1990, Hertz et al. 1991, Anderson 1995) within an 

individual based model (IBM, DeAngelis & Gross 1992, Tyler & Rose 1994, Grimm 1999, 

Huse et al. in press). This approach has recently been developed and described by Huse 

(1998), Huse & Giske (1998), Giske et al. (1998) and Huse et al. (1999). Both ANNs and 

GAs were inspired by biological phenomena (i.e. stimulus-response, learning, adaptation, 

evolution) yet they have a much longer history in technological and industrial applications 

than they do in the study of natural systems. The GA is an optimisation technique based on 

evolution by natural selection; it is a heuristic method, seeking optimal solutions by trial and 

error, through selection of good solutions and removal of weakly performing ones. This 

compares with more mathematically exact methods of optimisation (e.g. SDP, Chapter 4), 

where risks and expected gains are calculated for all possible decisions, with reference to a 

pre-determined goal. ANNs are intentional, simplified mimics of organic nervous systems 

(Anderson 1995, Ray 1995). Behavioural output is obtained from differential weighting of 

input variables (Rummelhart et al. 1986, Montana & Davis 1989, Huse et al. 1999). ANNs 

may be constructed with a variety of different architectures (Dayhoff 1990, Hertz et al. 1991). 

Engineering and other problem-solving applications of ANNs might use whatever complexity 

is deemed necessary, and the structure of an ANN may itself be allowed to evolve 

(Rechenberg 1994). Here the structure is kept simple and biologically meaningful, which is 

perhaps most important given the context of the work (see SUBROUTINE MOVEMENT).

It is not unusual in IBMs to only allow adults with a certain ‘fitness’ (e.g. fecundity) to 

reproduce. Here the concept of ‘endogenous fitness’ is applied (Strand et al. unpubl.) whereby 

any adult may reproduce and its fitness is never explicitly counted; its offspring will only be
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able to reproduce if the new SV (chromosome) carries weights (genes) that result in a 

successful strategy that allows survival and growth through to the adult stage. This approach 

is less prescriptive than others and closer in process to evolution by natural selection. This 

approach avoids arguments concerning the potential tautology of the phrase ‘survival of the 

fittest’, depending on how fitness is defined, by not defining fitness at all. Flexibility in life 

history strategy is essential for ongoing proliferation of any individual gene. What may 

constitute fitness in one environment may not be so fit as the environment or as biotic factors 

such as predation, parasitism or competition also change. Adaptive models are therefore well 

suited to studying the effects of environmental change and stochasticity.

5.2.1. Input data

Monthly climatological data for relevant environmental variables were used as input 

data for the skipjack life history model. These data were provided by P. Lehodey (Secretariat 

of the Pacific Community, New Caledonia) and consist of zonal and meridional currents from 

an ocean general circualtion model (w and v respectively, Blanke & Delecluse 1993), sea- 

surface temperature (SST, Levitus & Boyer 1994), surface chlorophyll derived from the 

CZCS (cphyll, Tran et al. 1992) and an index of tuna forage (i.e. prey) concentration 

(Lehodey et al. 1998, Bertignac et al. 1998). The data resolution is 1° x 1° and the model

domain is 49.5°N to 39.5°S and 110.5°E to 70.5°W.

Input data were first ‘unzipped’ and then checked for any obvious errors and missing

values. A FORTRAN program (INPUT) was written for this task (Appendix II). This program

reads in the data in the format provided, converts CZCS color value to chlorophyll

concentration (mg m-3), bounds the domain by flagging land and cells permanently

contaminated by cloud, and then fills in missing data by spatial interpolation (arithmetic mean

of neighbouring cell values) or temporal interpolation (value for preceding month). Data are

available for all grid cells in the ocean except in the case of CZCS chlorophyll, where missing

values result from proximity to land and from cloud coverage. In this model, fish must still be

able to move into cells that exist in physical space but for which no data exist. Interpolation
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was therefore necessary. However, it was only carried out for cells where values for SST 

existed (i.e. definitely in the ocean). The percentage of cells requiring spatial and temporal 

interpolation were 1.5% and <0.01% respectively.

5.3. TH E M ODEL

The model was written in FORTRAN programming code (Appendix II) using 

Microsoft Developer Studio, provided by A. Kirby, Microsoft Corp. Modelling the individual 

characteristics of a population of several billion individuals would take an infinite amount of 

time to process. Instead a population of -2000 ‘super-individuals’ is used, which live as if 

they were sole individuals; mortality functions then operate on the number of sole individuals 

represented, rather than just on the super-individual itself. When the number of individuals 

represented falls to zero, the super-individual ceases to exist. A super-individual therefore 

represents the compromise necessary between biological realism and computational 

convenience. In this work, super-individuals are referred to as ‘fish’, with the understanding 

that they are actually adaptive autonomous agents in a model representation of a real complex 

system. Each fish has characteristics stored in 2 vectors. The ‘attribute vector’ (AV) contains 

biological properties (i.e. age, length, weight, energy density), the number of individuals in 

the super-individual and the position of the fish on the grid. The ‘strategy vector’ (SV) carries 

the weights of the ANN, which determine the behavioural responses to environmental stimuli 

(for further details see Huse et al. in press). When a fish dies, its SV is removed from the 

‘gene pool’, and the super-individual is assigned to a batch of freshly-spawned larvae, with an 

SV derived from its parents (see SUBROUTINE REPRODUCTION).

PROGRAM SKIPJACK

This is the main program that initialises the loop variables (population, year, month, 

day etc.) opens and closes log and output files, and calls the subroutines that contain the 

detailed physiological and behavioural calculations. The random number generator is seeded, 

initially using a fixed, odd numbered integer value for comparability among simulations.
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The first 2 subroutines (INITIALISE and ENVIRONMENT) are called once, at the start of 

the program. The others (GROWTH, MOVEMENT and REPRODUCTION) are called each 

timestep (i.e. day).

SUBROUTINE INITIALISE 

This subroutine initialises the strategy and attribute vectors of each fish in the 

population and specifies the number of days in each month of the year. The SV is initialised 

by random weights between 1 and -1 . The AV is initialised as follows. All fish are declared 

alive and assigned an age between 90 and 810 d. Each fish represents 1 million individuals. 

Body length is derived from age using a Von Bertalanffy calculation (Sibert et al. 1983, 

Hampton 2000), body mass is derived from length using an allometric relationship (Murray et 

al. 1999) and body energy is calculated as the product of body mass and energy density for 

healthy skipjack (6 kJ g_l, Boggs & Kitchell 1991). All fish are assigned intitial locations in 

the central, equatorial Pacific.

SUBROUTINE ENVIRONMENT 

Input data (sst, forage, cphyll, u, v) that have been ‘groomed’ using an earlier program 

(described above) are now input to the model. They are read in as temporary variables and 

then assigned to labelled arrays, with actual latitude and an index for longitude (1-180), thus 

avoiding any problems regarding the coordinates of the date line. All grid cells that have 

incomplete time series for SST or cphyll at this stage are flagged as land. Any fish that has 

inadvertently been initialised on land is moved into the sea and maximum values for all 

environmental variables are recorded for use in standardising data input to the ANN.

The model runs on a daily time step but the environment data are monthly 

climatologies. To circumvent potential problems associated with artificial stability during the 

month and a large jump at the transition between monthly mean values, the monthly mean 

data are converted to daily values by linear interpolation between months. Despite the 

convenience of assuming a year length of 360 d (i.e. 12 mo each of 30 d) as is convention in 

oceanography, the actual number of days in each month is used. This may be important in the
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use of climatologies for months of varying lengths. In order not to use up too much memory, 

daily data are not themselves stored, but the daily increment/decrement is calculated and this 

value is stored along with the monthly mean; daily data are then calculated as needed.

SUBROUTINE GROWTH 

This is the main routine containing biological detail, which modifies the attributes of 

the fish through ecological interactions and physiological processes. Daily values for 

environment data are calculated by assigning the climatological value to the 15th day of the 

month, and then calculating: monthly mean ± (daily increment xdays), where days is the

number of days since the 15th day of month 1.

The nature of ANN methodology is that the networks need to be ‘trained’ to solve the 

problems that they are confronted with. In this case the weights of the ANN are evolved using 

the GA, but in order to ensure that sufficient fish remain viable in the model for long enough 

to allow proper training, all mortality functions are modified by a coefficient for ‘training 

decomposition’ (TD) that reduces mortality during the early years of the simulation.

The fish are classified into 2 age groups: planktonic larvae and nektonic 

juveniles/adults. Planktonic larvae are those fish less than 90 d old. These have no swimming 

ability and just drift with the currents (see SUBROUTINE MOVEMENT). Their length is 

determined from their age by the Von Bertalanffy equation (Sibert et al. 1983, Hampton 

2000). Coefficients are derived for 3 mechanisms of natural mortality, each of which relates 

to environmental variables in a different way: predation (MPred = forage index / length), 

starvation (Mstarv = 0.025 / cphyll) and temperature stress (MTherm = 0.025 x 8T,where

5Tis the difference between actual and optimal SST). The relative contributions of these

different mechanisms of natural mortality for fish larvae have never been quantified in the 

field but the absolute magnitude of their combined effect is within the range of observed 

values (Peterson & Wroblewski 1984, McGurk 1986, Davis et al. 1991). These mortality 

coefficients are summed and applied to the number of individuals represented by the fish.
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The same components of natural mortality act on nektonic juveniles/adults as on 

planktonic larvae but the ways in which the coefficients are estimated differ. Length based 

mortality applies until the fish has reached 30 cm, after which predation is considered to be 

negligible. Mortality due to thermal stress still applies, but the limits set for this are fairly 

broad (optimal temperature range for larvae and adults is 20-30°C). The nekton stage is 

considered to be non-bouyant, and detailed bioenergetics (SMR, AMR, growth and 

reproduction) and prey encounter calculations are carried out. SMR and AMR are calculated 

as described in Chapter 3 (p 3.17/8). The daily time step is divided into 2 periods (day/night). 

Skipjack are assumed to be foraging during daytime and not foraging at night; they are 

therefore assigned swimming speeds of 3 and 1 body lengths s_1 during these respective 

periods. There are 2 feeding bouts (i.e. stochastic prey encounters) permitted in each daytime 

period. Visual range depends on water clarity (Eq. 3.4), which depends on chlorophyll 

concentration (kA9Q = 0.022 + 0.119 x cphyll1122, Austin & Petzold 1981). Whether or not a

meal is obtained during each feeding bout is determined by drawing a random number from 

the system and comparing this number with the probability of finding food during this time, 

determined by Eqs 3.5/6. If a meal is obtained, the energy content of the fish is increased by 

the product of mass ingested (5% of skipjack body weight, Table 3.4) and the energy density 

of the prey (7 kJ g-1, Boggs 1991), and decreased by SMR, AMR and SDA; if a meal is not 

obtained, energy cost does not include SDA.

Growth of the skipjack is modelled using the concept of ‘structural weight’ (Rosland 

& Giske 1997). Increased body mass follows a surplus energy budget by assuming constant 

energy density for ‘healthy’ skipjack (TED, 6 kJ g~‘, Boggs & Kitchell 1991; body mass = 

body energy / TED). Subsequent energy losses result in a decrease in energy density rather 

than body mass, as water content increases during starvation (Boggs & Kitchell 1991). If the 

fish then feeds, it must recover its energy density to the ‘healthy’ level (i.e. TED) prior to 

further growth. Fish length is calculated from structural weight by an allometric relationship 

(Murray et al. 1999).
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Once the energy budget has been calculated, mortality functions are applied. Starvation 

is now a function of energy density, reflecting feeding/activity history rather than immediate 

food availability. The mortality coefficient (Mstarv) is derived such that it is 1 for critically 

low energy density (3 kJ g_1) and 0.1 for healthy skipjack. Spatially-uniform length-based 

fishing mortality is applied, as is mortality due to senescence, for those skipjack > 3 yr old, 

using mortality coefficients calculated from tag data (Hampton 2000). Finally, the fish is 

removed from the population if, after all mortality coefficients have been applied, there are no 

longer any individuals represented.

SUBROUTINE MOVEMENT 

In this routine, the positions of the skipjack in the Pacific ocean are recalculated and 

updated based on the surface currents experienced and, in the case of juveniles/adults, on 

directed movement decisions as output from the ANN. Daily values for environmental 

variables are derived from climatologies, as in SUBROUTINE GROWTH. For the surface 

current components (u, v), values are determined for the 4 corners of each cell and the actual 

current experienced by the fish, located at a defined position within the cell, is determined 

through bilinear interpolation (Adlandsvik & Hansen 1998). The advective distance is 

calculated i.e. the displacement of a passive drifter by the velocity vector during this time 

step. The velocity vectors are in cm s“‘ and must therefore be converted first to km and then to 

degrees, in order for the new position to be assigned. Because of the large scale of the model 

domain, it is not realistic to assume a flat Earth (i.e. 1° lat./lon. = 111 km) and so the 

conversion from distance (km) to degrees lat./lon. takes into account the latitude of the fish by 

‘Great Circle Path’ calculation i.e. 1° Ion. = 111 xcosine (lat.) km. For larvae, the new

position at the end of the time step is simply the old position modified by the current vector

integrated over 24 h. For juveniles/adults, the new position is determined by the ANN.

The ANN is a feed-forward network with 1 input layer (6 nodes), 1 hidden layer (3

nodes) and 1 output layer (3 nodes) (Fig. 5.1). The number of nodes used depends on how

much information we want to give the fish (input) and what decisions we want it to make
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(output). The input variables could be anything that might be important to the tisn. m v 

that the programmer can control this is a significant advantage over traditional optimisation 

techniques (e.g SDP, Chapter 4), which by necessity imply full knowledge not only of the 

attributes of all available environments but also of the fitness consequences of all possible 

decisions. All of the variables chosen here as input data, including those that are external 

(position, temperature, forage) and those that are internal (time, condition), may be sensed by 

fish that are as well adapted to the pelagic environment as are skipjack.

Fig. 5.1 The ANN architecture used in the model. Input variables are those that a skipjack might realistically
sense in the ocean; ouput variables are those simple choices available regarding movement and reproduction

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

temperature

position N

position E 

energy density

forage index 

year day

The hidden layer allows non-linear (and non-determined) interactions among variables. 

For each hidden node the sum of the products of the standardised input values and their 

respective weights in the strategy vector is calculated. This sum is then sigmoid-transformed 

and weighted by the connection strength between the hidden and output nodes. At the output 

node the values are again summed and transformed, thus providing the output decision. The 

output variables are simply the direction of movement and the decision to spawn. Each node 

for direction can take lo f  3 values (-1, 0, 1) resulting in 9 possible directions, including the

move E

spawn



option to stay in the same location. The decision to spawn is simply a yes/no (i.e. 1 or 0). 

These logical outcomes are achieved by transformation of the weighted sums at each node by 

sigmoid activation functions, scaling the output either from 0 to 1 (2 options) or -1  to 1 (3 

options). The distance moved depends on the body length of the fish and on the current field. 

Swimming behaviour is simplified in SUBROUTINE GROWTH to a 12 h cruising period 

(night, 1 body length s '1) and a 12 h foraging period (day, 3 body lengths s '1); average 

swimming speed over a 24 h period is therefore 2 body lengths s '1. The directed movement 

vector is the combination of the direction of movement, output from the ANN, and the daily 

distance of: (24 x 60 x 60) x 2 body lengths d '1; this is combined with the advection vector to

give the resultant total movement vector, and the new position is then calculated. Error 

checking is carried out to ensure that the skipjack do not move onto land.

If the model has reached the time horizon (i.e. the desired end of the simulation) output 

files are written from this routine. These are written on a daily basis and sum the number of 

fish in each cell. Environmental variables may also be output for visualisation at this stage.

SUBROUTINE REPRODUCTION

For the sake of simplicity the model fish have only 1 sex; because there is more

published information available, bioenergetics and fecundity calculations are carried out as

for female skipjack. In reality, males are expected to maintain the same high frequency of

spawning but without such high energy costs. They are consequently able to grow slightly

larger than females. Here, the onset of maturity is taken to be at body length 42 cm (Stequert

& Ramcharrun 1996), relative batch fecundity, in terms of number of eggs per spawning body

weight, is -100 eggs g '1 (Matsumoto et al. 1984, Stequert & Ramcharran 1995) and the

energetic cost of spawning is 2% of body weight/energy (Hunter et al. 1986b).

The model equivalent of ‘genes’ are the weights of the ANN, which are carried in the

strategy vector (SV, cf chromosome) of each fish. These are fixed throughout the lifetime of

the fish and determine how it should respond to the environmental conditions encountered, as

well as the other input variables (time, position and condition). At the point of reproduction,
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the GA is used to form a new SV from recombination of 2 parent SVs and from an element of 

random mutation (Fig. 5.2). Thus the process is analagous to sexual reproduction, requiring 2 

parents and affecting the genes of a single chromosome.

parent 1

parent 2 

offspring

0.74 - 0.39 0.22 0.43 - 0.80 0.12

- 0.37 - 0.56 0.020 .  41 0.95 0.76

RECOMBINATION

0.22 - 0.37 - 0.560.74 - 0.39 'a

Fig. 5.2 Reproduction by crossover, mutation and recombination of parent strategy vectors. In this way, 
successful strategies (i.e. those that have resulted in the fish surviving to this stage) are passed on to the next 

generation, without reference to any predetermined fitness measure i.e. fitness is ‘endogenous’

On entering this subroutine the fish are evaluated for whether they are sexually mature 

and whether the decision to spawn was activated by the ANN in SUBROUTINE GROWTH. 

If these conditions are met then a partner is drawn at random from those fish in the same grid 

cell that have also decided to spawn. Both parents are then penalised with a 2% loss of body 

energy. The SV of the offspring is formed by recombination of the 2 parent SVs, with 

crossover occurring after a random break point (Fig. 5.2). There is then a small probability 

that any of the new ‘genes’ may mutate into a different random number.

Once the SV of the offspring has been determined its attributes (AV) are assigned. The 

initial AV does not represent the true characteristics of the offspring, except for position and 

number of individuals represented, because the new ‘fish’ is actually a batch of planktonic 

larvae. However, the attributes that will apply once the fish becomes nektonic are nevertheless 

initialised here and then not used until the nekton stage.
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5.4. RESULTS

At this stage, the main result of this work is the successful development of the model 

such that it actually runs through from input of environmental data to output of fish 

distributions. The FORTRAN code developed is presented in Appendix II, and input/output 

data are contained on the ZIP disk supplied; these can be visualised using software contained 

on that disk. This software was developed by Rune Vabo at the Institute of Marine Research, 

Bergen, and was kindly made available for this exercise. The visualisation software consists 

of a self-contained PC application that will read in gridded (x,y) data files, with pages 

separated by a single blank line, fit a colour scale to these data and then allow the user to 

visualise the data as animations. The files may also be saved as bitmaps for external display. 

A series of these output files is presented in Fig. 5.3.

5.4.1 Protocol for visualisation of environmental data and model output 

Copy the file anim ator.exe to your hard disk and double-click to start the program

Go to se tt in g s  — se t  param eters

Enter a grid size of: 1 80 90 1

with 360 pages if viewing the model output or 12 pages if viewing environmental data 

Then click OK Open File

Find the data file SK J.txt for model output or AN_*.txt for environmental data and 

double-click to open it in the animator. A progress bar and dialogue will state how many 

pages have been read. When this is complete go to options — enable scaling and on

the left side of the display move the se t  sc a le  slider to the left, until the scale is set to 2.5

Then click anim ate to see the results

For repeated and faster animation go to im ages — generate bitm aps 

When the animation is complete click on the red button to loop through the bitmaps 

To save any particular bitmap to file go to im ages — sa v e
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5. DISCUSSION

The model is presented here as a proof-of-concept exercise. The concept that has been 

proved is that it is possible to build a model based on sound ecological principles that 

integrates ocean variability with fish movements in a non-prescriptive manner, and which 

uses the capabilities of satellite sensors and numerical ocean modelling to fill the gaps 

inevitably left by conventional sampling methods. Much work remains to be done before it or 

a model like it could be used with any measure of reliability in the management of tuna 

fisheries. Nonetheless it has been a successful scientific endeavour that shows great promise 

for future application. Here I discuss the results and point to some important components of 

the model that require attention in future laboratory, sea-going or computer-based research.

The results given in Fig. 5.3 are indicative of the potential of the model, rather than 

being a plausible prediction of skipjack distribution in the Pacific Ocean. The population is 

actually rather static, being concentrated around the perimeter of the Ocean and at 

tropical/sub-tropical frontal systems. This reflects 2 aspects of the model: firstly, the low 

variability inherent in the use of monthly climatological input data; and secondly, the lack of 

density-dependent feedback from predators to prey (i.e. there is no forage depletion by high 

concentrations of tunas, and no chlorophyll depletion by high concentrations of forage). This 

must be addressed in the future by the following means.

Most obviously, better input data are needed. The mean field is never (or rarely) 

experienced in the ocean and the use of monthly means also dampens the seasonal cycle. It 

has been previously shown that apparent spatial shifts in the Pacific skipjack population are 

linked to large zonal displacements of the western equatorial Pacific warm pool that occur 

during ENSO events (Lehodey et al. 1997). A longer time series of ‘real’ data (i.e. satellite 

observation and numerical simulation) for the Pacific ocean would provide a less predictable 

and therefore more challenging environment to which the model tuna must adapt. The results 

might then look more similar to observed skipjack distributions (cf Bertignac et al. 1998).
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There are then two weak links in our knowledge, because they are the most difficult to 

derive by measurement or modelling yet the most important for survival and growth: these are 

the different components of natural mortality, with particular reference to early life history, 

and the spatio-temporal dynamics of tuna prey or forage distributions.

Previous work has investigated natural mortality of tuna larvae (Davis et al. 1991) but 

the different components have not been separately quantified. It is not a simple task to 

simultaneously quantify feeding success (see Fiksen et al. 1998, Fiksen & Folkvord 1999), 

and also predation risk (see Mullin 1993). Yet both mechanisms will operate to varying 

degrees and with different spatio-temporal extents. The separate mortality coefficients, 

calculated as described above under SUBROUTINE GROWTH, sum to give a total 

coefficient for natural mortality that is consistent with observed magnitudes. However, it 

would be more satisfying to use direct measurements of the independent mechanisms. If such 

data are obtained in the future then they can easily be incorporated in a model such as this.

Tunas are not thought to be selective feeders but rather their diet reflects the relative 

availability of different prey types. Schools of tuna feeding on oceanic anchovy 

Encrasicholina punctifer have been observed on several research cruises (Hida 1973, Ozawa 

& Tsukahara 1973). E. punctifer is primarily an offshore species and is broadly distributed 

throughout the Indo-Pacific region but is dominant in the surface waters of the tropical 

western Pacific (Ozawa & Tsukahara 1973). The species is a major prey item of juvenile and 

adult tuna (Hida 1973, Ozawa & Tsukahara 1973, Itano & Williams 1992, Buckley & Miller 

1994, Itano 1999). Larval skipjack feed primarily on fish larvae, and E. punctifer larvae is a 

dominant component (Tanabe et al. 1999). An examination of gut contents of yellowfin tuna, 

including a high proportion of reproductively active females, found E. punctifer to be the 

dominant food item by frequency and volume (Itano 1999). This is not surprising, given the 

relatively high abundance and energy density of this prey fish, and considering the high 

energy requirements of frequent spawning (Schaefer 1998). The oceanic anchovy feeds 

primarily on copepods (Hida 1973). Zooplankton concentrations become rapidly decoupled
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from chlorophyll concentrations in the surface ocean, simply due to their slower growth rates 

(Abraham 1997), which is why chlorophyll alone is a poor proxy for productivity at 

secondary and higher trophic levels. E. punctifer may provide a critical link between plankton 

productivity and the aggregation dynamics (for feeding and reproduction) and therefore the 

vulnerability to surface fisheries of larger pelagic fishes, such as skipjack and yellowfin tuna 

(Ozawa & Tsukahara 1973).

Modelling the spatio-temporal dynamics of tuna forage has been the focus of work by 

Patrick Lehodey at the Secretariat of the Pacific Community, New Caledonia (Lehodey et al.

1998). The results of the earlier simulations that have been used as input data here are no 

longer considered to be very reliable (P. Lehodey pers. comm.) but recent work is much 

improved, with the development of a 20 yr time series of forage concentration in mmolN m~3. 

Future collaboration is planned, to input this new data to the model developed here. Given the 

importance of the oceanic anchovy to western Pacific tuna, further work might consider its 

life history strategy in a similar way to the model developed here for tuna, rather than the 

biogeochemical mass-balance approach that is presently being followed.

The conversion of forage concentration, whether input as an index or as an elemental 

mass (i.e. mmol N), to a prey concentration that is realistically ‘packaged’ is, at this stage, a 

somewhat creative exercise. The necessary conversion is from elemental mass to biomass, 

and then from biomass to the number of schools of any given mass. Direct measurements of 

tuna forage concentration have not as yet been possible (Roger 1994). Acoustic methods are 

likely to prove useful in this regard (e.g. McClatchie & Coombs submitted), particularly as 

they extend their abilities to discriminate size classes if not species of pelagic fish. The data 

required are attainable in principle, which justifies the use of forage index at this stage. The 

index can be replaced by better simulated data and/or observed data as it becomes available.

The model structure itself is adequate but there are various modifications that could be 

made in order to improve the realism of its formulation and potentially of its results. Most 

obviously, the two sexes could be separately represented. With different energetic
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requirements it is possible that different life history strategies might emerge for males and 

females. H owever, for Pacific tunas in general, no divergence is seen in the spatial 

distributions of the sexes and males only grow slightly larger than females (Murray et al. 

1999). The use of only one sex in the model tuna is therefore a justifiable simplification.

Models using ANNs can be quite sensitive to the structure of the network itself. This 

has not been investigated here and the network has been kept comparatively simple. It is 

possible to allow the structure o f the network to also evolve in the course of the model run 

(Rechenberg 1994) although that may be more appropriate for applications that are working 

back from a predetermined solution i.e. fitting to data. This has not been the goal here but it 

might be worth exploring this topic, allowing different fish to evaluate different variables in 

different ways. Similarly, it is possible to use more than one network so that different 

decisions are evaluated separately (e.g. movement and spawning). This might also be 

investigated in future work.

5.6. CONCLUSIONS

This work is still at a comparatively early stage of development. Yet it is a highly 

original approach that might find important practical application as the model is improved. A 

better model would justify more rigorous testing against observations; at this stage it is quite 

obvious that the predicted fish distributions do not represent observed distributions very well. 

But the exercise has proved the point that it is possible to integrate behavioural models for 

fish with whole-ocean circulation and production models, and shows how the various aspects 

of biological detail (physiology, sensory biology, growth, movement, reproduction) can be 

brought together to represent the life-history o f an evolving population over many 

generations. The model is reviewed in more detail in the final chapter, along with 

observational and other modelling studies for the behaviour of tunas in relation to their 

environment. The importance of this approach, particularly with regard to the use of satellite 

remote sensing in fisheries, is discussed and proposals for future research are detailed.
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6.1. SUMMARY

Modelling efforts that seek to describe, explain and predict the behaviour and spatial 

dynamics of tunas, including those presented in this thesis, are reviewed and discussed in 

relation to field studies with the same goals. Tagging and tracking of fish with electronic 

devices can provide valuable observations of free-living animals, which may be used to help 

derive models and also to test their predictions. But it will not be possible to derive and 

evaluate models for the fine-scale behaviour of tunas unless measurements are made of 

physiological and environmental variables, representing factors motivating behaviour, at the 

same time as position and activity are recorded. On longer time and space scales, reproductive 

motivation must be assessed, by identifying spawning grounds and times and measuring 

gonad state for individuals as they migrate throughout their range. Thermodynamics (through 

bioenergetics), fitness maximisation and adaptive behaviour with evolutionary motivation are 

appropriate paradigms for the derivation of models. But modelling will remain merely a 

technical exercise unless it is carried out as an integrated part of research programs pursuing 

the understanding of tuna behaviour and spatial dynamics as the ultimate goal. An 

observational framework that simultaneously measures environmental and physiological 

variables, with a complementary suite of statistical and theoretical models, will truly advance 

knowledge. This synthesis will only be achieved through collaboration between scientists 

with individual skills in field, laboratory and computational ecology and with innovative 

technical support. Satellite platforms will provide increasingly accurate measurements of 

surface ocean variables over large space scales and with rapid repeat sampling. The real 

challenge remains to relate these variables to habitat preferences of fish. Statistical methods 

incorporated within ‘geographical information systems’ (GIS) may have some utility in 

regions of low variability. For highly dynamic ocean environments with spatial and temporal 

heterogeneity in key variables, predictive models might have more success if they incorporate 

what we know of fish physiology, behaviour and life history characteristics — this thesis has 

reviewed and developed methods to support this.
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6.2. FUTURE RESEARCH AND APPLICATIONS

6.2.1. Tuna behaviour: observations and modelling

6.2.1.1. Introduction

It has long been a goal of ecologists to fully describe the behaviour of tunas in relation 

to their oceanic environment. Large scale movements have received much attention because 

of the complexities surrounding the management of highly migratory stocks (Block et al. 

1998a). Certainly these issues are important if seeking to apply traditional fisheries models for 

stock assessment and quota management. Mark and recapture methods have been used for 

various applications including large scale movements, growth rates, mortality, and transfer 

rates between stocks and gear types (see review by Hunter et al. 1986a). Acoustic telemetry 

has provided detailed data on tuna movements, often in relation to environmental variables 

measured from the recording platform (Holland et al. 1990, Cayre & Marsac 1993, Block et 

al. 1997, Josse et al. 1998, Brill et al. 1999, Dagorn et al. 2000). Archival tags have collected 

longer time series of data on position and water temperature, and sometimes body temperature 

(e.g. Block et al. 1998b), without the need for a following platform, but the need to recapture 

the fish before data can be obtained is clearly limiting. Pop-up tags that relay their data via 

satellite have been used to effectively increase the return rate to near 100% (Block et al. 

1998a), but only position and daily mean water temperature have so far been recorded, 

limiting the utility of the results.

A common problem for all tagging studies to date is sample size; only a small number 

of fish may be tagged and tracked at any one time, and repeated sea-going experiments are 

costly. Biologists have not worried overly about this and for good reason — individual 

behaviour may be scaleable into populations and species as the same physiological and 

evolutionary imperatives apply to all. This doesn't negate the need to sample more than 1 fish 

at a time, but it does allow us to have confidence in good, comprehensive studies that have 

limited sampling size.
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The common framework for understanding animal behaviour is behavioural ecology 

(Krebs et al. 1993, Krebs & Davies 1997). This is a unifying field that provides some 

powerful perspectives, paradigms and methods that can be applied across the animal 

kingdom. A conceptual model for the behavioural ecology of tunas is presented in Fig. 6.1. 

Theoretical models in behavioural ecology (e.g. Kirby et al. 2000, Chapter 4) need 

observations for parameterisation of vital rates and for testing predictions. In turn they may 

contribute to experimental design by identifying key variables and parameters. Statistical 

models based solely on observations and without regard to mechanism or process can say 

nothing about causal links between variables, but may still have pragmatic value and find 

useful applications (e.g. Cayre & Marsac 1993). In this chapter, differences in modelling 

methodologies are discussed and the common ground that can exist between observational 

and computational studies is emphasised. My contention is that we might learn so much more 

if we refine our observational methods and our modelling techniques to a point where they 

converge as valuable tools for the same task.

F itn e ss  criteria =  m ax im ize  b od y  en er g y  

(short tim e s c a le )  or lifetim e reproductive  
s u c c e s s  (lon ger  tim e s c a le )

Life History 
Strategy Environment

temperature 
turbidity 
prey quantity 
prey quality 
predation risk 
currents, etc.

batch fecundity 
spawning frequency 
egg size 
growth rate 
size/age at maturity, 
etc

Physiology Behavior
stomach fullness & 
energy content 
body energy density 
somatic growth 
gonad development 
oxygen deprivation 
temperature stress, etc

habitat choice 
swimming speed 
sinuosity 
school fomation 
spawning, etc

Fig. 6.1 Conceptual model for the behavioural ecology of tunas. The properties of the oceanic 
environment interact with physiological constraints and evolutionary imperatives. In order to 

maximise some measure of fitness, a predatory fish comes to optimise its use of available 
habitat, through natural selection against sub-optimal strategies, and by making cognitive 

choices within the constraints of its sensory and learning abilities
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6.2.1.2. Observations

Much observational work has focussed on the role of physical or abiotic aspects of the 

environment as potential limiting factors in horizontal and vertical range. Many physiological 

processes are temperature and/or oxygen limited, so this focus is understandable. Despite the 

mechanisms of heat conservation that are available to tunas (Kishinouye 1923, Carey & 

Lawson 1973, Holland et al. 1992, Dewar et al. 1994), temperature limitation of foraging 

range is suggested by laboratory experiment (Dizon et al. 1977, Barkley et al. 1978, Brill et 

al. 1998) and apparent in field observations (Blackburn 1965, Sund et al. 1981, Brill 1994a, 

Brill et al. 1999). Oxygen concentrations can be limiting in absolute terms, and even if they 

are not there may be clear preference for high oxygen depth strata (Block et al. 1997). Cayre 

& Marsac (1993) tagged and tracked 3 yellowfin tuna, recording depth every 20 s and 

comparing vertical movements with profiles of temperature and dissolved oxygen. They fit 

modified normal distributions to the time series of data such that a depth-based catchability 

forecast could be made and fishing gear set depending on observed profiles of the physical 

variables. However, their conclusion that ‘...the vertical distributions of only 2 physical 

parameters (temperature and dissolved oxygen) explain the vertical distribution of yellowfin 

tuna’ is somewhat exaggerated, particularly as they did not postulate any reason for the 

observed distributions, nor did they measure other potentially relevant variables such as light 

and/or turbidity. A statistical model of this nature may become a useful means of directing 

fishing effort but it does not advance our understanding of tuna behaviour. In the light of 

various experiments noting the dynamics of tuna prey (Marchal et al. 1993, Josse et al. 1998), 

conclusions constraining tuna behaviour by physical variables alone would seem overly 

simplistic. Even if we assume that adult tunas are apex predators and that their behaviour is 

not at all constrained by predation pressure, their behaviour is highly likely to be affected by 

the dynamics of their highly mobile and patchily distributed prey.

Tunas are known to have high metabolic energy demands (Brill 1987, Chapter 3) 

which necessitate a high energy intake. Given the need for tunas to keep swimming in order
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to maintain hydrostatic equilibrium (Magnuson 1973), we might expect active foraging to 

occur whenever possible. However, it has been noted that the intensity of response of 

yellowfin tuna to prey odours varies with hunger state (Atema et al. 1980); time is needed to 

recover from exercise and to digest and absorb food. Energy conserving ‘dive and glide’ 

behaviour has also been observed in more than 1 tuna species (Holland et al. 1990, Block et 

al. 1997), whereby rapid powered ascents are followed by a slow, lift-based glide. Both time- 

and state- dependent behaviour are predicted theoretically (Chapter 4, Kirby et al. 2000), 

which means that unless environmental and physiological variables are simultaneously 

measured, it is simply not possible to say what is controlling tuna behaviour.

Josse et al. (1998) acoustically tagged and tracked 1 yellowfin and 2 bigeye tuna, and 

simultaneously measured local prey density as indicated by a sound-scattering layer (SSL) on 

an echosounder. They obtained some good data illustrating the movements of these fish in 

relation to the SSL and noted that abiotic variables (temperature and oxygen) were not 

limiting. It is rather telling that they are able to conclude that they have observed a ‘...new 

(sic) explanatory factor of tuna behaviour: the biotic environment.’ It is new but it shouldn't 

be —  as pelagic predators, tunas are ever likely to be affected by the dynamics of their prey. 

There has been too much focus on the relationship of tunas with physical environmental 

variables. These abiotic variables are still important for tunas and there may be real situations 

where they are limiting, but within the limits of these variables that directly affect 

physiological processes, it has long been recognised that the availability of forage will induce 

tuna distribution (Blackburn 1965, Sund et al. 1981).

Fine scale hunting behaviour is therefore also likely to be observed. Vertical 

movements in particular are common and frequent and the different tunas have different 

movement patterns. The reasons why these differences occur remain the subject of debate 

(Brill et al. 1999) and morphological and/or biochemical adaptation to the different physical 

regimes above and below the thermocline are likely to be key (Lowe et al. 2000).
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The evolutionary advantage of these different behaviour patterns requires more 

holistic consideration of the trophic dynamics of the pelagic ecosystem. Trophic interactions 

are not just important for fine scale behaviour; even large scale movements and aggregations 

may be food-motivated. The gathering of young albacore at the fronts off the California 

upwelling is a case in point (Laurs et al. 1984, Fielder & Bernard 1987) — being sexually 

immature, these fish are not aggregating for reproduction. Assuming that tunas can occupy a 

broad oceanic niche, the proximate motivation for their dynamics within that space is likely to 

be food, with the ultimate motivation being to maximise reproductive success. Behavioural 

studies should therefore focus on estimating these factors as the free-living tuna is observed.

6.2.1.3 Modelling

Biologists are often put off by the ‘flute music’ of calculus, the sophistry of statistics 

and the terse logic of programming code. When one’s motivation for study comes from a deep 

appreciation of the beauty of nature it is easy to be put off by analytical methods that seem to 

grossly oversimplify or overcomplicate, sometimes simultaneously, a situation about which 

one already has an intuitive understanding. But such is the nature of science, and modelling is 

but another tool in the investigation of natural processes, and one that can contribute to 

knowledge at many different levels of understanding. While stock assessment may have 

‘. . .degraded into mathematical games in which the object is to find best guesses and estimates 

for parameters that have little to do with any ‘real’ measured or measurable variables’ (Sharp 

1995) the exercise of deriving a model can still help to identify/clarify the relative importance 

of different parameters and processes. Simpler models often provide insight that is more 

valuable than accurate numerical fits, and the most influential models often do not need the 

numerical output to guide the qualitative understanding (Hilborn & Mangel 1997).

Herein lies the truth that there are many different types of model that may be applied 

to any particular question. For practical application it is often desirable to be able to predict a 

property that is difficult/expensive to measure from another that is easier/cheaper to measure. 

If such correlations are lagged then we have an empirical means of forecasting. There are
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some successful examples of this work in remote sensing and fisheries (e.g. Waluda et al.

1999) but in general it is extremely difficult to find statistical relationships that hold in highly 

variable environments (Sharp 1995, Mangel et al. 2000; and see Bigelow et al. 1999, Andrade 

& Garcia 1999). Furthermore, as discussed earlier (Chapter 1), while statistical relationships 

may describe relationships well or badly, they cannot be used to show causality (Sharp 1995, 

Brill 1997, Hilborn & Mangel 1997). We may use statistical methods to identify relationships 

between variables but the ultimate questions regarding why such relationships exist cannot be 

answered in this way. Causality may be established through knowledge of specific obligate 

physiological responses and consequent behavioural decisions in a systems context (Sharp 

1995, Kirby et al. 2000, Chapters 4 & 5, Fig. 6.1). This theoretical approach has its emphasis 

on identifying mechanisms of interaction between organism and environment, allowing cause 

and effect relationships to be established and used to make predictions that may be better 

founded than those based on projection of past trends into the future. The level of detail 

required to develop such process-oriented models is usually high, and simplifications and 

assumptions have to be made in order to progress. Nevertheless, even simple theoretical 

models that forgo mechanistic detail can still provide a better understanding of the system 

under study than may be obtained by statistical analyses alone, as they can also have 

explanatory power. Of course, ‘understanding’ in the sense of knowing causal mechanisms, 

may be quite different from successful prediction, and society is often more interested in the 

latter. An ultimate aim of this thesis is to show that detailed understanding may provide a 

better basis for predictions; I acknowledge that this is ‘not proven’ (yet).

Models for the behaviour and spatial dynamics of tunas are many and varied (Deriso et 

al. 1991, Cayre & Marsac 1993, Dagorn et al. 1995, 1997, Bertignac et al. 1998, Dagorn & 

Freon 1999, Sibert et al. 1999, Stocker 1999, Humston et al. 2000, Kirby et al. 2000, Chapters 

4 & 5). Rule-based methods have been used to investigate both fine-scale behaviour of tunas 

(Dagorn et al. 1995, Dagorn & Freon 1999) and larger-scale movements (Dagorn et al. 1997, 

Humston et al. 2000). The use of ‘rules’ is a prescriptive exercise and so the rules themselves
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must be simple, logical and defensible. Complex behaviour and spatial dynamics may then 

emerge in the model system that allows one to generate and evaluate hypotheses for real tuna. 

Large scale movements and population dynamics have been represented by advection- 

diffusion relations, with tagging data used either in model derivation (Sibert et al. 1999) 

and/or evaluation (Bertignac et al. 1998, Sibert et al. 1999). Models of this type and at this 

scale ignore more fine-scale behaviour but may still incorporate interactions with 

environmental variability e.g. SST and forage density (Bertignac et al. 1998).

The model of Bertignac et al. (1998) for the spatial population dynamics of Pacific 

skipack tuna Katsuwonus pelamis builds on earlier levels of modelling, covering general 

circulation (Blanke & Delecluse 1993), biogeochemistry and new production (Stoens et al. 

1998), and tuna forage production (Lehodey et al. 1998). In this way the model as a whole is 

prognostic for tuna. It is a bold attempt at modelling spatial population dynamics from a 

‘bottom-up’ approach (i.e. from first principles —  physics to fish) and is commendable in its 

endeavours to link biological oceanography with fisheries science. However, the use of 

differential equations implies that one has already identified the relevant dynamics and, in the 

case of fish movement models, the relationship between fish and environment (Eqs. 4, 9 & 10 

in Bertignac et al. 1998). Given the complexities of ecological interactions, and the different 

components of fitness that trade-off against each other in the course of an animal’s lifetime, 

this may be somewhat premature. A similar criticism would apply to the kinesis model of 

Humston et al. (2000) and, in fairness, to mathematical ecology in general. One can apply 

mathematical models of any particular functional form to any postulated relationship between 

variables, but there should be good justification for the choices made. Particular caution 

should also be exercised in the inferences drawn from the results. Humston et al. (2000) are 

successful in their aim to reproduce large-scale migration of Atlantic bluefin tuna from simple 

behavioural rules. These movement rules are formulated mathematically as functions that 

depend on the difference between actual and optimal temperature, the latter (18°C) being, 

‘...chosen because it concurs with temperature data for those tuna,’ aerial survey data
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reported by Lutcavage et al. (1997), and because ‘...it is linked to the edge of Gulf Stream 

waters.’ In the absence of any other factors to trade off against this temperature preference it 

is then no surprise that the resulting distributions reflect those data used to derive the function, 

such that ‘...histograms of surface temperatures occupied at the end of model runs indicate 

highest concentrations of fish in surface waters of 18°C,’ and model results ‘also showed 

marked aggregations along the edges of sharp thermal fronts.’ This is skating on thin ice, 

below which lie the frigid waters of tautology. The model is attractive in its simplicity and 

forecasting skill, and in the aim to reflect observations the authors succeed admirably. But the 

assumptions made concern the mechanisms of interaction between fish and environment, as 

well as the motivations for action, upon which there is not yet convincing consensus. This is 

an area where future experimental research will be key.

It is well to remember that ‘...the realism of spatially resolved models cannot evolve 

faster than the acquisition of knowledge about the mechanisms governing the spatial 

behaviour of the constituents’ (SERG 2000). The level of realism that is incorporated into a 

model will also depend on its purpose and intended use. In the optimal foraging model (Kirby 

et al. 2000, Chapter 4), where the aim was to be as true to mechanism and motivation as 

possible, it was not possible to simulate tuna behaviour unless a detailed representation of 

physiology (gastric evacuation, standard and active metabolic energy costs; Chapter 3), 

sensory systems (visual range; Chapter 3), and both biotic and abiotic characteristics of the 

environment (prey abundance and energy density, water temperature and turbidity; Chapter 4) 

were included. I faced the same task as Bertignac et al. (1998) in trying to derive an equation 

to represent the effect of temperature stress on tuna, a task where we are totally dependent on 

experimental physiology to give us measurements of vital rates. By specifying a range of 

acceptable behaviours (swimming speeds and habitats) and a detailed representation of the 

state dynamics (i.e. physiology) the modelling technique calculates fitness values for all 

possible solutions and predicts optimal foraging behaviour (for more detail see Mangel & 

Clark 1988, Clark & Mangel 2000, Kirby et al. 2000, Chapters 3 & 4). The exercise began
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with the aim of deriving a means to predict the location of tunas in relation to ocean fronts 

visible in satellite imagery. But these data are of physical variables only, with the exception of 

chlorophyll concentration, and the importance of prey characteristics and state dependent 

behaviour became obvious only in the course of literature searching and model derivation and 

evaluation. Nonetheless, I succeeded in predicting behaviour from physiology in a complex 

environment, and inadvertently developed the optimal foraging model envisaged by Hunter et 

al. (1986a, p 30). The model still contains assumptions that may or may not be true, because 

our knowledge of various components is incomplete (e.g. sensory biology of tunas; 

physiological mechanisms and rates of accumulation of thermal stress; optical and nutritional 

properties of forage), but it is the first model for tunas that predicts behaviour from 

physiology and environment; this kind of model is most closely related to tagging studies that 

seek to understand fine-scale behaviour.

For movements over larger time- and space-scales, if a mechanistic representation of 

reality is desired, a different approach again may be necessary. There are real issues regarding 

the scaling up of motivated individuals to the dynamics of populations but these may not be as 

formidable as they first seem. Using evolutionary motivation (i.e. some measure of 

reproductive success) spatial population dynamics has been modelled by both optimisation 

(Fiksen et al. 1995) and adaptation (Huse & Giske 1998) approaches (see Giske et al. 1998 for 

expansion and discussion of these terms). Adaptive models are well founded in evolutionary 

and life-history theory, and use computational methods inspired by biological processes (i.e. 

neural networks and genetic algorithms), which enable model agents to both learn and evolve 

just as with living creatures. They are also well suited to complex solution space (G. Huse, 

pers comm.) and may therefore be better suited to exploratory simulations of the effects of 

changes in exploitation patterns or ocean climate on fish population dynamics. This heuristic 

or ‘black box’ approach has its detractors, usually amongst those more familiar with 

deterministic rather than adaptive processes, but it is conceptually satisfying to the biologist 

who is well aware of the complexities of living creatures and to whom adaptive behaviour and
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evolution are far from alien. The development of an adaptive model for the spatial dynamics 

of Pacific skipjack tuna is the subject of my current research, with progress to date presented 

in Chapter 5. Further development of this model should be followed by comparison with 

different approaches to the problem (Sibert et al. 1999, Bertignac et al. 1998).

6.2.1.4. A combined approach

One of the greatest contributions that theoretical modelling can make in studies of 

behaviour is that various hypotheses can be jointly evaluated and refined, prior to field 

observation and statistical hypothesis testing. The use of models when planning an 

experiment may also help identify variables that may be confounded in the analysis of results 

(Hilbom & Mangel 1997). This combined approach has practical as well as intellectual merit, 

as computational experiments are comparatively cheap to run, and may then allow field 

studies to focus on what is really important for enhancing understanding. This is the essential 

point that I want to press in this chapter, with regard to the complementary roles of modelling 

and experimental studies of the behaviour of tunas in relation to their environment. 

Observations should be used to derive and evaluate models, which in turn may be used to 

guide investigations in the field through the generation of testable hypotheses. As already 

mentioned, in the optimal foraging model (Kirby et al. 2000, Chapter 4) it was necessary to 

include a detailed representation of environmental characteristics, prey characteristics, 

sensory systems and physiology in order to predict optimal habitat and swimming speed. Such 

detail can only come from experimental investigation in the laboratory and at sea. The model 

also makes predictions, in particular regarding state-dependent behaviour, for which 

comparable observations are not yet available. I hope that in the future, researchers will adopt 

the model, or at least the approach, and use it to guide their investigations.

Joseph & Wild (1984), summarising a meeting of the Inter-American Tropical Tuna 

Commission, noted that ‘...there is a need to organise more complete conceptual models on 

how environmental conditions and physiology can direct and limit tuna movements both 

vertically and horizontally...At-sea tagging operations should be accompanied by sampling to
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determine physiological state (energy storage, instantaneous growth rate, etc.) and recent 

reproductive history. Tuna stomachs can be used to monitor and assess the environment in 

terms of temporal and spatial food availability.’ From the literature it seems that this advice 

has not been taken. There are separate studies that tag fish and others that measure stomach 

contents but few that do both, let alone conduct the other physiological investigations 

suggested. In some areas, techniques should have progressed such that we can identify forage 

fish by acoustic target strength. There may also be ways of non-destructively measuring 

hunger state through the use of chemical sensors on the fish. This would be vital information 

for a physiology-based movement model, data that might be recorded by archival tag along 

with swimming speed and sinuousity. I made an assumption earlier that adult tunas are apex 

predators and are not themselves preyed upon. This is generally thought to be the case, but as 

Hampton (2000) has shown, natural mortality of small (21-30 cm) skipjack, yellowfin and 

bigeye tuna is an order of magnitude higher than that of mid-sized fish. To understand the 

behaviour of these fish we must then simultaneously measure or otherwise estimate predation 

risk for the environment where our tuna is under study. I am not aware of tagging methods 

that will record the presence of other fish, be they predators, prey or conspecifics, but it would 

be worthwhile considering how they might be developed, or at least how we might 

simultaneously measure the ‘biotic environment’ (e.g. Josse et al. 1998) in terms of both 

predators and prey. ‘The time and space scales of measurements of tuna movements is a 

critical issue in the design of future investigations. Tracking of individual fish over periods of 

hours or days is not equivalent to movements of groups or schools over months. The problem 

of using information from small-scale movements to model movements of large groups of 

tunas over weeks or months needs to be examined’ (Joseph & Wild 1984). Different models 

may be used to investigate these different aspects of movement. An optimal foraging model 

(e.g,. Kirby et al. 2000, Chapter 4) is a good paradigm for short time-scale behaviour but is 

not adequate for scales where motivation is different i.e. where reproductive activity must be 

considered. In this case, a fitness measure that is more directly linked to reproductive success



must be adopted (e.g. number of eggs laid per gram body mass above size at maturity — 

Fiksen et al. 1995, Fig. 6.1) or the concept of ‘endogenous fitness’ can be applied. Either an 

optimisation or an adaptation approach can be used (Giske et al. 1998). An adaptive model 

applying the concept of endogenous fitness has been presented here (Chapter 5) as a ‘proof of 

concept’ exercise; further work will extend its application over a multi-year time series of 

observed/simulated data.

There are technological and logistical obstacles and constraints in the observational 

work suggested, and first we need to clarify which variables are most relevant to behaviour. 

Indices, proxies and vital rates for these variables may be identified in the laboratory, and 

then the technological development of new tools can begin. Modelling methods must be 

scrutinised, with methods used that are appropriate to the questions asked. Statistical models 

must not pretend to tell us why things happen, and theoretical models must be explicit in their 

assumptions and expand their scope from the artificial environments for which they are 

originally derived. Tremendous progress has been made in the physiological ecology of tunas, 

and in the development of computational methods; these fields must converge and be 

followed by behavioural and evolutionary studies that go beyond the descriptive and 

retrospective, and are focussed on understanding and prediction.

6.2.2. Geographical information systems (GIS)

A Geographical Information System (GIS) comprises of a collection of integrated 

computer hardware and software which together is used for inputting, storing, manipulating, 

analysing and presenting geographical data (Meaden & Do Chi 1996). Some authors include 

the requirement for trained staff to the definition of a GIS and others add that its primary role 

is to aid decision making; different researchers, policy analysts and decision makers will have 

different requirements and will obviously develop systems accordingly. Applications of GIS 

in fisheries research can be seen in the UNESCO publication to which I have contributed a 

chapter (Kirby in press) and in the proceedings of the ‘First International Symposium on GIS 

in Fishery Sciences’ held from 2-4  March 1999 in Seattle (Nishida et al. 2001), with
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examples of biological research and statistical modelling as well as fisheries management. 

Many of the case studies presented utilise remotely sensed data and statistical modelling. The 

success or otherwise of a marine fisheries GIS will be determined by the extent to which the 

relevant data can be collected, co-located and displayed in such a way as to enhance 

understanding. GIS generally allow user-friendly display of co-registered spatial data. 

However, further analysis is often required before relationships between variables can be 

established. This may be possible within a GIS but until recently the capacity of commercial 

GIS software for complex statistical analysis has been limited. This situation is changing as 

additional modules for spatial statistical analysis and/or dynamic modelling are being created, 

often by outside research groups. GIS-type software created ‘in-house’ will obviously be as 

simple or as sophisticated as its programmers allow. At the National Institute of Water and 

Atmospheric Research (NIWA), New Zealand, systems originally developed for the analysis 

of meteorological data and numerical weather prediction have been extended for SST and 

SSH data analysis, and are presently being used in the development of models for fisheries 

forecasting. The work presented in Chapter 2 was carried out using this system. Having been 

developed and presently running on a VAX VMS cluster, the user interface is somewhat non- 

intuitive, an important but neglected issue in the training and development of competent staff 

to fulfil the human component of a GIS. But the ‘back end’ represents a formidable suite of 

analytical tools and archived data. Future development, perhaps by using a web browser, 

might enable less skilled users to make better use of this resource. This is standard practice 

for repositories of large data sets (e.g. the World Ocean Atlas, Levitus & Boyer 1994).

Researchers who have been evaluating spatially resolved data for many years (e.g. 

meteorologists & oceanographers) do not consider GIS to be a particularly unique concept. 

The emphasis on data display rather than analysis in GIS has contributed to this impression. 

The collocation of data is a necessary precursor to modelling dynamic interactions, whether 

physical or ecological. The spatial life history model (Chapter 5) could be considered a GIS 

except that the emphasis is less on data display than on the underlying ecology. But while the
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data display is somewhat crude but is considerably more advanced than that used in the 

optimal foraging model (Chapter 4). The use of computer animations in the presentation of 

oceanographic data and simulations presents a powerful impression of the underlying 

dynamics. Building such an interface to an active archive of data is an even more powerful 

tool for the researcher and may make data mining more intuitive.

6.2.3. Satellite remote sensing 

The different geophysical variables measurable from space have been described earlier 

(Chapter 1). The emphasis of this thesis has been on trying to relate such variables to the 

dynamics of pelagic fish in a meaningful way i.e. by considering what mechanisms connect 

one variable to another. There has been much emphasis on trying to establish instantaneous 

correlations between satellite data and the relative abundance of fish and in some cases it has 

been possible to delimit favourable habitat. But the links between physics and fish operate 

across various spatio-temporal scales. The best example of this is in the potential use of 

satellite wind speed. There may be an instantaneous effect of wind speed on fish distributions; 

it has been reported that longline CPUE is higher when the sea is rough, the suggested 

explanation being that enhanced movement of baited hooks increases the encounter rate with 

predators and hence the ‘catchability’ of the gear (Kawamura et al. 1991). But the connection 

between wind speed and fish may also be more important much earlier on. Turbulence in the 

water column varies with the cube of the wind speed and fish feeding success varies with 

turbulence, particularly in the case of larvae (Fiksen et al. 1998). From this mechanism 

derives the ‘optimal environmental window’ hypothesis (Cury & Roy 1989), suggesting that 

pelagic fish recruitment, at least in upwelling areas, may be directly related to the overlying 

wind field in preceding months. Another example of the use of satellite-derived wind fields is 

in Chapter 5; the ocean general circulation model (OGCM) is driven by winds measured by 

ERS-1. The connection with the fish is firstly through the current field experienced, which is 

more important for larvae, but the OGCM also drives the biogeochemical model and hence 

the forage production, so there is a direct link through to the adults.
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Sea surface height (SSH) is another variable that in itself would seem irrelevant to 

fish. But if SSH is used to derive geostrophic currents and their convergence/divergence is 

calculated we can map surface oceanographic features that might be attractive to tunas, 

through the enhancement of productivity which we assume is taking place there. The logic is 

again rather long-winded and SSH itself is merely a proxy variable for what is more relevant 

to tuna i.e. forage distribution. But features are identified in this way (Fig. 1.11) and SSH can 

also be used for investigations of larval drift (e.g. Polovina 1999, Chiswell & Booth 1999).

Sea surface temperature (SST) is the most common data type referred to in fisheries 

applications of satellite remote sensing. Again the emphasis has been on feature identification, 

so again the variable itself is largely a proxy for assumed higher production in convergence 

and upwelling zones. As I have illustrated in this thesis (Chapter 4) the link between SST 

features and fish distribution is not straightforward and other researchers have shown that 

predator and prey concentrations are not necessarily any higher in fronts or related features 

compared to surrounding waters (Power & May 1991, McClatchie & Coombs submitted). 

Temperature is very important for the physiological ecology of fish but tunas are highly 

adapted to mitigate its effects. Habitat preferences may be apparent and shifts in water mass 

distribution may cause shifts in the distribution of fish. The mean and variability of SST can 

be determined, and running mean and anomaly data can be used to evaluate present 

conditions. Preferred temperatures for adult fish must be determined but this can delimit such 

a large area of ocean as to be useless for directing fishing effort. Different life history stages 

may be more vulnerable to the effects of temperature stress than others. Adult albacore for 

example, are found in surface waters north and south of the equator but in deeper, cooler 

waters at the equator itself (Blackburn 1965, Sund et al. 1981, Murray et al. 1999). By 

modifying their behaviour they can adapt to that particular environment, with obvious effects 

on the efficiency of surface fishing gear. The effects of temperature stress on eggs and larvae 

may be more critical and larvae are not likely to survive in waters that are too hot or too cold. 

This is apparent in the seasonal distribution of yellowfin tuna larvae (Itano 1999).
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6.2.4. Spatial modelling

The major part of this thesis has been concerned with the derivation of models connecting the 

behaviour and distribution of fish with the ocean environment. Satellite platforms enable 

measurement of geophysical variables over large areas but, as outlined at various stages 

above, it is my opinion that these data must be assimilated into detailed ecological models in 

order to fully exploit their potential. These models do not already exist, so they must be 

created. My work in Chapter 5 and the work of others (e.g. Fiksen et al. 1995, Huse & Giske 

1998, Lehodey et al. 1998, Bertignac et al. 1998) are among the first attempts at such a 

synthesis. Much work has been done in the modelling of ocean circulation, which in itself 

may be important for the maintenance of populations, through nutrient enrichment and the 

transport and retention of larvae (Bakun 1996). The general consensus in this field is that 

ocean models cannot get much better except through improving the quality of the data 

assimilated into them (M.J. Uddstrom pers. comm.). This is not the case in ecological studies, 

where we still strive to understand pattern and process and to identify appropriate levels of 

detail for model building. The major efforts to date have used advection-diffusion-reaction 

models (Lehodey et al. 1998, Bertignac et al. 1998, Sibert et al. 1999) yet these are 

prescriptive and without regard to mechanism. The model framework developed here 

(Chapter 5) incorporates far more biological detail than these other models, representing the 

effect of each environmental variable directly and does not presume to know how the various 

factors trade off against each other. The model allows behaviour to evolve as an adaptive 

response to proximate conditions over successive generations. As the model is developed 

further, various aspects of fish life history could then be investigated, such as the spatial 

distribution of the different components of natural mortality, and the evolution of migration 

strategies and/or subpopulations.

6.3. RESEARCH PROPOSALS 

Research proposals have been submitted to agencies in Europe and New Zealand; with 

ongoing collaboration, this thesis should provide a sound basis for development in this field.
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6.3.1 Discussion paper submitted to New Zealand Ministry of Fisheries

C P U E  for tunas w ithin  the N ew  Zealand EEZ is neither random ly nor uniform ly distributed in space; 

this m uch is ob v iou s as fishers have com e to target their effort at particular areas. W ithin the sm aller 

sam ple space o f  observed  fish ing  sets, frequency distributions o f  C PUE show  that it is still an over­

d ispersed  quantity (i.e . variance is greater than the m ean). This im plies that the prior k n ow led ge o f  

fishers is still not perfect. Even n on-schooling adult fish have been show n to be spatially aggregated at 

the su b -m eso sca le  lev e l (< 1 0 0  km ). O ngoin g  work w ill in vestigate the relationship  betw een  such  

aggregations and oceanographic processes. W hat is also  needed is to investigate the spatial properties 

apparent in the ob served  catch data in terms that relate m ore d irectly  to  the ec o lo g y  o f  the target 

sp ec ies. T he assum ption underlying this suggestion is that better understanding o f  the eco lo g y  o f  these  

s p e c ie s  w ill en ab le  m ore e ff ic ie n t  fish in g  and fa c ilita te  an e c o sy ste m  approach to fish er ies  

m anagem ent as required by the F isheries A ct 1996. Attention to these factors is warranted by the fact 

that the target sp ec ies  are h ighly migratory and enter or pass through the EEZ as part o f  their larger 

sca le  m ovem en ts. Variations in local relative abundance are therefore the im m ediate focus o f  interest 

for N Z  tuna fisheries.

The research proposed falls under 3 separate but related categories:

1. sensory b iology;

2. trophic eco logy;

3. spatial dynam ics.

T h e sen sory  system s o f  tunas determ ine how  they interact w ith their environm ent, and the rate o f  

b iom ass transfer through su cc ess iv e  trophic levels is largely determ ined by the e ffic ien cy  o f  these  

sy stem s, cou p led  with food  availab ility . There are major gaps in our understanding o f  the sensory  

b io lo g y  o f  tunas (se e  Chapter 3). In turn, our k n ow led ge o f  the trophic e c o lo g y  o f  tunas (i.e . 

in teraction s w ith  other sp ec ies  that govern the flow  o f  energy and b iom ass through the system )  

sp e c ific a lly  w ith in  the EEZ, is poor. This underm ines further study on larger-scale fishery related  

prob lem s, w hich  form  the substance o f  the third com ponent —  understanding m ovem ents o f  tunas 

w ithin  the EEZ. W e know  that areas o f  h igh/low  CPUE change in the course o f  the fish ing year but w e  

can n ot say , even  d iagn ostica lly , what is happening w hen, w here and w hy, becau se w e have not 

undertaken robust studies that look  at m ovem ents and the factors m otivating m ovem ents w ithin the 

EEZ.

T o address som e o f  these gaps, a com bination o f  field and laboratory research, perhaps undertaken in 

co llab ora tion  w ith  other P acific  nations, is proposed. E xperim ents to consider the availab ility  o f  

natural forage and fish ing  baits to tunas w ould address som e fundam ental gaps in our k now ledge o f  

tuna b io lo g y . Traditional and n ew ly  d eveloped  m ethods for studying trophic interactions in m arine 

sy stem s (stom ach  contents and stable isotope analyses resp ectively) could  be dep loyed  in areas that 

are know n to be attractive to tunas, and the deploym ent o f  new  tagging techn ologies w ould allow  tuna 

m ovem en ts to be observed  directly. This, coupled  with reanalysis o f  h istorical fin e-sca le  catch data 

w ould  result in a greater understanding o f  the eco logy  o f  tunas in the N ew  Zealand EEZ, w hich w ould  

result in im proved fish ing efficien cy  and better informed resource m anagement.
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6.3.2 Proposal submitted to European Space Agency

ID 151 
Title
M U L T I-SE N SO R  SATELLITE O C EA N O G R A PH Y  FOR PREDICTIVE FISHERIES  
FO R E C A ST IN G

Principal Investigator Information 
Name LLEW ELLYN-JO NES
Firstname D avid
Title Professor
Institution Earth Observation S cience Group, P hysics D ept., U niversity o f  L eicester
Town Leicester
Postal Code LEI 7RH
Country U K
Telefone +44 (0) 116 252 5241
Fax +44(0) 116 252 5262
Email d ljl@ le.ac.u k

CO-Investigators Dr. Paul J. B. Hart, Reader in Fish B io lo g y  and Fisheries E cology

Dr. Sean Law rence, Lecturer in Earth Observation Science and Physical O ceanography

Mr. D avid  S. Kirby, Postgraduate Research Student in Fisheries O ceanography and R em ote Sensing

Executive Summary T he aim  o f  th is proposal is to d ev elo p  and extend  n ew  m ethods in data 

syn th esis  and sim ulation in the field  o f  m ulti-sensor satellite oceanography for operational fish eries  

forecastin g . Our group has expertise in the syn ergistic  use o f  sa te llite  data coupled  to m odels o f  

physical oceanographic and marine eco log ica l processes. W e are presently d evelopin g new  m ethods o f  

m od ellin g  fish  m igrationw ith the aim  o f  cou p lin g  spatially exp licit: individual based neural network  

gen etic  a lgorithm (IN G )m odels with m odels o f  ocean dynam ics and nearreal tim e data from satellite  

sen sors. T h is proposal seek s to extend  that work through the syn erg istic  use o f  sensors aboard  

E N V IS A T  and w ould  com plem ent our p lans to d evelop  the m o d ellin g  m eth od olog ies further by 

p rovid in g  su ffic ien t data for assim ilation and validation, enabling the developm ent o f  near-real tim e  

capabilities for fisheries forecasting.

Schedule S ince Jan 1997 and until Jan 2 0 0 0  w e have been  and w ill continue to be working on 

the theoretical aspects o f  this topic, trying to understand and sim ulate the spatial dynam ics o f  fish in 

relation to oceanographic features. This work is enabled by the studentship held by D S K  under the 

su pervision  o f  PJBH and DLJ. From Jan 2 0 0 0  until the launch o f  E N V IS A T  w e w ould continue this 

work and prepare to assim ilate the rem otely sensed  data into the m odels. From the launch onwards w e 

w ould  be ready to receive data and run our m odels, provid ing predictions o f  fish  m ovem ents w hich  

w ill be testable by potential end users or by com parison with fish  catch returns.
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6.4. CONCLUSIONS

Fish biology (including physiological, behavioural and evolutionary ecology), physical 

oceanography, remote sensing and computer programming exist as disparate disciplines only 

in the social construction of science. In nature, fish live, reproduce and die within the self- 

organising complex adaptive system that is life on Earth. It is human minds that must remain 

open and human endeavour that must try to grasp what is useful and important from different 

scientific traditions in order to progress and deepen our understanding of life.

My thesis is that it is possible to model the dynamics of individual fish and fish 

populations in the oceans, in a spatially explicit context, by utilising the geophysical data 

obtained from space-based platforms, incorporated into models that couple physical 

oceanography and fish behaviour. The links between fish and environment (e.g. visual range, 

olfaction, temperature stress, larval drift) can be understood and represented in a quantifiable 

and integrated way. Behavioural patterns can be extracted from time series of fish catch data.

It is hard to conceive of methods for bringing together relevant information from 

different disciplines and/or aspects of the same discipline. In this work I have provided 

examples of how such a synthesis can be achieved. I have thoroughly reviewed, brought 

together and built on present knowledge. I have analysed surface longline data in an 

innovative way and I have developed and applied analytical and computational models in 

support of my thesis. I have illustrated how progress can be made in tuna ecology and in the 

application o f satellite remote sensing to fisheries. Dedicated laboratory and sea-going 

research will be better focussed if they are conducted after prior identification of important 

data gaps and within a framework of analytical and computational modelling that is sensitive 

to and tries to incorporate the real complexity of nature.
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l a n d , c l o u d , m a x F  
s u m _ t , sum_c
s s t  ( 1 8 0 , 1 0 8 0 )  
f o r a g e ( 1 8 0 , 1 0 8 0 )  
c h l o r o ( 1 8 0 , 1 0 8 0 )  
u _ c o m p ( 1 8 0 , 1 0 8 0 )  
v _ c o m p ( 1 8 0 , 1 0 8 0 )  
t e m p ( 8 ) , c p h y l l (8)

! Open i n p u t  f i l e s



Open output data files for SKIPJACK movement model

OPEN( 2 0 , F I L E = ' s s t . d a t ')
OPEN( 2 1 , F I L E = 1 f o r a g e . d a t ')
OPEN( 2 2 , F I L E = ' c h l o r o . d a t 1)
OPEN( 2 3 , F I L E = ' u _ c o m p . d a t ' )
OPEN( 2 4 , F I L E = ' v _ c o m p . d a t ' )

OPEN( 2 5 , F I L E = ' c l o u d . d a t 1)
OPEN( 2 6 , F I L E = ' m i s s i n g . d a t '  )

Open o u t p u t  d a t a  f i l e s  f o r  RV ANIMATOR

OPEN(3 0 , F I L E = ' A N _ s s t . t x t ' )  
OPEN( 3 1 , F I L E = 'A N _ f o r a g e . t x t ')  
OPEN( 3 2 , F I L E = 'A N _ c h l o r o . t x t ')  
OPEN( 3 3 , F I L E = 1A N_ u_c om p. t x t 1) 
OPEN( 3 4 , F I L E = 'A N _ v _c o m p . t x t ')

Read  SPC d a t a

DO i l o o p  = 1 , 1 0 8 0

READ( 1 0 , * )  
READ( 1 1 , * )  
READ( 1 2 , * )  
READ( 1 3 , * )  
READ( 1 4 , * )

s s t  ( 
f o r a g e ( 
c h l o r o ( 
u _ c o m p ( 
v _ c o m p (

, i l o o p )  
, i l o o p )  
, i l o o p )  
, i l o o p )  
, i l o o p )

ENDDO

WRITE ( * , * )  ' I n p u t  f i l e s  r e a d  -  now f l a g g i n g  l a n d  & m i s s i n g  v a l u e s  
! PAUSE

F l a g  l a n d  & c l o u d  v a l u e s  -  c o n v e r t  CV t o  c p h y l l

DO i l o o p  = 1 , 1 8 0  
DO j l o o p  = 1 , 1 0 8 0

f o r a g e ( i l o o p , j l o o p ) = m a x ( 0 . , m i n ( f o r a g e ( i l o o p , j l o o p ) , m a x F ) )
! l i m i t s  F t o  b e t w e e n  0 - 1

IF  ( s s t ( i l o o p , j l o o p ) . L E . 0 )  THEN



sst ( i l o o p , j l o o p )  = l a n d
c h l o r o ( i l o o p , j l o o p ) = l a n d  
f o r a g e ( i l o o p , j l o o p ) = l a n d  
u _ c o m p ( i l o o p , j l o o p ) = 0 .  
v _ c o m p ( i l o o p , j l o o p ) = 0 .

ELSEIF ( ( s s t ( i l o o p , j l o o p ) . G T . 0 ) . A N D . ( c h l o r o ( i l o o p , j l o o p ) . E Q . 2 5 5 ) ) THEN 
WRITE ( 2 5 , * )  i l o o p , j l o o p , s s t ( i l o o p , j l o o p ) , c h l o r o ( i l o o p , j l o o p )  
c h l o r o ( i l o o p , j l o o p ) = c l o u d

ELSE
c h l o r o ( i l o o p , j l o o p ) = 1 0 * * ( 0 . 0 1 2 * c h l o r o ( i l o o p , j l o o p ) - 1 . 4 )
IF  ( c h l o r o ( i l o o p , j l o o p ) . L T . 0 . )  THEN
P r i n t  *,  " N e g a t i v e  C p h y l l i l o o p , j l o o p , c h l o r o ( i l o o p , j l o o p )  
p a u s e  
END IF  

END IF

ENDDO
ENDDO

s s t ( 3 3 , a)  
c h l o r o ( 3 3 , a )  = 
f o r a g e ( 3 3 , a)  = 
u _ c o m p ( 3 3 , a )  = 
v _ c o m p ( 3 3 , a)  =

( s s t  ( 3 2 , a )  + 
( c h l o r o ( 3 2 , a)  + 
( c h l o r o ( 3 2 , a)  + 
( c h l o r o ( 3 2 , a )  + 
( c h l o r o ( 3 2 , a )  +

& Papua  New G u i n e a

s s t  ( 3 4 , a ) ) / 2 . 
c h l o r o ( 3 4 , a ) ) / 2 . 
c h l o r o ( 3 4 , a ) ) / 2 . 
c h l o r o ( 3 4 , a ) ) / 2 . 
c h l o r o ( 3 4 , a ) ) / 2 .

imake a c h a n n e l  b e t w e e n  A u s t r a l i a  
DO i l o o p  = 0 , 1 1  

a = 6 2 + i l o o p * 9 0

!& p l u g  up  t h e  Panama C a n a l . . .  
b = 4 2 + i l o o p * 9 0  
p r i n t * , b , s s t ( 1 7 1 , b )  
s s t ( 1 7 1 , b)  = l a n d  

p r i n t * , b , s s t ( 1 7 1 , b )  
c h l o r o ( 1 7 1 , b)  = l a n d  

f o r a g e ( 1 7 1 , b)  = l a n d  
u _ c o m p ( 1 7 1 , b)  = 0 .  
v _ c o m p ( 1 7 1 , b)  = 0 .

ENDDO
!p r i n t * , "Made a  c h a n n e l  b e t w e e n  A u s t r a l i a  & Pa pua  New G u in ea "
!p a u s e
! c h e c k  f o r  c o h e r e n c e  a c r o s s  v a r i a b l e s  -  f i l l  som e  g a p s  i n  c p h y l l  d a t a .
DO i l o o p  = 1 , 1 8 0  

DO j l o o p  = 1 , 1 0 8 0



IF ( ( s s t ( i l o o p , j l o o p ) . G T . 0 ) . A N D . ( c h l o r o ( i l o o p , j l o o p ) . LT . 0 ) )  THEN 
!We h a v e  SST b u t  n o  c p h y l l . . .
( s p a t i a l  i n t e r p o l a t i o n  o f  c h l o r o p h y l l  i n t o  m i s s i n g  a r e a

c p h y l l (1)
c h l o r o ( i l o o p - 1 , j l o o p - 1 )

c p h y l l (2)
c h l o r o ( i l o o p - 1 , j l o o p )

IF  ( j l o o p + 1 . L E . 1 0 8 0 )  c p h y l l (3)  = c h l o r o ( i l o o p - 1 , j l o o p + 1 )
IF  ( i l o o p + 1 . LE . 1 8 0 )  c p h y l l (4)  = c h l o r o ( i l o o p + 1 , j l o o p - 1 )
IF  ( i l o o p + 1 . L E . 1 8 0 )  c p h y l l (5)  = c h l o r o ( i l o o p + 1 , j l o o p )
IF  ( ( i l o o p + 1 . L E . 1 8 0 ) . A N D . ( j l o o p + 1 . LE . 1 0 8 0 ) )  THEN c p h y l l ( 6 ) = c h l o r o ( i l o o p + 1 , j l o o p + 1 ) 
END IF

c p h y l l (7 )  = c h l o r o ( i l o o p , j l o o p - 1 )
IF  ( j l o o p + 1 . LE . 1 0 8 0 )  c p h y l l (8)  = c h l o r o ( i l o o p , j l o o p + 1 )
( p a u s e
DO k l o o p  = 1 , 8

IF  ( c p h y l l ( k l o o p ) . G E . 0 . )  THEN 
sum_c  = sum_c  + c p h y l l ( k l o o p )  
c o u n t l  = c o u n t l + 1  

END IF  
END DO

IF ( c o u n t l . G T . 0) THEN
( a s s i g n  mean  v a l u e  o f  n e i g h b o u r s  t o  m i s s i n g  v a l u e  
c h l o r o ( i l o o p , j l o o p )  = s u m _ c / c o u n t l * l .

ELSE
( T h e r e  a r e  n o  n e i g h b o u r i n g  c p h y l l  v a l u e s ;
! c h e c k  f o r  n e i g h b o u r i n g  SST v a l u e s . . .  

t e m p ( l )  = s s t ( i l o o p - 1 , j l o o p - 1 ) 
t e m p (2)  = s s t ( i l o o p - 1 , j l o o p )

IF  ( j l o o p + 1 . LE . 1 0 8 0 )  t e m p ( 3 )  = s s t ( i l o o p - 1 , j l o o p + 1 )
IF  ( i l o o p + 1 . LE . 1 8 0 )  t e m p ( 4 )  = s s t ( i l o o p + 1 , j l o o p - 1 )
IF  ( i l o o p + 1 . LE . 1 8 0 )  t e m p ( 5 )  = s s t  ( i l o o p + 1 , j l o o p )
IF  ( ( i l o o p + 1 . L E . 1 8 0 ) . A N D . ( j l o o p + 1 . LE . 1 0 8 0 ) )  t e m p ( 6 ) = s s t ( i l o o p + 1 , j l o o p + 1 )  
t e m p (7)  = s s t ( i l o o p , j l o o p - 1 )
IF  ( j l o o p + 1 . LE . 1 0 8 0 )  t e m p ( 8 )  = s s t ( i l o o p , j l o o p + 1 )

DO k l o o p  = 1 , 8
IF  ( t e m p ( k l o o p ) . G T . 0 . ) THEN 

s u m _ t  = su m _ t  + t e m p ( k l o o p )  
c o u n t 2  = c o u n t 2 + l  

END IF  
END DO

IF ( c o u n t 2 . EQ. 0 )  THEN
( T h e r e  a r e  n o n e  -  f l a g  t h i s  s q u a r e  a s  l a n d



!WRITE( 2 6 , * ) i l o o p , j l o o p , s s t ( i l o o p , j l o o p ) , c h l o r o ( i l o o p , j l o o p )  
! p r i n t * , " N o  n e i g h b o u r i n g  SST d a t a  f o r i l o o p , j l o o p  
!p r i n t * , " S e t t i n g  a l l  v a r i a b l e s  t o : " , l a n d  
s s t ( i l o o p , j l o o p )  = l a n d
c h l o r o ( i l o o p , j l o o p )  = l a n d  
f o r a g e ( i l o o p , j l o o p )  = l a n d
u _ c o m p ( i l o o p , j l o o p )  = 0 .  
v _ c o m p ( i l o o p , j l o o p )  = 0 .
( p a u s e

ELSE
T h e r e  a r e  SST v a l u e s  a r o u n d  -  we a r e  i n  t h e  s e a  -  k e e p  p r e v i o u s  m o n t h ' s  c p h y l l

IF  ( j l o o p - 9 0 . G T . 0) THEN
c h l o r o ( i l o o p , j l o o p )  = c h l o r o ( i l o o p , j l o o p - 9 0 )

ELSE
c h l o r o ( i l o o p , j l o o p )  = c h l o r o ( i l o o p , j l o o p + 9 9 0 )

END IF
!p r i n t * , "T em po r a l  i n t e r p o l a t i o n  f o r i l o o p , j l o o p  
!p a u s e  
END IF

END IF

sum_c  
s u m _ t  
c o u n t l  
c o u n t 2  
t e m p ( : )  
c p h y l l ( : )

END IF

ENDDO 
ENDDO

W r i t e  o u t p u t  d a t a

WRITE ( 2 0 , 1 0 0 ) s s t ( : , : )
WRITE ( 2 1 , 1 0 1 ) f o r a g e ( : , :
WRITE ( 2 2 , 1 0 0 ) c h l o r o ( : , :
WRITE (23 , 1 0 0 ) u _ c o m p (: , :
WRITE ( 2 4 , 1 0 0 ) v _ c o m p ( : , :

=  0 . 

=  0 . 
= 0 
= 0 
= 0 . 
= - 9

G e t  d a t a  r e a d y  f o r  e x p o r t  t o  a n i m a t i o n  f i l e s  ( i n c r e a s e  s c a l e  & f l a g  l a n d  a s  - 1 )  
S S t ( : ,  :)  = s s t ( :  , :)



sst ( : , : 
f o r a g e ( 
f o r a g e ( 
c h l o r o ( 
c h l o r o ( 
u _ c o m p ( 

v _ c o m p ( : , ) =

= m a x (-1.,sst(:,:))
= 1 0 * f o r a g e ( : , : )
= m a x ( - 1 . , f o r a g e ( : , : ) )  
= 1 0 * ( c h l o r o ( : , : ) )
= m a x ( - 1 . , c h l o r o ( : , : ) )  
= lE2* u_C Om p( : , : )
1E2 * v _ c o m p ( : ,  :)

W r i t e  d a t a  f o r  i n p u t  t o  RV ANIMATOR

DO i l o o p  = 1 , 1 2
b = l + i l o o p * 9 0 - 9 0  
DO j l o o p  = b , b + 8 9  

W R I T E ( 3 0 , 1 0 2 )  
WRITE( 3 1 , 1 0 2 )  
WRITE( 3 2 , 1 0 2 )  
WRITE( 3 3 , 1 0 2 )  
WRITE( 3 4 , 1 0 2 )  

END DO 
WRITE( 3 0 , * )
WRITE( 3 1 , * )
WRITE( 3 2 , * )
WRITE( 3 3 , * )
WRITE( 3 4 , * )

( s s t ( k l o o p , j l o o p ) , k l o o p  = 1 , 1 8 0 )
( f o r a g e ( k l o o p , j l o o p ) , k l o o p  = 1 , 1 8 0 )  
( c h l o r o ( k l o o p , j l o o p ) , k l o o p  = 1 , 1 8 0 )  
( u _ c o m p ( k l o o p , j l o o p ) , k l o o p  = 1 , 1 8 0 )  
( v _ c o m p ( k l o o p , j l o o p ) , k l o o p  = 1 , 1 8 0 )

END DO

10 0  FORMAT(18 0 F 8 . 2 )
10 1  FORMAT(180F10 .4)
102  FORMAT( 1 8 0 F 7 , 1 , X )

END



PROGRAM SKIPJACK

IMPLICIT NONE

INTEGER POP, YEAR, MONTH, DAY, ILOOP, TID
INCLUDE 1c o m t u n . t x t '

POP = INITPOP

OPEN ( 1 0 , f i l e = " S K J . l o g " )
OPEN( 1 , F I L E = ' O U T / 1/ / ' a l l . t x t ')
OPEN( 2 , F I L E = ' O U T / ' I I '  t e m p . t x t 1)
OPEN( 3 , F I L E = ' O U T / ' I I ' p o p . t x t 1)
OPEN( 4 , F I L E = ' O U T / ' I I '  a t t r i b u t e s . t x t 1)
WRITE( 1 0 , * ) " Y e a r " , " M o n t h " , " D a y "

CALL S RA N D (1 2 3 . 6 1 5 )

CALL INITIALISE(POP)

CALL ENVIRONMENT(POP)

! c a r r y  o n  w i t h  t h e  p r o g r a m  
DO YEAR = 1 , HORIZON

I F ( POP==0) EXIT

DO i l o o p  = l , P O P
IF  (AV( 0 , ILOOP)==0)  p r i n t * , " D E A D . I L O O P  

END DO
TID = 0 

DO MONTH = 1 , 1 2

TID = TID + 1

WRITE( * , * ) YEAR, MONTH, POP 
WRITE( 3 , * ) YEAR, MONTH, POP

DO DAY = 1,MAANE(MONTH)

!p r i n t * , D A Y ,"POP=" , p o p  
!p r i n t * , 1



CALL GROWTH (POP,YEAR,MONTH,DAY)
!p r i n t * , 2

CALL TUNAMOV( POP, YEAR, MONTH, DAY, T I D ) 
!p r i n t * ,3

CALL TUNAREP( POP, YEAR, MONTH, DAY)

ENDDO
ENDDO

ENDDO

CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)

END PROGRAM SKIPJACK



SUBROUTINE INITIALISE(POP)

IMPLICIT NONE

i

INTEGER I , STRING, POP
REAL(8)  RAND, KD
INCLUDE ' c o m t u n . t x t '

Kd = K y / 3  6 5 .

!C r e a t e  KROMosomes r a n d o m l y  f o r  i n i t i a l  r u n . . . .  
DO 1 = 1 , POP

DO STRING = 1 , MAXS
I F ( R A N D ( O ) . L T . 0 . 5 )  THEN 

S V ( S T R I N G ,I )  = RAND( 0 ) * 2  
ELSE

S V ( S T R I N G ,I )  = -RAND( 0 ) * 2  
END IF  

ENDDO 
ENDDO

! P r o v i d e  a t t r i b u t e s  
DO I  = 1 , POP 

A V  ( 0  , 1 )

A V  ( 1 , 1 )

l e n g t h  
A V  ( 2  , I )

A V  ( 3  , 1 ) =
AV ( 8 , 1 )
AV (9 , 1 )
AV( 1 0 , I ) =

!p r i n t * , i n t ( A V ( 1 , I ) ) , A V (2 
ENDDO

1
90 + I N T (RAND( 0 ) * 7 2 0 )

= L i n f * ( 1 . - e x p ( -Kd*A V( 1 , I  
a * l e n g t h *  *b  
A V ( 2 , 1 ) *T E D * le3  
1E6
8 0 . +RAND( 0 ) * 4 0 .

- 2 0 . + R A N D ( 0 ) * 4 0 .
I )

) )

i n t ( A V ( 3 , 1 ) ) , i n t (AV( 9 , 1 ) )

A g e  i n  d a y s  
l e n g t h  i n  cm 
Mass  i n  k g  -  a s  f(AGE)  
E n e r g y  k J  
N o.  o f  i n d i v i d u a l s  
P o s i t i o n  E ( 0 - 1 8 0 )  
P o s i t i o n  N ( - 3 9 - 5 0 )  

i n t (AV ( 1 0 , 1 ) )

I P r o v i d e  n um be r  o f  d a y s  p e r  m on t h
MAANE(l) = 3 1
MAANE(2)  = 2 8
MAANE(3)  = 3 1
MAANE(4)  = 3 0
MAANE(5)  = 3 1
MAANE(6 ) = 3 0
MAANE(7)  = 3 1
MAANE(8)  = 3 1
MAANE(9)  = 3 0
MAANE(10  ) = 31
MAANE( 1 1 )  = 3 0
MAANE( 1 2 )  = 3 1
p r i n t * , " P o p u l a t i o n  i n i t i a l i s e d . . . "
!p r i n t * , i n t (AV ( 1 , 9 ) )  , A V ( 2 , 9 ) , i n t ( A V ( 3 , 9 ) ) , i n t ( A V ( 9 , 9 ) ) , i n t  (AV (10  , 9 ) ) 
!p a u s e

END SUBROUTINE IN IT I A L IS E



SUBROUTINE ENVIRONMENT(POP)

i m p l i c i t  n o n e

! D e c l a r e  v a r i a b l e s

INTEGER m o n _ l o o p , l o n _ l o o p , l a t _ l o o p , i , j , k , l a t , POP,IND
REAL t e m p i ( 1 8 0 , 1 0 8 0 ) , t e m p 2 ( 1 8 0 , 1 0 8 0 ) , t e m p 3 ( 1 8 0 , 1 0 8 0 ) , t e m p 4 ( 1 8 0 , 1 0 8 0 ) , t e m p 5 ( 1 8 0 , 1 0 8 0 )
REAL, PARAMETER::  maxF = 1 .
INCLUDE ' c o m t u n . t x t '

! Open i n p u t  f i l e s

OPEN( 2 0 , F I L E = ' I N / 1/ / ' s s t . d a t ')  
OPEN( 2 1 , F I L E = 1 I N / 1 /  /  1f o r a g e . d a t ' )  
OPEN( 2 2 , F I L E = ' I N / ' / / 1c h l o r o . d a t ')  
OPEN( 2 3 , F I L E = ’ I N / ' / / ' u _ c o m p . d a t ')  
OPEN( 2 4 , F I L E = ' I N / ' / / ' v _ c o m p . d a t ' )

DO J = l , 1 0 8 0
READ( 2 0 , ' ( 1 8 0 ( F 8 . 2 ) )  ')  (TEMPI( I , J ) , I  = 1 , 1 8 0 )  
READ( 2 1 , ' ( 1 8 0 ( F 1 0 . 4 ) ) 1) (TEMP2( I , J ) , I  = 1 , 1 8 0 )  

READ( 2 2 ,  1 ( 18  0 ( F 8 . 2 ) )  ' )  (TEM P3 (I , J )  , I  = 1 , 1 8 0 )  
READ( 2 3 , ' ( 1 8 0 ( F 8 . 2 ) ) 1) ( T E M P 4 ( I , J ) , I  = 1 , 1 8 0 )  
READ( 2 4 , ' ( 1 8 0 ( F 8 . 2 ) ) 1) (TEMP5( I , J ) , I  = 1 , 1 8 0 )  

ENDDO

! R ea d  i n p u t  p a r a m e t e r s
DO m o n _ l o o p  = 1 , 1 2

k  = l + m o n _ l o o p * 9 0 - 9 0  
DO l o n _ l o o p  = 1 , 1 8 0  

l a t  = 50
DO l a t _ l o o p  = K,K+89

s s t  ( l a t , l o n _ l o o p , m o n _ l o o p ) = TEMPI( l o n _ l o o p , l a t _ l o o p )
f o r a g e ( l a t , l o n _ l o o p , m o n _ l o o p ) = T E M P 2 ( l o n _ l o o p , l a t _ l o o p )  
c h l o r o ( l a t , l o n _ l o o p , m o n _ l o o p ) = T E M P 3 ( l o n _ l o o p , l a t _ l o o p )  
u _ c o m p ( l a t , l o n _ l o o p , m o n _ l o o p )=  TEMP4( l o n _ l o o p , l a t _ l o o p ) 
v _ c o m p ( l a t , l o n _ l o o p , m o n _ l o o p ) = T E M P 5 ( l o n _ l o o p , l a t _ l o o p )  
l a t  = l a t - 1  

END DO
END DO 
END DO



!Flag incomplete time series as land

DO m o n _ l o o p  = 1 , 1 2
k = l + m o n _ l o o p * 9 0 - 9 0  
DO l o n _ l o o p  = 1 , 1 8 0  

l a t  = 50
DO l a t _ l o o p  = K,K+89

IF  ( s s t ( l a t , l o n _ l o o p , m o n _ l o o p ) = = l a n d )  THEN 
s s t  ( l a t , l o n _ l o o p , : ) =  l a n d  
f o r a g e ( l a t , l o n _ l o o p , : ) =  l a n d  
c h l o r o ( l a t , l o n _ l o o p , : ) =  l a n d  
u _ c o m p ( l a t , l o n _ l o o p , : ) =  0 .  
v _ c o m p ( l a t , l o n _ l o o p , : ) =  0 .

ELSE IF  ( c h l o r o  ( l a t , l o n _ l o o p , m o n _ l o o p ) = = l a n d )  THEN
s s t  ( l a t , l o n _ l o o p , : ) =  l a n d  
f o r a g e ( l a t , l o n _ l o o p , : ) =  l a n d  
c h l o r o ( l a t , l o n _ l o o p , : ) =  l a n d  
u _ c o m p ( l a t , l o n _ l o o p , : ) =  0 .  
v _ c o m p ( l a t , l o n _ l o o p , : ) =  0 .

END IF  
l a t  = l a t - 1  

END DO
END DO 
END DO

[ C r e a t e  d a i l y  i n c r e m e n t s  
DO m o n _ l o o p  = 1 , 1 1

DO l o n _ l o o p  = 1 , 1 8 0
DO l a t _ l o o p  = 5 0 , - 3 9 , - 1
d s s t ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p )  = ( 1 . /M A A N E ( m on _l oo p ) ) * ( s s t  

( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p + l ) - s s t  ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p ) ) 
d f o r a g e ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p )  =

( 1 . /M A A N E ( m on _l oo p ) ) * ( f o r a g e ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p + l ) - f o r a g e ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p ) ) 
d c h l o r o ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p )  =

( 1 . /M A A N E ( m o n _ lo o p ) ) * ( c h l o r o ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p + l ) - c h l o r o ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p ) ) 
d u _ c o m p ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p )  =

( 1 . /M A A N E ( m o n _ lo o p ) ) * ( u _ c o m p ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p + l ) - u _ c o m p ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p ) )

d v _ c o m p ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p )  =
( 1 . /M A A N E ( m o n _ lo o p ) ) * ( v _ c o m p ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p + l ) - v _ c o m p ( l a t _ l o o p , l o n _ l o o p , m o n _ l o o p ) )

END DO
END DO



END DO
DO l o n _ l o o p  = 1 , 1 8 0

DO l a t _ l o o p  = 5 0 , - 3 9 , - 1
d s s t  ( l a t _ l o o p , l o n _ l o o p , 12)  = ( 1 . /MAANE( 1 2 ) ) * ( s s t ( l a t _ l o o p , l o n _ l o o p , 1)

( l a t _ l o o p , l o n _ l o o p , 1 2 ) )
d f o r a g e ( l a t _ l o o p , l o n _ l o o p , 12)  = ( 1 . /MAANE( 1 2 ) ) * ( f o r a g e ( l a t _ l o o p , l o n _ l o o p , 1) -  

f o r a g e ( l a t _ l o o p , l o n _ l o o p , 1 2 ) )
d c h l o r o ( l a t _ l o o p , l o n _ l o o p , 12)  = ( 1 . /MAANE( 1 2 ) ) * ( c h l o r o ( l a t _ l o o p , l o n _ l o o p , 1) -  

c h l o r o ( l a t _ l o o p , l o n _ l o o p , 1 2 ) )
d u _ c o m p ( l a t _ l o o p , l o n _ l o o p , 12)  = ( 1 . /MAANE( 1 2 ) ) * ( u _ c o m p ( l a t _ l o o p , l o n _ l o o p , 1)  

u _ c o m p ( l a t _ l o o p , l o n _ l o o p , 1 2 ) )
d v _ c o m p ( l a t _ l o o p , l o n _ l o o p , 12)  = ( 1 . /MAANE( 1 2 ) ) * ( v _ c o m p ( l a t _ l o o p , l o n _ l o o p , 1) -  

v _ c o m p ( l a t _ l o o p , l o n _ l o o p , 1 2 ) )
END DO

END DO

! c h e c k  n o t  i n i t i a l i s e d  on  l a n d  
1 DO IND = l , P O P

IF  ( S S T ( IN T( A V ( 1 0 , I N D ) ) , IN T( A V ( 9 , I N D ) ) , 1 ) ==LAND) THEN 
p r i n t * , " S t a r t i n g  o n  l a n d " , IN D ,A V ( 9 , I N D ) , AV( 1 0 , IND)

A V ( 9 , IND) = 8 0 .
AV ( 1 0 , IND) = - 2 0 .  

p r i n t * , " P o s i t i o n  r e s e t " , A V ( 9 , I N D ) , A V ( 1 0 , I N D )  
p a u s e  

GOTO 1 
END IF  

END DO

! G e t  maximum v a l u e s  f o r  l a t e r  o n .  
maxSST = MAXVAL(SST) 
maxCHL = MAXVAL(chloro)  
maxFI  = MAXVAL(forage)  
maxU = MAXVAL(ABS(u_comp)) 
maxV = MAXVAL(ABS(v_comp))
! PRINT*, MAXU, MAXV

10 0  FORMAT( 1 8 0 F 8 . 2 )
10 1  FORMAT(180F10. 4 )
102  FORMAT(2 X , 5 F 6 . 3)

s s t

END SUBROUTINE



!Program to calculate larval mortality, juvenile/adult bioenergetics, and growth.

SUBROUTINE GROWTH( POP, YEAR, MONTH, DAY) 

i m p l i c i t  n o n e

INTEGER s e e d , m e a l , POP, YEAR, MONTH, DAY, IND, N , E
REAL*4 M P r e d , M S t a r v , M T h e r m , M S e n , M F i s h , d T , T A , T A C , T A F , N p r e y ,T D
REAL*4 P I , v _ _ r a n g e , h ,  K 4 9 0 , Kd, E n c R a t e , p S , p F , pE,  EF 
REAL*4 EM ,E Ln ,E Ld ,S DA ,M m ea l , T E D i , REM
INCLUDE ' c o m t u n . t x t '

I F (YEAR<7) THEN 
TD = 0 . 5  

E L S E I F (YEAR<2 0) THEN 
TD = 0 . 7  

ELSEIF(YEAR<3 0) THEN 
TD = 0 . 9  

ELSEIF(YEAR<4 0) THEN 
TD = 1 .

ELSE 
TD = 1 . 1  

END IF

DAILY INSTANTANEOUS MORTALITY RATES
Ml = 0 . 6 ! d a y s 1 t o 7
M2 = 0 . 4 ! d a y s 8 t o 14
M3 = 0 ! . 2 ! d a y s 15 t o 21
M4 = 0 ! . 1 ! d a y s 22 t o 45
M5 = 0 . 0 0 1 ! d a y s 46 t o 90
M6 = 0 . 0 0 0 1 ! d a y s 91 t o 360
M7 = 0 . 0 0 0 0 1 ! d a y s 36 1 t o 1 4 40

PI  = 3 . 1 4 1 5 9

! i n i t i a l i s e  
Kd = K y / 3 6 5 .
s e e d  = 1 2 3 4 5 6 7 8 7  
pS = 0 .

! d a i l y  i n s t a n t a n e o u s  g r o w t h  r a t e  
! s e e d  f o r  random nu mber  g e n e r a t i o n  

! ran do m number

! S t a r t  c a l c u l a t i o n s



DO IND = 1 , POP
IF (AV( 0 , I N D ) = = 1 ) THEN ! o n l y  do c a l c s  f o r  s u p e r l  t h a t  a r e  a l i v e

A V ( 1 , IND) = AV( 1 , IND) + 1 ! t h e y  g e t  o n e  d a y  o l d e r

E = IN T ( A V ( 9 , I N D ) )
N = I N T ( A V ( 1 0 , I N D ) )

[TA,TAC,TAF) f r o m  m o n t h l y  c l i m a t o l o g i e s

* ( (MAANE (1 2 )  - 1 5 ) +DAY) *DSST (N, E, 12 )
* ( (MAANE( 1 2 ) - 1 5 ) +DAY)*DFORAGE(N,E, 1 2 )  
* ( (MAANE( 1 2 ) - 1 5 ) +DAY)*DCHLORO(N,E, 1 2 )

! I n t e r p o l a t i o n  t o  d a i l y  v a l u e s  
IF ( D A Y < 1 5 ) THEN 
IF(M0NTH==1) THEN

TA = S S T ( N , E , 1 2 )  + 1 .
TAF = FORAGE(N,E,12)  + 1 .
TAC = CHLORO(N,E,12)  + 1 .
IF  (TAC.LT.O) THEN

p r i n t * , " C h l o r o p h y l l  h a s  g o n e  n e g a t i v e . . . "
!p r i n t * , i n d , d a y , E , N , A V ( 1 , I N D ) , A V ( 2 , I N D ) , A V ( 3 , I N D ) , AV ( 8 , IND 
p r i n t * , i n d , m o n t h , d a y , E , N , A V ( 1 , I N D ) , TAC, TA, TAF 

!p r  i n t  * , CHLORO(N,E,12)  , CHLORO(N,E, 1 )  , CHLORO(N,E,2)  
p a u s e  

! TAC = 2 .
END IF  

ELSEIF(M0NTH>1) THEN
TA = SST(N,E,MONTH-1)  + 1
TAF = FORAGE(N,E,MONTH-1) + 1
TAC = CHLORO(N,E,MONTH-1) + 1
IF  (TAC.LT.O) THEN

p r i n t * , " C h l o r o p h y l l  h a s

* ( (MAANE(MONTH-1)- 1 5 ) +DAY)*DSST(N,E,MONTH-1)
* ( (MAANE(MONTH-1)- 1 5 ) +DAY)*DFORAGE(N,E, MONTH-1) 
* ( (MAANE(MONTH-1)- 1 5 ) +DAY)*DCHLORO(N,E, MONTH-1)

g o n e  n e g a t i v e . . . "
!p r i n t * , i n d , d a y , E , N , A V ( 1 , I N D ) , A V ( 2 , I N D ) , A V ( 3 , I N D ) , A V (8 , IN D )  
p r i n t  * , i n d , m o n t h , d a y , E , N , AV( 1 , IND) , TAC, TA, TAF

!p r  i n t  * , CHLORO(N,E,MONTH- 1 )  , CHLORO(N,E, MONTH) , CHLORO(N,E,MONTH+1[ 
p a u s e

! TAC = 
END IF  

END IF  
ELSE !DAY > 15

TA = SST(N,E,MONTH)
TAF = FORAGE(N,E,MONTH)  
TAC = CHLORO(N,E,MONTH) 

END IF

+ 1 . * (DAY-15)*DSST(N,E,MONTH)
+ 1 . * (DAY-15)*DFORAGE(N,E,MONTH)  
+ 1 . * (DAY-15)*DCHLORO(N,E,MONTH)



IF  ( T A . L T . 2 0 )  THEN
dT = 2 0 . -  TA 

ELSEIF (TA. GT. 3 0 )  THEN 
dT = TA -  3 0 .

END IF

!Age  b a s e d  c a l c u l a t i o n s  o f  g r o w t h  & m o r t a l i t y  
I F ( A V ( 1 , I N D ) . L E . 9 0 )  THEN

l e n g t h  = L i n f * ( 1 . - e x p ( -Kd*AV( 1 , I N D ) ) )

IF  ( l e n g t h = = 0 ) THEN
p r i n t * , " L e n g t h  i s  z e r o "  
p a u s e  

END IF

! S t a g e  1 .  P l a n k t o n i c  l a r v a e  

!Von B e r t  l e n g t h

! T h r e e  m e c h a n i s m s  o f  n a t u r a l  m o r t a l i t y  :
MPred = T A F / l e n g t h  
M S t a r v  = 0 . 0 2 5 / TAC 
MTherm = 0 . 025*EXP(dT)
I F ( ( T A > 2 0 ) . A N D . ( T A < 3 0 ) ) MTherm = 0 
! k i l l  som e  i n d i v i d u a l s  i n  t h i s  s u p e r l

A V ( 8 , I N D ) = m a x ( 0 . , A V ( 8 , I N D ) * E X P ( - ( M P r e d + M S t a r v + M T h e r m ) * T D ) ) 
! PRINT*, IN D ,A V ( 8 , I N D ) , A V (1 , IN D )

!p r e d a t i o n  
! s t a r v a t i o n  
! t h e r m a l  s t r e s s  

!w i t h i n  o p t i m a l  t e m p ,  r a n g e

ELSE

l e n g t h  = ( A V ( 2 , I N D ) / a ) * * ( 1 . / b )

! S t a g e  2 .  N o n - b u o y a n t  n e k t o n i c  j u v e n i l e s / a d u l t s  

! L e n g t h - b a s e d  p r e d a t i o n  r i s k

IF  (YEAR>10) THEN
IF  ( l e n g t h . L T . 3 0 . )  THEN
MPred = T A F / l e n g t h
A V( 8 , IND) = m a x ( 0 . , AV ( 8 , I N D )* E X P ( - M P r e d * T D ) ) 
END IF  
END IF

! BIOENERGETICS

! 1 .  SMR

EM = 2 4 . * 1 4 . 0 5 4 * 4 1 2 . * ( A V ( 2 , I N D ) * * 0 . 5 6 3 ) * l e - 3  !E l o s t  i n  k J / 2 4  h r s  > AV2 i n  k g



!2. LOCOMOTION

!2 * 12 h r  p e r i o d s ;  s p e e d  i n  B L / s
!E = t i m e  * c o n s t a n t  * l e n g t h * * 1 . 5  * v e l o c i t y * * 2 . 5

E L n = ( 1 2 . * c * l e n g t h * * 1 . 5 ) * ( 1 . * l e n g t h * * 2 . 5 ) *  l e - 3  ! k J / 1 2 h r s  @ n i g h t i m e  > s p e e d  = 1 BL/
E L d = ( 1 2 . * c * l e n g t h * * l . 5 ) * ( 3 . * l e n g t h * * 2 .5 ) .*  l e - 3  ! k J / 1 2 h r s  @ d a y t i m e  > s p e e d  = 3 BL/

! 3 .  FEEDING

! c a l c u l a t e  p r e y  c o n c e n t r a t i o n
N p r e y  = MAX( I E - 1 0 , T A F * l e - 7 ) ! c o n v e r t s  f r o m  f o r a g e  i n d e x  ( 0 - 1 )  t o  s h o a l s / m * * 3

! c a l c u l a t e  d e p t h  i n t e g r a t e d  v i s u a l  r a n g e ,  1 < r  < 30
k 4 9 0  = 0 . 0 2 2  + 0 . 1 1 9 * T A C * * 1 . 1 2 2  !A u s t i n  & P e t z o l d ,  1 9 8 1
h  = 4 . 6 / k 4 9 0  !h = f i r s t  a t t e n u a t i o n  d e p t h

v _ r a n g e  = EXP( - k 4 9 0 * h ) - 1 .
v _ r a n g e  = M I N ( 3 0 . ,  MAX( 1 . , SQRT( ( - 1 0 . / k 4 9 0 ) * v _ r a n g e ) ) )

! c a l c u l a t e  p r o b a b i l i t y  o f  f i n d i n g  f o o d  

E n c R a t e  = 0 . 5 * ( 3 . * N p r e y * P I * v _ r a n g e * * 2 . )  

pF = ( 1 . - E X P ( - E n c R a t e * 2 . 1 6 e 4 ) ) /TD 

Mmeal = m i n ( 0 . 3 , ( 0 . 0 5 * A V ( 2 , I N D ) ) )

DO m e a l = l , 2
CALL RANDOM_NUMBER(pE)

IF  ( p E . L E . p F )  THEN
Ef  = 1 . *M m ea l* le3 * P E D
SDA = 0 . 2 *  EM
AV ( 3 , IND) = AV ( 3 , IND) + Ef  -  SDA

END IF  
END DO

! s t o m a c h  v o l u m e  = 5% o f  b o d y  w e i g h t

!p r o b a b i l i t y  o f  e n c o u n t e r i n g  f o o d  
! i t  f i n d s  f o o d
! e n e r g y  g a i n  (kJ)  t h r o u g h  f e e d i n g  
! e n e r g y  l o s s  (kJ)  b y  SDA 
! n e t  g a i n / l o s s  i n  e n e r g y  d e n s i t y  
! FOR EACH MEAL

!p r i n t  e n e r g y  b u d g e t  
!p r i n t * , " E + : " , Ef



'p r i n t  *,  "E - : " , EM+ELn+ELd 
!p a u s e

!U p d a t e  e n e r g y  a f t e r  t o t a l  m e t a b o l i c  l o s s e s  i n  t h i s  t i m e  s t e p  
AV( 3 , IND) = AV ( 3 , IND) -  (EM+ELn+ELd)

!U p d a t e  s t r u c t u r a l  w e i g h t
AV( 2 , IND) = m a x ( A V ( 2 , I N D ) , l e - 3 * ( A V ( 3 , I N D ) / T E D ) )

! IF  (AV ( 2 , IND) . GT. 4 5 )  THEN 
!p r i n t * , D A Y , I N D

! PRINT*, I N D , "i s  g e t t i n g  t o o  f a t ,  w e i g h i n g " , AV( 2 , I N D ) , " k g ."
! p a u s e
! ELSE IF  ( A V ( 2 , I N D ) . L T . l )  THEN
! PRINT*, I N D , "i s  g e t t i n g  t o o  t h i n ,  w e i g h i n g " , AV( 2 , I N D ) , " k g ."

!p a u s e  
! ENDIF

!D e a t h  b y  s t a r v a t i o n  -  M S t a r v  a s  e x p o n e n t i a l  f u n c t i o n  o f  e n e r g y  d e n s i t y  
TEDi = A V ( 3 , I N D ) / ( l e 3 * A V ( 2 , I N D ) )
TEDi = MAX( 0 . , (TEDi -  3 . ) )
M S t a r v  = EXP ( - 1 .  5 3 5 0 5 6 7 *TEDi.)
AV ( 8 , IND) = MAX( 0 . , AV( 8 , IN D )* E X P ( - M S t a r v * T D ) )

!D e a t h  b y  t h e r m a l  s t r e s s
MTherm = 0 . 025*EXP(dT)  ! t h e r m a l  s t r e s s

I F ( (T A >2 0) . AND. (TA< 30 ) )  MTherm = 0 I w i t h i n  o p t i m a l  t e m p ,  r a n g e
AV ( 8 , I N D ) = m a x ( 0 . , AV( 8 , IN D )* E X P ( -MTherm*TD)) I k i l l  som e  i n d i v i d u a l s  i n  t h i s  s u p e r l

[ I m p l e m e n t  s p a t i a l l y  u n i f o r m ,  l e n g t h - b a s e d  f i s h i n g  m o r t a l i t y  
M F i sh  = 0 .
IF  ( ( l e n g t h . G T . 2 0 . ) . A N D . ( l e n g t h . L E . 3 0 . ) )  THEN 

M F i sh  = 1 .  / 3 6 5 .
ELSE IF  ( ( l e n g t h . G T . 3 0 . ) . A N D . ( l e n g t h . L E . 4 0 . ) )  THEN 

M F i sh  = 2 . / 3 6 5 .
ELSE IF  ( l e n g t h . G T . 4 0 . )  THEN 

M F i sh  = 1 . / 3 6 5 .
END IF
AV( 8 , IND) = MAX( 0 . , A V ( 8 , I N D )* E X P ( - M F i s h * T D ) )



! i m p l e m e n t  a g e - d e p e n d e n t  m o r t a l i t y  i . e .  s e n e s c e n c e  f o r c i n g  f u n c t  
IF  ( A V ( 1 , I N D ) . G T . 1 0 8 0 )  THEN 

MSen = 1 5 . / 3  6 5 .
AV( 8 , IND) = MAX( 0 . , AV ( 8 , IN D )* E X P ( - M S e n * T D ) )

END IF

END IF  ! d i f f e r e n t  a g e  g r o u p s  (LARVAE OR JUVENILES/ADULTS)

rem = MOD(YEAR,2)
IF  ( ( R E M = = 0 . ) . AN D .(M O NT H= = l ) .A N D. (D A Y = = 1) ) THEN

p r i n t * , " A g e  ( d a y s )  o f  i n d . " , i n d , i n t ( A V ( 1 , I N D ) )
! PAUSE

END IF

J k i l l  s u p e r l  i f  n o  mo re  i n d i v i d u a l s  
I F ( A V ( 8 , I N D ) <1 0 )  AV( 0 , IND) = 0

END IF  I i f  a l i v e
END DO !Do IND = 1 , POP

END SUBROUTINE GROWTH



SUBROUTINE TUNAMOV( POP, YEAR, MONTH, DAY, T I D ) 

i m p l i c i t  n o n e

i _______________________________________________

INTEGER POP, E , N , YEAR, I , MONTH, HID , I N , OUT, DAY, S , T I D , DE, DN, MATE
REAL TA,TAC,TAF,NYE,NYN,MASS,DIST
r e a l  u o o , u i o , u o i , u i i , v o o , v i o , v o i , v i i , y f a k , x f a k , u a d v , v a d v
INCLUDE ' c o m t u n . t x t '

! C a l c u l a t e  p l a n k t i v o r e  m o r t a l i t y  a n d  f o o d  i n t a k e  
DO 81 I  = l , P O P

I F ( A V ( 0 , I ) = = 0 )  GOTO 81

! S e t  new  h a b i t a t s  
N = IN T( A V ( 1 0 , 1 ) )

E = I N T (AV( 9 , 1 ) )

! I n t e r p o l a t i o n  t o  d a i l y  v a l u e s  f r o m  m o n t h l y  c l i m a t o l o g i e s  
I F ( D A Y < 1 5 ) THEN 

I F (MONTH==1)  THEN
TA = S S T ( N , E , 1 2 ) + (MAANE( 1 2 ) - 1 5 + D A Y ) * D S S T ( N , E , 1 2 )
TAC = CHLORO(N,E,12) + MAANE ( 1 2 ) - 1 5 + D A Y ) * DCHLORO(N , E , 1 2 )
TAF = FORAGE(N,E,12) + MAANE ( 1 2 ) -15+DAY)*DFORAGE(N,E, 1 2 )

UOO - U_COMP(N,E,12) + MAANE ( 1 2 ) - 1 5 + D A Y ) * DU_COMP(N , E , 1 2 )
U10 - U _ C O M P (N ,E + l , 12) + MAANE( 1 2 ) -15+DAY)*DU_COMP(N,E+l , 1 2 )
U01 - U _ C O M P (N + l , E , 12) + MAANE ( 1 2 ) -15+DAY)*DU_COMP(N+l , E , 1 2 )
U l l - U_COMP(N+l, E + l , 1 2 ) + MAANE ( 1 2 ) -1 5 + D A Y )* D U _ C O M P ( N + l ,E + l , 12)
VOO - V_COMP(N,E, 1 2 ) + MAANE ( 1 2 ) -15+DAY)*DV_COMP(N,E,12)
V I 0 = V_COMP(N,E+l , 1 2 ) + MAANE ( 1 2 ) -15+D A Y )*D V _C OM P( N ,E +l , 12)
V01 = V _ C O M P ( N + l , E ,12) + MAANE ( 1 2 ) -15+DAY)*DV_COMP(N+l , E , 1 2 )
V l l = V _ C O M P ( N + l , E + l , 12 ) + MAANE ( 1 2 ) - 1 5 + D A Y ) * DV_COMP(N+l, E + l , 1 2 )

ELSEIF(M0NTH>1) THEN
TA = SST(N,E,MONTH-1) + MAANE(MONTH-1 ) - 1 5 + D A Y ) * D S S T ( N , E , MONTH-1)
TAC = CHLORO(N,E, MONTH- 1) + MAANE(MONTH-1 ) - 1 5  +DAY) *DCHLORO(N,E,MONTH
TAF = FORAGE(N, E , MONTH- 1) + MAANE(MONTH-1)-15+DAY)*DFORAGE(N,E,MONTH

UOO = U_COMP(N,E,MONTH- 1) + MAANE(MONTH-1 ) -15+DAY)*DU_COMP(N, E , MONTH
U10 = U_COMP(N,E+l , MONTH-1) + (MAANE MONTH - 1 ) -15+DAY)*DU_COMP(N,E+l ,MONTH-1)



U01 = U_COMP(N+l ,E,MONTH-1) + (MAANE(MONTH-1) -15+DAY)*DU_COMP(N+l , E , MONTH-1)
U l l  = U_COMP(N+l ,E+l ,MONTH-1)  + (MAANE(MONTH-1) -15+DAY)*DU_COMP(N+l , E + l , MONTH-1) 
V00 = V_COMP(N,E,MONTH-1) + (MAANE(MONTH-1) -15+DAY)*DV_COMP(N,E, MONTH-1)
V10 = V_C OMP (N,E+ l , MONTH-1) + (MAANE(MONTH-1) -15+DAY)*DV_COMP(N, E + l , MONTH-1)
V01 = V_COMP(N+l ,E,MONTH-1)  + (MAANE(MONTH-1) -15+DAY)*DV_COMP(N+l , E , MONTH-1)
V l l  = V_COMP(N+l ,E+l ,MONTH-1)  + (MAANE(MONTH-1) -15+DAY)*DV_COMP(N+l , E + l , MONTH-1) 

END IF  
ELSE

TA = SST(N,E,MONTH) + DAY-15)*DSST(N,E,MONTH)
TAC = CHLORO(N,E,MONTH) + DAY-1 5 ) *DCHLORO(N,E,MONTH)
TAF = FORAGE(N,E,MONTH) + DAY-15)*DFORAGE(N,E,MONTH)

UOO _ U_COMP(N,E,MONTH) + MAANE(MONTH) - 1 5  +DAY)*  DU_COMP(N,E, MONTH)
U10 = U_COMP(N,E+l , MONTH) + MAANE(MONTH)-15+DAY)*DU_COMP(N,E+l, MONTH)
U01 = U_COMP(N+l , E,MONTH) + MAANE(MONTH) - 1 5  +DAY)*  DU_COMP(N+l, E,MONTH)
U l l = U_COMP(N+l , E + l , MONTH) + (MAANE MONTH)-15+DAY)*DU_COMP(N+l, E + l , MONTH)
VOO = V_COMP(N,E,MONTH) + MAANE(MONTH) - 1 5  +DAY)*  DV_COMP(N,E,MONTH)
V I 0 = V_COMP(N,E+l , MONTH) + MAANE(MONTH)-15+DAY)*DV_COMP(N,E+l, MONTH)
V01 = V_COMP(N+l , E,MONTH) + MAANE(MONTH) - 1 5  +DAY)*  DV_COMP(N+l, E,MONTH)
V l l  

END IF
= V_COMP(N+l ,E+l ,MONTH) + (MAANE MONTH)-15+DAY)*DV_COMP(N+l, E + l , MONTH)

DN = 0 
DE = 0

I V a l u e s  f o r  s p a t i a l  i n t e r p o l a t i o n  ( H a n s e n  & A a d l a n d s v i k  1 9 9 6 )

! B i l i n e a r  i n t e r p o l a t i o n  
XFAK = AV ( 9 , 1 )  -  NINT(AV( 9 , 1 ) )  + 0 . 5  

YFAK = A V ( 1 0 , I )  -  NINT(AV( 1 0 , 1 ) )  + 0 . 5
UADV = U00 + XFAK*(U10-U00)  + YF AK * (U 01 -U 00 ) + XFAK*YFAK*(U00-U10-U01+U11) 

VADV = V00 + XFAK*(V10-V00)  + YF AK *( V 0 1- V0 0 ) + XFAK*YFAK*(V00-V10-V01+V11)
! PRINT * , E , N , MONTH, U_COMP(N,E, MONTH)

!C o n v e r t  a d v e c t i v e  d i s t a n c e  t o  km, t h e n  t o  d e g r e e s  
UADV = l e - 3 * U A D V * 8 6 4 0 0 / 1 1 1 . * c o s ( A V ( 1 0 , 1 ) )  ! d i v i d e  b y  l e n g t h s c a l e

VADV = l e - 3 * V A D V * 8 6 4 0 0 / 1 1 1 . ! d i v i d e  b y  l e n g t h s c a l e
! S e g r e g a t e  l a r v a e  a n d  a d u l t s
I F (AV( 1 , 1 ) < 9 0 )  THEN !D r i f t i n g  l a r v a e

! L a r v a l  m o vem en t  d e t e r m i n e d  s o l e l y  b y  a d v e c t i o n  
NYE = AV ( 9 , I ) +UADV 

NYN = AV ( 1 0 , I ) +VADV



ELSE !Will powered juveniles and adults

! I n p u t  v a r i a b l e s  s t a n d a r d i s e d  b y  maximum v a l u e s
INPUT(1)  
INPUT(2)  
INPUT(3)  
INPUT(4)  
INPUT(5)  
INPUT(6)

T A / m a x S S T * l . 
E/ IM AX *1.
N/ JMAX * 1 .
(AV( 3 , 1 ) / AV ( 2 , 1 ; 

TAF/MAXFI 
( T I D - 1 8 3 ) / 1 8 3 .

) /TED
!CONDITION

! k 4 9 0  = 0 . 0 2 2  + 0 . 1 1 9 * T A C * * 1 . 1 2 2
!h  = 4 . 6 / k 4 9 0
! v _ r a n g e  = EXP( - k 4 9 0 * h ) - 1 .
!v _ r a n g e  = MIN( 3 0 . ,  MAX( 1 . , SQRT( 
! INPUT(5)  = v _ r a n g e / 3  0 .

( - 1 0 . / k 4 9 0 ) * v _ r a n g e )  ) )

! INPUT(3)  = TAF/maxFI  
! INPUT(4)  = A V ( 2 , 1 ) / 6 .

S = 1
DO HID = 1 , NUMHID 

SUMVEKT(HID) = 0 
DO IN = 1 , NUMIN 

SUMVEKT(HID) = SUMVEKT(HID)+INPUT( I N ) * S V ( S , I )
S = S + 1 

ENDDO
IF( SUM VE KT( HID ) .L T. - 5 0 )  SUMVEKT(HID) = - 5 0  

SUMVEKT(HID) = ( 1 . / ( 1 . +EXP( - ( SUMVEKT(HID)+SV( S , I ) ) ) ) )  
S = S + 1 

ENDDO

DO OUT = 1 , NUMOUT 
OUTPUT(OUT) = 0 .
DO HID = 1 , NUMHID 

OUTPUT(OUT) = OUTPUT(OUT) + SUMVEKT(HID)*SV( S , I ) 
S = S + 1 

ENDDO 
ENDDO

DN = NINT(ATAN(OUTPUT( 1 ) ) * 0 . 9 4 )  
movem en t

DE = NINT(ATAN(OUTPUT( 2 ) ) * 0 . 9 4 )  
mo vem en t

!TEMPERATURE 
! POSITION
I — » —

!CONDITION 

!VISUAL RANGE

!H i d d e n  n o d e s

! I n p u t  n o d e s

!O u t p u t  n o d e s

!n o r t h - s o u t h  

! e a s t - w e s t



!MATE = NINT((1. /(1.+EXP(-(OUTPUT(3))))))

!C a l c u l a t e  l e n g t h  (cm)
MASS = AV( 2 , 1 )  ! kg
LENGTH = ( m a s s / a ) * * ( 1 / b )  !cm

! C a l c u l a t e  d i s t a n c e  m ov ed  @ mean s p e e d  = 2 B L / s  
DIST = l e - 5 * ( L E N G T H * 2 * 8 6 4 0 0 . )

! C a l c u l a t e  new p o s i t i o n
I F ( (DN = = 1 ) .AND (DE==0) )  THEN

NYN = A V( 1 0 , 1 + D I S T / 1 1 1 .  + VADV
NYE = AV ( 9 , I ) + UADV

ELSEIF ( (DN==1) A N D . ( D E = = 1 ) ) THEN
NYN = AV ( 1 0 , 1 + S I N ( 4 5 . ) * D I S T / 1 1 1 . +  VADV
NYE = AV ( 9 , I ) S I N ( 4 5 . ) * D I S T / l l l * C O S ( A V ( 1 0 , I ) ) + VADV

ELSEIF ( (DN==1) A N D . ( D E = = - 1 ) ) THEN
NYN = AV ( 1 0 , 1 + S I N ( 4 5 . ) * D I S T / 1 1 1 .
NYE = AV ( 9 , 1 ) -  S I N ( 4 5 . ) * D I S T / l l l * C O S ( A V ( 1 0 , I ) )

ELSEIF ( ( DN= = 0) AND. (DE==0) )  THEN
NYN = AV ( 1 0 , 1 + VADV
NYE = AV ( 9 , I )

ELSEIF ( (DN==0) AND. (DE==1) )  THEN
NYN = AV ( 1 0 , 1 + VADV
NYE = A V ( 9 , I ) + D I S T / l l l * C O S ( A V ( 1 0 , 1 ) )

ELSEIF ( (DN==0) A N D . ( D E = = - 1 ) ) THEN
NYN = AV ( 1 0 , 1 + VADV
NYE = A V ( 9 , I ) -  S I N ( 4 5 . ) * D I S T / l l l * C O S (AV( 1 0 , 1 ) )

ELSEIF ( (DN==-1 .AND. (DE==0) )  THEN
NYN = AV ( 1 0 , 1 -  D I S T / 1 1 1 .  + VADV
NYE = AV( 9 , I )

E L S E IF ( (DN==-1 . A N D . ( D E = = 1 ) ) THEN
NYN = AV ( 1 0 , 1 -  S I N ( 4 5 . ) * D I S T / 1 1 1 .
NYE = AV ( 9 , I )+  SIN ( 4 5 . ) * D I S T / l l l * C O S (AV ( 1 0 , I ) ) + VADV

E L S E IF ( (DN==-1 . A N D . ( D E = = - 1 ) ) THEN
NYN = AV ( 1 0 , 1 -  S I N ( 4 5 . ) * D I S T / 1 1 1 .
NYE = AV (9 , I ) -  S I N ( 4 5 . ) * D I S T / l l l * C O S (AV( 1 0 , 1 ) ) + VADV

END IF

END IF  ! S t a g e  l o o p

! PRINT*, 1 , AV ( 9 , I ) , A V ( 1 0 , I )
!Do n o t  a l l o w  m ov em en t  o n t o  l a n d

UADV



I F ( (NYN.GT.5 0 ) .OR. ( NYN .LT. - 3  9 ) ) THEN 
AV ( 1 0 , 1 )  = A V ( 1 0 , I )
AV( 9 , I ) = AV ( 9 , I )

E L S E I F ( (NYE.GT.1 8 0 ) . O R . ( N Y E . L T . 1 ) )  THEN 
A V  ( 1 0 ,  I ) =  A V  ( 1 0 ,  I )

AV ( 9 , I ) = AV ( 9 , I )
E L S E I F ( S S T ( I N T ( N Y N ) , IN T ( N Y E ) , MONTH) = = LAND) THEN 

A V ( 1 0 , 1 )  =  A V ( 1 0 , I )

AV( 9 , 1 )  = AV ( 9 , 1 )
ELSE 

A V ( 1 0 , I ) = NYN 
AV( 9 , 1 )  = NYE

!At boundary of domain

!At  b o u n d a r y  o f  d o m a in

!On l a n d

! N
! E

END IF
! PRINT*, 2 , DE, DN, AV( 9 , I ) , AV( 1 0 , I )

! IF  ( S S T ( i n t ( A V ( 1 0 , 1 ) ) , i n t ( A V ( 9 , 1 ) ) , m o n t h ) = = l a n d )  THEN 
!p r i n t * , i , " i s  on  l a n d  a t : " , i n t ( A V ( 1 0 , I ) ) , i n t ( A V ( 9 , I ) )  
i p a u s e  
! ENDIF

81 CONTINUE

!W r i t e  o u t p u t  d a t a  f o r  i n d i v i d u a l s  a n d  e n v i r o n m e n t  
I F (YEAR==HORIZON) THEN 

WRITE( 1 , * )
WRITE( 2 , * )
I W r i t e  i n d i v i d u a l  c h a r a c t e r i s t i c s  t o  f i l e  
IF ( D A Y = = 1 5 ) THEN 

DO I  = 1 , POP 
WRITE( 4 , ' ( 1 0 ( F l l . 2 , X ) ) ' ) AV ( : , I )

ENDDO 
END IF

DO N = 5 0 , - 3 9 , - 1  
DO E = 1 , 1 8 0  

SUML(E) = 0 .
! SUMZ(E) = 0 .

DO 1 = 1 , POP
I F ( ( IN T( A V ( 9 , 1 ) ) = = E ) . A N D . ( IN T( A V ( 1 0 , 1 ) ) = = N ) ) SUML(E) = S U M L ( E ) + 2  

ENDDO
! IF ( D A Y < 1 5 ) THEN 

! IF(MONTH==l) THEN
! SUMZ(E) = S S T ( N , E , 1 2 )  + (MAANE( 1 2 ) - 1 5 + D A Y ) * D S S T ( N , E , 12)
! ELSEIF(MONTH>l) THEN



! SUMZ(E) = SST(N,E,MONTH-1) + (MAANE(MONTH-1)-15+DAY)*DSST(N,E,MONTH-1)  
! ENDIF 
! ELSE
! SUMZ(E) = SST(N,E,MONTH) + (DAY-15)*DSST(N,E,MONTH)
! ENDIF

IF(SST(N,E,MONTH)==LAND)  SUML(E) = - 1 .
I F ( S U M L ( E ) = = 0 . )  SUML(E) = 1
! IF(SUMZ(E)==LAND) SUMZ(E) = - 1 .
! SUMZ(E) = SUMZ(E)* 0 . 3  

ENDDO
WRITE( 1 , 1 ( 1 8 0 ( F 7 . 1 , X ) ) 1) (SUML(E),E = 1 , 1 8 0 )
!WRITE( 2 ,  1 (18  0 ( F 7 . 1 , X ) )  ')  ( SUMZ(E ) , E = 1 , 1 8 0 )

ENDDO 
END IF

END SUBROUTINE TUNAMOV



SUBROUTINE TUNAREP( POP,YEAR,MONTH,DAY) 

IMPLICIT NONE

i -----------------------------------------------------------------

INCLUDE 
INTEGER 
INTEGER 
INTEGER 
REAL

NEWPOP = 0 
DO IND = 1 ,  POP

I F ( A V ( 0 , I N D ) ==1)  THEN

! IF  ( ( YEAR==10) .AN D.(MO NTH == l ) .AN D.(DA Y= =1 ) ) THEN 
! P R I N T * ," I n  TUNAREP l o o p "
!p r i n t * , "POP:" , p o p  
! e n d i f

!R e p r o d u c e  i f  t h e  t i m e  a n d  s i z e  i s  ok  
PARTNER = 0
l e n g t h  = (AV( 2 , I N D ) / a ) * * ( 1 . / b )

I F ( l e n g t h . G E . S A M )  THEN 
DO L = l , P O P  

PARTNER = I N T ( POP*RAND( 0 ) + 1 )
ENDDO 

ENDIF

! C a l c u l a t e  b a t c h  f e c u n d i t y  
BATCH = 0
I F ( PARTNER. GT. 0 )  THEN

BATCH = IN T( A V ( 2 , IND)*RBF)
I F ( B A T C H > le 6 ) BATCH = l e 6  
AV( 3 , IND) = A V ( 3 , I N D ) * 0 . 9 8

! C a r r y  o u t  c h r o m o s o m a l  v a r i a t i o n  f o r  ne w i n d i v i d u a l s  
I  = NEWPOP+POP+1

! n o .  o f  i n d i v i d u a l s  i n  t h i s  b a t c h  

'S p a w n i n g  p e n a l t y

' c o m t u n . t x t '
POP, YEAR, MONTH, DAY, IND, I , L , M, ILOOP 
PARTNER,NEWPOP,FI(MPOP), BREAK,STRING 
COMP, NYPOP, R 
RAND,BATCH



IF(I.GT.MPOP) GOTO 1

! C r o s s  o v e r  SVsomes  b e t w e e n  p a r t n e r s  
IF(RAND(O).LT.RECOM) THEN

BREAK = INT(RAND( 0 ) *MAXS)+1 U n i t i a l i s e  random b r e a k  p i e c e  a t  SVsomes
IF(RAND( 0 ) < 0 . 5 )  THEN 

DO STRING = 1 , MAXS
IF(STRING.LE.BREAK)  THEN

SV(ST RI NG ,I )  = SV(STRING,IND)
ELSE
S V ( STRING, I ) = S V ( STRING, PARTNER)
ENDIF

ENDDO
ELSE

DO STRING = 1 , MAXS
I F ( STRING. LE . BREAK) THEN

S V ( STRING, I ) = S V ( STRING, PARTNER)
ELSE
S V ( STRING, I ) = S V ( STRING, IND)
ENDIF

ENDDO
ENDIF

ELSE
DO STRING = 1 , MAXS

SV( ST R IN G, I )  = SV(STRING,IND)
ENDDO

ENDIF

! P e r f o r m  random m u t a t i o n s  
DO M = 1 , MAXS

IF(RAND( 0 ) .LE.MUTE) THEN 
IF(RAND( 0 ) < 0 . 5 )  THEN 

S V ( M , I ) = S V (M, I ) +RAND(0)
ELSE

S V ( M , I ) = S V (M, I ) -RAND(0)
ENDIF

ENDIF
ENDDO

! A l l  i n  ne w  p o p u l a t i o n
! I n i t i a l i s e  new i n d i v i d u a l s  w i t h  a t t r i b u t e  v e c t o r s  

AV( 0 , I ) = 1
a r e  a l i v e

AV( 1 , I ) = 1


