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Omega-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid, and docosahexaenoic acid have been shown to have
multiple beneficial antitumour actions that affect the essential alterations that dictate malignant growth. In this review we explore
the putative mechanisms of action of omega-3 polyunsaturated fatty acid in cancer protection in relation to self-sufficiency in
growth signals, insensitivity to growth-inhibitory signals, apoptosis, limitless replicative potential, sustained angiogenesis, and

tissue invasion, and how these will hopefully translate from bench to bedside.

1. Introduction

Fatty acids (FAs) are a diverse group of molecules. The
fatty acyl structure represents the major building block of
complex lipids and FAs should be regarded as one of the most
fundamental categories of biological lipids [1]. Fatty acids are
key nutrients that affect early growth and development, as
well as chronic disease in later life. The benefits and potential
risks of FAs go well beyond their defined role as fuel [2].

An FA containing more than one carbon double bond
is termed polyunsaturated fatty acid (PUFA). The most
important families in human metabolism are omega-6 (n-6)
and omega-3 (n-3) PUFAs. Specific n-6 and n-3 PUFAs are
essential nutrients, while the eicosanoids and docosanoids
they derive have distinct biological activities affecting the
prevalence and severity of cardiovascular disease, diabetes,
inflammation, cancer, and age-related functional decline
(1, 2].

Important n-3 PUFAs involved in human nutrition are a-
linolenic acid (ALA or 18 : 3n-3), eicosapentaenoic acid (EPA
or 20:5n-3), docosapentaenoic acid (n-3 DPA or 20:5n-3),
and docosahexaenoic acid (DHA or 22: 6n-3).

ALA is the parent FA of the n-3 PUFA family. ALA is
mainly found in the plant kingdom with high concentrations

in flaxseed oil and perilla oil. It is also found in canola oil,
soybean oil, and vegetable oils from where humans derive it
in their diet. The human body is unable to readily synthesize
ALA, which makes ALA, like linoleic acid (LA or 18:2n-6),
the parent of the n-6 PUFA family, an essential fatty acid [1].

LA and ALA are converted to their respective n-6 and n-3
PUFA families by a series of independent reactions. However
both pathways require the same enzymes for desaturation and
elongation. This leads to competition between n-6 and n-3
PUFA for their metabolic conversion. The first step in the
pathway requires A6 Desaturase [3, 4] which has a higher
affinity for ALA than LA but due to the typically higher
intake and concentration of LA there is greater conversion
of n-6 PUFA producing the predominant product of the
n-6 pathway, arachidonic acid (AA or 20:4n-6) [1, 5-7].
Thus the capacity of human metabolism to derive EPA and
DHA by the desaturation of ALA is negligible in normal
circumstances [1]. The efficiency of conversion is particularly
poor in relation to DHA [6, 8]. The concentration of EPA and
DHA in tissues can however be enhanced by direct ingestion
of either oily fish or as a fish oil (FO) supplement or when
competing amounts of n-6 PUFAs are relatively small [8-10].

Fish are able to build up large concentrations of n-3
PUFAs in their tissues by consuming algae and plankton
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and are therefore the main dietary source of essential n-3
PUFAs in humans. In particular cold-water oily fish such
as mackerel, salmon, herring, anchovies, sardines, and smelt
provide relatively large amounts of EPA and DHA [7].

2. Physiological Effects of Omega-6 and
Omega-3 Polyunsaturated Fatty Acids

n-6 and n-3 PUFAs have a number of vital functions in the
human body [11, 12]. As components of structural phospho-
lipids in the cell membrane, they modulate cellular signaling,
cellular interaction, and membrane fluidity [13].

They regulate the immune system by acting as precur-
sors for eicosanoids-potent immunoregulatory metabolites.
Eicosanoids are synthesised from the n-6 PUFA arachidonic
acid (AA, 20:4n-6) and the n-3 PUFA, EPA. AA and
EPA are metabolised by cyclooxygenase (COX) or lipoxy-
genase (LOX) enzymes into immunoregulatory metabolites
prostaglandins (PGs), thromboxanes (TXs), and leukotrienes
(LTs) [13]. As cell membrane phospholipids generally contain
significantly higher levels of AA than EPA [14], AA is the most
common eicosanoid precursor and gives rise to 2-series PGs
and TXs and 4-series LTs. EPA gives rise to 3-series PGs and
TXs, 5-series LTs, and E-series resolvins [13, 15].

DHA is a poor substrate for COX and LOX and it was
thought that DHA did not produce bioactive COX and LOX
mediators. However, Serhan and others identified bioactive
docosanoids, named D-series resolvins and protectins [15-
17].

AA and EPA also compete for the COX and LOX
enzymes. Again, n-3 PUFAs are preferentially used, so
supplementation with n-3 PUFAs will have a considerable
impact on the production of eicosanoids and docosanoids.
Thus, increased intake of n-3 PUFAs results in decreased
generation of AA-derived eicosanoids and increased EPA
derived eicosanoids and DHA docosanoids [18-21].

It is considered that the eicosanoids and docosanoids
produced from EPA and DHA have less biological activity.
Therefore have the advantage of being less pro-inflammatory
in their action than the potent pro-inflammatory AA-derived
mediators [13, 16, 22]. It is also suggested that they also have
properties which are anti-inflammatory [15-17].

This theoretical benefit is the rationale for the use of FO
supplements in chronic inflammatory disease such as asthma
[23] and rheumatoid arthritis [22]. It is also why there is
significant interest in the use of n-3 PUFA supplementation in
critically ill patients and in patients undergoing major surgery
[24-38].

3. The Role of Polyunsaturated Fatty
Acids in Tumourigenesis

Hanahan and Weinberg in their landmark review “The
hallmarks of cancer” and the subsequent “Hallmarks of the
Cancer: the next generation” suggested that the vast catalog
of cancer cell genotypes is a manifestation of essential alter-
ations in cell physiology that collectively dictate malignant
growth [39, 40].
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The original six essential alterations described are
self-sufficiency in growth signals, insensitivity to growth-
inhibitory (antigrowth) signals, evasion of programmed cell
death (apoptosis), limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis. This results
in the cancerous cell having the predatory properties that
allow it to survive, invade, and multiply where it should
not. Recently the addition of reprogramming of energy
metabolism and evading immune destruction has been sug-
gested. Each of these physiologic changes (novel capabilities
acquired during tumor development) represents the suc-
cessful breaching of anticancer defense mechanisms. They
proposed that these capabilities are shared in common by
most and perhaps all types of human tumors and must be
satisfied for tumour growth to occur within the tumour
microenvironment [39, 40].

EPA and DHA have been shown to have multiple anti-
tumour actions that affect all of the original six essential
alterations that dictate malignant growth. This is a result
of various pathways including inhibition of AA metabolism
and independent effects on various cytokines involved in
tumourigenesis. n-6 PUFA derived eicosanoids have promot-
ing effects in cancer cell growth [41, 42], angiogenesis [42],
and invasion [43]. As previously discussed n-3 PUFAs can
also be metabolized to resolvins and protectins [15, 44]. These
compounds possess immunoregulatory actions [45] and it
is well documented that inflammation plays an important
role in the development of numerous human malignancies
[46-48]. Thus one of the possible mechanisms for inhibi-
tion of tumor growth by n-3 PUFAs is via immunoreg-
ulation through production of 5 series leukotrienes (LT),
3 series prostaglandins (PG) and thromboxanes (TX), and
resolvins—Figure 1 [49].

4. Effects of Omega-3 Polyunsaturated Fatty
Acids on Growth Signals

Normal cells are unable to proliferate in the absence of stim-
ulatory signals from transmembrane receptors, which are
activated by growth factors, extracellular matrix components,
and cell-cell interaction molecules [39]. Conversely, tumour
cells however have a reduced dependence on such exogenous
growth signals. Cancerous cells often bypass this step by
synthesizing their own growth factors [50], overexpressing
cell surface receptors which transmit growth-stimulatory
signals [50, 51] or switching integrins to ones which favour
growth signal transition [39-52]. Also many oncogenes
mimic normal growth signals, promoting proliferation [39,
53].

The overall result is that the cancer cell is self sufficient in
stimulating its own multiplication. The reduced dependence
on exogenous growth signals and stimulation from normal
tissue microenvironment leads to unregulated and exponen-
tial growth.

4.1. In Vitro Evidence. The cell plasma membrane affects
growth factor: receptor interaction and subsequent signal
transduction. EPA and DHA have been shown to have
beneficial effects on the plasma membrane in MDA-MB-231
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F1GURE 1: Inflammatory mediators derived from eicosapentaenoic acid and arachidonic acid. Adapted From Furst 2000.

breast cancer cells with a marked decrease of epidermal
growth factor receptor (EGFR) in lipid rafts, leading to
alteration in EGFR signaling in a way that decreases the
growth of breast tumors [54].

n-3 PUFAs appear to downregulate protein kinase C 52
[55, 56], RAS [57], and nuclear factor xf3 (NF-kB) [58] which
are important cell signaling mediators often found to be
elevated in carcinogenesis.

DHA has also been shown to modulate heat shock pro-
teins that act as “chaperones” in protein: protein interactions
and in cell membrane transport. [59]. DHA is also known to
modulate steroid receptors in human cancer cell lines [60].

Tumour derived nitric oxide (NO) has the ability to pro-
mote tumour growth by enhancing invasiveness of tumour
cells [61, 62]. NO also increases PGE2 production, which is
implicated in tumour growth and progression [62]. EPA and
DHA suppress NO production in macrophage cell lines in a
dose dependant fashion [63, 64].

EPA and DHA inhibited human colon adenocarcinoma
Caco-2 cell proliferation. Cells cultured with EPA or DHA
reached much lower final densities compared to cells cultured
with LA. The authors proposed that low insulin growth factor
II (IGF-II)/IGF binding protein-6 ratios may have resulted
in less free IGF-II a potent cell proliferation promoter and,
consequently, the slower proliferation of Caco-2 cells treated
with EPA or DHA [65].

4.2. In Vivo Evidence. COX-2 over-expression has been
reported in 90% of colon tumours and colonic adenomas
[66]. COX-2 has direct and indirect effects on growth via
upregulation of growth signals and prostaglandins, angio-
genesis, apoptosis, and cell-cell interaction [67]. The specific
effects will be discussed in each subsequent section. In
relation to self-sufficiency, numerous studies have found that
COX-2 and its active metabolite PGE2-levels are reduced by
supplementation of n-3 PUFAs [66, 68, 69]. A prostate cancer
cell xenograft in mice found that the reduced levels of COX-2
and PGE2 were related to a reduction in tumour growth rate,
tumour volume, and serum PSA [70].

Protein kinase C (PKC) A has a tumour suppressor
function. The carcinogen azoxymethane decreases levels of
PKC A. This decrease has been shown to be ameliorated in
rats feed FO [71]. PKC 82, which is induced early in colon
carcinogenesis, leading to self-sufficiency, cancer promotion,
and carcinogen induced epithelial hyper-proliferation [72-
76], is significantly decreased in rats fed FO. This blocked
PKC B2 hyperproliferation [74, 77].

The effect of n-3 PUFAs on growth signal transduction
appears to be multi-faceted, with numerous putative path-
ways identified in the in vitro and in vivo setting (Figure 2).
This suggests that any relationship of n-3 PUFA on tumouri-
genesis is complex.

5. Effects of Omega-3 Polyunsaturated
Fatty Acids on Tumour Insensitivity to
Growth-Inhibitory Signals

Tissue homeostasis and cellular quiescence is maintained
in normal cells by anti-proliferative signals from growth
inhibitory factors (tumour suppressor genes) and from cell-
cell or cell-extracellular matrix interaction. These antigrowth
signals are transmitted by cell surface receptors and may
have 2 potential effects: (1) cells are forced into the quiescent
(GO) state; (2) cells are induced into a post-mitotic state of
permanent dormancy [39].

5.1 In Vitro Evidence. Investigation of the effect of EPA and
DHA on colon cancer cell lines has shown decreases in
cellular proliferation. Mengeaud demonstrated that cellular
proliferation in HRT-18, HT-29, and Caco-2 cell lines is
decreased by EPA [78]. This was replicated in a SIC oncogene
transformant cell line by Tsai who also showed that DHA
reduced cellular proliferation [79]. In two studies using
HT-29 cell lines Clarke reported that EPA reduced cell
proliferation and Chen demonstrated that DHA had a similar
effect [80, 81]. Other studies have also shown decreases in cell
proliferation in response to EPA and DHA [65, 82].
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FIGURE 2: Multi-modal putative mechanisms of action of DHA and EPA on growth signal transduction.

5.2. In Vivo Evidence. In a rodent model of breast cancer,
DHA induced a reduction in mammary tumours accompa-
nied by a 60% upregulation of BRCAI tumour suppressor
protein [83].

Numerous studies have shown a decrease in tumour
cellular proliferation in response to n-3 PUFAs; however the
putative mechanisms are not well documented and further
investigation is required.

6. Effects of Omega-3 Polyunsaturated Fatty
Acids on Tumour Evasion of Programmed
Cell Death

Apoptosis governs the rate of cell attrition. The ability of
tumour cells to expand in number is governed by the balance
of proliferation and apoptosis. Evasion of apoptosis allows
tumour cell mass to increase dramatically and it is a hallmark
of tumourigenesis.

6.1. In Vitro Evidence. The studies previously reported on
HT-29 colon cell lines by Clarke and Chen also showed
increased induction of apoptosis with n-3 PUFAs [80,
81]. Other studies have shown that DHA induces a dose-
dependant effect upon cancer cell apoptosis [84-86].

DHA has been shown to induce cytochrome c release,
which binds to apoptotic protease activating factor initiating
cancer cell apoptosis 85, 87].

n-3 PUFAs alter peroxisome proliferator-activated recep-
tors (PPARs) cell signaling by acting as direct ligands for the
receptors. DHA has been shown to modulate PPAR receptor
expression [88, 89] and induce cellular apoptosis [67, 90, 91].
This was mediated through the effect of PPAR on Syndecan-1
a protein product, which induces apoptosis [67, 91].

EPA and DHA have also been shown to modulate expres-
sion of the Bcl-2 family. They downregulate the expression of
anti-apoptotic proteins Bcl-2 and Bcl-xL and increase levels
of Bak and Bcl-xS pro-apoptotic proteins [92-97].

NFk[3, which has the ability to block programmed cell
death potentiating tumour survival, is downregulated by n-
3 PUFAs in murine macrophages, which decreases COX-2
expression restoring functional apoptosis [23, 98].

6.2. In Vivo Evidence. Hong showed that in a mouse model
of colon carcinogenesis that initiation of tumour growth
was restricted by increased apoptosis related to n-3 PUFA
supplementation [99]. One way in which apoptosis may be
regulated by n-3 PUFAs is via COX-2. COX-2 has been shown
to decrease apoptosis via expression of the Bcl-2 gene. A
reduction of COX-2 and COX-2 inhibition have been shown
to repress the expression of Bcl-2 gene and its anti-apoptotic
properties [67, 67, 69, 91].

The Bcl-2 family also has a pro-apoptotic member Bad.
In its normal state Bad promotes cell death by displacing
Bax from Bcl-2 100, 101]. Phosphorylation of Bad prevents it
from displacing Bax from Bcl-2 subsequently promoting cell
survival [100, 102, 103]. A study by Berquin on Pten knockout
mice showed that prostate tumours from mice with an
enriched n-3 PUFA diet had lower levels of phosphorylated
Bad and higher apoptotic indexes compared to mice on an
n-6 PUFA diet. This led to reduced tumour growth, slowed
histopathological progression, and increased survival rates
[49].

Tumour evasion of programmed cell death is a complex
and controlled by an intricate milieu of intra-cellular signal
transduction pathways and external cytokines, survival fac-
tors, chemokines, growth factors, and death factors. Evidence
suggests that DHA and EPA have effects on many of these
pathways, which seem to be beneficial.

7. Effects of Omega-3 Polyunsaturated
Fatty Acids on Limitless Replicative
Potential of Tumours

Growth signal autonomy, insensitivity to antigrowth signals,
and apoptotic evasion alone do not lead to expansive tumour
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growth because cells have the capacity for senescence, an
intrinsic property that limits multiplication [39, 104]. Senes-
cence can be circumvented by DNA damage and disabling
tumour suppressor genes such as p53 and pRb, which eventu-
ally leads to immortalisation or the ability to multiply without
limit [105].

71 In Vitro Evidence. AA may promote tumour growth and
replication via activation of protein kinase C stimulating
mitosis [106]. Studies in colonocytes and JB6 cells—mouse
epidermal cells—have shown that growth promotion via
the transcription factors RAS and AP1 is reduced by n-3
PUFAs [107, 108]. The second messengers of AA metabolism
with COX and LOX also stimulate mitosis. Conversely EPA
derived metabolites of COX and LOX have been shown to
decrease growth of human breast cancer cell lines [42].

72. In Vivo Evidence. Numerous animal study models in
colon cancer have demonstrated that n-3 PUFA supplemen-
tation leads to tumour growth suppression [68, 109-115].

It had been demonstrated in the rat colon that n-3 PUFAs
reduced k-RAS mutations and decreased membrane RAS
expression [116] and it has been suggested that this indicates
that n-3 PUFAs may protect against colon carcinogenesis by
decreasing DNA adduct formation and/or enhancing DNA
repair [117]. In the study already discussed by Hong they also
showed that there was a reduction in DNA adduct formation
[99]. Reddy showed that initiation of experimentally induced
colon cancer was reduced by the protective effect of n-3
PUFAs [118].

In xenografted rats carrying neuroblastoma tumours,
Gleissman demonstrated that DHA-enriched diet prior to
tumour cell injection delayed tumour formation and pre-
vented tumour establishment [119]. In the same study Gleiss-
man investigated the effect of DHA as a therapeutic agent
in rats who had established tumours. Tumours in animals
receiving high dose DHA showed partial response compared
to animals receiving low dose DHA or control that showed
stable disease and progressive disease, respectively [119].

Another therapeutic study performed in nude mice
xenografted with BxPC-3 pancreatic cancer cells showed
tumour inhibition by DHA. Interestingly the inhibition was
increased in another group where DHA was combined with
curcumin [120].

8. Effects of Omega-3 Polyunsaturated Fatty
Acids on Sustained Angiogenesis

For a tumour to grow beyond 2mm, angiogenesis and
neovascular formation are required. The ability to induce and
sustain angiogenesis from vascular quiescence is controlled
by the “angiogenic switch” Tumors appear to activate the
angiogenic switch by changing the balance of angiogenesis
inducers and countervailing inhibitors [121]. This is seen with
increased production, expression, and signal transduction of
pro-angiogenic factors such as vascular endothelial growth
factor (VEGF). n-3 PUFAs have been shown to have a
profound effect on angiogenesis [122].

8.1. In Vitro Evidence. n-3 PUFAs have been shown to
decrease sprouting angiogenesis by suppressing VEGF-
stimulated endothelial cell proliferation, migration, and tube
formation [123-125]. Tsuzuki and colleagues treated human
umbilical vein endothelial cells with conjugated EPA and
demonstrated that a reduction in sprouting angiogenesis
tube formation and endothelial cell migration [123] was
also seen in bovine aortic endothelial cells pre-treated with
DPA. VEGEF-Receptor (VEGEF-R) 2 expression was also found
to be suppressed [124]. The reduction in endothelial cell
proliferation in response to EPA was shown to be dose
dependant in bovine carotid artery endothelial cells [125].
The study by Yang et al. also elicited a dose dependant
decrease in VEGF-1 (FIK-1) expression [125]. A reduction in
VEGF/VEGF-R binding has also been demonstrated by Yuan
et al. using an n-3 PUFA rich shark oil [126].

n-3 PUFAs also have stark effects on numerous other
mediators involved in angiogenesis. Platelet derived growth
factors (PDGF) play an important role in angiogenesis by
stimulating fibroblast and vascular smooth muscle cell motil-
ity and acting as a chemo-attractant [127,128]. As early as 1988
Fox and DiCorleto showed that in vitro production of PDGF
was inhibited by n-3 PUFAs [129]. Investigating the effects
of EPA and DHA on PDGF signal transduction Terano and
colleagues demonstrated that EPA inhibited PDGF binding
to its receptor and suppressed c-fos mRNA expression, a gene
involved in receptor signal transduction. These effects led to
inhibition of smooth muscle proliferation a prerequisite for
angiogenesis [130].

As previously discussed PGE2 is formed from AA, catal-
ysed by COX-2. There is well-defined link between E series
prostaglandins and carcinogenesis [131]. Decreased levels of
VEGE COX-2, and PGE2 have been demonstrated in HT-29
colon cancer cell lines when cultured in vitro with EPA and
DHA [112] and a synergistic inhibitory effect of n-3 PUFAs
and COX-2 inhibitors on growth of human colon cancer cell
lines has been shown [60, 132].

Nitric oxide (NO) promotes endothelial cell survival
and proliferation and inhibits apoptosis [133, 134]. NO and
COX-2 also regulate VEGF-mediated angiogenesis [135-
137]. Inducible nitric oxide synthase (iNOS) stimulates NO
production [136].

DHA has been demonstrated to inhibit NO production
and iNOS expression in murine macrophages [63, 64, 138-
140] and downregulate NO and nuclear factor kappa beta
(NFKB) in human colon cancer cell lines [141].

In the study previously discussed by Tsuzuki et al., they
also demonstrated that production of matrix metallopro-
teinases (MMP) 2 and 9—proteases which play a role in
basement membrane proteolysis in the 3rd stage of sprouting
angiogenesis—in human endothelial cells was inhibited by
EPA [123].

It has also been demonstrated that DHA inhibits
Beta-catenin—a transcriptional regulator of angiogenesis—
production in colon cancer cells [142].

8.2. In Vivo Evidence. In a study where Fischer 344 rats
were implanted with fibrosarcomas, the group with diets
supplemented with EPA had tumours with significantly lower
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FIGURE 3: Pathways leading to the anti-angiogeneis effect of DHA and EPA.

tumour volume and decreased VEGF-alpha mRNA levels
[143].

A study in nude mice supplemented with n-3 PUFA
undergoing implantation of human colorectal carcinomas
showed that tumour expression of VEGF, COX-2, and PGE2
was decreased compared to control [112]. Benefits were also
seen in nude mice transplanted with breast carcinoma. Breast
tumours in mice feed diets high in EPA and DHA had lower
tumour microvessel density and VEGF levels compared to
controls [144, 145].

Induction of vascular smooth muscle cell migration by
PDGE required for angiogenesis, is inhibited by EPA and
DHA in vivo [130]. Several other small animal models have
demonstrated that n-3 PUFA enriched diets inhibit COX-
2 and PGE2 production [146] and reduced HT-29 colon
cancer cell tumour growth and microvessel density after
implantation into nude mice [112].

Factors such as PGE2, NO, COX-2, and NFKB have
well-documented roles in both the inflammatory and angio-
genic cascades with significant cross-relation in both path-
ways. This demonstrates the potential for n-3 FAs as anti-
angiogenic agents via inhibition of these factors and others
including VEGF and PDGF (Figure 3).

9. Effects of Omega-3 Polyunsaturated
Fatty Acids on Tumour Tissue Invasion
and Metastasis

Metastases are the cause of 90% of human cancer related
deaths [147]. Like the formation of the initial tumour the
above 5 characteristics are required for metastasis formation.
Metastasis and tissue invasion also require loss of cell-cell
adhesion-regulated by cell adhesion molecules (CAMs)—and
cell-.ECM interactions-regulated by integrins [39, 148]. E-
cadherin, a CAM, is lost in the majority of epithelial cancers,
which enables invasion and metastases [149]. Once at a new
site tumour cells then shift the expression of integrins to
facilitate preferential cell binding to allow the tumour to
“seed” leading to subsequent distant growth.

9.1. In Vitro Evidence. DHA has been shown to reduce the
induction of monocyte rolling, adhesion, and transmigration
controlled by TNFa« [150].

As previously discussed NO increases tumour growth and
angiogenesis [61, 62, 151-153]. NO also plays an important

role in tumour cell migration, which may be decreased
by EPA and DHA supplementation due to suppression of
tumour derived NO production [63, 64].

Cell-cell adhesion is modulated by DHA via down regula-
tion of Rho GTPase, which inhibits cytoskeleton reorganisa-
tion [154], and reduction in ICAM-1and VCAM-1 expression
[155].

9.2. In Vivo Evidence. Again the COX-2 pathway plays an
important role in each of the tumour development path-
ways. COX-2 reduces cell-cell and cell-matrix interactions
leading to increased progression and metastases of gastric
carcinoma [156, 157]. COX-2 inhibition has been shown to
reduce invasiveness and depress metastases of gastric cancer
in various animal models [67]. A xenograft animal model
showed inhibition of tumour cell growth and invasion by n-
3 PUFAs associated with decreased COX-2 and PGE2 levels
[70]. n-3 PUFAs may act as a natural COX inhibitor [158].
Despite the wealth of evidence of the beneficial anti-tumour
effects of DHA and EPA via downregulation of the COX-2
pathway a study by Boudreau has suggested that there are also
COX-2 independent methods of protective action. In a colon
cancer xenograft model, tumour formation was inhibited by
n-3 PUFA supplementation in both COX-2 deficient and
COX-2 overexpressing tumours [111].

Inhibition of metastases by n-3 PUFA enriched diets was
demonstrated in both mouse and rat [159, 160] models of
colorectal cancer. EPA and DHA have also been shown to
suppress development of lung metastases due to reduced 72-
kDa type IV collagenase gelatinolytic activity [161].

There is a large and growing body of evidence from
laboratory-based studies that n-3 PUFAs have a marked
beneficial effect on the hallmarks of cancer. However do these
mechanistic studies translate into a clinical benefit?

10. Effects of Omega-3 Polyunsaturated Fatty
Acids on Tumourigenesis in Humans

As well as the cellular mechanisms described in the in-vitro
and in-vivo studies above, epidaemiological observations
also appeared to suggest a benefit of n-3 PUFA in cancer
prevention in humans. An example is an observational
study in Inuits—Inuits have DHA levels several times higher
than Caucasians [162] —which has demonstrated significantly
lower levels of childhood cancer occurrence, particularly
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neuroblastoma—tenfold decrease—and Hodgkin lymphoma
[92, 163].

However, a systematic review of the “Effects of omega-
3 fatty acids on cancer risk” by MacLean et al. reviewed
38 articles published from 1966 to 2005 which included 65
estimates of association calculated over 20 differing cohorts
for 11 different cancer types concluded that only 10 were
statistically significant and that the body of literature does not
provide evidence to suggest a significant association between
n-3 PUFA and cancer incidence. They also stated that dietary
supplementation with n-3 PUFAs is unlikely to prevent
cancer [164]. Chen et al. raised concerns with the systematic
review [165]. The studies included in this systematic review
did not formally measure FA consumption-food frequency
questionnaires and dietary records were used which correlate
poorly with direct PUFA measurement [166]—The studies
included in this systematic review did not formally measure
FA consumption, they used food frequency questionnaires
and dietary records, which correlate poorly with direct PUFA
measurement [166] and do not differentiate between the
source of FO consumption [165].

Animal data—some of which has been discussed above—
is an invaluable tool for mechanistic studies and the models
can closely mimic the clinical course of cancer progressions
[165, 167, 168]. However the translation of animal data into
the clinical arena is difficult due to the higher amounts of
n-3 PUFAs used in relation to fat intake and percentage
weight [164]. Inherent to the majority of animal studies is
the use of high levels of dietary constituents [117] with n-3
PUFA intake between 18 and 48% of daily energy compared
to 4-10% in human population based studies [169]. This is
likely to be one of the reasons that only weak associations
of PUFA intake and cancer are found in population-based
studies [117]. Extrapolation of findings is also confounded by
poor descriptions of experimental conditions and dose and
purity of n-3 PUFA supplementation [164, 170].

However, a role is potentially being developed for n-3
PUFA in combination with current chemotherapeutic agents
to augment their action [171]. Animal models have shown
that the efficiency of doxorubicin [172] and mitomycin C
[173] in inhibiting tumor growth and the inhibitory effect
of tamoxifen in estrogen-dependent xenografts [174] are
enhanced when combined with n-3 PUFA-enriched diets.

DHA supplementation with concurrent cytotoxic drug
treatment is potentially a way in which to clinically utilise
DHA in cancer treatment. DHA in combination with dox-
orubicin, irinotecan, cisplatin, melphalan, and vincristine on
neuroblastoma cell survival shows additive or synergistic
interactions [85, 92].

A therapeutic study in breast cancer patients where DHA
was combined with the chemotherapeutic drugs epirubicin,
cyclophosphamide, and 5-fluorouracil showed delayed time
to tumour progression and longer overall survival. However
these findings were only observed when patients were strat-
ified into 2 groups of either high or low incorporation of
DHA into plasma and erythrocytes. Patients who had high
incorporation of DHA into plasma and erythrocytes benefit-
ted compared to those who had low level DHA incorporation
[175]. This observation correlates well with other studies

showing that DHA incorporation differs between individuals
due to dissimilar rates of metabolism, enzymatic activity,
background diet, age, and sex [92, 176-178]. This is likely
to be a recurrent problem in studies using oral n-3 PUFA
supplementation.

11. Discussion

In the last decade there has been a growing interest in the
role of FAs, especially PUFAs, in cancer development and
progression. As discussed the link between FAs and cancer
may relate to the synthesis of eicosanoids, which have wide-
ranging diverse effects at a cellular level. There are currently
several ongoing clinical trials to assess this, where n-3 PUFAs
are being tested for cancer prevention, support, or therapy
[158], but initial evidence suggests that researchers do not
seem to be translating the profoundly beneficial results seen
in the laboratory to the bedside. This is potentially due
to the way in which n-3 PUFAs are being supplemented
and we need to think about novel ways of overcoming the
difficulties faced with FO supplementation to assess the true
benefit of n-3 PUFAs in the fight against cancer. Maybe
we also need to explore the broader therapeutic benefits of
FO supplementation on areas such as cancer cachexia and
aiding treatment tolerance as recently suggested by Murphy
et al. [179]. However, ongoing and future clinical trials using
intravenous n-3 PUFA infusions in cancer therapy are eagerly
awaited.
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