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Abstract

Many different formalisations of recursive arithmetic have been 

proposed, and this thesis is concerned mainly with the system proposed by 

R.L. Goodstein and known as the Axiom - Free Equation Calculus.

As with all other formal systems of arithmetic with sufficient content, 

the system is incomplete and recursively undecidable. The interesting 

questions lie in the completeness and decidability, or otherwise, of 

fragments of the system. I attempt to answer some of these questions. It 

happens that some of the problems lead to well known questions in the theory 

of diophantine equations namely, Hilbert’s 10th Problem, The Undecidability 

of Exponential Diophantine Equations, and the Integer Linear Programming 

Problem.

In 1943 Kalmar proposed a set of functions called elementary functions,

and Ilona Bereczki showed effectively that the class of equations F = 0,

where F is any elementary function, is undecidable. The class of functions
z z

given by Kalmar was, variables, 1, + ,., |a - b|, F , II , but it can
y=w y=w

easily be shown that this is the same as those formed by composition from 
z z
F , n . This latter definition is the one we use. y —w y — w

In his paper, A Decidable Fragment of Recursive Arithmetic, Goodstein 

showed the class of equations F = 0 where F is any function formed by 

composition from x + y, x.y and 1 - x is decidable.

So I have attempted to extend Goodstein’s result with the upper 

bound provided by the undecidability of the elementary equations. The 

main results I have obtained are

1. If F is any function formed by composition from x + y ,  x.y, 1 - x ,  
z z

X - 1, yF^, then F = 0 is decidable, and furthermore the provability

in the equation calculus of F = 0 is decidable and that this class of 

equations is complete.



2. If F,G are any functions formed from x + y ,  x.y, 1 - x, x - 1, by 

composition, then the class of equations F = G is decidable.

3. If F,G are any functions formed by composition from x + y ,  x - y then

the class of equations F = G is decidable.

4. If F.G are any functions formed by composition from x + y ,  x - ̂ , x.y,

then the class of equations F = G is decidable if and only if Hilbert’s 

10th Problem is decidable.
z

5. If F,G are any functions formed by composition from x + y , x.y, 

then the class of equations F = G is undecidable.

6. Presburger’s Algorithm can be used to solve the Integer Linear Programming

Problem - the problem was not solved until 1958.
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Chapter 1

§1 Introduction

Many different formalisations of arithmetic have been proposed and this 

thesis is concerned mainly with the development of recursive arithmetic due to 

R.L. Goodstein and known as The Axiom-Free Equation Calculus .

As with all other formal systems of arithmetic with sufficient content, 

the system is incomplete and recursively undecidable. The interesting questions 

lie in the completeness and decidability or otherwise of fragments of the 

system. We attempt to answer some of these questions and in the process 

provide decision procedures for identities between certain number theoretic 

functions and discuss the relationship these problems have to classical 
problems in diophantine equations such as Hilbert’s 10th problem, the 

integer linear programming problem and the undecidability of the class of 
exponential diophantine equations. [2 ]

§2 Results so far obtained

In his paper "A Decidable Fragment of Recursive Arithmetic”, Goodstein 
shows that if F is any function formed by composition from the functions 
X + y, x.y, 1-x, then the equation F = 0 is provable if and only if F = 0

for the values 0 , 1  of its variables, i.e. the fragment of arithmetic containing

just these equations is decidable and complete. (Decidable in this context 
means that one can decide if any equation F = 0 is provable in the Equation 

Calculus).

Kalmar Proposed a class of functions which he called elementary

functions. This class of functions is in fact equivalent to the class

formed from the initial equations x+y, x.y, x-y by composition, bounded 

summation and bounded multiplication •

^ That these classes of functions are equivalent is easily proved 

(see Kleene P 285). [ lOj



Given a general recursive function R, we know that there is no 
decision procedure by which we may decide for which y, (Ex)R(x,y) holds.

In unpublished work, Ilona Bereczki showed that this holds where 
"general recursive" is replaced by "elementary",

I attempt in this thesis to extend Goodstein’s results to larger 

classes of equations, in the knowledge that the class can never include all 

the equations F = 0 where F is elementary,

§3 The Integer Linear Programming Problem

In attempting to prove that the class of equations F = 0, where F is 

formed by composition from x + y  and x - y ,  is decidable, I showed that the 

problem was equivalent to solving the Integer Linear Programming Problem,
I subsequently discovered that it was also equivalent to Presburger’s 
Algorithm, for deciding that fragment of formal arithmetic containing 
addition but not multiplication. The question arose: "Is Presburger’s 
Algorithm any use for solving the General Integer Linear Programming Problem?" 
the special interest being that Presburger’s result was produced in 1929, 
and the Integer Linear Programming Problem was first solved by R, Gomory ] 
in 1958, In fact Presburger’s Algorithm does provide an algorithm for 
solving the programming problem, and I have derived an algorithm, from 

Presburger’s result, specially for programming purposes, and this is 
explained in Appendix B,

§4 Different Formulations of The Axiom Free Equation Calculus

This system of primitive recursive arithmetic is formalised by 
R.L. Goodstein in several different ways in his book Recursive Number Theory, 

The one I shall use (referred to as R) has no axioms other than the recursive 

definition of functions e.g. a + 0 = a, a + Sb = S(a + b).

Its rules of inference are
F(x) = G(x)S1>1 ------------
F(A) = G(A)
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Sbg .. „.P. .
F(A) = F(B)

A = B 
A = C
B = C

where F(x), G(x) are recursive functions, and A,B,C are recursive terms.

Also we take as a rule of inference the primitive recursive uniqueness rule 
U F(Sx) = H(x,F(x)) _

F(x) = H*F(0)

where the iterative function H^t is defined by the primitive recursion 

H°t = t, H^*t = H(x,H*t).

In an alternative formulation, Goodstein attempts to dispense with 
U, which he does at the expense of introducing one new rule of inference 

„ F(0) = 0, F(Sx) = F(x)

F(x) = 0
and 2 axioms
A a + (b - a) = b + (a - b)

and
P Sa - Sb = a - b

I have attempted to provide an alternative formulation in which U is 
not assumed. Also I attempted to eliminate any use of the substitution 
rule Sbg but there are 4 special cases of this rule that I could not avoid 
using.

These results are presented in Appendix A.

§5 Definition of terms and notation

Decidability When an equation, a set of equations or a formal system 

is said to be decidable we shall normally mean that it is decidable whether 

or not it is true in the Standard Model. Sometimes we shall mean that it is 

decidable whether or not it is provable in a particular formal system.
Where the latter meaning is intended it will either be obvious from the
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context or will be said to be decidable in the second sense.
Provability This will usually mean provable in the Equation 

Calculus,

Complete A formal system, a fragment of a formal system or simply a 
class of equations from a formal system, will be said to be complete when 

every equation in that class of equations which is true is also provable 
in that formal system

Equations or Identities? Although the formal system we are concerned 

with is called the Equation Calculus the statements in the system are 
identities rather than equations. We shall abide by the conventions and 

call them equations and use the equation sign =, rather than =. The latter 
sign =, is used particularly in Appendix B to denote equivalence modulo 

some natural number, and occasionally to denote logical equivalence.
Basic Functions In describing a set of functions e.g. "All the functions

obtained by composition from x + y ,  x.y, x - y," it is assumed always, that
the class of functions includes the functions Z(x) =0, Sx = x + 1, and
U.^ (x ...X ) = X . These 3 functions will be referred to as the basic
1 ±, n r -----

functions.

Description of classes of functions If a class of functions is 
obtained from x + y ,  x.y, x - y  by composition, the class of functions will 

be denoted by C(+,.,-) and x + y ,  x.y, x - y  are called the initial 

functions. The class C(+,,,l-,-l,F,n) will refer to the functions obtained 
from the functions x + y ,  x.y, 1 -x, x - 1 by composition and bounded 

addition and bounded multiplication and in this particular case we shall 
abbreviate C( + ,. ,l-,-l,F,n) by C”*.

With regard to proof in the Equation Calculus, because of the 

considerable length of such proofs, I have in most cases proved only one 

equation as an example and said that proofs of the others are similar.



Chapter 2

§1. Introduction

R.L. Goodstein in his paper "A Decidable Fragment of Recursive 

Arithmetic" [j] provided a decision procedure for the provability of 

equations F = 0 where FeC(+, •, 1-), (for notation see p ). He 

shows that F = 0 is provable if and only if F = 0 whenever the variables 

of F take the value 0 or 1. Hence if F = 0 is true (in the Standard 

I4odel), F = 0 is provable, so this fragment of Recursive Arithmetic is 

Conplete as well as decidable^
We knew (see p 2 ) that the class of equations G any

elementaiy f u n c t i o n s i s  undecidable. Since G = H is equivalent to 
(G - H) + (H - G) =0, for all elementary functions G,H, the class of 
equations F = 0  for all elementary functions F̂ <'̂  ^  Ç ~

So in seeking the largest possible class of equations F for which 

F = 0 is decidable we must drop at least one of the initial functions 
from which the elementary functions are obtained by conpositicn. In 
this Chapter we omit the recursive difference function x - y  (thou^ we 

are able to add special cases of it) and provide a decision procedure 

for the equations F = 0 where FëC(+, *, E, tt, 1-, -1) - henceforth 
referred to as C .

We first give an alternative proof of Goodstein’s results to 

illustrate the essential simplicity of the method (§2 ), and then apply 
this method to the larger class of equations F = 0 where FeC’ to give 

a decision procedure for truth (§3) and finally (§4) show that the 

decision procedure for truth is also one for provability in the Equation 

Calculus R, and hence that this fragment of the Equation Calculus is 
complete.
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§2. Alternative Proof of Goodsteins Results

The idea behind this proof is quite simple. For a function 

FeC(+, *5 1-) if we are interested only in whether F = 0 or F  ̂0 for 

particular values of the variables, and not the actual value of F if 

F  ̂0, it matters only whether the values of the variables are 0 or not.

This is illustrated by the following tables where c}> represents 

"non-zero".

X Sx X Z(x) ^i U^(xi.. .x^) + 0 (j) • 0 (j) X 1-x

0 0 0 0 0 0 0 <p 0 0 0 0
X X

<P 4) 0 <p 4> 4> (j) (j) <t> 0 (f) 4> 0

So if F(xi,...x^) eC(+, •, 1-) to decide whether or not F(xi,...x^)

= 0 we consider the value of F for the 2^ different cases given by
= 0, = (t> for i = l....n. If for all these cases F = 0, then F = 0

for all possible values of the variables.
Thus the deciding (for truth) of F = 0 has been reduced to a finite 

number (2^) of cases, each of which is clearly decidable.
We now set down this argument formally to enable us eventually to 

translate it into a decision procedure for provability, and to facilitate

generalisation of the result in §3 and §4.
Define

a j(x )  = 1 -  (1 -  x)

Then ai maps 0  onto 0, and everything else onto 1 

Theorem 2.2.1 If F(xi...x^) eC(+, •, 1-) then

oqF(xq , . .  .x^) — otiF(oijXj, . .  .otj Ĵ̂ )

(i.e. this equation is true, not (as yet) provable)
Proof The following equations can be seen to be true, simply by

considering the values with the variables zero and non-zero

(1)

(2)
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ai (Sx) = aiS(aix) (3)
ai(Z(x)) = aiZ(aix) (4)

a iU^(x 15 • • *x^) — a iU7( a iX i, • • • a iX^) ( 5 )

ai(x + y) = ai(aix + o^y) (6 )
ai(x . y) = ai(aix . aiy) (7)

a i d  - x) = aid - aix) (8 )

So the theorem holds for the initial functions.

Suppose now that

f(xi,...x^) = g(hi(xi.. .x^), ..... h^(xi...x^)) (9)

and the theorem holds for the functions g, h^, i = 1  ... r. 
i.e. aig(yi,...y^) = aig(aiyi,...aiy^) (1 0 )

aih^(xi,...x^) = aih^(aiXi,...aix^) for i = 1  ... r (1 1 )
then

aif(xi5 ...x^) = aig(hi(xi...x^)5 ...h^(xi,...x^)) from (9)
= aig(aihi(xi,...x^),...aih^(xi5 ...x^)) " (1 0 )

= aig(aihi(aiXi* •‘OtiX^).. .aih^(aiXi. . .aiXĵ ) " (1 1 )

= aig(hi(aiXi...aiX^),....h^(aiXi...aiX^)) " (1 0 )
= aif(aiXi,...aiX^) " (9)

So the equation (2) is preserved under composition according to the 

schema (9), and is true for the initial functions, and hence holds for 

all FeC(+, •, 1-).

Theorem 2.2.2 If F(xi.. .x^) eC(+, »,1-) then F(xi...x^) = 0 if and 
only if F(Si,...&^) = 0  for all = 0 , 1  (i = l...n) and hence 

F(xi...x^) = 0  is decidable.

Proof F(xi,...x^) = 0<— > aiF(xi...x^) = 0

aiF(aiXi,...aix^) = 0 from Theorem 2.2.1

F(aiXi,...aiX^) = 0

F(Ci,'.'C^) = 0  for all = 0 ,l(i=l...n)
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F(Si,..'C^) can new be evaluated for each of the 2^ cases given 

by = 0,1 and hence F(xi,...x^) = 0 is decidable

So we can decide the truth of F = 0 for FeC(+, *, 1-); we turn 

new to deciding the provability of F = 0 in the Equation Calculus 

(i.e. system R).

Theorem 2.2.3 If F(xi,...x^) eC(+, *,1-) then F(xi,...x^) = 0 is
provable in R if and only if F(Çi,...Ç^) = 0 is true for = 0,1, and

hence the fragment of R consisting of equations F = 0 for FeC(+, *,1-) 

is decidable.
Proof In this proof we make explicit use of rules of inference of 
R, Sbi, Sb2 , T, Uj (see [iQ) and the introductory equations. In 

addition we shall use the schema
F(0) = G(0)

E 3 . F(Sx) = G(Sx)

F(x) = G(x)

which Goodstein ( [TQ p. 108) shews can be derived in R.
First, equations (3) - (8 ) in Theorem 2.2.1 are all provable in R,

We prove (6 ), the rest are similar (or easier).

Let F(y) = ai(x + y) = 1 - (1 - (x + y))
" G(y) — ai(a%x + a^y) = 1 — (1 — ((1 — (1 — x)) + (1 — (1 — y)))

Then F(Sy) = 1 - (1 - (x + Sy))

= 1 - (1 - S(x + y)) using a + Sb = S(a + b) and Sb2

= 1 - (0 - (x + y)) " Sa - Sb = a - b p.106

= 1 - 0  and Sb2 «

= 1.
G(Sy) = 1 - (1 - ((1 - (1 - X ))+ (1 - (1 - Sy)))

= 1 - (1 - ((1 - (1 - X )) + D )
= 1 - (1 - S(1 - (1 - X )))



= 1 - 0  
= 1

So F(Sy) = G(Sy).

New F(0) = 1 - ( 1 - x )

G(0) = 1 - (1 - (1 - (1 - x)))

Let H(x) = 1 - ( 1 - x )
and K(x) = 1 - (1 - (1 - (1 - x)))

Then H(0) = 0 = K(0) and H(Sx) = 1 = K(Sx)

Hence by Eg, H(x) = K(x) i.e. F(0) = G(0)

So , F(0) = G(0).
And F(Sy) = G(Sy).

Hence by Eg F(y) = G(y). (12)
i.e. ai(x + y) = ai(aix + a%y)

Similarly, using results established in [{q] we can derive the remainder 
of (3) - (8 ). Further if (10) (11) are provable in R, then we can see 
that (9) is also provable, for the proof given in Theorem 2.2.1 can be 
carried out in R, by use of the appropriate substitution schema.

So if F(xi,....x^)£ C (+, •, 1-) then aiF(xi,...x^) = aiF(aiXi,...

aix^) is provable in R.

Substituting = 0, Sx^ in (2), using Sb2 , we get 2^ equations

aiF(^l,...^) - aiF(aiÇ15...a^Ç^)
But is provably equal to 0 or 1, and so if F(xi,,..x^) = 0 for

x^ = 0 ,1 , i = l...n, the 2^ equations

aiF(Si,...^^) = 0

are provable.

Hence the 2^ equations

F ( C i ) ' ' * - 0

are provable.

Hence

F(0 ,C2 ,...^) = 0  and F(Sx^, Ç2 s • • • = 0
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Hence by Uj,

F(xi,C2 ,...&%) = 0

By repeating the procedure we get successively F(xi,X2 ,C3 ,...C^) = 0,

F ( x i , X 2 , X 3 , C 4 , = 0 ..... F(xi,X2 ,...X^) = 0
So if F(xi,...5^) = 0 is true for x^ = 0,1, i = l....n, then 

F(xi... .x^) = 0 is provable in R. The converse is also clearly true. 

Corollary The fragment of R consisting of all equations F = 0 for 

FeC(+, ',1-) is complete.

Proof If F(xi... .x_) = 0 is true for all values of Xi... .x ,  * n * n
then it is certainly true for x^ = 0 , 1  for all i 

and hence by Theorem 2.2.3 is provable.

§3. Decidability of the class of equations F = 0 for FeC*

It now requires only a natural extension of the methods of §2 to 

establish a decision procedure for this much larger class of equations.
We define the concept of the heigjht of a function of C*. (Xp 

denotes the height of F.)
The basic functions S(x), Z(x), if (x%... .x^) are of hei^t 0.

If F, G are of heists Xp, Xg respectively we define the hei^t of

F + G, and F • G to be maxlXp, X^}, and the heights of 1 - F, F - 1,

I F(y), and n F(y) to be Xp, Xp+1, Xp+1, and Xp+1 respectively. 
y<x y<x

Thus the hei^t of any function FeC* is effectively defined and
calculable.

Define a^x by

OpX = i - (i - x)
Then maps 0,1,....i onto themselves and x > i onto i.

Before proving our main result we prove an important preliminary result, 

analogous to Theorem 2.2.1 •



Theorem 2.3.1 If FeC* then

apF(xi,...x^) = a^F(a^^Xi,...a^x^)
for i  ̂ 1  and q = (Xp + i)^

(We require this result only for i = 1 but this stronger result is as 

easy to prove.)
Proof We first list some properties of a. that are easily seen to be

^ <
true by considering the 4 ranges x , y < j ; x j and y ̂  j 5 x < j

and y ^ j ; x , y j .

If i % i > 1, then

otpSx = apS(ojX) (13)

OpZ(x) = OpZ(ajX) (14)

aplf(xi....x^) = aplf(ajX ,... ^x^) (15)
ap(a^x) = a^x = a^(apX) (16)

ttp(x + y) = ap(OjX + a^y) (17)
if i % 1  ttpd - x) = Opd - OjX) (18)
if i ) i + 1 ap(x - 1) = ap(ttjX - 1) (19)

We also need tiie following results

a. I F(a.x) = OL. I F(c=(.x) for yi, ya  ̂i + j (20)
x<yi J x<y2 ^

a. n F(a.x) = a. n F(a.x) " " " (21)
x<yi  ̂ ^ x<y2 ^

To prove these we use the following results

ttp(x + ry) = Op(x + sy) for r , s ^ i (2 2 )

Op(x . y^) = Op(x . y®) " " (23)

(2 2 ) obviously holds for y = 0 , and if y 1  both sides become i

(23) is obvious for x = 0 and for y = 0 or 1; if x % 1 and y % 2, then 

x.y^ and x.y^ exceed i, and hence a^(x.y^) = a^^(x.y^) = i

Now to prove (20) we observe that
a. y F(a.x) = a.( y F(x) + (y - j) F(j)) for r = 1 , 2 (24)
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but new - i  ̂i and hence by (2 2 ) the expressions given by r = 1 , 2

are equal. The proof of (21) is similar, so I shall omit the proof. 

LEMMA. If there exist numbers p^ ) i, r = l....n
such that

ot• F(x 1 ... .X ) — (X• F((Xp 3 • • ïX ) 1 n X Tj rp n (25)

then for any q ) p^ for all r

ttpF(xi....x^) = apF(a^Xi,...a^x^) (26)

Proof Substitute a^x^ for x^ in (25).

I.e. apF(a^Xi,...a^x^) = â F(ajp̂  a^x^,.. .a;|fe a^^)
= a.F(a Xi,...a X ) from (16)^ Pi Pf>
= OpF(xi....x^) " (25)

We now prove Theorem 2.3.1.

The :bcnSi.C functions are of height 0. So if q = (X + i)^ where X = 0,
q = fZ. So for i % 1, q % i % 1. So from (13), (14) and (15), if F
is a basic function. Theorem 2.3.1 holds.

Suppose that Theorem 2.3.1 holds for any 2 functions f, g then it

also holds for F = f + g, f • g, f(x) - 1, 1 - f(x), J f(x)
x<y

and n f(x). 
x<y

The proofs are tediously long but strai^tforward, so I shall prove

the result for f + g to illustrate the method.
Let F = f + g. By assumption

apf(xi... .x^) = apf(0(|  ̂XI,...a x^) (27)

a.g(xi...x ) = a.g(a Xi,...an^ x ) (28)
1  n 1  q^^p ^

where
1 f,i = (Xf + i) 2

and q . = (X + i) 2g
New a^(f(xi... .X^) 4 g(Xj ... .X^) ) — Olp(oipf (Xj ... .X^) t

frcm (17) (29)
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Now = (Xp + i)^ q^^p = (Xg + i)^

and ^f+g i - (max(Xp Xg) + i)^

So i 9f,i qf+g^i Ï Qg,! (30)

Using the Lemma, from (27), (28) and (30)

a • f (x 13 • • • X ) “ ot«f(ot Xi,«»*oc X )
^ ^ %+g,i ‘if+g.i

and a.g(xi,.. .x^) = a.f(a Xi,...a^ x_).
^ 9f+g,i 4f+g,i "

So from (29)

a. (f(xi.. .x^) + g(xi...x. )) = a.(a.f(^ Xi,...a x ) +
1 n n i l  qf+g^i %+g,i

= otp(f(a(^+g^p Xi...) + g(a<j,f+g^i Xj...))

i.e. if F = f + g, since q^^p = ^f+g^i =

t,i SP,:
ct • F (x 1... .X ) — a « F ( ot X 1,... a x ) .1 n 1 q„ n

So if Theorem 2.3.1 holds for f,g, then it holds for F = f + g.

Similarly if the Theorem holds for f,g it holds for f.g, 1 - f 3 f - I 3

y f (y) and n (y). 
y<x y<x

So by induction on the structure of a function FeC, Theorem 2.3.1 

holds'for all FeC*.

Theorem 2.3.2 If FeC* the class of formulae F = 0 is decidable.

Proof By Theorem 2.3.1, if q = (Xp + i)^
aiF(xi,...x^) = aiF(a^Xi,...a^x^) (31)

But F(xi....x^) = 0 aiF(x ....x^) = 0  (32)

aiF(a^Xi,...a^X^) = 0 frcm (31)

F(a^Xi,...a^x^) - 0.
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But since for x % q, a^x = q,

F(xi....x^) = 0  F(^i,...^) = 0  for ail possible

Cp...O, l...q and for i = l....n.

This leaves us to decide a finite number of cases. So F = 0 is 
decidable for FeC *.

So we have reduced the decision problem to a finite problem. The 

number q = ( X p  + i)^ is clearly net necessarily the smallest possible 

number of values of the variables that we need try. For a particular 

function we can find the smallest such number (and this may be different 

for each variable) by applying a, to the function and using (13) - (24) 
in each case using the smallest possible j.

Corollary The function x - y  cannot be obtained by substitution from 

the functions of C *.
Proof If it could, C* would contain all the elementary functions and 
hence be undecidable.

§4. Completeness of Certain Classes of Equations in the Equation Calculus 
Theorem 2.4.1 If FeC’ "then the equation 

F(xi,.. .x^) = 0

is provable in R, if and only if, each instance of the equation holds

when xi....x^ take values in the set 0,1, ... (Xp + 1)%.

Proof All the equations (13)-(26) are provable in R

The proofs are simple but extremely long and I shall omit them. Then

one may prove in R, that if FeC*,

ot • F(x 1 ... .X ) — cx«F(cx Xi,... ot X ) (33)n 1  q 1 q n

where q = (Xp + i)^ by an inductive procedure.

New if Cp = 0,1, .... q - 1, Xp + q, using E^substituting Xp = Çp 

frcm (33) with i = 1, we get (q + 1)^ different equations

a i F ( ,...Ç^) = aiF(a El,...a £^)
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But OqCp is provably equal to some one of 0,1,...q 

So aiF(a^Ei) • • is provably equal to aiF(6 i,.. .6^)
for some value 0 ,1 ...q of 0p, i = l....n.

Suppose new that F(0 i...0^) = 0 for 0p = 0,1,...q, then the 

(q + 1 )^ equations aqFCCi....^^) = 0  are provable 
i.e. " " F(Si....C_) = 0n
So the (q + 1)^ ^ equations

F(0, ̂ 2 5 • • • = 0 , F(1,E2)*'*^^) ” C ........ F(xj + q,E2 **»Eĵ ) ~ 0

are provable.

iBt G(xi,E2 5 -• = F(x + (q - l),52,'''%n)
Then G(Sxi,E2 > • = FCx^ + q,C2 ''''^%) = 0, and G(0 ,E2 s • • =

F(qi - 1 ,C2 )'''^%) = 0

Hence by E^, G(x,E2 j*«‘^)  = 0
i.e. F(xi + q - 1 ,E2 ''»'^^) = 0  

Repeating this procedure q times we obtain 

H(xi, Ç2 5 • • • ~ 0
Similarly we now prove

F(Xi,X2,E3 = 0

and so on to F(xi,X2  x^) = 0

So if F(0 i,0 2 , .. .0ĵ ) = 0 for 0p = 0,1 ... q, i = 1 ... n then 

F(xi....x^) = 0  is provable.

The converse is obtained by substituting particular numbers for x using 

schema Sb|
Corollary The class of equations F = 0 where FeC* is complete.

For if an equation F = 0 holds for all values of its variables

X l....X^, then it holds for Xp = 0,1 ... q where q = (Xp + 1)%, and

hence is provable.

§5. Further Functions in C*
We know that the class of equations F = 0 for F elementary is un-



decidable, the elementary functions being those obtainable by applying

the operations  ̂ , IT , and oanposition, to the functions S, Z, U?,
y<z y<x ^

x + y, x . y  and x - y .  By omitting x - y  frcm our initial functions

but retaining the 2 special cases^ 1  - y, x - 1 , we obtained a decision

procedure (Theorem 2.3.2) for the remaining class of equations F = 0. It

is of course possible that we could have added a large number of special

cases of X - y to our class of functions without altering our decision

procedure . I mention 2 such functions, x + (y - x) and x - (x - y),

which represent the maximum and minimum of x,y respectively. That the

decision procedure is unchanged is seen from the equations

Op(x + (y - x)) = + (a^y - o^x)) for all ] ) i

and

«p(x - (x-y)) = Op(a.x - (a.x - a.y)) for all j  ̂i

Apart from adding special cases of x - y to the initial functions 
it is worth noting that certain other special cases are already in C’

e.g. f 1 N = (...((f - 1) - 1)....-1) i.e. performing N successive s
tractions

SN - g = (N - g) + (1 - (g - N)) (35)

(N L x) - y = N - (x+y)
X - (N - y) = X . (1 - (N - y)) + ((x+y) - N)(l - (1 - (N - y)))

These last 2 cases suggest that as long as one side of x - y is 

bounded, the class of equations F = 0 will be decidable.
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Furthermore the equations (3if) and (3$) give rise to the following theorem. 

Theorem 2.5.1

If FeC^ the class of equations F = N where N is a constant is

(i) decidable for truth

(ii) is provable in R, if and only if each instance of the equation hold
2when x^....x^ take values in the set 0,l,...(Xp^^+ 1)

(iii) is complete

Proof Replace F by (F - N) + (N - F) in Theorems 2.3.2, 2,4,1 and the 

corollary to Theorem 2.4,1, The height of (F - N) + (N - F ) = 

max {height of F - N, height of N - F} = max {X^^^ X̂ .} = X^^^
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Chapter 3

§1 Introduction

When a class C of functions is formed by composition from a set of

initial functions which includes x + y and x - y, any identity G = H for
G,H e C can be put in the form F = 0 by virtue of the equivalence

G = H ++ (G - H) + (H - G) = 0
So if the initial functions include x + y and x - y, we need consider only

equations of the form F = 0, If x - y is not one of the initial functions

(as in C^) the class of equations G = H is a larger class than the class

F = 0, So we consider equations F = G and see if the results of chapter 2
extend to this larger class.

The counterpart to Theorem 2.3.2, namely "If FjGeC"*, the class of

equations F = G is decidable" is, as far as I know, an open question.
However, and this is the main result in this chapter, "If
F,GEC(+, ., 1-, -1) then the class of equations F = G decidable" i.e.

we have had to omit bounded summation Ï. and bounded multiplication II
y<z y<z

from the initial functions considered in Theorem 2.3.2.

§ 2 Decidability for truth
Theorem 3.2.1 The class of equations F = G where F,G.£C(+,., 1-, -1 ) is 

decidable.

Proof The proof is in 2 parts

(i) To prove that F = G is equivalent to a finite conjunction of 
sentences of the form

h = 0 P = Q (1)

where heC(+, ., 1-, -1) and P,Q are polynomials with positive co

efficients.
(ii) To show that sentences in the form (1) are decidable.
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Proof of (1)

Let the predicate H stand for the equation F = G. We now successively 

eliminate^ occurrences of 1 - f, f-^1 from H, to turn H into a predicate 

representing the identity of 2 polynomials.

This is done by an inductive procedure starting with occurrences of 

1  - f and f - 1  where the f itself does not contain any occurrence of 

functions involving First note that F = G is equivalent to 
0  = 0 F =, G or rather

0 = 0 H

Now consider the sentence

= V z  = = V ' W  = ° A —  Al-fp = 0 + H' (")
Suppose H" contains a function 1 — f where f itself is free of the full

recursive difference - 
Then (2) is equivalent to

(3)= OAfz= °A —  A^k = °Al-fk+l = °A —  A^-^r = V  = ° ^ >

A  = °a ^2’ °A ••• A^k = °Al-fk+l = °A Al-^r = ° " H'(0) )
and we have eliminated the occurrence of 1 - f in H", Similarly if H'*
contains a function f - 1  where f itself is free of -, then (2 ) is equi
valent to

(^1 = °a ^2 = °A... A^k = V - ^ k + 1  = °A = V  = ° " H'(0) >
A v  = °A^2 = °A • • • A^k = V - ^ k + 1  = 0 ^ - - Al-fp = O^l-f = 0 - H'(f-l) )

Since ifl^.-f = 0, f - 1  = f - 1 using the equivalence

â  ̂= 0 ^,,,^ap = 0  ++ a^ + •••• + a^ = 0 , we see that eliminating an
• •occurrence of 1  - f or f - 1  from H'* leads to 

h^ = 0 ^ (1) and h^ = 0 ->■ (0) from (3) )

or ( 5)

h^ = 0 ^ (0) and hg = 0 H"(f - 1) from (4) )

^ In connection with occurrences of f - 1, we change f - 1 to f - 1 rather 

than eliminating it.
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respectively, where e C(+,,,1-,-1).

By this induction the equation F = G, represented by the predicate H, is

equivalent to a finite conjunction of sentences of the form
Ah = 0 -» H

or
h = 0 -► P* = Q* where P*,Q* are polynomials and hEC(+,.,l-,-l)^
So bringing the terms of P*,Q* to give P,Q(polynomials with positive co

efficients), F = G, for F,GeC(+,,,l-,-l) is equivalent to a finite conjunc
tion of sentences of the form

h = 0 P = Q (6 )

where heC(+,•,l-,-l) and P,Q are polynomials with positive coefficients.

Proof of (ii)

C(+,.,l-,-l) c C(+,.,l-,-l,Z»n) so by Theorem 2,3,1 if heC(+,,,l-,-l)
2

^1 ^ ( * 1  ••• ^n^ “ °l^(^q*l where q = (X^ + 1 ) , being the
height of h as defined in chapter 2 ,
Furthermore, since h(x^ ,,, x^) = 0  -w- a^h(x^ ,,, x^) = 0

^  a.h(a X, ,,, a^x ) = 0 1  q 1 q n
h(a Xt ,,, a x  ) = 0  q 1 q n

Hence (6 ) is equivalent to
h(a X ,,,, a X ) = 0 P(Xt ,,, x  ) = Q(x_ ,,, x ) (7)q 1 q n l n l n

Since a^x^ ̂  q for all i, we have reduced the problem of deciding (6 ) in so 

far as we need consider the value of h for only a finite number (q) of values 
of each of its variables.

^ P*,Q* may have negative coefficients due to the f - 1 that arises in 

eliminating f - 1, However, these negative coefficients can be removed by 

transferring terms with negative coefficients to the other side. For the same 

reason h may contain an expression f - 1 , but this may be changed to f - 1  

since h = 0 will already contain the condition that 1  - f = 0 and f - 1 = f - 1 ,



If X. ^ q, a X. = X. and if x. a then a^x. = q. i ^’ q i  1 q 1

Let (r^ ••• r^), < q be such that h(r^ ••• r^) = 0,

If < q, substitute x^ = in P = Q
and if = q, substitute x^ + q for x^ in P = Q, and call the new poly

nomials P^ and Q^. The truth or falsity of F = G is then equivalent to the 

truth or falsity of P^ - for all the different polynomials P^Q^ that

arise due to the different sets of values of r, •.• r that satisfyI n
h(r^ ... r^) = 0 and the different sentences h = 0->P = Qin  the finite 

conjunction of such sentences as indicated in (4).

So the problem is reduced to deciding whether 2 polynomials P^^Q^ 

are identically equal. But 2 polynomials are equal for all values of their 

variables if and only if they are the same polynomial, and hence P^ = 

is decidable.
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Chapter 4

§1. Introduction : -

As we pointed out in Chapter I the class of equations between

elementary functions is undecidable (see p^L ). Our aim in Chapters 2
and 3 was to add to the class of equations we could decide, starting

from the class of equations between functions formed by composition frcm

the initial functions x + y, x . y, and 1 - x (i.e. Goodsteins result).
In Chapter 2 we concentrated on equations F = 0 and obtained a decision

procedure for the class of such equations where F was any function which

could be formed from the initial functions x + y, x . y, 1  - x, x - 1 ,

by use of bounded summation (  ̂f(x)), bounded multiplication ( IT f(x))
x<y x<y

and conposition, i.e. all the elementary functions which do not contain 
the full recursive difference -, althou^ certain special cases of it can 
be included.

In Chapter 3 we did the same for equations F = G but here again the 
use of the full recursive difference could not be included, and further
more our equations did not contain the bounded suramtion and bounded 
multiplication (E,n). This result is closely related to that in Chapter 

2 since F = G is equivalent to F - G = 0 and G - F = 0. So we had effect

ively sacrificed the bounded summation and multiplication for the sake of 
one use of the full recursive difference.

Both in Chapters 2 and 3 the recursive difference is the obstacle to 

further extensions. There clearly has to be some such function since we 

know that the class of equations F = G for F,G elementary is undecidable. 

An obvious alternative line to follow is to start with the recursive 

difference and to see what initial functions we could add to the recursive 

difference and retain decidability. In this Chapter we show that addition 

can be added, i.e. the class of equations F = G where F,GeC(+-) is 

decidable, but tliat including addition and multiplication leads to a
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decision problem equivalent to Hilbert * s 10th Problem,

Having obtained a decision procedure for the class of equations 
F = G where F,GeC(+,-) by a somewhat oonplex procedure (§2), eventually 
involving integer linear prograimdng, see Appendix B, it was pointed out 

to me (and here I must thank Craig McKay, University of East Anglia) that 

the result I had obtained was a direct consequence of Presburger *s algor

ithm for deciding that fragment of formal arithmetic containing addition 

but not multiplication [Kf] , and this is explained in §3.

The question naturally arose whether Presburger^s algorithm (devised 

in 1929) is any use in solving the integer linear programming problem 

(first solved in 1958 by R.E. Gomory [3] and also by A.H. Land and

A.G. Doig [IZ]). The answer is yes. The proof of this and an algorithm 
for solving the programming problem are in Appendix B.

§2. A Decision Procedure for the Class of Equations F = G where F,GeC(+-)
Theorem4.2,1. The decision problem for equations F = G, where F,GeC(+-) is 
equivalent to the decision problem for the consistency of sets of linear 
inequalities for non-negative integer values of the variables.
Proof If G,HeC(+-), G = H if and only if G - H = 0 and H - G = 0.
Thus our problem is equivalent to deciding equations of the form F = 0,

FeC(+,-). For any such equation F = 0, we eliminate - from F , as in Q Q  ,

by successive replacement of F(g - h) = 0 by

(g  ̂h ̂  F(g - h) = 0) y (g < h ^ F(0) = 0)

Thus we obtain finally a formula of the form

((s i 3 i  A F(gi - h i,  g2 -  h2, . . .  1, gj, -  h^) = 0)

v((gi i  hi)^ . . "A^gr < V - ' F(gi - ■ V l >

v((gj < h i)^ . . "A^gr < V a F(0,0, . . . .0 )  = 0)

(I)
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Writing this as

(Il ^  F, = 0) ^ (l2  ̂  F, = 0) ^ ...... ^ < V  A V  =

then F = 0 if and only if, for all s = 1,2....2^, F^ = 0 for all the 

non-negative integer values of the variables that satisfy the preceding 

set of inequalities I^.i

Consider a particular disjunct ^ F^ = 0. Replace g  ̂h by 

g - h  ̂0  and g < h b y h - g - 1 ^ 0 , since we are interested only in 

integer values of the variables. We can now put each inequality in the 

form L ^ b where L is a homogeneous linear form and b an. 

integer. F^ = 0  can be put in the form = C^ where is a homogeneous
linear form and C^ a non-negative integer. So the disjunction becomes

 ̂W ....... A V   ̂ A  (Lt = c p  (3)

If for any t = 1 ... 2^

or (4-)

V t  » W  ) V )  A(^t < V

are oonsistent, for non-negative integer values, then F  ̂0; 

if all these sets of inequalities are inconsistent (t = 1  ... 2 ^) 
then F = 0.

Thus if we can decide the consistency of sets of linear inequalities, 

for non-negative integer values of the variables, we can decide the 

equation F = 0.

Conversely, given any set of linear inequalities (strict or other

wise) we may put them in the form

gl ) hi , g2 % h2 ,.........^
as above. Each term may be transferred to its positive side and so we

1. Any set of values for the variables in F satisfies one and only 

of the sets of conditions I^,l2 ,....1 ^^.



may assume that , h^ are sums of positive terms. New consider the 

function F where

F = 1 - [(hi - gl) + (h2 - g2 > + ---+ (h^ - g^T\

This is a function in C(+,-) such that if F = 0

then g. % h., i = 1 .... r, are not consistent and if F  ̂0i’
then g^  ̂h^, i = 1  .... r are consistent.

So if we can decide F = 0 for any FeC(+,-) then we can decide the

consistency, for integer values of the variables, of any set of linear

inequalities.
Corollary. The class of equations G = H where G,HeC(+,-) is decidable. 

Proof. In (3) convert the inequalities to equations by the introduction 

of slack variables ̂

I.e. = ^2t ’  4mt " %mt " ^mt

where ^0. We new optimise the linear form subject to the above

constraints. In [3] and [^] , R.E. Gomory gives a finite algorithm for 
solving such integer linear programming problems. In particular Gomory’s 
method indicates those cases in which the constraints are inconsistent 

and hence there is no solution^. Once we have optimised subject 

to the constraints in ( G ) for every t = 1 ,2 , ...,2^, we then know 

whether the set of inequalities in (3 ) are consistent or not and hence 

whether F = 0 or not.

1. The slack variable for  ̂b^^ is not only different from that for 

^2 t  ̂^It is also different for different values for t.

2. Gomory *s method uses the simplex and dual simplex algorithms see [3] 

and [^] and such theoretical problems that can occur in special 

cases (e.g. degeneracy) have all been resolved (see [^] ).



§3. A Decision Procedure using Presburgers Algorithm
We established in the proof of Theorem ^.2- (. that deciding whether 

or not an equation F = G, FjGeCC+j-), holds is equivalent to deciding 

whether a statement in the form of ( ( ) holds. We new convert all the 

inequalities in ( I ) into equations using slack variables, , i = 1 ... r, 
j = 1,2, ... 2^.

Suppose that the variables contained in (I) are Xj,...x^ consider the 

statement
(x 1 ) (xo ) • • • • (x ) (Fz 1 ) (Ezo ) « • • • (Ez /.j]o)R(x 1 • • • X , z • • • ■ z or ̂ ̂  ̂ n  ̂  ̂ r,z n r,z^

where R is such that this expresses the statement that for all values of 

the variables x%,.. .x^, the statement (I) in §2 is true. This is a state

ment in the formal system D in Hilbert and Bemays Vol. 1, and we simply 
apply Presburger^s algorithm to it to decide its truth or falsity i.e. 
whether the original equation F = 0 is true or not.

§4. The Class of Equations F = G where F,GeC(+,-,*)
We new consider what happens when we add multiplication to tlie 

initial functions i.e. is the class of equations F = G, where F,GeC(+,-,0 

decidable.

TkeoretÂ  4"' V-1 Zhe decision problem for the class of equations F = G where
F,GeC(+ - •) is equivalent to deciding the consistency of sets of poly

nomial inequalities for non-negative integer values of tlie variables.

Proof Similar to that in Theorem 1^.2.1.

Corollary
The existence of a decision procedure for the above-mentioned class 

of equations would imply that Hilbert's 10th problem were soluble.

Proof Suppose F is any polynomial. Consider the inequalities F % 0,

F 3 0. From T h e o r e m i f  there is a decision procedure for the given 

class of equations, we can decide the consistency, for integer values of
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the variables of any set of inequalities

i.e. we can decide if F % 0 and F $ 0 are consistent

i.e. " " " " F = 0 for any non-negative integer values of the

variables.
i.e. Hilbert’s 10th problem is soluble.

In fact of course there is no existing solution to Hilbert’s 10th 

problem and the results of Davis, Putnam and Robinson [z] suggest that 

the problem is insoluble, and hence that class of equations F = G where 
F,GeC(+ - •) is undecidable.
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Chapter 5

§1 Introduction
In previous chapters the results are concerned with classes of equations 

in Recursive Arithmetic and in some cases, apart from considering whether the 
class of equations is decidable for truth, we have investigated to find if 
these equations which are true are provable, in the particular formalisation 
of Recursive Arithmetic, the Equation Calculus, and hence shown that certain 
fragments of the Equation Calculus are complete. In these chapters we have 
referred to equations F = G, when in fact our results are about identities, i.e.

(x,) ... (x )(F(x_ ... X ) = G(x, ... X ))
I n 1 n I n

In this chapter our concern is number theoretic equations for their own 
sake and without reference to provability in the Equation Calculus or any 
other formal system. In effect we shall consider the decidability of classes 
of equations

(Q X ) ... (Q X )(F(x ...X ) = G(x ...X ))
I I  n n  I n  i n

where Q^x^ is (Ex^) or (x_), for F,G in several different classes of functions,
and in particular Q^x^ being Ex^ for all i.^ These results will be con
sidered in relation to well-known number theory problems and results like 
Hilbert’s 10th Problem and the undecidability of exponential diophantine 
equations (the result due to Davis, Putnam and Robinson) [-Z]

§2 (Q\x.)...(Q X )(F(x ...X ) = G(x,...x ))______1 1______n n_____1____n______ l n

Which, if any, of our "identity" results can be extended to equations
with any quantifier prefix,^

^ One is tempted to think that if the class (x^)...(x^)(F = G) is decidable 

then since from (x)A(x) we deduce (Ex)A(x), ••• (Q^x^) is decidable.

However if a particular case (x^)...(x^)(F. = G.) is decidable and is false, 

one knows no more about the rest of (Q^x^).... (Q^x^) .
J
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Theorem 5,2.1 The class of equations

(Q..X, )...(Q X )(F(x, ...X ) = 0) (1)1 J. n n J. n
where FeC** and Q^x^ is (Ex^) or (x̂ )̂  is decidable 
Proof

(QlXi)...(QnXn) [(F(x^...x^) = 0)f->(a^F(x^.,.x^) = 0) ] (2)
2and since FeC"*, if q =(X^ + i)

a.F(x-...x ) = a.F(a x̂  ...a x ) (3)
1 1  n i q l ,  q n

Hence from (2)

(QnX..)... (Q_x ) [(F(x ...X ) = 0) ++ (a.F(x ...X ) = 0)1 (4)
1 1  n n * “ i n  i i n  ”*

and from (3)

(QnX )... (Qi X ) [(F(x ...x^) = 0) ++ (a.F(a x ...a x ) = 0)1 (5)
1 1  n n ^ 1 n i q l ,  q n

Applying (2) to (5)

(Q,x )... (Q^x ) [(F(x ...X ) = 0 ^  F(a x̂  ...a x_) = o] (6 )
1 1  n n ^ i n  qi, q n - *

But since o^x^ ^ q, hence

(Q.x ) (Qx )(F(x ....X ) = 0) (Q X )*&.(Q-x )F(C ...Ç ) = 0 (7)
1 1  n 1 n 1 1  n n i , n  /

where = 0 ^..jq for all i
Hence deciding the right hand side is a finite procedure consisting of at 
most (q + 1 )̂  substitutions for
i.e. the right hand side of (7) is decidable, and hence

(Q X )....(Q X )(F(x ...X ) = 0)
1 1  n n 1 n

where FeC**, and for all i = l...n is a quantifier, either existential or 
universal, is also decidable.

Theorem 5.2.2 The class of formulae
(Q X )....(Q X )(F(x-....X ) = G(x ...X )) (8 )

1 1  n n  1 n i n
for any F,GeC(+,.) is undecidable.

Proof Consider the set of wffs in Peano’s Arithmetic (System S as described

In Mendelson P103). Every wff in S is equivalent to a formula in the form

of (8 ). For, given any wff in S, put it in prenex normal form. The terms
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are equations between polynomials with positive coefficients, though the terms 

may have negation signs on them. These are eliminated by replacing an 

expression F f G by the equivalent expression (Ex)(Ffl+x = ̂  )^(Ey)(|^l+y = p) 

where x,y do not appear elsewhere in the formula. (Ex) and (Ey) may then be 

taken into the quantifiers at the beginning of the formula, giving a formula 

in the form where A is a disjunctive normal form without
negation signs.

Each disjunct may now be converted to one equation as follows

[f-l = Sii------A fir = Sir ] Z [(f-i - + ....... +(fir ' Sip)^ ]  = °

£ [ Z(f2. + g2.) = 2 E ] (9)
j=l..r j=l..r

So each disjunct can be replaced by one equation between polynomials, f\=g^

say. Then A is equivalent to

( ^ 1  = s N v  v(r = 4
and

[ ( ^ 1  = gi>v  ̂ = D q  ■ ' ^2^......
£ (F = G) (10)

where F,G are polynomials, arranged so that all their coefficients are posi
tive.

So to every formula in Peano’s Arithmetic there corresponds a formula in 

the form of (8 ). So if the class of formulae in the form of (8 ) were 
decidable then Peano’s Arithmetic would also be decidable. Since it is not, 

then the class of formulae of form (8 ) is undecidable.

Theorem 5.2.3 The class of formulae
(Q X )...(Q X )(F(x ...X ) = G(x ...X )) (11)

1 1  n n  i n  i n
where F,GeC(+,-) is decidable.

Proof Any occurrence of the function - in F or G or both is eliminated by 

use of the following type of equivalence
(Q^x^)...(Q^x^)(F(x-y) = G) ++ (Q^x^)...(Q^x^)(Ez)((y+z=x^F(z) = G ̂ F(O) = G)

(12)
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where z is different from x ....x .
1 n

We can now prove by induction on the structure of F and G using (12)

that
(QlXp...(Q^Xn)(F = G) ^  ^

where N is a disjunctive normal form of equations A = B where A,B are functions

obtained in applying (IZ) to F,G respectively and (Q ^^x .) to (Q  ̂x  ̂.)n+ 1  n+ 1  n+m n+m
arise in the elimination of the recursive difference using L, The equations 

A = B which form the terms or atomic formulae of M are (or may be put in the 

form of) equations between linear forms, with all the coefficients positive.

So M can be thought of as a statement in Hilbert and Bernay’s system of 

formal arithmetic, system D [ S ]  and hence is decidable by Presburger’s 

algorithm [/(fl* Hence the original set of equations (11) is decidable.
So if one considers the class of equations F = G, prefixed by any 

sequence of quantifiers, knowing that if F,G are elementary that the class is 
undecidable, we try restricting the class of functions. However, even when 
the functions are restricted to those built by composition from addition and 
multiplication, the class of equations (Q^x^)...(Q^x^)(F = G) is undecidable 
(Theorem 5.2,2). A different result is obtained if multiplication is re

placed by recursive difference (Theorem 5.2.3)
If equations F = 0 are considered, the decidability of identities 

F = 0 for FeC'* is shown in Theorem 2.4.1 and holds also when any sequence of 
quantifiers precedes F = 0 (Theorem 5.2.1)

§3 Existence Results
First we define an exponential diophantine function to be any function 

built by composition from the addition, multiplication and exponential 

functions. (This class of functions is labelled C(+,., exp). It was shown 

in [jZ] that the class of formulae (Ex^)..,Ex^)(F(x^...x^) = G(x^...x^)) 

where F,GeC( + ,., exp), is undecidable. Since x^ = II(x)
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C( + ,., exp)£ C( + ,. ,11)
Theorem 5.3.1 The class of formulae (Ex^ .•• Ex^)(F(x^...x^) = G(x^.^. ^
where F,G e C( + ,.,II) is undecidable, and hence the larger class

(Q.x.)....(Q X )(F(x_...x ) = G(x-...x )) where F,G are elementary, is 
1 1  n n  i n  i n

undecidable. Hence we have an alternative proof of the result given in

chapter M, that the class of formulae
F(x^...X ) = 0  

1 n
where F is any elementary function, is undecidable.^

The question now is how far we have to reduce the class of equations 

until we get a decidability result. We first prove an interesting preliminary 

theorem.
Theorem 5.3.2 If C(+^.) and then the class of formulae
(Ex )...(Ex )(F(Xt...x ) = G(x_...x )) for F,G e C, is decidable if and only I n l n l n  l
if this class of equations is decidable for F,G e
(i.e. if a class of functions contains + and ., the presence of - makes no 

difference to the decidability of equations with only the existential quanti
fier in the prefix).
Proof Any occurrence of - in an equation may be eliminated by use of the 

following type of equivalence
(EXi)...(Ex^)(F(fig) = G) ^  (EXi)...(Ex^)(Ex^+i)((g+x^+i=f)^F(x^+i=G) ^

(F(0) = G)) (14)

where x ., is distinct from x. i = l....n. n+ 1  1 ,
By repeated application of such equivalences the original equation can

be reduced to the form

(Ex_)...(Ex ),..(Ex )M(x ...X ...X ) (15)
1 n n+m 1 n n+m

where M(x,...x ...x ) is a disjunctive normal form of equations between
1  n n+m

functions belonging to C^.

^ Since the elementary functions include -, the class of equations F = G 

is the same as the class F = 0.
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i.e. M(x^...x^^J= (fij = Sij) ^  .1 ^ ■ Slj)' = °)
s r

i->- ( n z (f.. - g..) ) = 0  
i=l i=l ]

<-> F' = G' '
where F'*,G‘' do not contain the recursive difference -, and hence 
F",G"e C^.

If F,G e then a fortiori they belong to Cg^.

Theorem 5.3.3 If 3 C(+ .) and Cg = (-} then the class of formulae

(Q X )...(Q X )(F(x,...X ) = G(x ...X )) for F,G e C_ is decidable if and 
1 1  n n i n  i n  l

only if the formulae (Q.x.)...(Q x )(F(x....x ) = G(x_...x )) forl l n n l n  I n
F,G e is decidable.
Proof Almost identical to that of 5.3.2, replace (Ex_) by (Q^x^) for all 

i = l...n.
Corollary to Theorem 5.3.2 If F,G e C(+,.,-) the class of equations

(Ex )...(Ex )(F(x-...x ) = G(x_...x )) (16)
1  n I n  I n

is decidable if and only if the class
(Ex )...(Ex )(F(x ...X ) = G(x^...x ) (17)

1 n i n  i n
is decidable for F,G e C(+ .)

The decidability of the latter class of equations is simply Hilbert’s 
1 0 th problem, which remains unsolved.

^ It might be thought that since (x^...x^)(F = G) for F,G e C(+ .) is a 
decidable set of equations then (x^...x^)(F = G) for F,G e C(+,.,-) must be

decidable. This is not the case as we know from Theorem 4.^ and the

explanation is that although decidability of (Ex^)...(Ex^) F = G for 

F,G E C(+ .) led to decidability for F,G e C(+,.,-) that is because only

existential quantifiers arise in the proof.
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appendix A

THE SUBSTITUTION SCHEMA IN RECURSIVE ARITHMETIC

In his paper Logic Free Formalisations of Recursive Arithmetic 

[5”] and subsequently in his book, Recursive Nunber Theory [6 ]
R.L. Goodstein presents a formalisation of primitive recursive 

arithmetic in which the only axioms are e^glicit and recursive 
function definitions, and the rules of inference are the schemata

F(x) = G(x)
F (A) = G(A)

A = B 
F(A) = F(B)

(Sbi)

(Sbo)

(T)

where F(x), G(x) are recursive functions and A,B,C are recursive terms, 

and the primitive recursive uniqueness rule

F (Sx) = H(x,F(x)) 
F(x) = HXF(O) (U)

where the iterative function H^t is defined by the primitive recursion
Ç

H°t = t, H *t = H(x,H*t)% in U, F may contain additional parameters.
In the same paper it is shewn that the schema U may be replaced by

F(0) = 0 F(Sx) = F(x)
F(x) = 0

if we take as axioms

a + (b - a) = b + (a - b) (A)

and, in place of the introductory equations for the predecessor function.
Sa - Sb = a - b (P)

This system is referred to as Ri.
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The purpose of this paper is to present another formalisation, R*, 

which also weakens U and yet avoids taking A as an axicm.

The rules of inference of R* are Sb^, Sb2 , T and

F(Sx) = F(x) \
Hx5 = F(o) ^

F(0) = G(0) (E3 )t

F(Sx) = G(Sx)
F(x) = G(x)

In place of the recursive definitions of addition we have the axions 

a + 0  = a (Aj) a + (b + c) = (a + b) + c (A2 )

and for subtraction, we have the recursive definitions of predecessor and 
difference
0 — 1 - 0  (Sj)j Sa — 1 = a a — 0 - a (Sg)% a — Sb — ( a — b) — 1

(S4 );

and the axiom
(a**b) — 1  = (a — 1 ) — b (S5 )

We have also the recursive definition of multiplication

a • 0 = 0 (Ml) a • Sb = a • b + a (M2 )
Exactly as in [ĵ ?] we may prove the following results

m <«
and Sa - Sb = a - b, a - a = 0, 0 - a = 0, (a + b ) - b  = a, (a + n) -

(b + n) = a - b, n - (b + n) = 0 .

We now derive the schema,

F(Sx) = SF(x) \
F(x) = F(0) + X

(I am indebted to R.L. Goodstein for the following proof). Vérité 

G(x) = F(0) + X, then G(Sx) = SG(x) and G(0) = F(0). Using these two
results and F(Sx) = SF(x) we deduce F(x) = G(x) for if L(x) = F(x - 1) +

tRetaining the notation of •
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{1 - (1 - x)}, then L(0) = F(0) and L(Sx) = SF(x) = F(Sx) so that, by 
E j L(x) = F(x).

Therefore

F(x) = F(x - 1) + {1 - (1 - x)}

Let <f)(n,x) be defined by

(|)(0, x) = 0 (|)(Sn,x) = {1 - (1 - (x - n))} + (̂ >(n,x)
then

F(x - n) + 4)(n,x) = {F(x - Sn) + [l - (1 - (x - n))]} + <f)(n,x)
= F(x - Sn) + (J)(Sn,x)

Using Ej

F(x - n) + (f)(n,x) = F(x - 0) + (()(0,x) = F(x)

Whence taking n = x
F(0) + (f)(x,x) = F(x)

Similarly

Hence
G(0) + (})(x,x) = G(x)

F(x) = G(x)

F(x) = F(0) + X.

We now use U 2 to prove

0  + a = a.
Write F(a) = a, then F(Sa) = SF(a). Hence using U2 and K, 0 + a = a. 

Similarly using U2 we may prove a + Sb = Sa + b, a + b = b + a, (a + b) - 

a = b and exactly as in [G]

a + (b - a) = b + (a - b).
Now from Ej, E follows immediately and hence we have postulated or 

derived all the axioms and rules of inference of system R%, given in [6 ]. 

Hence the sufficiency of R* for the construction of primitive recursive 
arithmetic follows from the sufficiency of R%, which is proved in [6].

In fact we can reduce the axiom system R* by postulating only certain
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special cases of Sb^. The special cases are

( ^ 2 2 ) (Sb2 3)

A = B A X
F(A) = F(B) I 2 ;̂

where in Sb2 i+ A = B is restricted to one of the initial equations A%,

A2 , Si, S2 , S 3 , Stt, S5 , Ml, M2 , or is any recursive or explicit 

function definition. For F(0 - Sx)) = F((0 - x) - 1) = F((0 - 1) - x) =

F(0 - x) using Sb2 i+ for the equations a - Sb = (a - b) - 1, (a - b) - 1

= (a - 1) - b, 0 - 1 = 0, and Sb, to substitute 0 for x and x for b.
Now writing G(x) = F(0 - x), we have proved G(Sx) = G(x) and hence from

Ui, G(x) = G(0)
therefore
F(0 - x) = F(0) O'i

Similarly F(Sx - Sx) = F((Sx- x) - 1) = F((Sx - 1) - x) = F(x - x) and
hence by Ui
F(x - x) = F(0). 0.2

The proofs of the results in the first part of this paper up to and

including the proof of a + (b - a) = b + (a - b) use only the above
special cases of Sb2 and 0 . 1  and 0 .2 .

Using a + b = b + a and Sb2 1 we have

A+x = B+x (Sb2 s)

Following the proof, as given in [G], of the sufficiency of Ri 

(and therefore of R*, since in R* we have derived or postulated all the

axioms and rules of Rq), we may derive the schema
A — B = 0, B — A - 0 /A\

A = B

The schem

A = B 
Ax = Bx

is new proved as follows

(Sb2 e)
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Using Sb2 it, A.Sx - B.Sx = A.Sx - B.x + B = A.x + A - B.x + B. As

suming A = B, from Sb2 i, z + A = z + B, and hence frcm Sbi, B.x + A =

B.x + B. Therefore using Sb2 3 , z - (B.x + B) = z - (B.x + A) and hence 

from Sbi (A.x + A) - (B.x + B) = (A.x + A) - (B.x + A); but from a 

previous result (A.x + A) - (B.x + A) = A.x - B.x 

Hence

A.Sx - B.Sx = A.x - B.x

Using El,

Similarly

Hence, by A.

A.x - B.x = 0.

B.x - A.x = 0.

A.x = B.x.

Exactly as in [G] , we may new prove Sa.b = a.b + b, O.a = 0 and 
a.b = b.a. The sdhem

follows from a.b = b.a and Sb2 6 *
/part frcm the special cases of Sb2 which are axioms or have been

derived the only application of Sb2 in the proof of the sufficiency of

R* occurs in the proof of the substitution theorem, in the form
X + (y - x) = V + (x - y)

F(x + (y - x)) = F(y + (x - y))

I shall give an alternative proof of the substitution theorem which

avoids use of this result.

THE SUBSTITUTION THEOREM

X = y ^ F(x) = F(y)
All primitive recursive functions can be obtained by substitution

and recursion according to the schema F(0) = 0 F(Sx) = H(F(x)), from

the initial functions u + v, u - v, Rt(u), where Rt(0) = 0, Rt(Sx) =
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Rt(x) + [l - p(x,Rt(x))] and p(x,y) = (Sy)2 i Sx.

It suffices therefore to prove that the substitution theorem holds 

for these initial functions and is preserved under substitution and the 

given recursion. From the original proof of the substitution theorem 
given in , we have

(1 - |x,y|)F(x + (y - x)) = (1 - |x,y|)F(x)

(1 - |x,y|)F(y + (x - y)) = (1 - |x,y|)F(y)

In the case of F(z) = z + a we have

( 1 - |x,y|)((x + (y - x)) + a) = ( 1 - |x,y|)(x + a)

( 1  - |x,y|)((y + (x - y)) + a) = ( 1  - |x,y|)(y + a)

But from Sb2 s and x + (y - x) = y + (x - y), [x + (y - x)] + a = [ÿ +
(x - y)] + a and hence from Sb2 7

( 1 - |x,y|)[(x + (y - x)) + a] = ( 1  - |x,y|)[(y + (x - y)) + a]
Hence

( 1 - |x,y|)(x + a) = ( 1  - |x,y|)(y + a)
Thus we have derived the substitution for the function F(z) = z + a.

In the way, using Sb2 i, Sb2 2 , Sb2 s, Sb2 s, Sb2 7 , we may obtain the 
substitution theorem for the initial functions u + v, u - v ,  u.v.

In the following proof of the substitution theorem for the function 

Rt(x), I shall use theorems of the proposltional calculus, which may 
easily be proved by deriving their corresponding equations in recursive 

arithmetic. The theorems concerned are
(x = x') -> (Sx = Sx*) (1)
(y = y ’) (Sy)2 = (Sy*)2 (2)

((x = X*) & (y = y*)) ^ (Sy)2 - Sx = (Sy*)2 - Sx* (3)

(x=x* ) & (Rt(x) = Rt(x* )) p(x,Rt(x)) = p(x',Rt(x*)) (4)
(x=x*) & (Rt(x) = Rt(x* )) Rt(x) + (1 - p(x,Rt(x))) = Rt(x* )+(l-p(x*,

Rt(x*)) (5)

(x=x*) & (Rt(x) = Rt(x*)) Rt(Sx) = Rt(Sx*) (6)
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We new prove

((x = X*) -> Rt(x) = Rt(x’)) -► (Sx = Sx’ ->■ Rt(Sx) = Rt(Sx’))

with a,b,c standing for |x,x’| (and hence for |Sx,Sx’|, |Rt(x), Rt(x’)|,

|Rt(Sx), Rt(x’)| respectively) 5 we require to prove

(1 — (1 — a)b)(l — a)c - 0» (7)

From (6 )

( 1 - (a + b))c = 0 . 

so that
( 1 - (a + b))(l - a)c = 0 .

Hence
( 1 — a)c — b ( 1  — a)c - 0  

because a(l - a) = 0. Therefore
( 1 - a)c(l - b) = 0 . (8 )

Hence
(1 - (1 - a)b)(l - a)c = (1 - a)c - (1 - a)(l - a)bc (9)

= ( 1 - a)c - ( 1 - a)bc
= ( 1 - a)c(l - b)

= 0
from (8 ). Therefore

(x = x ’ ->■ Rt(x) = Rt(x’)) (Sx = Sx’ Rt(Sx) = Rt(Sx’)) (10)

New define P(x,x’) = (1 - |x,x’|)|Rt(x), Rt(x’)

Then, from (9),
P(x,x’) = 0 ^ P(Sx, Sx’) = 0.

But, from E 3 ,
P(x,0) = (1 - x)|Rt(x), Rt(0)| = 0.

Similarly
P(0,x’) = 0.

Hence, by I2 ,
P(x,x’) = 0.

(x = x ’) ->■ (Rt(x) = Rtx’}
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We have now proved the substitution theorem for all the initial functions 

New suppose the substitution theorem holds for the particular 

functions f,g, i.e.

X = y f(x) = f(y) (1 1 )

and

X = y g(x) = g(y). (12)

From Sbi and (11) we have
g(x) = g(y) -4" f(g(x)) = f(g(y)). (13)

We new use the schema
p ->■ q (14)

q r

p r
which may be proved by a consideration of the corresponding equations in 

recursive arithmetic.
Hence frcm (12), (13),
X = y -> f(g(x)) = f(g(y)) 

i.e. the substitution theorem is preserved under composition.
Now consider ^(x) defined by the recursion #(0) = 0, (j>(Sx) =

H((f)(x)) and suppose the substitution theorem holds for H.

Define P(x,y) = (1 - |x,y|)|o(x), c|)(y) |. Then, using Eg
P(x,0) = (1 - x)|(j)(x) , <j)(0)| = 0 (15)

and
P(0,Sy) = 0. (16)

We now derive the result
(a = a ’) -V {(b = b ’) (a = b a' = bO>.

As we observed above
(1 - |x,y|)F(x + (y - x)) = (1 - |x,y|)F(x) 

and so with F(x) = |x,t|

( 1  - |x,y|)|x + (y - x),t| = ( 1  - |x,y|) x,t|.
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Similarly

( 1  - |x,y|)|y + (x-y), t| = ( 1 - |x,y|)|y,t|

Using X + (y - x) = y + (x - y), and the given special cases of Sb£ 
we obtain

( 1 - |x,y|)|x + (y - x), t| = ( 1  - |x,y|)|y + (x - y),t|.
Hence

(1- |x,y|)|x,t| = (1 - |x,y|)|y,t| (17)
New using (17) and rearranging factors

( 1 - |a,a'|)(l - |b,b'|)(l - |a,b| ) |a',b’| = ( 1 - |b,b'|)(l - |a,a’|)

( 1  - |a,b|)|a,b|
= 0.

Hence

a = a* ^ {b = b* ^ (a = b ^ a* = b ’)}. (18)

Replacing a,a',b,b* by H((f)(x)), (f)(Sx), H(<j)(y)), (f)(Sy) respectively
H(#(x)) = cJ)(Sx) -> {H(#(y)) = (j)(Sy) -»■ (H((f)(x)) = H((j)(y)) -»■ (J)(Sx) =

(J)(Sy))}
From the definition of cf), using modus ponens twice 

H((j)(x)) = H((f>(y)) (f)(Sx) = (f)(Sy)

Using the substitution theorem for H,
(})(x) = 4>(y) -> H((j)(x)) = H((J)(y)) 

and hence by schema (14)
*(x) = (f)(y) #(Sx) = (J)(Sy). (19)

We now prove

P(x,y) = 0 P(Sx,Sy) = 0. (20)

With a, b, c standing for |x,y|, ^(x), 4^y)|, | (|)(Sx), <J)(Sy) | respect

ively there is represented by the equation

( 1  — ( 1 — a)b) ( 1 — a)c — 0  (2 1 )

With f(a) standing for the left hand side, f(Sa) = 0 and f(0) = (l-b)c = 0

from (19) and hence, using Eg f(a) = 0.
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Now using I2 with conditions satisfied by (15), (16), (20), we 

obtain
X = y -»■ (f)(x) = <j)(y)

Hence the substitution theorem is preserved under the given 

recursion and thus it holds for all recursive functions.
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APPENDIX B

A Solution to the Integer Linear P-ro^rctmnxitK^

§1. Introduction The General Integer Linear Programming Problem, 

namely, optimising a linear function subject to non-negative solutions 

of a set of simultaneous linear inequalities, was one of the najor un
solved problems in the theory of linear programming until 1958, when 

solutions were produced by R. Gomory [)] , and A.H. Land and A.G. Doig.fl^ 

Yet a technique for solving this problem was available in 1929 in a 

result in the field of mathematical logic due to M. Presbur^er. Of 

course it must be said that the subject of Linear Programming did not 

exist in 1929, and so, in this context, Presburger*s result was a 

solution to a non-existent problem. I shall explain briefly in §2 why 
this much earlier result does solve the progranming problem, and in §3, 
describe in detail an algorithm derived from Presburger's result.

§2. Presburger^s Algorithm

Presburger Q/f] provided a decision procedure for the formal system 
of arithmetic referred to as System D in Hilbert & Bemays Volume 1 [*%] . 

System D is the 1st order theory with one predicate, equality, one constant 
0, and the tvjo functions, S (the successor function), and the addition 
function. By applying the function S repeatedly to the constant 0, we 

have all the natural numbers in the system, and applying the addition 

function to the variables and constants we obtain as terms of the system, 

linear forms in any number of variables, with positive coefficients and 
constants. The atomic formulae of the system are the expressions s = t 

where s,t are terms, and hence the atomic formulae are just linear 

equations with the variables and constants on their positive side.
Thus the system contains the prepositional connectives for "not",

"and", and "or" and the usual two connectives (Ex) and (x), so the
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formulae which Presburger *s procedure enables one to decide the truth 

or falsity of, are conjunctions and disjunctions of linear equations 

involving the two quantifiers (Ex) and (x). In fact to solve the linear 

programming problem we only need to solve sentences of the form

(Exi)(Ex2 ) (Ex_) / \  (A. (xj...x ) = B. (xi...x ))
^ i=l.. .m ^ ^ ^

The integer linear programming problem is to optimise a linear
form

CiXi + C2X2 + ..... + c^x^ (1 )

subject to non-negative integer solutions of a set of simultaneous 

inequalities

+  +

(2)

+ ...... +  ̂̂m
with the condition that

x^ % 0 and x^ is an integer for i = 1, .... n (3)

where a^j , b^ are integers, positive, negative or zero.

For the purposes of this part we shall assume that the inequalities 
have been made into equations by the use of slack variables, and further 

that each variable and the constants have been transferred to that side

on which their coefficients are positive. Thus we replace (2) by

equations
Ai(xi....x.) = Bi(xi....x.)

. . (4)
i^(xi..’. .x^) = B^(xi. .*. .x^)

where Â ,̂ B̂  ̂ i = 1  ... m are linear, possibly non-homogeneous forms 

in xi... .x̂ , t % n.
If we wish to optimise the linear form (1) let

cixi + ....... + c^x^ = z (5)
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and then the optimum value of z subject to (4) and (5) will be the 
optimum of (1) subject to (4). We new put (5) in the form

Ci(XiX2. . .X ẑ) = C2(XiX2. . .X^jZ)

where Ci,C2 are also linear forms with xi,X2 ...z on their positive side

The expression 

(Ez)(Ex^)(EX|-_j ). ..(Exi)

/\(Ci(Xi...}^z) = C2 (xi...x^z)) (6)

is then a sentence in Hilbert and Bemays System D and thus we can use 

Presburger ̂s method for eliminating all the variables until only z and 

constants remain.
The expression (6 ) is alreac^r in the form in which Presburger*s 

procedure has to put all statements in system D before proceeding with 
the algorithm i.e. the form (Ex^)... .(Ex%) A (xi...x^z) where A is 
quantifier free and in disjunctive normal form. Furthermore we do not 

need to deal with negation signs as Presburger does. We eliminate 
equality signs by replacing a = b by (a < b + l^(b < a + 1). Let us 

assume that r - 1  variables have been eliminated and that the resulting 

equivalent statement is in the form

Gl -funcf(’on o-f
Ij I2 and 13 being index sets. The need for congruences will be seen later 

Let p = L.C.M. {pu|iEliyÏ2 ui3}' Multiply both sides of each rela
tion by ̂  to change (7) into

Pi

(Ez) (Ex^)... (Ex̂ )t̂ // \ (px_ < t( )) // \ px_ > tj ) (/ \ px_ = t. (k; )| a ,  ( p . ,  < [A P V  > ' i ) ^  (A P V  ■ < < 4 :

vÆiere t] = ^  . t. and k! = &  . k;Pi 1 1 P:
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We consider the formula,

 ̂PXj, < q  i e II '

 ̂q  i E I2
px^ 5 t|(kj) i e I 3 _

(Ex^) (8)

Let y = px^, then (8 ) is equivalent to

' y < tj i e II

y > t| i e I2
y E t|(kj) i G I 3

, y = 0(p)

(Ey)
(N.B. this is the stage at which

(9)
congruences arise)

I.e. (Ey)
y < t| i e II

y > t| i e I2

y E t|(kp i E IS

1 3 being 1 3 enlarged to include(10)
y = 0 (p)

(1 0 ) is then equivalent to

V
j£l2

V
r=l,2,.. .K

i E II 

i E I2

t Î + r E t|(kp i E 1 }

t! + r  > t!] 1 (11)

where K = L.C.M. {kpiElJ}. The numbers &,m range over all possible 
values of i , iEl^.

For if (11) holds put y = tj + r for the appropriate j ,r and hence
(1 0 ) holds.

If I2 ^ <f), then if (1 0 ) holds, then for any set of values of the 

variables substitute a set of values in (3̂ >) and let

tj = max{tpiEl2 } and t{ = min{tpiEli}. From (10) tj $ y $ t{ 

and y H  t|(kp, so by the generalised Chinese Remainder Theorem there
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exists a number r = such that t^ + r e t|(kp for all ielj

if and only if t^ e t^ mod for &,m e 1 \ where (%(4 ^denotes the
g.c.d of K^and

If I2 = <j), replace tj = max{tpiElz} by tj = t[ - K,

To eliminate the next variable, ^, we use the equivalence

(Ex)(Ai^A2 .̂ . . ^ )  <-^(Ex)Ai^(Ex)A2 . .. .^(Ex)A^

to bring existential quantifers onto each of the disjuncts separately. 

Consider the disjunct new in the form

(Ex ).. .(Ex , ) n r+/

 ̂"̂ i

t! + r > t!3^ o 1

i E II 

i E I2

t! + r_ E t!(k!) i £ I1 1

t! E t'(£,m) &, m E I*

(12)

m

This can now be put in the form

(Ex )...(Ex ) n r+i p.x > t.
i E I 1 2

i E I2 2i r+i 1

I P i V /  - i G I 32

(13)

We new repeat the procedure frem (7) to eliminate x^j and so on 

until only z and constants remain. We than have a number of disjuncts, 

involving z, each disjunct being a conjunction of sentences of the kind

â ẑ > t^ 

a^z < t^
i e l
i E I (14)

a^z E t^(b^) i E Ig

plus a number of parts containing only constants. Clearly a maximum and 

minimum for z (if they exist) can be found. The congruences are then 

combined into one congruence using the Generalised Chinese Remainder
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Theorem (stated and proved at the end of this appendix). We can then 

find the value(s) of z that satisfy (14). The parts containing only 
constants are easily decidable. If a part is false, the whole disjunct 

is discarded; if true the values of z satisfying (14) then satisfy the 

whole disjunct.

If we new take the union of the values of z that satisfy each 

disjunct, this union is the possible values that z and hence CjXi +

C2X2 + ... + c^x^ take. From this set we then choose the optimum value.

§3. The Derived Algorithm

The algorithm given below is derived from Presburger*s. This 
algorithm, like Presburger’s, bears a strong resemblance to the Fourier- 
Motzkin method of solving sets of linear inequalities, but congruences 

are introduced to cope with the requirement that the variables have 
integer values.

We make no claims for the efficiency of the algorithm, merely that 
it is an alternative solution, and one wholly different in approach from 

those in current use.
To find the maximum^ of (1), subject to (2) and (3) suppose x̂ _̂  ̂ is

a variable subject to the condition

+  + %  ^ V i (15)

Then the maximum of x^^j subject to conditions (2), (3) and (15) 

will be the same as the maximum of (1) subject to (2) and (3). In fact 

condition (15) is of the same type as those in (2), so we may consider 

the more general problem of maximising x^^^ subject to the conditions

aim +.........+ + *1 ,n+l Vl «
  (16)

3%,*! + .......  + Vn+I V  « ('m
V-l I ^ 1  ^ .........  ^+) ,n n+l * ’̂m+i

1* To minimise, reverse the inequality sign in (15).



and
% 0 and x^ is an integer for i = 1, .... n (17)

The range of values of x^^| that satisfy (16) and (17) is the set of

values of X ., that make n+l
(Ex) .... (Exi )P(xi... .x^., ) (18)n  ̂ n+1

a true statement, where P(xj,... .x̂ ^̂  ) stands for the conjunction of

conditions (16) and (17).

The procedure we give below finds a statement in the form

^ Sz(Xn+,)y......... V V | )  (1 9 )

where s^(x^^^ ) is a conjunction of inequalities and congruences, this 
statement being equivalent^ to (18).

On finding the statement (19) we can find the values of x^^^ that 

satisfy it and then choose the maximum.
Having found the maximum value we still have to find the values of 

Xi... .x^ that give that maximum.
To find a statement of (19) containing only x^^^ we eliminate the 

variables one at a time, finding in each case an equivalent statement 

with one less variable.
We shall explain the algorithm by showing hew to eliminate the 

first two variables. In the case of the 2nd elimination we need the full

1. Equivalent in this sense means that any value of x^^^ that makes (19) 

true also makes (18) true, and vice versa (i.e. for each value of 

that makes (18) true there exist values of x^... which to

gether with the value for x^^^, make P(xi.. ) true, and any value
of x^^^ for which there exist values of xq.. .x^ which make P(x%... .x̂ ^̂  ) 

true, that value of x^^j makes (19) true.
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generality of the algorithm, and then the procedure is merely repeated 
to eliminate the remaining variables^.

Eliminating x^: Separate the inequalities (16) into the two types

a^ Xj $ t^ 1  £ ill

a^ Xi ^ t^ i e I2 1
(20)

so that a^ ^ 0  for all i. In, I2 1 are index sets and t^ is a linear 

function of X2 ,...

Ifit ai = L.C.M. I I  -ce
(18) is then equivalent to 

' aix^ ̂  tj
(Ex^) .... (Ex )

i £ 1 1 1

apx^  ̂tj i £ I2 1 (2 1 )
x^ % 0  for i = 2 ... n, x^ an integer for i = 1 , ... n

where tj = . t^ and I2 1 is I2 1 enlarged to include x% ^ 0 , or

rather aix^ ^ 0

Let y =

(ïbCn)

a^Xi, (2 1 ) is then equivalent to

' y 3 t^ ' i  e 111

y % i  e I 21

y E 0(ai)
x^ % 0  and x^ an integer for i

.. (Ex2 )(Ey) (22)

= 2 ... n

2. We can eliminate the variables in any order, and the order will affect 

the length of the algorithm, but for convenience we shall eliminate Xi 

first, X2 second etc.
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which is equivalent to

(Ex^) ... (EX2 )V V  .
jel^i r= 0  ... ai- 1

f t j + r $ t j

t j  + r % t j

tj + r E 0  (ai)

i e 1 1 1

■hi E i;

x̂̂   ̂0  and x^ an integer for i =

(23)

= 2 ... n

for, if a set of values for y, X 2 ... x̂_j_j satisfy (22), substitute for

X2 ... in (22) and let tj = max {tj|iel^i> and t[ = min {tj|ieln}.

From (22) tj $ y  ̂tJ and y e 0(ai). But for seme r = 0,1,... aj-1, tj +

r E 0(a,) and hence t! $ t! + r 3 t{ i.e. tJ + r $ t! for i e Iii, t! + ̂ 3 3  ̂ 3 1  3
r % tj for i e I2 1 . Hence if a set of values for y,X2 ,. . satisfy 
(22), then these values for X2 .. satisfy (23).

If a set of values for X2 ... x^^^ satisfy (22) let y = tj + r, then 
these values for y, X 2 ... x^^^ satisfy (23).
Thus (22) and (23) are equivalent.
We new apply the rule (Ex) (A. A ... A )<r>(Ex)A (Ex) A_ (Ex)A' V ^ V S » V  ^ V * # # V £
so (23) is equivalent to

V V (Ex ) ... (Exg) ,
jel2 i r= 0  ... aj- 1

tj + r 3 tj
tj + r > tj
tj + r ̂  0(a )

i e l .

i £  Ij,
(24)

x^ ̂  0  and x^ an integer for i = 2 ... n

So (24) is our equivalent statement not containing x^.

Eliminating X 2 *.- we proceed separately with each of the disjuncts of (24). 

Any disjunct can be put in the form

(Ex^) ... (EX2 )

^i^ ̂ 2   ̂t^ i e Ij2

^ia % t\ i e I2 2

a^^ X2 E t^(aj) i e I 32

x^ % 0, and x^ an integer for i = 2

(25)

n



Let & 2  = L.C.M. |i e I2 1 y I2 2  y I2 3 } and let y = a2 % 2  

Then (25) is equivalent to

(Ex^) ... (Exg)(Ey)

f y 3 tj i e I 1 2

y % tj i E I2 2
y = tj(aj) i E I 32

y = 0  (a^)
 ̂x^ > 0  and x^ an integer for i = 3, ... n

These conditions differ in type from those in (22) because of the 

presence of 2 congruences rather than 1 .

But

(26)

=  >\/ (y = s(a{) t! = s(a{))

substituting for y a tj(a{) (19) can be put in the form

y 3 tj i E I 1 2

(27)

V  (Ej^) ... (Exg)(%) 
s-Ojl,...aj— 1

y % tj
y 5 s(aj)

i e 1 ^ 2

(28)
tj. E s(aj) i e I32 
y E 0 (3 4 )

x^ % 0 and Xĵ  an integer for i = 3 .. n

Since tj e s(aj) does not contain y we use the rule 
(Ex) (A^ B) <-> (Ex)A^ B, where B does not contain x, to write each disjunct 

of (28) in the form

s q  

y i q

(Ex3)(Ey)

y E s(aj) 

y E 0 (a2 )
x^ % 0  and Xĵ  an

integer for 
i = 3 ... n

(Ex3 ){tĵ  E s(aj)} (29) 

i 6 I32
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(Ex^) ... (ExjXEy)

We new combine the congruences y e s(aj), y e OCa^) into one 

congruence using The Generalised Chinese Remainder Theorem (stated and 
proved at the end of this appendix) for the case n = 2 •

Hence y e s(aj) and y = 0(a£) have a solution if and only if s e 0 

mod(a^ ,a2 ) and if this is so y = ks modjaj ,a2] where k is determined by 

aj,a2 and can be calculated using the Generalised Chinese Remainder 

Theorem.
So the part of (29) involving y is equivalent to

y 3 tj i e Ii2

y % tj i e I2 2

y E ks mod[a| ,a2] (30)
x^ % 0 and x̂  ̂integer for i = 3 ... n 

s E 0 mod(aJ,a2 )

Each value of s which satisfies s = 0 mod (ajja^) where s = 0, 1, ...
aj - 1 gives a set of conditions in the same form as (2 2 ) and the
elimination of y is carried out in the same way. So a second variable 
is eliminated and the process is repeated until only x^^^ remains. We 

then have a statement in the form

S' (%n+,) V  V Sf (%h+,) (91)

where each Sĵ  ^^n+i ) is & conjunction of the form

^i,n+;^n+i  ̂^i ^ ̂  ̂ l,n+i

^i,n+. V .  Ï i ̂  H,n+I (92)

î,n+r V (  ' î(̂ i) i ̂ H,n+,

where the tĵ  *s and a^ ’s are integers, and this statement is equivalent 
to the statement (18).
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FINDING IHE MAXIMUM VALUE FOR xn+f

^n+i " I U ^2 ,n+i U ^3,n+f ̂

Then (31) is equivalent to

a .. X  . , $ t! i e In+l n+l 1 I,n+l

a ., X  ., t! i e In+l n+l 1 l,n + l

3. X .. - t! i e In+l n+l 1 3 ,n+l

:! 1 iel, } and M max {t1 ' n+l
Then

” * V /  V ,  « M

^ = V .  V i
Then m $  x $ M, x e O (â _̂  ̂) and x E tj (aj) (33)

Combining the 2 congruences, x e 0 (a^^^ ) and x = tj (aj) if and only if
t! = 0  mod (a_,, , a!) and if this is so x e kt! mod [a .. , aîl where k 1  n+f 1  1  I- n+f
is a number determined by a^^^ and aj (see §4. Generalised Chinese
Remainder Theorem)

So the range of values of x^^^ satisfying (33) is the range of

values of   for which x e kt! mod la .. , aîl and m $ x $ M
^n+l ^

So the possible values of x̂ _̂  ̂ is the union of the values of x̂ ^^
that satisfy one of the disjuncts in (31). Having chosen the maximum

value of x^^^ we see from (15) that it is also the maximum of c^xi + ... •

V n

FINDLNG THE CORRESPONDING VALUES OF Xj, ... x

During the elimination of variables, at some time we have a

disjunction of sets of conditions like (32), but containing x^^j and x^.

If we substitute the maximum value for x^^^ we are left with a set of

conditions for x from which we can find the possible values for x , as n ^ n
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described for x ., . If there is more than one value for x , in the n+l n
equivalent conditions on x , , x , x ,, we have to substitute the^ n-l n ’ n+l
maximum of x ., together with each of the possible values of x in turn, n+l ° ^ n ’
to find the permissible values of x^_^ . This process is continued until

we have at least one set of values for xi ... x which when substituted ̂ n
in CiXi + .... c X give the maximum value for x ., . ̂  ̂ n n ^ n+l

§4. The Generalised Chinese Remainder Theorem

Notation : - Let (a^, ... a^) denote the g.c.d. of aj ... a^

Let [ai, ... aJ denote the L.C.M. of ai ... a^
[âi . . . a l  

Let A. = ------- -ai

LEI'-'IMA If (Aj , .... A^) = 1 then thereexist integers Ci ... c^

such that 1 = c^Ai + C2A 2 + ... + c^A^ (34)
For the case n = 2 this result may be proved and the Cj and C2 

calculated using the Euclidean Algorithm (see Birkhoff and MacLane 
A Survey of Modem Algebra pp 18, 19).

Generalised Chinese Remainder Theorem

y E X. mod a., i = 1 ... n is equivalent to x.S' x. mod (a., a.) 1 1  1 3 1 3
n

for i, j = 1  ... n and y e E Cĵ Aĵ Xĵ  mod [aj ... aJ

Proof If y E X. mod a. then y = x. + l.a. for some 1.  - ' i  1  - ^ 1 1 1  1

and if y E X. mod a. then y = x. + l.a. for some 1. ̂ ] ] ] ]
So X. — X. — l.a. — l.a.

1 ] 3 3 1 1
E 0  mod (aĵ , a^)

So x^ E Xj mod (a^, a^) 

n n
Now X. - E c.A.x. = E c.A. (x. - x.) from (34) (35)

] i%l 1  1  1  i=l 1  1  ^



But ) I (x^-Xj ) and | [aj ... a J

But rki ... a l  = A.a., a.a. = (a.a. ) fa.a.l I (x.-x. )A.a.rr 1 1  ̂ i j  r  ] I- z\ j-J ' j 1 1 1

aj |A^(Xj-x^)
n

a.I Z c.A.(x.-x.)
] i=l 1 1 ^

n
So from (35) x. - Z c.A.x. e 0 mod a.3 i=l 1 1 1 3

n
i.e. Z c.A.x. E X. mod a. for all j

i=l 1 1 1 3 3

But V E X .  mod a. for all j 3 3
n

So y E z c.A.x. mod a. for all j
i=i 1 ]
n

So y E z c.A.x. mod [ai ... a"]i^l 1  1  1  L 1

n
If y E Z c.A.x. mod [ai ... a l  and x. e x . mod (a. .a. )1 1 1  1-1 nJ 1 ] I ’ j

Then x. = x. + 1. (a.,a.) for all i, j (36)
1 3 3 1 3

n
Replace the x . ’s in Z c.A.x., except x . , using (3k)

^ i=i 1  1  1  ]
n

Then y = Z c.A. (x. + 1 .  (a. ,a. )) + c.A.x. + k [ai ... a l  for all j i-l 1  1  1 ] 1  : ] ] ] ‘ rrJ
iXi

n n [ai ... ^
= ( : c.A.) X. + Z c.    1. (a.,a.) + k . Q ^  •••

i=l ] i=l i ] ^ ]

for all j

n
Z

i=l a i;ij

= X. + Z c.l. . a.a. + k fai ... a 1 for all j 
1 iJL 1 3 m  “•



- fg -

n
= X . + E c.l.a. + k [ai ... a 1D i=l 1  ] ] ^ ^

E X j mod a j j = 1  ... n

In the case n = 2, which is the case we use c% and C£ are easily found 

using the Euclidean Algorithm.
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A DECIDABLE CLASS OF EQUATIONS 
IN RECURSIVE ARITHMETIC

by R. L. G oodstein and R. D. Lee in Leicester (England)
1. Let C be the smallest class of functions from ordered sets of natural numbers 

into natural numbers which contains the initial functions
a -  X ,  X -  b, X ̂  y, xy, X {y x), X  -  {x -  y)

(where a, 6 are arbitrary constants) and is such that / G U if there are functions g, h 
which belong to G  and / is one of

 ̂—  9)9 9^ 9) :0~ {9 ~  ̂ )
or

f{x^,X2, . . .,xj =  2 ’ g{x,X2, . . .,x̂ )
0J>

/(̂ 1J ̂ 2’ • • ‘ J ̂ «) ~  n  9 i ‘ i ̂ n) •

Further let Ug. be the subclass of C in which k, b k.
2. Our principal result is
Theorem 2. If f £ C  the class of equations

f {̂ 15 ̂ 2 5 • • • J ̂ n) ~  ̂  ’ 
where c is a constant, is decidable.
3. We start by defining the height and spread of members of G . Identity func

tions are of height 0 and spread 0. If / is of height 0 and spread fj. and g is of 
height 0 and spread

i 9  ̂i9̂  f {9 —  /)> / “ (/“?■ S')» ® “  /
are of height 0 and spread ^ +  1 .
If g is of height I and spread pi then

2 9 . rid< 9 b
are of height ̂  -f- 1 and spread pi.
If g is of height ^  A +  I and spread ^  pi, and h is of height ^  A +  1 and of 

spread ^ pi, and if at least one oi g,h is oi height A +  1 , and at least one of 
spread pi, then

— 9> 9 ̂  9̂ i 9 ~ 9)’ 9 ~ {9 ~  ̂ )
are of height A +  1 and spread +  1.
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4. In  p repara tion  for Theorem  I below we estab lish  some properties of th e  func
tion  (Xi {x) =  i — {i — x)  which leaves x  unchanged if x  ^  i  and  m aps x  on i  if

If  j  ^  i th en

(4.1) oCi(o(jX) =  0(iX =  (Xj(aiX).
(4.2) (Xi {x -jr ÿ) =  (Xi {ajX +  a^y) .
(4.3) =  (Xi((XjX . aj-y).
(4.4) ai{x +  (y -  a;)} =  ai{ajX -f- (a^y — (Xjx)}.

(4.5) cxi{x — (x ~  y) =  ai iajx — (ajX ~  (Xjy)}.

I f  j  ^  i ^  a th en

(4.6) ai{a ~  x) — (Xi{a ~  (x^x).

W e om it th e  proofs.

If  j  ^  2 i  and  i ' ^ h  th en

(4.7) (Xi(̂ x — b) =  Xi((XjX — 6).

F o r if X ^  j , (XjX =  X an d  if x  ^  j  th en  x  — b ^  i and  (Xj{x) — b =  j  — b ^ i  so 
th a t  bo th  sides of equation  (4.7) have th e  value i .

I f  r i , s ^  i th en

(4.8) ai (x +  ry)  =  a,- (x +  ay ),
(4.81) (Xiixy^) =  Xiixy^).

F or (4.8) obviously holds for y  =  0,  an d  w ith  y ^ l  bo th  argum ents exceed i ,  
and  (4.81) is obvious for a; =  0 , o r y  =  0 , I ;  if x ^  I and  y ^  2 th en  bo th  xy^' 
and  xy^ exceed i .

5. W e observe n ex t th a t  if there  are num bers i ^  q,  r — 1 , 2 ,  n
such th a t

(5.01) ai f{x^,  a?2, . . ., x^) =  (Xif{ap^Xj^, » - » ^pn^n)
then

(5.1 ) ai f  (a?2, a?2, . . ., a?̂ ) ai f  î aqX-ĵ , aqX^, . . ., (X̂ â t̂) •
F or by  (5.01),

~  • • •» (^pn^n)
) ^w) » (5.01).

6. If  to  each i corresponds a, p  ^  i such th a t

(6.1) (Xifix^i, a7g, . . . , x j  =  aifiapXj^,  a^x^,  . ., XpXj ,
and if

F  (a^j, a?2, . . ., Xj )̂ =  f  {x , x ^, . . ., ar^),
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then for any j ^ p  +  i
(6 .2 ) oî F , • • •) a?%) —  (x̂ F (X̂âgj « »
For, by (4.2),
(6.3) (XiF - (Xj- ^  otif[x,X2, . . ., â/j) =  2' fî XpX, (XpX̂ , • • •? XpX̂ )̂

X̂ Xi
and
(6.4) (Xi ^  /(â, (XjX̂ , . . ., oijXjĵ =  (Xi ^  f{XpX, (XpX̂ , • • •» atpân)*

x̂ XjXi x̂ ajXi
Thus if x^^j, so that (x̂ x̂  ~  x̂ , the sums (6.3) and (6.4) are equal. If a%i >;,
writing for f{t, (XpX̂ , . .., (XpXj sum (6.3) equals
(6.5) a, (/o +  ♦ • • +  fp-i +  /p +  (âi —  p) fp)
and sum (6.4) equals
(6.6) (/o +  * ■ * +  fp-i +  /p +  ii ~  P) fp) '
Since x̂  —  p and j —  p ^  i it follows by (4.8) that (6.5) and (6.6) are equal

which completes the proof of (6.2).
Under the same condition (6.1) if

P [x^, #2, . . ., âjj) =  fJ /(a;, ajg, . . ., #%)
X̂ Xi

then
(6.7) 0LiP{x^,X2,.. .,x̂ ) =  cXiP{XjX^, . . ., â .a;J.
The proof of (6.7) is similar to that of (6.2) using (4.81) in place of (4.8).
7. If 6 ̂  % and if there is a ^  i such that

(7.1) f (̂ 1 » ̂ 2 » •• •> ̂ n) î pp'li • • •> ̂ pî n)
and if

g{̂ i, aTg,. • • ’ ̂ n) ~  f (̂ 1 > ̂ 2 J • • • > ̂ n) ^
then
(7.2) (Xig{xi,. • " » ^P2î 2’ * •
For

(Xi9 =  (Xi{f ~b) =  Xiiâ if ~  b) by (4.7)
=  î{fi<Xp2t̂ i, • • -  6} by (7.1)

(XiQ{(Xp̂ x̂̂ , . . ; (Xp2fX^),
8 . W e  come now to the result which provides the decision procedure.
Theorem 1 . If C]̂  and if f is of height A then for i ^  k, and q —  2 î

(8.1) (Xif (âj, a?g, . . ., x̂ ) —  <x̂/ ((̂ â̂i > (XqX'Zf • • • > ̂ q^rù •
W e  consider first the case A =  0 . If / is of height 0 and spread 0 then (8.1) holds 

by (4.1). If (8.1) holds for functions of height 0  and spread then it holds for 
functions of height 0 and spread ̂  +  1 , by (4.2), (4.3), (4.4), (4.5), (4.6). Thus (8.1)
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holds for ail / of height 0. If (8.1) holds for functions of height ̂  A, and if / is of 
height A +  1 and spread 0 then there is a G of height A such that

f =  Z g  o r  f =  ri9 o r  f =  g b;
if

/ (̂ 1 > ̂ 2 » • • • ’ 2  9 » ̂ 2 ’ ̂ 3 » ’ • • » ̂n)

and g satisfies (8.1) with q =  then by (6.2)
«i/ =  (XjX2, . . .,

with j ̂  -f i, and since 2^+i&^ (2̂  +  1) i it follows that / satisfies (8.1) with 
q =  2̂ +̂ i.
Similarly if

/  ( ^ 1J  2̂ »  •  •  • »  ~  n  g{̂ > ■ •  '  »  ^ n )
then / satisfies (8.1) by (6.7).
Finally if

/ (^1 ) ̂ 2 » • ' • ’ ̂ «) “  9 (^1 > ̂ 2 5 ‘ • • » ̂ n) ^
then by (7.2)

^t/(^l» 2̂» • • ■ > ̂ n) ~  (Xif {(X.2q(̂i> (X.2qX2, . . ., ̂ 2ĝ «)
and since 2g =  2̂ +H& this proves that / satisfies (8.1). Thus if Theorem 1 holds for 
functions of height ̂  A, it holds for functions of height A -f 1 and spread 0. Suppose 
now the theorem holds for functions of height ̂  A and any spread, and for func
tions of height A +  1 and spread ̂ p .  Let /'be of height A +  1 and spread ju +  I; 
then either (1) there is a g of height A -f 1 and spread and an h of height 
^  A +  1 and spread ̂  p (the spread being y in at least one of the two cases) such 
that / is one of

(X —  9, 9 h, gh, g {h —  g), g ~  {g —  h)

o r  (2)  t h e r e  i s  a  o f  h e i g h t  A  a n d  s p r e a d  y I s u c h  t h a t
f =  Z ?  or or f =  (p-b.

In virtue of the hypothesis that all functions of height ̂  A satisfy the theorem, 
it follows exactly as in the proof above for functions of spread 0 that / satisfies 
the theorem in case (2). In case (1) it follows by (4.6), (4.2), (4.3), (4.4), (4.5), and
(5.1) that (8.1) holds also for /. By induction over p it now follows that if Theorem 1 
holds for some A it holds for A +  1, and since Theorem 1 has been proved for A =  0, 
this completes the proof of the theorem by induction over the height.
To prove Theorem 2 we observe that if / G (7 then / G for any k at least as

great as any of the constants a , b which occur in functions a  — x,  x — b used in
the formation of /. The height A of / does not exceed the number of times the opera
tions 2» n  and X —  b are used in the construction of /.
Then, by Theorem 1, it q =  2^ k then

• • •» ̂ n) ~  > *̂ ĝ 2 » * • •» ̂ q'̂ n) '
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T ak in g k '> c  i t  fo llo w s th a t

/  (^1J ^2 » ■ ' • 5 ~  ^
id en tica lly  if and  o n ly  if

/  (^1J ^2 » ‘ » ^h) ~  ^

for a ll v a lu es  of X2 , . x^ in  th e  fin ite  se t  ( 0 , l , 2 , . . . , g j .

9 . S in ce  a ll th e  properties (4) d ow n  to  (7.2) o f th e  fu n ctio n  (Xi{x) are p rovab le  
in  a su ita b le  fo rm a lisa tio n  of recursive a r ith m etic  (such as th e  eq u a tio n  ca lcu lu s) 
it  fo llow s th a t  (8 .1) is  p rovab le  in  9? for each  p articu lar fu n ctio n  / €  (7, an d  th e r e 
fore

T h e o r e m  3 . I f  /  G (7 and if  f is of height A and k exceeds c and all constants huiU 
into f thc7h the equation

f (̂ 1 ,# 2 ,  " ", ^ft) =  0

is provable in  9% if each mstance of the equation holds when x^,X2 , . . .,x^^ take all 
possible values in  the fin ite set (0 , 1 , . . . ,  2^A;).

For, q — 2^k,

* • •» ^n) ~  ^kf • • •» ^qXn)

is p rovab le  in  91 an d  b y  h y p o th es is  th e  r ig h t h a n d  sid e has th e  v a lu e  c < i  k  for a ll 
su b stitu tio n s  of v a lu es  0,  1 , 2,  . .  .,  q , x̂  ~r q ior x ,̂ I ^  i ^  n,  an d  so  a ll

/(̂ I5 ̂ 2» • • • > ̂ n) “  ̂
w here is  one o f 0 ,  1 , 2 ,  . . . ,  g — 1 , 4-  g for a ll &, 1 ^  ^  , w h en ce in  turn
w e rea d ily  p rove in  91 a ll th e  eq u ation s

/(^ l » l'2 J • • • > ̂ n) ~  /(^ 1J ̂ 2» ^3» • • • Ü ^n) ~  • • • / (^1J ̂ 2> • • ' » ̂ n—1> ̂n) ~  ^

and  fin a lly  f { Xi , X2 , . . . , x ^ )  =  c.
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THE SUBSTITUTION SCHEMA IN RECURSIVE ARITHMETIC

R. D. LEE

In his paper Logic Free Formalisations of Recursive Arithmetic [1] 
R, L. Goodstein presents a formalisation of primitive recursive arithmetic 
in which the only axioms are explicit and recursive function definitions, and 
the rules of inference are the schemata

(Sb3) F {A)=F{B)
(T) A  = B

A  = C
B  = C

where F{x), G(pc) are recursive functions and A,B,C are recursive terms, 
and the primitive recursive uniqueness rule

F{Sx) = H{x,F{x))
F{x)=H^F{0)

where the iterative function H^t is defined by the primitive recursion 
ift = t, H^^t = H{x,H^t); in U, F  may contain additional parameters.

In the same paper it is shown that the schema U may be replaced by
/c\ Fi0) = 0 F(Sx) = F{x)
 ̂  ̂ F{x) = 0
if we take as axioms
(A) a + (b L a) = b + (a L b)
and, in place of the introductory equations for the predecessor function,
(P) Sa L Sb = a L b
This system is referred to as Ri.

Received November 6, 1964
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The purpose of this paper is to present another formalisation, R*, 
which also weakens U and yet avoids taking A  as an axiom.

The rules of inference of R* are Sb̂ , Sbg, T and
F(Sx) = F(x)

' Fix) =F(0)
(E:)f F(0 ) = G(0 )

F  (Sx) = G  (Sx)
Fie) =G(x)

In place of the recursive definitions of addition we have the axioms
(Al) a + 0 = a (Ag) a + (b + c) = (a + b) + c.
and for subtraction, we have the recursive definitions of predecessor and 
difference
(5i) 0 ^ 2  = 0; (Sg) - I = a; (S3) a - 0  = a; (S4) a - S6 = - 6 ) - 1;
and the axiom
(S5) (fl - 6 ) - 1 = (« - J) - 6

W e  have also the recursive definition of multiplication 
(Ml) a • 0 = 0 (Mg) a - Sb = a • b + a.

Exactly as in [1] we may prove the following results 
A  = B(K) B  = A

and Sa - S6  = a — 6 , a — a = 0 , 0 - a  = 0 , (a + 6 ) - 6 = a, (a + w) - (b + n) = 
a — b, n — {b + 71) — 0 ,

W e  now derive the schema,
F  {Sx) = SF{x)(Uz) F{x) = F{0) + x

(I a m  indebted to R. L. Goodstein for the following proof). Write 
G{x) = F  (0) + X, then G  (Sx) = SG(x) and 0(0) = F{0), Using these two results 
and F(Sx)= SF{x) we deduce F  (x) = G  (pc) for if L(x) = F(x - i) + {j - (i - %)}, 
then L{0 ) = F(0 )and L{Sx) = SF(x) = F(Sx) so that, by Eq, L{x) = F{x). 
Therefore

F{x) = Fix -  i )  + {i -  (i -% )}

Let <}>(n,x) be defined by
(j){0 , x) = 0 (}){Sn,x) = {i - (i - {x L n))} + (j){n,x)

then
F{x - w) + (p(n,x) ={F(x - Sn) + [j - (J - (x - w))]}+ ({){n,x)

= F {x L Sn) + (j)(Sn,x)

tRetaining the notation of [1].
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Using El
F(x - n) + x) = F(x - 6>) + x) = F  {x)

Whence taking n = x
F{0 ) + (f)(pc,x) = F{x)

Similarly
G{0) + (j)(pc,x) = G{x)

Hence
FOc) = G(x)
Fî x) = F(0) + X.

W e  now use Ug to prove
0 + a = a.

Write F  (a) = a, then F  (Sa) = SF{a), Hence using Ug and K, (9 + « = «. Simi
larly using Ug we may prove a + S b = S a  + b, a + b = b + a ,  (a + b) - a = b
and exactly as in [1 ]

a + (b - a) = b + (a - 6 ).
Now' from Ei, E follows immediately and hence we have postulated or

derived all the axioms and rules of inference of system Ri, given in [1 ]. 
Hence the sufficiency of R* for the construction of primitive recursive 
arithmetic follows from the sufficiency of Ri, which is proved in [1]. In 
fact we can reduce the axiom system R* by postulating only certain special 
cases of Sbg. The special cases are

(sb.i) :f.„ (sb,,), f ... (Sb3s)

(Sb24)
x+A = x+B A — x = B — x x—A  = x—B

A  = B  
F{A) = F m

where in Sbg4 A  = B  is restricted to one of the initial equations Ai.Ag,
^3> ^5, Ml, Mg, or is any recursive or explicit function definition. For
F{0 - Sx)) F( {0 ̂  x) - 1) = F{ (0 - 1) - x) = F(0 - x) using Sbg^ for the
equations a — Sb — {fi — b) — I, (fz — b) — J. ~ ifx — 1 ) — b, 0 ~~ 1 — 0, and Sb,
to substitute 0 for x and % for b. Now writing G(x) = F {0 - x), we have 
proved G (Sx) = G{x) and hence from Ui, G(x) = G(0 ) 
therefore
0.1 F (0 - x) = F(0 )
Similarly F(Sx - Sx) = F( (Sx - x) - I) = F( (Sx - ] ) - % )  = F(x - x) and 
hence by Ui
0.2 F ( x - x ) = F ( 0 ) ,

The proofs of the results in the first part of this paper up to and
including the proof oi a + (p — a) = b + (a — b) use only the above special
cases of Sbg and 0.1 and 0.2.
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(Sbgs)

Using a + h = h + a and Sbgi we have 
A =  B

A + x  = B+x
Following the proof, as given in [1], of the sufficiency of Ri (and 

therefore of R*, since in R* we have derived or postulated all the axioms 
and rules of Ri), we may derive the schema

A ^ B  = 0, B - A  = 0  
--------

The schema 

(Sb,e) ^  ^A x  = B x
is now proved as follows

Using Sbg4, A.Sx — B.Sx = A , Sx — B,x + B  = A.x + A  — B.x + B. As 
suming A  = B, from Sbgi, z + A  = z +B, and hence from Sb̂ , B . x + A  = B,x + B. 
Therefore using Sbga, z - (B.% + B) = z — (JB.x + A) and hence from Sbi 
pi,x + A) — (p.x + B) = (/i.x + A) — (B.x + A); but from a previous result 
( A + A ) - (B.x + A) = A.x — B.x 
Hence

Using El, 

Similarly 

Hence, by A.

A . Sx — B.Sx = A.x — B.x

A.x — B.x — 0,

B.x — A.x — 0.

A.x — B.x.
Exactly as in [1], we may now prove Sa.h = a.b + b, O.a = 0 and 

a.b = b.a. The schema

follows from a.b = b.a and Sbge.
Apart from the special cases of Sbg which are axioms or have been 

derived the only application of Sbg in the proof of the sufficiency ofR* 
occurs in the proof of the substitution theorem, in the form

X + {y - x) = y + (pc - y)
F(x + (y ~ x)) = F(y + (x ~ y))

I shall give an alternative proof of the substitution theorem which 
avoids use of this result.



THE SUBSTITUTION SCHEMA 197

THE SUBSTITUTION THEOREM

X = y  F ( x)  = F( y )

All prim itive recu rsive  functions can be obtained by substitution and 
recursion  according to the schem a F(0) = 0 F(Sx)  = H(F(x)),  from the initial 
functions u + v, u — v, Rt(u),  where Rt{0) = 0, R t (Sx) = Rt(pc) + [ i  -  p(pc,Rt(pc) )] 
and p{x,y)  = {Syf  -  Sx.

It su ffices  therefore to prove that the substitution theorem  holds for 
these initial functions and is  p reserved  under substitution and the given  
recu rsion . From the original proof of the substitution theorem given in [1 ],  
we have

(i -  \x,y\)F(pc + (y -  x ) )  = (1 -  \x,y\)F(x)
(i -  |)F(y + ̂  - y)) = (i -  \x,y\)F(y)

In the ca se  of F (z) = z  + a we have

(i -  \x,y \) {(pc + (y -  x ) )  + a) = (I -  \x,y\) (pc + a)
(I -  I) ( ( y + ( x - y ) )  + a ) = ( l -  \x,y\) (y + a)

But from Sbgs and x + (y -  x) = y  +(pc -  y), [x  +(y -  %)] + « = [y +(pc -  y)] + a 
and hence from Sbg?

(i -  \x,y\) [{x + (y -  x ) )  + a\ = (1 -  \x,y\) [(y +(x -  y ) )  + a]

Hence

(1 -  \x,y \)(pc + a) = (1 -  \x,y I) (y + a)

Thus we have derived the substitution for the function F(z)  = z  + a.
In the way, using Sbgi, Sbgg, Sbgg, Sbgg, Sbg?, we may obtain the substitu 

tion theorem  for the initial functions u + u — v, u.v.
In the following proof of the substitution theorem  for the function Rt(pc), 

I shall use theorem s of the proportional calculus, which may ea sily  be
proved by deriving their corresponding equations in recu rsive  arithm etic. 
The theorem s concerned are

(1 ) (pc -  X*) —* (Sx = Sar')
(2) (y = y ') (Syf  = (Sy' f
(3) ( (v = x')  & (y = y ’) )  (Sy'f — Sx = (Sy' f  — Sx'
(4 ) & (flt(x) = m ix ' )  ) —  p(x,Rt(x)) = p(x',Rt(x'))
(5 ) (?c=x')& (Rt(x) = R t ( x ' ) ) R t ( x )  + (1 -  p(x,Rt(x))) = Rt<x' ) + ( ! - p(x ' ,R t(x '))
(6) (pc=x')& (Rt(x) = Rt(x')  ) Rt(Sx)  = Rt(Sx')

We now prove

((x = X ' ) -*  Rt(x)  = Rt(x' ) )  — (Sx = Sx'  — Rt(Sx)  = Rt(Sx'))

with a,b,c  standing for lx,x'l  (and hence for |Sx,Shr'|, \Rt(x), Rt(x')\ , 
|Af(&r), Rt(x')\  resp ectively ), we require to prove

(7) (1 -  (7 -  a)b)  (1 -  a ) c  = 0 .
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From  (6)

(i -  {a + b) )  c = 0.

so  that

(i -  {a + b) )  {1 -  a) c = 0.

Hence

(i -  a ) c  -  b (1 -  a ) c  = 0

because a{ l  -  a) = 0. Therefore

(8) {1 -  a)c{ l  -  b ) =  0.

Hence

(9) (i — (i ~ a)b) {1 — a)c  = {1 — a ) c  — (i -  «) (i -  a)bc
-  {1 -  a ) c  -  (1 -  a)bc
= (i -  a ) c { l - b )
= (9

from  (8). Therefore

(10) (y = = Rt(pc )̂ ) — (&c = Sx* —  Rt(Sx) = Rt(Sx*))

Now define P{x,x^)= (i - Rt(x),  Rt>x')\
Then, from  (9),

P(pc,x*) = 0 P{Sx, Sx*) = 0.

But, from  Eg,

Pipc,0) = (i -  x)\Rt(pc), Rt{0) \ = 0.

Sim ilarly

P{0,x*) = 0.

Hence, by Ig,

P{x,x*) = 0.
(pc = X*) — * {R^(%) = Rtx*}

We have now proved the substitution theorem  for all the initial functions.
Now suppose the substitution theorem  holds for the particular functions

f , g ,  i .e .

(11) X = y ~^f(pc) =f (y )

and

(12) X = y  -^g(pc) = g(y).

From  Sbi and (11) we have

(13) g(pc) = g(y)  -*f(g(pc)) =f (g(y ) ) .
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We now use the schem a

(14) p q  
q Y 
p r

which m ay be proved by a consideration of the corresponding equations in 
recu rsiv e  arithm etic.

Hence from (12), (13),

X y  -^f{g(pc)) = f { g ( y ) )

i.e . the substitution theorem  is  p reserved  under com position.
Now consider (j>(pc) defined by the recu rsion  (j)(0) = 0, <j)(Sx) = R(<̂ (% ) ) and 

suppose the substitution theorem  holds for H.
Define P(pc,y) = (i -  U ,yl)l0(^), 0(y)l. Then, using Eg

(15) Pipc^O) = (i -  x)\({>{x) , 0(d)I = 0 

and

(16) P(0,Sy)  = 0.

We now derive the resu lt

{a = a*) = b*) (a = b a* = b*) } .

As we observed above

(1 -  \x,y\)F(pc + (y -  %) ) = (i -  \x,y\)F{x) 

and so with Fipc) = \xjt\

(1 -  \x,y\)\x + (y -  x), t  \ = (i -  \x,y\)\x,t\ .

Sim ilarly

(i - \x,y\)\y + (x-y) ,  t\ = (1 - \x,y\)\y, t \

Using X + iy -  x) = y  + (pc -  y) ,  and the given specia l c a se s  of Sbg we obtain 

(i -  \x,y\)\x + (y -  x), t \ =  (1 -  \x,y\)\y + (x -  y) , t \  .

Hence

(17) (i -  l^,yl)k,^l = (J -  k ,y |) |y ,^ |

Now using (17) and rearranging factors

(i -  \a,a*\)(l  -  \b,b*\)(l  -  \a,b\)\a*,b*\= (1 -  \b,b*\)(l  -  \a,a*\)
(1 -  \a,b\)\a,b\

= 0.

Hence

(18) a* -^{b = b* (a = b a* = b*)}  .

Replacing a , a ' , b y  R(0(jc)), 0 (Sjv), i7(0(y) ), 0(Sy ) resp ectively

H((j)(x)) = <p(Sx) —>{R(0(y)) = <j)(Sy) —> (H((j)(x)) = R(0(y)) -^(j)(Sx) = 0(Sy))}
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From  the definition of 0, using modus ponens tw ice  

R (0 k )) = H(<p(y)) —> (j)(Sx) = (j)(Sy)

U sing the substitution theorem  for R,

0 k )  = 0(v) —̂ i7 (0k )) = R(0(y)> 

and hence by schem a (14)

(19) (j)(x) = 0(y) —» (j)(Sx) = (f>(Sy).

We now prove

(20) P(x,y)  = 0 - ^  P(Sx,Sy) = 0.

With <2, b, c standing for k ,y |,  |0 k ) , 0(v)l, l0 (S%), 0(Sy)| resp ectiv e ly  there  
is  represented  by the equation

(21) (i - (i -  a)b) (1 - a ) c  = 0

With f (a)  standing for the left hand sid e, f(Sa) = 0 and f (0)  = ( l - b ) c  = 0 from
(19) and hence, using Eg f (a)  = 0.

Now using Ig with conditions sa tisfied  by (15), (16), (20), we obtain

X = y  -* 0(%) = 0(y)

Hence the substitution theorem  is  p reserved  under the given recursion  
and thus it holds for a ll recu rsiv e  functions.

My thanks are due to P ro fesso r  R. L. Goodstein for help and en 
couragem ent in the preparation of th is paper.
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