Some Studies on Uranium [V] Halides and Transition Metal Ghalcogenide Fluorides

A Thesis presented for the degree of Doctor of Philosophy in the Faculty of Science of the University of Leicester by GARRY MICHAEL STAUNTON

University of Leicester

December 1982

UMI Number: U341632

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U341632 Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

STATEMENT

The experimental work described in this thesis has been carried out by the author in the Department of Chemistry of the University of Leicester between October 1979 and September 1982.

Harry M. Staunter December 1982

Parts of this work are being submitted for publication as follows:

Hepta-, hexa- and quinquevalent rhenium chalcogenide fluorides: the preparation and characterisation of ReF_5S , ReF_4S and ReF_3S . J. H. Holloway, D. C. Puddick, G. M. Staunton, D. Brown, Inorg. Chim. Acta Letts., <u>64</u>, 209, (1982).

Preparation and characterisation of chalcogenide fluorides of tungsten and molybdenum; the crystal structure of WSF₄. J. H. Holloway, V. Kaučič, D. C. Puddick, D. R. Russell, G. M. Staunton, in preparation.

The gas-phase structure of WSF₄. K. Hagen, L. Hedberg, K. Hedberg, J. H. Holloway, D. A. Rice, G. M. Staunton, submitted to J. Mol. Structure.

The reaction of UF₆ with Me₃SiCl and Me₃SiBr and the possible existence of UF₅Cl and UF₅Br. J. A. Berry, D. Brown, J. H. Holloway, G. M. Staunton, submitted to J. Less Common Metals.

Interaction between Uranium pentafluoride and the pentafluorides of Arsenic, Bismuth, Niobium and Tantalum. D. Brown, J. H. Holloway, G. M. Staunton, in preparation.

The reaction of uranium pentafluoride with selected oxygen donor ligands. J. A. Berry, D. Brown, J. H. Holloway, G. M. Staunton, in preparation.

The preparation and characterisation of the adducts of uranium(V) chloride-fluorides with acetonitrile and triphenylphosphine oxide. J. A. Berry, D. Brown, J. H. Holloway, G. M. Staunton, in preparation.

Electron spin resonance studies on some uranium(V) halides. J. A. Berry, D. Brown, J. H. Holloway, J. B. Raynor, G. M. Staunton, in preparation.

ACKNOWLEDGEMENTS

I wish to express my deepest thanks to my Supervisors, Dr. John H. Holloway and Dr. David Brown for their continual help and guidance throughout the period of this work.

I also wish to thank:

The members of the Inorganic teaching staff for their assistance, especially Dr. J. B. Raynor for his interpretations of e.s.r. spectra obtained.

The technical staff for their invaluable support.

My colleagues in the laboratory.

Miss Vicky Orson-Wright and Mrs. Ann Crane for preparing the typescript and drawings respectively.

My family and close friends for their help and support during the last three years.

I am indebted to the Science and Engineering Research Council and AERE Harwell for financial support.

•

.

.

· · ·

LIST OF CONTENTS

Page No.

<u>CHAP</u>	TER ONE						
1.1	The bi	nary fluorides of uranium	2				
1.2	2 Preparation of uranium pentafluoride: A review						
	1.2.2	Introduction Halogen exchange routes to uranium pentafluoride The interaction of uranium tetrafluoride and	6 6				
	1.2.4	uranium hexafluoride Oxidation of uranium tetrafluoride to uranium pentafluoride	7 8				
		Reduction of uranium hexafluoride to uranium pentafluoride	11				
		Preparation of uranium pentafluoride by thermal and photochemical methods	13				
	1.2.7	Miscellaneous preparations of uranium pentafluoride	14				
1.3		nvestigation of the reduction of uranium uoride by elemental sulphur	15				
		Introduction The reaction of uranium hexafluoride with	15				
	1.3.3	elemental sulphur in a sealed reactor The reaction of uranium hexafluoride with	16				
	1.3.4	elemental sulphur in a flow system Conclusions	19 23				
1.4	The re specie	action of uranium hexafluoride with trimethylsilyl s	26				
	1.4.1	The reaction of uranium hexafluoride with hexamethyldisilane	26				
	1.4.2	trimethylsilyl-chloride and bromide	27				
	1.4.3	Conclusions and further work	29				
1.5	.5 References for Chapter One 30						
CHAP	TER TWO						

2.1 Fluoride ion donor acceptor properties of uranium pentafluoride 36 37 2.2 The reaction of UF₅ with NbF₅ and TaF₅ 37 2.2.1 Reaction of UF₅ with NbF₅ and TaF₅ using HF solvent 2.2.2 Reaction of UF₅ with NbF₅ and TaF₅ in melts 38 2.2.3 The vibrational spectra of the adducts $UF_5.2MF_5$ 39 (M = Nb, Ta)Thermal decomposition of $UF_5.2MF_5$ (M = Nb, Ta) 43 2.2.4 2.2.5 X-ray powder diffraction patterns 46 47 2.3 The reaction of UF_5 with BiF_5 2.3.1 The reaction of UF_5 with BiF_5 in anhydrous HF 47 2.3.2 Examination of reaction products 47 51 2.3.3 Adduct formation or oxidation?

i

LIST OF CONTENTS (Continued)

		Page No.		
2.4	The reaction of UF_5 with AsF_5	52		
	2.4.1 Conditions for reaction	52 52		
	2.4.2 Solutions of UF_5 in AsF_5/HF mixtures 2.4.3 Solid products from the reaction	53 56		
2.5	The reaction of UF_5 with BF_5			
2.6	5 Discussion and further work			
2.7	References for Chapter Two	62		

CHAPTER THREE

3.1	Introduction 66					
3.2	.2 The reaction of UF ₅ with 1,3- and 1,4-dioxane					
	 3.2.1 Uranium(V) halide adducts with oxygen and nitrogen donor ligands 3.2.2 The reaction of UF₅ with 1,4-dioxane 3.2.3 The reaction of UF₅ with 1,3-dioxane 3.2.4 Conclusions 	67 67 72 73				
3.3	The reaction of UF_5 with acetone	75				
3.4	4 The reaction of UF $_5$ with dimethylsulphoxide					
	3.4.1 Introduction 3.4.2 The electronic spectrum of a solution of UF_5	77				
	in DMSO 3.4.3 The conductivity of solutions of UF ₅ in DMSO 3.4.4 Conclusions	78 83 84				
3.5	Further work	84				
3.6	References for Chapter Three	86				

CHAPTER FOUR

Fluorine exchange reactions of UF ₅ 89					
Preparation of UCl_xF_{5-x} .nCH ₃ CN and UCl_xF_{5-x} .ntppo	90				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	90 91 92				
Elemental analyses	93				
X-ray powder diffraction studies	97				
Vibrational spectroscopy 100					
Electronic spectroscopy of UCl_xF_{5-x} .tppo in CH_3CN 105					
Electron spin resonance studies 106					
Discussion and further work	118				
References for Chapter Four	122				
	$n \le 2$) 4.2.2 Preparation of UCl _x F _{5-x} .tppo 4.2.3 Preparation of UCl _x F _{5-x} .2tppo Elemental analyses X-ray powder diffraction studies Vibrational spectroscopy Electronic spectroscopy of UCl _x F _{5-x} .tppo in CH ₃ CN				

.

•

.

Page No.

CHAP	HAPTER FIVE							
5.1	Introd	uction	125					
5.2	Chalco	genide fluorides of the Group VIa metals	126					
		Group VIa chalcogenide fluorides The reaction of WF_6 with Sb_2Te_3 at elevated	126					
		temperatures Reaction of WF ₆ with B_2S_3 at elevated temperatures The reaction of WF ₆ with Sb_2Y_3 (Y = S, Se, Te) in	129 131					
		anhydrous HF The reaction of WF_6 with Sb_2Y_3 (Y = S, Se, Te) in acetonitrile	134 137					
	5.2.6	Conclusions	141					
5.3	Chalco	genide fluorides of the Group VIIa metals	142					
	5.3.2 5.3.3 5.3.4	Group VIIa chalcogenide halides Rhenium thiotetrafluoride Rhenium thiopentafluoride Rhenium thiotrifluoride Conclusions	142 143 148 153 154					
5.4	Chalco	genide fluorides of the Group Va metals	155					
		Group Va chalcogenide halides The reaction of B_2S_3 and Sb_2S_3 with NbF ₅ at high	155					
		temperatures The reaction of NbF_5 with Sb_2S_3 in anhydrous HF The reaction of TaF_5 with B_2S_3 and Sb_2S_3 at high	156 156					
		temperatures The reaction of TaF_5 with Sb_2S_3 in anhydrous HF Conclusions	157 158 163					
5.5	5 Attempted preparation of uranium thiotetrafluoride							
	5.5.2	Introduction The reaction of UF_6 with B_2S_3 and Sb_2S_3 Conclusions	164 164 165					
5.6	Furthe	r work	165					
5.7	.7 References for Chapter Five							
CHAP	TER SIX							
6.1								
	6.1.2	General techniques Vacuum systems and reaction vessels Storage of samples	172 173 176					
6.2	Charac	terisation of products	176					
	6.2.2	Infrared spectroscopy Raman spectroscopy Nuclear magnetic resonance spectroscopy	176 179 179					

LIST OF CONTENTS (Continued)

•

		Page No.
	 6.2.4 Electron spin resonance spectroscopy 6.2.5 Electronic spectroscopy 6.2.6 Conductivity measurements 6.2.7 X-ray powder diffraction 6.2.8 Differential thermal analysis 6.2.9 Thermogravimetric analysis 6.2.10 Mass spectrometry 	181 181 181 183 183 183 184
6.3	6.2.11 Elemental analysis Chemicals, sources and purification procedures	184 184
- • •	6.3.1 Starting materials6.3.2 Synthesised reagents6.3.3 Solvents	184 186 187
6.4	References for Chapter Six	191

•

.

.

LIST OF FIGURES

CHAPTER ONE

- 1.1 Infrared spectrum of volatile products from reduction of UF_6 by S in a static system
- 1.2 Apparatus for flow reduction of UF_6 by S
- 1.3 Infrared spectrum of volatile products from UF $_{\rm 6}$ reduction by S in a flow system

CHAPTER TWO

- 2.1 Infrared spectra (1000-350 cm⁻¹) of the $UF_5.2MF_5$ (M=Nb, Ta) adducts
- 2.2 Thermogravimetric analysis of UF5.2NbF5
- 2.3 Raman spectrum of UF5/AsF5/HF solution
- 2.4 Infrared spectrum of UF5.AsF5

CHAPTER THREE

- 3.1 Infrared spectrum of solid $(UF_5)(1,4-dioxane)_3$
- 3.2 The proposed structure of $(UF_5)_2(C_4H_8O_2)_3$
- 3.3 Schematic representation of the electronic energy level splittings for a 5 f' system
- 3.4 a) Electronic spectrum of UF_5 in dry DMSO b) Electronic spectrum of UF_5 in wet DMSO

CHAPTER FOUR

- 4.1 Electronic spectrum of UF5.tppo in CH3CN
- 4.2 Electronic spectrum of UF4Cl.tppo in CH3CN solution
- 4.3 Electronic spectrum of UF₃Cl₂.tppo in CH₃CN solution
- 4.4 Electronic spectrum of UF2Cl3.tppo in CH3CN
- 4.5 Electronic spectrum of UFCl₄.tppo in CH₃CN solution
- 4.6 Electronic spectrum of UCl₅.tppo in CH₃CN solution
- 4.7 ESR spectra of the complexes of uranium(V) chloride-fluorides measured at 120 K, scan 4,500-13,500 Gauss
- 4.8 ESR spectra of UF_xCl_{5-x} in frozen CH_3CN solution at 120 K, scan 4,500-13,500 Gauss. [Dotted line represents spectrum after subtraction of signals from dissociation products.]
- 4.9 The average g-values of uranium halide complexes as a function of electronegativity

v

CHAPTER FIVE

5.1 The Unit Cell of WSF4

LIST OF FIGURES (Continued)

- 5.2 The mass spectrum of WSF4 made from the reaction of WF6 with B_2S_3
- 5.3 The infrared spectrum of WSF4 prepared from the reaction of WF6 with Sb_2S_3 in anhydrous HF
- 5.4 The infrared spectrum of WSF4.CH3CN
- 5.5 Proposed structure of WSF4.CH3CN
- 5.6 The mass spectrum of ReSF₄
- 5.7 The infrared spectrum of ReSF.
- 5.8 The asymmetric unit for ReSF₄
- 5.9 Observed Mass Spectrometric splitting pattern of ReSF₅
- 5.10 The infrared spectrum of ReSF₅
- 5.11 The NMR spectrum of a solution of TaF_5 and Sb_2S_3 in anhydrous HF
- 5.12 The infrared spectrum of the solid obtained from the reaction of TaF_5 with Sb_2S_3 in anhydrous HF

CHAPTER SIX

- 6.1 The Basic Vacuum Manifold
- 6.2 Low Temperature Raman Apparatus
- 6.3 Silica cell for electronic spectroscopy
- 6.4 Apparatus for the drying and distillation of solvents

LIST OF PLATES

- <u>PLATE 1</u> X-ray powder diffraction patterns for UF₅.2tppo (top), UF₄Cl.2tppo, UF₃Cl₂.2tppo, UF₂Cl₃.2tppo, UFCl₄.2tppo and UCl₅.2tppo (bottom)
- <u>PLATE 2</u> Fluoroplastic reaction vessels: (A) $\frac{1}{4}$ " FEP tube fitted with a Chemcon needle valve (B) $\frac{3}{4}$ " Kel-F tube fitted with a Chemcon needle valve (C) $\frac{3}{4}$ " Kel-F tube fitted with a Kel-F valve
- PLATE 3 Exploded view of spun nickel reactor

LIST OF TABLES

CHAPTER TWO

- 2.1 Vibrational data of the adducts of UF₅ with NbF₅ and TaF₅ compared with those of β -UF₅, NbF₅ and TaF₅ (800-250 cm⁻¹)
- 2.2 Thermogravimetric data for the adducts $UF_5.2MF_5$ (M = Nb, Ta)
- 2.3 Vibrational data of the adduct "UF_5.2BiF_5" compared with those of pure $\alpha-$ and $\beta-$ UF_5 and BiF_5
- 2.4 The n.m.r. data for solutions of UF_5 in $AsF_5/anhydrous$ HF
- 2.5 Raman data for UF_5 dissolved in AsF_5/anhydrous HF compared to that for CsAsF_6 and UF_5
- 2.6 Infrared data for UF₅.AsF₅ compared to that for β -UF₅, AsF₅, CsAsF₆ and HgF₂.2AsF₅ (850-250 cm⁻¹)

CHAPTER THREE

- 3.1 X-ray powder diffraction pattern for $(UF_5)_2(C_4H_8O_2)_3$
- 3.2 Tentative assignments of selected IR bands for 1,4-dioxane and its complexes with UCl $_5$ and UF $_5$

CHAPTER FOUR

- 4.1 Elemental analysis results for the adducts of $\text{UF}_x\text{Cl}_{5-x}$ with acetonitrile
- 4.2 Elemental analysis results for UF_xCl_{5-x} .tppo
- 4.3 Elemental analysis results for $UF_xCl_{5-x}.2tppo$
- 4.4 X-ray powder diffraction data for the tppo adducts of the chloride-fluorides of uranium(V)
- 4.5 Infrared spectra of the series $UF_xCl_{5-x}.nCH_3CN$ (cm⁻¹)
- 4.6 Infrared spectra of the series UF_xCl_{5-x} .tppo compared to that of tppo (1500-250 cm⁻¹)
- 4.7 Infrared spectra of the series $UF_xCl_{5-x}.2tppo$ (1500-250 cm⁻¹)

CHAPTER FIVE

- 5.1 Indexed X-ray powder diffraction pattern for WSF₄
- 5.2 X-ray powder diffraction pattern for WSF4.CH3CN
- 5.3 Observed Mass Spectral splitting pattern for ReF₄S
- 5.4 Infrared spectra of ReSF4 and ReOF4
- 5.5 X-ray powder diffraction pattern for ReSF₄
- 5.6 Infrared spectrum of ReSF₅ compared to those of ReOF₅ and ReSF₄
- 5.7 Infrared spectrum of the yellow product of the reaction NbF_5 with Sb_2S_3 in HF

LIST OF TABLES (Continued)

- 5.8 N.m.r. spectrum of products of reaction of ${\rm TaF}_5$ with ${\rm Sb}_2{\rm S}_3$ in AHF
- 5.9 Infrared spectrum of product of reaction of ${\rm TaF}_5$ with ${\rm Sb}_2{\rm S}_3$ in HF

CHAPTER 1

THE PREPARATION OF URANIUM PENTAFLUORIDE

1.1 THE BINARY FLUORIDES OF URANIUM

Until the discovery of uranium fission in 1939, uranium was of little commercial importance. This discovery led to the widescale use of uranium in the nuclear industry with the result that much of the research work on uranium has been oriented towards the needs of this industry.

As uranium hexafluoride is the only stable readily volatile compound of uranium, it has found extensive use in processes for separating the fissile U^{235} isotope from the unwanted U^{238} . This has led to UF_6 and other uranium fluorides being extensively studied, with the result that uranium fluorides in general have been more thoroughly investigated than the other uranium halides.

The only known binary compounds of fluorine with uranium are those in which the uranium has an oxidation state from 3 and 6 inclusive (Table 1.1). Uranium trifluoride is not one of the commercially important fluorides. It is prepared by reducing UF₄, e.g. using Al at 900°C.¹ It is a green inert material, the arrangement of the fluorines about the uranium centre is one of a capped trigonal prism.² The solid disproportionates above 800° C to produce UF₄ and uranium metal.³

Uranium tetrafluoride is of commercial interest in that it is used as an intermediate in the preparation of UF_6 , and has, therefore, been studied extensively. Its use as an intermediate is because of its high stability due in part to its large lattice energy and also its low solubility in aqueous media. It is a highly polymeric solid⁴ with the properties expected from such a material, being involatile with a melting point of 1036°C.⁵

The oxidation of UF_4 requires the use of strong oxidants and only powerful fluorinating agents are used. Reduction to lower oxidation

- 2 -

states is also difficult.

Commercially the most useful, and consequently the most studied, fluoride of uranium is the hexafluoride. Its volatility is crucial in the separation of U^{235} from U^{238} in the gas-diffusion, ultracentrifuge and nozzle processes. It is a colourless solid with a melting point of 64.5-64.8°C, and a vapour pressure of 100 mmHg at 18.2°C.⁶ Gaseous UF₆ has a regular octahedral arrangement of the fluorines around the uranium centre and, in the solid state the geometry is also very close to octahedral.⁷

The strong fluorinating properties of UF₆ are evidenced by the high enthalpy for the reaction UF₆ \rightarrow UF₅ (monomer) +F (Δ H is 281.63 ± 23.30 kJ mol⁻¹).⁸ The fluoride, with an electron affinity of 5.1 eV, exhibits fluoride ion acceptor behaviour in the formation of heptafluorouranates (VI), UF₇²⁻, and octafluorouranates (VI), UF₈³⁻. UF₆ also exhibits a tendency to form fluorouranates (V) by the reaction UF₆ + e \rightarrow UF₆^{-.9}

Solid UF₄ equilibriates with gaseous UF₆ to produce a series of intermediate fluorides, the product being dependent upon the temperature and partial pressure of UF₆ employed. The products are U_5F_{22} (i.e. $UF_{4\cdot2}$), ¹⁰ U_4F_{17} (i.e. $UF_{4\cdot25}$), ¹¹ U_2F_9 (i.e. $UF_{4\cdot5}$) ¹² as well as UF_5 . Initially these intermediate fluorides were believed to be modifications of UF_4 , but accurate analyses and some crystallographic data has now shown that they are all discrete entities with uranium present in mixtures of the +IV and +V oxidation states. These intermediate fluorides have found no commercial use and have, therefore, been little studied, especially in recent years.

The only remaining binary fluoride of uranium is the pentafluoride. For a long time this has been of no commercial importance, but is now of interest because of the development of laser isotope separation

- 3 -

techniques. The U^{235} nuclei in UF₆ are selectively excited by a laser and dismutate to give $U^{235}F_5$ leaving the volatile unreacted $U^{238}F_6$ to be removed. Little of the chemistry of UF₅ has been studied because of its thermal instability (it disproportionates at elevated temperatures¹³ [1.1 and 1.2]) and its susceptibility to hydrolysis¹⁴ [1.3].

$2UF_5 \iff UF_4 + UF_6$	[1.1]
$3UF_5 \iff U_2F_9 + UF_6$	[1.2]
$2UF_5 + 2H_2O \longrightarrow UF_4 + UO_2F_2 + 4HF$	[1.3]

Recent studies have shown that, despite these properties, UF₅ has an extensive chemistry. It is one of the few pentafluorides which has been shown to have two crystal modifications; the high temperature (α -) form,¹⁵ with a chain structure and the low temperature (β -) form¹⁶ with a three-dimensionally bridged structure. The α -structure is produced when UF₅ is heated to above 150°C, and may be converted to the β -form by treating the α -form with anhydrous hydrogen fluoride.

-4-

TABLE 1.1

.

THE BINARY FLUORIDES OF URANIUM

COMPOUND	OXIDATION STATE	COORDINATION NUMBER	COLOUR	ARRANGEMENT OF FLUORINE ABOUT THE URANIUM
UF.3	III	11	Green	Distorted fully capped trigonal prism ²
UF_4	IV	8	Green	Distorted square antiprism ⁴
U5F22	N/VI	۲۰	Black	Unknown
U4F17	N∕VI	ω	Black	Distorted UF, structure ¹¹
U_2F_9	IV/VI	6	Black	Symmetrically tricapped trigonal prism ¹⁷
α-UF ₅	Λ	Q	Pale Blue	Chains of octahedra linked at opposite corners ¹⁵
β-UF ₅	Λ	Ø	Green	Three-dimensionally bridged ¹⁶
UF6	ΛI	6	Colourless	Molecular lattice of regular octahedra ⁷

.

•

.

1.2 PREPARATION OF URANIUM PENTAFLUORIDE: A REVIEW

1.2.1 Introduction

As has already been stated, until recently UF_5 has been of little commercial importance when compared to the higher and lower fluorides, UF_6 and UF_4 . This means that whilst many methods of oxidising UF_4 to UF_6 and reducing UF_6 to UF_4 have been investigated, little attention has been paid to the intermediate fluorides and as to how they may be prepared.

This review is intended to collate details of those reactions of U (IV) and U (VI) which have been shown to produce UF_5 as either the major or minor product. It should not, however, be regarded as an exhaustive review of methods for preparing UF_5 since many of the oxidation/reduction reactions of UF_4/UF_6 which have been reported have had the experimental conditions fixed, so as to maximise the production of UF_4 or UF_6 . In many of these reactions, it should be possible to stop the reaction at the uranium (V) state if desired.

1.2.2 Halogen exchange routes to uranium pentafluoride

Uranium pentafluoride was first isolated and characterized by Ruff and Heinzelmann in 1911, by a halogen exchange reaction in which UCl₅ was treated with a large excess of anhydrous hydrogen fluoride.¹⁸ It has since been shown that treatment of UCl₆ with HF will also result in the formation of UF₅ with the liberation of chlorine gas.¹⁹ The reaction proceeds in the same manner if the reaction is carried out under an atmosphere of SF_4 .²⁰

The reaction of UF_6 with HCl is reported to result in the formation of UF_4 , HF, and Cl_2 gas,²¹ the postulated mechanism being:

 $UF_6 + 6 HC1 \longrightarrow UCl_6 + 6 HF$ 2 $UF_6 + UCl_6 \longrightarrow 3 UF_4 + 3 Cl_2$

Some doubt must be expressed about this mechanism as the stepwise chlorination of UF₆ would be expected to produce UF₅Cl as a first step. However, since UF₅Cl is unstable at room temperature (see section 1.4.2) decomposing to produce UF₅ and Cl_2 gas, a re-investigation of this system may prove interesting.

1.2.3 The interaction of uranium tetrafluoride and uranium hexafluoride

The reaction between solid UF₄ and gaseous UF₆ is of some complexity since the product obtained depends on the conditions used, especially the temperature and pressure of UF₆ present. The product can be any of the fluorides intermediate between UF₄ and UF₆; thus U_5F_{22} , U_4F_{17} , U_2F_9 and UF_5 ^{10,11,12,22,32} have been isolated from the reaction.

TABLE 1.2

Conditions for preparation of UF_5 , U_2F_9 , U_4F_{17} by the reaction between UF_4 (s) and UF_6 (g)

	Products				
Pressure UF_6	Temp	(°C)			
(mmHg)	100	200	300		
17.7	β - UF ₅	U_2F_9	U4F17		
120-140	β -UF ₅	α-UF₅	U_2F_9		

Thermally direct conversion of UF_4 to UF_5 by UF_6 has been carried out in sealed bomb-type reactions or by passing heated UF_6 gas over solid UF_4 .^{23,24} The optimum stated conditions for the sealed bomb-type reactions vary. Wolf and co-workers used 1 atmosphere of UF_6 over solid UF_4 at

230-250°C to produce high yields of UF₅,²⁵ whilst von Grosse states that the interaction will produce β -UF₅ at 125°C and α -UF₅ between 230 and 250°C, without giving the molar ratios of reactants or pressure of UF₆ used.²² Asprey <u>et al</u>. claim similar results, again under unspecified conditions, obtaining β -UF₅ at 80-100°C and α -UF₅ above 200°C.²⁶ If they used the same reaction conditions as von Grosse the lower reaction temperatures can be explained by their use of high surface area UF₄ formed by the dehydration of UF₄.2·5H₂O. Higher surface areas have been shown to increase the rate of fluorination of UF₄ in kinetic studies.²⁷ Higher temperatures and pressures have also been used successfully to produce UF₅. Asada <u>et al</u>. employed 3 atmospheres of UF₆ over UF₄ at 370°C to give the pentafluoride.²⁸

Seemingly the cleanest and easiest way of reacting UF₄ with UF₆ is the addition of UF₆ to a stirred slurry of UF₄, in anhydrous HF, in a Kel-F tube; the mixture being stirred for several days.^{29,30} The method has been used to prepare UF₅ on a 20g scale. The only other method of reacting UF₄ with UF₆ which has been described is one where the reaction is carried out in a melt using a LiF-BeF₂-TheF₄ solvent salt at 550-600°C.³¹ The presence of UF₅ was established by analysing the melt for uranium by polarographic and *CouloneTLIC* methods.

1.2.4 Oxidation of uranium tetrafluoride to uranium pentafluoride

Oxidation of UF₄ requires strong oxidising agents. If UF₅ is to be prepared by this means, however, care must be taken with the choice of oxidant. Strong oxidising agents, in excess, will take the UF₄ through to UF₆, whilst many mild fluorinating agents tend to produce the U(IV)/U(V) intermediate fluorides.

The oxidation of UF4 to UF6 by elemental fluorine has been extensively

- 8 -

used by the nuclear industry since its inception and, as UF₆ has been the desired product of this reaction, little work has been carried out on the possible intermediate fluorides formed in the reaction. It was not until the late 1950's that detailed investigation of the reaction showed that UF₅ formation was one of the key steps in the fluorination.^{19,27} This has since been clearly demonstrated by Bohinc, who showed that the fluorination of UF₄ under pressures of elemental fluorine ranging from 4-11 atmospheres at 80°C, is a two stage process [1.4 and 1.5].

 $2 UF_4 + F_2 \longrightarrow 2 UF_5 \qquad \dots \qquad [1.4]$ $2 UF_5 + F_2 \longrightarrow 2 UF_6 \qquad \dots \qquad [1.5]$

The rate of reaction was found to be increased by (1) increasing the fluorine pressure, (2) increasing the surface area of the UF₄, (3) introducing traces of HF as catalyst.²⁶ Asprey and Penneman have shown that fluorination of UF₄ by elemental fluorine is easily achieved by stirring high surface area UF₄ in a slurry of HF under 10 psig of F₂, the reaction producing UF₅ in 1-4 hours.³⁴ Uranium tetrafluoride is also readily oxidised to UF₅ by F₂ in a melt of LiF-BeF₂-ThF₄.³¹ It has also been shown that UF₄ will react directly with fluorine at room temperature, when irradiated with a 400W medium pressure mercury ultraviolet lamp. The rate of reaction here is dependent upon the surface area of the UF₄ used.³⁵

Fluorination of UF_4 is also possible using other strong oxidising agents, for example, halogen fluorides and halogen oxide fluorides. Jarry and Standler have shown that BrF_5 readily oxidises UF_4 to UF_5 together with formation of trace quantities of the intermediate fluorides.³⁶ Reaction of UF_4 with BrF_3 proceeds stepwise through the intermediate fluorides to UF_5 and eventually to UF_6 ³⁷ [1.6]. The reaction can, in

-9-

	BrF ₃		\mathbf{BrF}_3		\mathbf{BrF}_{3}		
UF4		UF_{4+x} (x < 0.5)	→ [•]	UF ₅		UF_6	[1.6]

fact, be stopped at any of the intermediate stages. Oxidation of UF₄ by chlorine trifluoride is also possible, the problem with this reaction being that ClF_3 is such a strong oxidising agent that it tends to take UF_4 straight through to UF_6 .³⁸ Observation of traces of UF_5 in the product are again indicative of the presence of UF_5 as an intermediate and the reaction mechanism has been partly explained by the study of the UF_4 -ClF, UF_5 -ClF and UF_5 -ClF systems by Benoit et al.³⁹

Chlorine dioxide fluoride⁴⁰ reacts with UF_4 in two steps [1.7 and [1.8]:

 $UF_4 + ClO_2F \longrightarrow UF_{\mathbf{X}} \quad (4 \le \mathbf{x} \le 5) \qquad \dots \quad [1.7]$ $UF_5 + ClO_2F \longrightarrow UF_6 \qquad \dots \quad [1.8]$

It is interesting to note that the reaction of UF_4 with ClO_3F^{41} does not proceed in the same way but yields a species of empirical formula $U_2O_2F_7$, which may be formulated as UO_2F_2 . UF_5 .

Bohinc and Frlec have shown that UF_4 is oxidised by xenon fluorides.⁴² The reaction between UF_4 and XeF_2 yields UF_5 :

2 UF_4	+ XeF ₂		2 UF_5 -	+	Xe	[1.9]
2 UF_5	+ XeF ₂	>	2 UF_6 ·	+	Xe	[1.10]

little or no UF₆ is produced before all the tetrafluoride is converted to the pentafluoride. The reaction of UF₄ with XeF₄ also produces UF₅ in high yield by a two step process, the first step being the formation of UF₅ and XeF₂, the XeF₂ then reacts with more UF₄. Once again, some UF₆ production is observed, presumably from a slow side reaction. Reaction of UF₄ with XeF₆ is not a straightforward fluorination. The first step results in the formation of UF₅ with the evolution of xenon gas, this

-10-

step being followed by a reaction between UF_5 and XeF_6 to give a 1:1 complex.

1.2.5 Reduction of uranium hexafluoride to uranium pentafluoride

Since UF_6 is a strong fluorinating agent it is easy to reduce it to the lower fluorides. The biggest advantage in producing UF_5 by the reduction of UF_5 rather than by fluorinating UF_4 is that, if during the course of the reduction UF_6 is kept in excess, after the removal of volatiles the only remaining uranium species is UF_5 . If at the same time the reducing agent is fluorinated to a volatile fluoride during the course of the reaction, then it is possible to obtain UF_5 of high purity.

Reduction of UF₆ by hydrogen was first noted by Regnaut and Bourgeois.⁴³ This reaction will proceed smoothly when ultraviolet radiation is shone onto the reactants. This photochemically aided reaction was also noted by Kompa and Pimental⁴⁴ who observed UF₅ formation in UF₆/H₂ mixtures in a chemical laser which was initiated by a xenon flash tube. Since then β -UF₅ has been produced in good yield by the action of UV radiation on UF₆/H₂ gas mixtures and by using low pressure mercury lamps.^{45,46,47} Levy and Wilson⁴⁸ have also reduced UF₆ to UF₅ using hydrogen at room temperature in the presence of hydrogen fluoride gas. They also attempted to catalyse the reduction by the use of platinum metal to no effect, but if both platinum metal and HF gas were present then reduction of UF₆ by hydrogen gas proceeded rapidly and smoothly.

Another element used in the production of UF₅ by reducing UF₆ is silicon^{46,47,49} which, during the course of the reduction, is fluorinated to the highly volatile species SiF₄ which is easily removed by exposure to high vacuum. The reaction is carried out by adding UF₆ to a stirred slurry of silicon in anhydrous HF. Sulphur⁵⁰ has also been used to reduce

-11-

UF₆ in a flow system. The reaction produces SF₄ as the major volatile product but the UF₅ formed is always contaminated by significant quantities of UF₄ even if optimum conditions for UF₅ production are employed. Iodine also reduces UF₆, the product being mainly U₂F₉ if the reaction is carried out in an autoclave at 100-200°C for 1-10 hours.⁵¹ If, however, the reaction is carried out by mixing UF₆ and elemental iodine in IF₅ then the product is high grade β -UF₅.⁵² Mass spectrometric studies of the reaction of UF₆ with silver in an effusion source at moderate temperatures shows that the reaction produces UF₄, UF₅ and AgF.²³

Hartmannshen and Burral⁴⁵ first noted in 1972 that UF₆ could be reduced by CO, and Asprey and co-workers^{49,53} have since shown that reduction of UF₆ by CO is possible by irradiation of the gas mixture for 2-4 hours by a 450W mercury lamp. The yield of UF₅ is over 90% and volatile products can be removed by pumping the reaction cell. Sulphur dioxide^{43,54} and sulphuryl chloride⁵⁵ also reduce UF₆. The sulphur dioxide reduction with the formation of UF₅ and SO₂F₂, as described by Moncelon <u>et al</u>.,⁵⁶ is perhaps the cleanest method of preparing UF₅. The UF₆ and SO₂ are mixed in a molar ratio of 2:1 in a bomb reactor and heated for a period of several hours. If the reaction temperature is maintained below 150°C the product is β -UF₅ and if the temperature is above this value the product is α -UF₅.

Reaction of UF₆ with lower fluorides of V, W, Mo and P will produce UF₅ if the UF₆ is in excess. When VF₄ is exposed to 70 torr of UF₆ at 70°C the products of the reaction are VF₅ and β -UF₅,⁵⁷ the reaction of UF₆ with WF₄ yields WF₅ and UF₅, whereas the reaction of UF₆ with MoF₅ produces MoF₆ and UF₅.⁵ Uranium hexafluoride will react with PF₃ either directly⁵⁸ or when UF₆ is added to a solution of PF₃ in HF⁵⁹ the products

-12-

being PF_5 and β -UF₅. Uranium hexafluoride has also been shown to react with hydrogen bromide^{60,61} in a flow system to produce UF₅, HF and bromine. The only involatile product of the reaction, UF₅, is collected at the bottom of the reaction column. Uranium hexafluoride will also react with HBr in a solution of anhydrous HF.⁶²

One of the most interesting reactions yielding UF_5 is that of UF_6 with ammonia gas.⁶³ The reaction product depends on the temperature at which the reaction is carried out. Between -30 and -50°C the reaction is:

 $6 \text{ UF}_6 + 8 \text{ NH}_3 \longrightarrow 6 \text{ UF}_5 + 6 \text{ NH}_4 \text{F} + \text{N}_2 \qquad \dots \quad [1.11]$

between 0 and 25°C the reaction is:

 $4 UF_6 + 8 NH_3 \rightarrow 2 UF_5 + 2 NH_4 UF_5 + 4 NH_4 F + N_2 \dots [1.12]$

whilst between 100 and 200°C the reaction is again different:

 $3 UF_6 + 8 NH_3 \longrightarrow 3 NH_4 UF_5 + 3 NH_4 F + N_2$ [1.13]

1.2.6 <u>Preparation of uranium pentafluoride by thermal and photochemical</u> <u>methods</u>

Work on laser excitation for isotope separation has been extensively reviewed 64 and will not be dealt with here.

The first report of the formation of UF₅ from the direct ultraviolet irradiation of UF₆ gas was made by Paine <u>et al.</u>,⁶⁵ who took UF₆ in a matrix (Ar, Xe and CO being used) on a CsI target; photolysis was carried out with broad band UV light, with the formation of UF₅ and, if CO was the matrix gas, carbonyl fluorides. However, it is not only under intense irradiation that UF₅ is formed. It has been shown that solutions of UF₆ in HF will, over a period of several days, precipitate out β -UF₅ under fluorescent lighting.¹⁶ Laser photolysis can produce high yields of UF₅ as has been shown by Kim <u>et al</u>.⁶⁶ who prepared UF₅ by laser flash photolysis of UF₆ in a long path-length cell. The highest recorded yield of UF₅ from a photochemical dissociation of UF₆ is 98.8%.⁶⁷ This was achieved by careful cell design, the cell containing deposition areas for UF₅ which were shaded from the light source. Rapid deposition was aided by convection caused by the UF₅ falling out in the shaded areas.

Uranium pentafluoride has also been prepared by the thermal decomposition of UF_6 . This can be achieved by heating UF_6 gas to above 2000 K followed by rapid quenching, which produces UF_5 and some UF_4 . The optimum temperature for UF_5 production is 2400 K.⁶⁸

1.2.7 Miscellaneous preparations of uranium pentafluoride

The only other methods for preparing UF_5 are those in which complexes containing uranium (V) are decomposed.

The decomposition may be achieved thermally, an example of this being the decomposition of NH_4UF_6 at 170°C to give UF_5 .⁶⁹ The heating of UF_5 .XeF₆ in dynamic vacuum to 50-60°C also results in the decomposition of the complex to give UF_5 and XeF₆.³³ If, however, this complex is heated to above 40°C in a static vacuum then the products are UF_6 , XeF₄ and XeF₆.

Uranium pentafluoride may also be prepared by decomposing solutions containing U (V). For example, the bubbling of BF₃ gas through a solution of NOUF₆ in HF results in the precipitation of β -UF₅.⁷⁰ Uranium pentafluoride can also be precipitated from solutions of UF₆ in CF₃COOH, when the solution has been left to stand.⁷¹ The UF₅ comes out of solution as the complex UF₅.HF, which irreversibly loses HF when heated above 42°C. A UF₅ complex is also formed if thiourea is added to a solution of UF₆ in CH₃CN, the product being UF₅.2SC(NH₃)₂.⁷²

1.3 <u>A RE-INVESTIGATION OF THE REDUCTION OF URANIUM HEXAFLUORIDE BY</u> <u>FLEMENTAL SULPHUR</u>

1.3.1 Introduction

The reaction between uranium hexafluoride and elemental sulphur was first reported by Aubert <u>et al</u>. in 1968.⁵⁰ They reported that reaction between gaseous UF₆ and sulphur vapour takes place in flow systems at temperatures above 130°C, or when UF₆ is bubbled through liquid sulphur at 150°C. The products of the reaction vary with conditions, but UF₄ and SF₄ [1.14] are the major products under most conditions. The reaction

 $2UF_6 + S \longrightarrow 2UF_4 + SF_4 \qquad \dots [1.14]$

is unaffected by the presence of carrier gases such as N_2 .

Aubert <u>et al</u>.⁵⁰ noted that the nature of the products could be varied by changing the uranium hexafluoride - sulphur ratio. About 100% formation of SF_4 occurs when the U/S ratio is greater than two, but when the ratio is less than two there is some formation of S_2F_2 . The results are summarised in Table 1.3.

TABLE 1.3

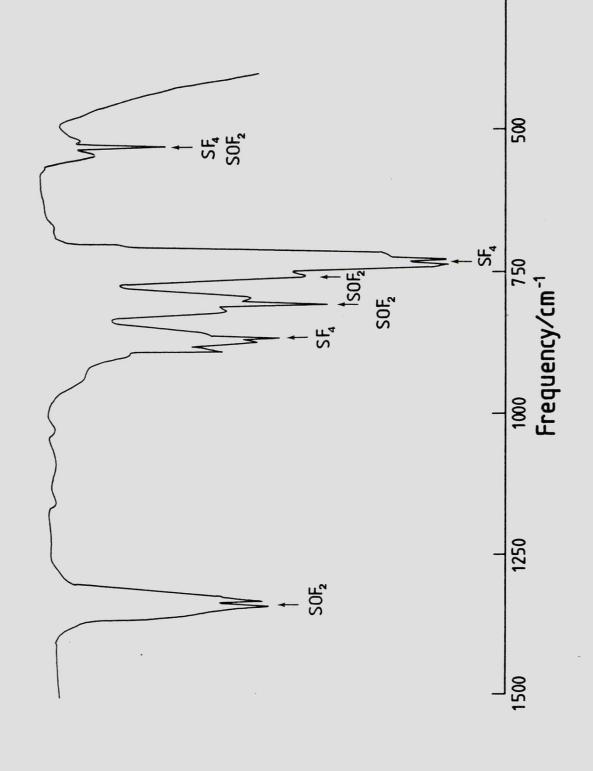
Summary of products of reaction between UF6 and sulphur

REACTION TEMPERATURE	RATIO OF UF_6 TO SULPHUR	REACTION PRODUCTS
280	1.12:1	SF_4 + traces of S_2F_2 , UF_4
280	0.95:1	$SF_4 + traces of S_2F_2$, UF_4
280	2.28:1	SF_4 , UF_4 , some formation of UF_5
300	0.39:1	80% S ₂ F ₂ , UF ₄
300	1.48:1	25% S_2F_2 , UF4
300	2.06:1	SF ₄ , UF ₄
350	1.03:1	50% S_2F_2 , 50% SF_4 , UF_4
360	0.82:1	40% S ₂ F ₂ , UF ₄

In the present study the reaction between UF_6 and elemental sulphur was re-examined in static and flow conditions with the aim of obtaining UF_5 from the reaction.

1.3.2 The reaction of uranium hexafluoride with elemental sulphur in a sealed reactor

Initial reactions of UF_6 with elemental sulphur were carried out in a spun nickel test-tube type reactor, sealed with a gold gasket. A preweighed quantity of sulphur was placed inside the well seasoned reactor, in a glove box, the reactor was then re-evacuated and the volatile impurities in the sulphur were removed by exposure under high vacuum. Uranium hexafluoride was introduced by vacuum sublimation. The mixture was heated to $175^{\circ}C$ for five hours.


When the reaction had been completed the volatile products of the reaction were expanded into a 10 cm path-length infrared gas cell. Typically a pressure of 10 torr was admitted, and the infrared spectrum was immediately recorded (Fig. 1.1). The solid formed in the reaction was removed from the reactor by scraping after the volatiles had been pumped away.

The solid formed was black in colour, with traces of a green solid also present. This black solid and the black/green mixture proved to be amorphous to X-rays. If, however, the green solid was carefully separated out and its X-ray powder diffraction pattern recorded, two lines coincident with the two strongest lines of a reference diffraction pattern of UF_{μ}^{73} were observed suggesting that some UF_{μ} is formed.

It was decided that the black material formed in the reaction was nickel sulphides formed by the reaction between the hot sulphur⁷⁴ and the reactor walls. In order to avoid this side reaction later studies were carried out using a stainless steel reaction bomb. In these reactions

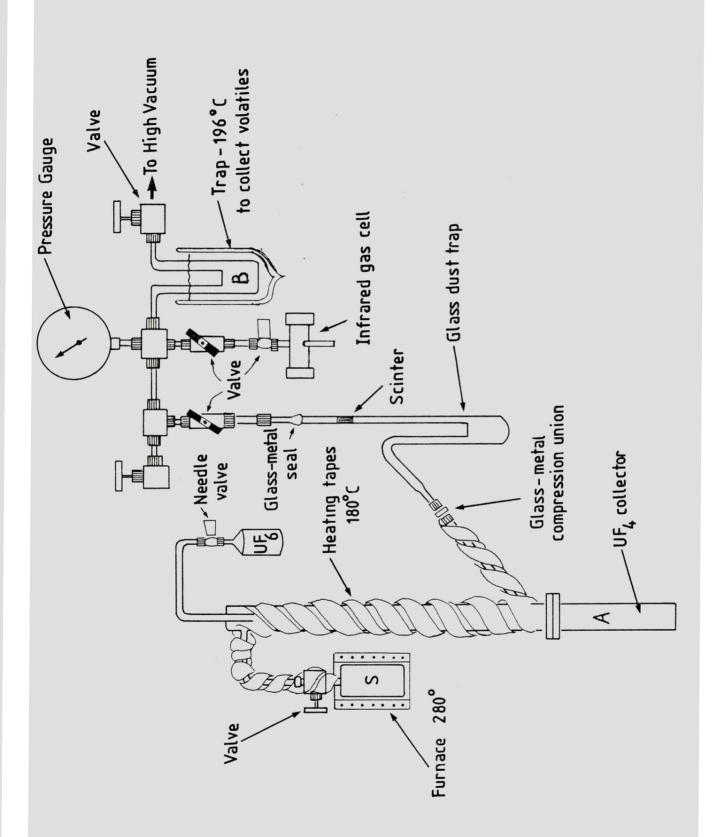
FIGURE 1.1

Infrared spectrum of volatile products from reduction of UF_6 by S in a static system.

Infrared Stretching Frequencies of Volatile Products formed during the Static Reduction of UF₆ by Sulphur

•

INFRARED BANDS AND SYMMETRY IN SOF2 ⁷⁷ ,78	1333 cm ⁻¹ (PR)		806 cm ⁻¹ (PQR)	748 an ⁻¹ (PQR)	530 cm ⁻¹ (PQR)
INFRARED BANDS AND SYMMETRY IN SF4,75,76		889 cm ⁻¹ (PQR) 867 cm ⁻¹ (PQR)		728 cm ⁻¹ (PQQR)	532 cm ⁻¹ (PQR)
INFRARED BANDS OBSERVED IN PRODUCTS	1341 cm ⁻¹ 1331 cm ⁻¹	899 cm ⁻¹ 891 cm ⁻¹ 877 cm ⁻¹ 869 cm ⁻¹ 857 cm ⁻¹	821 cm ⁻¹ 810 cm ⁻¹ 798 cm ⁻¹	754 cm^{-1} 740 cm^{-1} 730 cm^{-1} 720 cm^{-1}	544 cm ⁻¹ 530 cm ⁻¹ 519 cm ⁻¹


the solid product obtained was a green powder which X-ray powder diffraction showed to be UF4.

The gas phase infrared spectrum of the volatile products showed that all the UF₆ had reacted by virtue of the absence of the A₁ band of UF₆ at 624 cm⁻¹,⁷⁹ sulphur tetrafluoride was the only binary fluoride of sulphur formed (Table 1.4). Vibrational spectroscopy also showed that substantial quantities of an oxide fluoride impurity, SOF₂, were formed during the reaction. In order to reduce the amount of oxide fluoride impurity present attempts to dry and degass the sulphur more scrupulously were made. It was found that if the sulphur was stored in an oven at 90°C for 1 week prior to use, the proportion of SOF₂ formed did not drop. If the sulphur were heated to 70°C for 15 hours in a dynamic vacuum the proportion of SOF₂ formed was lowered, but not eliminated.

1.3.3 The reaction of uranium hexafluoride with elemental sulphur in a flow system

The static reduction of UF_6 by elemental sulphur was considered sufficiently promising to warrant carrying out a flow type reduction, much as Aubert <u>et al</u>. did in the initial report on the UF_6 -sulphur reaction.⁵⁰ A diagrammatical representation of the flow reactor and the experimental conditions used are shown in Fig. 1.2.

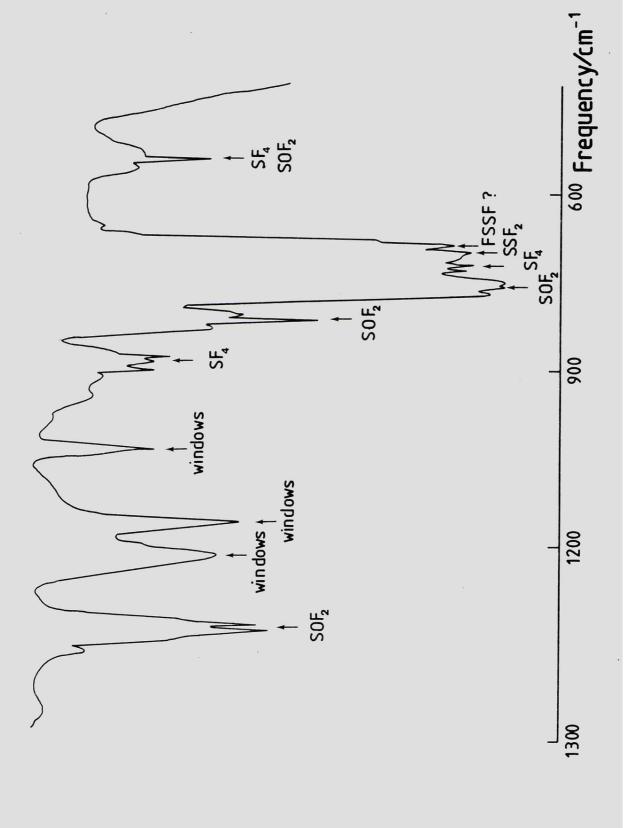
The reaction column and bomb containing the sulphur were constructed of stainless steel in order to avoid the side reaction already described between the hot sulphur and the system. A problem inherent in the flow apparatus used is the control of the flow rates, and thus the stoichiometry of the reactants, in the reaction zone. This problem with the sulphur flow rate was partially overcome by connecting the sulphur bomb to a weighed glass trap and collecting the sublimed material over a given period. In this manner it was found that if the sulphur bomb

FIGURE 1.2

Apparatus for flow reduction of $U\!F_6$ by S.

were heated to 280° C with connections to the glass trap being held at 180° C then approximately 0.5g of sulphur was collected per hour. The UF₆ flow rate could not be accurately controlled or measured. The only control over flow rate could be exercised by opening the needle valve on the UF₆ cylinder fractionally, the rate being controlled by examining the volatile products of the reaction and opening or closing the cylinder valve further accordingly.

The experiment was carried out by setting up the apparatus in the manner shown (Fig. 1.2). The apparatus was connected to a dynamic high vacuum system and evacuated. The heated sections of the apparatus were then brought up to their operating temperatures and the system was baked in dynamic vacuum for two hours. Before the reaction was initiated the sulphur bomb, at 280°C, was opened and left exposed to the dynamic vacuum for 15 minutes. The nickel 'U' trap, for the collection of the volatiles, was cooled in liquid nitrogen and the UF₆ container opened, initiating the reaction.


In a typical experiment, the reaction was allowed to proceed for about $1\frac{1}{2}$ hours. The solid products were collected in the trap provided at the base of the reactor column. When this trap was removed the solid products were scraped out and examined by X-ray powder diffraction. The X-ray diffraction patterns showed that the solid reaction products consisted of a mixture of unreacted sulphur and UF₄.

The volatile products which had been collected were examined by allowing the trap to warm to ambient temperature, expanding the volatiles into a 10 cm path-length infrared gas cell. The infrared spectrum of the resulting gas mixture (Fig. 1.3) showed that it was possible to achieve 100% reduction of the UF₆ passing through the system since the strongest infrared band of UF₆ at 624 cm⁻¹ was not visible. The spectroscopy also

-21-

FIGURE 1.3

Infrared spectrum of volatile products from UF_6 reduction by S in a flow system.

showed that SF_4 was not the only binary fluoride of sulphur formed, since bands in the region of 725 cm⁻¹ showed the presence of FSSF and/or SSF_2 (Table 1.5). In addition to these binary fluorides it was noted that sulphonyl oxide fluoride was produced in the reaction, as it had been when the reduction had been carried out in a static system.

1.3.4 Conclusions

The original aim of this re-investigation of the reaction between uranium hexafluoride and elemental sulphur was to produce UF_5 whilst forming a binary sulphur fluoride such as SF_4 .

Even in the case where the reactions were most easy to control, i.e. in the case of the static reduction, it was noted that UF_4 was the favoured product of the reaction. This problem was exacerbated in the simple flow apparatus employed because accurate control of the flow rates was not possible. Thus the stoichiometry of the reactants in the reaction zone could not be controlled, so that optimum conditions for UF_5 formation were never really attained. Even if the flow rates could be set at the desired values then problems would almost certainly arise inside the reactor column where temperature inhomogenuities would lead to some solidification of the sulphur, again changing the local stoichiometry of the reaction.

Another problem encountered in the systems employed was that of contamination of the produced uranium fluoride with unreacted sulphur. This was particularly bad when the flow system was used. If the desired product of the reaction were UF_4 , sulphur contamination would only be a minor problem as the sulphur could be sublimed out of the UF_4 . With UF_5 , however, heating of the mixture would certainly lead to disproportionation of the UF_5 to UF_4 and UF_6 .

-23-

$SO_{2}F_{2}$ 78,85 , SOF₂77,78 $S_{2}F_{10}$ 83,84 940 ${\rm SF_6}^{82}$ 344 FSSF⁸⁰,81 615 SSF2 80,81 SF4 75,76 BANDS SEEN IN PRODUCT OVERLAPPING BANDS 890 878 870 870 820 870 769 7769 7769 7748 7729 7718 7718 6697 6697 531 523 1340 1330

Infrared Stretching Frequencies (ϖ^{-1}) of Volatile Products from UF₆ + S in a flow system

TABLE 1.5

-24-

For the formation of UF_5 to be optimised in any reduction of UF_6 the formation of only a single fluorinated species of the reductant is desirable, so that competing side reactions are minimised. With sulphur as the reductant it is possible to postulate reaction conditions and stoichiometries of reactants where S_2F_2 , SF_4 , S_2F_{10} or SF_6 are formed.

Another major problem when using elemental sulphur as a reagent is that commercially available sulphur contains quantities of oxide and/or water impurities which are difficult to remove. The presence of these impurities are evidenced by the presence of sulphur oxide-fluoride impurities in the products. If UF₄ is the desired product from this reaction then these impurities are of no consequence, but if UF₅ is to be produced then it is likely that the oxides present in the system would react with it to give uranium oxide fluorides.

Overall this re-investigation has shown that the reaction of UF_6 with elemental sulphur does not under laboratory conditions provide a synthetic route for pure UF_5 . If reaction conditions are chosen so as to fluorinate all the sulphur, then the major uranium product is UF_4 .

1.4 THE REACTION OF URANIUM HEXAFLUORIDE WITH TRIMETHYLSILYL SPECIES 1.4.1 The reaction of uranium hexafluoride with hexamethyldisilane

It has been shown that the hexafluorides of tungsten, molybdenum and rhenium may be reduced by hexamethyldisilane in Genetron 113 solutions. Tungsten and rhenium hexafluorides are reduced to the pentafluorides under these conditions whilst MoF_6 gives the tetrafluoride.⁸⁶

In the light of these reactions it was decided to attempt to prepare UF₅ by the reaction of UF₆ with Me₃SiSiMe₃ in Genetron 113. In a typical experiment to 1.5×10^{-4} moles of Me₃SiSiMe₃ in ~3 cm³ Genetron was added 3.3×10^{-4} moles of UF₆, at liquid nitrogen temperatures. The mixture was allowed to warm slowly to ambient temperature with continuous mixing. At the melting point of the solvent, reaction begins, this being evidenced by the appearance of small quantities of a transient brown species. This brown colour disappears rapidly producing a cloudy green solution. Over the period of about 30 minutes a clear solution above a green solid results. Explosions occurred at this stage on several occasions, so care must be taken when allowing the reactants to warm.

The gas phase infrared spectrum of the volatile products showed the presence of Genetron and Me₃SiF, the latter being characterised by the presence of an absorption at 891 cm⁻¹.⁸⁷ After removal of the solvent and volatile products by vacuum distillation, followed by pumping in dynamic vacuum, X-ray powder diffraction of the solid produced no information since the solid was amorphous. However, infrared spectroscopy and chemical observations clearly showed that the product is not pure α - or β -UF₅. The infrared spectrum between 1000 and 400 cm⁻¹ exhibited bands at 551 and 612 cm⁻¹, which are in the region associated with U^V-F or U^{VI}-F stretching modes. Addition of sodium carbonate solution to the product resulted in a vigorous effervescence, and implies the

-26-

presence of a hydrolysable U-F bond, which is also indicative of the presence of a uranium fluoride of oxidation state greater than IV. The lack of definitive evidence for the presence of α - or β -UF₅, the ready formation of UF₄ in reducing conditions coupled with the sure knowledge that, in similar reactions, MoF₆ is reduced to MoF₄, suggests that it is probable that two reactions are occurring simultaneously [1.15 and 1.16].

UF_6	+ Me ₃ SiSiMe ₃	UF ₄ +	2Me₃SiF	• • • •	[1.15]
$2 UF_6$	+ Me ₃ SiSiMe ₃	2 UF 5	+ 2Me ₃ SiF		[1.16]

1.4.2 <u>The reaction of uranium hexafluoride with trimethylsilyl-</u> <u>chloride and bromide</u>

The cleavage of the element silicon bond in Me₃Si-X compounds has been used to prepare substituted derivatives of WF₆ of the type WF_mX_n (where m + n = 6), where X = Cl,^{89,90} OMe,⁹¹ OEt,⁹¹ OPh,⁹¹ NEt₂,^{92,93} OC₆F₅⁹³ and N₃.⁹⁴ Similar reactions between Me₃Si-X species and fluorides of Nb,⁹⁵ Ta,⁹⁵ Re,⁹⁶ Tc⁹⁷ and Mo⁹⁸ have also been reported. The present work describes the reaction between UF₆ and Me₃Si-X (X = Cl, Br) in Genetron solutions.

In a typical reaction 5×10^{-4} moles of Me_3SiCl was dissolved in Genetron followed by addition of 5.5×10^{-4} moles of UF₆ at -196°C. An excess of UF₆ was used to ensure that only one of the fluorines in UF₆ is exchanged. The reaction mixture was allowed to slowly reach ambient temperature with mixing. Reaction commenced at the melting point of the solvent, this being evidenced by the formation of a dark brown material. This brown colouration persisted after the system had reached ambient temperature. When left standing, a green solid was deposited, and after extended periods the brown colour disappeared leaving a clear liquid.

Examination of the vapour above the liquid by gas phase infrared spectroscopy indicated that all the Me₃SiCl had reacted as $v_{(Si-Cl)}$ at

487 cm⁻¹⁹⁹ was not observed. The presence of a band at 893 cm⁻¹ suggested the presence of Me₃SiF.⁸⁷ When the volatile products and solvent were removed the solid remaining was examined by infrared spectroscopy and X-ray powder diffraction. The powder diffraction pattern showed the solid to be β -UF₅, and this was confirmed by the presence of bands at 614 cm⁻¹ (sh), 573 cm⁻¹ and 517 cm⁻¹.⁸⁸

Attempts were made to isolate the brown intermediate by removal of the volatiles into a trap at -196°C while maintaining the reaction vessel at -10°C. Although some brown residue was retained the majority was transferred, either because of its inherent vapour pressure or because it was carried across by the other volatiles. On warming both the residual brown solid and the transferred material, green β -UF₅ was formed, the solid decomposing more rapidly than the solution. Mass spectrometric examination of the volatiles provided no evidence for uranium species. However, on the basis of the above observations and the known behaviour of other metal hexafluorides in similar reactions it is suggested that the brown transient formed during the reaction is UF₅Cl [1.17].

$$UF_6 + Me_3SiCl \xrightarrow{Genetron} UF_5Cl + Me_3SiF \qquad \dots [1.17]$$

The pentafluoride chloride is unstable and decomposes to give UF_5 [1.18].

$$\text{UF}_5\text{Cl} \xrightarrow{\text{RT}} \text{UF}_5 + "\frac{1}{2}\text{Cl}_2"$$
 [1.18]

In its inStability . UF_5Cl resembles WF_5Cl which also decomposes at room temperature. 89

The reaction of UF_6 with Me_3SiBr proceeds in a similar manner, with the formation of a brown intermediate, probably UF_5Br [1.19].

$$UF_6 + Me_3SiBr \xrightarrow{Genetron} UF_5Br + Me_3SiF \dots [1.19]$$

This pentafluoride bramide decomposes to give β -UF₅ [1.20], the UF₅ being

$$UF_5Br \longrightarrow UF_5 + "\frac{1}{2}Br_2"$$
 [1.20]

characterised by X-ray powder diffraction and vibrational spectroscopy. In this reaction the brown colouration of the intermediate persists for a shorter time than that produced in the chloride reaction, which indicates that UF_5Br is less stable than UF_5Cl .

1.4.3 Conclusions and further work

ъπ

The reaction of UF_6 with $Me_3SiSiMe_3$ is not of value as a preparative route to UF_5 . However, reaction of Me_3SiX (X = Cl, Br) with UF_6 gives β - UF_5 in high yield. The reaction probably proceeds via the formation of UF_5X which is unstable at room temperature.

However, the UF₆-Me₃SiX system is worthy of further study in order to establish definitively whether UF₅Cl and UF₅Br are actually obtained. The best approach for such a study may be by an F^{19} n.m.r. investigations at low temperatures. The observation of WF₅Cl by this method yielded the expected doublet and quintet in the ratio 4:1,⁸⁹ and it is expected that UF₅Cl would show a similar splitting.

The reaction of Me_3SiX with UF_6 may also be worthy of further investigation in an attempt to prepare other chloride-fluorides of uranium, such as UF_4Cl_2 . The mixed chloride-fluoride UF_4Cl_2 would be of particular interest in that the thermal decomposition of this species could proceed in two ways. The first would produce UF_4 and liberate chlorine whilst the second could give UF_4Cl and chlorine. If UF_4Cl were prepared from a Genetron solution in this way it would not be complexed. All other chloride-fluorides of uranium (V) which have been prepared so far have only been obtained complexed with CH_3CN or triphenylphosphine oxide,¹⁰⁰ because it is only possible to achieve solubility of the reactants in complexing solvents.

1.5 REFERENCES FOR CHAPTER ONE

- 1. O. J. C. Runnals Can. J. Chem., <u>31</u>, 694, (1953).
- W. H. Zachariasen Acta Cryst., <u>2</u>, 388, (1949).
- L. O. Gilpatrick, R. Baldock, J. R. Stites U.S. Report ORNL - 1376, (1952).
- 4. A. C. Larson, R. B. Roob, Jr., D. R. Cromer Acta Cryst., <u>17</u>, 555, (1964).
- S. Langer, F. E. Blankenslip
 J. Inorg. Nucl. Chem., <u>14</u>, 26, (1960).
- 6. CRC Handbook of Physics and Chemistry, 58th. Edition, CRC Press, Inc., Ohio (1977).
- J. H. Levy, S. C. Taylor, P. W. Wilson J.C.S. Dalton, 219, (1976).
- K. P. Schug, H. Ga. Wagner
 Z. Physik. Chem., <u>108</u>, 173, (1977).
- 9. R. N. Compton J. Chem. Phys., <u>66</u>, 4478, (1977).
- Nguyon-Hoang-Nghi French Report, CEA - 1976, (1961).
- P. Agron, A. Grenall, P. Kurin, S. Weller U.S. Report TID - 5290, p.652, (1958).
- 12. W. H. Zachariasen Acta Cryst., <u>2</u>, 390, (1949).
- H. F. Priest
 U.S. Report TID 5290, (1958).
- 14. D. Brown Halides of the Lanthanides and Actinides, Wiley, New York, 1968.
- 15. W. H. Zachariasen Acta Cryst., <u>2</u>, 296, (1949).
- R. Ryan, R. Penneman, L. Asprey, R. Paine Acta Cryst., <u>32B</u>, 3311, (1976).
- 17. P. G. Eller, D. D. Ensor, A. C. Larson, J. R. Peterson, J. P. Young Inorg. Chim. Acta, <u>37</u>, 129, (1979).
- O. Ruff, H. Heinzelmann
 Z. Anorg. Chem., <u>72</u>, 71, (1911).
- P. Agron, A. Grenall, R. Kunin, S. Weller U.S. Report TID - 5290, 652, (1958).
- 20. Nucl. Sci. Abs., <u>16</u>, 3307, (1962).
- 21. T. A. O'Donnell, P. W. Wilson Aust. J. Chem., <u>21</u>, 1415, (1968).
- 22. A. Grosse U.S. Report TID - 5290, 315, (1958).

- D. L. Hildenbrand
 J. Chem. Phys., <u>66</u>, 4788, (1977).
- 24. T. A. O'Donnell, P. W. Wilson Anal. Chem., <u>39</u>, 246, (1967).
- 25. A. S. Wolf, J. C. Posey, K. E. Rapp Inorg. Chem., <u>4</u>, 751, (1965).
- 26. G. D. Sturgeon, R. A. Penneman, F. H. Kruse, L. B. Asprey Inorg. Chem., <u>4</u>, 748, (1965).
- V. Y. Labaton, K. D. B. Johnson
 J. Inorg. Nucl. Chem., <u>10</u>, 74, (1959).
- K. Asada, K. Etia, K. Tanaka, K. Hayashi J. Inorg. Nucl. Chem., <u>43</u>, 2049, (1981).
- 29. J. C. Taylor, A. B. Waugh J. Solid State Chem., <u>35</u>, 137, (1980).
- R. A. Penneman, T. K. Keenan, L. B. Asprey Nucl. Sci. Abs., <u>22</u>, 30555, (1968).
- 31. M. R. Bennett, L. M. Ferris J. Inorg. Nucl. Chem., <u>36</u>, 1285, (1974).
- J. S. Broadley, P. B. Langton Nucl. Sci. Abs., <u>11</u>, 11140, (1957).
- 33. M. Bohinc Chem. Abs., <u>77</u>, 93309, (1972).
- L. B. Asprey, R. A. Penneman
 J. Am. Chem. Soc., <u>89</u>, 172, (1967).
- 35. J. Slivnik, K. Lutar J. Fluorine Chem., <u>11</u>, 643, (1978).
- 36. R. L. Jarry, M. J. Stendler J. Inorg. Nucl. Chem., <u>29</u>, 1591, (1967).
- 37. T. Sakurai, M. Iwasaki
 J. Phys. Chem., <u>72</u>, 1491, (1968).
- 38. W. Davis, R. L. Jarry Nucl. Sci. Abs., <u>11</u>, 10848, (1957).
- 39. M. Luce, R. Benoit, O. Hartmanshenn French Report CEA - R - 3558, (1968).
- 40. R. Benoit, G. Besnard, O. Hartmanshenn French Report CEA - R - 3963, (1970).
- 41. H. Rude, R. Benoit, O. Hartmanshenn Nucl. Sci. Abs., <u>26</u>, 6528, (1972).
- 42. M. Bohinc, B. Frlec
 J. Inorg. Nucl. Chem., <u>34</u>, 2942, (1972).
- 43. P. Regnaut, M. Bourgeois Nucl. Sci. Abs., <u>20</u>, 445, (1966).
- 44. K. L. Kompa, G. C. Pimentel
 J. Chem. Phys., <u>47</u>, 857, (1967).
- 45. O. Hartmannshen, J. C. Barral Nucl. Sci. Abs., <u>26</u>, 49, (1972).

- 46. L. B. Asprey, R. T. Paine J.C.S. Chem. Commun., 920, (1973).
- 47. L. B. Asprey V.S. Patent, 3,929,601, (1974/5).
- 48. J. H. Levy, P. W. Wilson Aust. J. Chem., <u>26</u>, 2711, (1973).
- 49. R. T. Paine, L. B. Asprey Inorg. Synth., <u>19</u>, 137, (1979).
- 50. J. Aubert, B. Cochet-Muchy, J. P. Cuer French Patent, 1,586,833, (1970).
- 51. N. S. Nikolaev, A. T. Sadikova, V. F. Sakherkhov Russ. J. Inorg. Chem., <u>18</u>, 751, (1973).
- 52. J. A. Berry, A. Prescott, D. W. A. Sharp, J. M. Winfield J. Fluorine Chem., <u>10</u>, 247, (1977).
- 53. G. W. Halstead, P. G. Eller, L. B. Asprey, K. V. Salazar Inorg. Chem., <u>17</u>, 2967, (1978).
- 54. O. Hartmannshen, J.-C. Barral Compt. Rend., <u>C272</u>, 2139, (1971).
- 55. B. Moncelon, T. Kikindai Compt. Rend., <u>C267</u>, 1485, (1968).
- 56. B. Moncelon, J. Lucas, T. Kikindai Compt. Rend., <u>261</u>, 1855, (1976).
- 57. J. Reyres, L. Bethuel, J. Aubert Nucl. Sci. Abs., <u>27</u>, 27446, (1973).
- 58. T. A. O'Donnell, P. F. Stewart, P. W. Wilson Inorg. Chem., <u>5</u>, 1438, (1966).
- 59. J. G. Malm J. Inorg. Nucl. Chem., <u>42</u>, 993, (1980).
- 60. W. E. Hobbs U.S. Patent 3,035,894, (1962).
- 61. A. S. Wolf, W. E. Hobbs, K. E. Rapp Inorg. Chem., <u>4</u>, 755, (1965).
- 62. E. Jacob
 Z. Anorg. Allg. Chem., <u>400</u>, 45, (1973).
- N. P. Galkin, B. N. Sudarikov, V. A. Zaitsev Soviet J. At. Energy, <u>8</u>, 444, (1961).
- 64. P. Benetti, M. Broglia, F. Catoni, P. Zampetti Com. Naz. Energ. Nucl., [Rapp. Tec.] CNEN-RT/F1(80)19.
- 65. R. T. Paine, R. S. McDowell, L. B. Asprey, L. M. Jones J. Chem. Phys., <u>64</u>, 3081, (1976).
- 66. K. C. Kim, R. Fleming, D. Seitz, M. Reisfeld Chem. Phys. Letts., <u>62</u>, 61, (1979).
- 67. F. S. Becker, E. Jacob Angew. Chem. Intern. Ed., <u>19</u>, 227, (1980).
- 68. N. P. Galkin, Yu. N. Tumarov Nucl. Sci. Abs., <u>25</u>, 48596, (1971).

B. Volavsek 69. Croat. Chem. Acta, 35, 61, (1963). J. R. Geichman, L. R. Swaney, P. R. Ogle 70. Nucl. Sci. Abs., 18, 31420, (1964). A. T. Sadikova, N. S. Nikolaev, T. A. Rasskova 71. Russ. J. Inorg. Chem., 15, 1039, (1970). 72. V. G. Sevastyanov, M. A. Kopera Russ. J. Inorg. Chem., 22, 1517, (1977). The reference X-ray powder diffraction pattern was obtained from 73. a sample of UF4 provided by J. A. Berry, AERE, Harwell. 74. M. Schmidt, W. Siebert Vol. 2 'Comprehensive Inorganic Chemistry', Pergamon Press, 1973. R. E. Dodd, L. A. Woodward, H. L. Roberts 75. Trans. Farad. Soc., 52, 1052, (1952). K. O. Christe, W. Sawodny, P. Pulay 76. J. Mol. Structure, 21, 158, (1974). 77. J. K. O'Loare, M. K. Wilson J. Chem. Phys., 23, 1313, (1955). 78. R. J. Gillespie, E. A. Robinson Canad. J. Chem., <u>39</u>, 2171, (1961). 79. Page 167 in Volume.5 D. Brown 'Comprehensive Inorganic Chemistry', Pergamon Press, 1973. 80. R. D. Brown, G. P. Pez Spectrochim. Acta, <u>26A</u>, 1375, (1970). F. Seel, R. Budenz, K. F. Wancek 81. Chem. Ber., 103, 3946, (1970). 82. J. Gaunt Trans. Farad. Soc., <u>49</u>, 1122, (1953). D. Edelson 83. J. Am. Chem. Soc., 74, 262, (1952). J. K. Wilmhurst, H. J. Bernstein 84. Canad. J. Chem., <u>35</u>, 191, (1957). G. R. Hunt, M. K. Wilson 85. Spectrochim. Acta, <u>16</u>, 570, (1960). 86. R. D. Peacock, J. Fawcett Unpublished observations. 87. H. Kriegsmann Z. Anorg. Allg. Chem., 294, 113, (1958). · 88. E. Jacob Z. Anorg. Allg. Chem., <u>400</u>, 45, (1973). G. W. Fraser, M. Mercer, R. D. Peacock 89. J. Chem. Soc. (A), 1091, (1967). G. W. Fraser, C. J. W. Gibbs, R. D. Peacock 90. J. Chem. Soc. (A), 1708, (1970). A. M. Noble, J. M. Winfield 91. J. Chem. Soc. (A), 2574, (1970).

- 92. A. Majid, R. P. McLean, D. W. A. Sharp, J. M. Winfield Z. Anorg. Allg. Chem., <u>385</u>, 85, (1971).
- 93. A. Majid, D. W. A. Sharp, J. M. Winfield, I. Hanley J. Chem. Soc. Dalton, 1876, (1973).
- 94. J. Fawcett, R. D. Peacock, D. R. RussellJ. Chem. Soc. Dalton, 2294, (1980).
- 95. G. W. Fraser, R. D. Peacock, P. M. Watkins J. Chem. Soc., Chem. Commun., 1257, (1968).
- 96. J. C. Fuggle, D. W. A. Sharp, J. M. Winfield J. Chem. Soc. Dalton, 1766, (1972).
- 97. R. D. Peacock, D. F. Stewart Inorg. Nucl. Chem. Letts., <u>3</u>, 255, (1967).
- 98. M. Mercer Unpublished observations.
- 99. K. Mittekung Z. Physik. Chem., <u>232</u>, 271, (1966).
- 100. Chapter 4 in this thesis and references contained therein.

CHAPTER 2

THE REACTION OF URANIUM PENTAFLUORIDE WITH LEWIS ACIDS

·

. .

.

2.1 FLUORIDE ION DONOR ACCEPTOR PROPERTIES OF URANIUM PENTAFLUORIDE

The ability of uranium pentafluoride to act as a fluoride ion acceptor is well established.^{1,2} Three classes of pentavalent uranium fluorocomplexes have been isolated and characterised; M^{I} UF₆, M_{2}^{I} UF₇ and M_{3}^{I} UF₈ (M^{I} is a univalent cation).

The hexafluorouranates (V) where M = Li, Na, K, NH₄, NH₃OH, Rb, Cs, Aq, NO, NO2, T1, H3O, Ph4As and ClO2 have been prepared by the reaction of UF₅ with the appropriate MF species in HF followed by crystallisation. $^{3-13}$ These species have also been prepared by the fluorination of UF₄/MF mixtures in anhydrous HF.¹⁴ Another route to hexafluorouranates (V) is by a halogen exchange mechanism where AsF₃ or a concentrated fluoride ion solution is mixed with a hexachlorouranate (V).^{15,16} The salt $NOUF_6$ may be prepared either by the reaction of NO or NOCl with UF_6 or by the reaction of NOF with UF_5 .^{8,9} In a similar way NO_2UF_6 is the product of the reaction of UF_5 with NO_2F or UF_6 with NO_2 .^{8,9} In $NOUF_6$ the NO⁺ entity may be readily displaced by alkali metal cations, for example, by addition of the appropriate metal nitrate to a solution of $NOUF_6$ in HF, or by heating $NOUF_6$ with the appropriate metal nitrate species.¹⁷ When NOUF₆ is heated with $Ba(NO_3)_2$ the product is $Ba(UF_6)_2$. Similar results are obtained when $Ca(NO_3)_2^6$ or magnesium metal¹⁸ react with UF6.

The heptafluorouranate (V) species $M_2^I UF_7$, where $M = NH_4$, K, Rb and Cs, have been isolated and characterised. These are prepared by the direct reaction of UF_5 with the metal fluorides at 350° in an argon atmosphere.⁴ The species $N_2H_6UF_7$ has been observed as the product of the reaction of $N_2H_6F_2$ with an excess of UF_6 .¹⁹ Octafluorumates (V) of formula $M_3^I UF_8$, where M = Na, K, Rb, NH_4 , Cs, Ag and Tl, ^{4,11,20} are formed when UF_5 is heated to 300°C with a three-fold excess of the univalent metal fluoride.

-36-

Fluoride ion donor properties for UF_5 have been reported. The preparation of the species, $[UF_{4}(L)_{3}]^{+}$, where L = oxygen or nitrogen donor ligand, have been claimed to form by Eller $\underline{et} \underline{al}$.²¹ when UF₅ is dissolved in a variety of non-aqueous solvents. There is, however, some debate about this report, as the production of $[UF_4(L)_3]^+$ has been inferred rather than observed and characterised. In independent work, for example, Berry et al.²² suggest that in CH_3CN , at least, UF₅ gives a neutral adduct rather than an ionic species. The only system where UF5 has been unambiguously observed as acting as a fluoride ion donor is in its reaction with SbF_5 .^{23,24} The direct reaction between UF_5 and SbF_5 produces the species, $UF_5.2SbF_5$, which at 100°C in a dynamic vacuum loses SbF_5 to give $UF_5.SbF_5$.²³ A single-crystal structure determination for $UF_5.2SbF_5$ ²⁴ has shown it to have a structure related to that of $UOF_4.2SbF_5^{25}$ and implies some small contribution to the bonding from the ionic formulation $(UF_3)^{2+}(SbF_6)_2$. The extent of this ionic contribution may be estimated in terms of the ionicity value ϕ , as defined by Fawcett et al.,²⁶ where $\phi = 1.0$ in purely ionic K[SbF₆] and 0.0 in the covalently bridged [SbF₅]₄. From the Fawcett equation \oint in UF₅.2SbF₅ is calculated to be 0.4 for most of the Sb F bridging bonds (average U----F distance ≈ 2.36 Å), which is in line with a small contribution to the bonding from the ionic formulation $UF_3^{2+}(SbF_6)_2^{-}$. Other fluorine atoms, however, also come close to forming bridges but here the average U----F distance is larger (≈ 2.66 Å) and the bond is more ionic in nature, $\oint = 0.8$.

2.2 THE REACTION OF UF 5 WITH NDF 5 AND TaF 5

2.2.1 Reaction of UF₅ with NbF₅ and TaF₅ using HF solvent

The reaction of uranium pentafluoride with an excess of the pentafluorides of niobium and tantalum has yielded the new adducts $UF_5.2NbF_5$ and $UF_5.2TaF_5$.

-37-

The adducts were prepared in pre-fluorinated F.E.P. tubes of known weight. Measured quantities of powdered UF₅ and crystalline MF₅ (M = Nb, Ta) were introduced into the reaction tubes in a dry box. The tubes were then attached to a manifold and pumped to high vacuum. The quantity of MF₅ used was greater than a 5-fold excess, typically 0.5-1.5 m moles of UF₅ being used. Anhydrous HF was distilled onto the UF₅/MF₅ mixture at -196°C, and the mixture was allowed to warm to ambient temperature with mixing. It was then left standing, at ambient temperatures, for 2 hours with occasional mixing. At the end of this period a pale blue solid, above which there was a flocculent white solid, was obtained. No visible colouration was observed in the solvent, suggesting that the adduct has little or no solubility in anhydrous HF. The anhydrous HF was carefully distilled from the reaction mixture in a static vacuum and finally under dynamic conditions to leave a solid product.

The excess of MF_5 (M = Nb, Ta) was removed from the warmed reaction mixture by vacuum sublimation and collected in the upper portion of the reaction tube using a cooled collar. After the last of the pentafluoride had been sublimed away the adduct was heat sealed in the lower portion of the tube and removed to a dry box for examination.

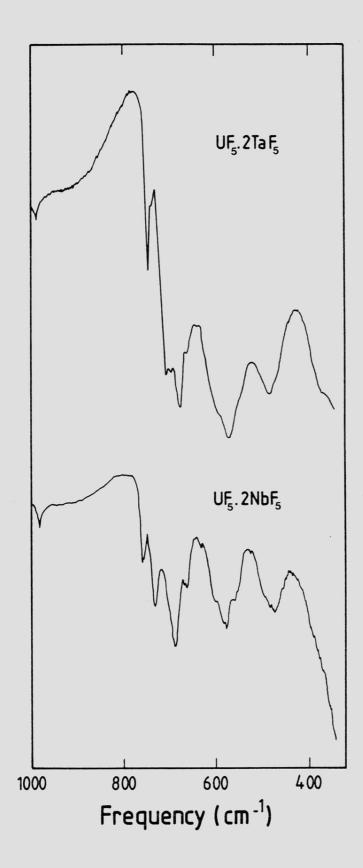
The weight uptake during reaction was determined by subliming the pentafluoride from the weighed upper portion of the reaction tube at about 50°C into a glass 'U' trap and periodically removing and weighing the reaction tube. In this way the final stoichiometry of the solid was calculated and found to be in agreement with the formulation $UF_5.2MF_5$ (M = Nb, Ta).

2.2.2 Reaction of UF_5 with NbF_5 and TaF_5 in melts

In this method of preparation of $UF_5.2MF_5$ (M = Nb, Ta) a UF_5/MF_5 (M = Nb, Ta) mixture was placed in a glass sublimation vessel which was

-38-

then evacuated. Before the reaction was initiated 250 mmHg of argon gas was introduced to prevent sublimation away from the reaction zone when heating was started. The reaction mixture was warmed with a hot air blower until the pentafluorides melted and the reagents were mixed by gentle tapping of the reaction vessel during heating. When the pentafluorides melted reaction was indicated by the formation of a royal-blue coloured solution. After cooling a pale blue solid was obtained. The argon was then pumped away and the excess pentafluoride (MF₅, M = Nb, Ta) sublimed from the reaction zone using a heating tape. The vessel was then sealed, and the product removed to a dry box for examination. Comparison of the X-ray powder diffraction pattern of the products with those of the products of the solution phase reaction indicated that the melt reactions also produced UF₅.2MF₅ (M = Nb, Ta).


Elemental analysis of the tantalum adduct prepared from solution confirmed the stoichiometry $UF_5.2TaF_5$ for the reaction of UF_5 with $TaF_5:-$

Calculated: %U = 26.90, %Ta = 40.90, %F = 32.20; Found: %U = 26.65, %Ta = 40.68, %F = 32.09.

2.2.3 The vibrational spectra of the adducts $UF_5.2MF_5$ (M = Nb, Ta)

The infrared spectra of $UF_5.2NbF_5$ and $UF_5.2TaF_5$ are shown in Figure 2.1 and the frequencies of the absorptions are recorded in Table 2.1 along with the vibrational data for β - UF_5 , NbF_5 and TaF_5. The infrared spectra were recorded as dry powders pressed between KBr or polythene discs. The Raman spectra were recorded in Pyrex capillaries. Both adducts decomposed in the laser beam but the TaF_5 adduct was stable enough to give poorly defined Raman spectra before decomposition was complete. The NbF_5 adduct decomposed rapidly at temperatures down to -80°C.

-39-

Infrared spectra (1000-350 $\rm cm^{-1})$ of the UF_5.2MF_5 (M=Nb, Ta) adducts.

TABLE 2.1

Vibrational data of the adducts of UF₅ with NbF₅ and TaF₅ compared with those of β -UF₅, NbF₅ and TaF₅ (800-250 cm⁻¹)

		-													
UF5.2NDF5	IR	761 757	732		688	661		602	583	577	511	472		321	
UF 5.2TaF 5	R	754 s			664 m					566 m					
UF ₅ .2	IR	750 s		695 sh				600 sh		573 vs			373 m	317 m	
	R							614							
β-UF ₅	IR							605 sh	573 vs		512 m		390 s , br	308	
NDF 5	IR	748 s 719 sh										499			
TaFs	R	771 VS 732 m													278 s
	IR	752 vs 773 ch					648 m		581 w		508 vs				

•

The vibrational spectra of $UF_5.2MF_5$ (M = Nb, Ta) are related to that of $UF_5.2SbF_5.^{23}$ The infrared spectra in all 3 cases are too complex to be fully assigned. Bands in the region 760-600 cm⁻¹ may be attributed to terminal Nb-F and Ta-F stretching modes, whilst those in the region 600-500 cm⁻¹ are associated with M-F and U-F stretching. Bands in the region below 500 cm⁻¹ may be assigned to U-F-U, M-F-U and M-F-M bridging (M = Nb, Ta).

In the region 760-550 cm⁻¹ the infrared spectra exhibit bands close to those expected for β -UF₅/MF₅ (M = Nb, Ta) mixtures. However, below 550 cm⁻¹ additional bands appear. This is the region associated with bridging fluorines. On the basis of this it is postulated that the adducts consist of interlinked lattices of UF₅ and MF₅ (M = Nb, Ta) molecules with some form of fluorine bridging between them.

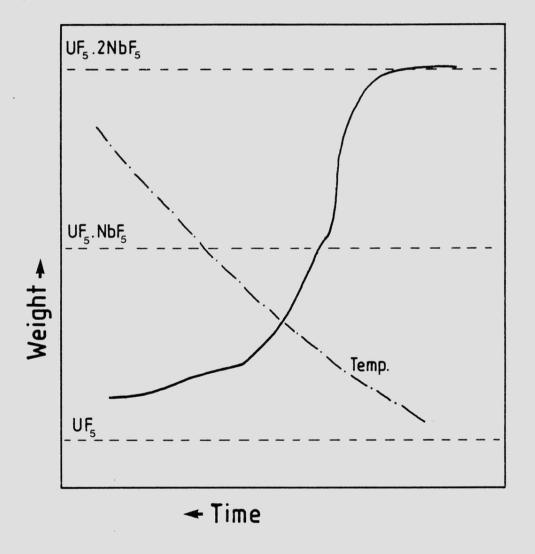
Another interesting fact is that in the Raman spectrum of $UF_5.2TaF_5$ there is a band at 566 cm⁻¹. This is coincident with the IR band for β -UF₅ at 573 cm⁻¹, which is not normally Raman active. This suggests that the symmetry around the uranium centre has been lowered, relaxing the selection rules sufficiently to make the band Raman active. This lowering of the symmetry is probably a consequence of the bridging between the UF₅ and MF₅ (M=Nb, Ta).

Complexes of MF₅ (M=Nb, Ta) exhibit varying degrees of ionicity with $Cs^{+}[MF_{6}]^{-}$ (M=Nb, Ta)^{27,28} and the pentafluorides themselves representing the ionic and covalent extremes respectively. Complexes with NOF, ClOF₃, KrF₂, XeF₆ and XeF₂²⁹⁻³⁶ lie between these extremes. The complexes with NOF and ClOF₃ are mainly ionic whereas those of the noble gas fluorides have only small ionic contributions to the bonding. The small changes in frequency of the bands in the terminal stretching region of the adducts compared with those of the pure starting materials, indicates that

-42-

there is only a small ionic contribution to the bonding. The degree of ionicity would be lower in the NbF₅ and TaF₅ adducts than in the analogous SbF₅ adduct,²⁴ as the relative Lewis acidities of the pentafluorides follows the sequence SbF₅ > TaF₅, NbF₅. The degree of ionicity, however, can only be quantified by determination of the bridging bond lengths in a single crystal X-ray structure determination, which has, so far, not been possible for any of the adducts

2.2.4 Thermal decomposition of UF5.2MF5 (M=Nb, Ta)


When the adducts $UF_5.2MF_5$ (M = Nb, Ta) are heated in a dynamic vacuum they lose MF_5 (M = Nb, Ta) (identified by X-ray powder diffraction) by sublimation. Weight loss measurements during the decomposition at 100°C shows each mole of $UF_5.2MF_5$ loses one mole of MF_5 . When sublimation was complete the residue was examined by infrared spectroscopy in the region 1000-300 cm^{-1} . The residue was indistinguishable from that of the $UF_5.2MF_5$ (M = Nb, Ta) adducts. In this respect, these systems resemble that of $UF_5.2SbF_5$, where the IR spectrum of $UF_5.2SbF_5$ is almost identical to that of $UF_5.SbF_5$ in the region 1000-300 cm⁻¹.²³ In the bridging region, below 300 cm⁻¹, the only differences between $UF_5.2SbF_5$ and UF5.SbF5 are observed in the Raman spectra in which the UF5.2SbF5 adduct shows many more bands. If, as is expected, the thermal decomposition of $UF_5.2MF_5$ yields $UF_5.MF_5$ (M = Nb, Ta) then the difference should be demonstrable by Raman spectroscopy. However, as both $UF_5.NbF_5$ and UF5.TaF5 rapidly decomposed in laser beams even at low temperatures in the presence of liquid HF as a heat sink, the existence of $UF_5.MF_5$ (M = Nb, Ta) could not be demonstrated by spectroscopic means.

Thermogravimetric analysis of $UF_5.2MF_5$ (M = Nb, Ta) (Figure 2.2 and Table 2.2), however, did suggest the existence of intermediate adducts. Sharply defined plateaux indicating the presence of 1:1 adducts were not

-43-

FIGURE 2.2

Thermogravimetric analysis of $UF_5.2NbF_5.$

TABLE 2.2

	% of weight [calculated]	% of weight [found]	Temperature at inflexion (°C)
UF ₅	37.63	55.43	105
UF5.TaF5	68.81	73.74	135
$UF_5.2TaF_5$	100.0	100.0	186
UF ₅	46.98	53.61	
UF ₅ .NbF ₅	73.49	74.73	127
UF ₅ .2NbF ₅	100.0	100.0	175

Thermogravimetric data for the adducts $UF_5.2MF_5$ (M = Nb, Ta)

observed, but there are points of inflexion in the TGA curve in the regions expected for 1:1 adducts. The recorded weight losses for the thermal decomposition of the 1:2 adducts were, at all times, less than the calculated values and the residues were of higher mass than expected. This was due to the fact that the samples were not handled under totally anhydrous conditions and the system could not be seasoned before use. The inevitable oxidation results in the formation of involatile oxide fluorides which raise the expected residual weight.

Differential scanning calorimetry was also performed on the adducts. This showed that when $UF_5.2TaF_5$ is heated two phenomena take place; the first is the formation of $UF_5.TaF_5$ with the evolution of TaF_5 , the maximum thermal effect being observed at 144°C [the point of inflexion associated with $UF_5.2TaF_5 \rightarrow UF_5.TaF_5 + TaF_5$ is observed at 135°C]. The second step is the decomposition of $UF_5.TaF_5$, the maximum thermal effect being detected at 189°C (186°C from the TGA), and is accompanied by the evolution of a volatile material. It is assumed that this reaction can be accounted for by the equation: $UF_5.TaF_5 \longrightarrow UF_4 + UF_6 + TaF_5$,

the UF_6 being the volatile material observed. The residue after heating was shown by X ray powder diffraction to be UF_4 .

A similar pattern is followed when $UF_5.2NbF_5$ is heated. The maximum thermal effect for $UF_5.2NbF_5 \rightarrow UF_5.NbF_5 + NbF_5$ is observed at 130°C (135°C from the TGA). The second step of $UF_5.NbF_5 \rightarrow UF_4 + UF_6 + NbF_5$ has a maximum thermal effect at 187°C (175°C from the TGA). The residue after heating was again shown to be UF_4 .

The differential scanning calorimetric results clearly showed the existence of the 1:1 adducts giving more consistent results than the TGA. The DSC results may be used to explain the anomalous appearance of the thermograms. When $UF_5.2NbF_5$ is heated then the maximum thermal effect takes place at 130°C with the loss of the first NbF₅ unit, whilst the DSC results indicate that the second stage of the decomposition starts at 144°C. This means that the plateau in the TGA curve would be small, and might appear as a point of inflexion rather than a plateau. The final formation of UF_4 can be explained in terms of the thermal instability of UF_5 which is known to disproportionate at temperatures above $150°C.^2$

2.2.5 X-ray powder diffraction patterns

The X-ray powder patterns of the adducts $UF_5.2MF_5$ (M=Nb, Ta) are closely related to each other, but different from those of $UF_5.2SbF_5$. They are too complex to be indexed. Comparison of the diffraction patterns for these adducts to those for α - and β - UF_5 and the niobium and tantalum pentafluorides, show that the adducts do not contain unreacted starting materials.

The diffraction patterns for the 1:1 adducts resemble those of the 1:2 adducts, the only differences being small changes in the positions of the low angle lines. This means that the only definitive data for the existence of the 1:1 adducts is in the results obtained from the thermal decomposition studies. However, satisfactory results were obtained for the elemental analysis of $UF_5.NbF_5$, prepared by the careful thermal decomposition of $UF_5.2NbF_5$. The analytical results for $UF_5.NbF_5$ were:-

Calculated: %U = 45.69, %Nb = 17.84, %F = 36.47;

Found: %U = 45.40, %Nb = 18.05, %F = 36.32.

2.3 THE REACTION OF UF 5 WITH BiF 5

2.3.1 The reaction of UF_5 with BiF_5 in anhydrous HF

Reactions between UF₅ and BiF₅ in anhydrous HF were carried out in prefluorinated $\frac{1}{4}$ " FEP tubes. The powdered reactants were placed in the tube in a dry box (UF₅:BiF₅ > 1:5). The reaction vessel was pumped to high vacuum before addition of anhydrous HF solvent at -196°C. The reaction mixture was allowed to warm to ambient temperature with mixing and then left standing with occasional mixing and warming to 40-50°C, for 1 hour. At the end of this period a pale blue solution above an off-white solid remained. The bulk of the solvent was removed under static vacuum conditions and finally the solid residue was pumped dry. The unreacted BiF₅ was removed by sublimation at 75-80°C in a dynamic vacuum. Addition of anhydrous hydrogen fluoride to the product did not produce a pale blue solution which suggested that the product was only soluble in the presence of an excess of BiF₅.

2.3.2 Examination of reaction products

The e.s.r. spectrum of the blue solution obtained during the reaction was recorded in a $\frac{3}{16}$ " FEP tube. The spectrum showed only a broad weak signal at a value lower than that of -0.76 expected for a uranium(V) species.²¹ This weak signal does not, however, rule out the possibility

of the presence of a uranium(V) species as the paramagnetic centres may be diamagnetically coupled. The existence of diamagnetically coupled uranium(V) species in similar systems has been observed, with only weak signals being seen when UF₅ is dissolved in SbF₅, the presence of uranium(V) in the product of this reaction was hyperred $\frac{1}{2}$ ^{TOM} a single crystal structure determination.²⁴

The vibrational data for the solid product of the reaction are compared to those of BiF_5 and the two crystal modifications of UF_5 in Table 2.3. Comparison of the Raman spectrum of the adduct with that of $Cs^+[BiF_6]^-$ (Raman shift: 579 vs, 526 mw, 241 m, 231 w)³⁸ shows that the frequencies characteristic of the hexafluorobismuthate anion are not present. However, there are similarities with the vibrational data for the adduct $UOF_4.2BiF_5$ [Raman shift: 911 (U=O), 678 m, 611 s, 590 vs, 564 sh, 489 wbr, 247 mw].³⁹ The spectroscopy of $UOF_4.2BiF_5$ was explained in terms of a predominantly covalent structure containing both U-F-M and M-F-M (M=Bi, U) bridges, with only a slight ionic contribution to the bonding.

The thermal behaviour of the solid product was followed by the use of differential scanning calorimetry. The results showed that the product of this reaction differed from those of UF₅ with NbF₅ or TaF₅. Only one thermal effect was observed, starting at 232°C, with the maximum being at 288°C. No uranium species was present in the residue after heating, the only species observed by powder diffraction was BiF₅. The weight of this residue indicated that if the starting material had been UF₅.2BiF₅ two moles of BiF₃ were formed from each mole of the starting material. The lack of uranium in the residue indicates that at the decomposition temperature BiF₅ is a strong enough oxidising agent to oxidise all uranium species present to UF₆ which, being volatile, was pumped away.

Chemical analysis of the solid residue after heating was not satis-

-48-

TABLE 2.3

•

Vibrational Data of the adduct "UF₅.2BiF₅" compared with those of pure α - and β - UF₅ and BiF₅

3iF ₅	R	610 sh	595 s	L L	M COC	260 m 245 m	
UF5.2BiF5	IR	623 s	598 s 588 sh	517 sh	200 sn 467 s,br 387 w		_
5	R		595 s	570 sh		255 m	
BiF5	IR	627 s			450 m,br		
5	R	V LY	# TO				
β UF 5	IR	EOF ch		573 s 512 m	390 s,br	115 000	
α UF 5	R	627 s			E 200		223 m
מן	IR		580 s		398 s		

factory as it did not show the presence of uranium, it did show the presence of bismuth and fluorine in a ratio of 1:4.98 however (Found: U < 0.10, Bi = 50.50, F = 22.88).

As this result suggested that all the uranium present had been removed and the DSC indicated that oxidation of any uranium species present to UF_6 is feasible it was postulated that BiF_5 dissolved in anhydrous HF is itself a strong enough oxidising agent to oxidise UF_5 to UF_6 at room temperature. In order to ascertain whether UF_6 was being formed or not during the reaction, the weight change during the reaction was monitored. This was done by placing UF_5 and BiF_5 , in a molar ratio of 1:2, in a prefluorinated FEP tube, inside a dry box. When the tube had been evacuated it was removed from the manifold and weighed. After re-attachment to the manifold reaction was carried out in the normal manner.

When, after reaction had taken place, the solvent and volatile products were removed, the temperature of the reaction vessel was held at -15° C, in an attempt to retain any UF₆ formed in the reaction vessel. Before the last traces of solvent had been removed the system was allowed to warm to ambient temperature and the infrared spectrum of the volatiles present recorded. The gas infrared spectrum showed no bands in the uranium fluorine region of the spectrum. However, when the solid reaction product had been pumped to dryness and the tube re-weighed it was found that there had been a weight loss during the course of the reaction. This weight loss was calculated as being equivalent to a 20% conversion of UF₅ to UF₆. The weight loss was not due to bumping of the system during removal of the solvent, as the branch used showed no signs of powdered products when dismantled.

The powder diffraction pattern of the product very closely resembled those of α -UF₅ and BiF₅. The sin² θ values for α -UF₅, BiF₅ and the product

-50-

are 2.81×10^{-2} and 4.78×10^{-2} for the product; 2.90×10^{-2} and 4.91×10^{-2} for BiF₅; 2.82×10^{-2} and 4.56×10^{-2} for α -UF₅; also as the difference in intensities in the lines is very slight, distinction between the three species is difficult. This does not rule out the possibility that adduct formation has taken place. Solid BiF₅ and α -UF₅ are isostructural, ^{40,41} so if the solid is a mixed pentafluoride with the same chain structure as the precursors the powder pattern of the product would exhibit only very small differences in intensity and splitting. The powder diffraction pattern of the product showed that there was no appreciable quantities of BiF₃ or β -UF₅ present.

2.3.3 Adduct formation or oxidation?

The data obtained from the reaction of UF_5 with BiF_5 in anhydrous HF may be explained in terms of their being two competing reactions taking place. The first reaction is that of adduct formation. The formation of a covalently bridged adduct, of the form $UF_5.2BiF_5$, is expected as the Lewis acidity of BiF_5 is () relatively high

The evidence for adduct formation is, however, far from conclusive. The X-ray powder diffraction pattern suggests that the product has a structure closely related to those of the starting materials, this being confirmed to some extent by the vibrational spectroscopy.

The second reaction is that of oxidation of the UF_5 . Since BiF_5 in addition to being a strong Lewis acid is also a powerful oxidising agent. This means that it is feasible that in solution UF_5 is being oxidised to UF_6 by the BiF_5 in WF. This reaction is indicated by the weight loss during the course of reaction in addition to the lack of uranium in the elemental analysis results.

-51-

2.4 THE REACTION OF UF 5 WITH AsF 5

2.4.1 Conditions for reaction

When solid UF₅ was left standing in an FEP tube at ambient temperature under a pressure of AsF₅ gas, a slight pressure decrease was noted with the passing of time. However, when after periods of up to 12 hours, the volatile materials were removed from the system, there was found to be no visible changes and weight uptake. The solid in the tube was shown by infrared spectroscopy and X-ray powder diffraction to be unreacted UF₅. The pressure drop presumably being due to reaction between AsF₅ and the walls of the reactor and the manifold. Similarly, when solid UF₅ was heated with AsF₅ to 150°C in a lightweight nickel reactor no reaction took place. Also when UF₅/AsF₅ mixtures were held at -78°C, so that UF₅ was in the presence of liquid AsF₅, for up to 20 hours, no reaction was observed.

When solid UF₅ was placed in a preseasoned FEP tube and anhydrous HF distilled into the tube, followed by AsF_5 at -196°C, a reaction was observed upon warming. When the UF₅/AsF₅/HF mixture reached ambient temperature, the solvent was pale blue. Further additions of AsF_5 deepened the blue colouration, until after addition of a large excess of AsF_5 all the solid present dissolved. [Pressure measurements on the gas added via the manifold suggested that for all the UF₅ to be dissolved a four-fold excess of AsF_5 was necessary.] This clear blue solution was stable for extended periods at room temperature, with no loss of colour or deposition of solid over a period of several days.

Since this work was carried out it has been reported by Barraclough <u>et al</u>. that UF_5 is soluble in AsF_5 /anhydrous HF mixtures, although they did not speculate upon the nature of the species present.⁴²

-52-

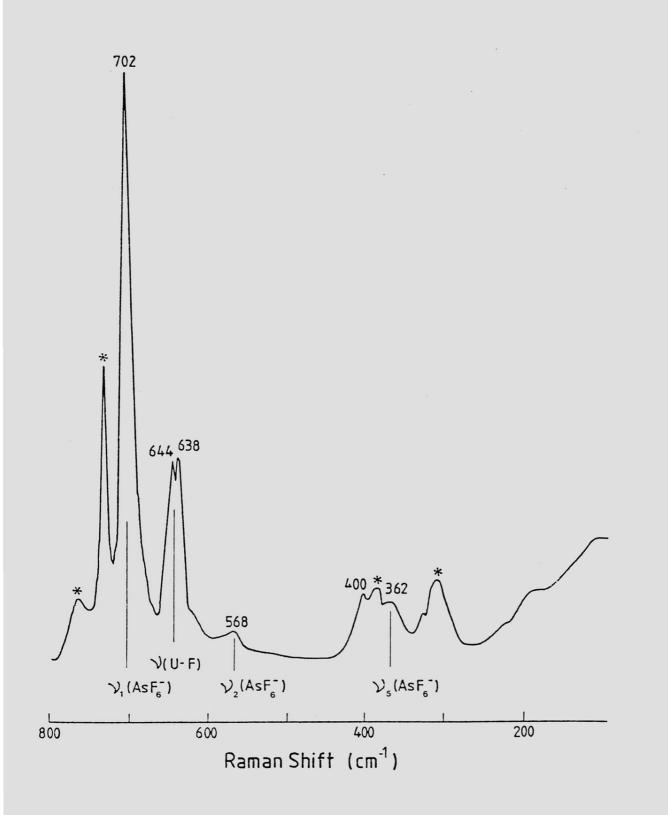
2.4.2 Solutions of UF5 in AsF5/HF mixtures

Examination of the blue solution obtained when UF_5 is dissolved in AsF_5/HF mixtures was undertaken by e.s.r., n.m.r., and Raman spectroscopy.

The ¹⁹F n.m.r. spectrum of the solution, recorded in a $\frac{3}{16}$ " FEP tube, showed only a single broad resonance in the range 400 to -756 ppm from CFCl₃ in the temperature range from 0°C to -80°C (Table 2.4). The n.m.r.

TABLE 2.4

Temperature (°C)	Spectrum	Chemical shift (ppm)	Half-line width (Hz)
0	broad singlet	102 ± 2	~1730
-47		96	2100
-80	11	93	2500


The n.m.r. data for solutions of UF_5 in AsF_5 /anhydrous HF

spectrum is of little value as the data indicate that, even at just above the freezing point of the solvent, exchange is rapid.

The Raman spectrum of the solution is shown in Figure 2.3, and is compared to that of $CsAsF_6^{43}$ and UF_5 in Table 2.5. The Raman spectrum clearly shows that, in solution, the AsF₅ entity is acting as octahedral AsF₆⁻. The interesting aspect of the spectrum concerns the bands at 644, 638 and 400 cm⁻¹ which are assigned to uranium - fluorine bands. Those at 644 and 638 cm⁻¹ are in the region associated with uranium - fluorine terminal stretching frequencies. The frequencies are shifted to higher wavenumber relative to UF_5 , which can be explained in terms of the presence of a cationic uranium(V) species such as UF_4^+ being present. The coordination number of 4 implied for uranium is low and it is unlikely that such a species exists in solution. In order to increase the

Raman Spectrum of UF5/AsF5/HF solution

- 54 -

TABLE 2.5

UF 5	CsAsF ₆	UF_5 in $\mathrm{AsF}_5/\mathrm{HF}$	Tentative assignments
(27. (685	702	$v_1 \text{ AsF}_6^-$
627 (α-form) 614 (β-form)		644	U-F terminal
	576	638 568	$v_2 \text{ AsF}_6$
503 (α-form)		400	UFU bridging
223 (α-form)	372	362	v ₅ AsF ₆

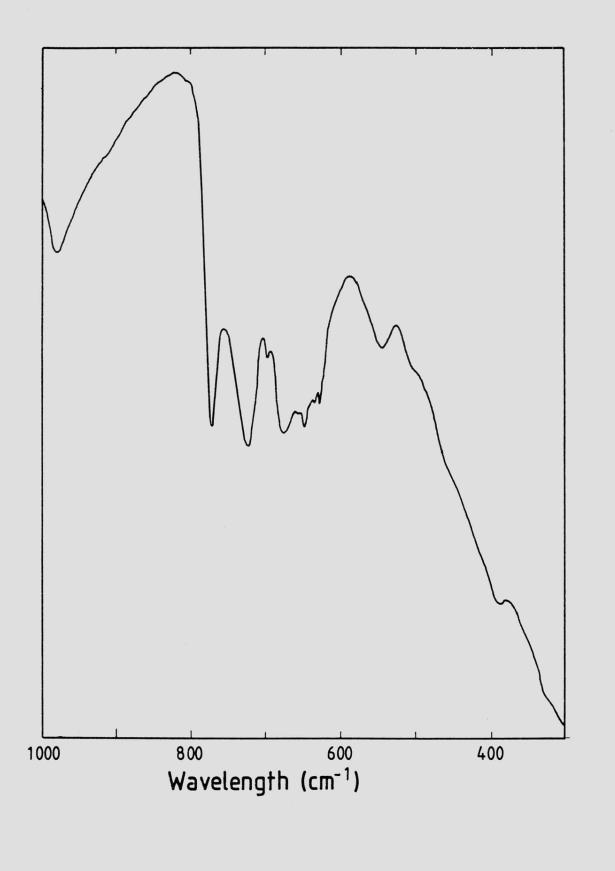
Raman data for UF₅ dissolved in $AsF_5/anhydrous$ HF compared to that for $CsAsF_6$ and UF₅

coordination number polymerisation to give a polyatomic cation is likely. Further credence to this is the Raman band at 400 cm⁻¹ which is in the region expected for uranium - fluorine bridging modes. Similar Raman spectra are obtained when UF_6/UF_4 mixtures or UF_4/F_2 mixtures are reacted with AsF₅ in anhydrous HF, suggesting that the same uranium(V) species is formed in each case.

The e.s.r. spectrum of the solution of UF₅ in AsF₅/HF, recorded in a $\frac{3}{16}$ " FEB tube, showed no signal in the region associated with the transitions of uranium(V) species, at g = -0.76.²¹ A weak transition observed at a smaller g-value along with the decrease in intensity of the transition can, however, be explained in terms of a bridged polyatomic species, which has the U(V) atoms in an orientation such that paramagnetic pairing can take place. Such an orientation is feasible if there is a fluorine-bridged polyatomic cation present. [Note: The uranium is known to be in a +V oxidation in solution as the solid product obtained from the reaction is β -UF₅ (section 2.4.3).] The e.s.r. spectrum of UF₅/AsF₅/HF resembles that of UF₅ in an excess of SbF₅ or UF₅ in melts of TaF₅ or NbF₅³ which also show weak e.s.r. signals at a fraction of the expected g-tensor value.

2.4.3 Solid products from the reaction

When the solvent and excess of AsF_5 were removed from the UF₅/AsF₅/HF system by vacuum distillation, with the system at ambient temperature, a green solid was left in the reaction tube. Analysis by infrared spectroscopy and X-ray powder diffraction showed it to be β -UF₅.


A pre-weighed reactor was loaded with a known quantity of UF₅ prior to reaction with AsF₅ in the presence of HF. After reaction had taken place the solvent and excess AsF₅ were removed whilst the system was held at below -20°C. A blue crystalline solid was observed. After removal of all the volatiles, at -20°C, the reactor was weighed at room temperature. The weight uptake of the system was found to be consistent with the formation of an adduct of formulation UF₅.AsF₅. When the tube was being manipulated, it was noted that the blue solid turned green over a period of approximately 1 hour, and when the tube was re-attached to the manifold it was found that there had been a pressure increase. The green solid was shown to be β -UF₅. This indicates that the adduct, UF₅.AsF₅, is not stable at above -20°C, but is thermally decomposed to give solid UF₅ and gaseous AsF₅.

As the adduct took an hour to decompose at room temperature, attempts were made to analyse the solid by infrared spectroscopy and X-ray powder diffraction. The diffraction pattern was poorly defined, but showed that the solid was not β -UF₅. The d-spacings (and relative intensities) were: 4.084 (75%), 3.712 (100%), 3.329 (80%), 2.035 (50%), 1.995 (50%).

The infrared spectrum of the blue solid, recorded between KBr or polythene discs, is shown in Figure 2.4, and compared to those of $CsAsF_6$, ⁴³ HgF₂.2AsF₅, ⁴⁴ β -UF₅ and AsF₅⁴⁵ in Table 2.6. It exhibits bands at 700 and 389 cm⁻¹ which might be considered to indicate the presence of regular, octahedral [AsF₆]⁻ as in Cs⁺[AsF₆]⁻. However, the weakness of

-56-

<u>FIGURE 2.4</u> Infrared spectrum of $UF_5.AsF_5$.

- 57 -

TABLE 2.6

UF ₅ .AsF ₅	β-UF ₅	AsF 5	CsAsF ₆	$HgF_2.2AsF_5$
772 s 727 s 700 w 674 s 654 sh 649 s 633 sh 629 sh		811 784	699	770 s 720 m 680 m 645 w 630 w
548 m 502 m 389 m,br 336 w 273 m	605 sh 573 s 512 m 390 s,br 308 sh	400 372	392	550 w 510 w

Infrared data for UF₅.AsF₅ compared to that for β -UF₅, AsF₅, CsAsF₆ and HgF₂.2AsF₅ (850-250 cm⁻¹)

the 700 cm⁻¹ band and the observation that the intensity of this band relative to others in the spectrum changes from sample to sample is an indication that this may be due to only traces of $[AsF_6]^-$ species. If these peaks are disregarded there is a great similarity between the residual infrared spectrum of UF₅.AsF₅ and that of HgF₂.2AsF₅. The infrared spectrum of the latter adduct has been explained in two ways.⁴⁴ The first describes the structure in terms of a covalently fluorinebridged molecule and the second in terms of a simple or polyatomic cation and a distorted AsF₆⁻ entity of C_{4×} symmetry.⁴⁴ The latter accounts for many of the infrared bands. There are additional bands in the region of 630 cm⁻¹, which correlate well with the 644 and 638 cm⁻¹ bands seen in the solution Raman, which are in the region associated with the terminal fluorine stretching region of a cationic uranium(V) species. The infrared spectrum of UF₅.AsF₅ also shows bands below 400 cm⁻¹ which are not attributable to a C_{4v} AsF₆⁻ unit, but are in the correct region for uranium - fluorine bridging modes, and they correspond to the 400 cm⁻¹ Raman band of the solution.

When the solid samples are left for extended periods, the infrared spectrum exhibits a band at 570 cm⁻¹ which is the strongest band in the spectrum of β -UF₅. The intensity of this band increased with time, as the adduct decomposes.

2.5 THE REACTION OF UF 5 WITH BF 3

There was no reaction between solid UF₅ and gaseous BF_3 at temperatures up to 175°C. There was also no reaction when UF₅ was treated with liquid BF_3 at -110°C. The interaction of a large excess of BF_3 with UF₅ in the presence of anhydrous HF, in FEP reaction tubes, was also studied. In a typical reaction 5×10^{-3} moles of solid UF₅ was placed in the reaction tube, and HF solvent was distilled onto the solid at -196°C along with a measured 5-fold excess of gaseous BF_3 . The system was allowed to warm to ambient temperature, with mixing. Upon standing with occasional mixing the solid at the base of the tube was seen to change from the green of β -UF₅ to an olive green. Removal of the volatiles by distillation followed by pumping in high vacuum left an olive green solid. Examination of the olive green solid by X-ray powder diffraction and infrared spectroscopy showed the presence of β -UF₅.

The colour change of the solid was ascribed to the formation of a species in which BF_3 is absorbed onto the surface of the solid UF_5 . The amount of BF_3 so held was too small to be detected. This deduction is further supported by the observations of Winfield <u>et al.</u>⁴⁶ who explained

-59-

the results obtained from fluorine exchange reactions between UF_5 and $B^{18}F_3$ in terms of a surface absorbed BF_3 species.

2.6 DISCUSSION AND FURTHER WORK

The adducts $UF_5.nMF_5$ (M = Nb, Ta; n = 1, 2) are examples of fluorinebridged Lewis acid-base complexes, retaining many of the features of the parent compounds. The vibrational spectroscopic data for these compounds suggests that they consist of predominantly covalently bridged species, with only a limited contribution to the overall bonding from ionic species in which UF_5 is behaving as a fluoride ion donor.

The adduct $UF_5.AsF_5$ appears to be an example of an ionic species containing uranium(V) atoms, present as in polyatomic cations. The spectroscopic data for the cation suggests that the polymerisation is achieved by covalent fluorine bridges between the uranium atoms. The reaction of UF_5 with AsF_5 differs from that of UF_5 with SbF_5 , NbF_5 and TaF_5 in many ways. These differences are probably a reflection on the ond the feeble tendeng of AsF_5 to form fluone bridged Structures. lower Lewis acidity of $AsF_5 \lambda$ It may, however, be related to the solubility of the $UF_5.AsF_5$ adduct in AsF_5/HF mixtures. The only technique available which would allow a determination of the exact nature of the reaction of UF_5 with MF_5 (M = Nb, Ta, As) is single crystal structure determination.

The reaction between UF_5 and BiF_5 needs a great deal more study before it will be possible to state whether adduct formation or oxidation is taking place. Recent investigations on this system⁴⁷ have indicated that near total oxidation of UF_5 to UF_6 in solution at room temperature is possible, and it is speculated that this produces a BiF_3/BiF_5 adduct similar to those known for antimony. This does not, however, entirely explain all the results reported here, with the powder diffraction data

-60-

suggesting that the product is virtually isostructural with BiF_5 . Such a structure would be more likely if the product were a UF_5/BiF_5 complex of some sort. Also the elemental analysis give a Bi:F ratio of 1:4.98 in the solid residue, and if this species is postulated as " $(BiF_3)_x(BiF_5)_y$ " then the BiF_3 content suggested is too low to explain the oxidation of all the UF_5 to UF_6 .

The fact that BF_3 does not undergo a Lewis acid-base type reaction with UF_5 suggests that UF_5 will only act as a fluoride ion donor in the presence of strong Lewis acids. Hence, an investigation of the reaction of UF_5 with such species as IO_2F_3 and PF_5 with UF_5 would be of interest.

2.7 REFERENCES FOR CHAPTER TWO

- D. Brown 'Halides of the Lanthanides and Actinides', Wiley Interscience, (1968).
- D. Brown 'Gmelin Hanbuch der Anorganischen Chemie', Uranium suppl. Vol. C8, Ed. C. Keller, Springer-Verlag, Berlin (1980).
- J. Selbin, J. D. Ortego Chem. Rev., <u>69</u>, 657, (1969).
- 4. R. A. Penneman, G. D. Sturgeon, L. B. Asprey Inorg. Chem., <u>3</u>, 126, (1964).
- 5. G. D. Sturgeon, R. A. Penneman, F. H. Kruse, L. B. Asprey Inorg. Chem., <u>5</u>, 748, (1965).
- J. P. Masson, J. P. Desmoulin, P. Charpin, R. Bougon Inorg. Chem., <u>15</u>, 2529, (1970).
- J. G. Malm
 J. Inorg. Nucl. Chem., <u>42</u>, 993, (1980).
- J. R. Geichman, L. R. Swaney, P. R. Ogle U.S. Report No. GAT-T-971, (1962).
- J. R. Geichman, E. A. Smith, S. S. Trond, P. R. Ogle Inorg. Chem., <u>1</u>, 661, (1962).
- 10. B. Frlec, H. H. Hyman Inorg. Chem., <u>6</u>, 2233, (1967).
- R. Bougon, P. Plurien Compt. Rend., <u>260</u>, 4217, (1965).
- K. W. Bagnall, D. Brown, J. G. H. Du Preez J. Chem. Soc., 2603, (1964).
- 13. R. Benoit, G. Besnard, O. Hartmanshenn, M. Luce, J. Mougin, J. Pelisoe French Report, CEA-R-3963, (1970).
- L. B. Asprey, R. A. Penneman
 J. Am. Chem. Soc., <u>89</u>, 172, (1967).
- J. L. Ryan
 J. Inorg. Nucl. Chem., <u>33</u>, 153, (1971).
- 16. W. Grape, E. Stumpp Inorg. Nucl. Chem. Letts., <u>15</u>, 137, (1979).
- 17. J. R. Geichman, L. R. Swaney, P. R. Ogle U.S. Report, GAT-T-808, (1963).
- S. Maraval, P. Sulle, J. Dixmier, P. Plurien Compt. Rend., <u>260</u>, 1963, (1965).
- 19. B. Frlec, B. S. Brcic, J. Slivnik Inorg. Chem., <u>5</u>, 342, (1966).
- 20. J. A. Berry, R. T. Poole, A. Prescott, D. W. A. Sharp, J. M. Winfield J. Chem. Soc. Dalton, 272, (1976).
- G. W. Halstead, P. G. Eller, M. P. Eastman Inorg. Chem., <u>18</u>, 2867, (1979).

J. A. Berry, A. Prescott, D. W. A. Sharp, J. M. Winfield 22. J. Fluorine Chem., 10, 247, (1977). 23. R. Bougon, P. Charpin J. Fluorine Chem., 14, 235, (1979). W. Sawodny, K. Rediess, U. Thewalt 24. Z. Anorg. Allg. Chem., <u>469</u>, 81, (1980). 25. R. Bougon, J. Fawcett, J. H. Holloway, D. R. Russell J. Chem. Soc. Dalton, 1881, (1979). 26. J. Fawcett, J. H. Holloway, D. R. Russell J. Chem. Soc. Dalton, 1212, (1981). O. L. Keller, Jr. 27. Inorg. Chem., 2, 783, (1963). O. L. Keller, Jr., A. Chetham-Strode 28. Inorg. Chem., 5, 367, (1966). W. A. Sunder, A. L. Wayda, D. Distefano, W. E. Falconer, J. E. 29. Griffiths J. Fluorine Chem., <u>14</u>, 299, (1979). A. J. Edwards, W. E. Falconer, J. E. Griffiths, W. A. Sunder, 30. M. J. Vasile J. Chem. Soc. Dalton, 1129, (1974). R. Bougon, T. Bui Huy, A. Cadet, P. Charpin, R. Rousson 31. Inorg. Chem., <u>13</u>, 690, (1974). B. Frlec, J. H. Holloway 32. Inorg. Chem., <u>15</u>, 1263, (1976). 33. B. Zemva, I. Slivnik J. Fluorine Chem., 8, 369, (1976). R. J. Gillespie, B. Landa 34. Inorg. Chem., <u>12</u>, 1383, (1973). 35. B. Frlec, J. H. Holloway Inorg. Nucl. Chem. Letts., Herbert H. Hyman Mem. Vol., 167, (1976). B. Frlec, J. H. Holloway 36. J. Chem. Soc. Dalton, 535, (1975). 37. J. B. Raynor, G. M. Staunton, J. H. Holloway Unpublished results. 38. T. Surles, L. A. Quarterman, H. H. Hyman J. Inorg. Nucl. Chem., <u>35</u>, 670, (1973). 39. J. H. Holloway, D. Laycock J. Chem. Soc. Dalton, submitted for publication 1982. I. R. Beattie, K. M. S. Livingstone, G. A. Ozin, D. J. Reynolds 40. J. Chem. Soc. A, 958, (1969). 41. P. G. Eller, A. C. Larson, J. R. Peterson, D. P. Ensor, J. P. Young Inorg. Chim. Acta, <u>37</u>, 129, (1979). C. G. Barraclough, R. W. Cockman, T. A. O'Donnell 42. Inorg. Nucl. Chem. Letts., <u>17</u>, 83, (1981). 43. G. M. Begun, A. C. Rutenberg Inorg. Chem., <u>6</u>, 2212, (1967).

- 44. B. Frlec, D. Gantar, J. H. Holloway J. Fluorine Chem., <u>19</u>, 485, (1982).
- 45. L. C. Hoskins, R. C. Lord J. Chem. Phys., <u>46</u>, 2402, (1967).
- 46. D. K. Sanyal, J. M. Winfield Paper P.13 10th. International Symposium on fluorine chemistry, Vancouver, 1982.
- 47. R. Bougon Private communication.

.

.

.

CHAPTER 3

THE REACTION OF URANIUM PENTAFLUORIDE WITH OXYGEN AND NITROGEN DONOR LIGANDS

.

.

3.1 INTRODUCTION

The behaviour of UF₅ in non-aqueous media has received little attention to date because of its tendency to react either with the solvent, or with moisture in it. However, it has been shown that UF₅ is soluble in acetonitrile at ambient temperatures, yielding a stable solution in the absence of moisture.¹ Removal of the solvent produces UF₅.nCH₃CN, where n = 1 or $2^{2,3}$ depending on the conditions employed in drying the solid. There is a difference of opinion over the nature of these adducts. Berry <u>et al.</u>² claim that the complex has a neutral, monomeric structure whilst Eller <u>et al.</u>³ favour a salt-like formulation, $[UF_4(CH_3CN)_x]^+[UF_6]^-$. The complexes UF₅.m tppo (m = 1 or 2 and tppo = triphenylphosphineoxide)^{4,5} have also been reported as the products of the reaction of tppo with UF₅ dissolved in CH₃CN. The complex UF₅.2SC(NH₂)₂ has also been reported,⁶ although it has not been proven that this species, formed by the reaction between UF₆ and thiourea, actually contains uranium in the +V oxidation state.

The stability of UF₅ in CH₃CN solutions prompted Eller, Halstead and Eastman to examine the behaviour of UF₅ in a range of non-aqueous systems.³ They reported that UF₅ is insoluble in CFCl₃, C₆F₆, anhydrous HF, SO₂, CF₃COCl, CF₃CO₂H, CS₂, hexafluoroacetyl acetone and C₅F₅N; whilst it is soluble in CH₃CN, C₆H₅CN, DMF and DMSO; giving adducts when the solvent was removed. It will react with CH₃CH₂OH, CH₃OH, C₆F₅OH, DME, CCl₄, SiCl₄, SOCl₂ and C₃F₇I but decomposes in the presence of C₆H₆, $(C_{2}H_{5})_{2}O$, thf, 1,4-dioxane, pyridine, heptane, acetone, 18-Crown-6, $C_{6}F_{5}NH_{2}$ and CH₃NO₂.

The present study was prompted by experiments in progress at the time of publication of the study by Eller <u>et al</u>., which although similar gave conflicting results.

-66-

The initial reaction examined was that of 1,4-dioxane with UF₅. The reaction with 1,3-dioxane was also studied in an attempt to clarify the nature of the species present in the 1,4-dioxane system. Other reactions examined were those of UF₅ with acetone and dimethylsulphoxide.

3.2 THE REACTION OF UF 5 WITH 1, 3- AND 1, 4- DIOXANE

3.2.1 Uranium(V) halide adducts with oxygen and nitrogen donor ligands

Addition compounds of uranium pentachloride with oxygen and nitrogen donor ligands are well known and characterised.⁷⁻¹² The reaction of UCl₅ with 1,4-dioxane has been reported to produce several adducts.^{13,14} When 1,4-dioxane is added to a solution of UCl₅ in CS₂, a yellow solution is formed from which a yellow solid analysing as UCl₅.(C₄H₈O₂) is precipitated.¹³ If excess 1,4-dioxane is added to a solution of UCl₅ in SOCl₂ at ice temperatures, followed by addition of dry petroleum ether, a deep yellow solid is obtained. This solid was shown by elemental analysis and spectral techniques to be UCl₅.(C₄H₈O₂)₃.¹⁴

The reaction of UF₅ with 1,4-dioxane has been reported to result in decomposition of the UF₅.³

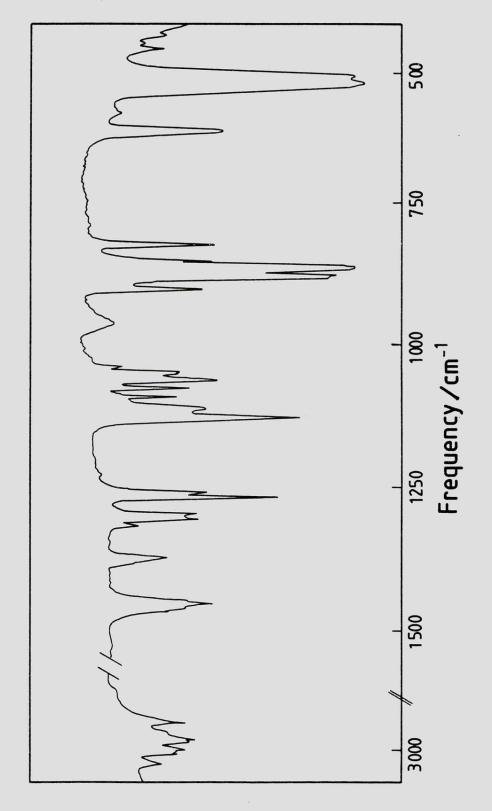
3.2.2 The reaction of UF5 with 1,4-dioxane

In a typical reaction 4×10^{-4} moles (0.133g) of solid UF₅ was loaded into a pre-seasoned glass tube. To this an excess of dry 1,4-dioxane was added by vacuum distillation at -196°C. [The 1,4-dioxane was dried by refluxing it over sodium for four hours before distillation. This purified liquid was then vacuum distilled into a storage vessel containing sodium wire.] When the reaction mixture was allowed to warm to ambient temperature a clear liquid above a green solid resulted. After a short time a vigorous reaction took place, the liquid bubbled and the solid

-67-

became bright yellow. On standing the yellow solid settled out. The excess dioxane was removed by distillation and the solid pumped to dryness.

The weight loss versus pumping time for the system, at room temperature, was recorded. It was found that, when plotted, the curve showed no points of inflexion, and the final plateau indicated a weight uptake consistent with the formation of a product of composition, $(UF_5)_2 (C_4H_8O_2)_3$. The weight of the complex did not fall below this value even after pumping on the solid for extended periods. Elemental analysis confirmed the composition as $(UF_5)_2 (C_4H_8O_2)_3$.


When 1,4-dioxane was added to solutions of UF₅ in CH₃CN, and the solvent and excess reagent were removed by distillation and pumping through a glass sinter dust trap, the product was again found to be $(UF_5)_2 (C_4H_8O_2)_3$.

The vessel containing the product was removed to a dry box and the solid examined by X-ray powder diffraction and infrared spectroscopy. The X-ray powder diffraction pattern (Table 3.1) confirmed that the solid was not UF₅. The infrared spectrum (Fig. 3.1) was too complex to be fully assigned but clearly showed that 1,4-dioxane was coordinated to a uranium fluoride.

1,4-Dioxane may act as either a unidentate or bidentate ligand by coordination through one or both of the oxygen atoms in the ring. Differences in the COC ring vibrations in the adducts formed may be used to speculate upon whether the ring is acting in a unidentate or bidentate manner. In the infrared spectrum of 1,4-dioxane^{15,16} the asymmetric COC ring vibration is observed at 1120 cm⁻¹, the symmetric one at 875 cm⁻¹ and the ring wagging mode at 610 cm⁻¹. It is expected that, should the ligand be bonded through both the oxygen atoms, the asymmetric stretch

FIGURE 3.1

TABLE 3.1

Intensity	LHS	RHS	2R	θ°	Sin 20	d
S	92.80	112.99	20.19	5.047	0.1753	8.763
m	90.82	114.32	23.50	5.875	0.2036	7.531
S	89.58	115.70	26.12	6.530	0.2260	6.779
vs	87.20	118.24	31.04	7.760	0.2676	5.709
w+	81.26	123.52	42.26	10.565	0.3605	4.305
w	79.24	125.58	46.34	11.585	0.3935	3.839
w-	66.48	138.84	72.36	18.090	0.5903	2.483
W	53.82	151.96	98.14	24.535	0.7555	1.856

X-ray powder diffraction pattern for $(UF_5)_2 (C_4H_8O_2)_3$

band at 1120 cm⁻¹ would be shifted to lower energy, and no absorption would be apparent at 1120 cm⁻¹. A similar argument may be applied to the shift of the symmetric COC ring vibrations. If, on the other hand, the 1,4-dioxane is acting as a unidentate ligand then the infrared spectrum will show the COC stretches for an uncoordinated oxygen in addition to bands from the COC stretches of the coordinated end of the ligand. As both the "free" and "bound" COC ring vibrations are observed in the infrared spectrum of UCl₅. ($C_4H_8O_2$), it is assumed that the dioxane is behaving as a unidentate ligand.

The infrared spectrum of $(UF_5)_2 (C_4H_8O_2)_3$ in the region 1130-800 cm⁻¹ is shown in Table 3.2. The presence of a band at 1122 cm⁻¹ shows that there is an uncoordinated oxygen in at least one of the 1,4-dioxane rings. The presence of bands between 1108 and 1049 cm⁻¹ suggests that coordination of dioxane to uranium <u>via</u> the oxygen atoms also takes place. In $UCl_5.(C_4H_8O_2)$ the infrared spectrum shows only three bands in the region 1070 to 1040 cm⁻¹, which is explained in terms of the presence of only one oxygen to uranium coordination. In the case of $(UF_5)_2 (C_4H_8O_2)_3$,

TABLE 3.2

SPECIES	$\mathcal{V}_{\text{ASYMM}}$ (COC)	$\mathcal{V}_{ ext{symm}}$ (COC)	$\mathcal{V}_{ ext{ring wagging}}$	
C ₄ H ₈ O ₂ ^{15,16}	1120 cm ⁻¹	875 cm ⁻¹	611 cm ⁻¹	
$\text{UCl}_5.(C_4\text{H}_8\text{O}_2)^{13}$	1115 cm ⁻¹ 1045 cm ⁻¹ 1055 cm ⁻¹ 1065 cm ⁻¹	938 cm ⁻¹ 889 cm ⁻¹ 865 cm ⁻¹ 850 cm ⁻¹	610 cm ⁻¹	
(UF ₅) ₂ .(C ₄ H ₈ O ₂) ₃	1122 cm ⁻¹ 1108 cm ⁻¹ 1090 cm ⁻¹ 1072 cm ⁻¹ 1060 cm ⁻¹ 1049 cm ⁻¹	960 cm^{-1} ⁺ 899 cm^{-1} 880 cm^{-1} 859 cm^{-1} 821 cm^{-1}	619 cm ⁻¹	

Tentative assignments of selected IR bands for 1,4-dioxane and its complexes with UCl₅ and UF₅

[†] This band is variable in intensity and is probably due to the presence of $\nu_{(U=0)}$ from an impurity formed by hydrolysis

however, there are five bands in this region, which implies more than one type of oxygen to uranium coordination. Similar behaviour is evident in the ν symmetric (COC) vibration region of the spectrum, with both "free" and "bound" frequencies observed, more bands appearing in the spectrum of the UF₅ adduct than in that of the UCl₅ one.

Bands at 536 cm⁻¹ and 523 cm⁻¹ (sh) in the infrared spectrum of $(UF_5)_2 (C_4H_8O_2)_3$ can be assigned to uranium(V) to fluorine bonds. These frequencies in the region expected for $v_{(U-F)}$ terminal stretches are shifted to lower wavenumbers, when compared with those in UF_5 ,¹⁸ by the coordination of the 1,4-dioxane ligands. There is no evidence for U-F-U bridging as no bands are observed in the region below 500 cm⁻¹. No Raman spectrum could be recorded because the solid fluoresced in the laser beam.

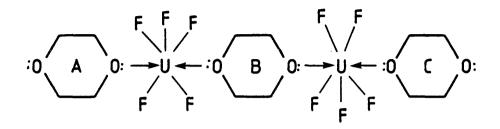
Attempts were made to dissolve the solid in order to study it by n.m.r., e.s.r., electronic and solution Raman spectroscopy and attempts were also made to grow single crystals for X-ray structure determination. Analysis of the 1,4-dioxane left after reaction between UF_5 and 1,4dioxane by n.m.r. spectroscopy showed that the product had no appreciable solubility in this solvent. The complex also proved to be insoluble in dry CH_3CN , CCl_4 , genetron 113, and SO_2ClF ; it reacted violently with decomposition in the presence of dry acetone.

The thermal properties of $(UF_5)_2 (C_4H_8O_2)_3$ were also studied in an effort to obtain adducts with lower 1,4-dioxane to UF_5 ratios. As solid $(UF_5)_2 (C_4H_8O_2)_3$ was warmed to above 40°C in a dynamic vacuum, reaction began with evolution of white fumes and the solid turned green. This product was shown to be amorphous. The infrared spectrum showed only one prominent band at 955 cm⁻¹. Since $v_{(U=0)}$ in UO_2F_2 is found at 990 cm⁻¹¹⁸ this band is presumably due to the formation of uranyl species during a decomposition reaction. At temperatures below 40°C $(UF_5)_2 (C_4H_8O_2)_3$ does not lose 1,4-dioxane.

3.2.3 The reaction of UF₅ with 1,3-dioxane

Since in the reaction of UF_5 with 1,4-dioxane there is evidence that the dioxane ring is acting as both a unidentate and a bidentate ligand, it was decided that an investigation of the reaction of UF_5 with 1,3dioxane would be of interest.

Prior to reaction 1,3-dioxane was dried with sodium in the same manner as 1,4-dioxane. In a typical reaction 5×10^{-3} moles UF₅ was loaded into a pre-seasoned glass reaction vessel. To this was added an excess of 1,3-dioxane by vacuum distillation at -196°C. On warming to ambient temperature no reaction was observed initially. It was then noted that


the green colour of β -UF₅ began to darken, and the liquid took on a slight green colouration. As the reaction continued the colour darkened to muddy brown and a dark brown material appeared at the bottom of the tube.

Removal of the volatile materials by distillation at -196°C, left a dark brown viscous oil. After exposure to dynamic vacuum for several hours the last traces of solvent had been removed and a dark brown solid remained. Examination of this solid by X-ray powder diffraction showed that it was amorphous. The infrared spectrum of the solid yielded only two prominent bands, along with several broad, weak absorptions. One of the strong bands was at 522 cm^{-1} , which is in the region associated with the terminal stretch frequency of uranium(V) to fluorine bonds.¹⁷ The other, more intense, band appeared at 953 cm⁻¹, the region associated with the uranium-oxygen stretch in uranyl ions.¹⁸ All the other infrared bands were too weak and broad to be accurately measured or assigned.

3.2.4 Conclusions

Contrary to the report of Eller <u>et al.</u>³ 1,4-dioxane reacts with UF₅ to give a complex, of empirical formula $(UF_5)_2(C_4H_8O_2)_3$. The analysis of the vibrational spectra of this material suggests that it contains 1,4-dioxane rings acting as both unidentate and bidentate ligands as shown in Figure 3.2. Rings A and C act as unidentate ligands, thus explaining the appearance of the bands at 1122 cm⁻¹ and 880 cm⁻¹ from uncoordinated oxygen atoms. The coordination of rings A and C <u>via</u> one oxygen atom may explain three of the five bands in the 1120-1040 cm⁻¹ region. Since the complex of UCl₅ with 1,4-dioxane, which has the 1,4-dioxane rings acting in a unidentate manner, has three bands in this region. Ring B acts as a bidentate bridging ligand, with both ends of

-73-

.

FIGURE 3.2 The proposed structure of $(UF_5)_2 (C_4H_8O_2)_3$.

.

.

.

.

•

the ring being equivalent. The ring vibrations in ring B would be expected to appear in the same region as the ring vibrations from the "bound" end of the unidentate ligands. This may, therefore, explain the presence of the additional bands in the 1120-1040 cm⁻¹ region as well as the spectrum in the region 920-800 cm⁻¹. Very little speculation on the geometry of the fluorine atoms about the uraniums is possible from the infrared spectrum, the bands at 536 and 523 cm⁻¹ being assigned to the stretching mode of the uranium-fluorine bonds.

Definitive characterisation of the solid will have to await a single crystal X-ray structure investigation. So far the thermal stability of the compound has prevented the preparation of single crystals by vacuum sublimation. The insolubility of the compound has also hindered efforts to gain information on the solution phase structure.

The results of the reaction of 1,3-dioxane with UF₅ may be explained in terms of the decomposition of the reactants. However, the appearance of the band at 520 cm⁻¹, along with the other weak bands in the infrared spectrum suggest that there may be some complex formation between UF₅ and 1,3-dioxane. The presence of the strong band at 953 cm⁻¹ suggests that the primary reaction, however, is one of decomposition. This result is of interest in that it suggests that the differing positions of the oxygen atoms in the 1,3-dioxane ring compared to the 1,4-dioxane ring reduce its ability to act as a bidentate ligand.

3.3 THE REACTION OF UF5 WITH ACETONE

Eller <u>et al</u>. have reported that in the presence of acetone UF_5 decomposes.³ In the light of the results of the reaction between UF_5 and 1,4-dioxane it was felt that this report might have been in error.

The acetone used was dried by a variety of techniques. Initially it

-75-

was dried by distillation, followed by vacuum distillation. The acetone then being stored over molecular sieves activated by baking at 300°C for 18 hours in a dynamic vacuum. Acetone was also dried and purified by the preparation of the addition compound NaI. $(C_3H_8O)_3$.¹⁹ The acetone was refluxed with NaI and when this solution was cooled to $-8^{\circ}C$, in an ice-salt bath, crystals of NaI. $(C_3H_8O)_3$ were formed and filtered off. Upon heating this material decomposed, liberating acetone. This was further dried by vacuum distillation onto activated molecular sieves.

When acetone dried by either of these techniques was added to solid UF_5 vigorous reaction took place at ambient temperature to produce a dark brown material, which was amorphous to X-rays. The infrared spectrum was also uninformative showing only broad weak features, the reaction overall being one of decomposition.

In a final attempt to purify and dry the acetone sufficiently to avoid decomposition reactions, the acetone purified by complexing with NaI was dried further by distillation from UF_5 . When this product was distilled onto pure UF_5 , reaction took place, again with formation of a brown solid.

This solid was again amorphous to X-rays. However, the infrared spectrum showed distinct bands at 521 cm⁻¹, 543 cm⁻¹ (sh), and 949 cm⁻¹ (vs) in addition to several broad bands in the region 1450-1050 cm⁻¹. The bands at 521 and 543 cm⁻¹ are in the correct region for the uranium-fluorine terminal stretch frequency in complexed uranium(V) fluorides.²⁰ The bands in the 1450-1050 cm⁻¹ region are similar to those expected for a coordinated organic ligand, but are too broad to be definitively assigned. However, the infrared spectrum is dominated by the 949 cm⁻¹ band, which is attributable to $v_{(U=0)}$ stretching in uranyl species. The uranyl species, presumably, being formed by decomposition of the UF₅.

-76-

Thus, no matter how pure or dry the acetone used the predominant reaction between it and UF_5 is one of decomposition.

3.4 THE REACTION OF UF 5 WITH DIMETHYLSULPHOXIDE

3.4.1 Introduction

During the course of investigations on the effect of water on the reaction of UF₅ with oxygen and nitrogen donor ligands, the UF₅/DMSO system was reinvestigated. The initial report of the reaction of UF₅ with DMSO was made by Eller <u>et al</u>.³ who stated that UF₅ dissolved in DMSO to give an emerald green solution. This solution hydrolysed readily precipitating UF₄ and leaving a solution containing uranyl ions. The conductivity and electron spectroscopic data of the solution were explained in terms of the presence of an ionic species $[UF_4 (DMSO)_x]^+[UF_6]^-$. When the excess DMSO had been removed a green solid remained which analysed as $UF_5 (DMSO)_{1.5}$, and was formulated as $[UF_4 (DMSO)_3]^+[UF_6]^-$.

Results obtained during this study confirm some of these observations but cast doubt on many of the interpretations.

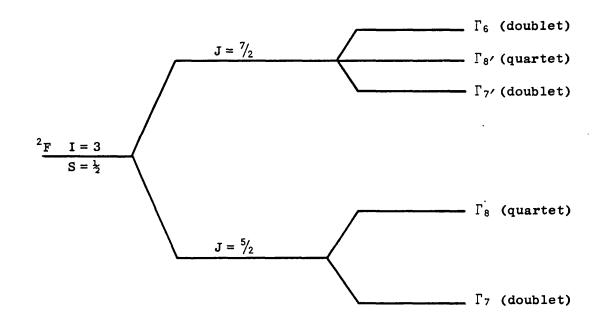
It was found by plotting a weight loss versus time of pumping curve that the weight uptake during reaction was correct for the formation of a solid of composition UF₅. (DMSO)_{1.5}. The infrared spectrum of this solid resembled that of Eller <u>et al</u>., but several of the broad bands reported by them in the region 900-1000 cm⁻¹ were partially resolved. Bands at 991 and 941 cm⁻¹ are attributed to $v_{(S-0)}$ stretching and $v_{(-CH_3)}$ rocking, these being in the region associated with actinide halide - DMSO complexes.²¹⁻²³ The shift from 1060 cm⁻¹ in pure DMSO to 991 cm⁻¹ is indicative of coordination of the ligand through the oxygen atom. The infrared spectrum also exhibits bands in the region associated with uranium fluorine bonding. A band at 517 cm⁻¹ is assigned to a U-F

-77-

terminal stretching frequency. The presence of a band at 412 cm⁻¹ may be due to a U-F-U bridging mode, but could conceivably be the terminal stretching frequency of the U-F bond in the species $[UF_4 (DMSO)_3]^+$. The Raman spectrum of a solution of UF₅ in DMSO did not show any marked shift in the DMSO bands, whilst the solid adduct decomposed in the laser beam.

The differences in the reported results of this reaction arose when attempts were made to duplicate the electronic spectra and conductivity data.

3.4.2 The electronic spectrum of a solution of UF_5 in DMSO


In uranium(V) species the ground state electronic state is [Rn] 5f'. The electronic absorption spectra in which the transitions involving the f electron are observed are in the near infrared region of the spectrum. As only one f electron is present, the spectra lend themselves to theoretical interpretations.

If the U(V) species are in a near octahedral environment the energy level is split by spin orbit interaction and then by octahedral distortion to allow four possible transitions (Fig. 3.3). In practice, because of vibronic transitions four groups of bands rather than four bands are observed. The $\Gamma_7 \rightarrow \Gamma_8$ is observed as a weak, broad band at about 23000 Å. The $\Gamma_7 \rightarrow \Gamma_7$ transition appears in the region 16,500– 14,000 Å. This band is very characteristic of uranium(V) species and is often observed as a cluster of spikes, the centre of which is sometimes the purely electronic transition. The $\Gamma_7 \rightarrow \Gamma_{8'}$ transition is normally found at about 10,000 Å, and appears as two bands of roughly equal shape and intensity, as it splits into two Kramers doublets. The splitting of these two bands has been used as a measure of the distortion away from

-78-

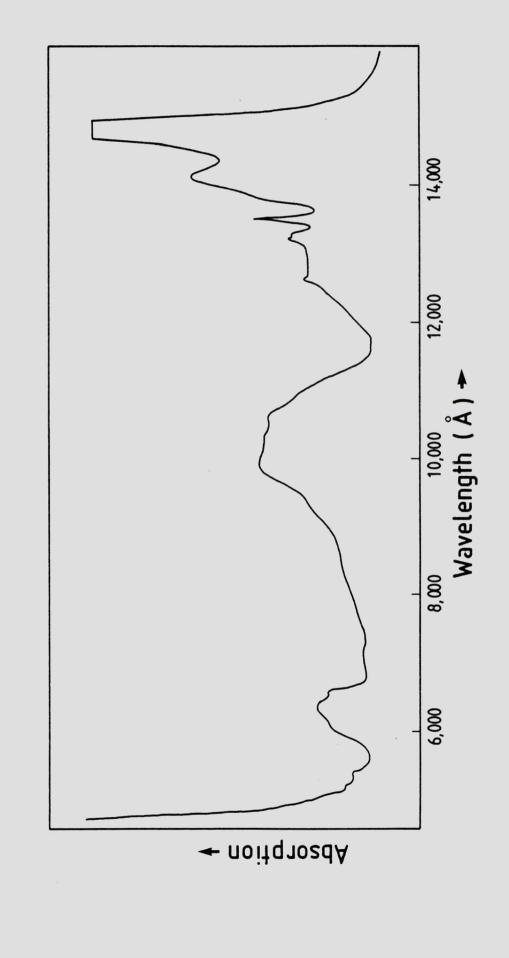
FIG. 3.3

Schematic representation of the electronic energy level splittings for a 5 f' system.

octahedral geometry in the system. The $\Gamma_7 \rightarrow \Gamma_6$ transition is normally the highest energy transition, being observed between 9,000 and 6,500 Å.^{7,13,24-28} These assignments have been used to explain the spectra of many uranium(V) species.^{3,5,13,29-34}

For UF₅ dissolved in DMSO the electronic spectrum was reported as possessing bands at 13,500 Å, 10,000 Å, 6,000 Å and 4500 Å.³ This spectrum was interpretated in terms of the 13,500 Å band being due to the presence of the species UF₆⁻, the other bands were attributed to the presence of a solvated UF₄⁺ cation. It is, however, possible to assign both the 10,000 and 6,000 Å bands to a U(V) species such as UF₆⁻, so the assignment of the bands to a solvated UF₄⁺ cation is questionable.

In the present study DMSO was dried using a variety of techniques and the electronic spectrum of UF_5 dissolved in the dried DMSO recorded. The changes in the spectra with addition of water were also recorded. In the first attempt to dry DMSO the solvent was placed in a glass flask which


-79-

was attached to a vacuum system and the liquid pumped upon. Since, at temperatures below 30°C DMSO has a negligible vapour pressure compared to that of water at the same temperature, any water present was pumped away. After the DMSO had been pumped on for 18 hours the flask was sealed, transferred to a dry box, and activated 4A molecular sieves were added. The flask was left with occasional mixing for 3 hours, whilst the last traces of moisture were removed.

When UF₅ was dissolved in DMSO dried in this manner the result was a yellow solution. It was noted that after a short time the solution changed to the reported green colour, before the electronic spectrum was recorded. The electronic spectrum of the green solution (Fig. 3.4a) showed features additional to those in the reported spectrum.³ The bands at 10,000 and 6,000 Å were much reduced in intensity, the band at 4,500 Å was lost, and a very strong band appeared at 4,800 A. Additional bands in the spectrum appeared at 6,300 Å (the region associated with $\Gamma_7 \rightarrow \Gamma_6$ transitions), 14,100 Å and 14,800 Å (the $\Gamma_7 \rightarrow \Gamma_{7'}$ region). If it is assumed that the bands at 10,000 \mathring{A} overlap then it appears that what is being observed is the electronic spectrum of a mixture of two distinct U(V) species. When 5 $\mu\ell$ water was added the additional features disappeared and the doublet at 10,000 A increased markedly in intensity (Fig. 3.4b) so that the spectrum was identical to that reported. When DMSO was dried by refluxing with BaO followed by distillation, the electronic spectrum resembled that of UF5 in the DMSO/water system and it is noteworthy that this was the method employed by Eller et al. in drying the DMSO used in the initial study.

These results suggest that whilst the reported electronic spectrum is indicative of the presence of a U(V) species it does not prove the presence of $[UF_4(DMSO)_x]^+[UF_6]^-$ since the spectrum can only be duplicated

-80-

-81-

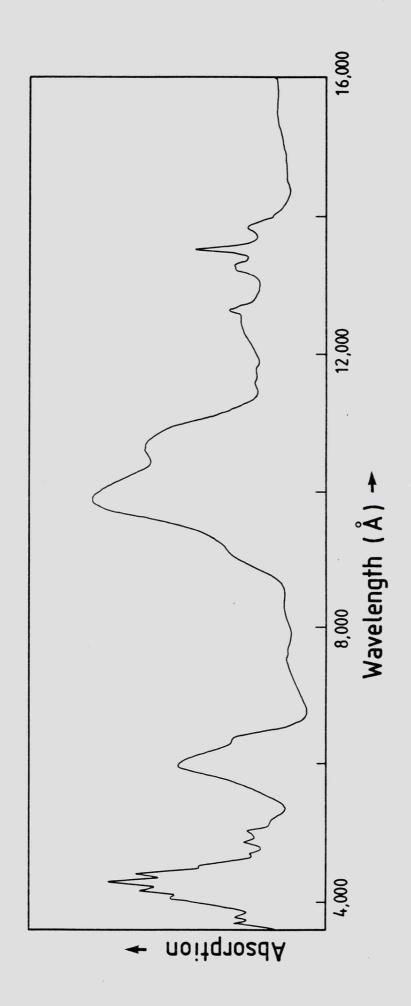


FIGURE 3.4b

Electronic spectrum of UF, in wet DMSO.

-82-

when water is present. The presence of UO_2^+ , may also be ruled out since the spectrum of UO_2^+ in DMSO is reported as exhibiting absorptions at 15,100 Å, 7730 Å and 6630 Å with a cut out at 5700 Å.³⁵

The species initially formed when UF_5 is dissolved in dry DMSO is shown by electronic spectroscopy to be a U(V) species but insufficient data have been obtained to be able to speculate on the nature of this species.

3.4.3 The conductivity of solutions of UF5 in DMSO

In their report on the behaviour of UF₅ in DMSO Eller <u>et al</u>.³ reported the molar conductivity of the solution to be 40 Ω^{-1} cm² mol⁻¹. The measurement was made on a 5.4×10^{-3} molar solution and it was argued that the result was indicative of the presence of a 1:1 conductor.

In this study the molar conductivity of a 1.072×10^{-2} molar solution of UF₅ was measured as 20.25 Ω^{-1} cm² mol⁻¹, and that of a 5.73×10^{-3} molar solution as 20.24 Ω^{-1} cm² mol⁻¹; the temperature was 23°C. The discrepancy between these results and those of Eller <u>et al</u>.³ may be explained if they recorded their data at a higher temperature as molar conductivity rises rapidly with increasing temperature. However, no temperature was reported for their readings. This lower value for the molar conductivity of the solution also questions the assignment of the solution as a 1:1 conductor, as the value of 20 is at the low end of the range for such a conductor.³⁶

When water was added to the system it was noted that the conductivity fell with increasing water content. This result is surprising as addition of water to compounds of UCl_5 in non-aqueous media results in dramatic increases in conductivity.¹³ The fall in the UF₅/DMSO system may be due to the formation of uranyl ions and precipitation of UF₄, so

-83-

that during hydrolysis the total number of ions present in the system decreases.

3.4.4 Conclusions

It is evident that the reaction of UF₅ with DMSO does not proceed in as simple a manner as reported. The solid isolated from such a reaction has been shown, unambiguously, to contain DMSO molecules coordinated to a uranium(V) fluoride centre. The nature of the product along with the nature of the species in solution are, however, in doubt. The formulation of the species as $[UF_4(DMSO)_x]^+[UF_6]^-$ does not stand close examination, as no real evidence for a UF_4^+ species exists. In fact, as even the very strong fluoride ion acceptor SbF_5 does not react with UF₅ to give $UF_4^+SbF_6^{-37,38}$ species, it is unlikely that DMSO will do so.

3.5 FURTHER WORK

This study has highlighted one of the problems inherent in working on the chemistry of UF_5 , which is the propensity of UF_5 to react with water rather than with the donor ligands present.

The reaction of UF_5 with the cyclic ether, 1,4-dioxane, has shown that UF_5 will indeed react with donor ligands to give addition compounds, provided that the donor ligand is dry. This reaction of UF_5 with 1,4dioxane is of interest because of the possibility of the dioxane ring bridging two uranium centres. However, in order to confirm that the bridge exists, it will be necessary to dissolve the complex in solution for n.m.r. studies. The substitution of alkyl groups at the 2, 3, 5 and 6 positions in the ring should lead to a complex with higher solubility in organic solvents, and hence enable an n.m.r. study to be carried out. Alternatively, re-crystallization followed by a structure determination

-84-

could resolve the uncertainty. Substitution at all four positions in the ring would be desirable so as to maintain the symmetry of the ring system, and not destroy the ability of the ring to act as a bridge.

This study has also shown that some of the published results of the reaction of UF_5 with donor ligands³ are open to questions, as in some cases their results may be explained in terms of the presence of water. For this reason a re-investigation of many of their systems would be in order.

Also the reaction of UF₅ with other donor ligands should be possible. For example, no reactions between UF₅ and ligands which bond through phosphorus or sulphur have been investigated. Thus the reaction of UF₅ with Ph_3P or Ph_3PS would be interesting, especially when compared to the products of the reaction between UF₅ and Ph_3PO .⁵

3.6 REFERENCES FOR CHAPTER 3

- 1. J. A. Berry, R. T. Poole, A. Prescott, D. W. A. Sharp, J. M. Winfield J. Chem. Soc. Dalton, 272, (1976).
- J. A. Berry, A. Prescott, D. W. A. Sharp, J. M. Winfield J. Fluorine Chem., <u>10</u>, 247, (1977).
- G. W. Halstead, P. G. Eller, M. P. Eastman Inorg. Chem., <u>18</u>, 2867, (1979).
- 4. J. A. Berry, D. Brown, J. H. Holloway Inorg. Nucl. Chem. Letts., <u>17</u>, 5, (1981).
- 5. The complexes UF_5 .mtppo (m = 1, 2) are discussed further in Chapter 4.
- V. G. Sevastyanov, M. A. Kopeva Russ. J. Inorg. Chem., <u>22</u>, 1517, (1977).
- J. Selbin, J. D. Ortego Chem. Rev., <u>69</u>, 657, (1969).
- J. Selbin, N. Ahmad, M. J. Pribble
 J. Chem. Soc. Chem. Commun., 759, (1969).
- J. Selbin, N. Ahmad, M. J. Pribble
 J. Inorg. Nucl. Chem., <u>32</u>, 3249, (1970).
- R. C. Paul, G. Singh, M. Singh J. Inorg. Nucl. Chem., <u>33</u>, 713, (1971).
- D. Brown, C. E. F. Rickard
 J. Chem. Soc. A, 81, (1971).
- G. Bombieri, D. Brown, C. Mealli J. Chem. Soc. Dalton, 2025, (1976).
- J. D. Ortego, W. P. Tew
 J. Coord. Chem., <u>2</u>, 13, (1972).
- 14. M. Singh, G. Singh, R. C. Paul Inorg. Chim. Acta, <u>10</u>, 225, (1974).
- S. C. Burkett, R. M. Badger
 J. Am. Chem. Soc., <u>72</u>, 4397, (1950).
- F. E. Malkerbe, J. H. Bernstein J. Am. Chem. Soc., <u>74</u>, 4408, (1952).
- E. Jacob
 Z. Anorg. Allg. Chem., <u>400</u>, 45, (1973).
- 18. H. R. Hockstra Inorg. Chem., <u>2</u>, 492, (1963).
- 19. A. I. Vogel 'Practical Organic Chemistry', Third Edition, Longmans, Green & Co., London, 1956.
- 20. For example, 536 and 522 cm^{-1} in $(\text{UF}_5)_2(1, 4-\text{dioxane})_3$.
- P. J. Alvey, K. W. Bagnall, D. E. Brown, J. Edwards J. Chem. Soc. Dalton, 2308, (1973).
- 22. J.G.H. Du-Preez, M. L. Gibson J. Inorg. Nucl. Chem., <u>36</u>, 1795, (1974).

- 23. K. W. Bagnall, D. Brown, D. H. Holah, F. J. Lux J. Chem. Soc., 465, (1968).
- 24. J. Selbin, J. D. Ortego, G. Gritzner Inorg. Chem., <u>7</u>, 976, (1968).
- 25. J. L. Ryan J. Inorg. Nucl. Chem., <u>33</u>, 153, (1971).
- J. Selbin, C. J. Ballhausen, D. G. Durett Inorg. Chem., <u>11</u>, 510, (1972).
- 27. M. Baluka, N. Edelstein, T. A. O'Donnell Inorg. Chem., <u>20</u>, 3279, (1981).
- M. D. Adams, D. A. Wenz, R. K. Steunerberg J. Phys. Chem., <u>67</u>, 1939, (1963).
- 29. D. A. Wenz, M. D. Adams, R. K. Steunerberg Inorg. Chem., <u>3</u>, 998, (1964).
- 30. D. G. Karraker Inorg. Chem., <u>3</u>, 1618, (1964).
- 31. K. W. Bagnall, D. Brown, J. G. H. Du-Preez J. Chem. Soc., 2603, (1964).
- 32. K. W. Bagnall, D. Brown, J. G. H. Du-Preez J. Chem. Soc., 5217, (1965).
- D. Brown, D. G. Holah, C. E. F. Rickard
 J. Chem. Soc. Chem. Commun., 651, (1968).
- 34. J. P. Masson, J. P. Desmoulin, P. Charpin, R. Bougon Inorg. Chem., <u>15</u>, 2529, (1976).
- 35. G. Gritzner, J. Selbin J. Inorg. Nucl. Chem., <u>30</u>, 1799, (1968).
- 36. W. J. Geary Coord. Chem. Rev., <u>7</u>, 81, (1971).
- 37. R. Bougon, P. Charpin
 J. Fluorine Chem., <u>14</u>, 235, (1979).
- W. Sawodny, K. Rediess, U. Thewalt
 Z. Anorg. Allg. Chem., <u>469</u>, 81, (1980).

CHAPTER 4

CHLORIDE-FLUORIDES OF URANIUM(V)

.

4.1 FLUORINE EXCHANGE REACTIONS OF UF 5

In contrast to the large number of uranium(III) and (IV) mixed halides, the number of known pentavalent uranium and actinide mixed halides is small.¹ Mixed halides of protactinium in a plus five oxidation state have been observed, with $PaBr_3I_2$ having been fully characterised² and $PaClF_4$ reported.³

The first report of a chloride-fluoride of uranium(V) was by Kunze et al. who inferred the presence of UClF₄ from spectroscopic data obtained during the low temperature chlorination of UF₄ in an argon matrix.⁴ The whole series of chloride-fluorides of uranium(V), UCl_xF_y (where x + y = 5), have been observed in solution by Berry et al.,⁵ as the products of the exchange reaction between UF₅ and Me₃SiCl in CH₃CN, however, the only species isolated and characterised were UCl₂F₃.2tppo and UF₅.2tppo (tppo = triphenylphosphine oxide). These same chloride-fluorides have also been observed as products of the reaction of UF₅ with B[OCl(CF₃)₂]₃,⁶ but the mechanism of the reaction is not fully understood. The chloridefluorides are probably also formed during the reaction of UF₅ with BCl₃, although, so far, only the final product, UCl₅, has been isolated.⁷

The lability of the F_4U -F bond has recently been quantified by Winfield and Sanyal who have studied the ${}^{19}F$ - ${}^{18}F$ exchange reactions of UF₅ by monitoring the reactions of UF₅ with Me₃Si- ${}^{18}F$ and F_2B - ${}^{18}F$.

This lability of the F_4U -F bond has been used in the formation of the fluoro-fluorosulphate $UF_2(SO_3F)_3$ from the reaction of UF_6 and SO_3 in $CFCl_3$.⁸ This led to a study of the reaction of UF_5 with $S_2O_6F_2$ which resulted in the observation of the species $UF(SO_3F)_4$, $UF_2(SO_3F)_3$ and $UF_3(SO_3F)_2$.⁹ Both reactions were explained in terms of a fluorine exchange mechanism. In the UF_6 reaction the proposed mechanism was an insertion of SO_3 into the F_5U -F bond to give UF_5SO_3F , which dissociates

-89-

to give UF₅ and SO₃F. The SO₃F formed, exchanges with fluorine atoms to give the fluoro-fluorosulphates of uranium(V). In the reaction between UF₅ and $S_2O_6F_2$ in CFCl₃ the mechanism appears to be one of exchange between SO₃F and the fluorine atoms of the uranium(V) centres.

An exchange reaction has also been observed when UF₅ reacts with sodium ethoxide in dry ethanol. The product of this reaction is $U(OC_2H_5)_5$. The mechanism again seems to be one of exchange, with the $C_2H_5O^-$ species exchanging with the fluorines and the fluoride being removed from the system as NaF.¹⁰ A methoxy-fluoride, $U(OMe)_2F_3$, is the product of the reaction between UF₅ and Me₃SiOMe. The proposed mechanism also involves exchange to give $U(OMe)_5$, followed by ligand redistribution to give the methoxy-fluorides.⁶

In this study the preparation, isolation and characterization of the series of chloride-fluorides, UCl_xF_{5-x} (x = 0 + 5) by fluorine exchange is described. The preparations were carried out in the manner described by Berry et al.,⁵ the species being isolated as complexes with acetonitrile or triphenylphosphine oxide.

4.2 PREPARATION OF UCl_xF_{5-x}.nCH₃CN AND UCl_xF_{5-x}.ntppo

4.2.1 Preparation of $UCl_xF_{5-x}.nCH_3CN$ (x = 0 \rightarrow 5, and n \leq 2)

The chloride-fluorides of uranium(V) were prepared by the method of Berry <u>et al</u>., by the reaction of stoichiometric quantities of Me₃SiCl with solutions of UF₅ in CH₃CN, in preseasoned glass reaction vessels.⁵ After the solvent and volatile products had been removed by distillation and pumping under dynamic vacuum the solid chloride-fluoride-acetonitrile adducts were isolated. The species UCl₅.2CH₃CN¹¹ and UF₅.nCH₃CN^{12,13} (n = 1, 2) are already known. However, the number of acetonitrile molecules coordinated to UF₅ is a matter of some debate (see Section 3.1). Examination of the product of the reaction of UF₅ with CH₃CN in this laboratory have shown that the number of coordinated acetonitrile molecules is dependent upon the temperature, how good a vacuum is used and how long the solid is pumped. The ultimate product is always $UF_5.CH_3CN$, when the solid is pumped on for extended periods or at slightly elevated temperatures.

In the preparation of $UClF_{4}.nCH_{3}CN$ the weight-change during reaction was shown to be consistent with the formation of $UClF_{4}.CH_{3}CN$. It was noted that in the preparation of the other species in the series, as the fluorine to chlorine ratio dropped, the products became more difficult to isolate as solids. When the F:Cl ratio is below 2:3, the products are obtained as oils which require pumping for several days at temperatures up to $40^{\circ}C$ to remove the last traces of solvent to leave a solid residue.

4.2.2 Preparation of UCl_xF_{5-x}.tppo

The species UCl_xF_{5-x} .tppo (tppo = triphenylphosphine oxide) were prepared in a manner analogous to that used in the preparation of the acetonitrile adducts. The reaction to prepare UF₅.tppo was carried out by placing solid UF₅ and tppo in a molar ratio of 1:1 in a preseasoned glass vessel. This vessel was evacuated and sufficient scrupulously dried CH_3CN distilled into it to dissolve all the solid present. This resulted in the formation of a pale blue solution from which UF₅.tppo was isolated by the removal of the solvent. Several attempts were made to grow and isolate crystals of UF₅.tppo suitable for a single crystal X-ray structure determination, by the slow removal of the solvent. However, in all cases, the crystals obtained were multiples and structure determination was not possible.

The species UCl_xF_{5-x} .tppo were obtained from solutions of UF_5 .tppo in CH_3CN by addition of stoichiometric quantities of Me_3SiCl to the solution. This was followed by removal of the solvent and Me_3SiF side-product by

distillation and pumping in high vacuum. Again, as in the case of the acetonitrile adducts of the chloride-fluorides, the members of the series with high chlorine content required pumping for extended periods before solids were obtained. The removal of the last traces of the solvent was easier in this case than with the CH_3CN adducts. The final member of the series, UCl_5 .tppo has been prepared previously by the direct reaction of UCl_5 with tppo in CH_3CN or $CH_2Cl_2^{14}$ and has been fully characterised.^{14,15}

4.2.3 Preparation of UCl_xF_{5-x}.2tppo

The series of compounds UCl_xF_{5-x} .2tppo are all insoluble in CH_3CN . They may be prepared in two different ways. The first is where 2-3 equivalents of tppo is added to solutions of UF_xCl_{5-x} in CH_3CN . The adduct is precipitated and the excess of tppo is removed by washing the solid with CH_3CN . In this way the species $UF_5.2tppo$ and $UF_3Cl_2.2tppo$ were isolated and characterised by Berry <u>et al</u>.⁵ and $UCl_5.2tppo$ was isolated by Brown and Rickard.¹⁶ The second method, developed during this study, involves the mixing of stoichiometric quantities of solid $UCl_xF_{5-x}.tppo$ and solid tppo followed by addition of dry CH_3CN . The reactants are then mixed thoroughly until reaction has taken place. The precipitated chloride-fluorides are then isolated by removal of the solvent.

Attempts were made to grow single crystals of $UF_5.2tppo$ by the dropwise addition of a solution of tppo in CH_3CN to a solution of $UF_5.tppo$ in CH_3CN over a period of two days. When the tppo: UF_5 ratio rose above 1:1 precipitation of $UF_5.2tppo$ took place. However, all crystals isolated in this way were shown to be twinned and, therefore, not suitable for a single crystal structure determination.

4.3 ELEMENTAL ANALYSES

The calculated and found proportions of uranium and chlorine for the chloride-fluoride adducts with acetonitrile are recorded in Table 4.1. The analytical data for the series UCl_xF_{5-x} .tppo are shown in Table 4.2, and for the series UCl_xF_{5-x} .2tppo in Table 4.3. The analytical data for the triphenylphosphine oxide adducts confirms that the formulations are as shown. The data for the acetonitrile adducts shows that the monochloro-tetrafluoride is a 1:1 adduct. However, the data for the other chloride-fluorides is not consistent with the formation of 1:1 adducts giving non-integral uranium to acetonitrile ratios. The results indicate that whilst the species are non-integral they are close to a 1:1 formulation. The adduct of UCl_5 with CH_3CN , however, differs from the others by having a uranium to acetonitrile ratio of 1:2.

The analyses were carried out by decomposing weighed quantities of the chloride-fluorides using a 1:1:1 mixture of ammonia solution, water and acetone. The ammonium uranate thus formed was precipitated by centrifuging and the supernatant liquid, containing the chlorine content of the chloride-fluoride, was decanted off. After decantation the precipitate was washed several times with the decomposition mixture, to ensure that all the chloride-fluoride had been reacted. Finally the ammonium uranate was filtered through a silica crucible, which had been fired to constant weight by heating to dull red heat in an electric bunsen. The ammonium uranate was then fired to dull red heat to convert it into U_3O_8 , and then was fired to constant weight.

The supernatant liquid containing the chloride ions was acidified with nitric acid. A 5% excess of an acidic solution of $AgNO_3$ was added and the mixture boiled until the AgCl formed had agglutinated. Silver nitrate solution was added dropwise to ensure total precipitation of the chloride

-93-

TABLE 4.1

	CALCULATED		FOUND	
COMPOUND	% U	% Cl	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	% Cl
UF4Cl.CH3CN	60.95	9.08	60.76	9.04
UF4C1.2CH3CN	55.15	8.21]	
$UF_3Cl_2.CH_3CN$	58.49	17.42	57.34	16.32
$UF_{3}Cl_{2}.2CH_{3}CN$	53.13	15.83]	
UF2Cl3.CH3CN	56.21	25.12	55.68	24.07
$UF_2Cl_3.2CH_3CN$	51.24	22.90)	
UFC14.CH3CN	54.11	32.24	55.03	31.45
UFC14.2CH3CN	49.49	29.49)	
UCl5.CH3CN	52.16	38.84	47.66	36.07
UCl ₅ .2CH ₃ CN	47.85	35.64]	

Elemental analysis results for the adducts of $\text{UF}_x\text{Cl}_{5\text{-}x}$ with acetonitrile

.

Elemental analysis results for $\text{UF}_x\text{Cl}_{5-x}\text{.tppo}$

	CALCI	JLATED	FO	JND
COMPOUND	% U	% Cl	8 U	% Cl
UF4Cl.tppo	37.92	5.65	38.14	5.38
UF ₃ Cl ₂ .tppo	36.95	11.01	37.14	10.20
UF2Cl3.tppo	36.03	16.10	36.00	16.47
UFCl.tppo	35.15	20.94	35.49	19.86
UCl5.tppo	34.32	25.56	33.48	25.45

.

.

•

	CALCU	LATED	FO	UND
COMPOUND	% U	% Cl	% U	% Cl
UF₄Cl. 2tppo	26.27	3.91	26.59	3.32
$UF_3Cl_2.2tppo$	25.80	7.69	25.97	8.24
$UF_2Cl_3.2tppo$	25.35	11.33	25.44	11.36
UFC1.2tppo	24.91	14.84	24.64	14.31
UCl₅.2tppo	24.49	18.24	24.02	16.74

Elemental analysis results for $\text{UF}_x\text{Cl}_{5-x}.2\text{tppo}$

present. When precipitation was complete the mixture was again boiled before being left to cool for one hour in a dark place. The precipitated AgCl was filtered off through a Pyrex No. 4 crucible heated to constant weight.

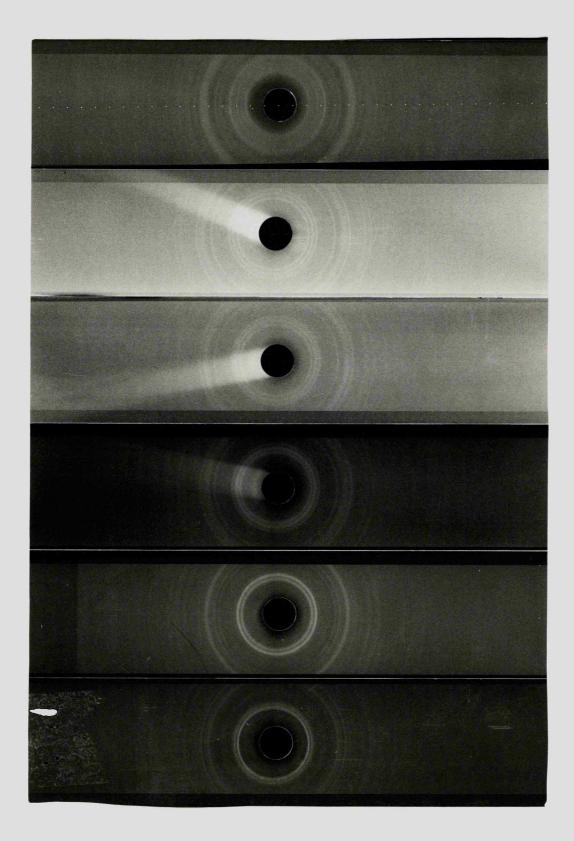
4.4 X-RAY POWDER DIFFRACTION STUDIES

The solids in the series $UCl_xF_{5-x}.nCH_3CN$ (n < 2) are all amorphous. Although UF₅.CH₃CN has been reported to yield diffraction patterns,¹⁷ no samples of this material prepared in this laboratory have done so.

The species in the series UCl_xF_{5-x} .tppo gave X-ray powder diffractions of varying quality (Table 4.4). The diffraction patterns of all these materials are unique. However, comparison of the d-spacings of the strongest lines in each case suggests that UF_5 .tppo and $UClF_4$.tppo may have related structures. The diffraction patterns for UCl_2F_3 .tppo and UCl_3F_2 .tppo differ from the first two members of the series but are related to each other. The diffraction pattern of UCl_4F .tppo was of too low a resolution to make comparison of this pattern to others to be meaningful. The final member of the series, UCl_5 .tppo, apparently has a unique diffraction pattern. However, overall, the generally poor resolution of all but the UF_5 .tppo photograph, make defining relationships between the diffraction patterns tentative.

The species in the series $UCl_xF_{5-x}.2tppo$ all gave good diffraction patterns (Table 4.4 and Plate 1), which differed from those of the corresponding single triphenylphosphine oxide adducts. The calculated $\sin^2\theta$ values and intensity data for UF₅.2tppo prepared here confirm data already published.¹⁸ Comparison of the d-spacings and intensity data clearly shows that UF₅.2tppo, UClF₄.2tppo, UCl₂F₃.2tppo and UCl₃F₂.2tppo have closely related structures. The remaining members of this series,

-97-


X-ray powder diffraction data for the tppo adducts of the chloride-fluorides of uranium(V)

.

Species				d-spa	d-spacing (intensity)	ity)			
UF5.tppo	9.222 (m-)	6.758 (s-)	6.525(s)	5.546 (w-)	5.546 (w-) 5.376 (w)	4.135 (m-)	4.080 (m)	3.822 (m+)	3.485(w)
UCLF4.tppo	9.222 (w+)	6.662 (m)	6.403(s)	5.543(m)	4.760 (m)	4.347(w)	4.210(s)	3.967 (w-)	
UCl ₂ F ₃ .tppo	8.132 (m+)	7.570(m)	6.330 (m-)	5.560(w)	4.882 (m-)	3.251 (w)			
$\rm UCl_3F_2$, tppo	8.473(s)	7.178(w)	6.927 (w-)	6.677 (w-)	(m) (m)	5.173(w)	4.608 (w+)	4.283 (w-)	
UC14F.tppo	8.393 (w+)	6.339(w)	4.587(w)						
UCl ₅ .tppo	8.449 (m-)	8.117 (m+)	6.921(s)	4.620(m) 3.508(w-)	3.508 (w-)	3.177(w)	•		
UF 5.2tppo	9.847 (m-)	8.698 (w+)	8.514 (w+)	6.627(s)	5.123 (m+)	4.293(s)	3.850(w)	.3.524 (w-)	3.257(w)
UClF4.2tppo	(+m) 868.8	7.879 (m+)	7.127(m)	5.126(s)	4.568(w)	4.171(s)	3.497 (w+)	3.271 (w-)	
UCl ₂ F ₃ .2tppo	8.819 (m+)	7.796 (m+)	7.196(m)	5.117(s)	4.642(w)	4.173(s)	3.596(w)	3.293(w)	
$UCl_{3}F_{2}.2tppo$	8.810(m)	8.029 (m+)	7.190 (m-)	5.182(s)	4.582(w)	4.240(s)	3.492 (w-)	3.302 (w-)	
UCl ₄ F.2tppo	(-s) 679.8	7.992(s)	5.458(w)	5.108(w)	4.511 (m+)	3.723 (w-)	3.410(w)	3.160(w)	2.558 (w-)
UC15.2tppo	8.916(s)	8.276 (m+)	6.254(w)	4.909 (m+)	4.909 (m+) 4.705 (w)	4.473(m)	3.934 (w-)	3.587(w)	3.318(w)

•

<u>PLATE 1</u> X-RAY POWDER DIFFRACTION PATTERNS FOR UF₅.2tppo (TOP), UF₄Cl.2tppo, UF₃Cl₂.2tppo, UF₂Cl₃.2tppo, UFCl₄.2tppo and UCl₅.2tppo (BOTTOM)

 $UCl_{4}F.2tppo$ and $UCl_{5}.2tppo$ have diffraction patterns which were related to each other but differ from those of the earlier members of the series.

The powder diffraction data for both of the tppo adducts of the chloride-fluorides clearly indicate the existence of each species as a discrete entity.

4.5 VIBRATIONAL SPECTROSCOPY

The infrared spectra for the series UCl_xF_{5-x} .nCH₃CN are tabulated in Table 4.5. The infrared data for the series UCl_xF_{5-x} .tppo and UCl_xF_{5-x} .2tppo is shown in Tables 4.6 and 4.7 respectively. No Raman spectra were recorded as all the samples displayed intense fluorescence.

The presence of bands at ~ 2310 and 2280 cm⁻¹ in the infrared spectra obtained on the series UCl_xF_{5-x} .nCH₃CN clearly show the presence of a coordinated nitrile. The extent of the splitting of these two bands appears to be dependent upon the number of chlorines present. The splitting in UF₅.CH₃CN is 38 cm⁻¹, whilst in UCl₅.2CH₃CN it is 28 cm⁻¹. The intermediate mixed halides have values between these extremes. However, the numerical value of the splitting in the $u_{(C\equiv N)}$ bands does not allow assignment of a species to its position in the series, as the experimental error is such that there is significant overlap in the splitting values between adjacent members of the series. In common with acetonitrile adducts of many other fluorides, ¹⁹ because of the complexity of the spectra, the changes in the infrared spectrum in the 1250-600 cm⁻¹ region cannot be explained with confidence. However, between 600 cm⁻¹ and 500 cm⁻¹ the decrease in the number of bands and their intensity, with increasing chlorine content, can be explained in terms of the loss of the vibrations associated with terminal metal-fluorine stretches as the fluorine atoms are progressively replaced. Because the band at 380

(cm ⁻¹)	
nCH ₃ CN	
₽x.Cl _{5-x} .	
a of the series U	
the	
of	
spectra	
Infrared spectra	

.

					-			 											 				
UC1 5.2CH 3CN				2280 s	1397 m	1361 m				1028 s		963 s	938 m,br				576 w			432 w	395 m	304 vs	275 sh
UFC14.CH3CN					1399 m					1029 s			938 s		648 w		572 vs	561 m			392 m	301 VS	
UF2Cl3.CH3CN				2278 s	1399 m	1361 w		1205 w,br		1026 s		962 sh	935 s				571 sh		521 s		395 m	302 s	
UF 3C1 2 . CH 3CN					1402 m	1364 m		1201 m,br		1030 s	978 s		937 s	798 w			570 sh		533 sh		390 m	301 s	
UF.4C1.CH3CN	10	40	15	85	1411 w	1360 m	1352 m	1203 m	1096 m	1034 s	970 s		940 s				581 sh	564 vs	532 VS	431 W	386 w	307 m	
UF 5. CH3CN	-	-		2284 s				1215 w								CV.	582 vs		522 s				

•

Infrared spectra of the series $\operatorname{UF}_{\mathbf{x}}\operatorname{Cl}_{\mathbf{5}-\mathbf{x}}$, tppo compared to that of tppo (1500-250 cm⁻¹)

.

_					<u> </u>	<u>.</u>			 					-								
UC1 5. tppo	1481 w 1437 m			1110 s	1075 m,br	1029 s	1006 s	969 s	751 sh	748 s	728 vs			582 w		532 vs	_		429 w			275 sh
UFC14.tppo	1481 w 1438 m		1123 s		1070 w,br	1030 s	1009 s		753 sh	747 s	728 vs	684 vs		590 w	559 w	532 vs	512 sh		431 W		375 w	273 s
UF2Cl3.tppo	1482 w 1437 m		1121 s		1070 w,br	1030 s	1009 s		754 w	748 s	728 vs	687 vs		589 w	560 m	532 VS	516 sh		438 w		382 m	275 m
UF ₃ Cl ₂ .tppo	1482 w 1438 m			1115 sh	1080 w,br	1032 s	1014 s		753 sh	748 s	727 vs	688 vs	600 sh	589 s		536 vs	510 sh	498 w	435 w		375 w	277 m
UF4C1.tppo	1483 w 1437 m			1102 sh	1055 sh		1021 s		757 sh	748 s	728 vs		600 m	589 vs		538 vs	512 m	498 w	448 w	419 w	385 w	282 w
UF 5. tppo	1482 w 1433 m		1120 s		1075 w,br		1022 m		758 sh		728 vs	689 vs	602 s			539 VS	529 vs	508 s				
tppo	1481 w 1436 s									753 s						540 vs			452 m			

•

Infrared spectra of the series $\mathrm{UF}_{\mathbf{X}}\mathrm{Cl}_{\mathbf{5}-\mathbf{X}}\cdot \mathrm{2tppo}$ (1500-250 cm⁻¹)

UF ₅ .2tppo	UF4C1.2tppo	UF ₃ Cl ₂ .2tppo	UF2Cl3.2tppo	UFC14.2tppo	UC15.2tppo
	1481 w		1481 w	1485 w	
4 m	1432 m	1433 m	1432 m	1436 m	1432 m
1188 m	1180 w	1182 m	1180 w	1188 w	1182 m
0 M	1159 w	1160 w	1160 w	1161 w	1160 w
	1136 s	1135 m	1133 sh		
8 S S	1119 s	1118 s	1116 s	1119 s	1119 s
	1080 w	1080 w	1079 w		
1068 w	1069 m	1070 m,br	1067 m	1063 sh	
15 m				1056 s	
					1038 sh
1021 m	1024 w	M 0101	1022 W	1026 m	1020 w
96 m	M 966	994 m	995 m	996 m	992 m
933 w,br	925 w,br	920 w,br	917 w,br	918 w,br	916
			810 m	812 m	810 m
56 sh	756 sh	755 sh	753 sh	756 sh	757 sh
	748 s	746 s	744 s	746 s	
22 VS	724 vs	721 vs	722 VS	722 vs	720 vs
	689 vs	690 vs	689 vs	691 VS	688 vs
	617 m	615 m	615 m	617 m	613 w
)2 s	599 m	598 sh			
	588 m	587 s	585 m	575 m	
540 vs	549 vs	538 vs	534 vs	536 vs	536 vs
16 vs	515 sh				
00 s	500 s	497 s	498 s		
484 m	483 s	482 m	484 m		
55 w	452 w	451 m	452 m	458 m	461 W
	433 w	432 w	433 w	436 w	440 w
406 w	403 w	400 W	405 m	408 m	409 m
					380 m
	339 sh	330 w	329 w	334 w	329 m
	295 m			300 s	301 s
	270 m	273 m	263 s		278 sh

.

 ${\rm cm}^{-1}$ appears in all the spectra, including that of UCl₅.2CH₃CN, this cannot be due to a metal-fluorine vibration. Consequently, it is assigned to a ligand vibration. Since this is the only band that appears in the region of the spectrum normally associated with fluorine bridging, it appears that none of the species has a fluorine-bridged polymeric structure. When chlorine is added to the system a band appears in the region of 300 cm⁻¹ and increases in intensity with addition of more chlorine. This band is in the region associated with uranium-chlorine stretching modes.²⁰

In the UF₅ adduct containing a single triphenylphosphine oxide group, the coordination of the phosphine oxide to the mixed halide is evidenced by the shift of the frequency associated with $v_{(P=0)}$ in tppo from 1189 cm⁻¹ to 1044 cm⁻¹ in UF₅.tppo; a shift of 145 cm⁻¹ to lower wavenumber. In UCl₅.tppo the change is to 1029 cm⁻¹; a shift of 160 cm⁻¹. This shift is large when compared to that for tppo complexes involving transition metal or main group element halides, but is typical of the shifts observed in actinide halide tppo complexes.²⁰ This large shift in $v_{(P=0)}$ on complex formation reflects an overall decrease in bond order of the phosphorus to oxygen bond, probably due to a large increase in the pm-dm interaction, as a result of the high affinity of U(V) species for oxygen.

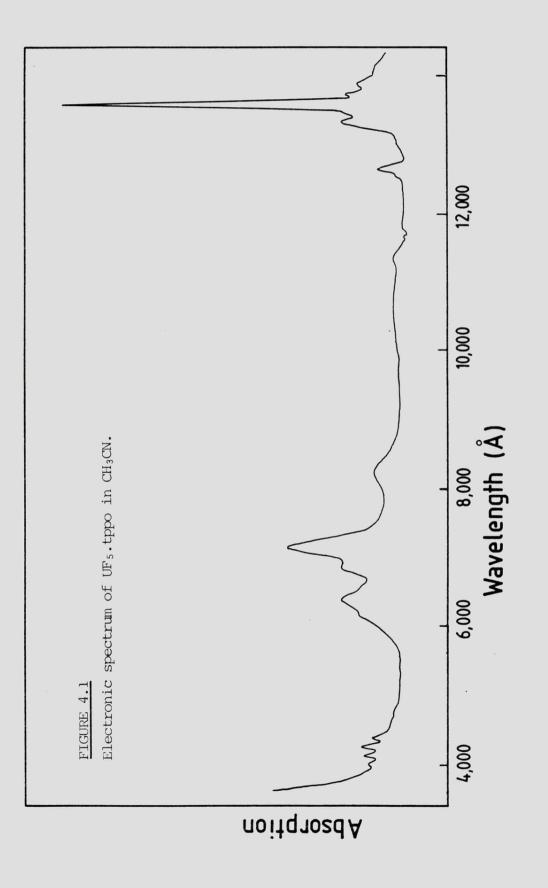
In the reported infrared spectrum of $UF_5.2tppo^5$ a band at 1135 cm⁻¹ was assigned to $v_{(P=0)}$, a shift of 54 cm⁻¹ from free tppo, which is small for an actinide halide complex. In the infrared spectra of the materials isolated in this laboratory, bands in the region of 1135 cm⁻¹ were observed only for $UF_5.2tppo$, $UClF_4.2tppo$, $UCl_2F_3.2tppo$ and $UCl_3F_2.2tppo$. However, a band in the region 1045-1070 cm⁻¹ in all the complexes is also tentatively assigned to $v_{(P=0)}$, as the band is not observed in free tppo.

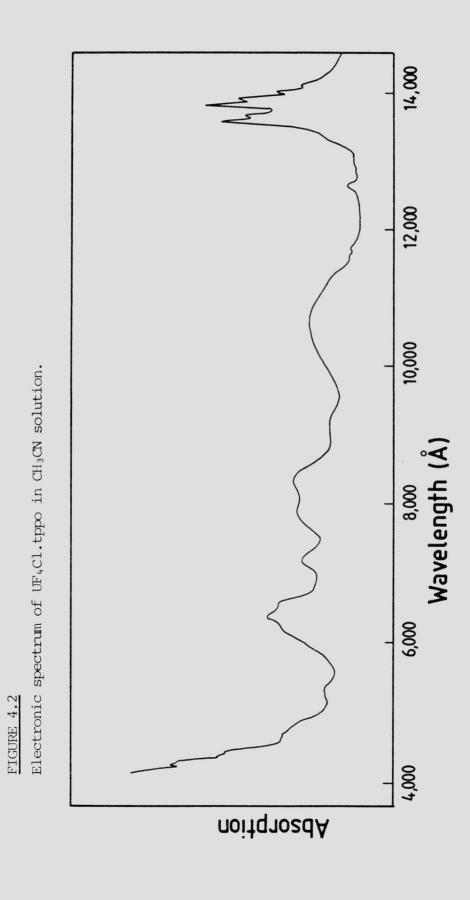
-104-

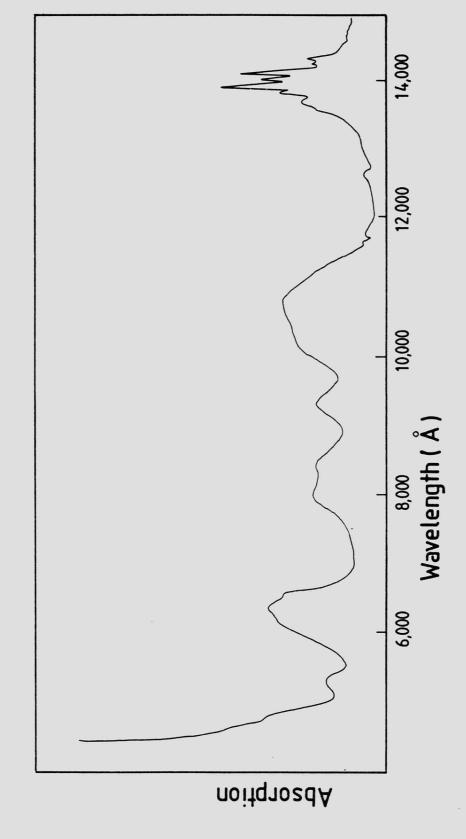
The assignment of this band to $v_{(P=0)}$ is indicative of a shift in $v_{(P=0)}$ from the free value which is in line with the large shifts observed in other actinide-halide complexes²⁰ and means that, in the complexes containing two complexed typo molecules, two frequencies are assigned to $v_{(P=0)}$. In this the uranium(V) species is behaving in the same way as uranium(IV) species²¹ where, for example, in α -UCl₄.2tppo bands at 1070 and 1045 cm⁻¹ have been assigned to $v_{(P=0)}$.

As in the case of the acetonitrile adducts of the chloride-fluorides the tppo adducts show a decrease in the number and intensity of the bands in the uranium-fluorine terminal stretching region of the spectrum (between 600 and 500 cm^{-1}) as the fluorine content drops. At the same time, as the uranium-fluorine bands decrease in intensity the bands in the region of 300 cm^{-1} , due to uranium-chlorine vibrations, increase in intensity. Again, none of the fluorine-containing species exhibit bands in the region associated with fluorine bridging. In the original assignment of the spectrum of $UF_5.2tppo^5$ a band at 515 cm⁻¹ was assigned to $v_{(U-F)}$ terminal. In the present work the behaviour of bands in the region of 600 cm⁻¹ in the compounds suggests that these too are uranium-fluorine stretching modes. This suggests that there is more than one type of terminal fluorine bond, and it is now tentatively suggested that the band at 515 cm⁻¹ observed in $UF_5.2tppo$ and $UClF_4.2tppo$ may be due to a terminal uranium-fluorine bond in which the fluorine is weakly associated with a second uranium atom.

4.6 ELECTRONIC SPECTROSCOPY OF UCl_xF_{5-x}.tppo IN CH₃CN


The theory for the electronic spectroscopy of 5f' systems such as the chloride-fluorides of uranium(V) is described elsewhere (Chapter 3, Section 4.2). The recorded spectra for the adducts of the chloride-fluorides of


uranium(V) with tppo dissolved in CH_3CN are shown in Figures 4.1 to 4.6.


These spectra resemble those for the chloride-fluorides in CH₃CN solutions.⁵ The intermediate spectra all differ from one another. The spectrum of UF5.tppo is of the type expected for a uranium(V) species in an octahedral environment. The $\Gamma_7 \rightarrow \Gamma_{7'}$ transition is observed at 13,600 Å as a sharp intense peak which has very little vibrational fine structure. However, as fluorine is replaced by chlorine the symmetry of the system decreases so the calculated transitions are no longer as strictly governed by the selection rules of the octahedral system. The decrease in the symmetry is reflected in the collapse of the sharp $\Gamma_7 \rightarrow \Gamma_7'$ singlet to a complex multiplet, with a reduced intensity. Also, in the region below 12,000 Å, the $\Gamma_7 \rightarrow \Gamma_{8'}$ and the $\Gamma_7 \rightarrow \Gamma_6$ transitions are observed as more complex and broader bands. The last member of the series, $UCl_5.tppo$ in CH_3CN has an electronic spectrum similar to that reported for solid UCl₅.tppo.¹⁵ The cut out of the electronic spectrum, from the charge transfer band, is observed at 4200 Å in UF5.tppo, which is pale blue, and for UCl5.tppo, which is yellow, the cut out is at 5200 Å. The intermediate mixed halides have green colourations and charge transfer band cut outs at intermediate values. In this behaviour the electronic spectra of the series UCl_xF_{5-x} .tppo in CH_3CN mirrors that reported for the series UCl_xF_{5-x} in CH_3CN .

4.7 ELECTRON SPIN RESONANCE STUDIES

There are numerous reports of e.s.r. measurements on 5f' ions (Pa⁴⁺, U^{5+} , Np^{6+}).^{13,22-39} The e.s.r. spectra of the chloride-fluorides of uranium(V) were recorded, as solutions in CH₃CN in the case of UCl_xF_{5-x} and UCl_xF_{5-x}.tppo, and as solids for UCl_xF_{5-x}.nCH₃CN, UCl_xF_{5-x}.tppo and UCl_xF_{5-x}.tppo. The spectra were recorded on the materials sealed in

Electronic spectrum of UF₃Cl₂.tppo in CH₃CN solution.

FIGURE 4.3

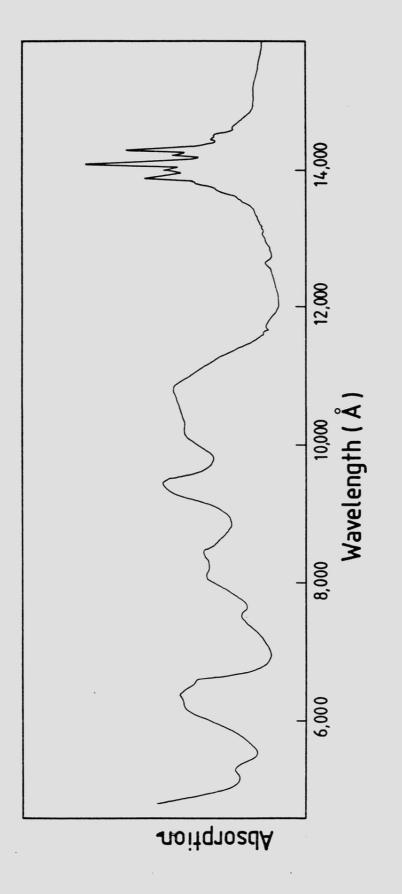


FIGURE 4.4

Electronic spectrum of $\mathrm{UF}_2\mathrm{Cl}_3.\mathrm{tppo}$ in $\mathrm{CH}_3\mathrm{CN}.$

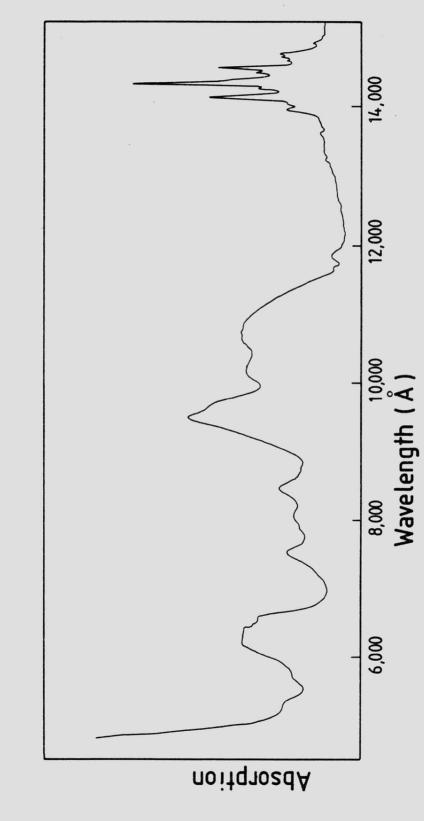


FIGURE 4.5 Electronic spectrum of $UFCl_4$.tppo in CH_3CN solution.

....

-111-

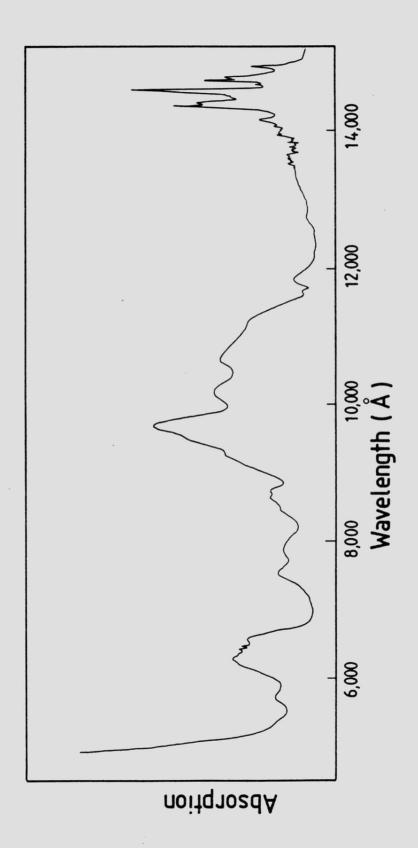
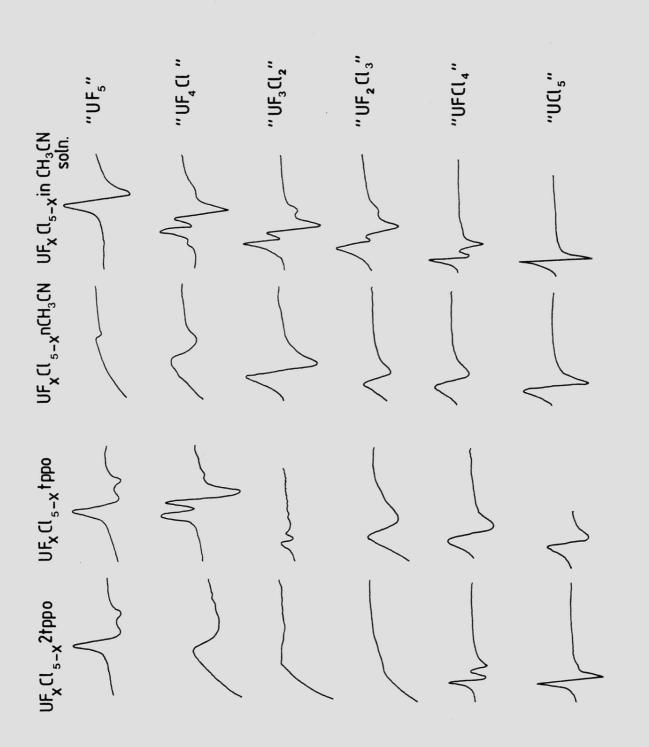


FIGURE 4.6 Electronic spectrum of UCl₅.tppo in CH₃CN solution.

-112-

4 mm o.d. tubing at 77 K, and are shown in Figure 4.7.

The e.s.r. spectra for UCl_xF_{5-x} species in solution are shown in Figure 4.8. No hyperfine coupling was observed in any of the species studied.


<u>UF5</u>: The e.s.r. spectrum of a solution of UF5 in CH₃CN shows a strong, broad, slightly asymmetrical line. The large linewidth hides unresolved hyperfine coupling to ¹⁹F and possibly spectra from a number of isomers in solution each with a slightly different g-value. The average g-value of 0.622 is slightly lower than that of solid UF5.2tppo ($g_{\parallel} = 0.619$, $g_{\perp} = 0.788$), UF5.tppo ($g_{\parallel} = 0.621$, $g_{\perp} = 0.792$) and UF5.CH₃CN (single broad line g = 0.71). The g-value of pure UF5 is much higher at 0.83 but, as UF5 is a bridged polymer, it will have a differing g-value from any related monomeric species because of spin-spin interactions. The MeCN adduct has a very broad feature around half field suggesting it also is polymeric.

These results suggest that the CH_3CN solution contains a monomer and that the solid adducts except the UF₅.MeCN adduct are also monomeric. The higher <u>g</u>-values in the adducts are a reflection of the coordinating ligands. The weak line at <u>g</u> = 1.08 in solution comes from a hydrolysis product, probably UO_2^+ . This is shown by the fact that addition of water to the system increases the intensity of this band.

<u>UClF₄</u>: The e.s.r. spectrum of a CH₃CN solution shows weak lines on the flanks of the main part of the spectrum at positions suggesting the presence of small quantities of UF₅ and UCl₂F₃. Subtraction of these lines leaves a strongly axial transition with $\underline{g}_{\parallel} > \underline{g}_{\perp}$. The other species in solution arise from the equilibrium;

 $2UClF_4 \rightleftharpoons UF_5 + UCl_2F_3$

The spectrum of solid UClF4.tppo is very similar, but is shifted to a

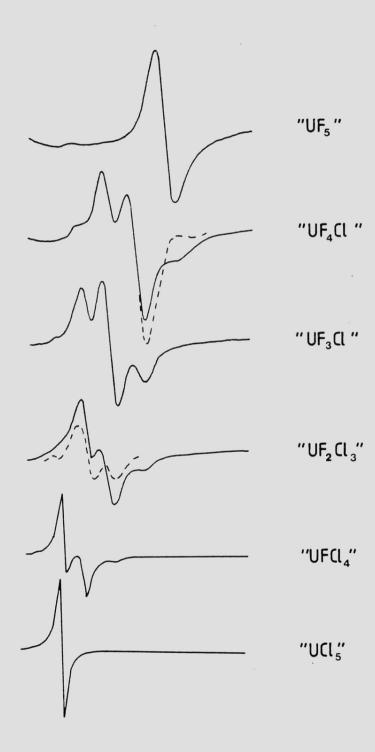


FIGURE 4.7

ESR spectra of the complexes of uranium(V) chloride-fluorides measured at 120 K, scan 4,500-13,500 Gauss.

FIGURE 4.8

ESR spectra of UF_xCl_{5-x} in frozen CH_3CN solution at 120 K, scan 4,500-13,500 Gauss. [Dotted line represents spectrum after subtraction of signals from dissociation products.]

lower g-value ($g_{\parallel} = 0.841$, $g_{\perp} = 0.68$). On the other hand, the solids UClF₄.CH₃CN and UClF₄.2tppo both gave a much broader but ill-defined line centred on g = 0.76 and a broad feature at half field. This suggests that the structure of these two species differs from that of solid UClF₄.tppo and of UClF₄ in CH₃CN, and that they are almost certainly polymeric species.

<u>UCl₂F₃</u>: The e.s.r. spectrum of a CH₃CN solution of this species shows three clearly resolved features with little or no evidence for formation of the neighbouring members of the series by equilibriation. The relatively broad linewidth suggests that there are a number of isomers in solution. The spectrum of UCl₂F₃.CH₃CN shows a strong broad line centred on g = 0.985 with no evidence of transitions from any other species. However, the spectrum of UCl₂F₃.2tppo is a very broad, illdefined line which suggests that the solid is polymeric. The spectrum of solid UCl₂F₃.tppo gives only a very weak signal which may be indicative of the formation of polymeric species.

<u>UCl₃F₂</u>: The e.s.r. spectrum of solutions of this species indicates about a 30% dissociation into UCl₂F₃ and UCl₄F. After subtraction of the spectra from these impurities the spectrum of UCl₃F₂ showed well-resolved rhombic symmetry. The spectra of the solids UCl₃F₂.2tppo and UCl₃F₂.tppo UF₂Cl₃ and MeCN give very broad lines. As these are weak and broad it is postulated that these are polymeric.

<u>UCl₄F</u>: In contrast to the previous cases, the e.s.r. spectrum of this species in solution shows narrow lines and exhibits axial symmetry with $\underline{g}_{\parallel} \ll \underline{g}_{\perp}$. Solid UCl₄F.2tppo gives a similar spectrum, suggesting that it is monomeric. Samples of solid UCl₄F.tppo and UCl₄F.CH₃CN were shown to have $\underline{g}_{\parallel} < \underline{g}_{\perp}$ giving broad asymmetrical lines. The absence of broad features around half field suggests they are monomeric.

<u>UCl₅</u>: Solutions of UCl₅ in CH₃CN give a narrow, well-defined, symmetrical spectrum, which is about $\frac{1}{4}$ of the width of the signal of UF₅ in CH₃CN. This suggests that in the case of UF₅ there is significant coupling to ¹⁹F contributing to the line-width. The spectrum of UCl₅.2CH₃CN is, like the solution, isotropic, but has a larger line-width. This suggests that both in solution and when complexes with CH₃CN the UCl₅ species are monomeric. The spectrum of solid UCl₅.2tppo shows a narrow line which is axially symmetric with $g_{\parallel} = 1.105$ and $g_{\perp} = 1.143$. This suggests that the solid has a monomeric structure. The axial symmetry of this spectrum when compared to that of UCl₅ in CH₃CN is indicative of the differing crystal field effects of tppo and CH₃CN. The structure of UCl₅.tppo is known¹⁵ to be monomeric and the e.s.r. spectrum supports this.

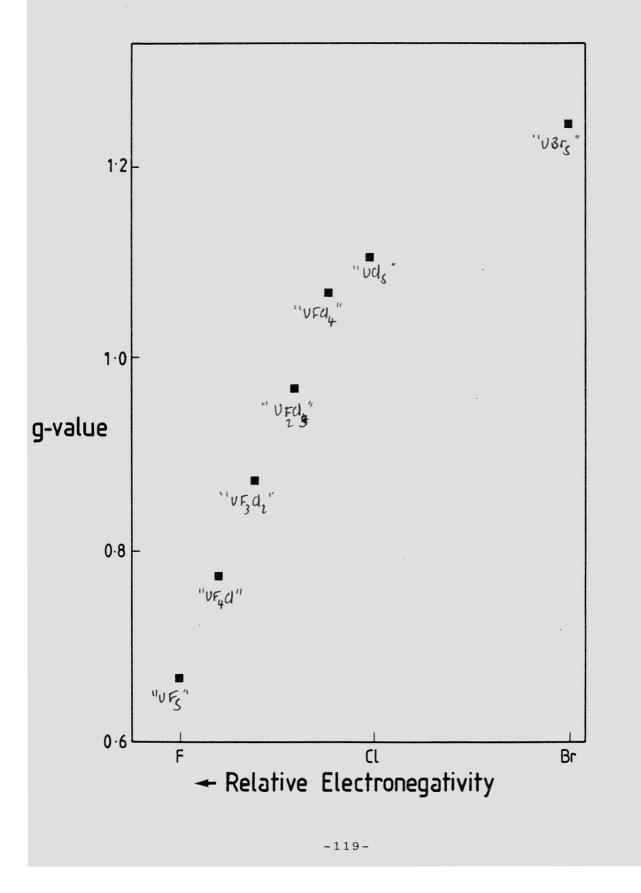
Frozen solutions of UCl_xF_{5-x} .tppo in CH_3CN all give very weak e.s.r. spectra, presumably because of their poor solubility. The average gvalues are the same as those for the UCl_xF_{5-x} species in CH_3CN , but because of the low quality of the spectra no conclusions about anisotropy or dissociation could be drawn. The only species which gives a good spectrum is UCl_5 .tppo, which gives a slightly asymmetric signal.

The theory of 5f' ions in an octahedral crystal field has been applied in the interpretation of the optical and e.s.r. spectra of a range of hexahalogeno complexes of uranium(V).^{37,40} This theory may also be applied to the chloride-fluorides of uranium(V). Problems with the theory arise in that the geometry of the species is assumed to be that of a regular octahedron. The effects of lowering the symmetry, on moving to the mixed halides, is reflected mainly in the electronic spectrum of the mixed halides in the $\Gamma_7 + \Gamma_8$, transition, which occurs as a Kramers doublet, which splits further as the symmetry is lowered. This means that the results obtained from the e.s.r. are limited in their usefulness

-117-

in giving structural information beyond suggesting whether a given species is monomeric or polymeric. The major datum obtained from the e.s.r. results in this study has been the positive indication of the presence of uranium in a +V oxidation state.

4.8 DISCUSSION AND FURTHER WORK


In this study the existence of the chloride-fluorides of uranium(V) as discrete entities has been demonstrated conclusively only by e.s.r. spectroscopy. The X-ray powder diffraction patterns of the tppo adducts of the mixed halides also shows that these species have discrete existences.

In addition to showing the existence of discrete species the e.s.r. spectra permit the identification of any species with respect to its position in the series. In Figure 4.9 the average g-values of the mixed halide complexes are plotted against the relative electronegativity of the species, the electronegativity being assumed to be a function of the fluorine content of the mixed halides. As the plot shows, each member of the series of chloride-fluorides has a distinctive g-value.

Infrared spectroscopy also reveals differences across the series by the changes in the $\nu_{(U-F)}$ and $\nu_{(U-C1)}$ regions. However, the results are not accurate enough to be useful in distinguishing between adjacent members of a series, because of the differences measured which are small. The electronic spectra also illustrate a change across the series as the F;Cl ratio changes. The $\Gamma_7 \rightarrow \Gamma_{7'}$ band shows a movement to higher energy as the chlorine content increases. The lowering of the symmetry of the species as the chlorine content increases is reflected by the splitting of the $\Gamma_7 \rightarrow \Gamma_{8'}$ transition, the splitting increasing as symmetry is lowered. Again, the differentiation between adjacent members of a series

FIGURE 4.9

The average g-values of uranium halide complexes as a function of electronegativity.

on the basis of electronic spectroscopy alone is difficult.

A further study on this group of compounds that would be of interest would be a re-examination of the vibrational spectroscopy in an attempt to make a more positive assignment of the $\nu_{(P=0)}$ bands. To do this spectra of higher resolution than so far obtained would be necessary. Since the spectra obtained in this study were recorded as dry powders, mulling of the compounds may increase the resolution considerably

Another study that would be of interest would be a 19 F n.m.r. study on the soluble species. However, it is unlikely that meaningful data could be obtained from such a study as the presence of uranium(V) species means that all the n.m.r. signals could be paramagnetically broadened.

It would also be of interest to attempt to prepare the solid chloridefluorides without any associated complexed ligands. If, for example, the reaction between UF₅ and Me₃SiCl were carried out in Genetron 113 or SO_2ClF , the products should be free from coordinated species. However, it has already been shown that, in some non-coordinating solvents, reaction between UF₅ and Me₃SiCl does not produce chloride-fluoride species.⁵

Related exchange reactions of UF_5 should also prove possible. The preparation of bromofluorides of uranium(V) could be attempted by reaction of UF_5 with Me₃SiBr and exchange reactions involving groups other than halogens should be tried. For example, many substituted fluorides have been prepared by reaction of a fluoride with a trimethylsilyl species (cf. Chapter 1, Section 4).

Another exchange reaction that would be of interest would be the reaction of UF_5 with MF_5OH (M = Se, Te) by the following route;

 $UF_5 + MF_5OH \longrightarrow F_4U(OMF_5) + HF$

Stepwise substitution should yield the series $UF_x(OMF_5)_{5-x}$. Of even

greater interest would be the reaction between UF_6 and MF_5OH (M = Se, Te) as the expected initial product would be $F_5U(OMF_5)$. Since this species would be stabilised by the high electronegativity of the MF_5O^- species, it is conceivable that this mono-substituted uranium (VI) species would be stable at room temperature and retain some volatility.

4.9 REFERENCES FOR CHAPTER FOUR

- D. Brown 'Gmelin Handbuch der Anorganischen Chemie', Uranium Suppl. Vol. C, Ed. C. Keller, Springer-Verlag, Berlin, (1979).
- D. Brown, J. F. Easy, P. J. Jones J. Chem. Soc. (A), 1698, (1968).
- T. A. O'Donnell, A. B. Waugh, C. H. Randall J. Inorg. Nucl. Chem., <u>39</u>, 1597, (1977).
- 4. K. R. Kunze, R. H. Hauge, J. L. Margave Inorg. Nucl. Chem. Letts., <u>15</u>, 65, (1979).
- 5. J. A. Berry, D. Brown, J. H. Holloway Inorg. Nucl. Chem. Letts., <u>17</u>, 5, (1981).
- D. K. Sanyal, J. M. Winfield Paper P.13 "10th. International Symposium on Fluorine Chemistry", Vancouver, (1982).
- J. A. Berry, D. Brown, J. H. Holloway J. Chem. Soc. Dalton, 1385, (1982).
- W. W. Wilson, C. Naulin, R. Bougon Inorg. Chem., <u>16</u>, 2252, (1977).
- J. P. Masson, C. Naulin, P. Charpin, R. Bougon Inorg. Chem., <u>17</u>, 1858, (1978).
- G. W. Halstead, P. G. Eller, L. B. Asprey, K. V. Salazar Inorg. Chem., <u>17</u>, 2967, (1978).
- 11. D. Brown, G. De Paoli, B. Whittaker Report AERE-R 8260, (1976).
- 12. J. A. Berry, A. Prescott, D. W. A. Sharp, J. M. Winfield J. Fluorine Chem., <u>10</u>, 247, (1977).
- G. W. Halstead, P. G. Eller, M. P. Eastman Inorg. Chem., <u>18</u>, 2867, (1979).
- K. W. Bagnall, D. Brown, J. G. H. Du Preez J. Chem. Soc., 5217, (1970).
- G. Bombieri, D. Brown, C. Mealli
 J. Chem. Soc. Dalton, 2025, (1976).
- D. Brown, C. E. F. Rickard
 J. Chem. Soc. (A), 81, (1971).
- 17. J. A. Berry Private Communication.
- J. A. Berry, D. Brown, J. H. Holloway, B. Whittaker J. Less Common Metals, <u>86</u>, 75, (1982).
- 19. D. Laycock Ph.D. Thesis, University of Leicester (1981).
- 20. K. Bagnall 'Gmelin Handbuch der Anorganischen Chemie', Uranium Suppl. E, Springer-Verlag, Berlin, (1979).
- 21. G. Bombieri, F. Benetello, K. W. Bagnall, M. J. Plews, D. Brown J. Chem. Soc. Dalton, accepted for publication (1983).

- 22. P. Rigny, J. Dixnoux, P. Plurien J. Phys. Chem. Solids, <u>32</u>, 1175, (1971).
- 23. C. A. Hutchinson, B. Weinstock J. Chem. Phys., <u>32</u>, 36, (1960).
- 24. P. Rigny, P. Plurien J. Phys. Chem. Solids, <u>28</u>, 2589, (1967).
- 25. M. Drifford, P. Rigny, P. Plurien Phys. Letts., <u>A27</u>, 620, (1968).
- 26. B. Bleaney, P. M. Llewellyn, M. H. L. Pryce, G. R. Hall Phil. Mag., <u>45</u>, 992, (1954).
- 27. J. Selbin, J. D. Ortego, G. Gritzner Inorg. Chem., <u>7</u>, 976, (1968).
- 28. P. M. Llewellyn Unpublished results quoted in:
 W. Low, 'Paramagnetic resonance in solid-state physics', Academic Press, New York, Suppl. 2, (1962).
- 29. J. Selbin, N. Ahmed, M. J. Pribble J. Chem. Soc. Chem. Commun., 759, (1969).
- 30. J. D. Axe, H. J. Stapleton, C. D. Jeffries Phys. Rev., <u>121</u>, 1630, (1961).
- 31. J. D. Axe, R. T. Kyi, H. J. Stapleton J. Chem. Phys., <u>32</u>, 1261, (1960).
- 32. M. P. Eastman, P. G. Eller, G. W. Halstead J. Inorg. Nucl. Chem., <u>43</u>, 2839, (1981).
- 33. E. Soulie, N. Edelstein Physica, <u>1023</u>, 93, (1980).
- 34. C. Miyake, K. Fuji, S. Imoto Inorg. Nucl. Chem. Letts., <u>13</u>, 53, (1977).
- 35. J. Selbin, C. J. Ballhausen, D. G. Durrantt Inorg. Chem., <u>11</u>, 510, (1972).
- 36. R. A. Salten, C. L. Schreiber, E. Y. Wong J. Chem. Phys., <u>42</u>, 162, (1965).
- 37. N. Edelstein Rev. de Chim. Minerale, <u>14</u>, 149, (1977).
- A. Lupei, V. Lupei, S. Georgescu, I. Ursu
 J. Phys. (C), Solid-State Phys., <u>9</u>, 2619, (1976).
- 39. J. P. Masson, J. P. Desmoulin, P. Charpin, R. Bougon Inorg. Chem., <u>13</u>, 2529, (1974).
- 40. N. Edelstein, D. Brown, B. Whittaker Inorg. Chem., <u>13</u>, 563, (1974).

CHAPTER 5

TRANSITION METAL CHALCOGENIDE FLUORIDES

• • .

5.1 INTRODUCTION

The study of oxide halides of transition metals has been of interest for a long time but the behaviour of the corresponding thio-, selenoand telluro- halides has been only sparsely covered in the literature. Recently, however, there has been an upsurge in interest in transition metal chalcogenide halides, with the bulk of the work being carried out on the thio- and seleno- chlorides and bromides.

This upsurge in interest is due largely to improvements in handling techniques of moisture sensitive compounds in general and the development of general preparative routes to this group of compounds. There are five general preparative routes to transition metal chalcogenide halides:

(i) Direct combination of the elements.

(ii) The halogenation of metal sulphides or selenides.

(iii) The reaction of a metal halide with sulphur or selenium.

(iv) The reaction of a metal halide with a sulphide or selenide.

(v) Hydrothermal syntheses at high temperature and pressures.

These and the properties of transition metal thio-, seleno- and telluro- halides have been extensively reviewed by Rice^1 and by Atherton and Holloway.²

In the present work the chalcogenide fluorides of some of the transition elements have been studied in two ways. Firstly, new preparative routes to known chalcogeno-fluorides of tungsten have been examined. Secondly, these preparative techniques have been employed in attempts at the isolation of chalcogeno-fluorides of Nb, Ta, Re and U.

5.2 CHALCOGENIDE FLUORIDES OF THE GROUP VIA METALS

5.2.1 Group VIa chalcogenide fluorides

The initial observation of a tungsten-sulphur-fluorine species was made by Hildenbrand;³ the claim for the existence of tungsten thio-fluorides being made on the basis of the observation of WSF_4^+ , WSF_3^+ , WSF_2^+ and $WS_2F_2^+$ in the mass spectrum of the products of the reaction between WF_6 , SF_6 and W in an effusion cell at 1000-2200 K.

The first observation of a tungsten thiofluoride in solution at room temperature was made in 1973 by Buslaev, Kokunov and Chubar,⁴ who followed the reaction of WSCl4 with hydrogen fluoride in acetonitrile by ¹⁹F n.m.r. spectroscopy. The spectrum obtained was interpreted in terms of the presence of [WSFCl4], [WSF2Cl3], [WSF3Cl2], [W2S2F9], [WSF₅] and [WSF₄Cl]. The observation was confirmed by Atherton and Holloway⁵ who found that, when the $WSCl_4$:HF ratio was 1:6, a peak at -84.6 ppm from CFCl3 was observed which was assigned to the presence of WSF4. A similar observation was made when WSC14 and XeF2 were combined in a molar ratio of 1:2.⁵ The tungsten thiotetrafluoride ¹⁹F n.m.r. spectrum has also been observed in the reaction of WF_6 in acetonitrile with many sulphides, such as, K_2S , Na_2S , Bu_2S , Ph_2S , Me_2S_2 and thiourea.⁶ The adduct WSF4.CH3CN, was the first transition metal thiofluoride complex species isolated, being produced when H_2S was bubbled through a solution of WF_6 in acetonitrile.⁷ The solid was characterised by elemental analysis, n.m.r., X-ray powder diffraction and infrared spectroscopy. The infrared spectrum showed bands in the range characteristic for a coordinated nitrile as well as a band at 564 $\rm cm^{-1}$ which was assigned to $v_{(W=S)}$. When the reaction was allowed to continue with more H_2S being passed through the solution a second tungsten thiofluoride, $WS_2F_2.2CH_3CN$ was isolated.⁷ In this respect the fluoride system follows

the chloride one, since WS_2Cl_2 is formed when dry H_2S is passed through a solution of WCl_6 in CS_2 .⁸ It is worth noting, however, that the reaction of $WOCl_4$ with H_2S has been used to prepare $WSCl_4$,⁹ whilst H_2S does not react with WOF₄ to produce WSF_4 ,⁶ so a further study of the WOF_4/H_2S system may be of interest.

Some of the solution phase reactions of WSF₄ in acetonitrile have been followed by use of ¹⁹F n.m.r. It has been shown that butylamine will react with WSF₄ in solution to produce WSF₄.CH₃CN, [WSF₅]⁻ and $[W(NBu)F_5]^{-10}$ and the reaction of WSF₄ in acetonitrile with water has provided evidence for the species WSF₄.CH₃CN, WSF₄.H₂O, WOF₄.H₂O, $[W_2O_2F_9]^-$ and $[WOF_5]^-$.¹⁰ The action of water on WSF₄/WSCl₄ mixtures has also been studied, and it has been shown that, in the presence of water, WOF_{4-n} Cl_n.CH₃CN is formed in preference to WSF_{4-n}Cl_n.CH₃CN species.¹¹ The substitution reactions of WSF₄ in acetonitrile with ethanol, phenol, 1,2-ethanediol, acetylacetone, diethylamine and butan-thiol have also been followed by n.m.r. spectroscopy.¹²

Tungsten thiotetrafluoride was first isolated as an uncomplexed solid by Atherton and Holloway.⁵ It was produced by the reaction of WF₆ with Sb₂S₃ in an autoclave at 300°C, a method analogous to that used in the preparation of many transition metal thio-chlorides and bromides.¹³ The solid was characterised by infrared spectroscopy, mass spectrometry, X-ray powder diffraction and ¹⁹F n.m.r. The infrared spectrum of the solid, as well as possessing a band at 577 cm⁻¹ attributed to $v_{(W=S)}$, showed bands in the regions associated with terminal and bridging tungstenfluorine bonds. This observation, coupled with similarities in the powder photographs of WOF₄ and WSF₄, initially suggested that the structure of WSF₄ was based upon the cis-fluorine bridged tetramer of WOF₄.¹⁴ Studies following on from this work have recently shown that this is only partially

-127-

correct. Thus, the structure of WSF₄ has been shown to be one of a cisfluorine-bridged chain¹⁵ (Fig. 5.1). Electron diffraction studies of the gas phase of WSF₄ have shown it to be monomeric with the following bond lengths and angles: (W=S) = 2.104(7) Å, (W-F) = 1.847(3) Å, \langle SWF = 104.5 $(1.1)^{\circ}$, \langle F-W-F = $86.6(5)^{\circ}$,¹⁶ which compare to (W=S) = 2.07(2) Å, (W-F)terminal average = 1.86(10) Å, \langle SWFterminal = $102(1)^{\circ}$ and \langle F-W-Faverage = 89° in the solid.¹⁵

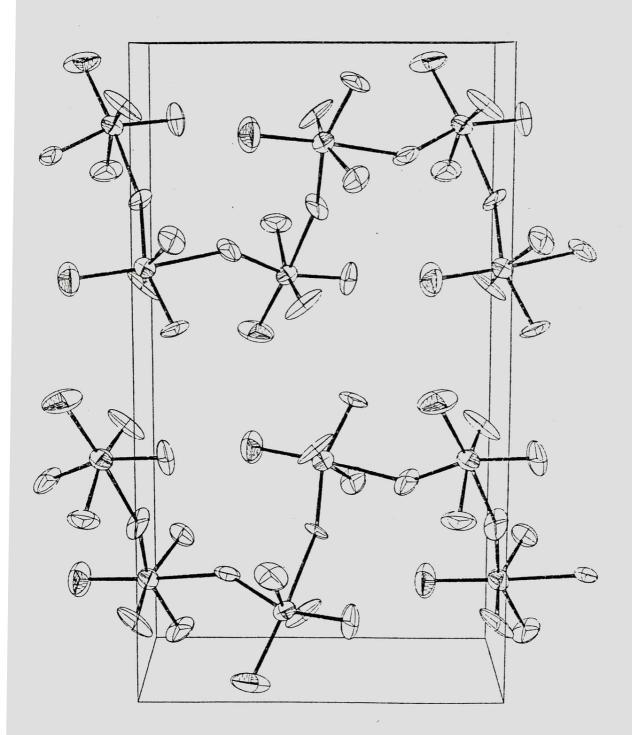
Tungsten thiotetrafluoride has also been isolated as one of the products of the reaction of SF₆ with a tungsten filament at above 500°C, the other product being WF₄.¹⁷ The mass spectrum of WSF₄ vapour has been studied by use of the Knudsen effusion method, and using the heats of formation of solid and gaseous WSF₄ (\leq -290.9 ± 9.1 and \leq -271.8 ± 9.0 kcal mol⁻¹ respectively), the heat of sublimation of WSF₄ was calculated as 19.1 ± 1.3 kcal mol⁻¹ by using the Clausius-Clapeyron equation.¹⁸

Seleno-fluorides of tungsten have also been observed and isolated. Tungsten selenotetrafluoride has been obtained from a reaction analogous to that used to isolate WSF₄, by the reaction of WF₆ with Sb₂Se₃ at elevated temperatures.¹⁹ The product was characterised by ¹⁹F n.m.r., mass spectrometry and infrared spectroscopy. The infrared spectrum showing a band at 366 cm⁻¹ assigned to $v_{(W=Se)}$ stretch. The complex WSeF₄.CH₃CN has been isolated from the reaction of Sb₂Se₃ with WF₆ in acetonitrile. The material was characterised by ¹⁹F n.m.r., and has a (W=Se) stretching frequency at 365 cm⁻¹.²⁰

Chalcogenide fluorides of molybdenum have been isolated in which the metal is in an oxidation state of V or VI. Molybdenum thiotrifluoride was the first thiofluoride of molybdenum reported. It may be prepared by the reaction of metallic molybdenum with SF_6 in a quartz reactor in the presence of a filament at 600-800°C.²¹ Molybdenum thiotrifluoride is also

-128-

the product of the reaction between MoF₆ and SF₆ in the presence of a white hot filament.²² Solid MoSF₃ is orange with a melting point of 85.6°C. It has been characterised by chemical analysis, X-ray powder diffraction and infrared spectroscopy, with $v_{(Mo=S)}$ being observed at 584 cm⁻¹ and bands attributable to $v_{(Mo-F)}$ terminal at 690, 670 and 633 cm⁻¹ and $v_{(Mo-F-Mo)}$ bridging at 500 and 458 cm⁻¹. Mass spectrometric studies of the vapour above MoSF₃ during heating have shown that there is some disproportionation and MoF₅⁺, MoSF₄⁺ and S₈⁺ are observed. The mass spectrum also shows there to be significant polymerisation of MoSF₃ in the gas phase as both (MoSF₃)₂ and (MoSF₃)₃ were observed.²³ Analysis of the vapour phase disproportionation of MoSF₃ has also been used to calculate the heats of formation of MoSF₃ and MoSF₄ (-166.1±6.5 and -232.0±7.1 kcal mol⁻¹).²⁴


The isolation of the solids MoSF₄ and MoSeF₄ has been achieved by the reaction of MoF₆ with Sb₂Y₃ (Y=S, Se) at 300°C in an autoclave.²⁵ The X-ray powder diffraction patterns of MoSF₄ and MoSeF₄ have shown that the two species are isostructural with each other, but that the structures differ from those of the analogous tungsten species. The infrared spectra of MoSF₄ and MoSeF₄ showed that the solids contain both terminal and bridging fluorines. The infrared spectrum of MoSF₄ also showed a band at 564 cm⁻¹ attributable to $v_{(Mo=S)}$. No $v_{(Mo=Se)}$ frequency was recorded and it was assumed to be outside the range of the windows used.

5.2.2 The reaction of WF_6 with Sb_2Te_3 at elevated temperatures

After the successful preparation of WSF₄⁵ and WSeF₄¹⁹ by reaction with Sb_2Y_3 (Y = S, Se) in an autoclave at 300°C, the obvious next step was an attempt to prepare WTeF₄ by an analogous reaction between WF₆ and Sb_2Te_3 (5.1).

FIGURE 5.1

The Unit Cell of WSF_4

.

 $3WF_6 + Sb_2Te_3 \longrightarrow 3WTeF_4 + 2SbF_3 \dots (5.1)$

A 10% excess of WF₆ was added to finely ground Sb₂Te₃ in a spun nickel test tube reactor, and the mixture was heated to temperatures between 275 and 380°C, for periods ranging from 35-45 hours. When heating was terminated and the volatiles present had been removed, the reactor was opened in a dry box. Small quantities of a white material were found in the cooler regions of the reactor along with substantial quantities of unreacted Sb₂Te₃. Examination of the white material by mass spectrometry showed it to be SbF₃. However, when the SbF₃ was exposed to moist air a pale blue colouration appeared. This was accompanied by evolution of a pungent odour, which was presumed to be H₂Te.

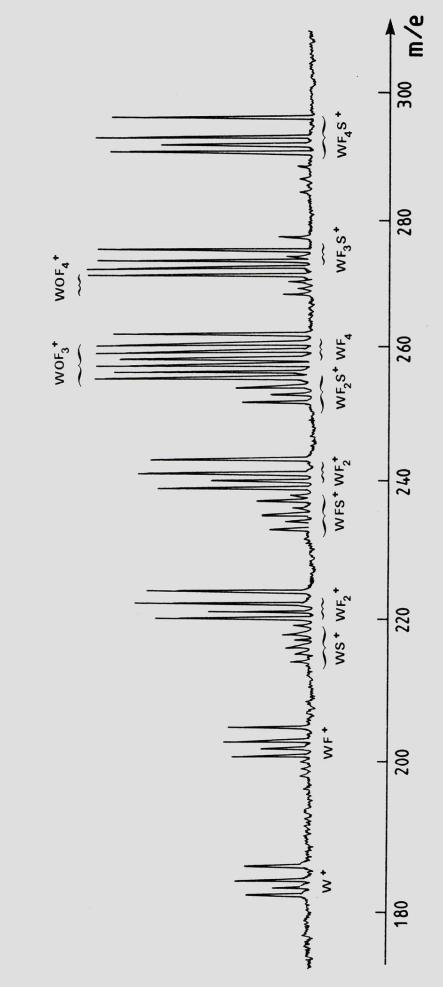
Although the reaction did not produce WTeF₄ in high enough yield to be detectable, it is likely that trace quantities of WTeF₄ were formed. The evidence for this is circumstantial, in that the presence of SbF_5 indicates that some reaction had taken place. As also does the blue colour, since it suggests the formation of a reactive non-volatile tungsten species, which hydrolyses to give tungsten blue. The possible evolution of H₂Te is also indicative of reaction as hydrolysis of thiofluorides and selenofluorides liberates H₂S and H₂Se, respectively.

5.2.3 Reaction of WF_6 with B_2S_3 at elevated temperatures

There are difficulties inherent in the use of Sb_2Y_3 (Y = S, Se, Te) as a reagent for preparing chalcogenide fluorides in that:

(i) High temperatures and pressures must be employed. [This means that if the species to be prepared is thermally unstable, it may be decomposed as it is formed, which is perhaps one of the reasons why WTeF₄ was not isolated from the reaction of WF₆ with Sb₂Te₃.] (ii) Antimony trifluoride is formed during the reaction. [The presence of SbF₃ does not affect the course of the reaction. However, it may present problems during the purification of the products of a reaction. The problem arises from the fact that the only simple method for the separation of a chalcogenide fluoride from SbF₃ is vacuum sublimation. If the volatility of the chalcogenide halide is comparable to that of SbF₃, total separation is not possible. It has also been found that some chalcogeno-fluorides decompose during sublimation.]

Boron sulphide has already been used in the preparation of thiochlorides of W, Mo, Nb and Ta.²⁶ The reaction of B_2S_3 with WF₆ offers a possible advantage over Sb_2S_3 as a reagent in that BF₃ is the expected side-product of the reaction (5.2). Since BF₃ is a gas at room temperature, if


$$3WF_6 + B_2S_3 \longrightarrow 3WSF_4 + 2BF_3$$
 (gas) (5.2)

reaction is complete, the only involatile product should be WSF4, which makes purification much easier, or unnecessary.

It was found that WF₆ would react with B_2S_3 to produce WSF₄ of high purity. The reaction takes place over a period of $4\frac{1}{2}$ hours in an autoclave when temperatures are in excess of 200°C so that conditions are slightly milder when using B_2S_3 than when using Sb_2S_3 .⁵

The product formed in this way was shown to be of high purity. The infrared spectrum showed the expected bands for WSF_4 ,⁵ with only a small band at 1050 cm⁻¹ due to the presence of WOF_4 ,²⁷ which is the expected initial product of hydrolysis.¹⁰ Mass spectrometry also showed the WSF_4 to be of high purity (Fig. 5.2). The oxide fluoride impurity present in the mass spectrum may be explained in terms of the method employed in introducing the sample to the machine, as the capillary must be broken in the atmosphere before insertion.

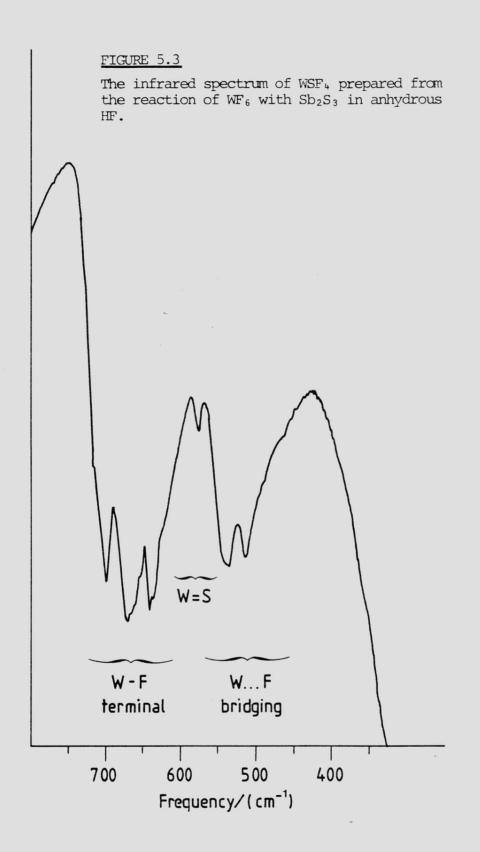
-132-

The mass spectrum of WSF4 made from the reaction of WF6 with B_2S_3 .

FIGURE 5.2

5.2.4 The reaction of WF_6 with Sb_2Y_3 (Y = S, Se, Te) in anhydrous HF

The reaction of Sb_2Y_3 (Y = S, Se) in a solvent has been used in the preparation of many chalcogeno-halides.^{1,2} In this study reactions between WF₆ and Sb_2Y_3 (Y = S, Se, Te) have been studied using anhydrous hydrogen fluoride as the solvent, in an attempt to prepare chalcogenide fluorides at room temperature (5.3).


$$3WF_6 + Sb_2Y_3 \xrightarrow{AHF} 3WYF_4 + 2SbF_3 \dots (5.3)$$

In a typical reaction 4.5×10^{-4} moles $\mathrm{Sb}_2\mathrm{S}_3$ was placed in a preseasoned FEP tube followed by addition of AHF at -196°C. A 20% excess of WF₆ (1.6×10⁻³ moles) was metered into the reaction vessel through the manifold. The reactants were allowed to warm to room temperature with constant mixing. After several hours the result was an orange coloured solution above a grey solid. The solvent and excess WF₆ were then carefully distilled off, care being taken to avoid mixing of the grey solid with the orange material deposited. When the last traces of solvent had been removed by pumping in high vacuum the tube was removed to a dry box and the orange solid transferred to a glass sublimation vessel. The product sublimed readily at 50°C in dynamic vacuum. It was then examined by infrared spectroscopy and X-ray powder diffraction.

The infrared spectrum (Fig. 5.3) showed it to be WSF₄ of high purity, there being no evidence of the band at 1050 cm⁻¹ assigned to $v_{(W=0)}$ in WOF₄,²⁷ or a band due to the presence of SbF₃ at 604 cm⁻¹.²⁸ The X-ray powder diffraction pattern confirmed that the solid was WSF₄, the result being indexed on the basis of data obtained from the single crystal X-ray structure determination¹⁵ (Table 5.1).

The reaction of WF₆ with Sb_2Se_3 in anhydrous HF was carried out in a $\frac{3}{4}$ " Kel-F reactor fitted with a $\frac{1}{2}$ " Teflon magnetic follower, the reactor

-134-

-135-

INTENSITY	RHS	LHS	2R	θ °	d	h,k,l
m	145.74	116.48	29.26	7.315	6.055	2,0,1
m	148.44	113.74	34.7	8.675	5.111	1,1,0
m	150.44	111.76	38.78	9.695	4.578	2,1,0
vs	152.64	109.62	43.02	10.755	4.131	4,0,0
vs	152.98	109.20	43.78	10.945	4.060	2,1,1
w	156.32	105.80	50.52	12.63	3.526	0,1,2
w	157.98	105.14	52.84	13.21	3.373	1,1,2
m+	160.00	102.16	57.84	14.46	3.087	4,0,2
m+	162.02	100.12	61.9	15.475	2.889	5,1,0
w	167.06	95.10	71.96	17.99	2.496	2,2,1
w	173.32	88.84	84.48	21.12	2.139	0,1,4
S	178.60	83.60	95.00	23.75	1.914	8,0,2
₩+	181.18	80.96	100.22	22.055	1.820	0,3,0
w+	182.66	79.42	103.24	25.81	1.771	9,1,0
w-	184.84	77.16	107.68	26.92	1.703	0,3,2

Indexed X-ray powder diffraction pattern for WSF4

and follower being well fluorinated prior to use. In a typical reaction 4.5×10^{-4} moles Sb_2Se_3 was placed in the reactor together with anhydrous HF followed by addition of 2×10^{-3} moles WF₆ (approx. 50% excess). The mixture was allowed to warm to room temperature and stirred for 36 hours at ambient temperature. This resulted in the formation of an orange solution, from which a grey solid settled when stirring was stopped. When the solvent and excess WF₆ had been removed the solid was examined by X-ray powder diffraction, infrared spectroscopy and mass spectrometry. The infrared spectrum showed that there had been some reaction, a medium strong band at 360 cm⁻¹ suggesting that WSeF₄¹⁹ had been formed. This was confirmed by mass spectrometry, which showed the expected splitting

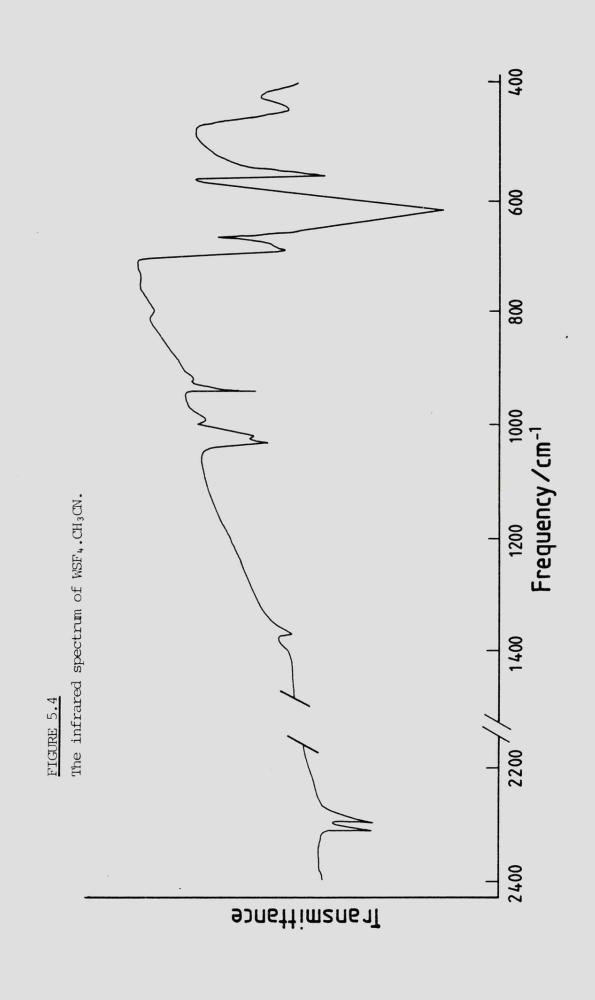
pattern up to and including $WSeF_4^+$. In addition, evidence of a substantial quantity of SbF_3 as well as some unassigned impurities was found. The X-ray diffraction pattern of the solid showed it to be mainly SbF_3 but some extra weak lines suggested the presence of some $WSeF_4$ also. Attempts to separate the $WSeF_4$ by vacuum sublimation proved unsuccessful.

A similar reaction between Sb_2Te_3 and WF_6 in anhydrous HF produced no visible change to the system over a period of 48 hours except that the particle size of the Sb_2Te_3 used seemed to have been reduced. However when, after removal of the volatiles, the residual solid at the bottom of the reactor was examined by mass spectrometry, a group of peaks in the correct m/e region and with the right isotopic splitting pattern for WTeF₄⁺ were observed. The peak height, however, was very small and purification of the solid was not feasible.

5.2.5 The reaction of WF_6 with Sb_2Y_3 (Y = S, Se, Te) in acetonitrile

Adducts of WSF₄ and WSeF₄ with $CH_3CN^{7,20}$ have been isolated and characterised. The WSF₄.CH₃CN adduct was prepared by the reaction of WF₆ with H₂S in acetonitrile, and WSeF₄.CH₃CN was obtained from the reaction of WF₆ with Sb₂Se₃ in acetonitrile. In the present study the reaction of WF₆ with Sb₂Y₃ (Y = S, Te) in acetonitrile was examined and the reaction of WF₆ with Sb₂Se₃ was re-examined (5.4).

 $3WF_6 + Sb_2Y_3 \xrightarrow{CH_3CN} 3WYF_4.CH_3CN + 2SbF_3 \dots (5.4)$


The reaction between WF_6 and Sb_2S_3 in acetonitrile, in a Pyrex vessel, proceeds rapidly at room temperature to produce an orange coloured solution above an off-white solid. When the solvent was removed an orange solid was deposited on the walls of the vessel above a grey-white solid, which was shown by X-ray powder diffraction to be SbF_3 . The orange solid

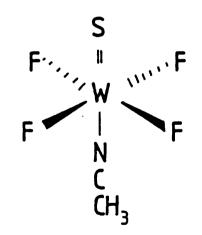
-137-

sublimed at 40° C <u>in vacuo</u> without decomposition, as shown by powder photography. The powder diffraction patterns showed that the solid was not WSF₄ or SbF₃. Elemental analysis of the solid showed it to be WSF₄.CH₃CN with;

Found: %W = 54.9, %S = 7.0, %F = 23.6, %C = 7.24, %H = 0.95, %N = 3.60; Calculated: %W = 55.2, %S = 9.63, %F = 22.83, %C = 7.21, %H = 0.91, %N = 4.21. The mass spectrum of the solid exhibited only peaks associated with high purity WSF4. No evidence of the adduct WSF4.CH3CN was found, presumably because the conditions in the mass spectrometer, even at temperatures down to 50°C, were sufficient to decompose the adduct. The infrared spectrum of WSF₄.CH₃CN (Fig. 5.4) showed bands at 2306 cm⁻¹, 2282 cm⁻¹, 1368 cm^{-1} , 1030 cm^{-1} , 1017 cm^{-1} and 939 cm^{-1} , these bands being characteristic of a coordinated nitrile.²⁹ In addition, bands at 680 cm⁻¹ and 631 cm^{-1} are attributable to terminal tungsten-fluorine bonds. A band at 558 cm^{-1} in the infrared spectrum and 560 cm^{-1} in the Raman spectrum is assigned to v(w=s); this is shifted by the coordinated nitrile from 577 cm^{-1} in WSF4.⁵ The most interesting aspect of the infrared spectrum is that only weak bands are observed in the region below 550 cm⁻¹, which is associated with W----F----W bridging modes. This suggests that WSF4.CH3CN, unlike WSF4, does not have a highly bridged structure in the solid state. Attempts to grow single crystals suitable for an X-ray structure determination by slow sublimation proved fruitless. All the crystals isolated were shown to be microcrystalline. On exposure to moist air WSF_4 .CH₃CN hydrolyses rapidly with the evolution of H_2S and HF.

The reaction of WF_6 with Sb_2Se_3 in acetonitrile has been described previously,²⁰ but it was felt that the system was worthy of re-investigation. The results obtained were broadly in agreement with the published

INTENSITY	RHS	LHS	2R	θ°	Sin θ	đ
vs	140.20	107.22	32.98	8.245	0.1434	5.376
m-	141.78	105.60	36.18	9.045	0.1572	4.904
m	145.52	101.82	43.7	10.925	0.1895	4.068
vs	147.06	100.38	46.68	11.67	0.2023	3.811
s	149.12	98.24	50.88	12.72	0.2202	3.501
m+	152.20	95.16	57.04	14.26	0.2463	3.130
w	155.50	91.80	63.7	15.925	0.2744	2.810
w	156.48	90.80	65.68	16.42	0.2827	2.727
w+	159.16	88.12	71.04	17.76	0.3050	2.527
w+	160.20	87.16	73.04	18.26	0.3133	2.460
S	163.84	83.44	80.4	20.1	0.3437	2.243
w-	166.18	81.08	85.1	21.275	0.3628	2.125
m	178.36	68.84	109.52	27.38	0.4599	1.676


X-ray powder diffraction pattern for WSF₄.CH₃CN

data, but problems arose with attempts to purify the solid. When reaction between WF₆ and Sb₂Se₃ had been completed and the solvent removed the resulting solid was an orangey-brown colour and gave poor analytical data. The infrared spectrum of the solid exhibited broad bands in the region of metal-fluorine stretching modes, in addition to the bands expected for a coordinated nitrile. A band at 346 cm⁻¹ was assigned to $v_{(W=Se)}$, again the tungsten-chalcogen stretching frequency being shifted to lower wavenumber by the coordination of a ligand. X-ray powder diffraction data were inconclusive as the photograph showed the solid to be mainly SbF₃, with additional lines present which may have been due to WSeF₄.CH₃CN. Mass spectrometry showed no evidence of the adduct, as in the sulphide case, but did show the presence of WSeF₄ since the ions WSeF₃⁺ and WSeF₄⁺ were both observed.

5.2.6 Conclusions

Of all the tungsten chalcogenide fluorides WSF₄ is the easiest to prepare in high yield and purity. The reaction of WF₆ with B_2S_3 is a highly efficient route to WSF₄, the product needing no further purification. Reaction of WF₆ with Sb_2S_3 in AHF also produces WSF₄ in high yield and the SbF₃ contaminant may be easily removed by sublimation at 50°C in a dynamic vacuum. Tungsten selenotetrafluoride may be produced by the reaction of WF₆ with Sb_2Se_3 in AHF, but the product is badly contaminated with SbF_3 . As WSeF₄ is unstable at elevated temperatures, and WSeF₄ and SbF_3 have similar volatilities, pure WSeF₄ was never obtained from this reaction.

The preparation of WSF₄.CH₃CN from the reaction of WF₆ with Sb₂S₃ in CH₃CN proceeds rapidly and smoothly. The complex sublimes readily without loss of CH₃CN. This, as well as the shift of 20 cm⁻¹ in the $v_{(W=S)}$ frequency, suggests that the CH₃CN is strongly bound to the metal, probably to give an octahedral arrangement about the tungsten (Fig. 5.5).

FIGURE 5.5

Proposed structure of WSF4.CH3CN

The weakness of the bridging tungsten-fluorine bands indicates that the $WSF_4.CH_3CN$ unit is probably effectively monomeric in the solid state.

The reaction of WF_6 with Sb_2Se_3 in CH_3CN confirmed the reported results, but also showed that the solid was very difficult to obtain in a pure form, a point not made in the original report.

Unless new methods for preparing telluro-halides can be developed it appears that WTeF₄ will not be isolated and characterised. The high temperatures employed in attempted direct reactions between WF₆ and Sb_2Te_3 probably result in decomposition of the WTeF₄ once formed whilst, reaction between WF₆ and Sb_2Te_3 in solution, using AHF or CH₃CN as a solvent, does not take place. Tungsten tellurotetrafluoride should be obtainable as traces of it have been seen in the residue from the WF₆ + Sb_2Te_3 reaction in AHF. The problem appears to be one of finding a method for isolating the WTeF₄ as it is prepared.

5.3 CHALCOGENIDE FLUORIDES OF THE GROUP VIIA METALS

5.3.1 Group VIIa chalcogenide halides

Many chalcogenide chlorides and bromides of rhenium have been reported, but few have been fully characterised.^{1,2}

The direct chlorination of ReY₂ (Y = S, Se) has been used to prepare the species ReSCl₂³⁰ and ReSeCl₂.³¹ Chlorination of Re₂S₇ also yields ReSCl₂ when the reaction temperature is 400°C.³² Addition of elemental sulphur or selenium to Re₃X₉ (X = Cl, Br) is a general method for preparing the class of compounds ReYX₂ (Y = S, Se; X = Cl, Br).³³ The reaction between ReCl₅ and sulphur³⁴ also produces ReSCl₂ when the ratio of ReCl₅:S is 1:2 and the temperature is 160-270°C. However, when the ReCl₅:S ratio is 1:4 and the temperature above 200°C the product is ReSCl₃, whilst if the ratio is 1:2 and the temperature is 125°C, the product is ReSCl₄. The products of these reactions have only been characterised by elemental analysis and DTA, and the results have since been questioned.¹ The reaction between ReCl₅ and S_2Cl_2 also produces ReSCl₃ at 140°C, but heating the reactant to 300°C results in the formation of ReS₂Cl₃.³⁵ The products of all these reactions have not been fully characterised. The only preparative route proven to produce high yields of ReSCl₃ is the reaction between ReCl₅ and Sb₂S₃ in CS₂ at room temperature.¹³

In this study the preparation and characterisation of rhenium thiofluorides, where the metal is in an oxidation state of V, VI or VII, is described. The preparative routes employed are an extension of the methods described for the preparation of tungsten thiofluorides.

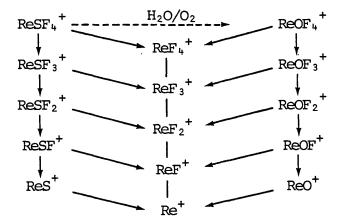
5.3.2 Rhenium thiotetrafluoride

For preparation and isolation of ReSF₄ three preparative routes were investigated. The reaction between ReF₆ and B_2S_3 (5.5) at 300°C in a spun nickel test tube reactor produces ReSF₄ in good yield, the reaction

$$3ReF_6 + B_2S_3 \xrightarrow{300^{\circ}C} 3ReSF_4(s) + 2BF_3(g) \qquad \dots \qquad (5.5)$$

being analogous to that between WF_6 and B_2S_3 (cf. equation 5.2). Rhenium thiotetrafluoride may also be isolated from the reaction between ReF_6 and Sb_2S_3 , either in a HF solution or at 300°C in a sealed reactor (5.6),

$$3\text{ReF}_6 + \text{Sb}_2\text{S}_3 \xrightarrow{\text{AHF}} 3\text{ReSF}_4 + 2\text{SbF}_3 \qquad \dots \quad (5.6)$$


again the reaction is analogous to that in the tungsten case.

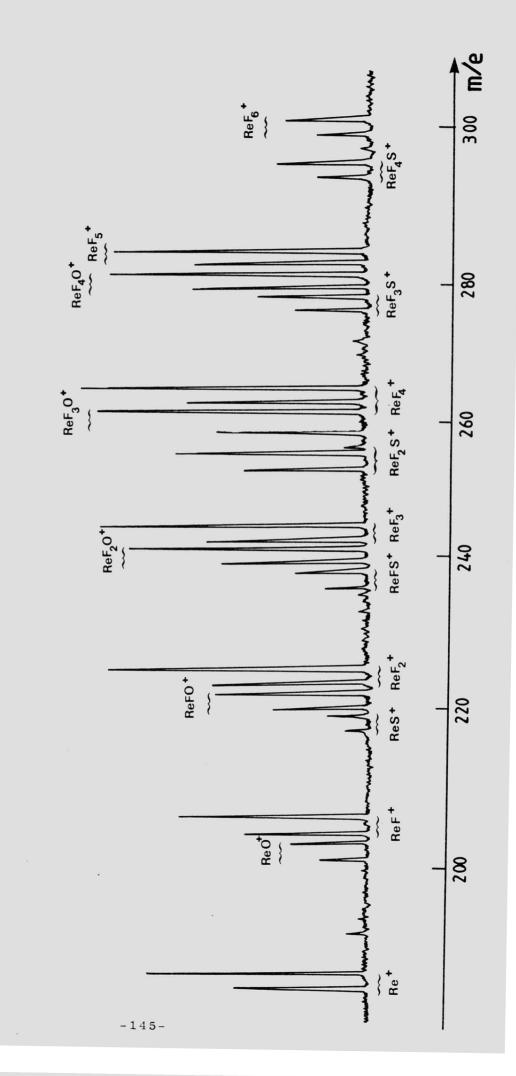
Freshly prepared ReSF₄ is a red solid which will sublime in vacuo, but sublimation is accompanied by extensive decomposition, as large quantities of black material and considerable etching of the Pyrex sublimation vessel was observed. The solid is soluble in anhydrous HF to give a red coloured solution which decolourises in a laser beam even at -80° C. Solid samples turn black and evolve HF, presumably with decomposition, hence Raman spectra could not be recorded. Solid ReSF₄ is sensitive to traces of oxygen or moisture. The compound darkens to a brown colour, even in a dry box where the concentration of oxygen is ~5 ppm and of water ~1 ppm. Removal from a dry box results in rapid decomposition with evolution of H₂S and HF to leave a black solid, which was presumed to be rhenium black.

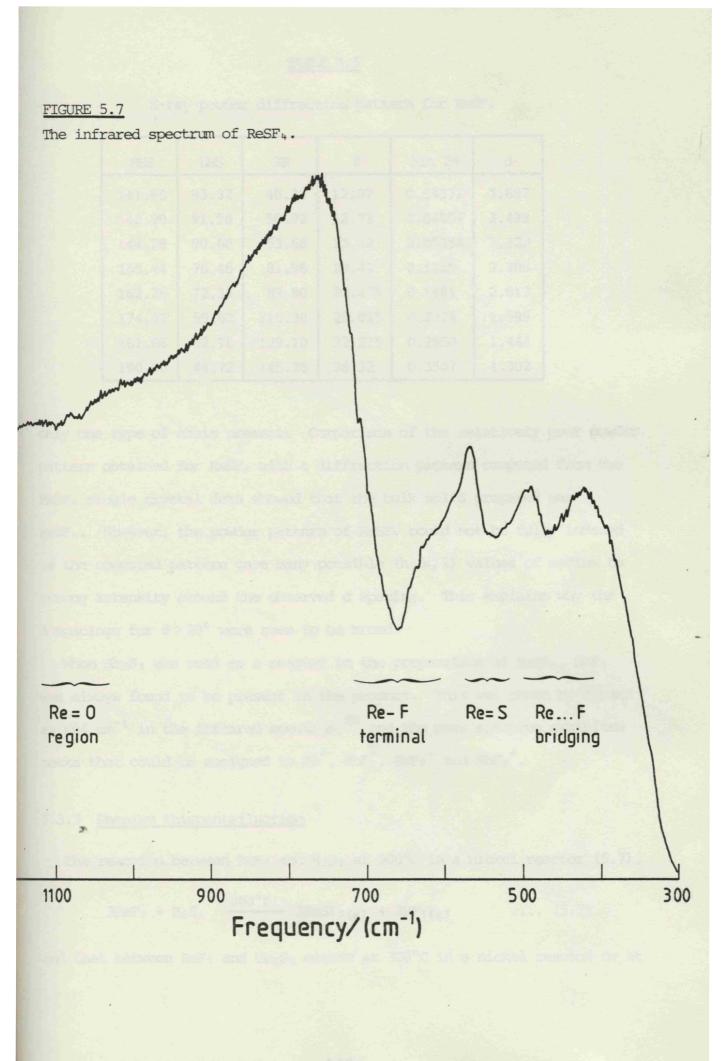
The mass spectrum of ReSF4 (Table 5.3 and Fig. 5.6) showed the presence

TABLE 5.3

Observed Mass Spectral splitting pattern for ReF₄S

of the parent ion, ReSF_4^+ , as well as the full splitting pattern of the expected daughters. In addition to such species, the mass spectrum also showed ReOF₄ to be present in the system. This was presumably formed when the capillary containing the sample was broken outside the machine prior to insertion. The mass spectrum was calibrated by running the spectrum in the presence of heptacosa.




FIGURE 5.6

The mass spectrum of \mbox{ReSF}_4 .

ReSF ₄	ReOF 4 37	ASSIGNMENT
	1070 cm ⁻¹	ν (Re=O)
$\begin{array}{c} 705 \ cm^{-1} \\ 698 \ cm^{-1} \\ 657 \ cm^{-1} \end{array}$	680 cm ⁻¹	ν(Re-F) _{SYM} TERMINAL
648 cm^{-1} 623 cm^{-1}	655 cm ⁻¹	v(Re-F) _{ASYM} TERMINAL
563 cm ⁻¹		∨(Re=S)
544 cm^{-1} 532 cm^{-1}	570 cm ⁻¹ 540 cm ⁻¹	v(ReF) BRIDGING

Infrared spectra of ReSF4 and ReOF4

The infrared spectrum of ReSF4 (Table 5.4 and Fig. 5.7) is similar to those of ReOF_4^{37} and WSF_4 , which suggests that it might be a fluorinebridged polymer, as is ReOF_{4} .³⁸ The bands at 544 and 532 cm⁻¹ are in the region associated with metal-fluorine-metal bridging modes. The infrared spectrum also shows a band at 563 cm^{-1} which has been assigned to $\nu(\text{Re=S})$. This value is close to the value of 560 cm^{-1} suggested by Rice¹ for Rescl₄, by extrapolation of the known values for v(w=0) and v(w=s). The X-ray powder diffraction pattern of ReSF₄ (Table 5.5) is distinct from that of all the other transition metal chalcogenide fluorides but resembles the WSF4 and MoSF4 diffraction patterns. The overall correctness of the above interpretations and the relationship between the structures of WSF4¹⁵ and ReSF4 has now been demonstrated by X-ray crystallographic studies. ReSF4 has been shown to possess a chain structure.³⁹ The main difference between the WSF₄ structure (Fig. 5.1) and that of the rhenium compound (Fig. 5.8) is that in the ReSF4 structure there are two distinct fluorine-bridged chains whereas in WSF4 there is

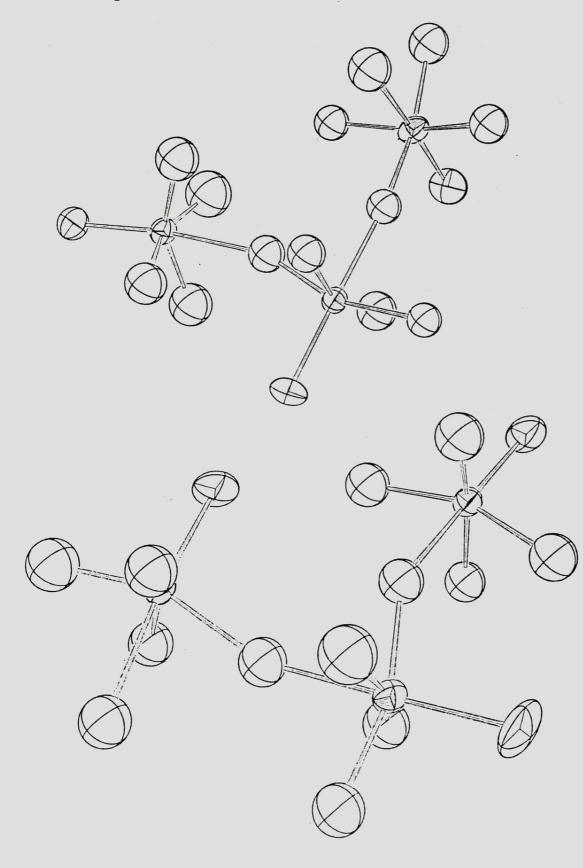
RHS	LHS	2R	θ	Sin 20	d
141.60	93.32	48.28	12.07	0.04371	3.687
142.90	91.98	50.92	12.73	0.04854	3.499
144.28	90.60	53.68	13.42	0.05384	3.322
158.44	76.48	81.96	20.49	0.1225	2.203
162.26	72.36	89.90	22.475	0.1461	2.017
174.92	59.62	115.30	28.825	0.2324	1.599
181.86	52.76	129.10	32.275	0.2850	1.444
190.00	44.72	145.28	36.32	0.3507	1.302

X-ray powder diffraction pattern for ReSF₄

only one type of chain present. Comparison of the relatively poor powder pattern obtained for ReSF₄ with a diffraction pattern computed from the ReSF₄ single crystal data showed that the bulk solid prepared was ReSF₄. However, the powder pattern of ReSF₄ could not be fully indexed as the computed pattern gave many possible (h, k, l) values of medium to strong intensity around the observed d spacing. This explains why the d spacings for $\theta > 20^\circ$ were seen to be broad.

When Sb_2S_3 was used as a reagent in the preparation of ReSF₄, SbF₃ was always found to be present in the product. This was shown by a band at 604 cm⁻¹ in the infrared spectrum,²⁸ and the mass spectrum exhibited peaks that could be assigned to Sb⁺, SbF⁺, SbF₂⁺ and SbF₃⁺.

5.3.3 Rhenium thiopentafluoride

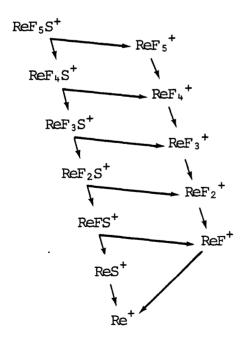

The reaction between ReF_7 and B_2S_3 at 300°C in a nickel reactor (5.7),

$$3\text{ReF}_7 + B_2S_3 \xrightarrow{300^\circ\text{C}} 3\text{ReSF}_5(s) + 2\text{BF}_3(g) \qquad \dots \qquad (5.7)$$

and that between ReF_7 and Sb_2S_3 either at 300°C in a nickel reactor or at

FIGURE 5.8

The Asymmetric Unit for $\ensuremath{\mathsf{ReSF}}_4$



room temperature in anhydrous hydrogen fluoride, as a solvent, (5.8)

$$3\operatorname{ReF}_{7} + \operatorname{Sb}_{2}\operatorname{S}_{3} \qquad \frac{\operatorname{AHF}}{\operatorname{or} 300^{\circ}\operatorname{C}} \qquad 3\operatorname{ReSF}_{5} + 2\operatorname{SbF}_{3} \qquad \dots \quad (5.8)$$

produces rhenium thiopentafluoride, ResF_5 . The reactions are analogous to those used in the preparation of ResF_4 .

When freshly prepared, ReSF₅ is a maroon solid which dissolves in anhydrous HF to give maroon solutions. The solid could not be sublimed <u>in vacuo</u>. All attempts at sublimation yielded a black involatile residue and liberated HF, as evidenced by the glass of the sublimation vessels becoming badly etched. It is likely, however, that sublimation of the solid should be possible in a thoroughly passivated system. Solid ReSF₅ darkens and eventually turns black when left standing in a dry box, and hydrolyses rapidly when exposed to the moist atmosphere, with the liberation of H₂S and HF. The mass spectrum of ReSF₅ shows the expected splitting pattern up to and including ReSF₅⁺ (Fig. 5.9). The mass

Observed Mass Spectrometric splitting pattern of $ReSF_5$

spectrum also showed substantial quantities of oxide fluorides to be present, and the splitting pattern of ReOF_5 , from ReOF_5^+ down, was clearly evident. Assuming that the handling conditions for the samples is constant it appeared that there was more oxide fluoride impurity in ReSF₅ than in ReSF₄. This increase in concentration of oxide fluoride impurity in ReSF₅ is almost certainly a reflection of the lower stability of ReSF₅ towards oxidation.

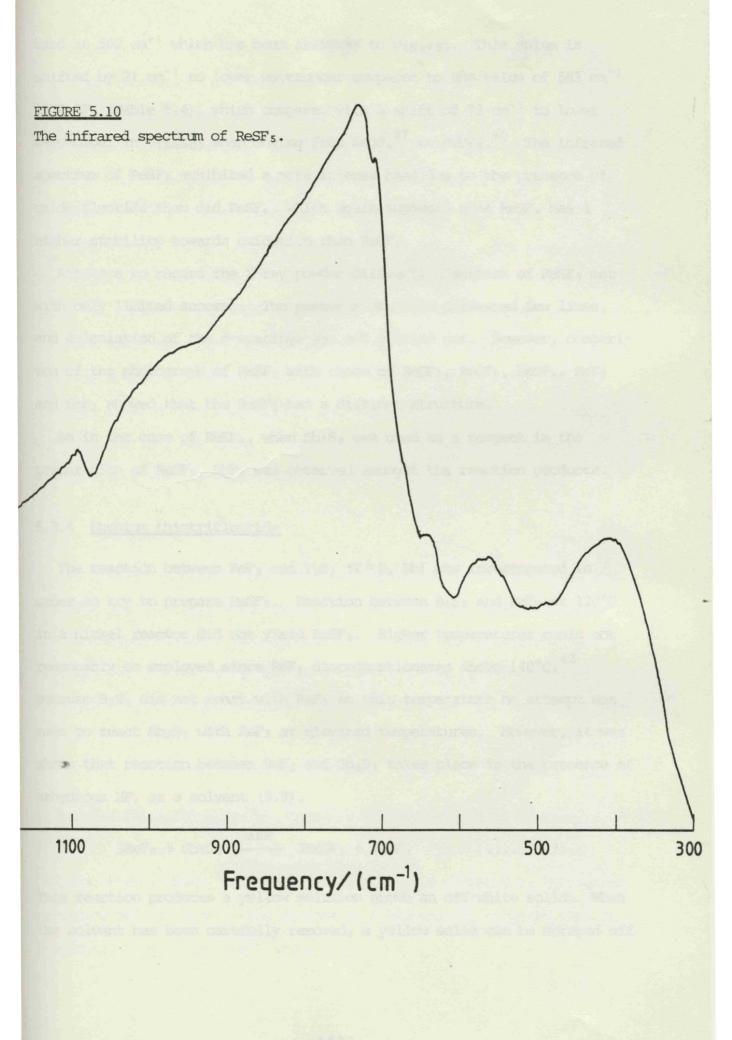

The infrared spectrum of ReSF_5 (Table 5.6 and Fig. 5.10) shows some similarity to that of ReOF_5 , and an even closer resemblance to that of

TABLE 5.6

ReSF₅	$\operatorname{ReOF}_{5}^{40}$	ReSF ₄	ASSIGNMENT
	$\begin{array}{c} 998 \text{ cm}^{-1} \\ 991 \text{ cm}^{-1} \\ 984 \text{ cm}^{-1} \end{array}$		ν (Re=0)
$\begin{array}{c} 695 \text{ cm}^{-1} \\ 670 \text{ cm}^{-1} \\ 664 \text{ cm}^{-1} \end{array}$	747 cm^{-1} 738 cm ⁻¹	$\begin{array}{c} 705 \ \mathrm{cm}^{-1} \\ 698 \ \mathrm{cm}^{-1} \\ 657 \ \mathrm{cm}^{-1} \end{array}$	ν(Re-F)sym Terminal
$ \begin{array}{c} 658 \text{ cm}^{-1} \\ 644 \text{ cm}^{-1} \\ 600 \text{ cm}^{-1} \end{array} $	$ \begin{array}{c} 651 \text{ cm}^{-1} \\ 643 \text{ cm}^{-1} \\ 635 \text{ cm}^{-1} \end{array} $	648 cm^{-1} 625 cm^{-1}	ν(Re-F) _{ASYM} Terminal
562 cm ⁻¹		583 cm ⁻¹	ν (Re=S)
550 cm^{-1} 529 cm ⁻¹		544 cm^{-1} 532 cm^{-1}	v(ReF) Bridging

Infrared spectrum of ReSF₅ compared to those of ReOF₅ and ReSF₄

ReSF₄. The difference between ReSF₅ and ReOF₅ is that ReSF₅ exhibits bands at 550 cm⁻¹ and 529 cm⁻¹ in the fluorine bridging region, whilst ReOF₅⁴⁰ does not. This suggests that unlike ReOF₅,⁴¹ solid ReSF₅ has a highly bridged polymeric structure. The infrared spectrum also shows a

band at 562 cm⁻¹ which has been assigned to $v_{(Re=S)}$. This value is shifted by 21 cm⁻¹ to lower wavenumber compared to the value of 583 cm⁻¹ in ReSF₄ (Table 5.4), which compares with a shift of 79 cm⁻¹ to lower wavenumber in $v_{(Re=0)}$ when moving from ReOF₄³⁷ to ReOF₅.⁴⁰ The infrared spectrum of ReSF₅ exhibited a more intense band due to the presence of oxide fluoride than did ReSF₄, which again suggests that ReSF₄ has a higher stability towards oxidation than ReSF₅.

Attempts to record the X-ray powder diffraction pattern of ReSF₅ met with only limited success. The patterns obtained possessed few lines, and calculation of the d-spacings was not carried out. However, comparison of the photograph of ReSF₅ with those of ReOF₅, ReOF₄, ReSF₄, ReF₅ and SbF₃ showed that the ReSF₅ had a distinct structure.

As in the case of $ReSF_4$, when Sb_2S_3 was used as a reagent in the preparation of $ReSF_5$, SbF_3 was observed amongst the reaction products.

5.3.4 Rhenium thiotrifluoride

The reaction between ReF₅ and Y_2S_3 (Y = B, Sb) was investigated in order to try to prepare ReSF₃. Reaction between B_2S_3 and ReF₅ at 120°C in a nickel reactor did not yield ReSF₃. Higher temperatures could not reasonably be employed since ReF₅ disproportionates above 140°C.⁴² Because B_2S_3 did not react with ReF₅ at this temperature no attempt was made to react Sb₂S₃ with ReF₅ at elevated temperatures. However, it was shown that reaction between ReF₅ and Sb₂S₃ takes place in the presence of anhydrous HF, as a solvent (5.9).

$$3\text{ReF}_5 + \text{Sb}_2\text{S}_3 \xrightarrow{\text{AHF}} 3\text{ReSF}_3 + 2\text{SbF}_3 \qquad \dots \qquad (5.9)$$

This reaction produces a yellow solution above an off-white solid. When the solvent has been carefully removed, a yellow solid can be scraped off

-153-

the walls of the reaction vessel. This is almost certainly $ReSF_3$, but its high reactivity makes unambiguous characterisation difficult.

The yellow solid darkens rapidly, even in a good dry box, with rapid formation of a black solid. When it is exposed to moist air hydrolysis is rapid and accompanied by the liberation of H_2S and HF. The infrared spectrum of the solid is inconclusive, showing only weak broad bands in the region 1000-300 cm⁻¹, which could not be assigned. The mass spectrum was again inconclusive since the parent ion, ReSF_3^+ , was not observed and ReSF_2^+ was found as the most abundant rhenium-sulphur species, with ReS^+ and ReSF^+ also being observed. The predominant species observed in the mass spectrum were, in fact, oxide fluorides of rhenium.

These observations indicate the formation of ReSF_3 , but no direct evidence for this was found. These above results suggest that the quinquevalent species is very unstable.

5.3.5 Conclusions

The species ReSF₄ and ReSF₅ have been prepared and characterised by infrared spectroscopy, X-ray powder diffraction, mass spectrometry and chemical observations. The preparation of these two species suggesting that the use of Y_2S_3 (Y = B, Sb) as a reagent should be generally applicable to the preparation of metal thiofluorides from metal fluorides (5.10).

 $3MF_{X} + Y_2S_3 \longrightarrow 3MSF_{X-2} + 2YF_3 \qquad \dots (5.10)$

Rhenium thiotrifluoride has probably been isolated from similar reactions but has not been fully characterised. It should be noted, however, that if $ReSF_3$ were to decompose it would probably be by a route, producing ReF_6 or $ReSF_4$. The absence of these species suggests that in anhydrous HF solutions $ReSF_3$ is stable.

-154-

The properties observed for ReSF₄ and ReSF₅ suggest that ReSF₄ is very similar to WSF₄. It is to be expected, therefore, that the chemistry of ReSF₄ will resemble that of WSF₄. For example, the formation of ReSF₄.CH₃CN is likely when ReSF₄ is dissolved in CH₃CN. The heptavalent species, ReSF₅, from a structural point of view at least, resembles ReSF₄ more than ReOF₅ since there appears to be no bridging in ReOF₅.

5.4 CHALCOGENIDE FLUORIDES OF THE GROUP Va METALS

5.4.1 Group Va chalcogenide halides

Niobium and tantalum chalcogenide halides of the form MYX₃ (M=Nb, Ta; Y=S, Se; X=Cl, Br) have been prepared. Niobium thiotrichloride has been obtained from the reaction of NbCl₅ with Sb₂S₃ in CS₂¹³ and from the reaction of B₂S₃ with NbCl₅.²⁶ The species NbSeCl₃, NbSBr₃ and NbSeBr₃ have also been prepared¹³ in an analogous manner. In the infrared spectrum of NbSCl₃ $v_{(Nb=S)}$ is observed at 552 cm⁻¹ and in that of NbSBr₃ at 542 cm⁻¹.

Tantalum compounds have been isolated from the reaction of TaCl₅ with $Sb_2S_3^{13}$ or $B_2S_3^{26}$ A tantalum thiotrichloride complex has also been reported as the product of the reaction of TaCl₅ with PhNCS in hexane and heptane. The reactions initially yield TaCl₅.PhNCS which is converted to TaSCl₃.PhNCCl₂ on refluxing.³⁶

In the present study attempts to prepare thiofluorides of niobium and tantalum are reported. The preparative techniques employed are analogous to those used in the preparation and isolation of the rhenium thiofluorides, ReSF₃, ReSF₄ and ReSF₅. Namely, the reaction of the metal fluoride with B_2S_3 or Sb_2S_3 at elevated temperatures, or with Sb_2S_3 in anhydrous HF.

5.4.2 The reaction of B_2S_3 and Sb_2S_3 with NbF₅ at high temperatures

The reactions (5.11) between NbF₅ and B_2S_3 or Sb_2S_3 were attempted by

$$3NbF_5 + Y_2S_3 \xrightarrow{300^{\circ}C} 3NbSF_3 + 2YF_3 \dots (5.11)$$

[Y = B, Sb]

heating stoichiometric quantities of Y_2S_3 and NbF_5 in a nickel reactor at 300°C for periods up to 48 hours.

When heating was terminated and the reactor opened in the dry box, there was no visible colour change in the reactants, but a white solid had been sublimed to the cooler, top region of the reactor. Examination of this material by infrared spectroscopy and X-ray powder diffraction showed that it consisted of unreacted NbF₅. In the light of this attempts to prepare NbSF₃ by thermal means were discontinued.

5.4.3 The reaction of NbF5 with Sb2S3 in anhydrous HF

The reaction between NbF_5 and Sb_2S_3 in FEP or Kel-F vessels in the presence of anhydrous HF was investigated in attempts to isolate $NbSF_3$.

Stoichicmetric quantities of NbF₅ and Sb_2S_3 were mixed in the fluoroplastic tubing and anhydrous HF added at -196°C. The reactants were allowed to warm to room temperature with mixing and then left standing at ambient temperature for 12 hours with occasional agitation. At the end of this period a pale yellow solution above a grey-white solid was produced. The solvent was carefully removed and the yellow solid examined by infrared spectroscopy, X-ray powder diffraction and mass spectrometry.

The infrared spectrum of the yellow solid (Table 5.7) showed many of the bands were coincident with those of NbF_5 ,⁴³ together with additional bands in both the niobium-fluorine bridging and terminal regions of the

-156-

Observed bands	Tentative assignment
921 cm^{-1} m, br 757 cm^{-1} sh 737 cm^{-1} sh 709 cm^{-1} s 692 cm^{-1} sh	$\mathcal{V}(Nb=O)$ $\mathcal{V}(Nb-F)$ Terminal
666 cm ⁻¹ vs 608 cm ⁻¹ s	
546 cm^{-1} ms	v(Nb=S) ?
506 cm ⁻¹ m, br 480 cm ⁻¹ ms	$\left\{ v_{(Nb} \dots F) \right\}$ Bridging

Infrared spectrum of the yellow product of the reaction $\rm NbF_5$ with $\rm Sb_2S_3$ in HF

spectrum. The most notable feature was the presence of a band at 546 cm⁻¹. This is close to the values of $v_{(Nb=S)}$ in NbSCl₃ and NbSBr₃ (552 and 542 cm⁻¹ respectively).¹³ The presence of some oxide fluorides of niobium as an impurity, is shown by the presence of a band at 921 cm⁻¹.⁴⁴

The X-ray powder diffraction pattern of the solid showed the presence of NbF₅. However, several additional weak lines were present, suggesting that a novel species had been formed. Mass spectrometry showed only the isotopic splitting pattern for NbF₄⁺ \rightarrow Nb⁺ and SbF₃⁺ \rightarrow Sb⁺, with no indication of any niobium-oxygen or niobium-sulphur species.

5.4.4 The reaction of TaF_5 with B_2S_3 and Sb_2S_3 at high temperatures

The reaction between TaF_5 and B_2S_3 or Sb_2S_3 would be expected to yield $TaSF_3$ (5.12). An attempt to prove this was made by mixing a stoichiometric

$$3TaF_5 + Y_2S_3 \xrightarrow{300^{\circ}C} 3TaSF_3 + 2YF_3 \dots (5.12)$$

[Y = B, Sb]

quantity of Sb_2S_3 or B_2S_3 with TaF_5 in a nickel reactor. The reactants were then heated to 300°C for 24 hours before being removed to a dry box for examination.

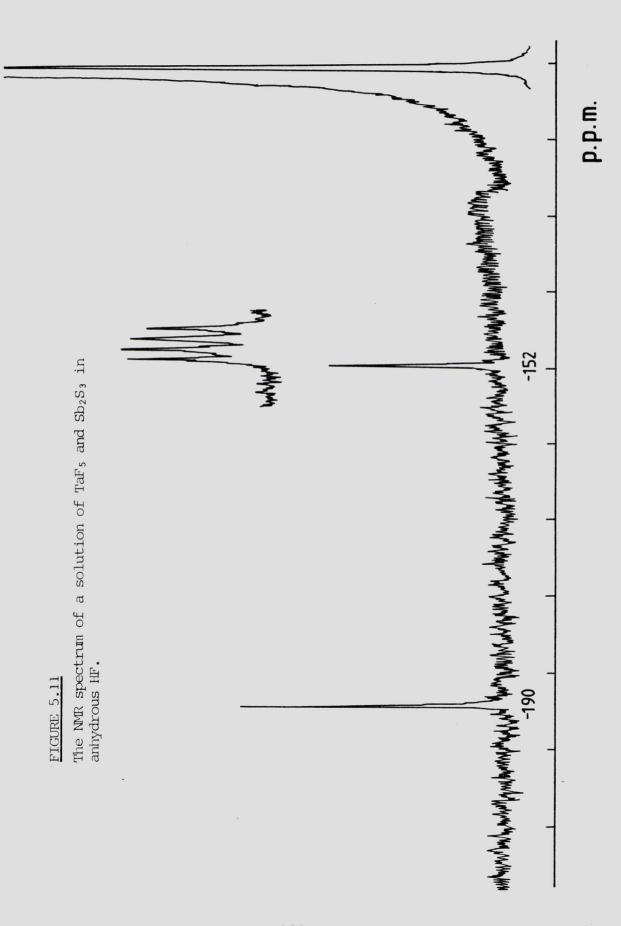
When the reactor was opened it was noted that a white solid had sublimed into the cooler upper region of the reactor and the B_2S_3 or Sb_2S_3 was left at the base of the reactor. Examination of the sublimed solid by infrared spectroscopy showed it to be unreacted TaF₅. This indicates that, as is the case with the niobium analogue, TaSF₃ is probably not obtainable by thermal means.

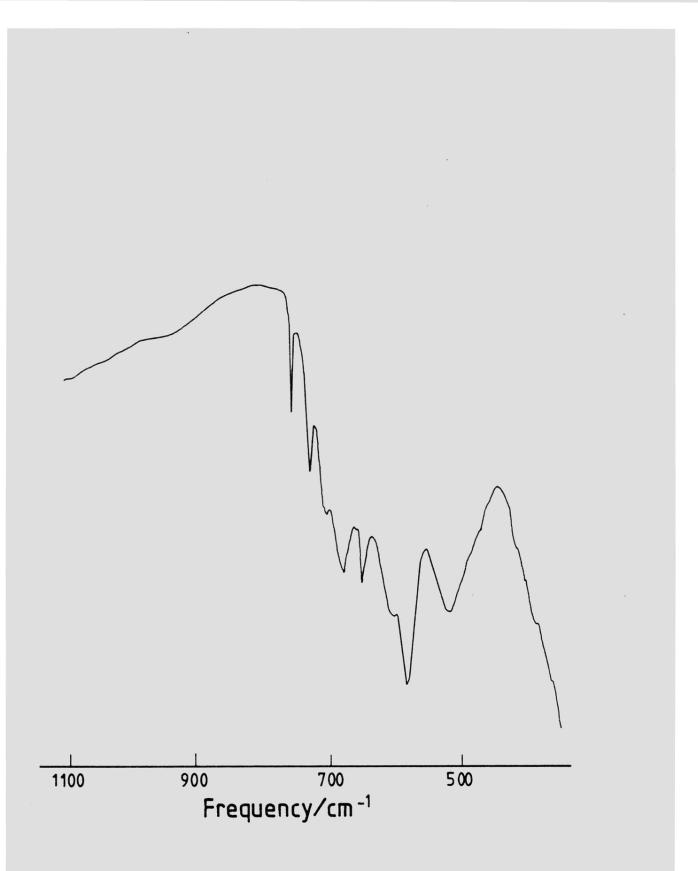
5.4.5 The reaction of TaF_5 with Sb_2S_3 in anhydrous HF

As TaF_5 will not react with Sb_2S_3 or B_2S_3 at elevated temperatures, an attempt to prepare $TaSF_3$ by the reaction between TaF_5 and Sb_2S_3 in anhydrous HF was investigated.

In a typical reaction 9×10^{-4} moles of TaF₅ was loaded into an FEP reaction tube together with a stoichiometric quantity of Sb₂S₃ (3×10^{-4} moles). Anhydrous HF was then distilled into the tube. The reactants were allowed to warm to ambient temperature, and were left standing at ambient temperature with occasional mixing for 18 hours. At the end of this period a yellow solution above a grey solid resulted.

The yellow solution was decanted into a second clean FEP tube. This was done by tipping the solution through an all fluoroplastic branch. The branch was constructed of a Teflon needle valve attached by FEP tubing to a Teflon 'T'-shaped compression union, which was, in turn, connected to two FEP tubes. Rotation about the valve to 'T' connection allowed decantation. The receiving tube was usually $\frac{1}{4}$ " o.d., but on some occasions $\frac{3}{16}$ " o.d. tubing was used. The n.m.r. of the solution was recorded in a $\frac{3}{16}$ " tube.


-158-


N.m.r. spectrum of products of reaction of TaF_5 with Sb_2S_3 in AHF

Product of $TaF_5 + Sb_2S_3$ in AHF	TaF₅ in AHF ⁴⁵			
Singlet at + 34.2 ppm Singlet at -107.96 ppm	Singlet at + 34.4 ppm Singlet at -110.25 ppm			
Quadruplet at -152.09 ppm Singlet at -190.31 ppm	Singlet at -190.13 ppm			
[All chemical shifts relative to CFCl ₃]				

Examination of the solution by ¹⁹F n.m.r. (Fig. 5.11 and Table 5.8) revealed a spectrum at -85°C which consisted of three singlets and a quadruplet. The three singlets were shown to be due to the presence of TaF₅ in the solution.⁴⁵ The presence of SbF₃ in the solution may be discounted on the grounds of its low solubility (0.01g SbF₃ in 100g HF at -23.1°C),⁴⁶ also the fluorine on antimony region of the spectrum is between -90 to -120 ppm from CFCl₃,⁴⁷ and no peaks were observed in this region. The unassigned quadruplet is in the region associated with fluorine on tantalum which ranges from -120 to -165 ppm from CFCl₃.⁴⁸ This suggests that the quadruplet is almost certainly due to the presence of a tantalum-fluorine species. The pattern cannot be explained in terms of any splitting pattern derived from monomeric TaSF₃, but is rather suggestive of either a doublet of doublets or four similar fluorines.

The infrared spectrum of the solid obtained by removal of the solvent (Fig. 5.12 and Table 5.9) shows the presence of TaF_5 , ⁴⁹ together with some tantalum-oxygen impurity, suggested by the presence of a weak broad band at 915 cm⁻¹. ⁵⁰ The spectrum also contains additional bands at 604 and 580 cm⁻¹. The presence of these bands cannot be satisfactorily

FIGURE 5.12

The infrared spectrum of the solid obtained from the reaction of ${\rm TaF}_5$ with ${\rm Sb}_2{\rm S}_3$ in anhydrous HF.

Product of reaction		TaFs ⁴⁹	
915 cm ⁻¹	w,br		
756 cm^{-1} 727 cm^{-1}	s ms	752 cm^{-1} 723 cm^{-1}	s ms
698 cm ⁻¹	m,sh	705 cm ⁻¹ 683 cm ⁻¹	m, sh m, sh
678 cm ⁻¹ 649 cm ⁻¹	S S	679 cm^{-1} 648 cm^{-1}	vs
604 cm^{-1} 580 cm ⁻¹	sh vs		
516 cm ⁻¹	VS	508 cm ⁻¹	vs

Infrared spectrum of product of reaction of TaF_5 with Sb_2S_3 in HF

explained in terms of $v_{(Ta=S)}$, as in TaSCl₃ this is at 463 cm⁻¹ and in TaSBr₃ at 437 and 448 cm⁻¹.¹³ There are no observed bands in this region. The additional bands observed are in a position intermediate between $v_{(Ta-F)}$ terminal and $v_{(Ta-....F)}$ bridging. It is likely that they are indicative of the presence of weak terminal fluorines rather than strong bridging ones.

The X-ray powder diffraction pattern of the solid also showed the presence of TaF_5 along with traces of SbF_3 . However, additional lines present on the film suggests that a novel species has been formed. Comparison of the pattern with the analogous niobium one shows there to be similarities. The mass spectrum of the product shows only splitting patterns for $TaF_4^+ \rightarrow Ta^+$ and $SbF_3^+ \rightarrow Sb^+$. No evidence of any tantalum-oxygen or tantalum-sulphur species was observed.

5.4.6 Conclusions

There is no thermally initiated reaction between MF_5 (M = Nb, Ta) and Y_2S_3 (Y = B, Sb). However, when MF_5 is allowed to react with Sb_2S_3 in solution, using anhydrous HF, some reaction occurs. This reaction is anomalous when compared to similar reactions between Sb_2S_3 and WF_6 , ReF₇, ReF₆ and ReF₅, since no evidence for formation of a thiofluoride is obtained. This anomalous behaviour of niobium and tantalum species is to some extent mirrored in the chemistry of the other thiohalides, in that when MSX₃ (M = Nb, Ta; X = Cl, Br) are dissolved in tetrahydrothiophene (tht) non-stoichicmetric products are formed.⁵¹ The reaction of NbSBr₃ with tht was further investigated⁵² and was shown to yield the Nb(IV) species [Nb₂Br₄S(S₂)₂ (tht)₄] and [NbBr₅(tht)] by a disproportionation mechanism (5.14). It is proposed that in anhydrous HF MSF₃ (M = Nb, Ta)

 $3NbSBr_{3} + 6tht \longrightarrow 3NbSBr_{3}(tht)_{2} \longrightarrow [Nb_{2}Br_{4}S(S_{2})(tht)_{4}] + [NbBr_{5}(tht)] + tht \qquad (5.14)$

may be undergoing a similar disproportionation reaction. The problem is to identify the products of the disproportionation reaction. The products of the thiochloride and thiobromide reactions were only identified by single crystal X-ray studies, 51,52 and the thiofluoride reaction will probably only be solved using similar techniques.

It may also be that the reaction involves a partial reduction of the metal pentafluoride to the tetrafluoride. If it is postulated that TaF_5 was reduced to TaF_4 by Sb_2S_3 in anhydrous HF the mass spectrum and ¹⁹F n.m.r. data may be interpreted. The problem is that TaF_4 has not been reported⁵³ to have been isolated. Furthermore, NbF₄ is a black solid, ⁵³ so it is likely that TaF_4 will resemble NbF₄ and be black rather than yellow.

These interpretations of the results of the TaF₅/Sb₂S₃/anhydrous HF results cast doubt on the results of the NbF₅/Sb₂S₃/anhydrous HF system. Although the niobium system has been partially explained in terms of the formation of NbSF₃, mainly on the basis of the infrared band at 546 cm⁻¹, the assignment of the band is in doubt because it is in a similar region to the 580 cm⁻¹ band in the tantalum system which was shown not to be due to $v_{(Ta=S)}$.

Overall, the study of the NbF₅/Sb₂S₃/AHF and TaF₅/Sb₂S₃/AHF systems is inconclusive and in need of a more detailed study. The system will, in fact, probably only be explained by use of single crystal X-ray studies.

5.5 ATTEMPTED PREPARATION OF URANIUM THIOTETRAFLUORIDE

5.5.1 Introduction

The existence of UOF₄ was first established in 1972, when it was prepared by the partial hydrolysis of UF₆.⁵⁴ It has also since been prepared by the reaction of UF₆ with SiO₂ in anhydrous HF⁵⁵ or with B_2O_3 .⁵⁶ Since the chemistry of UF₆ tends to some extent to be similar to that of MoF₆ and WF₆, it was felt that it may prove possible to prepare USF₄ by reaction of UF₆ with Sb₂S₃ or B₂S₃ at high temperatures.

5.5.2 The reaction of UF_6 with B_2S_3 and Sb_2S_3

Preliminary studies by J. H. Holloway at the Centre d'Études Nucléaires de Saclay on the reaction of UF_6 with $Sb_2S_3^{57}$ at high temperatures gave rise to formation of small quantities of orange crystals which yielded only X-ray powder diffraction patterns of SbF_3 together with UF_5 . Attempts to repeat these results by the reaction of stoichiometric quantities of UF_6 and Sb_2S_3 in a nickel reactor at $300^{\circ}C$ proved negative. The product was shown by infrared spectroscopy and X-ray powder diffraction to be β -UF₅.

The reaction between UF_6 and B_2S_3 was also investigated in an attempt to prepare USF_4 . Reaction between UF_6 and a stoichiometric quantity of B_2S_3 at 270°C for 18 hours or 165°C for 400 hours, however, again yielded only β - UF_5 . The product was characterised by its X-ray powder diffraction pattern.

5.5.3 Conclusions

The reaction of UF₆ with Sb_2S_3 and B_2S_3 at high temperatures does not produce USF₄ in significant quantities but, instead, results in reduction of UF₆ to UF₅. No attempt was made to prepare USF₄ by reaction of UF₆ with Sb_2S_3 in anhydrous HF, because UOF₄ is not stable in anhydrous HF solutions over long periods.²⁹ It seemed likely, therefore, that USF₄ would probably be even less stable than UOF₄ in anhydrous HF.

5.6 FURTHER WORK

This study on transition metal chalcogenide fluorides could be developed further in any of four directions. The first area for further study is the preparation of new chalcogenide fluorides. It should be possible to prepare chalcogeno-fluorides of ruthenium and osmium. The most stable of these would probably be $OsSF_5$, the thio-analogue of $OsOF_5$ which is readily prepared.⁵⁸ Also, thio-analogues of RuOF₄ and $OsOF_4$ should be preparable but the low stability of these oxide fluorides could be indicative of a low stability for the thiofluorides. Additionally, preparation of seleno-analogues of the thiofluorides so far prepared should be feasible.

The second area for further study is the preparation of transition

-165-

metal dithiodifluorides. The report of the isolation of $WS_2F_2.2CH_3CN$ by Kokunov <u>et al</u>.⁷ is worthy of a re-investigation, and the preparation of WS_2F_2 without coordinated acetonitrile should be possible, perhaps by bubbling H_2S through a solution of WF_6 in Genetron, which is a noncomplexing solvent. However, probably the best candidate for the preparation of a dithiodifluoride is the uranium system. Because the uranyl ion, $UO_2^{2^+}$, has a very high stability, the corresponding thiospecies $US_2^{2^+}$ might be expected to be stable also.

New preparative routes to chalcogenide fluorides should also be investigated. The reaction of H_2S with WF_6 in CH_3CN has been shown to produce complexed tungsten thiofluorides⁷ so the reaction of H_2S , H_2Se and H_2Te with metal fluorides may produce other chalcogenide fluorides. Furthermore, if a non-complexing solvent is used, then uncomplexed transition metal chalcogenide fluorides should be produced. The reaction of metal fluorides with elemental sulphur, selenium and tellurium may produce transition metal chalcogenide fluorides, in the same way reactions with other halides produce transition metal chalcogenide halides.^{1,2} The reactions between S, Se and Te and metal fluorides would, however, have to be carried out in stainless steel reactors, as the elements react with nickel. Probably the cleanest and most promising route to transition metal chalcogenide fluorides would be by the use of SiS₂. The reaction (5.15) would be expected to produce volatile silicon tetrafluoride which

$$2MF_{x} + SiS_{2} \longrightarrow 2MSF_{x-2} + SiF_{4} \qquad \dots (5.15)$$

is easily removed. The reaction between the fluoride and SiS_2 could be carried out either at high temperature or at room temperature in anhydrous HF slurries.

A large area worthy of investigation is the chemistry of transition

metal chalcogenide fluorides. Since WSF₄, MoSF₄ and ReSF₄ have been prepared in good yield, it should be possible to study the comparative chemistry of the thio- and oxo- fluorides. For example, an investigation of their Lewis-acid base behaviour should show the thiofluoride to be "softer" because of the difference in electronegativity between oxygen and sulphur. The reaction of MoF₄ (M = Re, Mo, W) with SbF₅ has been studied, ⁵⁹ and reaction between MSF₄ (M = Mo, W, Re) and SbF₅ may well take place in a similar manner.

The final area of possible study is not really in the field of chalcogenide fluorides but rather in pnictide fluorides. Studies by Peacock and Fawcett⁶⁰ have shown the existence of ReF_4N and preparation of a phosphorus analogue of this compound should be possible.

5.7 <u>REFERENCES FOR CHAPTER FIVE</u>

- D. A. Rice Coord. Chem. Rev., <u>25</u>, 199, (1978).
- M. J. Atherton, J. H. Holloway Adv. Inorg. Chem. and Radiochem., <u>22</u>, 171, (1979).
- 3. D. L. Hilderbrand U.S. Navy Tech. Inf. Serv., A.D. Rep. No. 757131, (1972) and J. Chem. Phys., <u>62</u>, 3074, (1975).
- Y. A. Buslaev, Y. V. Kokunov, Y. D. Chubar Dokl. Akad. Nauk. SSSR, <u>213</u>, 912, (1973).
- M. J. Atherton, J. H. Holloway J. Chem. Soc. Chem. Commun., 424, (1977).
- Y. V. Kokunov, Y. D. Chubar, V. A. Bochkareva, Y. A. Buslaev Koord. Khim., <u>1</u>, 1100, (1975).
- Y. V. Kokunov, Y. D. Chubar, A. V. Kopytin, Y. A. Buslaev Koord. Khim., <u>2</u>, 796, (1976).
- Britnell, G. W. A. Fowles, D. A. Rice J. Chem. Soc. Dalton, 2191, (1974).
- 9. K. M. Sharma, S. K. Anand, R. K. Multani, B. P. Jain Chem. Ind. (London), 1556, (1969).
- Y. A. Buslaev, Y. V. Kokunov, M. P. Gustayova, Y. D. Chubar Dokl. Akad. Nauk. SSSR, <u>233</u>, 357, (1977).
- Y. V. Kokunov, Y. D. Chubar, Y. A. Buslaev Koord. Khim., <u>5</u>, 866, (1979), Chem. Abs., <u>91</u>, 133348v, (1979).
- Y. V. Kokunov, Y. D. Chubar, Y. A. Buslaev Koord. Khim., <u>2</u>, 1227, (1976), Chem. Abs., <u>85</u>, 201411p, (1976).
- G. W. A. Fowles, R. J. Hobson, D. A. Rice, K. J. Shanton J. Chem. Soc. Chem. Commun., 552, (1976).
- 14. I. R. Beattie, K. M. S. Livingstone, D. J. Reynolds, G. A. Ozin J. Chem. Soc. (A), 1210, (1970).
- 15. D. Brown, J. H. Holloway, V. Kaučič, D. R. Russell, G. M. Staunton In preparation.
- 16. K. Hagen, L. Hedberg, K. Hedberg, J. H. Holloway, D. A. Rice, G. M. Staunton Submitted for publication.
- 17. V. D. Butskii, V. S. Pervov Russ. J. Inorg. Chem., <u>22</u>, 6, (1977).
- I. P. Malkherova, A. S. Alikhanyan, V. D. Butskii, V. S. Pervov, V. I. Gorgoraki Russ. J. Inorg. Chem., <u>26</u>, 1055, (1981).
- M. J. Atherton, J. H. Holloway Inorg. Nucl. Chem. Letts., <u>14</u>, 121, (1978).
- Y. V. Kokunov, Y. D. Chubar, Y. A. Buslaev Dokl. Akad. Nauk. SSSR, <u>239</u>, 1361, (1978).

21. V. S. Pervov, V. D. Butskii, V. M. Novotortsev Akad. Nauk. SSSR, General Symposium on Inorganic Fluorine Chemistry, 1978. V. S. Pervov, V. D. Butskii, L. G. Podzolko 22. Russ. J. Inorg. Chem., 23, 819, (1978). 23. I. P. Malkherova, A. S. Alikhanyan, V. S. Pervov, V. D. Butskii, V. I. Gorgoraki Russ. J. Inorg. Chem., 25, 1145, (1980). 24. I. P. Malkherova, A. S. Alikhanyan, V. I. Gorgoraki Russ. J. Inorg. Chem., 25, 1742, (1980). J. H. Holloway, D. C. Puddick 25. Inorg. Nucl. Chem. Letts., 15, 85, (1979). 26. A. O. Baghlaf, A. Thompson J. Less Common Metals, <u>53</u>, 291, (1977). 27. L. E. Alexander, I. R. Beattie, A. Bukovsky, P. J. James, C. J. Marselen, G. J. Van Schalkwyk J. Chem. Soc. Dalton, 81, (1974). 28. Y. Y. Kharitonov, R. L. Davidovich, V. I. Kostin, L. A. Zemnukhova, V. I. Sergienko Russ. J. Inorg. Chem., <u>17</u>, 682, (1972). 29. D. Laycock Ph.D. Thesis, University of Leicester, 1981. V. G. Troner, G. A. Bekhtte, S. B. Davidyants 30. Tr. Akad. Nauk. Tadzh. SSR, 34, 105, (1958). 31. A. A. Opalovskii, V. E. Federov, E. U. Lobkov, B. G. Erenberg Russ. J. Inorg. Chem., 16, 1685, (1971). I. A. Glukhov, S. B. Davidyants, M. A. Yunusov, N. A. El'Manova 32. Russ. J. Inorg. Chem., <u>6</u>, 649, (1961). 33. G. E. Sergeenva Chem. Abs., 86, 82915q, (1977). D. V. Drobot, B. G. Korshunov, S. L. Kovacheva 34. Russ. J. Inorg. Chem., <u>17</u>, 139, (1972). 35. N. V. Ulko, V. L. Kolesnicherko Russ. J. Inorg. Chem., 25, 1418, (1980). H. Boehland, F. M. Schneider 36. Z. Chem., <u>12</u>, 28, (1972). R. T. Paine, K. L. Treuil, F. E. Stafford 37. Spectrochim. Acta, 29A, 1891, (1973). 38. A. J. Edwards, G. R. Jones, B. R. Steventon J. Chem. Soc. Chem. Commun., 462, (1967). J. H. Holloway, V. Kaučič, D. R. Russell 39. In preparation. 40. J. H. Holloway, H. Selig, H. H. Claassen J. Chem. Phys., <u>54</u>, 4305, (1971). 41. Inferred from the infrared data.

- 42. R. D. Peacock in 'Advances in Fluorine Chemistry', Vol. 7, Eds. J. C. Tatlow, R. D. Peacock and H. H. Hyman, Butterworth, London, 1973.
- 43. Infrared spectrum of solid sample of NbF_5 recorded on the same machine as the reaction product.
- 44. L. K. Frevel, H. W. Rinn Acta Cryst., <u>9</u>, 626, (1956).
- 45. The NMR of TaF_5 in AHF under the same conditions was recorded.
- 46. Page 239 'Inorganic Chemistry in Liquid Hydrogen Fluoride', M. F. A. Dove, A. F. Clifford, Pergammon Press, 1971.
- 47. <u>Ibid.</u> page 256.
- 48. P. A. W. Dean, R. J. Gillespie Can. J. Chem., <u>49</u>, 1736, (1971).
- 49. From recorded infrared spectrum of TaF_5 .
- 50. Y. A. Buslaev, Y. Y. Kharitonov, S. M. Sinitsyana Russ. J. Inorg. Chem., <u>10</u>, 287, (1965).
- 51. M. G. B. Drew, I. B. Baba, D. A. Rice, D. M. Williams Inorg. Chim. Acta, <u>44</u>, L217, (1980).
- 52. A. J. Benton, M. G. B. Drew, R. J. Hobson, D. A. Rice J. Chem. Soc. Dalton, 1304, (1981).
- 53. F. A. Cotton, G. Wilkinson Page 839 'Advanced Inorganic Chemistry', Fourth Edition, Wiley Interscience, 1980.
- 54. P. W. Wilson J. Chem. Soc. Chem. Commun., 1241, (1972).
- 55. R. T. Paine, R. R. Ryan, L. B. Asprey Inorg. Chem., <u>14</u>, 1113, (1975).
- 56. R. C. Burns, T. A. O'Donnell, A. B. Waugh J. Fluorine Chem., <u>12</u>, 505, (1978).
- 57. J. H. Holloway Unpublished observations.
- 58. N. Bartlett Proc. Chem. Soc., 619, (1964).
- 59. J. Fawcett, J. H. Holloway, D. R. Russell J. Chem. Soc. Dalton, 1212, (1981).
- 60. J. Fawcett, R. D. Peacock J. Chem. Soc. Chem. Commun., 1982, in press.

CHAPTER 6

EXPERIMENTAL TECHNIQUES

6.1 PREPARATIVE TECHNIQUES

6.1.1 General Techniques

Most of the starting materials and most of the products of reactions described in this thesis are sensitive to air and/or water. In order to prevent the decomposition of the required materials various techniques were used to exclude air and water. For example, reactions were carried out either <u>in vacuo</u> or in an inert atmosphere, using metal, glass or fluoroplastic vessels. The metal reactors were pumped to high vacuum $(~10^{-4} \text{ Torr})$ before being treated with fluorine, flamed and then re-evacuated. Glass and fluoroplastic containers were evacuated before being seasoned with fluorine or chlorine trifluoride.

Volatile, air-sensitive materials were transferred in either static or dynamic vacuum systems by application of suitable temperature gradients. Non-volatile materials were handled under a dry nitrogen atmosphere in a glove box (Vacuum Atmospheres Co., VAC HE 42-2 Dri Lab). Oxygen or water present in the box was removed by automatically circulating the atmosphere through columns of manganous oxide and molecular sieves. The glove boxes were maintained at above atmospheric pressure in order to prevent ingress of air or water should a small leak develop. The oxygen level in the box was thus kept at ~5 ppm, and the water level at ~1 ppm.

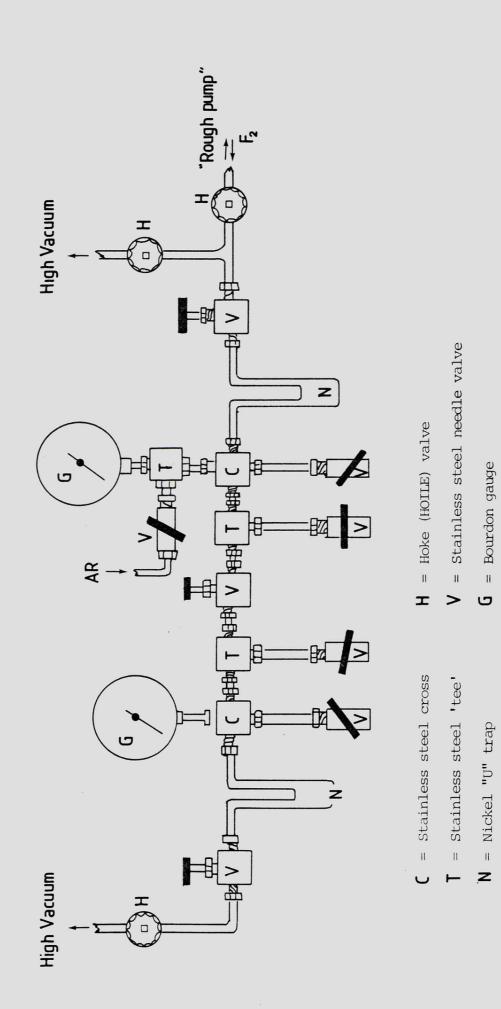
When finely divided solids are handled inside dry boxes static electricity often presents a problem. In order to alleviate this problem a 4 mCi ²¹⁰ Po α -emitting radioactive source (Type PDV 1, Amersham International, Amersham, Bucks) was employed. Weighings in the range 0 + 1g, accurate to ± 1 mg, were recorded using a Cahn electrobalance (Model 7550) which was situated inside the dry box. More accurate weighings in the 0-500g range, accurate to ± 0.1 mg, were obtained outside

-172-

the dry boxes, on laboratory analytical balances (Stanton Unimatic CL 41 or an Oertling double pan balance, model FO 5).

6.1.2 Vacuum Systems and Reaction Vessels

Vacuum line techniques were used in the preparation of all the compounds studied. The vacuum system was a metal manifold with both a high and a low vacuum system attached (Fig. 6.1). The manifold was constructed of $\frac{3}{8}$ " o.d., $\frac{1}{8}$ " i.d., nickel tubing (H. Wiggins & Co., Hereford) and argon arc-welded nickel "U" traps. The manifold was completed with AE-30 series stainless steel needle valves, crosses and tees (Autoclave Engineers Inc., Erie, Pennsylvania, USA) and connected to the vacuum systems through diaphragm valves (Hoke International (UK) Ltd., Barnet, Herts).


The rough vacuum system (ultimate vacuum 10^{-2} torr) consisted of a single-stage rotary pump fitted with a large metal trap containing granules of soda lime (5-10 mesh) in order to trap out and neutralise fluorine and volatile fluorides removed from the manifold. The trap was connected to the manifold <u>via</u> a diaphragm valve. The main vacuum system (ultimate vacuum ~ 10^{-4} torr) consisted of a double-stage rotary pump which was connected to the manifold <u>via</u> a mercury diffusion pump and a glass cold trap maintained at -196°C. A facility for admitting argon gas (BOC Limited) was attached, allowing the gas directly into the manifold from a cylinder, whilst fluorine for seasoning the manifold and apparatus was introduced from welded nickel cans (~1 dm³) fitted with stainless steel needle valves.

Pressures in the manifold were monitored using stainless steel Bourdon-tube gauges (Type 1F/66 Z, Budenberg Gauge Co. Ltd., Broadheath, Greater Manchester) which measured pressures in the range 0-1520 torr to

-173-

_	-1
	•
5	2
LO DL	TODT

The Basic Vacuum Manifold.

an accuracy of ± 5 torr. Pressures in the range 10^{-2} to 10^{-4} torr were measured using a cold cathode Penning ionization gauge (Model 2A, Edwards High Vacuum Ltd., Crawley, West Sussex).

Leaks in the vacuum system and attached systems were located by use of a helium leak detector (Edwards High Vacuum Ltd., mass spectrometer Model LT104), or by pressurising the system with fluorine gas and locating large leaks using paper wetted with saturated potassium iodide solution.

Reactors made from glass, metal or fluoroplastics were constructed and attached to the vacuum system as required. Reaction systems in glass were designed and fabricated as needed, and attached to the manifold by glass to metal Kovar seals (glass to $\frac{1}{4}$ " o.d. stainless steel) or <u>via</u> precision $\frac{1}{4}$ " o.d. glass connected to $\frac{1}{4}$ " nickel tubing machined to fit Autoclave Engineers AE-30 series fittings, the connection being made by two or three-way PTFE compression unions ('Chemcon' types STD/4-E/P and STD/4-T/P, Production Techniques Ltd., Fleet, Hampshire). Where valves in glass were required, greaseless glass valves (Quickfit 'Rotaflo', Dow-Corning Ltd., or 'Youngs' valves, J. Young Scientific Glassware Ltd.), fitted with PTFE barrels or the glassware was attached to PTFE needle valves <u>via</u> $\frac{1}{4}$ " o.d. glass and PTFE compression unions.

Fluoroplastic reactors were made from Teflon-FEP tubing (Trimflex Corporation, USA) of $\frac{1}{4}$ " o.d. or $\frac{3}{16}$ " o.d. These reactors were attached to the manifold via 'Chemcon' PTFE needle valves and PTFE compression unions (Plate 2) or <u>via</u> Kel-F valves using flared tube fittings. The Kel-F valves were of the type designed at Argonne National Laboratory (Chicago, Illinois, USA), being fabricated from Kel-F block (Pampus Fluoroplast Ltd., Stoke-on-Trent, Staffordshire). Larger Kel-F

-175-

reactors of $\frac{3}{4}$ " o.d. with a volume of approximately 30 cm³, were also used, these being attached to the manifold by either Kel-F valves or Chemcon PTFE needle valves (Plate 2).

Metal reactors consisted of spun nickel test tubes with a compression union sealed by a gold gasket. The reactor was attached to the manifold <u>via</u> an Autoclave Engineers series AE-30 high-temperature stainless steel (PLATE 3). needle valve. Other metal reactors were fabricated from argon arc-welded $\frac{1}{4}$ " nickel cans fitted with Autoclave Engineers AE-30 needle valves.

6.1.3 Storage of Samples

Samples not required for immediate use were stored either in stoppered glass or fluoroplastic tubes in a dry box, or sealed in glass or FEP tubes. Volatile samples with vapour pressures greater than one atmosphere were stored in nickel cans, whilst those with a vapour pressure of less than one atmosphere were stored in glass vessels fitted with breakseals. Thermally unstable materials were stored in sealed tubes at -196°C in a cryostat (British Oxygen Co. Ltd.) or at -78°C in solid carbon dioxide.

6.2 CHARACTERISATION OF PRODUCTS

6.2.1 Infrared Spectroscopy

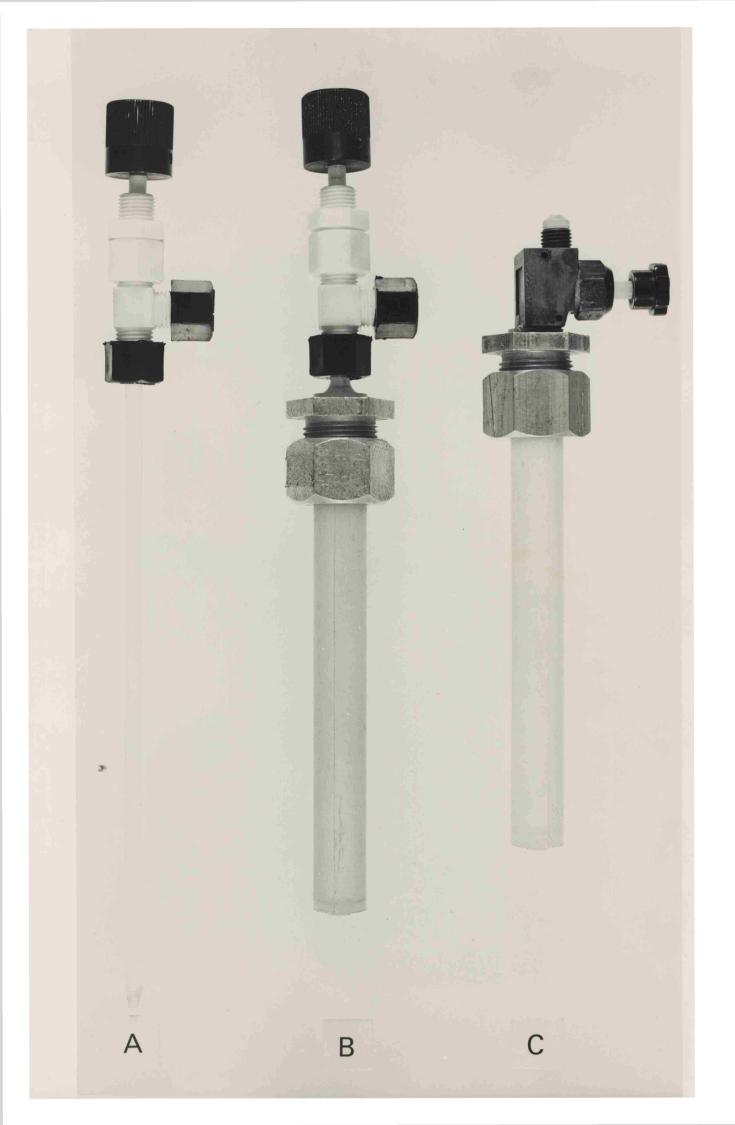
Infrared spectra in the range 4000-180 cm⁻¹ were recorded on Perkin-Elmer 580 or 580B spectrometers. Gas-phase spectra were obtained using 10 cm path length copper cells fitted with AgCl windows for the region 4000-400 cm⁻¹, and polythene for the region 700-180 cm⁻¹. The gas cells were attached to the manifold and were equipped with side arms into which the gaseous samples could be frozen out. The cells were made vacuum tight by use of PTFE gaskets between the windows and the cell body.

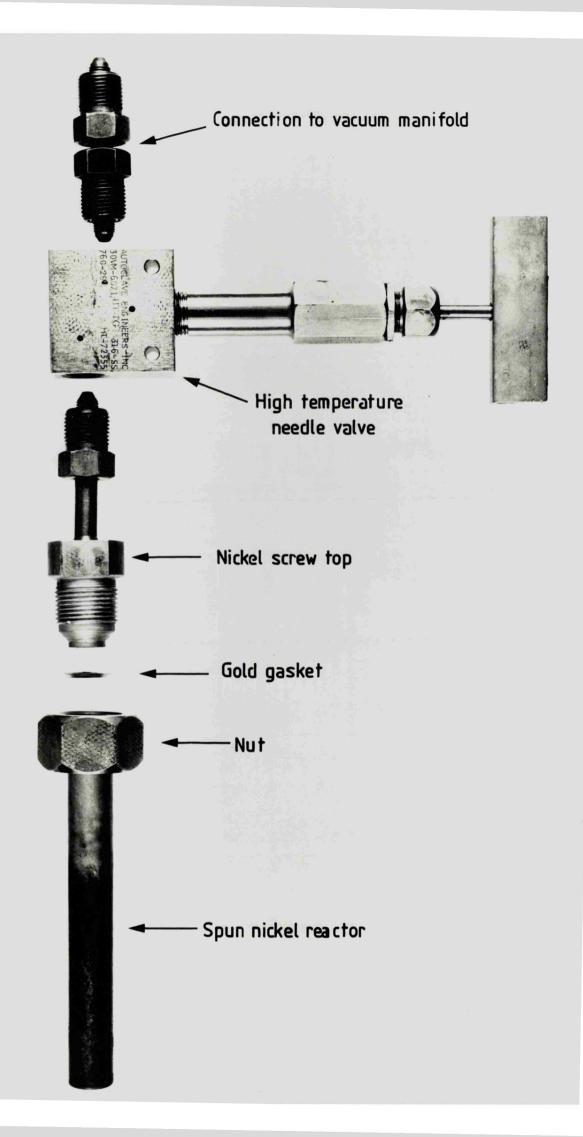
Spectra of solid samples were recorded with the samples as dry, finely

PLATE 2 FLUOROPLASTIC REACTION VESSELS

- (A) $\frac{1}{4}$ " FEP tube fitted with a Chemcon needle valve
- (B) $\frac{3}{4}$ " Kel-F tube fitted with a Chemcon needle valve
- (C) $\frac{1}{2}$ " Kel-F tube fitted with a Kel-F valve

.




PLATE 3 EXPLODED VIEW OF SPUN NICKEL REACTOR

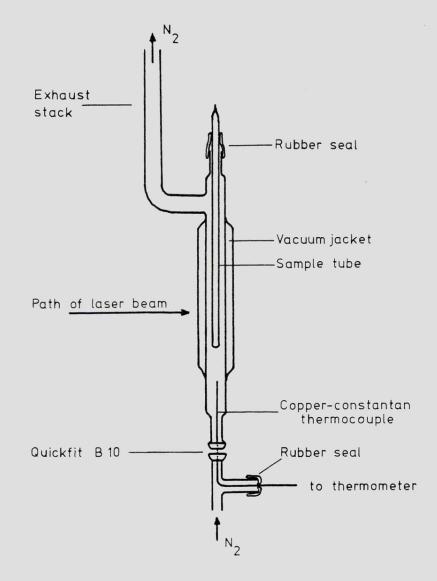
•

.

.

.

ground powders pressed between KBr (4000-350 cm^{-1}) or polythene (700-180 cm^{-1}) windows.


6.2.2 Raman Spectroscopy

Raman spectra were recorded on a Coderg T800 spectrometer, with either a 250 mW Ar⁺ laser (Model 52, Coherent Radiation Laboratories) or a 500 mW Kr⁺ laser (Model 164, Spectra Physics Inc.). The Ar⁺ laser provided exciting lines at 5145 Å (green) and 4880 Å (blue), whilst the Kr⁺ laser provided an exciting line at 6471 Å (red).

Solid samples were contained in sealed Pyrex capillaries. Solution spectra were recorded in $\frac{1}{4}$ " o.d. FEP tubes, which were either fitted with values or sealed, or Pyrex vessels. It was often possible to use the reaction vessel directly for Raman spectroscopy. Samples likely to be decomposed by the laser beam were cooled in a stream of cold nitrogen gas obtained from the controlled boiling of liquid nitrogen in a 25 litre Dewar vessel. The samples were secured inside a double-walled glass jacket (Fig. 6.2) in the gas stream. Water vapour was prevented from freezing out on the surface of the jacket by blowing warm air over the surface. Using this equipment temperatures down to -100°C are attainable, the temperature being measured to $\pm 0.1°$ C using a copperconstantin thermocouple inside the jacket which was connected to an electric thermometer (Model 1623, Comark Electronics Ltd., Littlehampton, Sussex).

6.2.3 <u>Nuclear Magnetic Resonance Spectroscopy</u>

¹⁹F n.m.r. spectra were recorded on a Jeol JNM-PS-100 instrument operating at 94.08 MHz, with samples contained in sealed $\frac{3}{16}$ " o.d. preseasoned glass or FEP tubes. Spectra were recorded at temperatures

.

FIGURE 6.2

Low Temperature Raman Apparatus

down to -130° C by cooling the spinning sample in a stream of dry, cold nitrogen obtained by the controlled boiling of liquid nitrogen. The temperature at the probe was recorded on an electric thermometer (Comark, Model 1623). All chemical shifts were recorded relative to CFCl₃ as an external reference standard.

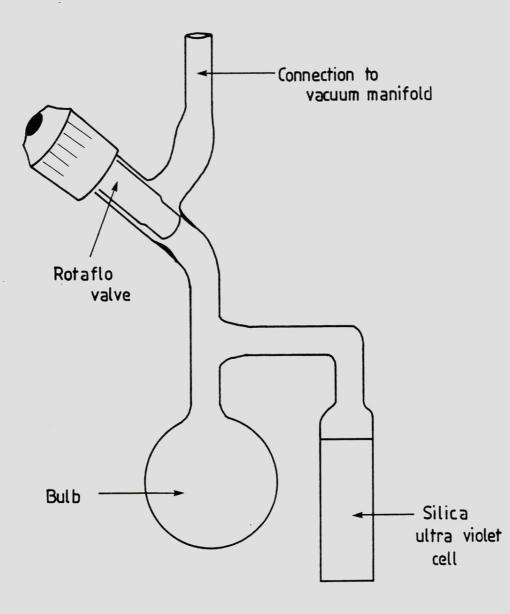
¹⁹F n.m.r. spectra were also recorded at the Centre d'Études Nucléaires de Saclay, Gif-sur-Yvette, Paris by Dr. R. Bougen on a Varian NV 14 spectrometer operating at 56.4 MHz. Observations as far down as 1000 ppm from $CFCl_3$ were made possible on this machine by use of an extended scale and frequency generator.

6.2.4 Electron Spin Resonance Spectroscopy

Electron spin resonance spectra were recorded on a Bruker ER 200 spectrometer by Dr. J. B. Raynor. Samples were contained either in sealed 4 mm o.d. glass or in sealed $\frac{3}{16}$ " o.d. FEP tubing. Spectra were usually recorded at liquid nitrogen temperature.

6.2.5 <u>Electronic Spectroscopy</u>

Electronic spectra in the region 4,000 Å to 20,000 Å were recorded on a Carey Spectrophotometer at AERE Harwell, Didcot, Oxfordshire using the apparatus shown in Fig. 6.3.


Solid was loaded into the bulb in a dry box, the bulb evacuated, and the solvent was introduced by distillation on the vacuum manifold. The solution so produced was then decanted into the silica ultraviolet cell.

6.2.6 Conductivity Measurements

Conductivity measurements were obtained using a Mullard conductivity cell (Type E7597/A), calibrated using an N/50 potassium chloride solution.

FIGURE 6.3

Silica cell for electronic spectroscopy.

6.2.7 X-Ray Powder Diffraction

X-ray powder diffraction powder samples were prepared by grinding materials to a fine powder in a dry box. Samples were loaded into Pyrex Lindemann capillaries (0.5 mm diameter) which had been pre-dried by baking in an oven at 200°C for several days before storing in the dry box ready for use. When filled the capillaries were plugged, inside the dry box, with a low melting point wax, which was melted with a soldering iron. The capillaries were sealed immediately after removal from the dry box using a gas/oxygen micro-torch (Model H 164/1, Jencons, Hemel Hempstead, Hertfordshire).

The X-ray powder diffraction photographs were taken on a Phillips 11.64 cm diameter camera on Kodak no-screen film (Eastman-Kodak Ltd.) using nickel filtered Cu- \underline{K}_{α} radiation. Exposure times ranged from three to twelve hours, depending on the nature of the samples. For some samples it was found that sharper diffraction pictures could be obtained by reducing the current and voltage across the X-ray tube and increasing the exposure times, normally by a factor of two.

6.2.8 Differential Thermal Analysis

Thermoanalytical results were obtained by Dr. R. Bougen using a Mettler TAl Thermoanalyser at the Centre d'Études Nucléaires de Saclay, Gif-sur-Yvette, Paris.

6.2.9 Thermogravimetric Analysis

Thermogravimetric changes were recorded on a Stanton Redcroft TG-750 thermobalance (Stanton Redcroft Ltd., Cooper Mill Lane, London, SW17 OBN). The furnace was purged with dry nitrogen during heating. Samples were loaded by enclosing the entire balance in a glove bag which was well purged with dry nitrogen. Samples were transferred from dry box to glove bag in pre-dried, screw cap sample tubes.

6.2.10 Mass Spectrometry

Mass spectra were recorded on a VG Micromass 16B machine. Volatile samples were introduced to the ionization chamber through a vacuum inlet system, whilst solid samples were admitted in glass capillaries mounted on the end of a stainless steel probe. The capillaries were loaded in a dry box and sealed using a micro-torch. The capillary end was broken off just prior to insertion of the probe. Before recording mass spectra the machine was flushed with a small quantity of elemental fluorine, in order to season exposed surfaces and thus reduce background signals. Spectra were calibrated by use of heptacosa.

6.2.11 Elemental Analysis

Unless otherwise stated elemental analyses were performed by the Analytical Laboratories, Postfach 135, D-5250 Engelskirchen, Germany or by Butterworth Laboratories Ltd., 41, High Street, Teddington, Middlesex. Samples for analysis were loaded into pre-seasoned glass tubes in a dry box and sealed under vacuum.

6.3 CHEMICALS, SOURCES AND PURIFICATION PROCEDURES

6.3.1 Starting Materials

<u>FLUORINE</u>: for flow preparations fluorine was obtained using a medium temperature 60 amp fluorine generator (ICI Ltd., General Chemical Division) with a maximum output of 40g per hour. The fluorine produced was led either to an efficient fume hood, or to the reaction system through traps containing sodium fluoride to remove any hydrogen fluoride

-184-

present as an impurity. The fluorine was further purified by passing the gas through cold traps at -80 or -186°C. The cathode compartment of the generator and the reaction systems were purged with nitrogen gas before and after usage. Nitrogen gas was also used as a diluant during fluorination reactions.

For use on the manifold, fluorine gas from a cylinder (Matheson Gas Products, $\frac{1}{2}$ lb. cylinder, 99.8% purity) was employed without further purification. For convenience and safety the gas was transferred from the cylinder into welded nickel cans of 1 dm³ capacity and metered into the manifold from these cans.

<u>CHLORINE TRIFLUORIDE</u> (Fluorochem Ltd.): was used for seasoning without further purification directly from the cylinder.

TRIMETHYLSILYL CHLORIDE (Aldrich Chemical Co. Ltd., 98%): was distilled under nitrogen and dried by vacuum distillation onto activated type 4A molecular sieves.

TRIMETHYLSILYL BROMIDE (Fluka AG, 97%): was vacuum distilled onto activated type 4A molecular sieves.

HEXAMETHYLDISILANE (Fluka AG): was vacuum distilled prior to use.

TRIPHENYL PHOSPHINE OXIDE (Aldrich Chemical Co. Ltd.): was recrystallised from a dichloromethane hexane mixture, and dried by pumping under dynamic vacuum for 18 hours.

ANTIMONY TRISULPHIDE (B.D.H. Ltd., Technical grade), <u>ANTIMONY TRISELENIDE</u> (Alfa Products Ltd., 99%) and <u>ANTIMONY TRITELLURIDE</u> (Alfa Products Ltd., 99.999%): were degassed in dynamic vacuum prior to use.

BORON TRISULPHIDE (Alfa Products Ltd., 99%): was sublimed at 160°C in

dynamic vacuum and stored in a dry box.

SULPHUR DIOXIDE (B.D.H. Ltd.): was vacuum distilled into glass storage vessels and stored over dry phosphorus pentoxide.

SULPHUR (B.D.H. Ltd., precipitated): was used after pumping at elevated temperatures in dynamic vacuum.

<u>1,3-DIOXAN</u> (Fluka AG) and <u>1,4-DIOXAN</u> (B.D.H. Ltd.): were dried by refluxing over sodium metal for 3 hours, before being vacuum distilled onto, and stored over, sodium wire.

BORON TRIFLUORIDE: was used without further purification directly from the cylinder.

<u>BISMUTH PENTAFLUORIDE</u> (Ozark Mahoning Ltd., Tulsa, Oklahoma, USA): was purified by vacuum sublimation.

ANTIMONY, ARSENIC, SILICON (B.D.H. Ltd.) and <u>RHENIUM</u> (Johnson Matthey Chemicals Ltd.): these metals were used without further purification.

NIOBIUM and TANTALUM (B.D.H. Ltd.): the powdered metals were reduced at red heat in a stream of hydrogen before use.

TUNGSTEN HEXAFLUORIDE (Ozark Mahoning Ltd.): was used directly from the cylinder after removal of several heads.

<u>URANIUM HEXAFLUORIDE</u> (British Nuclear Fuels Ltd.): was vacuum sublimed before use.

6.3.2 Synthesised Reagents

ANTIMONY PENTAFLUORIDE was prepared by fluorination of antimony metal in a flow system. The product was purified by repeated vacuum distillation until the liquid had a high viscosity.

<u>ARSENIC PENTAFLUORIDE</u> was prepared by direct fluorination of arsenic metal in a 1 dm³ nickel can at 50° C.

<u>NIOBIUM and TANTALUM PENTAFLUORIDES</u> were prepared by the fluorination of the reduced metals in a flow system, followed by purification by vacuum sublimation.

<u>RHENIUM PENTAFLUORIDE</u> was prepared by the reduction of rhenium hexafluoride with silicon in anhydrous hydrogen fluoride¹ solution.

<u>RHENIUM HEXAFLUORIDE</u> was prepared by the fluorination of an excess of rhenium metal at $275^{\circ}C.^{2}$

<u>RHENIUM HEPTAFLUORIDE</u> was prepared by fluorinating rhenium metal in an excess of fluorine at 275° C.³ The excess fluorine was removed at -196° C.

<u>URANIUM PENTAFLUORIDE</u> was prepared in a variety of ways, but the preferred method for production of large quantities of uranium pentafluoride was the reduction of uranium hexafluoride by sulphur dioxide at temperatures from 120-170°C.⁴

6.3.3 Solvents

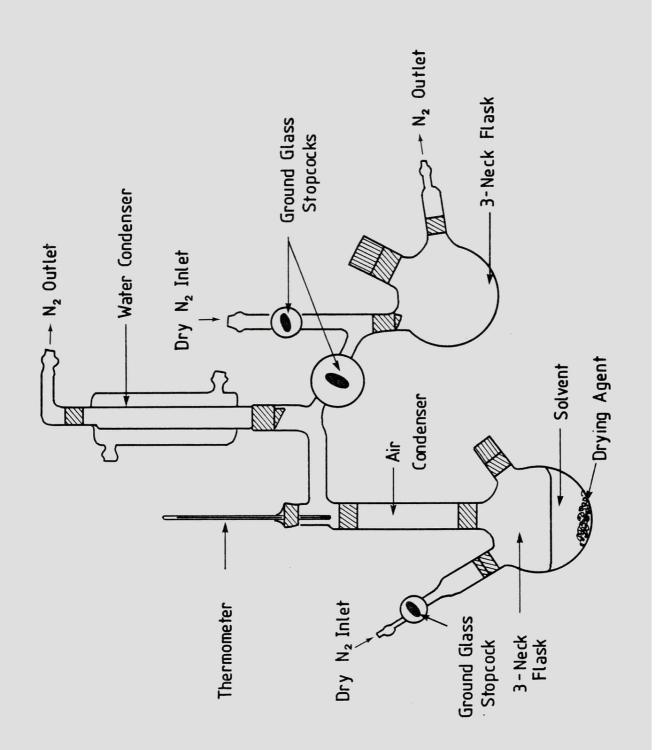
<u>HYDROGEN FLUORIDE</u> (ICI Ltd.): was vacuum distilled from a cylinder into a welded nickel storage can. To remove the traces of moisture approximately one atmosphere, at -78°C, of fluorine gas was introduced into the can. The can was allowed to warm to room temperature and was agitated periodically over a period of several hours before removal of the more volatile contents of the reactor. This procedure was repeated several times before the hydrogen fluoride was distilled through a fluorine atmosphere into a $\frac{3}{4}$ "

-187-

o.d. Kel-F storage tube.

<u>SULPHURYL CHIORIDE FLUORIDE</u> (Aldrich Chemical Co. Ltd.): was purified by distillation onto mercury at -196° C and allowed to warm slowly to room temperature with vigorous agitation. The reaction of the SO₂ClF with mercury was moderated by cooling in liquid nitrogen as necessary. The SO₂ClF was then distilled onto antimony pentafluoride and thoroughly mixed, at room temperature, before being distilled onto pre-dried sodium fluoride. After standing over the sodium fluoride for several hours the SO₂ClF was distilled into a glass storage vessel.

<u>GENETRON 113</u> (Fluka AG): was purified by vacuum distillation onto dry phosphorus pentoxide.


<u>ACETONE</u> (B.D.H. Ltd., Aristar Grade): this was purified by distillation under nitrogen followed by complexing with sodium iodide⁵ (Koch-Light Laboratories). After removal of residual volatiles the complex was thermally decomposed, the acetone so liberated being collected and placed over activated type 4A molecular sieves. The acetone was further dried by distillation onto solid uranium pentafluoride for 15 minutes, before being vacuum distilled into a storage container.

<u>ACETONITRILE</u> (Fluka AG, Spectroscopic Grade): was dried and purified using the apparatus shown in Fig. 6.4. The solvent was refluxed over a drying agent and under a dry nitrogen atmosphere prior to distillation, the distillation being carried out by opening tap A. When distillation was complete the flasks were reversed, the drying agent replaced and refluxing continued. In this way the acetonitrile was refluxed over calcium hydride (Aldrich Chemical Co. Ltd., 95%) for 18 hours, distilled, refluxed over fresh CaH₂ for 18 hours, distilled, refluxed over P₂O₅ for

-188-

Apparatus for the drying and distillation of solvents.

4 hours, distilled and refluxed over CaH_2 again before being distilled into a single neck round-bottomed flask. Final drying was effected by distillation into glass storage vessels containing type 4A molecular sieves which had been activated by baking in dynamic vacuum for 18 hours at 300°C.

The dryness of the acetonitrile was checked periodically after storage by testing small quantities of the liquid with uranium hexafluoride. A clear golden solution that persists for several hours is indicative of dry acetonitrile. If, however, the solution rapidly darkens in colour further drying is necessary.

<u>DIMETHYLSULPHOXIDE</u> (B.D.H. Ltd.): for a discussion of the methods employed in the purification and drying of this material, see Chapter Three, Section Four.

CHLOROFORM and CARBON TETRACHLORIDE (B.D.H. Ltd.): were distilled and then vacuum distilled onto activated 4A molecular sieves before use.

6.4 REFERENCES FOR CHAPTER SIX

- R. T. Paine, L. B. Asprey Inorg. Synth., <u>19</u>, 137, (1979).
- J. G. Malm, H. Selig
 J. Inorg. Nucl. Chem., <u>20</u>, 189, (1961).
- J. G. Malm, H. Selig
 J. Inorg. Nucl. Chem., <u>20</u>, 198, (1961).
- 4. B. Moncelon, J. Lucas, T. Kikindai Compt. Rend., <u>261</u>, 1855, (1976).
- 5. A. I. Vogel 'Practical Organic Chemistry' 3rd. Edition, Longmans, Green & Co., 1956.

٠

.

SOME STUDIES ON URANIUM(V) HALIDES AND TRANSITION METAL CHALCOGENIDE FLUORIDES

By Garry Michael Staunton

ABSTRACT

The early parts of this thesis are concerned with the preparation and some aspects of the chemistry of uranium pentafluoride. Reduction of UF₆ is easily achieved but conditions are normally such that UF₄ is the major product. Since fluorides with compositions intermediate between that of UF₄ and UF₆ have a reasonable stability, attempts were made to produce UF₅ by the reduction of UF₆. Good quality UF₅ has been obtained by halogen exchange to produce UF₅Cl and UF₅Br which decomposes to give the pentafluoride. Attempts to prepare UF₅ by reduction of UF₆ by sulphur or Me₃SiSiMe₃ have also been made.

The ability of UF₅ to act as a Lewis acid has been reported, in reactions between UF₅ and oxygen and nitrogen donor ligands. In the present work the reaction of UF₅ with the oxygen donor ligards DMSO, acetone and 1,3- and 1,4-dioxane have been studies. The reaction of UF₅ with 1,4-dioxane produced solid $(UF_5)_2 (C_4H_8O_2)_3$. Studies on the other systems clearly indicated that the chemistry of UF₅ in non-aqueous media is dominated by side reactions which result in decomposition of the UF₅.

The ability of UF₅ to act as a Lewis base has been previously demonstrated by the reaction of UF₅ with SbF₅ to produce UF₅.2SbF₅ and UF₅.SbF₅. In this study interaction of UF₅ with NbF₅ and TaF₅ has been shown to give UF₅.2MF₅ and UF₅.MF₅(M=Nb, Ta). These species being studied by vibrational spectroscopy, X-ray powder diffraction and thermal decomposition studies. It has also been shown that UF₅ will react with AsF₅ in the presence of anhydrous HF to produce UF₅.AsF₅, which is unstable at room temperature. In all cases it is probable that UF₅ is acting as a Lewis base. It has also been demonstrated that BF₃ is not a powerful enough Lewis acid to react with UF₅. The reaction of UF₅ with BiF₅ was also examined, but the results were inconclusive, there being evidence both for adduct formation and oxidation of UF₅ to UF₆.

Mixed chloride-fluorides of uranium(V) have been prepared by exchange reactions between Me_3SiCl and UF_5 , the mixed halides being isolated as complexes with triphenylphosphine or acetonitrile. These species were characterised by infrared spectroscopy, elemental analysis, X-ray powder diffraction, electronic spectroscopy and e.s.r.

The final part of the thesis describes new techniques for the preparation of chalcogenide-fluorides of tungsten. The application of these techniques to the production of ResF_3 , ResF_4 and ResF_5 , as well as the attempted production of NbSF_3 , TaSF_3 and USF_4 , are described. The new transition metal chalcogenide-fluorides produced were characterised by vibrational spectroscopy and mass spectrometry.