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Abstract. A simple empirical CO2 model (SECM) is pre-
sented to estimate column-average dry-air mole fractions of
atmospheric CO2 (XCO2) as well as mixing ratio profiles.
SECM is based on a simple equation depending on 17 em-
pirical parameters, latitude, and date. The empirical parame-
ters have been determined by least squares fitting to NOAA’s
(National Oceanic and Atmospheric Administration) assimi-
lation system CarbonTracker version 2010 (CT2010). Com-
parisons with TCCON (total carbon column observing net-
work) FTS (Fourier transform spectrometer) measurements
show that SECM XCO2 agrees quite well with reality. The
synthetic XCO2 values have a standard error of 1.39 ppm
and systematic station-to-station biases of 0.46 ppm. Typi-
cal column averaging kernels of the TCCON FTS, a SCIA-
MACHY (Scanning Imaging Absorption Spectrometer for
Atmospheric CHartographY), and two GOSAT (Greenhouse
gases Observing SATellite) XCO2 retrieval algorithms have
been used to assess the smoothing error introduced by us-
ing SECM profiles instead of CT2010 profiles as a priori.
The additional smoothing error amounts to 0.17 ppm for a
typical SCIAMACHY averaging kernel and is most times
much smaller for the other instruments (e.g. 0.05 ppm for a
typical TCCON FTS averaging kernel). Therefore, SECM is
well suited to provide a priori information for state-of-the-
art ground-based (FTS) and satellite-based (GOSAT, SCIA-
MACHY) XCO2 retrievals. Other potential applications are:
(i) near real-time processing systems (that cannot make use
of models like CT2010 operated in delayed mode), (ii) “CO2

proxy” methods for XCH4 retrievals (as correction for the
XCO2 background), and (iii) observing system simulation
experiments especially for future satellite missions.

1 Introduction

Our current knowledge about atmospheric CO2 concentra-
tions and surface fluxes at regional scales over the globe
comes primarily from ground-based in situ measurements of
air sampling networks and tall towers. These measurements
are used by assimilation systems like NOAA’s (National
Oceanic and Atmospheric Administration) CarbonTracker
(Peters et al., 2007, 2010), modeling global distributions of
atmospheric CO2 mixing ratios and surface fluxes. There-
fore, within this publication, we consider CT2010 (Carbon-
Tracker version 2010) as current knowledge and reasonable
a priori estimate for atmospheric CO2 concentrations. How-
ever, due to the sparseness of measurements, there are still
large uncertainties especially on the surface fluxes (Stephens
et al., 2007). Satellite and ground-based remote sensing mea-
surements of column-average dry-air mole fractions of at-
mospheric CO2 (XCO2) are promising candidates to signif-
icantly reduce these uncertainties in the future (Rayner and
O’Brien, 2001; Houweling et al., 2004).

Current satellite and ground-based XCO2 retrieval tech-
niques require more or less realistic estimates of true atmo-
spheric concentrations. This information is used as a priori,
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first guess, and/or linearization point (e.g.Buchwitz et al.,
2000; Barkley et al., 2006; Bösch et al., 2006; Washenfelder
et al., 2006; Connor et al., 2008; Schneising et al., 2008; Butz
et al., 2009; Reuter et al., 2010; Bösch et al., 2011; Wunch
et al., 2011; Yoshida et al., 2011). In this context, the indi-
vidual retrieval algorithms use various different approaches.
Some use profiles constant in height, time, and space (e.g.
Buchwitz et al., 2000; Schneising et al., 2008), some use
climatological profiles constant only in time and space (e.g.
Reuter et al., 2010), and others use complex models to gener-
ate a priori profiles for each individual sounding (e.g.Bösch
et al., 2011; Wunch et al., 2011).

Typically, a XCO2 retrieval’s sensitivity can deviate from
unity within the atmospheric column. Broadly spoken, the re-
trieval “sees” only parts of the atmosphere and the “hidden”
parts are complemented with the a priori knowledge. This
means one would like to use an a priori as realistic as possi-
ble, because the retrieval result contains part of the a priori.
For the same reason, one would like to use a simple, traceable
a priori, so that one can always distinguish between features
coming from the measurement and from the a priori.

We present a simple empirical CO2 model (SECM), which
addresses these needs but can be used for various other appli-
cations also (as discussed later). SECM is basically an empir-
ical expression with coefficients determined by least squares
fitting CT2010 XCO2 background fields.

Describing the spatial and/or temporal distribution of at-
mospheric CO2 through curve fitting or regression has a
long tradition in the in situ measurement community. For
individual measurement sites, e.g.Keeling et al.(1976) de-
scribed the temporal evolution by a superposition of a trend
component and a series of harmonic terms.Komhyr et al.
(1985) applied the spline fitting technique to surface-based
CO2 measurements of NOAA’s flask sampling network in
order to analyze the latitudinal distribution and temporal
evolution. The work ofMasarie and Tans(1995) is the ba-
sis for NOAA’s GLOBALVIEW (http://www.esrl.noaa.gov/
gmd/ccgg/globalview/) product. They developed a spatial
and temporal inter- and extrapolation scheme for NOAA’s
flask sampling network utilizing individual site records (and
climatologies) as reference time series. SECM differs from
earlier approaches as it (mainly) aims at global column aver-
ages (XCO2) rather than boundary layer concentrations. Ad-
ditionally, SECM is not based on reference time series but on
an empirical expression only.

In the following section, a simple empirical equation esti-
mating the global distribution of XCO2 is given. Afterwards,
an equation is presented to also estimate a simplified profile
shape (Sect.3). The corresponding parameterized error co-
variance matrix is given in Sect.4. This matrix describes the
uncertainty (and correlation) of the a priori and correspond-
ingly influences the weight assigned to the a priori informa-
tion in an optimal estimation retrieval. In Sect.5 SECM is
validated with TCCON (total column carbon observing net-
work) FTS (Fourier transform spectrometer) measurements.

Fig. 1. Pacific transect (−150◦ E, 12:00 local time) for CT2010
(left) and SECM (right).

In order to prove SECM’s usability as a priori informa-
tion for state-of-the-art satellite and ground-based XCO2 re-
trievals, we analyze the smoothing error introduced when
using SECM instead of CT2010 (Sect.6).

2 XCO2

Our first step aims at finding a simple empirical description
of the global XCO2 distribution. Given the coarse assump-
tion that the longitudinal dependency of XCO2 can statisti-
cally be neglected, we use CT2010 as an estimate for the true
XCO2 . In order to have a good estimate for background con-
centrations, we analyze a Pacific north/south transect being
less influenced by local land sources and sinks (see Fig.1).
We then fit the parametersa00–a14 of the XCO2 estimation
function Xe so that the squared differences to the CT2010
transect are minimized:

Xe(t, l) = a00+ a01t + a02tanh(a03l + a04) + S(t, l). (1)

As one can see,Xe basically depends on the datet (in units
of years since 2003) and latitudel. Geophysically,a00 and
a01 account for a linear year-to-year increase mainly driven
by anthropogenic CO2 emissions.a02–a04 define the back-
ground north/south gradient with typically larger values at
northern latitudes due to anthropogenic emissions.S repre-
sents the seasonal component modulating the increase and
north/south gradient depending on date and latitude.

S(t, l) = (a05tanh(a06l + a07) + a08t)sin(2π t + a09l)

+ (a10tanh(a11l + a12) + a13t)sin(4π t + a14l) (2)

The seasonal component has a 12-month period with
a latitudinal-dependent phase (a09l) and a 6-month
period with a latitudinal-dependent phase (a14l)
(see e.g.Baldocchi et al., 2001; Chamard et al., 2003).
Keeling et al.(1976) showed that only little information
is contained in higher harmonics. The amplitudes of both
periods are defined bya05–a08 and a10–a13, respectively.
They can vary with latitude (e.g. due to more vegetation at
northern latitudes (Conway et al., 1994)) and time (e.g. due
to changing biospheric activity (Keeling et al., 1995)).
Table1 lists the fit results for the parametersai and Fig.1
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Table 1.Least squares fit results for parametersai (Eq.1 and2) and
ci (Eq.3).

Parameter Value Parameter Value

a00 373.09ppm a01 1.923ppma−1

a02 1.605ppm a03 0.033/◦

a04 0.623 a05 5.470 ppm
a06 0.00602/◦ a07 0.179
a08 0.133ppma−1 a09 0.00351/◦

a10 −7.254 ppm a11 0.00166/◦

a12 0.0711 a13 0.0125ppma−1

a14 −0.00239/◦

c0 25.93ppm c1 2.259

shows the comparison of CT2010 and synthetic values
using Eq. (1).

In order to quantify the quality of the estimates derived
with Eq. (1), we used an independent data set of 10 000 glob-
ally, randomly chosen CT2010 CO2 profiles in the period
2003–2009 from which we calculated XCO2. The standard
deviation of the difference, referred to as standard error in
the following, amounts to 0.99 ppm in total, 1.15 ppm in the
Northern Hemisphere (30◦ N–90◦ N), 1.06 ppm in the trop-
ics (30◦ S–30◦ N), and 0.92ppm in the Southern Hemisphere
(90◦ S–30◦ S). The correlation between both data sets is 0.97.

3 Profile shape

In the second step we try to find a simple empirical function
xe defining the shape of a mixing ratio profile at given XCO2:

xe(p, t, l) = c0 (0.5p2
t − pt) +

c1S(t, l) (pt − 0.5− 0.5p2
t ) +{

c0p : p ≤ pt
S(t, l)c1 (p − pt) + c0pt : p > pt .

(3)

This equation estimates the mixing ratio for the pres-
sure (height)p given in fraction of surface pressureps,
i.e.pε [0,1]. The parametersc0 andc1 are determined simi-
larly asa00–a14 by least squares fitting to CT2010 mixing ra-
tio profiles (see Table1). At the pressurept = 0.2 (also given
in fraction of surface pressure), the simplified atmosphere is
split into two differently handled parts (approximately tropo-
sphere and stratosphere). The first two lines of Eq. (3) only
account for preserving XCO2, while the profile shape is de-
fined in the last part of Eq. (3). The idea is to have a lin-
ear decrease (with decreasing pressure) in the stratosphere
(p ≤ pt). This accounts for slow mixing processes resulting
in “older” air (with lower CO2 mixing ratios) towards the top
of the atmosphere.

Within the troposphere, Eq. (3) approximates the profile
also with a linear relation having a continuous transition to
the stratosphere. In contrast to the stratosphere, the slope in

Fig. 2. Exemplary CT2010 and SECM profiles: Northern Hemi-
spheric winter (left), Northern Hemispheric summer (middle), and
tropical (right).

the troposphere depends on the seasonal componentS. This
results in increasing values (with height) in the growing sea-
son, where lowest values can be expected near the surface.
Figure2 shows the estimated profiles for three examples and
corresponding CT2010 profiles. Obviously, Eq. (3) can re-
produce the CT2010 profile shape to some extent, but, espe-
cially in the lower boundary layer close to regional sources
and sinks, distinct differences between SECM and CT2010
can be observed (see also Fig.3). Additionally, the profile
shapes could be improved if variations of the tropopause
height were taken into account. In more complex future ver-
sions of SECM, one could realize this by, e.g., introduc-
ing additional model parameters accounting for latitudinal
and/or seasonal variations ofpt.

4 Error covariance matrix

We again use the randomly chosen data set of 10 000 CT2010
CO2 profiles to derive the error covariance matrix of SECM
in comparison to CT2010. Figure3 shows the error corre-
lation matrix and the corresponding profile of the standard
deviation of the difference between SECM and CT2010. We
now use a simple correlation model (also used as an example
in the textbook ofRodgers, 2000) to parameterize the corre-
lation matrixC:

Ci,j = e−|pi−pj |/ξ . (4)

Here,pi andpj are the normalized pressure values of layers
i andj , ξ is the correlation length. Least squares fitting of the
measured and parameterized error correlation matrix results
in an optimal correlation length ofξ = 0.30. The profile of
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Fig. 3.Error correlation matrix (SECM vs. CT2010) of 10 000 glob-
ally, randomly chosen profiles in the period 2003–2009 (left), pa-
rameterized error correlation matrix (middle), and corresponding
standard error profiles (right).

standard deviationsσi was parameterized with (see Fig.3)

σi = (1.25+ 1.75p5
i )ppm. (5)

The elements of the parameterized error covariance matrixS
can now be calculated with

Si,j = Ci,j σi σj . (6)

The parameters of Eq. (5) have been chosen in a way that
they subjectively fit the profile of standard deviations. Addi-
tionally, the chosen parameters ensure that the XCO2 vari-
ance which can be calculated fromS is consistent with the
variance directly calculated from the XCO2 difference be-
tween SECM and CT2010.

It should be kept in mind that the parameterized covari-
ance matrix only describes errors of SECM in respect to
CT2010. The total error consists of an additional part be-
cause of differences between CT2010 and true atmospheric
profiles. This means the parameterized covariance matrix can
only be a reasonable approximation of the total error if the
total error is dominated by the differences between SECM
and CT2010. The differences between CarbonTracker and
ground-based FTS measurements shown in the publications
of, e.g.,Reuter et al.(2011), Schneising et al.(2011), and
Keppel-Aleks et al.(2012) indicate that this is probably not
always the case. Therefore, a more realistic estimate of the
total covariance structure could be determined by either de-
riving one covariance matrix from a comparison of SECM
vs. truth or by combining two covariance matrices from a
comparison of SECM vs. CT2010 (shown here) and a com-
parison of CT2010 vs. truth (similar to the work ofEguchi
et al., 2010).

5 Comparison with TCCON

From Sect.2 we already know that the synthetic XCO2 gen-
erated with SECM follows CT2010 quite well statistically. In
this section, synthetic XCO2 values are compared with TC-
CON measurements. From the results we can estimate how

well SECM reproduces reality. For each “good” flagged TC-
CON measurement in the period 2006–2010, we computed
a corresponding SECM value (Fig.4). SECM agrees with
an average standard error of 1.39 ppm with TCCON (even
though SECM has no diurnal component). This agrees rea-
sonably well with the 0.99 ppm error obtained in comparison
with CT2010 (Sect.2), given the fact that TCCON measure-
ments have a single measurement precision of about 0.6 ppm
(Toon et al., 2009). The station-to-station bias (standard de-
viation of all station biases) amounts to 0.47 ppm, which is
comparable to the TCCON accuracy (1σ ) of about 0.4 ppm
(Wunch et al., 2010).

Despite the overall good statistical agreement, one can find
some small but systematic deviations at some of the TCCON
sites. At Bialystok, Bremen, and Park Falls, one can find
less pronounced seasonal amplitudes resulting in a too slow
spring drawdown and fall increase. At Darwin, the curvature
in the SECM time series does not agree well with TCCON.
However, the seasonal cycle is less pronounced here and dif-
ferences become more apparent. The reasons for these de-
viations can be found in the simplicity of SECM but also in
shortcomings of CT2010 (e.g.Reuter et al., 2011; Schneising
et al., 2011; Keppel-Aleks et al., 2012).

6 Smoothing error

The column averaging kernel (vector) of a XCO2 retrieval
describes its height- (or pressure-) dependent sensitivity to
the true CO2 mixing ratio. A perfect retrieval would have an
averaging kernel which is unitary in every height under ev-
ery measurement condition. Unfortunately, reality is differ-
ent and averaging kernels vary from unity. This results in the
so-called smoothing error, which is non-zero if the retrieval’s
a priori CO2 profile differs from the true profile. In the fol-
lowing, we calculate the smoothing error profile1x, which
would be introduced when using SECM (xsecm) instead of
CT2010 (xct) as a priori profile.

1x = (A − I)(xct − xsecm) (7)

Here A is the diagonal column averaging kernel matrix,
which is defined by the retrieval’s column averaging kernel
(vector). The column-average smoothing error1X, i.e. the
XCO2 smoothing error, can be derived by integration of
Eq. (7) over all (dry-air) pressure intervals1p:

1X =

∑
1xi 1pi . (8)

Figure 5 shows typical averaging kernels of three state-of-
the-art satellite-based full physics retrievals and the TCCON
FTS retrieval algorithm (Washenfelder et al., 2006; Wunch
et al., 2011). The satellite retrievals are SCIAMACHY BESD
(Bremen optimal estimation DOAS,Reuter et al., 2010),
GOSAT RemoTeC (developed at SRON,Butz et al., 2009),
and GOSAT UOL-FP (University of Leicester Full Physics
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Fig. 4. XCO2 time series of various TCCON sites and corresponding SECM values together with per station statistics: biasd (in ppm),
standard errors (in ppm), and correlation coefficientr. There are two Lauder data sets, because a new instrument has been put into operation
in 2010.
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Fig. 5.Typical column averaging kernels of four different XCO2 re-
trieval systems: FTS TCCON, SCIAMACHY BESD, GOSAT Re-
moTeC, and GOSAT UOL-FP. The FTS TCCON column averag-
ing kernel is typical for a solar zenith angle for 50◦. The averaging
kernels of SCIAMACHY BESD and GOSAT RemoTeC represent
global mean averaging kernels for August 2009. The averaging ker-
nel of GOSAT UOL-FP is the global mean averaging kernel for
September 2009.

algorithm,Connor et al., 2008; Bösch et al., 2011). The aver-
aging kernels depend not only on the instrument but also on
the retrieval technique. This explains the differences between
the averaging kernels of GOSAT RemoTeC and GOSAT
UOL-FP.

We used the averaging kernels to calculate the smoothing
error 1X, which would have been introduced when using
SECM instead of CT2010 as a priori profiles. For this pur-
pose, we analyzed the 10 000 profiles of the randomly cho-
sen data set (used before) and corresponding SECM profiles.
The results are summarized in Table2, which also shows the
smoothing error introduced by a constant 380 ppm mixing
ratio profile (as benchmark) and a constant mixing ratio pro-
file with XCO2 calculated by SECM. Our results show that
it is always better to use SECM profiles instead of a constant
380 ppm profile. Using SECM profiles with height-constant
mixing ratios only slightly enhances the smoothing error.

Reuter et al.(2011) estimated the single measurement pre-
cision of BESD with 2.5 ppm; they found station-to-station
biases having a standard deviation of about 0.8 ppm. This
means the smoothing error of 0.83 ppm resulting from con-
stant a priori profiles is comparable to BESD’s accuracy.
In contrast to this, SECM reduces the smoothing error to
0.17 ppm being distinctively lower than BESD’s accuracy
and precision.

The averaging kernel of the GOSAT UOL-FP retrieval
is similar to BESD’s averaging kernel. Consequently, the
resulting smoothing errors are very similar (0.62 ppm

Table 2. Standard smoothing error (in ppm) when using con-
stant profiles with 380 ppm (Const380), constant profiles with
SECM XCO2 (SECMx), and when using SECM profiles instead of
CT2010 based on 10 000 globally, randomly chosen CT2010 pro-
files in the period 2003–2009.

SCIAMACHY GOSAT GOSAT FTS
BESD UOL-FP RemoTeC TCCON

Const380 0.83 0.62 0.08 0.06
SECMx 0.25 0.22 0.03 0.05
SECM 0.17 0.15 0.03 0.05

and 0.15 ppm for the constant and the SECM a priori
profile, respectively).

Compared to BESD and UOL-FP, the TCCON FTS re-
trieval and also the GOSAT RemoTeC retrievals have aver-
aging kernels that are closer to unity. For this reason, the
observed improvement by using SECM instead of a con-
stant a priori profile is less pronounced. All corresponding
smoothing error values are equal to or less than 0.08 ppm
and, therefore, distinctively lower than the FTS instru-
ment’s accuracy (0.4 ppm,Wunch et al., 2010) and precision
(0.6 ppm,Toon et al., 2009).

However, averaging kernels change, e.g., with the solar
zenith angle, so that the effect can be more pronounced un-
der other viewing geometries. In all four cases (Table2),
the SECM introduced smoothing error is significantly lower
than the estimated model transport error of about 0.5 ppm
(Houweling et al., 2010). This becomes important when
doing surface flux inverse modeling.

Note: (i) Statistically, the smoothing error is not necessar-
ily a systematic error, because the averaging kernel as well
as the difference between SECM and truth can vary from
measurement to measurement. (ii) The smoothing error be-
comes less important if XCO2 retrievals are used in an in-
verse modeling framework, accurately employing sounding-
by-sounding averaging kernels within the assimilation pro-
cess. However, in this case, the retrieval still profits from a
well chosen first guess linearization point, which typically
results in better convergence behavior.

7 Conclusions

We presented a simple empirical model (SECM), which can
be used to simulate atmospheric CO2 background concen-
trations in form of mixing ratio profiles and XCO2. We as-
sumed that CT2010 represents our current knowledge on the
global distribution of XCO2, which can be gained (mainly)
from surface-based flask measurements. Therefore, we used
CT2010 to determine the free parameters of the proposed
empirical model. SECM is able to reproduce CT2010 with
a standard error of 0.99 ppm and a correlation of 0.97. In
other words, a simple empirical equation (depending only on
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date and latitude) explains more than 94 % of CT2010’s vari-
ability within the analyzed time period (including, e.g., CO2
weather), i.e. of our current knowledge on atmospheric CO2
concentrations.

The atmospheric CO2 profiles simulated by SECM have
a linear pressure dependency with different slopes in tropo-
sphere and stratosphere. The standard error profile has val-
ues between 1 ppm and 2 ppm over large parts of the atmo-
sphere, which means that SECM is able to roughly reproduce
the profile shape. Larger deviations are found especially near
the surface, where the influence of local sources and sinks
is largest. In addition to SECM estimating XCO2 and CO2
profiles, we proposed a simple parameterization of the er-
ror covariance matrix, so that SECM can be used as a priori
knowledge in an optimal estimation framework without ad-
ditional external information.

We compared SECM XCO2 not only with CT2010 but
also with TCCON FTS measurements. The average stan-
dard error of 1.39 ppm agrees reasonably well with 0.99 ppm
found when comparing SECM with CT2010. The stan-
dard deviation of all station-to-station biases amounts to
0.47 ppm, which is consistent with TCCON’s accuracy of
about 0.4 ppm.

The TCCON comparison goes one year beyond the fit-
ting period 2003–2009. As we found no obvious problems in
2010, we conclude that SECM is also (at least to some extent)
able to extrapolate into the future. In the case of extrapolating
into a more distant future or past, it would be advantageous
to replace the linear increase of Eq. (1) by an exponential or
polynomial term. This, however, could require a longer fit-
ting period to produce stable results. Additionally, one could
think of rejecting the time dependency of the seasonal am-
plitude (a08 anda13) when extrapolating from a short fitting
period.

We analyzed the smoothing error introduced by using
SECM instead of CT2010 in order to assess the usability of
SECM as a priori profiles. For this purpose, we used typi-
cal averaging kernels of four state-of-the-art XCO2 retrieval
algorithms. Our analysis basically shows two things: (i) Us-
ing SECM instead of constant a priori profiles reduces the
smoothing error; (ii) The smoothing error due to SECM is
distinctively lower than the expected retrieval error and typi-
cal model transport errors. Therefore, one can conclude that
SECM is well suited to be used as a priori information for the
analyzed (or comparable) retrieval techniques. Using SECM
also as first guess linearization point furthermore has the po-
tential to enhance the convergence behavior of an iterative
retrieval.

Of course, SECM cannot compete with physics-based
models like CarbonTracker, because it is only a coarse sta-
tistical description of the past. Under no circumstances will
it be able to capture any event deviating from this statistic,
i.e. it is not possible to learn anything new from SECM.
However, SECM has some distinct benefits: (i) SECM is ex-
tremely simple and can be implemented with minimal ef-

fort; (ii) SECM results are easily reproducible without the
need for significant disk space or computing power; and
(iii) SECM is always available.

Beyond the application for a priori information, SECM
can be used for several other applications. Due to its avail-
ability, SECM can be used in a near real-time environment or
for observing system simulation experiments especially for
future satellite missions (e.g.Bovensmann et al., 2010). Its
accuracy meets the requirements to be used as XCO2 back-
ground in “CO2 proxy” methods for XCH4 retrievals (e.g.
Frankenberg et al., 2005; Schneising et al., 2009).
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