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Abstract

Abstract

Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere

Jonathan Nichols

This thesis is a theoretical study of the magnetosphere-ionosphere coupling current system 
in Jupiter’s middle magnetosphere associated with the breakdown of corotation of iogenic 
plasma and the jovian main auroral oval. The study initially investigates the effects of the 
ionospheric Pedersen conductivity and the iogenic plasma mass outflow rate. Wide ranges 
of values of these parameters are inputted to the model and the results are compared for 
dipole and current sheet field models. It is shown that previous results, obtained using 
‘reasonable’ spot values, are generally valid over wide ranges of the parameters. The study 
then investigates the effect of precipitation-induced enhancements of the Pedersen 
conductivity. Previous models have assumed constant conductivity, whereas it is expected 
to be significantly elevated by strong field-aligned currents. A model of the dependence of 
the Pedersen conductivity on the field-aligned current is developed and incorporated into 
the model. The findings help reconcile the theoretical results with observation. 
Specifically, the plasma is maintained closer to rigid corotation out to much further 
distances than theory previously predicted, the equatorial radial current exhibits a sharp rise 
in the inner region of the middle magnetosphere and plateaus off thereafter, in line with 
Galileo magnetic field data, and the field-aligned current is concentrated in a peak in the 
inner region, which is to where the main oval is usually mapped. Finally, the study 
investigates the effect of self-consistently including magnetosphere-ionosphere decoupling 
due to field-aligned voltages. The results show that for typical jovian conditions the effect 
is very small, such that the modification to the system parameters is generally two orders of 
magnitude below the values of the parameters themselves. The conclusion is that the 
assumption made in previous work, that the effect of the field-aligned voltages is small, is 
generally valid.
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The mythical interaction o f Jupiter and Io

The Italian renaissance artist Paris Bordone painted in 1558 this depiction of the mythical 
interaction of Jupiter, the king of the Roman gods, and one of his many mistresses Io, a 
river goddess. Jupiter, captivated by Io, disguised himself in a cloud and embraced her. In 
the background is Juno, Jupiter’s wife, who was suspicious of the cloud and went to 
investigate. Just before she arrived Jupiter turned Io into a cow. However, Juno was not 
fooled and, craftily, she asked that Jupiter give her the cow as a gift. Reluctantly, Jupiter 
agreed. Juno immediately put Io under the watch of her hundred-eyed servant Argus. 
Jupiter was upset that Io was held prisoner in the shape of a cow, so he sent his son 
Mercury to rescue her. Mercury played his pipe and told many stories to Argus until he fell 
asleep, whereupon Mercury cut off Argus’ head and freed Io. Juno was very upset by this 
and took the eyes of Argus and placed them on the tail of her favourite bird, the peacock. 
She then released a stinging fly to torment Io, who was still in the shape of a cow. Io fled 
across what is now known as the Ionian Sea and passed into the Black Sea through its 
narrow entrance Bosporus (“the fording of the Ox”). Jupiter finally promised not to pursue 
Io any longer, and so Juno relented. She released Io from the shape of a cow, and Io 
eventually settled in Egypt, where, legend has it, she became the land’s first queen. 
Millennia later, the first images of the moon Io taken by the Voyager spacecraft revealed an 
object that some people claim looks mysteriously like a hoofprint...
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Chapter 1: Solar-planetary physics

Chapter 1 

Solar-Planetary Physics

1.1. Introduction

The work described in this thesis is a theoretical study of the large-scale current system 

which flows in the jovian plasma environment and is associated with the transfer of angular 

momentum from the planet’s atmosphere and ionosphere to the equatorial magneto spheric 

plasma. The current system is a direct consequence of the existence of the volcanic moon 

Io, which orbits deep within the jovian magnetosphere, where it liberates of the order of one 

tonne per second of sulphur and oxygen plasma. This plasma becomes centrifugally 

unstable as it is accelerated to match the angular velocity of the rapidly rotating planet, and 

diffuses radially outwards. As the plasma moves outwards, its angular velocity drops, as 

required by conservation of angular momentum. The current system discussed in this thesis 

is then a result o f the atmosphere’s attempt to maintain this plasma in rotation at the same 

angular velocity as the planet. A key feature of the system is the production of strong field- 

aligned currents (FACs) flowing between the magnetosphere and the ionosphere, which are 

suggested to be associated with the jovian ‘main oval’ aurorae. The study of this current 

system helps us to understand the processes occurring in Jupiter’s magnetosphere and their 

relation to the formation of phenomena such as the jovian aurorae.

The basic physics of the Sun, solar wind, and interplanetary magnetic field, and their 

interactions with magnetised planets, as appropriate to Jupiter, are introduced in this 

chapter. The second chapter then goes on to describe in detail the present understanding of 

the structure and dynamics of the jovian magnetosphere. Chapter 3 describes the physics 

underlying the magnetosphere-ionosphere coupling current system resulting from the 

breakdown of corotation of iogenic plasma, which is associated with the formation of the 

jovian main auroral oval. The dependence of the current system on the jovian magnetic

1



Chapter 1: Solar-planetary physics

field model employed is discussed. A detailed theoretical study of the dependence of the 

system on the iogenic plasma mass outflow rate and jovian ionospheric Pedersen 

conductivity is carried out in Chapter 4, whilst Chapter 5 goes on to modify the theory to 

take into account the effect of precipitation-induced Pedersen conductivity enhancements. 

It is found that this modification helps explain some discrepancies between theory and 

observation. Chapter 6 completes the analysis by self-consistently considering the effect of 

the resulting field-aligned voltage on the system. The conclusions of the study and 

suggestions for further work finally follow in Chapter 7.

7.2. The Sun and solar wind

Astronomers class the Sun as a fairly mundane star of spectral type G2V. It is, however, 

unique in its proximity to the Earth and thus of fundamental importance, so it seems 

therefore natural that we should study the Sun and its interaction with the bodies which 

orbit it. The Sun is essentially a massive sphere of hot gas, composed mainly of 

hydrogen (-90% by mass), helium (-10%) and ‘other species’ (-0.1%, e.g. C, N, O in 

roughly the same proportion as found at the Earth), and is held together under the action of 

its own gravitational pull. Table 1.1 gives various key properties of the Sun, and in order to 

put these values into context, some comparisons with those of the Earth.

A schematic diagram of the Sun is shown in Fig. 1, depicting some of its main features, 

including interior differentiation and surface phenomena such as prominences and sunspots. 

The mass of the Sun is great enough that the energy released during its gravitational 

accretion raised the temperature of the centre, or core, to a level which, combined with the 

monumental pressure in this region, allowed thermonuclear reactions to commence. It is 

these nuclear reactions which take place in the Sun’s core, and mainly convert hydrogen to 

helium with the release of the associated nuclear binding energy, that account for the high 

temperature of the Sun. The pressure and temperature in the core are estimated to be 

~ 3 4 0 x l 0 n Pa and ~ 1 5 x l 0 6 K respectively. The energy generated by the nuclear 

reactions is transported to the surface of the Sun by two processes. In the inner regions the 

energy is transmitted by radiation (the radiative zone), while in the outer regions the gas is 

convectively unstable and the dominant energy transport mechanism is via convection cells
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Figure 1.1. Schematic of the Sun’s interior and atmosphere. From Lang (2001).

Property Value
Value normalised 

to the Earth

Age 4.5 x 109 yr 1

Mass 1.99 xlO30 kg 330,000

Radius 6.96 xl08m 109

Mean density 1.4 xlO3 kg m'3 0.25

Mean distance from Earth (1 AU) 1.5 xlO11 m N/A

Surface gravity 274 m s"2 28

Escape velocity at surface 6.18 xlO5 m s '1 55

Luminosity 3.86 xlO26 W N/A

Mass loss rate 109 kg s'1 N/A

Effective blackbody temperature 5785 K 23

Table 1.1. Key properties of the Sun and comparison with the Earth.
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(the convection zone). The interior of the Sun is extremely opaque, such that the radiation 

undergoes many scatterings before it finally reaches the Sun’s surface, typically 

-10  million years after it was created in the core.

The Sun’s atmosphere is defined as the region which we can directly observe. It is divided 

into four regions. With increasing height these are: the photosphere, the base of which lies 

at the top of the convection zone; the chromosphere; the transition region and the corona. 

The photosphere, at a temperature of 5800 K, is a 500 km thick region from which the 

majority of the visible radiation which we observe emanates, and is covered in a granular 

pattern representing the tops of convection cells. However, the photosphere is not 

completely uniform. A visible light image reveals regions, called sunspots, that appear 

much darker than the surrounding surface and are cooler, having temperatures of order 

4100 K. Sunspots have strong associated magnetic fields of strength 0.3 T, compared with 

a photospheric background of -0.1 mT, and their number is observed to vary regularly over 

a period of 11 years. This is called the solar cycle, discussed below. Above the 

photosphere lies the chromosphere, which extends for -2000 km. The chromosphere is 

characterised by a slow decrease in temperature to 4200 K, followed by a slow increase 

again out to 2000 km, where the temperature then rapidly increases to -1 0 6 K over a few 

hundred kilometres known as the transition region. The source of this large temperature 

rise is uncertain, but it is thought to be associated with the dissipation of the energy in the 

Sun’s magnetic field.

In order to maintain pressure balance, the enormous temperature rise over the transition 

region is accompanied by a corresponding drop in plasma density, such that at the base of 

the corona, the temperature is -2  x 106 K and the hydrogen ion density is ~109 cm'3. If one 

now assumes the Sun’s atmosphere to be in hydrostatic equilibrium, then application of the 

equations of mass continuity and momentum (which in hydrostatic equilibrium is simply 

the static force balance equation), we find that the pressure then falls off to approach an 

asymptotic value of ~10'5 N m'2. Now, the region of space in which the Sun’s influence is 

dominant is called the heliosphere, and this is bound on the outside at an estimated distance 

of 100 -  150 AU (where 1 AU = 1.5 x 1011 m) by the local interstellar medium, or LISM. 

If the gas pressure of the LISM were greater than the Sun’s asymptotic atmosphere pressure 

of -1 0 '5 N m'2 then the Sun’s atmosphere could be contained by the LISM in hydrostatic
13 2equilibrium. However, estimates put the pressure in the LISM to be of order 10' N m' ,
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which is many orders of magnitude less than the Sun’s limiting pressure, and as such 

hydrostatic equilibrium is not possible. The result is that coronal plasma is driven at 

supersonic speeds into interplanetary space to form the solar wind, eventually interacting 

with the LISM at the boundary of the heliosphere, called the heliopause.

The effect of the solar wind can be seen in cometary tails, indeed this was how the 

existence of the solar wind was first postulated. Hoffmeister (1943) had noted that the tails 

of comets do not lie in a radial direction away from the Sun, but lag by about 5°, and this 

was correctly interpreted by Biermann (1951) as being a result of the interaction between 

the cometary ions and a solar wind. The first mathematical formulation to describe the 

solar wind was provided by Parker (1958). The coronal plasma is accelerated radially away 

from the Sun over a distance of -5  solar radii, after which the flow speed remains 

approximately constant at -450 km s'1 for ‘streamer belt’ plasma emitted from low latitudes 

(i.e. regions associated with closed field lines), and -700 - 800 km s '1 for plasma emitted 

from higher latitude coronal hole regions (associated with open field lines), until it reaches 

the heliopause. Consequently as the plasma expands outwards, the density and temperature 

drop, inversely as the distance squared in the case of the density due to mass conservation, 

while the temperature drop is determined by the adiabatic equation p V r = const coupled 

with the ideal gas equation p  — n kT , where for a given plasma element p  is its pressure, V 

is its volume, y  is the ratio of its specific heats, n is its particle number density, T is its 

temperature and k  is Boltzmann’s constant. However, because of heat conduction and 

dissipation the fall off is actually somewhat less than would be predicted from this 

equation. Table 1.2 summarises typical observed values of some key properties of the solar 

wind at the orbits of Earth and Jupiter.

1.3. Solar and interplanetary magnetic fields

To a first approximation, the Sun’s magnetic field is dipolar and corotates with the Sun

once every 27 days. This approximation is reasonably accurate during periods known as

solar minima, however we find the Sun’s magnetic field changes vastly over a period of 11

years, called the solar cycle. The solar cycle is an effect caused by the differential rotation

of the Sun. That is, the equator moves with a higher angular velocity than the poles. This
4
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Typical Value at Earth’s Typical Value at Jupiter’s
Property

orbit (1 AU) orbit (5.2 AU)

Flow speed / km s '1 450 450

Number density nsw / cm'3 7 -0.26

Temperature Tsw / K 1.5 x 105
inoX

Magnetic field magnitude |RW| /nT  7 1

Table 1.2 Some key solar wind parameters at the orbits of the Earth and Jupiter. From 

Kivelson and Russell (1995) and Huddleston et al. (1998).
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has the effect of “winding up” the Sun’s magnetic field, such that the dipole field as found 

at solar minimum is, after five and a half years, wound into a highly disordered state. This 

is known as solar maximum. After a further five and a half years the dipolar field re- 

emerges with the opposite polarity and the Sun returns to solar minimum. The whole cycle, 

then, is actually the 22 years taken for the Sun to return to its original polarity. The solar 

cycle can be tracked by the number of sunspots visible on the Sun. During solar minimum 

the sunspot number is low and they cluster around the equator, while at solar maximum, 

their number is many and they occur at higher latitudes.

The Sun’s magnetic field has an important influence on the behaviour of the solar wind 

because the latter carries with it a remnant of the coronal magnetic field, called the 

interplanetary magnetic field, or IMF. It is then useful to consider how this magnetic field 

behaves with respect to the solar wind plasma itself. To this end we consider Ohm’s law 

for a plasma with conductivity < 7

where E  is the electric field, B  is the magnetic field, j  is the electric current density and v is 

the plasma velocity. Taking the curl of this and substituting it into Faraday’s law

and using Ampere’s law (neglecting the displacement current)

E  = - v  x B  + — 5
<j

( 1. 1)

(1.3)

where p Q is the permeability of free space, we obtain the induction equation

—  = V x ( v x 5 )  + —  V 2B  . 
dt ju0cr

(1.4)

5
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Equation (1.4) describes the motion of the magnetic field with respect to the plasma in 

which it is embedded. It is characterised by two terms on the right-hand side (RHS), the 

first being the transport term and the second being the diffusive term. If the diffusive term 

were set to zero (e.g. if cr -»  go ) then it can be shown that the magnetic field would move 

exactly with the plasma, i.e. it would be frozen-in to the plasma (Alfven, 1981). If, on the 

other hand, the transport term were set to zero then the equation reduces to that of pure 

diffusion. In reality both the terms are present and taking the ratio of the first to the second 

provides a measure of which is dominant. This ratio is termed the magnetic Reynolds 

number and is approximated by

Rm=M0° v L , (1.5)

where L is the characteristic scale length of the plasma. If Rm » 1  then the diffusive term is 

negligible and the magnetic field can be considered to be frozen-in to the plasma. If, 

however, Rm< 1 then the frozen-in approximation is not valid and the magnetic field is able

to diffuse through the plasma. If we now consider the conditions in the solar wind, we find 

that the collisional mean free path of a particle, as calculated from gas kinetic theory, is 

approximately 1 AU. It is valid, therefore, to consider the solar wind as a collisionless 

plasma with a very high conductivity and as such Rm » 1 .  Hence, the IMF and the solar

wind plasma are frozen together and propagate out into the solar system together. The 

frozen-in approximation breaks down in regions where the scale lengths are shorter, for 

example near intense current sheets, and the magnetic field is then able to diffuse through 

the plasma, allowing phenomena such as reconnection to occur (see e.g. Cowley (1984)).

To appreciate the form of the IMF, it is useful to consider a thought experiment in which 

the solar rotation is neglected and the Sun’s (initially dipolar) magnetic field propagates 

radially away with the solar wind plasma, while the feet of the magnetic field lines remain 

frozen to the Sun’s surface. The frozen-in theorem requires that the direction of the IMF 

lies along the locus of all the plasma elements emitted from a given source point on the 

surface of the Sun. Therefore after some time the magnetic field will point radially in 

towards the Sun in one hemisphere, and outward from the Sun in the other, depending on 

the original dipole polarity, and a thin current sheet will lie in the equatorial plane. The 

magnitude of the radial magnetic field Br is determined by the ‘no monopoles’ law
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div B - 0 ,  and is given by Br ccl/r2 , where r is the radial distance from the Sun’s

magnetic axis. If we now consider the above, but with the addition of the solar rotation, the 

result is that, in a manner similar to the water emitted from a spinning garden sprinkler, the 

IMF follows an Archimedean spiral known as the Parker spiral, illustrated in Fig. 1.2a, and 

the azimuthal component introduced to the IMF is given by Bv oc \/r  . Therefore we find

that when r is small, i.e. near to the Sun, B r »  Bm, while at the Earth’s orbit B * B  and'  '  r  (p 7 r  (p

further out at Jupiter’s orbit B^ »  Br such that the azimuthal component dominates the

IMF. The current sheet which lies between the two regions of IMF polarity is known as the 

heliospheric current sheet, or HCS, and is in general inclined to the ecliptic plane due to the 

tilt o f the Sun’s magnetic dipole axis with respect to its spin axis. As such, a body lying in 

the ecliptic plane will over time experience different regions, or sectors, of IMF polarity as 

the Sun rotates and the HCS moves back and forth across the ecliptic plane. During solar 

minimum, when the Sun’s magnetic field is essentially dipolar, the resulting two sector 

structure is clear, although the HCS tends to undulate somewhat in the manner of a 

ballerina’s skirt, as illustrated in Fig. 1.2b. However, during solar maximum, when the 

Sun’s magnetic field is highly disordered, the IMF is similarly disordered and consists of 

several sectors of IMF, as well as being characterised by transient disturbances such as 

shocks, coronal mass ejections (CMEs) and magnetohydrodynamic (MHD) waves.

The Sun’s surface is not uniform. Some areas are more active than others and these active 

regions generally emit plasma at a higher velocity than less active areas. For example, as 

discussed above the streamer belt solar wind is much slower than the coronal hole solar 

wind. Therefore, as the plasma propagates out into interplanetary space, the fast regions of 

solar wind tend to catch up the slower ones, producing alternate regions of compression and 

rarefaction. As the solar wind travels away from the Sun, the plasma density perturbations 

evolve such that between ~2 -  3 AU shocks develop in the compressed and rarefied 

regions. These are known as corotating interaction regions (CIRs) and they are the 

dominant feature in the solar wind between 2 - 8  AU (Gazis, 2000). A stable coronal hole 

structure may cause CIRs to recur in several rotations of the Sun and these are known as 

recurrent CIRs. Figure 1.3 illustrates an idealised sketch of the evolution of a CIR in the 

inner heliosphere. In the outer heliosphere, the IMF is more azimuthally aligned, such that 

the CIRs tend to merge to form merged interaction regions (MIRsj, where the shocks form 

radially moving concentric ring-like structures. Both CIRs and MIRs are characterised by
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Figure 1.2a A sketch of the Parker spiral form of the IMF, and the spiralling electric 
current in the current sheet. Magnetic field lines are shown slightly above the equatorial 
plane, close below they have opposite polarity. From Alfven (1981).

Figure 1.2b Current sheet in the inner heliosphere in the ballerina skirt model. The thick 
lines indicate the magnetic field lines. From Smith et al. (1978).
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Figure 1.3 Schematic diagram of two CIRs corotating with the Sun, along with the solar 
wind and magnetic field signatures associated with it at 1 AU. S indicates slow plasma, S’ 
indicates shocked slow plasma, F indicates fast plasma and F ’ indicates shocked fast 
plasma. Taken from Kunow (2001).
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large increases in the solar wind velocity, pressure, temperature and IMF strength, and as 

such they play an important role in the modulation of the magnetospheres of the outer 

planets.

1.4. Planetary Magnetospheres

1.4.1 Structure

A magnetosphere is defined as the cavity surrounding a planet, or other body, which 

contains and is controlled by the body’s magnetic field. Six of the planets in our solar 

system are known to have magnetospheres, these being Mercury, Earth, Jupiter, Saturn, 

Uranus and Neptune, and they exhibit very different properties from one another. Figure

1.4 shows the approximate relative sizes of the magnetospheres in our solar system, from 

the smallest (Mercury) to the largest (Jupiter). The key element in a magnetosphere is, of 

course, the planetary magnetic field, which is created by azimuthal currents flowing in the 

planet’s core and is usually dipolar in nature. However, in some cases, e.g. Jupiter and 

Saturn, there also exist substantial quadrupole and octupole components as well.

To appreciate the overall form of a magnetosphere, we initially consider a dipole planetary 

magnetic field which contains plasma originating from, say, the planet’s ionosphere. If the 

frozen-in theorem holds valid at all locations, the solar wind plasma (coupled to the IMF) 

and the planetary plasma (coupled to the planetary field) will not mix. Instead, a thin 

current sheet will be formed between the two which separates them, and a closed 

magnetosphere will form. The solar wind flow will compress the dayside planetary field, 

increasing the strength of the latter until pressure balance between the two is achieved. The 

boundary current sheet is called the magnetopause. In addition, since the solar wind flow is 

supermagnetosonic when it encounters the magnetosphere, a standing shock wave, called a 

bow shock, stands upstream of the dayside magnetosphere, across which the solar wind 

plasma is slowed, compressed and heated. The region between the bow shock and the 

magnetopause which contains shocked solar wind plasma is called the magnetosheath.
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Figure 1.4. Relative sizes of planetary magnetospheres. From Kivelson and 

Russell (1995).
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1.4.2 Dynamics

The flow of plasma within a magnetosphere is generally dependant on two driving 

mechanisms, due to interaction with the planet and to interaction with the solar wind. The 

properties of a particular magnetosphere give an indication as to which driving mechanism 

is dominant. If there were no other forces acting on the magnetospheric plasma, it would 

rotate with the same angular velocity as the planet. This flow, called corotation, is a result 

of angular momentum being transferred from the atmospheric neutral atoms to the plasma 

ions via collisions in the lower ionosphere. The torque is communicated to the 

magnetospheric plasma by the planetary field, such that in the steady state rigid corotation 

will prevail.

Interaction with the solar wind occurs at the magnetopause, where large field gradients 

cause the frozen-in theorem to break down, resulting in magnetic reconnection at the 

boundary. In this process planetary field lines connect with those in the IMF, resulting in 

open field lines, along which solar wind plasma is able to flow into the magnetosphere. 

Open field lines, which are frozen into the solar wind outside the magnetosphere, are pulled 

from the dayside to the nightside as the solar wind moves anti-sunward, forming a long 

magnetic tail on the nightside. In this way momentum is transferred from the solar wind to 

the magnetosphere. As the open field lines move down-tail they convect towards the 

equatorial plane, whereupon they reconnect once again and are transported back towards 

the planet as newly-closed field lines, and the cycle begins again. The flow due to solar 

wind interaction is therefore described by a twin-vortex and is known as the Dungey cycle, 

after J.W. Dungey, who first proposed the mechanism in 1961 (Dungey, 1961). For a 

particular field line the Dungey cycle takes approximately 12hrs at the Earth, and 

approximately two weeks at Jupiter. An estimate of the minimum length of the magnetic 

tail can be made by multiplying the length of time a field line remains open (measured by 

radars to be -4  hrs for the case of the Earth and calculated by considering flux throughput 

to be -5  days at Jupiter) by the velocity of the solar wind (-450 km s '1) to give a terrestrial 

tail length of -1000 Re and a jovian tail of at least 3000 Rj (where Re is the Earth’s radius = 

6371 km and Rj is Jupiter’s radius taken throughout this thesis to be 71,323 km). This 

calculation was first made by Dungey (1965). In comparison, a closed magnetosphere 

would have a magnetotail of length only approximately twice the dayside extension of the

9
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magnetosphere (Slutz and Winkelman, 1964), and as such the existence of an extended 

magnetotail is taken to be evidence of dayside reconnection and the Dungey cycle.

It is possible to estimate which of these flow mechanisms, corotation or Dungey cycle, is 

expected to be dominant by considering the electric fields associated with each, as first 

considered by Brice and Ioannidis (1970). A flow of plasma with an embedded magnetic 

field is associated with an electric field perpendicular to both the plasma velocity vector v 

and the magnetic field B, given by E  = - v x B . The electric field due to the Dungey cycle 

flow is directed from dawn to dusk in the equatorial plane at Earth, and from dusk to dawn 

at Jupiter, the difference in sense being due to the planets’ opposite dipole polarities. The 

electric field produced by corotation is radially inwards at Earth and radially outwards at

Jupiter, and is given by E  = -(cop 'x r ^ x B , where cop is the planet’s angular velocity of

rotation (and thus also that of the plasma if it near-rigidly corotates) and r is the radial 

distance from the origin. A method of estimating which of these electric fields (and 

therefore flow mechanisms) is dominant involves calculating the position of the stagnation 

point in the magnetospheric flow, and comparing it to the size of the magnetosphere itself 

(see e.g. Eq. (2.1)). The combined flow in the equatorial plane is shown schematically by 

the dashed lines in Fig. 1.5. The stagnation point is the position where the two flows 

superimpose to produce zero net velocity and is taken to mark the boundary between the 

inner corotation dominated region and the outer solar wind driven region. It will occur 

(assuming the planet has a prograde rotation sense) on the dusk side, at a distance estimated 

by

Rsp c o B R nP eq p ( 1.6)

where Beq is the planet’s equatorial surface magnetic field strength, Rp is the radius of the 

planet, and E0 is the (assumed constant) magnitude of the dawn-dusk electric field in the

equatorial plane associated with the Dungey cycle. The streamline which passes through 

the stagnation point (shown by the thick dashed line in Fig. 1.5) is given by the locus of all 

the points which have the same potential as the stagnation point, and is found to have a sub

solar distance from the planet of Rsp/ 2 . Applying values appropriate to the Earth, i.e.

10
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Figure 1.5 Schematic of the combined flow in the equatorial plane resulting from the 
Dungey cycle and corotation. The view is from the North pole, with the Sun to the left. 
The dashed lines indicate equipotentials (streamlines) in the plasma, which is flowing in the 
direction of the arrows. The shaded area indicates the inner corotating region, while the 
rest is dominated by solar wind driven convection and the thick dashed line marks the 
separatrix, i.e. the streamline which passes through the stagnation point. The solid lines 
indicate magnetopauses appropriate to the jovian and terrestrial systems (labelled 
respectively), and indicate the pattern of flow within each. They are not intended to 
illustrate respective scales.
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cop ~ 7 x 10"5rad s'1, Rp » 6400 k m , « 31,000 nT and is0 » 2 x HT4 V m '1, we find that

Rsp » 8.5/?p, such that at noon 2 « 4 ^ .  When compared with the distance to the sub

solar magnetopause, ~11 Rp , it can be seen that the Earth has a small core o f corotating flux,

while the main flow is solar wind-driven convection. This is illustrated in Fig. 1.5 by the 

position of the Earth’s magnetopause, relative to the stagnation point. If  we now apply 

values appropriate to Jupiter (see Table 2.1), we find Rsp «390Rp , such that at noon

Rsp/2  ~ 200Rp, compared with a nominal sub-solar magnetopause distance of ~60Rp (see

Sect. 2.3.1). Therefore a stagnation point cannot form in the jovian magnetosphere and 

corotation is the dominating flow. This is illustrated in Fig. 1.5 by the position of Jupiter’s 

magnetopause, relative to the stagnation point. It must be noted that the scale of the two 

magnetopauses in Fig. 1.5 is not intended to indicate relative size, only the pattern of flow 

within each one. To further illustrate the point, it is worth noting that the voltage associated 

with solar wind-driven flow in the jovian magnetosphere is estimated to be ~1 MV, 

compared with ~400M V associated with corotation. However, the dominance of 

corotation in the majority of the jovian magnetosphere does not preclude the interaction 

with the solar wind in the outer regions and formation of a magnetic tail. The dynamics of 

the jovian magnetosphere will be discussed further in Chapter 2.

11



Chapter 2: The Structure and Dynamics o f the Jovian Magnetosphere

Chapter 2 

The Structure and Dynamics of the Jovian 

Magnetosphere

2.1. Introduction

In this chapter we now focus more closely on the jovian plasma environment, which is the 

principal topic of this thesis. Jupiter is the fifth planet from the Sun, and the largest. It is a 

gas giant with a diameter 11 times that of the Earth and a mass more than twice all the other 

planets combined. The main physical properties of Jupiter are summarised in Table 2.1, 

along with comparisons with the Earth. Jupiter’s composition is roughly solar, i.e. it 

comprises mainly o f hydrogen and helium. However despite its large size, Jupiter has a 

relatively fast rotation period of 9h 55min. This speedy rotation, combined with its metallic 

hydrogen core, generates a very large planetary magnetic field, which has a dipole moment 

of 4.26 x 10-4 T Rj'3, inclined at 9.5° from its spin axis towards system III longitude 201° 

(where system III longitude is a jovigraphic system defined with respect to the spin axis).

The large jovian magnetic field produces a magnetosphere, sketched in Fig. 2.1, that

extends typically -60  Rj on the dayside of the planet and stretches out in a very long

magnetotail on the nightside. The jovian magnetotail has a length o f at least 3000 Rj (i.e. it

stretches beyond the orbit of Saturn) and has a width of -300 -  400 Rj (Ness et al., 1979c).

Because the solar wind speed is supermagnetosonic in the rest frame of the planet a bow

shock stands upstream of the dayside magnetopause, as at Earth, at a distance of -75 Rj.

The position of the magnetopause is again determined by pressure balance between the

solar wind and magnetospheric plasma. The plasma in the jovian magnetosphere contains

contributions o f ionised hydrogen and helium and electrons from both the solar wind and

the planet’s ionosphere, but the dominant source of plasma is the moon Io, which orbits
12
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Property Value
Value normalised 

to the Earth

Mass 1.9 x 1027 kg 318

Radius Rj 71,323 km 11.2

Angular velocity Qj 1.76 x 10-4 rad s’1 2.53

Surface equatorial field strength Bj 426400 nT 14.1

Mean density 1.33 x 103 kg m'3 0.24

Mean distance from Sun 7.78 x lo 11 m 5.2

Surface gravity 20.87 m s'2 2.12

Escape velocity at surface 5.95 x 104m s'1 5.33

Effective blackbody temperature 124.4 K 0.49

Table 2.1 Some key properties of Jupiter and comparisons with the Earth.
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Figure 2.1. Sketch of the jovian magnetosphere in the noon-midnight meridian plane. The 

Sun is to the left and the solar wind is blowing from left to right. The solid lines are 

magnetic field lines, the dashed lines are the magnetopause and bow shock, and the dotted 

lines are solar wind streamlines. The middle magnetosphere / tail current sheet is shown by 

the shaded grey area.
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deep within the magnetospheric cavity at 5.9 Rj, where it liberates approximately 1 tonne of 

sulphur dioxide a second. This source rate is equivalent to the outgassing of an active 

comet. The main plasma constituent in the jovian magnetosphere, therefore, is sulphur and 

oxygen ions and electrons, and the dynamics of the jovian magnetosphere are dominated by 

such an active source existing in the rapidly rotating magnetosphere.

2.2. Discovery and Exploration

The magnetosphere of Jupiter was discovered before the Van Allen belts were found to 

exist around the Earth. Its existence was inferred in the 1950s from the radio emissions 

which were observed to emanate from Jupiter in the decametric (-10 MHz) and decimetric 

(-1 GHz) wave bands (Burke and Franklin, 1955). The decimetric (DIM) radiation was 

explained as being synchrotron radiation emitted from -10  MeV radiation belt electrons 

trapped a few Rj from the planet in the equatorial plane by the huge planetary magnetic 

field. The dipolar nature of the magnetic field and its 10° tilt from the planet’s spin axis 

were inferred from the spatial and temporal variation of the emission (Berge, 1965, 1966), 

while the polarisation of the radiation indicated that the field’s polarity is opposite to the 

Earth’s, i.e. the field lines run from the northern to the southern hemisphere. While the 

decimetric radiation is temporally steady apart from a regular modulation associated with 

the planet’s rotation (Sloanaker, 1959), the decametric (DAM) radiation is bursty, although 

on average is two orders of magnitude more powerful than the former. The decametric 

radiation is thought to be cyclotron radiation emitted by -10  keV electrons accelerated 

along the field lines into the ionosphere. The high frequency cut-off of 40 MHz for the 

DAM radiation then indicates a polar field strength of ~1 .4xlO '3 T, which is 

approximately twenty times that of the Earth, and is remarkably large given that the jovian 

planetary radius is ten times the Earth’s. The DAM emission bequeathed another clue as to 

the nature of the jovian magnetosphere when Bigg (1964) discovered that a component of 

this radiation was influenced by the position of the moon Io, thereby suggesting a complex 

interaction between moon and magnetosphere. In addition, Brown (1974), using ground- 

based optical observations, discovered a large cloud of neutral sodium atoms surrounding

13
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the moon Io, and subsequent observations revealed the existence of a wider cloud, or torus, 

at the orbit of Io, which contained atoms and ions of sulphur and oxygen.

To date, seven spacecraft have visited the jovian system. The first to do so was Pioneer-10, 

which flew by in November-December 1973, and was followed shortly after by Pioneer-11 

in 1974 (Smith et al., 1974, 1975, 1976). The year 1979 saw the Jupiter fly-bys of 

Voyagers-1 and -2 (Ness et al., 1979a,b), after which followed a gap of 13 years until the 

Ulysses spacecraft flew by in 1992 on its way to explore the Sim’s polar regions (Balogh et 

al., 1992). The spacecraft Galileo was inserted into orbit in 1995, where it remained 

studying many aspects o f the planet and its moons until the summer of 2003 when it 

reached the end of its working life and was de-orbited into Jupiter. The most recent Jupiter 

encounter at the time of writing was the Cassini millennium fly-by in December 2000 as 

the spacecraft was en route to the planet Saturn. Figure 2.2 shows the trajectories of the 

Voyager, Pioneer and Ulysses spacecraft projected onto the equatorial plane, together with 

the first twenty orbits of Galileo, and model magnetopause and bow shock locations based 

on Voyager data. As the figure indicates, all the flyby spacecraft explored the pre-noon 

sector on their inbound passes, and Pioneer-10 and both the Voyagers exited in the pre

dawn sector, all in the near-equatorial latitudes. In contrast, Pioneer-11 exited near noon at 

a northern latitude of ~33°, and Ulysses’ outbound pass took it via the dusk flank, 

approximately ~37° to the south. As Galileo’s mission proceeded into the Galileo 

Extended Mission (GEM) and the Galileo Millennium Mission (GMM), the spacecraft’s 

orbit precessed around to cover more of the dusk region. However, at the end of the 

Galileo mission the spacecraft was collided with Jupiter to prevent any possible 

contamination of the Galilean moons, and the post-noon sector o f the magnetosphere 

remains relatively unexplored. The Pioneer spacecraft were designed to measure the 

magnetic field of Jupiter and the energetic (above ~1 MeV) particle environment 

(Goertz, 1976). The Voyager spacecraft had aboard instruments to measure, in addition, 

the full radio emission spectrum (Carr et al., 1983), the lower energy (10 - a few 100 eV 

and 10 - a few 100 keV) thermal plasmas (Belcher, 1983; Krimigis and Roelof, 1983), and 

plasma waves (Gumett and Scarf, 1983). The Ulysses and Galileo spacecraft carried a 

similar set of instruments.
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Figure 2.2. Trajectories of the first 20 orbits of the Galileo orbiter along with the five fly

by spacecraft relative to Jupiter, shown in Jupiter Solar Orbital coordinates. X points 

positive sunwards, and Y is orthogonal to X and in the plane of Jupiter’s orbit. The solid 

line indicates the Galileo orbiter and the dashed lines indicate the fly-by spacecraft. The 

individual fly-by spacecraft are distinguished by the varying symbols shown in the key. A 

heavy dashed line depicts a model bow shock, while the heavy solid line shows the model 

magnetopause. Both model positions are derived from the Voyager-2 data. The region of 

20-45 Rj, which is the main region of the middle magnetosphere current sheet, is 

highlighted by the grey annulus in the centre of the plot. Taken from Bunce et al. (2002).
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2.3. The structure of Jupiter’s magnetic field

In this section an overview is provided of the present understanding as to the structure of 

the jovian magnetosphere, as inferred from spacecraft observations.

2.3.1. Internal planetary field and size of the magnetosphere

The most recent model of the internal jovian magnetic field is the VIP4 model of 

Connemey et al. (1998), which describes the field as a spherical harmonic expansion to 

over twenty orders. The dipole term of the expansion is the most dominant, however, and 

has a moment of 4.26 x IO*4 T Rj'3. This implies an equatorial surface field strength of 

~0.4 x 10'3 T, and, assuming Jupiter is spherical, approximately double that at the poles. 

However, the higher order components of the field introduce asymmetries such that the 

field at the northern pole is elevated to -1.5 x 10‘3 T, a value supported by the 40 MHz cut

off of the DAM radiation.

Given a planetary dipole moment, it is possible to make a rough estimation of the expected 

size of the magnetosphere by making a simple calculation based on pressure balance 

between the solar wind and magnetosphere. Neglecting magnetic pressure in the solar wind 

and gas pressure in the magnetosphere, we find that the distance to the subsolar 

magnetopause Rmp is given approximately by

Rmp Beq

M0pv

X
(2.1)

where is the planet’s equatorial surface magnetic field strength, v is the solar wind 

bulk velocity, p  is the solar wind mass density related to the number density by 

p  = n{me +mp}& nmp , where me and mp are the masses o f electrons and protons 

respectively, and the result is normalised to the planet’s radius Rp . For the values
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appropriate to Jupiter, as given in Table 1.2, Eq. (2.1) gives {R ^ jR ^  « 40. However, the

fly-by data indicated typical sub-solar magnetopause distances of -60  Rj, with variations 

between -40  and 80 Rj. This inflated and ‘squashy’ magnetosphere is explained by the fact 

that the existence of a substantial plasma source in the jovian system (the Io torus) means 

that the magnetospheric plasma pressure makes a substantial contribution to the overall 

magnetospheric pressure and as such the assumption that it may be neglected is not strictly 

valid. The plasma pressure has the effect of distending the field lines outwards in the 

middle magnetosphere, such that the magnetic field pressure at the sub-solar magnetopause 

is greater than that given by a simple dipole (which is the assumption made in deriving 

Eq. (2.1)). The distension of the field lines is considered in more detail below.

2.3.2. Inner magnetosphere

A schematic of the jovian magnetosphere, as revealed by in-situ spacecraft observations, is 

shown in Fig. 2.1, which shows a cut through the noon-midnight meridian as seen from the 

dusk side (i.e. the Sun is to the left). Four different regions of the magnetosphere have been 

distinguished by the properties of the magnetic field in each (Smith et al., 1976). These are 

labelled in Fig. 2.1 and consist of the inner magnetosphere, the middle magnetosphere, the 

outer magnetosphere and the magnetic tail, and these will be discussed in turn.

The inner magnetosphere consists of the essentially undisturbed planetary field and extends 

to -5  Rj in the equatorial plane. This is the region which holds the energetic electrons that 

emit the DIM radiation (Fillius, 1976). The inner magnetosphere is bound on the outside 

by the Io torus, which marks the beginning of the middle magnetosphere and the large 

azimuthal currents associated with it. Therefore the inner magnetosphere is affected by the 

fringing field of these azimuthal currents, which in this region produce an essentially 

northward field of strength -200 nT. However, their effect is not great as at 5 Rj the 

equatorial planetary field is still -3400 nT.

16



Chapter 2: The Structure and Dynamics o f the Jovian Magnetosphere

2.3.3. Middle magnetosphere

The middle magnetosphere is the region which is central to this thesis. Its inner boundary 

is marked by the Io torus at -5  Rj and beyond this lies a region of strong equatorial 

azimuthal current (-200 MA in total), which distends the magnetic field radially outwards 

in the manner shown in Fig. 2.1. This radial distension is characteristic of the middle 

magnetosphere, which extends to within -15 Rj of the magnetopause on the dayside (such 

that for a nominal noon magnetopause distance of 60 Rj the middle magnetosphere extends 

to 45 Rj at noon, while extending to greater radial distances at other local times) and 

merges continuously with the magnetic tail on the nightside. The current sheet, which is 

approximately 5 Rj in width, produces a perturbation field that falls off with radial distance 

as compared with the dipolar dependence of p~3. Therefore the field is

predominantly dipolar out to -15 Rj, after which the current sheet perturbation becomes 

dominant and the field gains a strong radial component. Hence, the magnitude of north- 

south component of the magnetic field in the equatorial plane, \Bze\, is lower than that of

the planetary field alone, due to the stretched out nature of the field in this region. The 

magnetic field model used to represent the equatorial magnetic field in the middle 

magnetosphere is described in Chapter 3.

The current sheet is aligned with the magnetic equatorial plane within -30  Rj, outside 

which two effects act to cause a departure of the sheet from the equatorial plane. The first 

is due to the propagation speed of information of the planet’s rotation (effectively the 

Afven speed) being finite at ~40 Rj h'1, leading to significant lags in the plane of the current 

sheet beyond -30  Rj. Secondly, beyond -35 Rj on the night side, the current sheet ‘hinges’ 

to become aligned with the tail axis, which is determined by the flow of the solar wind.

The current within the equatorial plasma sheet in the middle magnetosphere flows eastward 

and, to a first approximation, closes azimuthally, as illustrated in Fig. 2.3a. On the 

nightside this current merges continuously with the tail current associated with the Dungey 

cycle and which flows from dusk to dawn in the equatorial plane and closes around the 

magnetopause. The tail region is described in more detail below.
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Figure 2.3a. Sketch o f  the current system in Jupiter’s magnetic equatorial plane, 
showing the eastward-flowing current o f  the middle magnetosphere, which closes 
around the planet, and the dusk-dawn currents o f  the tail current sheet, which 
separates the tail lobes, and closes along the magnetopause. From C owley and
Bunce (2001b).
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Figure 2.3b. Sketch of the field and current in a cross-section through the tail, 
looking away from the planet. The north tail lobe field points away from Jupiter 
(circled cross), while that o f the southern lobe points towards the planet (circled 
dot). From Cowley and Bunce (2001b).
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2.3.4. Dayside outer magnetosphere

In the —15 Rj between the dayside middle magnetosphere and the magnetopause lies the 

dayside outer magnetosphere. Here the field is somewhat disorganised but on average 

points to the south in the equatorial region, i.e. in the direction of the planetary field. The 

strength of the field, varying between -5  nT and -15 nT depending on the extension of the 

magnetosphere, is greater than that of the planetary dipole because of the fringing fields of 

the equatorial current sheet and the magnetopause. A feature which was particularly 

defined in the Ulysses inbound pass was the existence o f a transition region between the 

middle and outer magnetosphere regions (Balogh et al., 1992; Bame et al., 1992). The 

equatorial field was characterised by sharp changes, indicating plasma current layers, 

although these were not ordered with magnetic latitude or longitude. Another feature 

evident in the data was ‘magnetic nulls’, which have been conjectured to be plasmoids 

‘pinched o ff  the middle magnetosphere plasma sheet (Belcher, 1983; Leamon et al., 1995; 

Southwood et al., 1995).

2.3.5. Magnetic tail

As mentioned in Chapter 1, the existence of an extended magnetotail is taken to be 

indicative of dayside reconnection and production of open flux. The jovian magnetic tail is 

approximately cylindrical in shape, with a diameter of -300 - 400 Rj and a length of at least 

3000 Rj, such that the existence of magnetopause reconnection is inferred (Ness et 

al., 1979c). It consists o f two D-shaped tail lobes separated by an equatorial current sheet 

of a few Rj in thickness, which carries the dawn -  dusk current associated with the Dungey 

cycle, which closes around the magnetopause. This is illustrated in Fig. 2.3b. The 

magnetic field in the tail is relatively uniform and strong, directed away from the planet in 

the northern lobe and towards the planet in the southern hemisphere. However, as the tail 

expands with increasing distance from the planet, the magnetic field falls. For example, 

Voyager-2 measured a field strength of -2  nT at a distance o f -150 Rj down the tail. It was 

pointed out by Scarf (1979) that the almost radial alignment o f Jupiter and Saturn with 

respect to the Sun during the Voyager-2 encounter of Saturn allowed the possibility of 

Saturn being within Jupiter’s magnetic tail during this time. Indeed, Lepping et al. (1983)
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presented evidence of the existence Jupiter’s tail as far as 9000 Rj downstream in the solar 

wind.

2.3.6. Field line bending

The field lines of a dipole lie in meridional planes, i.e. lines of constant longitude with 

respect to the magnetic axis. The jovian field lines, however, are bent out of the meridians 

in the manner shown in Fig. 2.4, which is a sketch looking down on the north pole of the 

planet. The bending of field lines provides information as to the transfer o f momentum by 

magnetic forces. For example, as discussed in Sect. 1.4.2, the two main sources of 

momentum in a magnetosphere are associated with the interaction with the solar wind and 

with the ionosphere. At Jupiter, the voltage associated with corotation is -400 MV, which 

is significantly greater than the -1MV associated with the Dungey cycle and a stagnation 

point cannot form within the jovian magnetopause. Therefore, corotation is the dominant 

plasma flow within Jupiter’s magnetosphere, as mentioned above. Having said this, the 

presence of a jovian magnetotail indicates dayside reconnection does occur at Jupiter, 

although this is confined to the outer regions of the magnetosphere. This situation is 

reflected in the bending of the field lines shown in Fig. 2.4. The field lines which thread 

through the equatorial plane in the outer regions, and which therefore map to high latitudes 

in the ionosphere, are bent away from noon due to the interaction with the solar wind. 

Lower latitude field lines, which map into the middle magnetosphere, are consistently bent 

into a lagging configuration at all local times due to the interaction with the ionosphere. 

This magnetosphere-ionosphere coupling, which is the main topic o f this thesis, will be 

discussed in greater detail in Chapter 3. It can be seen that the field line bending associated 

with each mechanism is directed in the same sense on the dawn side, and is thus difficult to 

separate, while being in the opposite sense on the dusk side, where the two regions may be 

easily distinguished, such as in the Ulysses outbound pass observations (Dougherty et 

al., 1993).
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Figure. 2.4 Sketch of field lines emanating from the northern hemisphere of Jupiter 
projected onto the equatorial plane, showing the bending of the field lines out of meridian 
planes. High-latitude field lines mapping to the outer parts of the magnetosphere are bent 
away from noon by the interaction with the solar wind. The current system responsible is 
the magnetopause-tail system. Lower-latitude field lines mapping to the middle 
magnetosphere current sheet are bent consistently in the clockwise sense, associated with 
the transfer o f anticlockwise planetary angular momentum from the 
thermosphere/ionosphere to the magnetosphere. The current system responsible is the 
magnetosphere-ionosphere coupling circuit discussed in Chapter 3. From Cowley and
Bunce (2001b).
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2.4. Plasma populations in the jovian magnetosphere

2.4.1. Sources o f plasma mass

The main sources of plasma mass in a magnetosphere are the planet’s ionosphere, the solar 

wind, and the surfaces and atmospheres of any satellites that orbit within the 

magnetosphere. The dynamics of the magnetosphere are then dependent on the nature of 

these sources, and the nature of the processes which transfer the plasma from the sources to 

the sinks. Jupiter’s magnetosphere contains contributions from all of these sources, to 

varying degrees. The solar wind and the ionosphere are both estimated to provide sources 

of a few xlO28 ion s'1, consisting of mainly hydrogen (i.e. protons and electrons in equal 

numbers, maintaining quasi-neutrality), such that they contribute mass sources of a few tens 

of kg s'1 (Hill et al., 1983). In addition to ionised atomic hydrogen, the ionosphere is also a 

minor source of molecular hydrogen ions, Hj and H3 (Hamilton et al., 1980), and the solar

wind is a source of He2+ and traces of heavier elements such as carbon. However, these 

are not the major sources of plasma mass in the jovian magnetosphere. Rather, the major 

plasma mass component is sulphur and oxygen plasma originating from the volcanic moon 

Io, which orbits at a jovicentric distance of 5.9 Rj (Belcher, 1983; Krimigis and 

Roelof, 1983). More specifically, the plasma originates principally from electron-impact 

ionisation of the clouds of sulphur and oxygen which surround the orbit of Io, originating 

from the moon’s atmosphere. Estimates of the total plasma production rate within the torus 

lie typically within the range 1000 -  3000 kg s'1 when both the local production near Io and 

the more distributed production in the co-orbiting gas clouds are included (e.g. Broadfoot et 

al., 1981; Brown, 1994; Bagenal, 1997; Delamere and Bagenal, 2003). In terms of ion 

number source rate, the production is comparable to the solar wind and the ionosphere. 

However, due to the fact that the mean mass of iogenic ions is ~21 amu, compared with the 

~1 amu of hydrogen ions, the mass production rate from the Io torus is significantly greater. 

In addition to Io, the icy moon Europa at 9.4 Rj is a source of oxygen plasma with a 

production rate of ~50 kg s'1 (Ip et al., 1998). However, this emission is significantly less 

than the former, and as such the Io torus is the dominant source of plasma mass in the 

jovian magnetosphere.
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2.4.2. The Io plasma torus

The orbit of Jupiter’s innermost Galilean satellite Io is enveloped in a cloud of sulphur and 

oxygen atoms liberated from its volcanoes as sulphur dioxide, as mentioned above. These 

neutral atoms, which peak in density at a few tens of cm'3 near the orbit o f Io and fall off by 

roughly an order of magnitude within -1 Rj on either side, orbit with a Keplerian velocity 

of ~17kms*1 (Schreier et al., 1998). As mentioned above, however, the plasma in this 

region roughly corotates with the planet, which at the orbit of Io implies a linear velocity of 

~72 km s'1. The atoms in the neutral cloud are subject to electron-impact ionisation from 

the warm electrons in this region (see below) at a rate which is estimated to produce 1000 -  

3000 kg of ions per second. As well as feeling the force of gravitation, the newly ionised 

particles suddenly sense the electromagnetic environment, i.e. the -2000 nT southward 

planetary magnetic field and the -0.1 V m'1 outward radial electric field associated with 

corotation. Hence, the new ions are suddenly accelerated to corotation velocity , and gyrate 

around the field lines with a speed equal to the difference between the corotation and 

Keplerian velocities. This energising process results in a ‘warm’ population with thermal 

energies of -250 eV for oxygen, -500 eV for sulphur and -0.01 eV for electrons. The 

warm ions are cooled by Coulomb collisions with electrons, which are in turn cooled by 

collisional excitation of the lower energy levels of the ions. The resulting photon emissions 

are those responsible for the optical observations of the torus.

The low energy torus plasma populations as observed by the Voyager spacecraft are 

described by Bagenal (1994), and the main points are summarised here. Figure 2.5 shows 

contours o f electron density (equal to the ion charge density under quasi-neutral conditions) 

derived from Voyager-1 data. Two major populations may be distinguished in this plot: the 

warm torus and the cold torus. The most significant of these is the warm torus, which 

consists of the newly ionised suprathermal population ( - 10-20% of the total population in 

this region), and the associated Coulomb cooled ions mentioned above. At -5.6 Rj, the 

inner edge of the warm torus, the warm ions and cool ions have energies of a few 100 eV 

and -60  eV respectively, these values increasing to -2  keV and -300 eV at 10 Rj. The 

energy of the electrons throughout the warm toms is -10  eV (the higher electron 

temperatures resulting from Coulomb collisions with the warm ions), which corresponds to 

a velocity o f -1600 km s'1, hence explaining the large impact ionisation rate. Within
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Figure 2.5. Contours of the electron density in the Io plasma torus in the meridian plane, 

determined from Voyager 1 PLS data. The vertical scale is distance from the centrifugal 

equator, while the horizontal axis is distance from Jupiter's spin axis, both in units of Rj. 

The numbers on the contours refer to electron density, equal to the ion charge density, in 

units of electrons cm'3. Taken from Bagenal et al. (1997).
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-7.5 Rj the ion population of the warm torus is divided equally between sulphur and 

oxygen; specifically 0 +, and S+ and S2+ in approximately equal quantities. Beyond this 

distance the S3+ density increases to become comparable to those o f the other sulphur ions, 

and the density o f 0 + and 0 2+ increases, possibly due to the Europa source. The second 

plasma population is the cold torus, which exists at radial distances inside ~5.6 Rj, close to 

the equatorial plane. In this region the ion population consists o f slightly more S+ than 

0 +, with energies of just a few eV.

The data source for Fig. 2.5 was Voyager-1, which, of course, provided observations along 

the path of the spacecraft only. The two dimensional contours in Fig. 2.5 were derived by 

considering force balance on the plasma along the field lines. The forces acting are the 

plasma pressure force, the magnetic mirror force, the centrifugal force, the gravitational 

force, and a field-aligned electric force required to maintain quasi-neutrality at all locations. 

The most significant effect is that the plasma is confined to the equatorial plane by the 

centrifugal force, but this compression is balanced by the plasma pressure force. As such, 

the warm torus has a density scale height from the equatorial plane of ~1 Rj, while the scale 

height for the cold torus is only ~0.3 Rj due to the low temperature.

The centrifugal action on the plasma is the dominant radial force. Therefore flux tubes 

which have been newly loaded with iogenic plasma become centrifiigally unstable and 

diffuse radially away from the planet, although at the feet of the field lines in the 

ionosphere this movement is resisted by ion-neutral collisions. The outwardly moving flux 

tubes are then replaced by low-density inwardly-moving flux tubes in a process known as 

flux tube interchange. Magnetic anomalies in the near-torus region are taken to be 

indicative of such interchange motions (Kivelson et al., 1997; Thome at al., 1997). The 

exact mechanism by which plasma is removed from flux tubes at large distances is, at 

present, unknown, but it is conjectured to involve the ‘pinching o ff  of plasmoids from the 

corotating flow on the dayside and in the dusk flank. This process, known as the 

Vasyliunas-cycle, is described in more detail below, and may be the explanation for 

sporadic enhancements of cool plasma in the outer magnetosphere, correlated with 

magnetic nulls (Southwood et al., 1993). This picture of rapid outward transport explains 

the cross-field structure of the warm plasma toms. The cold plasma toms structure is
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explained by a weak inward diffusion, possibly powered by ionospheric interaction with 

neutral atmosphere wind systems, such that the plasma has time to cool radiatively, and 

collapse to the equator due to the reduced plasma pressure.

The middle magnetosphere current sheet is populated by warm plasma that has diffused out 

of the torus. However, due to the expansion of the flux tubes, the density decreases from its 

maximum of -3000 cm'3 at the inner edge of the Io torus to -70  cm'3 at ~10 Rj and further 

to ~0.1 cm' at a few tens o f Rj (Scudder et al., 1981). In addition, the average energy of 

the ions increases with distance, as the fraction of suprathermal particles increases.

2.4.3. Hot plasma population

The above discussion of flux tube interchange, whereby mass-loaded flux tubes diffuse 

outwards, while mass-reduced tubes move inwards to replace them implies a low-density 

plasma population exists, which is associated with the inward-moving flux tubes. This 

plasma would be heated as it is compressed during inward diffusion. Such a hot, low 

density population of protons and heavy (mainly sulphur and oxygen) ions in equal 

numbers has been observed by the Voyager (Mauk et al., 1996), Ulysses (Lanzerotti et 

al., 1993) and Galileo spacecraft (Mauk et al., 1999). The latter observed sporadic localised 

inward injections of this hot plasma in the current sheet between ~10 and -30  Rj, which 

have many features in common with substorms at the Earth, but are distributed uniformly in 

local time, rather than being confined to the nightside. This inward transport, and the 

associated heating and compression of the hot plasma is powered by the outward ‘falling’ 

of the warm torus plasma, and is a mechanism which acts to suppress the latter, albeit not 

very effectively.

According to the Voyager measurements, the density of the hot population is much lower 

than the warm torus plasma, being - 10*2 cm'3 to ~ 10'3 cm'3 in the outer magnetosphere, 

rising to -1 cm'3 at the inner edge of the warm torus, and decreasing within. The energy of 

the hot ions follows a similar trend, the average being a few tens of keV in the outer 

magnetosphere (with a non-Maxwellian high energy tail extending beyond a MeV), 

increasing to -2  MeV at -7  Rj, and falling to -100 keV at the inner edge of the warm torus.

23



Chapter 2: The Structure and Dynamics o f the Jovian Magnetosphere

Electrons are also present with similar energies, but much lower densities. Despite the low 

density o f the hot plasma, its high temperature means this population makes the dominant 

contribution to the plasma pressure within the magnetosphere (Caudal, 1986). The only 

exception to this is in the inner region of the warm torus, where the falling temperature of 

the hot plasma and the high density of the warm torus plasma mean the pressures of the two 

are comparable. It is this hot plasma, which diffuses inwards from the torus due to 

fluctuating electric fields caused by winds in the thermosphere, that constitutes the inner 

magnetosphere radiation belts.

The hot plasma population is the principal cause of the distension of the middle 

magnetosphere field lines. In this region the hot plasma has a plasma pressure comparable 

to that of the magnetic field, resulting in the inflation of the field lines into the current sheet 

configuration. The plasma pressure gradient is then balanced by the j x B  force associated 

with the azimuthal current sheet and the distended field lines. In actuality, this Lorentz 

force also balances the centrifugal force and the additional (albeit lesser) plasma pressure of 

the warm torus plasma, such that the hot plasma pressure gradient makes a —2/3 

contribution to the inflation and the centrifugal force and warm plasma pressure make the 

other —1/3. The hot plasma pressure is greater than the field pressure outside -1 0  Rj, inside 

which the rapidly increasing planetary field strength means the magnetic field pressure 

assumes dominance, and the field becomes more dipolar.

2.4.4. Equatorial plasma flow

Observational information of plasma angular velocity in the equatorial plane is relatively 

sparse. However, thermal plasma observations during the pre-noon inbound passes of 

Voyagers-1 and -2 indicate near rigid corotation in the inner part of the magnetosphere 

(except locally near Io’s orbit), with co/Oj » 0.8 between 10 and 20 Rj, falling to -0.5 at 

-4 0  Rj (Belcher, 1983; Sands and McNutt, 1988). At larger distances of -30-50 Rj on the 

Voyager-2 inbound pass, values of at/Qj » 0.5 -0 .6  have also been derived from energetic 

ion anisotropies (Kane et al., 1995). Similarly, at -50-70 Rj on the pre-noon inbound 

Ulysses pass, values of co/Oj « 0.2 have been reported from thermal electron and energetic

24



Chapter 2: The Structure and Dynamics o f the Jovian Magnetosphere

ion data (Phillips et al., 1993; Laxton et al., 1997). On the post-midnight outbound pass of 

Voyager-2 Kane et al. (1995) report values of co/Oj « 0.5 at ~70Rj, falling to -0.3 at 

~120 Rj.

The steady state equatorial plasma flow, as envisaged by Cowley et al. (2003b), is 

illustrated in Fig. 2.6, which is a sketch looking from the north, with the Sun to the bottom. 

The flow can be considered as comprising three separate regions. In the inner region, the 

streamlines close azimuthally around the planet, although the confining effect of the solar 

wind results in a day-night asymmetry in which the corotating region extends further from 

the planet on the night side. In addition, the dawn to dusk electric field associated with 

solar wind interaction will also result in a shift of these streamlines towards dawn (Goertz 

and Ip, 1984), however this is not shown in the figure. Also not shown is the outward- 

diffusing motion of the warm torus plasma discussed above. This outward motion results 

in the angular velocity of the plasma falling with increasing distance, due to conservation of 

its angular momentum, accounting for the observations outlined above. However, this 

effect is resisted by ion-neutral collisions in the Pedersen layer of Jupiter’s ionosphere, and 

a current system is set up which acts to speed the equatorial plasma back up to corotation 

with the planet. This magnetosphere-ionosphere coupling current system will be discussed 

in detail in Chapter 3. In Fig. 2.6 this sub-corotating region is labelled the ‘Hill region’ 

after T.W. Hill, who first calculated the steady state angular velocity profiles for the case of 

a dipole field (Hill, 1979). The Hill region comprises the main part o f the middle 

magnetosphere.

The area surrounding the Hill region is associated with the loss of the iogenic plasma from 

the middle magnetosphere. The mechanism illustrated in Fig. 2.6 was first discussed by 

Vasyliunas (1983) and is known as the Vasyliunas-cycle. This process as illustrated by 

Vasyliunas (1983) is shown in Fig. 2.7. In the steady state process, outer corotating 

plasma, which is confined on the dayside by the solar wind, expands as it rotates round to 

dusk, and then pinches off via magnetic reconnection. This region of reconnection is 

shown in Fig. 2.6 by the long-dashed line labelled as the ‘Vasyliunas-cycle tail X-line’, due 

to the X-like shape of the field around the null point (see right hand side of Fig. 2.7), and in 

the left hand side of Fig. 2.7 by the line of Xs. The resulting mass-loaded plasmoid then 

moves off down the tail along the streamline called the ‘O-type line’, again due to the shape
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Figure 2.6. A sketch of the equatorial plasma flow in Jupiter’s magnetosphere. The view is 

from the north, with the Sun to the bottom. The solid lines indicate plasma streamlines, and 

the short-dashed lines represent those streamlines which are separatrices between regimes 

of flow. The direction o f flow is indicated by the arrows. The long-dashed lines with Xs 

represent regions of reconnection, associated with the Dungey-cycle or Vasyliunas-cycle as 

labelled. The lines labelled ‘O’ and ‘P’ indicate the paths of the centres and edges of 

Vasyliunas-cycle plasmoids, respectively. From Cowley et al. (2003).



Chapter 2: The Structure and Dynamics o f the Jovian Magnetosphere

EQUATORIAL PLANE MERIDIAN SURFACE
MAGNETIC X-LINE

tx \ x MAGNETIC
A *  ^  O-LINE

©

Figure 2.7. A qualitative sketch of plasma flow in the equatorial plane (left) and of the 

associated magnetic field and plasma flow in a sequence o f meridian surfaces (right) as 

envisaged by Vasyliunas (1983). The arrows represent plasma flow and the Xs and Os 

represent the magnetic X- and O-lines as described in the text. From Vasyliunas (1983).
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of the field surrounding the central null point, and is labelled with an ‘O’ in Fig. 2.6 and a 

line of Os in Fig. 2.7. The outer edge of the plasmoid follows the dot-dashed line marked 

by the ‘P’, which eventually meets the magnetopause at some distance down the tail. 

However, despite this steady-state picture, observations by Woch et al. (2002) indicate that 

the process may have significant time-dependency. It is anticipated that the flow in the 

dawn sector, sunward of the Vasyliunas-cycle tail X-line, will be faster than the inner 

corotating regions, due to the recent loss of mass from the field lines due to this process.

The third regime of flow is associated with the solar wind interaction, i.e. the Dungey- 

cycle. Reconnection occurs at the dayside magnetopause, along the long-dashed line 

labelled ‘Dungey-cycle magnetopause X-line’, under conditions of northward-directed 

IMF. The open field lines are then transported anti-sunward by the drag of the solar wind. 

Unlike the Earth, however, a significant proportion of the nightside current sheet is taken 

up with the Vasyliunas-cycle, such that the Dungey-cycle tail reconnection can only occur 

in the dawn sector, in the region labelled in Fig. 2.6 as ‘Dungey-cycle tail X-line’. The 

newly-closed field lines then flow back sunward on the dawn flank until they reconnect 

again at the dayside X-line. This region of return flow, containing low plasma density, is 

associated with the outer magnetosphere region (Phillips et al., 1993), and the plasma 

pinched off in the nightside reconnection flows away from planet, along with that from 

Vasyliunas-cycle, in an anti-sunward ‘magnetospheric wind’ (Krimigis et al., 1981).

2.5. Jovian aurorae

Planetary aurorae provide a means of remote sensing the dynamics occurring within a 

magnetosphere. The definition of aurora given by Chamberlain and Hunten (1987) is light 

emitted by the impact of any external energetic particles with a planet’s atmosphere. Thus, 

for example, a region o f strong upward-directed field-aligned current above a planet’s 

ionosphere (e.g. that associated with magnetosphere-ionosphere coupling), corresponding 

to a large downward flux of electrons, may produce an aurora in that region. The aurorae 

illuminating the jovian ionosphere are the brightest in the solar system, up to a hundred 

times brighter than the Earth’s. They were first observed directly in 1979 at UV
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wavelengths by Voyager-1 (Broadfoot et al., 1979), and shortly afterwards in IR and UV by 

Clarke et al. (1980) using the IUE telescope in Earth orbit. Today, high resolution images 

from various sources are available, for example, ground-based IR telescopes (e.g. Satoh et 

al., 1996; Connemey et al., 1998), UV images from the Hubble Space Telescope (e.g. 

Clarke et al., 1998; Prange et al., 1998) and visible wavelength images from Galileo 

(Ingersoll et al., 1998; Vasavada et al., 1999). An example o f a UV image of Jupiter’s 

aurora, taken in November 1998 using HST’s Space Telescope Imaging Spectrograph 

(STIS) is shown in Fig. 2.8. Three components of emission are distinguished, as labelled. 

With increasing latitude these are: the ‘footprints’ and ‘wakes’ associated with the moons 

Europa, Ganymede and, most significantly, Io; the narrow but very intense ‘main auroral 

oval’; and diffuse and variable polar emissions. These will be discussed in turn.

Of the aurorae linked with the magnetic footprints of the inner three Galilean moons, by far 

the brightest is that associated with Io. The aurora takes the form of a bright (~1 MR) 

auroral spot which is situated at the feet of the flux tube that connects to Io, followed by a 

‘wake’, which gradually fades over an azimuthal distance o f up to 180° downstream of the 

moon. It was originally thought that the auroral footprint was due to the relative motion of 

Io with respect to the corotational magnetic field, thus inducing a potential difference of 

~500kV across the diameter of Io (Goldreich and Lynden-Bell, 1969), and driving field- 

aligned currents along the Io flux tube. However, this ‘unipolar inductor’ model does not 

explain the existence o f the auroral wake. Recent theoretical ideas associate the auroral 

footprint and the wake with the local slowing of the equatorial plasma in the region where 

new plasma is being picked up by the corotational flow (Hill and Vasyliunas, 2002; 

Delamere et al., 2003).

The second component of the aurora is the main auroral oval, which is a spatially and 

temporally stable auroral ring of width ~500 km (corresponding to -0.5° of latitude), 

centred on ~15° co-latitude. The features in the auroral oval are observed to corotate with 

System III longitude, suggesting a controlling process associated with the planetary 

magnetic field. The main auroral oval is the most significant auroral feature in terms of 

energy emission, with intensity exceeding -100 kR and in some cases peaking at a few MR 

at the visible and UV wavelengths (Ballester et al., 1996; Prange et al., 1998; Vasavada et 

al., 1999), which, assuming a 20% conversion efficiency, implies precipitating particle
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Figure 2.8. HST STIS image of Jupiter’s northern UV aurora, taken in November 1998. 

The three main components of the aurora are labelled, i.e. the satellite footprints, the main 

oval and the polar emissions. The colour scale is logarithmic, to enhance fainter emissions 

next to bright ones. Dusk is to the right, dawn to the left, and sunwards (or more accurately 

Earthwards) is out of the plane of the photo. Taken from Clarke et al. (2004).
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energy inputs from a few tens to a few hundred mW m'2. Recent magnetic mapping studies 

have consistently shown that the main oval emissions map to the middle magnetosphere at 

distances o f a few tens o f Rj (Clarke et al., 1998; Prange et al., 1998) and thus the main 

oval has been associated with the magnetosphere-ionosphere coupling current system 

driven by the breakdown of corotation of iogenic plasma in this region (Bunce and 

Cowley, 2001; Hill, 2001; Khurana, 2001; Southwood and Kivelson, 2001). The work 

presented in this thesis provides a detailed theoretical investigation as to the effect of model 

input parameters on this current system.

The third auroral component is the high latitude diffuse emission, also called the polar cap 

emission, although this is not necessarily to be confused with the Earth’s polar cap, which 

is defined as the region in the ionosphere threaded by open field lines. Polar emissions at 

Jupiter simply means anything poleward of the main auroral oval. These aurorae are 

therefore magnetically linked to the outer magnetosphere and solar wind. The polar aurora 

are highly variable, exhibiting transient features, such as ‘flares’, which are bright (up to 

-10  MR) spots that appear over timescales of tens of seconds and decay within few 

minutes. The overall structure of the polar aurora, however, seems to be a ‘Yin-Yang’ 

shape of bright emission on the dusk side and a dark region on the dawn side, with an 

additional ‘active region’ towards noon. Cowley et al. (2003b) have interpreted the polar 

aurora by considering the equatorial flow shown in Fig. 2.6. A sketch of the flow pattern 

shown in Fig. 2.6, mapped along the magnetic field lines into the northern ionosphere is 

shown in Fig. 2.9. The format of the figure is similar to that of Fig. 2.6, the differences 

being the inclusion of regions of field-aligned current and the hatched area of open field 

lines. The outer part of the diagram represents the sub-corotational ‘Hill region’, and the 

upward-directed field-aligned current associated with it. This is the current linked to the 

main auroral oval, and will be discussed in Chapter 3. Poleward o f the main oval lie the 

two regions associated with the Vasyliunas cycle; the slow, mass loaded flux tubes on the 

dusk side and the fast, mass-reduced flux tubes on the dawn side. The corresponding 

upward-directed field aligned currents will be stronger on the dusk side (corresponding to 

the ‘bright’ area of the auroral Yin-Yang structure) and weaker, perhaps even reversed, on 

the dawn side. At the highest latitude one has the region associated with the Dungey-cycle 

and open field lines, where the flow is expected to be anti-sunward and slow at ~ 100 m s'1 

or less. This region is skewed to the dawn side by the predominance of the Vasyliunas-
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Figure 2.9. A sketch of the plasma flow in Jupiter’s northern ionosphere, in a similar 

format to Fig. 2.6, where the Sun is to the bottom. The hatched region indicates open field 

lines. The dotted circles represent regions of upward field-aligned current and crossed 

circles represent regions of downward current. From Cowley et al. (2003).
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cycle on the dusk flank, and is associated with the aurorally ‘dark’ region of the Yin-Yang 

structure. Finally one has the active region associated with the Dungey-cycle 

magnetopause X-line, where reconnection of the jovian field with the IMF represents the 

‘starting point’ of the Dungey cycle, in a process corresponding with flux transfer events at 

the Earth.

In summary, therefore, the magnetosphere of Jupiter is a complex and dynamic entity, very 

different to the Earth’s plasma environment. However, many important clues as to the 

nature of the processes occurring within may be obtained from the planet’s aurorae. A 

particularly striking example is the main auroral oval, which is directly related to the 

dynamics of middle magnetosphere current sheet plasma and the interaction of this material 

with the planet. It is to this magnetosphere-ionosphere coupling system which we now turn 

in Chapter 3.
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Chapter 3

Magnetosphere -  Ionosphere Coupling in Jupiter’'s

Middle Magnetosphere

3.1. Introduction

The purpose of this chapter is two-fold. First, it will provide an introduction to the basic 

theory on which the analysis presented in later chapters is based, and second it will review 

the history of theoretical ideas concerning magnetosphere-ionosphere coupling at Jupiter.

Interest in the magnetosphere-ionosphere coupling currents that flow in Jupiter’s middle 

magnetosphere has been enhanced considerably in recent years by the suggestion by a 

number of authors that they are directly associated with the jovian ‘main oval’ aurorae 

described in Chapter 2 (Cowley and Bunce, 2001b; Hill, 2001; Khurana, 2001; Southwood 

and Kivelson, 2001). The implication follows that the dynamics of this region may be 

sensed remotely by ground- and space-based auroral observations covering a wide range of 

wavelengths (e.g. Satoh et al., 1996; Clarke et al., 1998; Prange et al., 1998; Vasavada et 

al., 1999; Pallier and Prange, 2001; Grodent et al., 2003). However, since Jupiter’s aurora 

was first observed by the Voyager spacecraft, a number of different hypotheses for the 

formation of the main auroral oval have been mooted. Thome (1983) discussed wave- 

driven pitch angle diffusion of hot magnetospheric plasma as a mechanism by which the 

main oval could be produced. However, although wave amplitudes may be high enough in 

the jovian magnetosphere to maintain pitch angle diffusion near the strong diffusion rate, 

hence producing a full loss cone, estimates of the resulting energy flux of precipitating 

particles are found typically to be ~0.1-1 mW m'2, thus falling short of those required to 

produce main oval emissions by two to three orders of magnitude. This was confirmed by
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Tsurutani et al. (1997), who examined Ulysses data and found that the energy fluxes due to 

wave-driven diffusion are too low to power the main auroral oval by orders of magnitude.

A suggestion that the jovian aurorae are linked to magnetosphere-ionosphere coupling and 

associated field-aligned current systems was first made by Kennel and Coroniti (1975), 

who discussed the coupling of angular momentum between magnetosphere and ionosphere 

in a solar wind-like radial outflow model. Another idea was put forward by Isbell et 

al. (1984) that the aurorae could be formed by field-aligned currents arising from the 

interaction between the solar wind and a rapidly rotating planet, associated with the 

twisting of open flux tubes in the tail. However, such a mechanism would result in 

emissions located at the boundary of and within the region of open field lines, whereas the 

main oval is magnetically linked to the middle magnetosphere. The first paper to discuss a 

possible auroral link with outwardly diffusing iogenic plasma was by Eviatar and 

Siscoe (1980), while the following year Barbosa et al. (1981) linked the jovian aurorae to 

field-aligned currents and associated field-aligned electron acceleration in the middle 

magnetosphere. A similar link was suggested by Dougherty et al. (1993) and Gerard et 

al. (1994) between the UV aurorae and the field-aligned current sheets observed at 

distances of -15-20 Rj during the Ulysses outbound pass (Dougherty et al., 1993; Cowley 

et al., 1996).

It was V.M. Vasyliunas who, in open discussion at the Magnetospheres of the Outer Planets 

Meeting in Paris, August 1999, first explicitly suggested that the main auroral oval is 

associated with the breakdown of corotation of iogenic plasma in the middle 

magnetosphere current sheet. The current system associated with corotation breakdown 

had been discussed earlier by Hill (1979) and Vasyliunas (1983), although the currents 

themselves had not been explicitly calculated and related to the aurora at that time. There 

then followed a number of papers which discussed the formation of the main oval in terms 

of this magnetosphere-ionosphere coupling current system (Cowley and Bunce, 2001b; 

Hill, 2001; Khurana, 2001; Southwood and Kivelson, 2001). Before discussing the basic 

theory of the magnetosphere-ionosphere coupling system, the next section presents a 

discussion of the physical background.
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3.2. Physical background

An outline of the physics of the middle magnetosphere region is shown in Fig. 3.1, forming 

a background to the analysis and results which follow in this and later chapters. As 

discussed in Chapter 2, by far the most important plasma component in the middle 

magnetosphere originates from the atmosphere of the moon Io. Sulphur and oxygen ions 

and electrons that are produced from the neutral gas clouds that co-orbit with Io are picked 

up by the plasma flow, forming a dense near-corotating plasma torus in the vicinity of Io’s 

orbit. A significant fraction of the plasma ions that are produced in the torus undergo 

charge-exchange reactions with the neutral gas, and escape from the system as fast neutral 

particles (e.g. Pontius and Hill, 1982). The remainder flow outward under the action of the 

centrifugal force through flux tube interchange motions, to form a vast spinning equatorial 

plasma disc, shown dotted in Fig. 3.1. Estimates of the total plasma production rate within 

the torus lie typically within the range 1000 -  3000 kg s'1 when both the local production 

near Io and the more distributed production in the co-orbiting gas clouds are included (see 

Chapter 2). Of this total, perhaps one third to one half emerges into the plasma outflow in 

the equatorial plasma disc. Khurana and Kivelson (1993) derived a lower limit on the 

outward mass transport rate through the disc of -500 kg s'1 from consideration of the 

magnetic torque exerted on the plasma, as first discussed by Vasyliunas (1983). In 

addition, Hill (1980) estimated an outward mass transport rate o f -2000 kg s’1 based on 

Voyager angular velocity profiles, though this estimate also requires knowledge of the 

height-integrated jovian ionospheric Pedersen conductivity, taken to be -0.05 mho. 

Overall, it seems reasonable to suppose that the outward transport rate of plasma through 

the disc is typically -1000  kg s'1, with variations of perhaps a factor of -2  on either side. 

The flux tubes threading this disc constitute the jovian middle magnetosphere, which 

stretches typically over many tens of Rj from the vicinity of Io’s orbit to the vicinity of the 

magnetopause, depending on local time and the degree of extension of the magnetosphere, 

determined by solar wind conditions. The field lines in this region are characteristically 

distended radially outward from the planet, as shown in the figure, due to azimuthal 

currents flowing in the equatorial plasma associated with radial stress balance. The iogenic 

plasma is eventually lost from the outer regions of the disc by processes which are at 

present not well determined, but may involve plasmoid formation and outflow in the dusk 

sector of the magnetic tail (Vasyliunas, 1983).
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Figure 3.1. Sketch of a meridian cross-section through Jupiter's inner and middle 

magnetosphere, showing the principal physical features involved. The arrowed solid lines 

indicate magnetic field lines, the arrowed dashed lines the magnetosphere-ionosphere 

coupling current system, and the dotted region the rotating disc of out-flowing iogenic 

plasma. From Cowley and Bunce (2001).



Chapter 3: Magnetosphere -  ionosphere coupling in Jupiter’s middle magnetosphere

As the iogenic plasma diffuses outward from the torus its angular velocity will drop below 

near-rigid corotation with the planet, inversely as the square of the distance if no torques 

act. However, when the angular velocity of the plasma and frozen-in field lines (a> in 

Fig. 3.1) falls below that of the planet (Qj), or more specifically below that of the neutral 

upper atmosphere in the ionospheric Pedersen layer (Q*y), ion-neutral collisions in the 

Pedersen layer provide a torque on the feet of the field lines which tends to spin the plasma 

back up towards rigid corotation. The torque is communicated to the equatorial plasma by 

bending of the magnetic field lines out of meridian planes, associated with the azimuthal 

field components B<p shown in Fig. 3.1, which reverse sense across the equator. The 

associated electric current system is shown by the dashed lines in the figure. It consists of 

an outward-flowing radial current in the equatorial plane associated with the reversal in the 

azimuthal field, which is connected to equatorward-directed Pedersen currents in both 

hemispheres by field-aligned currents which flow outward from the ionosphere to the 

magnetosphere in the inner part of the system, and return from the magnetosphere to the 

ionosphere in the outer part (Hill, 1979; Vasyliunas, 1983). It is with the upward-directed 

field-aligned currents in this system, carried by downward-precipitating magnetospheric 

electrons, that the ‘main oval’ auroras have been suggested to be associated. The torque 

associated with the j x B  force of the Pedersen current balances the frictional torque on the 

ionospheric plasma due to ion-neutral collisions, while the equal and opposite torque on the 

equatorial plasma tends to spin the plasma up towards rigid corotation with the planet. In 

the steady state, the plasma angular velocity will still generally fall with increasing 

distance, but at a rate which is less than the inverse square dependence expected from 

conservation of angular momentum. The basic theory used to describe this system is 

described in the following section.

3.3, Theory of the jovian M-I coupling system

This section will develop the theory of magnetosphere-ionosphere coupling at Jupiter, and 

will review earlier theoretical ideas concerning the system. We will start by discussing 

how the magnetic field is treated in the theory, and its implications for mapping between 

the ionosphere and magnetosphere. We will then go on to describe the current system and
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follow with a derivation of the equation governing the plasma angular velocity in the 

equatorial plane, known as the Hill-Pontius equation. We will then briefly discuss work on 

this system presented by previous authors.

3.3.1. Field description and magnetosphere-ionosphere mapping

We first assume for simplicity that the magnetic field is axisymmetric, such that the 

poloidal components can be specified in cylindrical polar coordinates by a flux function 

F ( p , z )  related to the field components by B - ( \ ! p )  VF x q>, such that

n I dF 1 dF 1
B = -----—  and Bz = ——  , (3.la,b)

p  oz p  op

where p  is the perpendicular distance from the magnetic axis, z  is distance along this axis 

from the magnetic equator, and (p is the azimuthal angle. As discussed in Chapter 2, 

modest day-night asymmetries are known to be present in the middle magnetosphere 

beyond ~15 Rj( but the essential properties of the dynamics will be adequately represented 

by an axisymmetric model, thereby introducing significant simplification. In this case it 

can be seen that (F -V F ) = 0, such that F = constant defines a flux shell. Therefore

magnetic mapping between the equatorial plane (subscript V )  and the ionosphere 

(subscript ‘f ), as required here, is simply achieved by writing

FAP<) = F,(8,) ■ (3-2)

where #  the magnetic co-latitude. The specific details of the current sheet magnetic field 

model and its associated flux function used in the analyses which follow is deferred until 

Section 3.3.6. Neglecting non-dipole planetary fields and the small perturbations due to 

magnetospheric currents, the flux function in the ionosphere is

Ft = B jp l  = BjRj2 sin2 0i , (3.3)
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where Bj the dipole equatorial magnetic field strength at Jupiter’s surface (taken to be 

4.28x105 nT in conformity with the VIP 4 internal field model of Connemey et al. (1998)). 

The absolute value o f F  has been fixed by taking F  = 0 on the magnetic axis. The flux 

function in the equatorial plane is related to the north-south field Bze(pe) threading the 

current sheet by

B . = 1 dFe 

P' dPe
(3.4)

For the dipole field we have

Bzedip ~ Bj ' * F and F
,dip p . (3.5a,b)

such that mapping between the equatorial plane and the ionosphere is given by

sin#, = —  = ./—  . 
R,

(3.6)

Corresponding expressions for the current sheet fields considered in this thesis will be 

given later.

3.3.2. Magnetosphere-ionosphere coupling current system

We now consider the calculation of the field-perpendicular and field-parallel components of 

the magnetosphere-ionosphere coupling current system , illustrated in Fig. 3.1, for a given 

angular velocity profile of the equatorial plasma co{pe). In the following section, we will 

then consider how the steady state angular velocity profile is determined.

It is evident from the nature of the current sheet shown in Fig. 3.1 that continuity requires 

that the total equatorial current flowing in the current sheet in a given azimuthal angular

35



Chapter 3: Magnetosphere -  ionosphere coupling in Jupiter’s middle magnetosphere

sector on a given flux shell must be equal to the height-integrated ionospheric Pedersen 

current flowing over the same angular sector on the same flux shell, summed over the two 

ionospheres. Assuming north-south symmetry, we therefore have

Pe‘p = 2P,h > (3-7)

where p e and p i are (as above) the perpendicular distances of the field lines from the 

magnetic axis in the equatorial plane and in the ionosphere, respectively, ip is the radial 

current intensity in A m 1 integrated across the width of the equatorial current sheet, and ip

is the height-integrated ionospheric Pedersen current intensity in each conjugate

ionosphere. The latter current is determined from the ionospheric height-integrated

Pedersen conductivity Zp and the electric field Et in the rest frame of the neutral

atmosphere by iP = Z pEi . In terms of the angular velocity of the flux shell, co, and the

angular velocity of the neutral atmosphere averaged through the Pedersen-conducting layer, 
♦

Qj , we have

ip = 2 I pBjP l( o ; - a > )  , (3.8)

where we have taken the polar magnetic field to be near-vertical and equal to 2Bj in

strength (an approximation valid to within ~5% in our region o f interest) and p i (Qj -co}

is the azimuthal velocity of the plasma in the neutral atmosphere rest frame (directed 

westward when the plasma subcorotates (i.e. co < Q j  ) corresponding to the direction of the

currents shown in Fig. 3.1). Due to the action of the ionospheric torque, we may expect the
*

angular velocity of the neutral atmosphere (C2j) to lie between that of the plasma (co) and 

the planet (Z2, =1.76x10^ rads1) (Huang and Hill, 1989), so we may write for some 

0<&< 1

-ffl) . (3.9)
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The value of k is not well known, but recent work with the JIM model indicates that k ~ 0.5 

for large current values of ~1 pAm '2 (see Chapter 4), while Huang and Hill (1989) 

calculated values k ~ 0.9. Introducing Eq. (3.9) into Eq. (3.8) we find

ip = U p B jQ jP , F= 2ZP'B,QI - L J, \ Bj

f  \
1- - 2 - 

V Q j  J

(3.10)

where Zp is the ‘effective’ height-integrated ionospheric Pedersen conductivity, reduced 

from the true value by neutral atmosphere ‘slippage’

Zp' = ( \ - k ) Z p . (3.11)

Substitution of Eq. (3.10) into Eq. (3.7) and use of Eqs. (3.2) and (3.3) then gives the 

equatorial radial current intensity per radian of azimuth as

4Z . ' a .F .L  03 A• _  e

P e  V
1- (3.12)

such that the total equatorial current, integrated in azimuth, is

Ip = 2npi  = %nEpQjFe (3.13)

equal, of course, to twice the azimuth-integrated total Pedersen current

Ip = Inpip = AnZ* QJFi
f l jV “ mJ J

(3.14)

flowing in each conjugate ionosphere. Given Eqs. (3.10) and (3.12) for the field- 

perpendicular currents, the field-parallel current density follows from the divergence of

either. Differentiating the equatorial current, for example, gives -2  j z = d iv ( /y p) , where
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j 2 is the north-south current flowing into each face o f the current sheet. The field-aligned 

current is then obtained using the fact that (j j B }  is constant along a field line, to give

r : \
= +

1 d  / . \ _  2 
(Pelp ) =  +2P e K  dp, PeB ze d p t

, (3.15)

where the upper sign of j\\ is appropriate to the northern hemisphere (and is employed 

throughout this thesis) and the lower sign is appropriate to the southern hemisphere. The 

quantity [j \ /B )  is constant along field lines between the equator and the ionosphere in the

assumed absence of significant field-perpendicular currents in the intervening region. The 

general expression for field-aligned current density just above the ionosphere is then given 

by

j\\i — 2 B j r i i
k B j

4 B,
P eBze d p e

(3.16)

using the same approximation for the polar field as indicated above. An important 

assumption made in all previous studies of this system is that the effective height-integrated 

Pedersen conductivity 27/ is a constant, an issue which is addressed by the analysis in 

Chapter 5. Making this assumption and performing the differentiation in Eq. (3.16) gives

(r

, v P \B  , ,e \ ze\ J

(

dPe  ̂ J
+ 1- 10

Q
(3.17)

j  j )

where we have used Eq. (3.1b) applied to the equator and we have put Bze = ~\Bze\ since

the jovian equatorial field is always directed southwards in the inner and middle 

magnetosphere. The northward-directed current density leaving the northern face of the 

equatorial current sheet on the same field line is then given by

J z e = ~ IB, J\\i (3.18)
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where the sign is such that j ze is negative (current into the sheet) for an upward (positive)

field-aligned current out of the ionosphere. This calculation assumes, of course, that an 

oppositely directed current is also present at the southern face of the current sheet, 

connected to the southern ionosphere.

3.3.3. Parallel voltage, acceleration region height, and precipitated 

electron energy flux

We now briefly consider the conditions under which the field-aligned current given by 

Eq. (3.17) will flow. The maximum field-aligned current that can be carried by 

precipitating magnetospheric electrons in the absence of a field-aligned voltage is

j» ,= eN
'  W v "VVth 

lnm 'S
(3.19)

where e is the elementary charge, me the electron mass, N  the magnetospheric electron 

number density, and Wth the electron thermal energy. This current corresponds to the

assumption of a full downward-going loss cone and an empty upward-going loss cone. We 

also assume an isotropic magnetospheric electron distribution function (and the existence of 

weak pitch angle scattering in the magnetosphere, so that the loss cone is kept full), such 

that the number density N  is constant along the field lines. If we take values based on 

Voyager results (Scudder et al., 1981), i.e. N  = 0.01 cm'3 and Wth =2.5 keV outside the

current sheet, we find y||i0 »0.013 //Am'2. It will be seen later in this chapter that this

value is comparable to those estimated for a dipole planetary field, but is an order of 

magnitude less than required when one employs a realistic current sheet field. Under these 

circumstances a substantial field-aligned voltage is required to drive the current.

The minimum field-aligned voltage <Z>min required to drive a field-aligned current greater 

than y||J0 is calculated from the kinetic theory of Knight (1973), who showed that
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e'Z’m™ = K

“
(  ’ ^

~
( ’ \

h i -1 - Wn th
J ||i

<7||/0 j v7||/0 j

(3.20)

a result which is valid in the case where the acceleration region lies at large distances 

( » R y) along the field lines above the ionosphere. The approximation in Eq. (3.20) is

valid when j w »  j lli0. If the current densities required are more than an order of magnitude

larger than y||l0 and Wth is of order a few keV, then we infer that the voltages required will

be of order several tens of kV. Second, the minimum distance of the ‘top’ of the voltage 

drop, determined by the requirement that a large enough flux of magnetospheric electrons is 

present to form the current, is given by

/  \  
m̂in

r • V/3 
h

V l̂l'° j

(3.21)

Here we have assumed as a sufficient approximation that the field strength falls as the cube 

of the distance along the polar field lines. We now consider the energy flux of the 

precipitating electrons and the intensity of the resulting aurorae. The maximum 

precipitated electron energy flux for zero field-aligned voltage, i.e. when the field-aligned 

current is given by Eq. (3.19), is

E,„ = 2NWlh
/  \ l / 2' wvvth
\2nm eJ

(3.22)

For the above electron parameters we find Efo « 0.07 mW m'2, which is negligible with

respect to the jovian main oval aurorae. Assuming a 20% conversion efficiency of 

precipitating electron energy into -10  eV UV photons yields estimates of the precipitated 

electron energy flux of -10-100 mW m'2 for typical main oval UV auroral luminosities of 

-100 kR to -1  MR. An energy flux of -0.1 mW m*2 will result in an auroral intensity of 

only -1  kR. However, with the inclusion of a field-aligned voltage, and in the same 

approximation as Eq. (3.20), the energy flux becomes
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E, =-& .  
2V

(  • ^2 rt ( ’ \h + 1 ^  Efi> J\\i
v7||/o J 2 KJ\\io j

(3.23)

a result due to Lundin and Sandahl (1978). The energy flux is thus amplified by the factor 

(J\\i / 7||/o )2 ~ 100 -1000 , which yields values of -10-100 mW m'2, consistent with the 

observed UV auroral intensities.

It must be noted, however, that this aspect of the theory introduces an element of non

consistency into the calculations. This is because the currents are calculated above 

assuming that the magnetospheric flow and electric field are mapped along equipotential 

field lines into the ionosphere. However, a field-aligned voltage will modify the mapping 

of magnetospheric flow, and hence the current. This is an issue which is addressed in the 

analysis in Chapter 6 .

3.3.4. Steady state angular velocity profile and field-aligned currents

We now outline a derivation of the equation governing the radial variation of the steady- 

state angular velocity of iogenic plasma as it moves outward through the current sheet from 

the Io plasma torus. The derivation is equivalent to that given originally by Hill (1979) and 

Pontius (1997), though here we focus on the equatorial plasma rather than the ionosphere. 

In the steady state the electromagnetic torque on the equatorial plasma in a given flux tube 

is equal and opposite to the electromagnetic torque on the ionospheric plasma in the same 

flux tube (which balances the torque of the neutral atmosphere due to ion-neutral 

collisions), as already guaranteed by Eq. (3.7). The equilibrium conditions can thus be 

derived by consideration of the conditions at either end of the flux tube.

The angular momentum L of a body of mass M  relative to some reference point O is equal 

to the cross product of the body’s position vector r relative to O and its linear momentum 

p . If the body is travelling in a circular orbit around O with angular velocity co its angular

momentum is then given by L = r x p  = Mcor2. Newton’s second law then states that the

rate of change of the body’s angular momentum is equal to any external torque T acting
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thereon, as given by dL/dt = d{Mcor2) / dt = T . We assume a fixed plasma source of

M  kg s'1 located at a particular radial distance in the equatorial plane, from which the 

plasma flows outward by radial diffusion across the flux shells in a thin azimuthally 

symmetric equatorial disc. If the angular velocity of the plasma at a radial distance p e is

co(pe), the angular momentum per unit mass is p 2co(pe). The outward-directed flux of

angular momentum at this radial distance is thus M p 2co(pe) . From Newton’s second law

the difference between the flux of angular momentum at p e and that at p e + d p e is equal to

the electromagnetic torque dTz acting on the plasma in the annular disc between p e and

p e + d p e. We thus have

d  (M p,2a > (p ,) )= dr'
dPe

(3.24)

The torque per unit volume about Jupiter’s centre acting on the plasma is r x ( y x 5 ) ,  where

r is the jovicentric position vector of the plasma element, j  the current density, and B the 

magnetic field. Integrating this over the annulus between p e and p e + d p e then gives the 

z-component o f the torque acting on this annulus as

dTI =2npe1ip \Bu\dpe , (3.25)

so that substitution into Eq. (3.24) gives

d  I  2 r  W  2 * P e W B ee\
- - ( a ®(a )) = -------

dp, M
(3.26)

Expansion of the LHS and substitution of Eq. (3.12) gives

Pe d r \
CO

2 d p \ Q j  j
+

f \  
CO

J

\BP e ze

M
1- - 2 .

V J

(3.27)
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which is the differential equation that must be solved, with the use of a suitable boundary 

condition, for the equatorial angular velocity profile o f the plasma. We then note that if the 

angular velocity profile obeys this equation, its derivative may be substituted directly into 

Eq. (3.17) to yield the potentially more convenient form for the ionospheric field-aligned 

current

j w= 4 Z p'a jB j
2£  

A 2 \B

V /' CO

z e \J \ \ Qj
4 nZ;Fe\Bz 

M
co W CO

Q J J ) Q
. (3.28)

j  J

Equation (3.27) is termed the Hill-Pontius equation after T.W. Hill and D.H. Pontius, Jr, 

who first derived and employed this result. That is, Hill (1979) was the first to calculate the 

steady-state plasma angular velocity profile of the jovian magnetosphere-ionosphere 

coupling system in this manner, assuming a dipole poloidal planetary magnetic field. 

Pontius (1997) later generalised his analysis to include a general poloidal magnetic field. It 

is easy to show that Eq. (3.27) is equivalent to the corresponding equations given by 

Hill (1979, 2001) (his Eqs. (20) and (A. 11), respectively) and Pontius (1997) (his Eq. (5)), 

once the polar field approximation used here (Bi = 2Bj)  is applied. A brief discussion of 

the results o f Hill (1979) and Pontius (1997) follow in the next section.

3.3.5. Results o f Hill (1979, 2001) and Pontius (1997)

Hill (1979) solved his equivalent of Eq. (3.27) for a dipole field using the integration factor 

method and, assuming the plasma corotates at the origin, derived the solution

r \  co

j

1
= — exp 

P
' P h '" 7\  P  J

+ f i r
V

P h_

\  P  j

exp
f  V  

P h

< P

erf -er f[(/> „ )2]

(3.29)

where p  is radial distance from the magnetic axis in units of Rj, and p H is the 

characteristic distance over which corotation breaks down, given by

43



Chapter 3: Magnetosphere -  ionosphere coupling in Jupiter’s middle magnetosphere

P h  =
f 2nZp'B /R  

M
(3.30)

The scaling parameter p H is dependent on the ratio [Z *  / m },  while neither Zp or M

were known to great accuracy in 1979. Hill (1979) plotted the solution for p H = 64 R; ,

which represented the existing estimates of Z *  = 0.05 mho and M  = 1028amu s'1 for these

parameters at the time (note that 1028amu s'1 corresponds to -17  kg s'1). Later, in the light 

of Voyager results, Hill (2001) revised this estimate to p H = 30Rj for “plausible” values of

Zp ~ 0.3 mho and M  ~ 2000 kg s'1. The solution for p H = 30Rj is shown in Fig. 3.2. It

should be noted that Hill (1979, 2001) considered the Pedersen conductivity for both 

hemispheres in parallel, such that his conductivity values were double those given above, 

while his equivalent of Eq. (3.30) did not have the factor of two in the numerator. 

Hill (1979) also pointed out that at large distances the solution asymptotes to the limit 

whereby the ionospheric torque goes to zero and the flow is governed by conservation of 

angular momentum alone. The plasma angular velocity is then given by

r  ̂co

j
= yfjT P h

V P J
(3.31)

i.e. the velocity falls off with the inverse square of the distance as expected. Hill (1979) did 

not specifically calculate the currents flowing in the system at this time, an omission which 

he later corrected in Hill (2001). The field-aligned current density profile derived by 

Hill (2001) is shown in Fig. 3.3. It can be seen that the current flows upward (i.e. is 

positive) at lower latitudes, and reverses to downward (negative) near the pole. In this way 

the dipole field guarantees current closure and charge continuity. The current in the figure 

is normalised to the quantity j 0 = 4Zp BjO j , such that for the value Zp* = 0.3 mho the

peak upward current is -0.03 pA m'2. Although this result suggested the existence of a 

stable, continuous ring of field aligned current, the strength of the current is approximately 

an order of magnitude too low to agree with observations of the auroral oval, as discussed 

in Section 3.3.3. In addition the location of the peak magnitude of the field-aligned current, 

- 10°, differs significantly from the observed main oval latitude o f -15°.
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3

P / P H

Figure 3.2. Hill’s solution for the equatorial angular velocity profile of current sheet 

plasma normalised to Jupiter’s angular velocity and plotted against equatorial radial 

distance p  normalised to the Hill scaling distance p H = 30 Rj as defined in the figure and 

Eq. (3.30). From Hill (2001).
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Y  (deg) (pH = 30)

Figure 3.3. Ionospheric field-aligned current calculated from Hill’s solution for p H = 30Rj

(shown in Fig. 3.2), normalised to j 0 defined in the figure and plotted against normalised

equatorial radial distance (inset horizontal scale) and ionospheric latitude (bottom 

horizontal scale). From Hill (2001).
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The assumption that the planetary field is dipolar, while having the virtue of allowing the 

equations to be analytically soluble, is not quantitatively valid in the middle 

magnetosphere, due to the distension of the field lines in this region as shown in Fig. 3.1. 

This effect was first taken into account by Pontius (1997), who generalised Hill’s (1979) 

calculations to include a realistic empirically-based poloidal magnetic field model. The 

main result o f Pontius (1997) was that he found that the solutions for the steady-state 

equatorial angular velocity are remarkably insensitive to the model employed, although 

again the properties of the associated electric current system were not explicitly calculated 

at that time. The physical origins of this lack of dependence on the field model will be 

discussed in the next section. Pontius (1997) calculated the angular velocity profiles using 

field modifying factors appropriate to Pioneer-10, Voyager-1 and Voyager-2 field models. 

These are shown in Fig. 3.4, where it can be seen that the angular velocity profiles are 

similar, leading him to conclude that the field model employed was not an important factor 

in the system. This was shown not to be the case by Cowley and Bunce (2001b), who 

compared the currents flowing in the system for both a dipole and a realistic current sheet 

field model.

3.3.6. Results o f Cowley and Bunce (2001b) and Cowley, Nichols, and 

Bunce (2002)

Cowley and Bunce (2001b) calculated the currents flowing in the magnetosphere- 

ionosphere coupling current system using a realistic empirical current sheet field model and 

an empirical model of the equatorial plasma angular velocity, and compared the results with 

those for the dipole field model. The empirical field model is o f the north-south component 

of the magnetic field in the equatorial plane, Bze. Within a certain distance p i  the

equatorial field was taken to be given by the dipole field plus the field of the Connemey et 

al. (1981) current sheet model (the CAN model). That is,

M a ) = - ^  + * can> « )  . (3.32a)
re

where
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20 30 40

Equatorial crossing distance p

Figure 3.4. Pontius’ (1997) solutions of his generalised Hill (1979) equation for the 

equatorial plasma angular velocity, using a dipole field and axisymmetric poloidal fields 

based on data from Pioneer-10, Voyager-1 and Voyager-2. From Pontius (1997).
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-lo g

(3.32b)

yjR,2+D2 - Z ) J  2(Rl2+D2f 1

Equation (3.32b) is the approximate form of the CAN model field derived by Edwards et 

al. (2001), and is accurate (relative to the CAN model) to within -1% in the region of 

interest. The CAN model was derived by Connemey et al. (1981) from Voyager and

‘Voyager-1/Pioneer-10’ set given by Connemey et al. (1981), i.e. a current half-thickness 

D = 2.5 R j , inner and outer radii of the annular current sheet R0 = 5 Rj and Rx = 50 Rj

respectively, and a current intensity parameter (//070/2 ) = 225 nT . Beyond p*  the model

where B0 = 5 .4 x 104 nT and m -  2.71. This expression is applicable over the radial range 

-20-100 Rj, thus overlapping the CAN model in the range -20-30 Rj. Here we switch from

that Bze is continuous. We find that the intersection occurs at p*  =21.78 Rj, which thus 

lies in the region of overlap of their respective regimes of validity. The behaviour of the 

model field is indicated by the solid line in Fig. 3.5a, where the modulus o f Bze is plotted in

log-log format against equatorial radial distance p e over the range from 5 Rj (the inner

edge of the CAN current sheet) to 100 Rj (the outer limit of validity of the KK model). The 

actual values are, o f course, negative. The dashed line in Fig. 3.5a shows the modulus of 

the dipole value for comparison. It can be seen that the current sheet field is less than the 

dipole field by factors of 2-3 in the middle magnetosphere region, due to the outward 

distension o f the field lines in this region caused by the equatorial currents. For

Pioneer data and is valid for distances within -30  Rj. The model parameters used are the

employed is Khurana and Kivelson’s (1993) empirical fit to Voyager-1 outbound data (the 

‘KK’ model), given by the power law

(3.33)

one model to the other at the radial distance p i  where the two model curves intersect, such
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Figure 3.5. Plots showing relevant parameters of the current sheet field model employed in 

Cowley and Bunce (2001b), Cowley et al. (2002, 2003a) and in Chapter 4 of this thesis. All 

parameters are plotted versus jovicentric radial distance p e. Plot (a) is a log-linear plot of

the modulus o f the north-south equatorial magnetic field \Bze\ threading the current sheet

(solid line), where we note that the field is actually negative (i.e. points south). The kink in 

the curve at 21.78 Rj marks the point where we switch from the CAN to the KK model. 

The dashed line shows the dipole value. Plot (b) shows the ratio o f these fields

{ P z e / ^ z e  dip )  •
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convenience o f later discussion, Fig. 3.5b explicitly shows the ratio of the two fields 

(Bze/B ze ̂  ) .  It can be seen that the ratio of the two fields declines rapidly from near unity

at ~5 Rj to a minimum of ~0.3 at p * , and then slowly increases once more to ~0.5 at 

100 Rj.

With this model for Bze, the equatorial flux function F e can be determined from Eq. (3.1b). 

For p e < p*  this is given by

F , { P ' > - —  + Fev*{P ')  . (3 34a)
P e

where

êCAN ( P e  ) —
_PoIo

D ^ pe2+ D 2 + ^ -  log

- f l o g
V* ,2 + D 2 + D

J r 2+ D 2 - D

\]p ,2 + D 1 + D  

J p 2+ D 2 - D

P'*D

R 2D
- D ‘

8 (« ,2+£>2)
3/2

(3.34b)

Equation (3.34b) has been obtained from the expression for the vector potential of the CAN 

current sheet given by Edwards et al. (2001), and also represents the model function to 

better than ~1% in the region of interest. It is noted that Eqs. (3.32b) and (3.34b) obey 

Eq. (3.1b) exactly. For p e > p*  integration of Eq. (3.1b) gives

f,{p,)=fAp:V t; dp'p*B« M  = (p- >
/  \ m -2 f  Rj Y'-2

\ r e  J

(3.35a)
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where Fe ( p / ) , equal to 3.70 xlO4 nT R;2 for the parameter set employed here, is obtained

from Eq. (3.34) and where Eq. (3.33) was introduced into the integral. Combining the 

constant terms, we can therefore write for p e > p*

/  \  r-> B R ,
FA P ' ) = F« > + -r -L.( m-  2)

Rj
\ r e  J

(3.35b)

where , the value of Fe at infinity according to our model, is equal to 2.85 x 104 nT Rj2. 

The flux function given by Eqs. (3.34) and (3.35) is plotted versus p e by the solid line in

Fig. 3.6a. The dashed line shows the corresponding dipole value given by the first term in 

Eq. (3.34a). It can be seen that the current sheet value exceeds the dipole value in the 

middle magnetosphere by factors typically of ~5, increasing with increasing distance. It 

can also be seen that the value at the outer limit of the region considered here, 100 Rj, still 

has a significantly large value of 3.14xl04 nT R / ,  as does indeed the value at infinity

(2 .85x l04 nTRj2). It will be recalled from Section 3.3.1 that the value of Fe relates 

directly to the field line mapping to the ionosphere, given by Eq. (3.6). This is shown 

explicitly in Fig. 3.6b, where we plot ionospheric co-latitude Qi versus equatorial radial

distance p e, for the current sheet model (solid line) and dipole (dashed line). It can be seen

that the field line from 100 Rj maps to a co-latitude of 15.7° in the current sheet model, 

while mapping to 5.7° co-latitude for the dipole, significantly closer to the pole. The 

implication for the current sheet is that field lines with smaller values of Fe which map to

higher latitudes do not close within the middle magnetosphere, but instead correspond to 

the field lines of the outer magnetosphere and tail, including the open flux in the tail lobes. 

For example, the field line from infinity only maps to 15.0° co-latitude for the current sheet 

field, and of course 0° (i.e. the magnetic pole) for the dipole. For convenience of later
1̂2

discussion we show in Fig. 3.7a the ratio [Fe/Fedip) versus p e, which is equal (from

Eq. (3.3)) to the ratio of the corresponding ionospheric mappings (p /p ,  dip). It can be seen

that the value increases monotonically from near unity at ~5 Rj to reach nearly ~3 at 

100 Rj. Two further field parameters are plotted, which will be discussed later. The first is
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Figure 3.6. Plot (a) shows the equatorial flux function Fe of the current sheet magnetic 

field model (solid line), and the dipole value (dashed line). Plot (b) shows the mapping 

from the equatorial plane to the ionosphere, i.e. ionospheric co-latitude 6i versus equatorial

radial distance p e, for the current sheet model (solid line) and the dipole (dashed line).
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Figure 3.7. Plot (a) shows the square root of the ratio of the equatorial flux functions 

(Fe/F edip) . This function is equal to the ratio of the perpendicular distances from the 

dipole axis of the field lines when mapped into the ionosphere [ p j p { dip). Plot (b) shows

the product of the ratios [FejFe dip ) x (# ,e/ B2e dip), a quantity relevant to the form of the 

steady-state angular velocity profile of the plasma.
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the field parameter product Fe \Bze\, which appears on the right hand side of the Hill- 

Pontius equation Eq. (3.27). In Fig. 3.7b we show this product relative to the dipole, i.e. 

/ Fedip) x [Pze!Bzedip)» plotted versus p e. As we have seen in Figs. 3.5b and 3.6b, the

factor {Bze/B ze&ip} is always less than unity, while {Fe/Fe p̂) is always greater than unity.

The deviation o f these two factors from unity will therefore cancel in the product and, as 

can be seen in Fig. 3.7b, the latter deviates from unity (the horizontal dashed line) by less 

than a factor of 2 over the radial range out to -60 Rj, and does not become very large

beyond. The second compound field parameter is ( f J  p *  | « J )  = ( F J F e dip ) / ( B , e / B ,e  <nP) .

which occurs in the first (dominant) term in Eq. (3.28) for the field-aligned current. Here 

the above field factors combine to make a quotient which is large, as shown in Fig. 3.8. 

The value increases monotonically from near unity (again shown by the horizontal dotted 

line) at -5  Rj, to reach 15.3 at 100 Rj. The physical origins o f the forms of these field 

parameters, and their implications for the current system, will be discussed below.

In contrast to the works of Hill (1979, 2001) and Pontius (1997), Cowley and 

Bunce (2001b) did not solve the Hill-Pontius equation to obtain an equatorial plasma 

angular velocity profile. They used instead an empirical representation of the plasma 

equatorial angular velocity observations that are outlined in Section 2.4.4. Overall, 

spacecraft observations indicate the plasma angular velocity is close to corotation within 

-10-20 Rj, and then falls to <w//2y « 0.5 at -50 Rj, and even smaller values at larger

distances (should the current sheet extend beyond that distance in a particular local time 

sector). They therefore adopted the empirical form

where p^ = 50 Rj. Thus for all positive n co/ Qj —»1 as >0, col Q j  =0.5 at 

P e  = P eo  = 50 R j, and co/F2j —» 0 as /?e -»oo. However, as n increases, so does the 

sharpness of the decrease in the angular velocity about p eo. This is shown in Fig. 3.9, 

where co/Oj is plotted against p e in the range 0-100 Rj for n = 2, 4 and 6 . It was noted by
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{^e/Fe dip )y/(Bze/B ze Jjp )
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Figure 3.8. Plot showing the quotient of the ratios {Fe/ Fe dip) / [Bze/B ze dip) ,  a quantity

which determines the magnitude of the field-aligned current density. The horizontal dashed 

line indicates the value o f unity.
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Figure 3.9. The empirical equatorial plasma angular velocity profiles considered by 

Cowley and Bunce (2001b). Plot is co/Qj against jovicentric radial distance p e. From

Cowley and Bunce (2001b).
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Cowley and Bunce (2001b) that, although they considered profiles with higher values of n, 

the n = 2 profile has the weakest gradient, and thus was considered the most realistic in 

terms o f observations. In addition, this profile has the virtue o f having oo/Qj c c  p ; 1 at

large distances, in conformity with the ideas discussed above on conservation of angular 

momentum at large distances.

Cowley and Bunce (2001b) calculated the field-aligned currents flowing in the system 

using these empirical models and compared the result to the case for the dipole. Their main 

results can be seen in Figs. 3.10 and 3.11. The field-aligned current into the northern face

of the current sheet (or more specifically, (y'u /# ) )  is shown plotted against p e for the

current sheet field model (solid line) and the dipole (dashed line) in Fig. 3.10a. The field- 

aligned current in the ionosphere, i.e. at the feet of the field lines, is plotted versus dipole 

co-latitude for the current sheet model in Fig. 3.10b. The field-aligned voltage required by 

the Knight (1973) theory to drive the currents flowing in Figs. 3.10a and 3.10b is shown, 

plotted versus dipole co-latitude in Fig. 3.1 la, assuming the values of N  and Wth mentioned

above, i.e. N  = 0.01 cm'3 and Wth = 2.5 keV. Finally, the energy flux into the ionosphere

from precipitating electrons is shown in Fig. 3.1 lb. It can be seen that the upward-directed 

field-aligned current density for the current sheet field model is typically more than an 

order of magnitude larger than that obtained for the dipole, and is sufficiently intense to 

require downward-acceleration of magnetospheric electrons through field-aligned voltages 

of several tens of kV, such that the precipitating electron energy flux will produce ‘main 

oval’ aurorae exceeding ~100 kR in intensity, as observed. The origin of the field-aligned 

current enhancement effect lies in the differing mapping of field lines between the 

equatorial plane and the ionosphere in the two models, as discussed further by Cowley, 

Nichols, and Bunce (2002) and outlined below.

The analysis of Cowley and Bunce (2001b) was developed by Cowley, Nichols, and 

Bunce (2002), who, instead of calculating the field-aligned current using an empirical 

model for the angular velocity, took the current sheet field model used by Cowley and 

Bunce (2001b) and applied it to the steady state theory of Hill and Pontius to calculate the 

angular velocity self-consistently. They employed “reasonable” constant values of 

Zp = 0.25 mho and M  = 1000 kg s'1, such that the characteristic distance over which the
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Figure 3.10. Some field-aligned current parameters of the magnetosphere-ionosphere 

coupling current system calculated by Cowley and Bunce (2001b). Plot (a) shows (yy / i?)

plotted versus radial distance p e for the current sheet model (solid lines) and dipole 

(dashed lines) for the values of n as indicated. Plot (b) shows the ionospheric field-aligned 

current j w plotted versus ionospheric co-latitude 0i . From Cowley and Bunce (2001b).
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Figure 3.11. Plot (a) shows the field-aligned voltage (Pmin required to drive the currents in 

Plots 3.10(a) and 3.10(b), versus ionospheric co-latitude 0t for the current sheet model and 

for the values of n as indicated. Plot (b) shows the energy flux into the ionosphere from 

auroral electron precipitation Ef  versus ionospheric co-latitude di . From Cowley and

Bunce (2001b).
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plasma departs from rigid corotation (the ‘Hill distance’ given by Eq. (3.30)) is 34.8 Rj. 

Their solution o f the Hill-Pontius equation Eq. (3.27) is shown in Fig. 3.12a, where 

(co/Qj ) is plotted versus p e. The solid line shows the solution for the current sheet field

model, while for comparison the dashed line shows the result for a dipole, and the dot- 

dashed line shows the empirical form for the angular velocity used by Cowley and Bunce, 

i.e. Eq. (3.36) for n = 2 shown in Fig. 3.9. It can be seen that, as found by Pontius (1997), 

the angular velocity profiles in the equatorial plane are similar. Numerically, the similar 

flow profiles are a consequence of the fact that, as shown in Fig. 3.7b, the field product 

Fe|Rze| appearing on the RHS of Eq. (3.27) does not change greatly with the magnetic

model, particularly in the region within the Hill distance, where the electromagnetic torque 

is significant. This term appears in the expression for the torque on the plasma, such that 

the larger this product, the larger the torque on the plasma, and the less rapidly will the 

angular velocity depart from rigid corotation with increasing distance. The situation is 

shown schematically in Fig. 3.13, which shows a given position at radial distance p e in the 

equatorial plane threaded by both a current sheet and a dipole field. Clearly, the strength of 

the Bz field at a given distance is smaller for the current sheet field than for the dipole, thus

resulting in a smaller torque on the plasma. This gives rise to the (5 ze/Z?zedip) factor in the

above product. However, for a given plasma angular velocity, the equatorial current at a 

given radial distance is larger for the current sheet than for the dipole, hence working in the 

opposite direction. This arises from two factors, one physical, the other geometrical, which 

both come from the fact that the field lines from a given equatorial radial position map to 

the ionosphere at a significantly greater distance from the axis for the current sheet model 

than for the dipole, as pointed out in relation to Fig. 3.8. The first (physical) factor is that 

for a given plasma angular velocity, the actual ionospheric plasma velocity (proportional to 

the distance to the magnetic axis p t) will be larger for the current sheet model than for the

dipole, and with it the ionospheric electric field, Pedersen current intensity, and equatorial 

current intensity will also be larger for the former than for the latter (Eqs. (3.7) and (3.8)). 

The second (geometric) factor is that the total current in a given angular sector of the 

ionosphere (equal to the total equatorial current in the same angular sector), is also 

proportional to distance from the axis, since the total current is proportional to the length of 

longitudinal arc in that angular sector in the ionosphere (Eq. (3.7)). Both of these effects
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Figure 3.12. Plots showing the steady-state Hill-Pontius solutions for the equatorial plasma 

angular velocity as considered by Cowley, Nichols and Bunce (2002). Plot (a) shows

(a)/Qj) versus equatorial radial distance p e for the current sheet (solid line) and the dipole

(dashed line) and, for comparison, the empirical model assumed by Cowley and 

Bunce (2001) for n = 2 (dot-dashed line). Plot (b) shows the current sheet and dipole 

angular velocity profiles mapped along the magnetic field lines into the ionosphere and 

plotted versus ionospheric co-latitude Qi . From Cowley, Nichols and Bunce (2002).
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Figure 3.13. Schematic showing a given position pe in the equatorial plane threaded by a 

dipole field and a distended current sheet field. It can be seen that the decrease in the 

strength of the field \Bze\ at pe associated with the current sheet field (and hence the

decrease in electromagnetic torque) is offset by the fact that this field maps to the 

ionosphere at a larger perpendicular distance pi from the magnetic axis, thereby increasing

the ionospheric torque on the equatorial plasma. These factors work against each other to 

produce similar equatorial plasma angular velocity profiles for each model.
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give rise to a factor (Fe/F e dip )^2 (the ratio of the distances from the magnetic axis from

Eq. (3.3)) in the expression for the equatorial radial current, and together give a factor of

( • ^ / ^ ^ ) = (Pi/AdiP) in the expression for the torque. Thus the current and the field

effects behave in opposite ways as the field structure changes, with the net result that the 

torque on the plasma does not change greatly, and hence neither does the angular velocity 

profile of the plasma. However, a substantial difference does occur when this is mapped 

along the magnetic field lines into the ionosphere, as indicated in Fig. (3.12b), where 

co/Dj is plotted versus ionospheric co-latitude 0i . It can be seen that for the dipole the

drop in plasma angular velocity occurs much closer to the pole and over a much broader 

latitudinal range.

Cowley, Nichols, and Bunce (2002) calculated the currents flowing in the system and 

found, as did Cowley and Bunce (2001b), a large difference between the results for the two 

field models. As a summary, Figs. 3.14 and 3.15 show plots o f the same parameters as 

Figs. 3.10 and 3.11, with the current sheet results shown by the solid lines and the dipole

results shown by the dashed lines. That is, Fig. 3.14a shows ( . / ’n / # )  plotted versus radial 

distance p e, Fig. 3.14b shows the ionospheric field-aligned current j w plotted versus co

latitude , Fig. 3.15a shows the field-aligned voltage cZ>min required to drive the currents in 

Figs. 3.14a and 3.14b, and Fig. 3.15b shows the resulting energy flux Ef  into the 

ionosphere, assuming the same values of N  and Wth as above. It can be seen that, as found 

by Hill (2001), the dipole field results in a field aligned current which peaks at a few 

hundredths of a pA m 2 over a -5° range centred on -10° co-latitude. As discussed above, 

this is too weak to drive the main oval aurorae and occurs at a co-latitude -5° too low. On 

the other hand, the current sheet model results in a field-aligned current which peaks at 

~0.4 pA m'2 over a -2.5° wide range centred on -16° co-latitude. Numerically, the larger 

values of the field-aligned current which occur in the current sheet model compared with 

the dipole model is due principally to the ( f J  p 2 | = (Fe/Fe dip ) /(B ze/B ze dip) factor that

appears in the dominant term in Eq. (3.28), and is plotted in Fig. 3.8. The large value of 

this term ensures that the field-aligned currents for a given equatorial angular velocity 

profile are larger for the current sheet field than for the dipole by around an order of
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Figure 3.14. Some field-aligned current parameters of the magnetosphere-ionosphere 

coupling current system considered by Cowley, Nichols and Bunce (2002). All plots show 

the results for die current sheet model (solid lines) and the dipole model (dashed lines). 

Plot (a) shows (y'n / 2?) plotted versus radial distance p e. Plot (b) shows the ionospheric

field-aligned current j w plotted versus ionospheric co-latitude . From Cowley, Nichols 

and Bunce (2002).
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Figure 3.15. Plot (a) shows the field-aligned voltage required to drive the currents in 

Plots 3.14(a) and 3.14(b), versus ionospheric co-latitude 0i . Plot (b) shows the energy flux 

into the ionosphere from auroral electron precipitation Ef  versus ionospheric co-latitude 

0.. From Cowley, Nichols and Bunce (2002).
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magnitude. Physically, the difference is due to two factors. The first is again that the field 

lines from a given equatorial radial distance map into the ionosphere at a larger distance 

from the magnetic axis for the current sheet than for the dipole, such that for a given 

equatorial plasma angular velocity the ionospheric plasma velocity, electric field, Pedersen 

current and Pedersen current divergence are also larger. This effect contributes a factor

[fre/Fedip̂  « 2 as can be seen in Fig. 3.7a. The second effect is simply that a given radial

range in the equatorial plane maps into a much narrower latitudinal range in the ionosphere 

for the current sheet field than for a dipole, as a consequence of both the reduced equatorial

Bze field, giving a factor of (Z?zedip/i?ze) » 2.5 as shown in Fig. 3.5b, and the increased co-

l/2
latitude of the field mapping, giving another factor of (F /F e dip) « 2 .  Consequently, the

latitudinal gradient of the ionospheric flow, and the divergence of the electric field and 

Pedersen current will be correspondingly increased by an overall factor of 

{Fe jFe {BzejB ze dip) «10. Both these effects thus work in the same direction, and lead

to field-aligned current densities for the current sheet model which are an order of 

magnitude larger than those for the dipole model. As shown in Fig. 3.15, the consequence 

is that for the current sheet field model, a field-aligned voltage co-located with the field- 

aligned current and peaking at -70  kV is required to drive this current, and results in a peak 

energy flux o f -30  mW m'2, sufficient to drive a UV aurora intensity of -300 kR. This is 

comparable with observations of main auroral oval.

The results of Cowley, Nichols and Bunce (2002) thus showed that the field model chosen 

is crucial in determining the field-aligned current and auroral parameters associated with 

the magnetosphere-ionosphere coupling current system. However, as mentioned above 

their analysis as it stands is inconsistent for two reasons. The first rests in the fact that it is 

not expected that the Pedersen conductivity will be constant, as assumed in the above 

calculations. For example, Strobel and Atreya(1983) (and more recently Millward et 

al., 2002, see Chapter 5) estimated that significant auroral precipitation (as predicted by the 

above theory) would enhance the ionospheric Pedersen conductivity in this region from a 

background of a few tenths of a mho to -10 mho. This calls into question the 

approximation that 27/ is constant in the above analysis, and further work to solve the 

equations self consistently, i.e. with a variable Pedersen conductivity built in, is required.

53



Chapter 3: Magnetosphere -  ionosphere coupling in Jupiter’s middle magnetosphere

This is the issue addressed in Chapter 5. The first step on this road, however, is to examine 

the behaviour o f the system as it stands over a range of values of E *  and M , as neither of

these quantities are at present known to great accuracy and the results of Hill (1979, 2001), 

Cowley and Bunce (2001b) and Cowley, Nichols and Bunce (2002) explored solutions for 

only a few spot values. This is the topic of the next chapter. The second inconsistency is 

due to the fact that the mapping between the equatorial plane and the ionosphere is carried 

out along equipotentials, whilst the outcome of the theory is the existence of significant 

field aligned voltages. The equations must therefore be solved with this effect self- 

consistently accounted for, and this is the topic of Chapter 6 .
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Chapter 4

Magnetosphere-Ionosphere Coupling Currents in 

Jupiter’s Middle Magnetosphere: Dependence on the 

Effective Ionospheric Pedersen Conductivity and 

Iogenic Plasma Mass Outflow Rate

4.1. Introduction

As discussed in Chapter 3, the solutions for the plasma angular velocity and the current 

depend on two system parameters, the ‘effective’ value of the height-integrated ionospheric 

Pedersen conductivity, and the plasma mass outflow rate from the Io torus. Neither of 

these parameters is well determined at present, with estimates of the conductivity ranging 

from -0.1 to -1 0  mho, and estimates of the mass outflow rate from -500 to -2000 kg s-1. 

The purpose of this chapter is to examine how the solutions for the plasma angular velocity 

and coupling currents depend on these two system parameters for both dipole and current 

sheet field models. Some results for the dipole model have been presented previously by 

Hill (2001), as discussed in Chapter 3, who gave formulae for the magnitude and position 

of the extrema in both the total field-perpendicular current and in the field-aligned current. 

For the current sheet field model, however, only a few numerical solutions using 

‘reasonable’ spot values of the system parameters have been previously published (Cowley 

and Bunce, 2001b; Cowley, Nichols and Bunce 2002; and Cowley, Bunce and 

Nichols, 2003; see Chapter 3). In this chapter we first introduce some simple analytic 

forms that are valid at small and large distances and which show how the solutions depend 

on the system parameters in these limits. We then provide a complete solution for the
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dipole field, and go on to provide an approximate analytic solution for the current sheet 

model in which the equatorial field is taken to vary with distance as a power law. We 

compare this analytic solution both with numerically computed results, and with 

corresponding results for the dipole field. The work presented here thus provides detailed 

information on how the coupling current system depends on the two system parameters 

over a substantial range of values, here taken to be constant quantities in a given solution. 

This knowledge provides valuable background for the more complex studies in later 

chapters in which the system parameters are taken to vary in space, as may more generally 

be the case.

4.2. Approximate forms for small and large distances

Before describing the full solutions for the case of the dipole and current sheet model, it is

worth noting some simple approximate forms which are valid at small and large distances

from the plasma source region. It is an important general property of the physically

interesting solutions of the governing equations (see Chapter 3) that at small radial
*

distances the currents depend only on M  and not on Zp , while at large radial distances
*

they depend only on Ep and not on M . The small- p e approximations follow from a 

series solution of the Hill-Pontius equation Eq. (3.27) for the case in which (p)/I2j)= 1 at

p e =0  (such that the plasma rigidly corotates at small distances). Taking (m /21/ )  as the 

formal expansion parameter, we write

(4.1)

and substituting into Eq. (3.27) and equating coefficients of powers of \m / Z p ) we find 

that Oq = 1, and that for n>  1 the an are determined by the recurrence relation

(4.2)
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Thus the leading term describing the breakdown of rigid corotation in the inner region, 

which we take as our small- p e (‘S') approximation, is

f  \  co
= 1--------- — r (4 -3)4jcZ.F.\B.-T/^p M. e |" zc|

as given previously (but not derived in this manner) by Cowley, Bunce and Nichols (2003).

We note that the departure from rigid corotation is proportional to M  and inversely

proportional to I P . When substituted into Eqs. (3.10), (3.12)-(3.15) and (3.17) to find the

corresponding approximations for the currents, we find that the currents on a given field
*

line depend only on M  and not on Zp

. (4.4a,b)
2*P ,K I ’ ]fi.

MQj 2MQj
i»k =  T -̂r , I n c = —\— r~ , (4.4c,d)
p S n p \ B \  pS \Br e \  ze\ \ z

i i
lBJ  dP‘ dp‘

While the currents are formally proportional to Zp , the departure o f the plasma from rigid 

corotation in this regime, and hence the electric field in the ionosphere, is inversely 

proportional to ZP , so these dependencies cancel, leaving the currents proportional only to 

M . These expressions can also be derived directly by substituting co-Qj  into the left side 

of Eq. (3.26) and the substituting into the equations for the currents, Eqs. (3.10), (3.12)-

(3.15) and (3.17), i.e. they are just the currents required to maintain near-rigid corotation in 

the inner region.

The large-p e (‘L') approximations are simply obtained by putting (a>lfij)L = 0 into 

Eqs. (3.10), (3.12)-(3.15) and (3.17) and assuming that p eis large, to find
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ipi — 2Zp BjQJp i , Ip L — 47tEp BJC2Jp i , (4.5a,b)

4 2 ^ 2 5 .  ; Ip L = % ^ p'QFe , (4.5c,d)
P.

= ~ 2 I r'q , , and j v L BjOj . (4.5e,f)

which thus depend only on Z *  and not on M . This follows from the fact that in this 

approximation the angular velocity is specified as being zero in the inertial frame, so the 

currents depend only on Zp and no reference is made to M . A higher order form for 

large-/?e can also be derived (subscript ‘ / / ’), in which the non-zero plasma angular velocity 

falls with distance as p e due to negligible ionospheric torque on the equatorial plasma at 

large distances. This will be discussed in more detail later.

4.3. Plasma angular velocity and coupling current system for a dipole 

magnetic field model

Following the earlier work of Hill (1979, 2001), Cowley and Bunce (2001b) and Cowley, 

Nichols and Bunce (2002) described in the previous chapter, in this section we provide a 

complete analytic solution for the case where the poloidal field is taken to be the planetary 

dipole alone. The results include a normalised solution which shows how the angular 

velocity and each current component vary in amplitude and spatial scales with the system 

parameters. We also discuss the behaviour of the un-normalised quantities, which more 

readily show the behaviour at small and large distances described in the above section. 

These results form a useful introduction to, and point of comparison with, the results for the 

current sheet field to be presented in the Section 4.4.
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4.3.1. Normalised solution

Introducing Eq. (3.5) into Eq. (3.27), the Hill-Pontius equation for the dipole field is

Pe d
2 d p e  ̂12j  j

co co = 2 D̂e CO
(4.6)

where Roe is our notation for the equatorial ‘Hill distance’ {= p H) for the dipole field 

(subscript *£>’), given by

RDe

x l / 4

(4.7)

From Eq. (4.6) it can be seen that the angular velocity in this case is a function only of 

(pe / Roe) ’ so that the solutions scale with distance as RDe and hence with the system

parameters as ( z p* / m ^  . As outlined below, RDe varies between -30  and -90 Rj over the

range of parameters mentioned in the introduction, thus being comparable to the radial 

scale of the jovian middle magnetosphere (which extends to distances between -40  and 

-100 Rj, depending on local time and the state of the magnetosphere). As discussed in 

Chapter 3, the general analytic solution of Eq. (4.6) can be obtained by the integration 

factor method

r \  co K-De
\  r'e J

exp
RDe

V Pe J

erfc
r R \ 2

De

\  r'e J
+ K (4.8)

where erfc(z) is the complementary error function (related to the error function erf(z) by 

erfc(z) = 1 -  erf(z)), and K  is a constant of integration. All solutions diverge at the origin 

except the solution with AT=0. This special solution rigidly corotates (i.e. (co/Qj) = 1)

when (pe/R De) goes to zero, and is the solution derived previously by Hill (1979, 2001),

but where we use the ionospheric approximation Bt « 2B3.

59



Chapter 4: Dependence on Ionospheric Pedersen Conductivity and Mass Outflow Rate

Mapping to the ionosphere is accomplished using Eq. (3.6). We introduce an ionospheric 

counterpart o f the ‘Hill distance’ given by

(4.9)

such that the angular velocity mapped to the ionosphere is a function only of ( p j R Di),

where

(4.10)

Solutions mapped to the ionosphere thus scale with distance from the magnetic axis as RD.,

K =  0 plotted versus (pe/R De)  in the equatorial plane, and versus (p jR Di) in the 

ionosphere, respectively. It can be seen in Fig. 4.1a that near-rigid corotation is maintained 

to (pe/Roe)*10.5, beyond which (co/ty) decreases rapidly, reaching -0.758 when

(P e l R D e ) = X and 0 5  when ( P e / R De)x l  .52. At large distances (co/Qj) falls 

approximately as the inverse square of the distance due to the ineffective nature of the 

ionospheric torque, the effective exponent m describing the rate o f decrease, cocc p ~ m, 

falling below -1.9 for (pe / RDe) > 4.682. We also note that solutions started with non-zero 

K  within (pe/R De) <  0.5 converge very rapidly onto this solution at larger distances, such 

that the solutions are only weakly dependent on the choice of boundary condition in this 

case (Cowley, Bunce and Nichols., 2003). In Fig. 4.1b the angular velocity rises from zero 

at the pole to near-rigid corotation beyond (p{ /R Di)«1 .5 .

and hence with the system parameters as (m / . The value of RDi varies only between 

~0.1 and —0.2 Rj over the range of parameters mentioned above.

The solid lines in Figs. 4.1a and 4.1b show the normalised angular velocity solution with
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Figure 4.1. Plots of the steady state plasma angular velocity profile for a dipole magnetic 
field, shown (a) versus normalised equatorial radial distance (pe/R De),  and (b) versus 
normalised distance from the magnetic axis (p jR Dl)  in the ionosphere. The solid line in 
each case shows the full solution obtained from Eq. (4.8) with K =  0, such that the plasma 
rigidly corotates at small radial distances. The long-dashed lines show the small pe form 
given by Eq. (4.11), while the large pe form is just {coj O j \  = 0 . The downward-pointing 
tick-marks indicate the limits of validity of both the small and largQpe approximations as 
defined by Eq. (4.12). The short-dashed lines show the higher-order large pe form given by 
Eq. (4.13), whose limit of validity defined by Eq. (4.14) is indicated by the upward- 
pointing tick-mark. The horizontal dotted lines indicate the condition for rigid corotation, 

(« //* )= . i .
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The dashed lines in Fig. 4.1 show the approximate forms mentioned in the above section, 

with the tick-marks indicating their regimes of validity. The long-dashed lines show the 

small- p e (‘5”) approximation given by Eq. (4.3), which in normalised form becomes

r \  co

Js 1 2
= 1- -  

2
RDi

P i

(4.11)

(We note that the series generated by Eq. (4.1) is the same as that obtained by asymptotic 

expansion of the error function in Eq. (4.8) for large argument.) The approximate form 

falls away from rigid corotation more quickly than the full solution, and reaches zero, equal

to the large-p e (‘Z,’) approximation (co/ Oj)L = 0 , at (pe/R De) = i f l  »1.189. We define the

limits of validity of these approximations as being the points where

(4.12)

such that the departure from rigid corotation given by the approximate form exceeds that of 

the full solution by 10% of the latter. At these points the forms for the field-perpendicular 

currents thus also exceed those of the full solution by 10%. The outer limit of validity of 

the small pe form then lies at (peS/RDe)~  0.516 where 0.032, while the inner

limit of validity of the large p e form lies at (peL/R De)~  4.284, where (since (coj I2 j\  = 0 ) 

(co/ f2j) « 0.091. These limiting positions are shown by the downward-pointing tick-marks 

in Fig. 4.1.

The short-dashed lines in Fig. 4.1 show the higher-order large-p e form (‘Z, ”), in which the
_2

plasma angular velocity falls with distance as p e due to negligible ionospheric torque. 

Noting that both the exponential and the error function go to unity in Eq. (4.8) as p e —> go, 

we find with Hill (1979) that for K  = 0

f  \co
Qj

=4n
Jv

RDe

V He y
(4.13)
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The limit o f validity o f this approximation is similarly defined as the point where

( l - ( to la , ) L)  = f i .9 { \-(a> la ))  , (4.14)

such that the departure from rigid corotation given by the approximation is less than that of 

the full solution by 10% of the latter, and similarly for the field-perpendicular currents. 

With this condition the inner limit of validity lies at (peL/R D̂ )~ 2.209, where 

(co/ Of) ~  0.292, and is marked by the upward-pointing tick-marks in Fig. 4.1.

The normalised solutions for the current components then follow from Eqs. (3.10), (3.12)-

(3.15) and (3.17), giving

i -  = 2
l PD

f  V

£ l

\ ^ D i  J
1-

CO
Q j\  —j v

where l PD ~ ( B j R j f ' a ,  , (4.15a)

=
PD

f £ i  W
\^ D i  J

1- 0)
a,V J

where ( B j R / f O j  , (4.15b)

r p \ 2c
De CO

\  J

l - where lpD ~ f2j , (4.15c)

=  8/r
pD nj j

where b o  = 2n j
{ B j R / f O j  , (4.15(1)

Oil/-6)
TJJbYd= 2

r \ co
C2j

1 + 4
RDe

\  r e  J
1- CO

nj j
where { j j B ) D = Z P'Oj , (4.15e)

J\\i

J\\iD

= 2
r  ̂co

j
1 + 4

r \  
£±.

\ ^ D i  J
1-

co
Q j  J

where J\\iD — 227p BjQj (4.15f)
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We note that Eqs. (4.15b) and (4.15d) are equivalent to Hill’s (2001) Eq. (A13), while 

Eqs. (4.15e) and (4.15f) are the same as Hill’s Eq. (A12). These normalised forms are 

plotted as solid lines in Figs. 4.2-4.4 versus either {pe/R De) or W * » )  as appropriate.

The values and positions o f principal features are also tabulated in Table 4.1 in normalised 

units.

The dashed lines and tick-marks in Figs. 4.2-4.4 then show approximate forms in the same 

format as Fig. 4.1 for the angular velocity. Specifically, for small- p e the long-dashed lines 

show the currents obtained by introducing Eq. (4.11) (the ‘£ ’ approximation) into 

Eq. (4.15) to give

V*PD' S v P i

'  I  '1 p

\  IpD J s

-  2n RDi

\  Hi J
(4.16a,b)

\ lfD
= 2

^^De' V ̂ pd Js
= 4 7t

r V 
£ l

K^De J
(4.16c,d)

0 . /* )  ] _  n=  J

S

f  n4
A

\R De

and
f  • N

h
\ h n j s

 ̂R ^
Di

\ P i i J
(4.16e,f)

where we note that to quote the small- p e approximation to the field-aligned current

correctly to (p elRDe)A in (4.16e) one must actually employ the small-p e approximation for

the angular velocity to third order (given for the dipole by Eq. (6.35) with s  = 0), due to the

(Roe!Pef term in Eq. (4.15e). This similarly applies for the ionospheric field-aligned

current in Eq. (4.16f). The expressions for the currents in Eq. (4.16) are the same as 

Eq. (4.4) for a dipole field, when expressed in normalised form. This ‘5” approximation is 

drawn to the point where (a>/ f2j)s falls to zero. Beyond this we draw the currents obtained

by introducing (eo/Q3\  -  0 into Eq. (4.15) (the ‘L’ approximation) and assuming that p e is

large, to give
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Feature
M '£ l \

Dî \ P j )

Maximum upward field-aligned current density
U j B ) l { j j B ) D)mm = (/„ ,//,.oL , -  0.6111

1.0203 0.9900 0.7467

Maximum sheet-integrated equatorial radial 
current *0.9809

1.1034 0.9520 0.7014

Plasma angular velocity falls to = 0.5 1.5201 0.8111 0.5

Maximum azimuth-integrated total current

( V ^ L = 2( ^ / / ™ )««“ 8-404
Field-aligned current passes through zero

1.7409 0.7579 0.4178

Maximum height-integrated ionospheric Pedersen 
current *0.9631

2.5674 0.6241 0.2284

Maximum downward field-aligned current 
density ((/„ /# )/(/» /B)D)mm = i j j j m = -2

00 0 0

Table 4.1. Principal features of the plasma angular velocity and coupling current system for 
a dipole field in normalised units.
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Figure 4.2. Plots of (a) the normalised height-integrated ionospheric Pedersen current 
intensity, and (b) the normalised azimuth- and height-integrated total ionospheric Pedersen 
current for a dipole magnetic field, plotted versus normalised distance from the magnetic 
axis (Pi/RDi) in the ionosphere. The normalization constants are given by Eqs. (4.15a) and 
(4.15b). The solid lines show the full solutions given by Eqs. (4.8) and (4.15a,b), while the 
long-dashed lines show the small- and large-pe forms given by Eqs. (4.16a,b) and (4.17a,b), 
drawn to a common boundary at (PilRDi) = l/V 2 . The downward-pointing tick-marks show 
the limits o f validity of these approximate forms as defined by Eq. (4.12) (as in Fig. 4.1). 
The short-dashed lines show the higher-order large-/?* form given by Eq. (4.13), whose 
limit of validity defined by Eq. (4.14) is indicated by the upward-pointing tick-mark.
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Figure 4.3. Plots of (a) the normalised current sheet-integrated equatorial radial current 
intensity, and (b) the normalised azimuth- and current sheet-integrated total equatorial 
radial current for a dipole magnetic field, plotted versus normalised equatorial radial 
distance (pe/R De)• The normalization constants are given by Eqs. (4.15c) and (4.15d). The 
solid lines show the full solutions given by Eqs. (4.8) and (4.15c,d), while the long-dashed 
lines show the small- and large-/?e forms given by Eqs. (4.16c,d) and (4.17c,d), drawn to a 
common boundary at (pe/R De)=^l2 . The tick-marks are in the same format as Fig. 4.2.
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Figure 4.4. Plots of (a) the normalised equatorial field-aligned current density per unit 
magnetic field strength, plotted versus normalised equatorial radial distance (pe/R D̂ ), and 
(b) the normalised field-aligned current density just above the ionosphere for a dipole 
magnetic field, plotted normalised distance from the magnetic axis (p jR D,) in the 
ionosphere. The normalization constants are given by Eqs. (4.15e) and (4.15f). The solid 
lines show the full solutions given by Eqs. (4.8) and (4.15e,f), while the long-dashed lines 
show the small- and large-/?* forms given by Eqs. (4.16e,f) and (4.17e,f), drawn to a 
common boundary at (pe/R De) = V2 and (/?,//?Dl) = |/V 2 respectively. The tick-marks are 
in the same format as Fig. 4.2.
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(  • 
I n = 2

V §PD J L

( P± '
\ ^ D i  J u P D ' L

= 4 n
r ^ 2  

£ l (4.17a,b)

/  . \
= 4

v pd  J l

De

\  r e  J

( l . '
= 8# D̂e

^  P e
(4.17,c,d)

( V s)
= - 2  , and 7 h«

V | | i I K
= - 2  , (4 .17 , e,f)

which are the same as Eq. (4.5) for the dipole, when expressed in normalised form. The 

small- p e form for the angular velocity falls away from rigid corotation (the horizontal 

dotted line) more quickly than the full solution, and goes to zero, equal to the large- p e 

form, at (fie/R D€) = ^ 2  =1.189 (or (p,lRDI) = \/$l2 » 0  .917 in the ionosphere). The long- 

dashed lines thus represent the current profiles that would be driven by an angular velocity 

profile given by the ‘S’ approximation to the point where (co/ O f s falls to zero, with zero

being taken beyond. These curves thus provide good approximations at small and large 

distances, but do not give an accurate description between, where, because the departure of 

the angular velocity from rigid corotation is always larger than for the full solution, the 

magnitude of the currents is also larger. The short-dashed lines then show the profiles 

obtained by introducing Eq. (4.13) (the lL ” approximation) into Eq. (4.15) to yield

r . \
I n = 2

V PD J L

r \
£ i  

\&DiJ
1-V^r

r \ 4  ̂
_Pi_

V ^D i J
where

P D ' L
= 4/r

\ R Di>J
1-V^r

4 \

\ R D i' J
(4.18a,b)

f  . a 
1p

\  p °  J l

= 4
r \ 2/r

\  r e  J
X-yfjt

/  \ 2A

\  r e J
where f i , '

P̂D
= 8/r

■P. A  ̂P e  '  J
(4.18c,d)

where Jll\ _ -'i i -
V || m ' v  V

r \ 4A 
Pi (4.18e,f)
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such that these revert to Eq. (4.17) on replacing the final bracket in each case with unity. In 

this approximation the departure from rigid corotation is always less than for the full 

solution, so the magnitude of the currents is also less.

The normalised solutions given above show how the form and amplitude of the plasma 

angular velocity and currents vary with the system parameters for a dipole field. 

Specifically, Eqs. (4.7) and (4,9) show that the solutions scale spatially in the equatorial

plane and in the ionosphere as p e oc ( z p / h f f  and p, cc(m / Z p*Y , respectively, while 

Eq. (4.15) shows that the amplitude of each component of the current system scales as 

some power of Zp and M  o f the form

P+r) P-r)
iocZp* 2 M  2 (4.19)

where y  is equal to zero for the sheet-integrated equatorial radial current, 1/2 for the

azimuth-integrated total field-perpendicular current, 3/4 for the height-integrated

ionospheric Pedersen current, and 1 for the field-aligned current density. The fact that

these spatial and amplitude scales combine to produce a linear dependence of the current on
*

M  for small p e, as given by Eq. (4.4), and a linear dependence on Zp at large p e, as 

given by Eq. (4.5), implies that the currents grow with a specific power of the distance in 

the inner region, and decline with a specific power of the distance at large distances. It is 

easy to show that at small distances the currents grow as

is *M p?>+r)x - ^ - r  (4.20)
P i  }

while at large distances they decline as

(4-21)
P e

as may be readily verified by substituting the appropriate form for the angular velocity (i.e.

the ‘5” or ‘Z,’ approximations) into Eq. (4.15). Thus, in summary, the currents grow in the
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inner region according to Eq. (4.20), and depart from this behaviour at an equatorial 

distance proportional to (e p / h l f  (as shown by the ‘inner’ downward tick-marks in 

Figs. 4.2-4.4), where the current value depends on Ep and M  according to Eq. (4.19). 

Similarly, the currents decline in the outer region according to Eq. (4.21), starting at an

equatorial distance proportional to (z p / K lf*  (as shown by the ‘outer’ downward tick- 

marks in Figs. 4.2-4.4), where the current value again depends on Ep and M  according to 

Eq. (4.19). These dependencies on Ep and M  may be more readily appreciated when the 

angular velocity and current profiles are plotted in physical, rather than normalised units, as 

in the following section.

4.3.2. Un-normalised current dependence on the system parameters

We now consider how the un-normalised solutions vary with the system parameters, and

begin by considering the likely ranges o f the latter. With regard to the conductivity, Strobel

and Atreya(1983) estimated that for a jovian ionosphere produced solely by solar UV

radiation, the height integrated Pedersen conductivity uncorrected for atmospheric slippage

is ~0.2 mho. They also pointed out that in the presence of intense auroral precipitation this

value could rise to -10  mho. We noted in Chapter 3 that atmospheric slippage might

reduce these to ‘effective’ values which are less by factors of two or more. Bunce and
*

Cowley (2001) made a rough empirical determination of the effective value Ep based on 

angular velocity profiles derived from spacecraft measurements of B9 (see Fig. 3.1). They

inferred values of EP -0.3-0 .8 mho. Here we will investigate a range from 0.1 to 10 mho. 

With regard to the iogenic plasma mass outflow rate M , estimates of the total plasma 

production rate within the torus lie typically within the range 1000 -  3000 kg s'1 as 

discussed in Chapter 2, of which one third to one half emerges as plasma outflow in the 

equatorial disc. Here we will investigate a range of M  between 100 and 10,000 kg s_1.

With these values we can now estimate the likely ranges of the equatorial and ionospheric 

‘Hill distances’, Eqs. (4.7) and (4.9), that scale the respective spatial distributions. 

Numerically we find
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49.21
Rj

^ /(m h o )  

A /(l03kg s_1)

1/4

and 0.1426
Rj

4 /( l0 3k gs_1) 

Ep (mho)

1/8

(4.22a,b)

such that for system parameters at the centre of the above ranges, i.e. Ep = 1 mho and 

M  = 1000k gs -1, we find « 49.2 Rj and RDi ~ 0.14 Rj (corresponding to a co-latitude 

of 8.2°). If we fix M  at this value and allow EP to increase from 0.1 to 10 mho, we find 

that Roe increases from 27.7 to 87.5 Rj, while Rdi decreases from 0.19 to 0.11 Rj (co

latitudes between 11.0° and 6 .1 °), as indicated above. Similarly, if we fix Ep at 1 mho and

allow M  to increase from 100 to 10,000 kg s-1, we find that Roe and Rdi vary over the 

same ranges but in the reversed sense. Thus because Roe and Rdi depend on the system 

parameters only as the quarter and eighth powers, respectively, they change only by modest 

factors as the system parameters vary widely.

We also note here that the value of Roe significantly exceeds the radial distance of the Io 

source at p e Io « 6  Rj over the whole range of parameters considered, such that the 

normalized distance of the source is typically (pe J  RDe) ~ 0.1 -0 .2 . Reference to Fig. 4.1a 

shows that near-rigid corotation will then indeed be valid in the vicinity of Io under all 

conditions examined (though additional considerations apply, o f course, within the plasma 

pick-up region itself).

Variation of the un-normalised distributions of plasma angular velocity and current with the 

system parameters is illustrated in Figs. 4.6-4.11, in a similar format to Figs. 4.1-4.4. The 

values o f the physical constants employed are B j=  428,000 nT, Rj = 71,373 km, and
A | ♦

Qj = 1.76xlO rad s . Figs. 4.6-4.8 show how the current components vary with Ep at 

fixed M , specifically for Ep = 0.2, 1, and 5 mho at M  = 1000 kg s"1, while Figs. 4.9-4.11 

shows how they vary with M  at fixed Ep , specifically for M  = 200,1000, and 5000 kg s 

at Ep = 1 mho. These solutions correspond to only one set of angular velocity profiles, 

however, with (e p / m )= 2x10“*, 10“3,and 5 x 10-3 mhos kg-1, and these are shown in 

Fig. 4.5. The corresponding ‘Hill distances’ are 33, 49, and 74 Rj in the equatorial plane,
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Figure 4.5. Plasma angular velocity profiles for a dipole field are plotted (a) versus 
equatorial radial distance p e, and (b) versus magnetic co-latitude . Profiles are shown in 
each case for [e * /  M^= 2 x 10^ , 10-3, and 5 x l 0 ~3 mhos kg-1, as marked in the figure. 
The solid lines show the full solutions given by Eq. (4.8) with K  = 0, the dashed lines the 
small- p e form given by Eq. (4.11), the large- p e form being just (co/Oj\ = 0 , while the tick- 
marks show the limits of validity of these approximations according to the criterion given 
by Eq. (4.12) (the large- p e limits only lying within the range in plot (b)). In the 
ionospheric projection in (b), the full solution curves are continued towards the pole beyond 
the 120 Rj limit taken in plot (a) (mapping to a co-latitude of 5.24° in the ionosphere); the 
curves in this regime are shown by dot-dashed lines. The horizontal dotted lines indicate 
the condition for rigid corotation, (co/Oj)= 1 .



Chapter 4: Dependence on Ionospheric Pedersen Conductivity and Mass Outflow Rate

ip/A m 1
4

. 5 M = 1000 kgs

3

. 5

2

. 5

1

. 5
(X2 mJiQ_ ——-

  — -------— - — 1 Gi/deg
10  1 2 . 5  15  1 7 . 5  20

(a)
120

100 M= 1000 kgs'

80
Zp* = 5 mho //

60

40

20

0.2 mho J.-

1 7 . 5  201 2 . 5 152 . 5 7 . 5 105
(b)

Figure 4.6. Set of solutions for (a) the height-integrated ionospheric Pedersen current
intensity and (b) the azimuth- and height-integrated total ionospheric Pedersen current for a
dipole magnetic field, plotted versus co-latitude in the ionosphere and shown in physical
units. Plots are shown in each case for M  held fixed at 1000 kg s , while Zp takes the
values 0.2, 1, and 5 mho as marked. The format follows that in Figs. 4.2-4.4, except that
the higher-order large- p e approximation (the short-dashed line in Figs. 4.2-4.4) is not
shown to avoid clutter. Note that there is only one ‘small p j  approximation (dashed)
curve in each plot corresponding to the fixed M  value, while the three ‘large p f

*

approximation curves are simply proportional to Ep .
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Figure 4.7. Set o f solutions for (a) the current sheet-integrated equatorial radial current 
intensity and (b) the azimuth- and current sheet-integrated total equatorial radial current for 
a dipole magnetic field, plotted versus equatorial radial distance and shown in physical 
units. Plots are shown in each case for M  held fixed at 1000 kg s , while ZP takes the 
values 0.2, 1, and 5 mho as marked. The format follows that in Fig. 4.6. Again, note that 
there is only one ‘small- p /  approximation (dashed) curve in each plot corresponding to the 
fixed M  value, while the three ‘large-/?/ approximation curves are simply proportional to
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Figure 4.8. Set of solutions for (a) the equatorial field-aligned current density per unit 
magnetic field strength, plotted versus radial distance in the equatorial plane, and (b) the 
field-aligned current density just above the ionosphere, plotted versus co-latitude in the
ionosphere, for a dipole magnetic field and shown in physical units. Plots are shown in

—1 *each case for M  held fixed at 1000 kg s , while Zp takes the values 0.2, 1, and 5 mho as
marked. The format follows that in Figs. 4.6 and 4.7. Again, note that there is only one
‘small-/?/ approximation (dashed) curve in each plot corresponding to the fixed M  value,

*
while the three ‘large- p f  approximation curves are simply proportional to Zp .
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Figure 4.9. Set of solution curves for (a) the height-integrated ionospheric Pedersen
current intensity and (b) the azimuth- and height-integrated total ionospheric Pedersen

*
current for a dipole magnetic field shown in physical units, as in Fig. 4.6, but where Zp is
held fixed at 1 mho, while M  takes the values 200, 1000, and 5000 kg s-1. The format is
the same as Figs. 4.6-4.8. Note that in this case there is only one ‘large- p j  approximation

♦
(dashed) curve in each plot corresponding to the fixed ZP value, while the three ‘small- 
Pe ’ approximation curves are simply proportional to M .
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Figure 4.10. Set of solution curves for (a) the current sheet-integrated equatorial radial
current intensity and (b) the azimuth- and current sheet-integrated total equatorial radial

♦
current for a dipole magnetic field shown in physical units, as in Fig. 4.7, but where Zp is
held fixed at 1 mho, while M  takes the values 200, 1000, and 5000 kg s-1. The format is
the same as Figs. 4.6-4.8. Again, note that there is only one Targe-p e' approximation

*
(dashed) curve in each plot corresponding to the fixed Zp value, while the three ‘small- 
p j  approximation curves are simply proportional to M .
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Figure 4.11. Set of solution curves for (a) the equatorial field-aligned current density per
unit magnetic field strength, plotted versus radial distance in the equatorial plane, and (b)
the field-aligned current density just above the ionosphere, plotted versus co-latitude in the
ionosphere, for a dipole magnetic field and shown in physical units, as in Fig. 4.8, but
where Zp is held fixed at 1 mho, while M  takes the values 200, 1000, and 5000kg s'1.
The format is the same as Figs. 4.6-4.8. Again, note that there is only one ‘large- p f

*
approximation (dashed) curve in each plot corresponding to the fixed Zp value, while the 
three ‘small-/?/ approximation curves are simply proportional to M .
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and 0.17, 0.14 and 0.12 Rj in the ionosphere. Fig. 4.5a shows (wjQ3)  versus equatorial 

radial distance out to 120 Rj, the same distance that will be employed below for the current 

sheet model. The solid lines show the full solutions given by Eq. (4.8) with K  -  0, while 

the dashed lines show the small-pe forms given by Eq. (4.11). The tick-marks show the 

outer limit o f validity of the latter forms as defined by Eq. (4.12). No tick-marks associated 

with the large-p* forms are shown because none of the curves reach the ( « / /? ) «  0.091 

limit of validity within the range. To avoid clutter, the higher-order large- p e form 

Eq. (4.13) is not shown. Fig. 4.5b then shows these profiles projected to the ionosphere and 

plotted versus co-latitude 6i . In this plot we have extended the full solution curves towards 

the pole beyond the 120 Rj limit of Fig. 4.5a, where the curves are shown dot-dashed. 

Overall, Fig. 4.5 demonstrates the expansion of plasma corotation to increasing distances as 

the ionospheric conductivity increases or, equivalently, the iogenic mass outflow rate 

decreases.

The behaviour of the current components are shown in Figs. 4.6-4.11, and follow

expectations based on the normalised forms. For example, the plots of the equatorial radial

current in Fig. 4.7b show that at fixed M  the peak current increases with increasing

conductivity as Zp 2̂ and is located at increasing radial distances as Zp l/4, while in
♦

Fig. 4.10a we find that at fixed Zp the peak current also increases with increasing mass

outflow rate as M l/1, but is located at decreasing radial distances as M~1/4. Corresponding 

statements follow for the other components. For convenience, in Table 4.2 we give the 

peak values and positions of the various current components in physical units, where values
* • i

of ZP are to be substituted in mhos, and values of M  in units of 1000 kg s .

The behaviour of the currents outlined in Section 4.2 can be seen in Figs. 4.6-4.11 more

clearly than with the normalised forms shown in Figs. 4.2-4.4. That is, in the small
*

distance limit the currents depend only on M  and not on Zp , while in the large distance

limit they depend only on Zp and not on M . Thus in Figs. 4.6-4.8, where M  is held

fixed while Zp is varied, only one ‘small pe dashed curve is shown in each plot, while the
*

three Targe-/V dashed curves take values which are simply proportional to ZP . Similarly
*

in Figs. 4.9-4.11 where Zp is held fixed while M  is varied, only one ‘large-/?/ dashed
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Table 4.2. Principal features of the plasma angular velocity and coupling current system for 

a dipole field in physical units.
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curve is shown in each plot, while the three ‘small-/?*’ dashed curves are simply 

proportional to M . This represents a particular instance of a general property of the 

solutions discussed by Cowley, Bunce and Nichols (2003) and in Section 4.2 above. If we 

expand the ‘small-/?*’ forms given by Eq. (4.16) we find

. M Q j
*PS 2nBjRj

7

r

L a  J
9

PS B j I A  J

(4.23a,b)

lPs ~
M Q j ( P e ) I M Q j (  \  

Pe
3

n B jR j j PS ~  B j \ B j  j
9 (4.23c,d)

p u l 3 MQj f P e )

5 “ I n B /R j2
1 ^
1 J . 3 M Q,

and h s  = ' _- 2

/  \8 
f  R ^

tzBjR ; v A  j
(4.23e,f)

which thus depend only on M  as expected. We recall that the departure from rigid 

corotation is by only -3.2% at the point we have taken to be the outer limit of validity of

this approximation, i.e. ~ 0.516 RDe and, while the currents in the inner region depend
♦ * • 

only on M , the radial range over which they apply depends both on Zp and M , through

the dependence of Roe on these parameters. Thus, for example, the equatorial radial current

given by Eq. (4.16c) grows in the inner region in proportion to /?e2 to a distance which is

proportional to [ z p / KlJ* , thus achieving a value at the limit which is proportional to

(EP M y 2, in agreement with the normalised form in Eq. (4.15c). Corresponding 

statements apply also to the other current components.

Similarly, if  we expand the ‘large /?e’ forms given by Eq. (4.17) we find

ipL ~ B jQ p i  , Ip L = AnZp BJ0 Jp i (4.24a,b)

VA
/  L — BjRj f2j Hi

VA
, (4.24c,d)
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= -2 E P O j  , and Jit l  — B j Q j  , (4.24e,f)

which thus depend only on Ep . However, the inner limit o f validity of these forms (i.e.
*

p e L ~ 4.284 RDe) again depends on both Zp and M  through the dependence of Roe on 

these parameters, such that the value of the current at the limit again scales as indicated by 

the normalised forms given above.

4.4. Plasma angular velocity and coupling current system for a current 
sheet magnetic model

4.4.1. Current sheet field model

The solution for the coupling currents for a dipole field represents an important paradigm 

case. Nevertheless, one major reason why the model is unrealistic in its application to 

Jupiter lies in the fact that the middle magnetosphere field lines are not quasi-dipolar, but 

are significantly distorted outwards from the planet by azimuthal currents flowing in the 

equatorial plasma, as shown in Fig. 3.1. Thus field lines at a given radial distance in the 

equatorial plane map to a significantly lower latitude in the ionosphere than in the dipole 

model, thereby increasing the electric field and current for a given departure of the plasma 

from rigid corotation. In their previous investigations outlined in Chapter 3, Cowley and 

Bunce (2001b) and Cowley, Nichols and Bunce (2002) employed an empirical model of the 

equatorial field based on Voyager magnetic data. This model will also be used here, its 

properties being described in Section 3.3.6. It consists of two empirical models, joined at 

their intersection at radial distance p e »21.78 Rj. The inner region, where p e < p * , is

given by the CAN model Eq. (3.32), while for p e > p f  the field is given by the KK model 

Eq. (3.33), which is a simple power law.
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Solutions for such a current sheet field model must generally be computed numerically for

specific values o f the system parameters, and results have been presented to date by Cowley

et al. (2002, 2003a) for a few spot values (see Chapter 3). In the next section, however, we

present an approximate analytic solution which applies to the region beyond 
♦

p e « 21.78 Rj where the field varies with distance as a power law, which previous work 

has shown to be the main current-carrying region provided Zp is not too low and/or M  

not too high. Here we first enquire how solutions in this outer region depend on conditions 

inside the region, where the dipole field is dominant and the transition to the power law 

field takes place.

We commented previously for the dipole problem that solutions of the Hill-Pontius 

equation which are started at an arbitrary angular velocity well within the ‘Hill distance’ 

converge rapidly onto the solution which rigidly corotates at small distances, such that the 

behaviour at larger distances is very insensitive to the choice of initial condition. 

Numerical investigation shows that the solutions for the current sheet field exhibit the same 

property (Cowley and Bunce, 2003a). The implication for the present problem is that, 

provided the effective ‘Hill distance’ is larger than p e ~ 20 R: (i.e. provided the value of 

( r /  / m ) is not too low), the solutions in the ‘power law’ region will be insensitive to

conditions in the interior region. In this case, we can simply take the power law field to be
♦

valid over all distances, but apply the results only to the region outside of p e . The validity 

of this statement may be judged from Figs. 4.12 and 4.13, where we show numerically 

computed solutions for the plasma angular velocity in the inner part of the system spanning 

p * , for three values of { z p / M ) covering our range of interest, i.e. for KT4, 10~3, and 

10' 2 mho s kg'1. The solid lines show numerical solutions using the full current sheet field 

model shown in Fig. 3.5, while the dashed lines similarly show numerical solutions using 

the power law field over the whole range. (The dot-dashed lines show the analytic 

approximation to be derived below). Both numerical solutions were initialised by imposing 

the near-rigid corotation approximation given by Eq. (4.3) at p e =5 Rj. The position of

p*  is indicated by the tick-mark in each plot, such that both models use the same power 

law field at larger distances. It can be seen that the two numerical solutions converge 

rapidly beyond this distance, the convergence becoming increasingly rapid as [ l p / m )
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Figure 4.12. Plots showing plasma angular velocity profiles versus equatorial radial 

distance for ( l p* / m ) equal to (a) KT4, and (b) 10~3 mho s kg-1. The solid lines show the 

solution obtained by numerical integration of Eq. (3.27) using the full ‘current sheet’

magnetic model described in Section 3.3.6, starting from the near-rigid corotation
_ * 

approximation Eq. (4.3) at = 5 R:. The tick-marks show the point (pe ~ 21.78 R;)

where the magnetic field switches from the ‘CAN’ model to the power-law ‘KK’ model.

The dashed lines then show the numerical solution obtained by employing the ‘KK’ power

law field (given by Eqs. (3.33) and (3.35)) over the full distance range, the solutions again

being initialised using the appropriate form of Eq. (4.3) at p e = 5 R}. The dot-dashed lines

show the approximate analytic solution using the ‘KK’ power law field, given by Eq. (4.27)

with K =  0 and m = 2.71. Note that the vertical scale has been tailored to the plot in each

case.
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Figure 4.13. As Fig. 4.12, but with ( r / / m ) = 10 2 mho s kg'1.
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increases. Thus in the parameter range o f interest, the solutions in the power law field 

region can be approximated by taking the power law field to be valid at all distances. We

note that the values o f the ‘Hill distance’ corresponding to the values of [zf/hd] shown in 

the figure are 27.7, 49.2, and 87.5 Rj, thus exceeding p e « 21.78 R; in each case, though 

only just so at the lower limit. Convergence of the two solutions is found to break down for 

lower values o f (zp* /  10'5 mhos kg-1, corresponding to a ‘Hill distance’ of 15.6 Rj, at

the limit o f the parameter range considered here.

4.4.2. Approximate normalised solution for a power law equatorial field

We thus consider solutions for the case in which the equatorial field is taken to be given by 

the power law Eq. (3.33) at all distances. We also make the further approximation that the 

flux function is taken to be a constant in the Hill-Pontius equation. Thus, over the region of 

interest, the equatorial field is taken to map in the ionosphere to a narrow range of distances 

from the magnetic axis, an approximation shown to be well satisfied for the empirical 

current sheet model, as discussed in Chapter 3. While this approximation will generally be 

valid for ‘current sheet’ fields, it is clearly not valid for quasi-dipolar fields. We thus note 

that the solutions obtained here do not reduce to the dipole case in the limit that we choose 

m = 3 in Eq. (3.33). With this ‘current sheet’ approximation, then, the Hill-Pontius 

equation Eq. (3.27) becomes

P e d

2 d p e

/  \  
CO

+
(  \  

CO
=  2

(  R  ^
CSe

m f

1 -
CO >

U J \  Q  > K P e  j V
(4.25)

where Rcse is the equatorial ‘Hill distance’ for the power law current sheet field (subscript 

‘0 5 ’)

R CSe _

Rj

/  * \  V*2kS p BoF0

V M
(4.26)
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Here we have put Fe = Fot a constant, into Eq. (3.27), such that the field lines are taken to 

map in the ionosphere to a fixed distance from the magnetic axis given by 

(p io /  R j ) -  ^{Fq/B jR / }  (Eq. (3.3)). The value of F0 could be taken e.g. to be equal to F̂

in Eq. (3.33b) (in which case (p^/Rj^x  0.258, corresponding to a co-latitude o f -14.95°), 

or to some nearby value representative o f the field lines in the region of interest. 

Equation (4.25) is then o f the same form as Eq. (4.6) for the dipole (they are identical when 

m = 4), from which it is clear that the solutions are functions only of {pe/Rcse\  an  ̂hence

scale with distance as and with the system parameters as ( z p*/m ^  . With m = 2.71, 

therefore, as used throughout here, the scale length varies somewhat more rapidly with the 

system parameters than for the dipole, which varies as ( z p / h d f  . The value of RCSe 

varies between -25  and -125 Rj over the range of parameters considered here, compared 

with -30  to -90  Rj for the dipole.

The general solution of Eq. (4.25) can again be found by the integration factor method

M "1 "
2
m ( p

CSe

2

exp
4 ( R

CSe

w

r
M ’1

( R ^
CSe

m

+ K
I A  J I  m) I  P e m I  y

m m I  P e  ) (4.27)

where T (a,z) is the incomplete gamma function

oo
V ( a ,z ) = \ e  't° 'dt . (4.28)

z

The solutions again diverge at the origin except for the special solution with K  = 0, which 

rigidly corotates for small p e. To map the solution to the ionosphere we equate Eqs. (3.3) 

and (3 .35b), and define an ionospheric scaling distance

R CSi _  1 f 5 ° ]
\BjRj2 M  ]

1---
m

Rj 2 (m - 2 ) v  * \2.nEpBaFa J
9 (4.29)
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such that the angular velocity mapped to the ionosphere is a function only of

\ K C S iJ  V P e  )

\  /  \m -2

Rr vi j i P., ,
(4.30)

where Ap t = (pt — /?**), and p^ is the distance from the magnetic axis of the field line from 

infinity as given above. In deriving Eq. (4.30) we have assumed that Ap t is small 

compared with p^ ,  in keeping with the ‘current sheet’ approximation introduced above. 

With the parameters employed here we find that the value of RCSi varies between -0.01 and

The solid lines in Figs. 4.14a and 4.14b show the normalised angular velocity solution 

given by Eq. (4.27) with A^=0 and m = 2.71, plotted versus ipjRcse)  *n the equatorial 

plane, and versus (Ap t/Rcsl‘)  in the ionosphere, respectively. The form is similar to that for 

the dipole, though falling away from rigid corotation more quickly (in normalised units) in 

the inner region, and less quickly in the outer region. This solution is also shown in un

normalised form (with the above value of F0) by the dot-dashed lines in Figs. 4.12 and 4.13, 

where it is compared with the results of numerical integration of the full solution (solid and

dashed lines as described above). It can be seen that the analytic solution forms a very
*

close approximation to the numerical solutions for p e > p e under all conditions of interest 

here, a result we have confirmed by a wider comparative study not illustrated here. The 

dashed lines and tick marks in Fig. 4.14 show normalised approximate forms and their 

regimes o f validity, in the same format as Fig. 4.1. Specifically, the long-dashed lines show 

the small- p e (‘S’) approximation given by Eq. (4.3)

(i.e. as (m / Z p jf* for m -  2.71), such thatA/?, will indeed be small compared with p i 

for (A p jR cs ,)-! .
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Figure 4.14. Plots of the steady state plasma angular velocity profile for a power law 

equatorial magnetic field (Eq. (3.33) with w = 2.71) and ‘current sheet’ approximate 

mapping to the ionosphere, shown (a) versus (pjRcse) i*1 the equatorial plane, and 

(b) versus (A pjR CSi)  in the ionosphere. The solid line in each case shows the full solution 

obtained from Eq. (4.27) with K  = 0, such that the plasma rigidly corotates at small radial 

distances. The long-dashed lines show the small-/?e form given by Eq. (4.31), while the 

largQ-pe form is just (co/Oj)L = 0 . The downward-pointing tick-marks indicate the limits of

validity o f both the small- and largQ-pe approximations as defined by Eq. (4.12). The short- 

dashed lines show the higher-order large-/?e form given by Eq. (4.32), whose limit of 

validity defined by Eq. (4.14) is indicated by the upward-pointing tick-mark. The horizontal 

dotted line indicates the condition for rigid corotation, {coj Qj)=  1.
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where we again note that the series generated by Eq. (4.1) (of which Eq. (4.31) is the 

leading term) is the same as that obtained by asymptotic expansion of the gamma function 

in Eq. (4.27) for large argument. The short-dashed lines then show the higher-order large- 

p e (‘L ”) approximation, obtained from Eq. (4.27) as

\ Q J J l. \ m)
:se = a{m )

r  R VCSe

V r e  J
(4.32)

The lower-order large-p e (‘Z,’) approximation is again simply (co /O j\=  0 . The outer limit 

of the small-pe approximation lies at (peS/RCse) ~ 0.410 where 0.041, the

inner limit of the largs-pe approximation lies at (peL!  Rcse) ~ 5.761, where 0.091,

while the inner limit of the higher-order large- p e approximation lies at {peL> / RcSe)  « 4.594, 

where (a)/f y )  » 0.131.

The normalised approximate solutions for the currents then follow from Eqs. (3.10), (3.12)- 

(3.15) and (3.17)

lp _= 2
*PCS I2j

where l PCS ~
BjRj

■Ip BjRjQj (4.33a)

p  _

l PCS

1-
co
C2j

where I  PCS ~
BjR

I p BjRj Qj ,
y

(4.33b)

p  _= 4
f  n \

CSe

lpCS

R

\  re

r  ̂
1- ^

v A y
where ipcs =

BjRj

M \V»

B0F0 j
I * B jRjQj , (4.33c)

p  _= 8/r
l pCS

r ^
1- —

V A y
where

F  1 * 2
(4.33d)

O i l / * ) = 4
(  \m-2

P  
R,c s  V y V A  y

- 2
y „

CSeR

\ re y
1-
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BjR;
P o o
M

(4.3 3 e)

and

•4  _ /J
f  D  ̂

CSi CO ^
- 2 1

m -2 f  \

i - —
>. ^ J  yJ\Vcs Vm ) v ^ C S i  j

where J\\iCS ~  ^
F„ ) 2 * z ; b cf 0 Y

U J [ B j R / J M  J
Z p ' B jD j  . (4.33f)

These forms are shown by the solid lines in Figs. 4.15-4.17, plotted versus either {pelRcSe) 

or (APi/Rcsi) as appropriate.

The dashed lines in Figs. 4.15-4.17 show approximate forms based on the ‘S’, ‘L’ and ‘L” 

approximations for the angular velocity, in the same format as Figs. 4.2-4.4 for the dipole. 

Specifically, the small- p e forms for the currents are obtained by introducing Eq. (4.31) into 

Eq. (4.33) (again including the third order term in the approximation for the FAC)

V pcs J s

f  p  V -2
^CSi

v AA y U,PCS' s
= 2 71 ĈSi] m-2

(4.34a,b)

\ l pCS'
= 2

f  N/W-l
A ' l '

-  4n
ylpCS ) s  U CSe

£ I
U r (4.34c,d)

m i = m
r  \ 2 ( m - l )  

P e

CS's U sSe
and

2 (w -l)

= i ^ V -2
^J\\iCS's U P i '

(4.34e,f)
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Figure 4.15 Plots of (a) the normalised height-integrated ionospheric Pedersen current 
intensity, (b)the normalised azimuth- and height-integrated total ionospheric Pedersen 
current, plotted versus (Api/RCSj), for a power law equatorial magnetic field (Eq. (3.33) 
with m -  2.71) and ‘current sheet’ approximate mapping to the ionosphere. The format is 
similar to Fig. 4.2 for the dipole. The normalization constants are given by Eqs. (4.33a) 
and (4.33b). The solid lines show the full solutions given by Eqs. (4.33a) and (4.33b), 
while the long-dashed lines show the small- and large-pe forms given by Eqs. (4.34a,b) and 
(4.35a,b), drawn to a common boundary at (pe/RCSe) = !rf2. The downward-pointing tick- 
marks show the limits of validity of these approximate forms as defined by Eq. (4.12) (as in 
Fig. 4.1). The short-dashed lines show the higher-order large-pe form given by Eq. (4.36), 
whose limit o f validity defined by Eq. (4.14) is indicated by the upward-pointing tick-mark.
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Figure 4.16 Plots of (a) the normalised current sheet-integrated equatorial radial current 
intensity, and (b)the normalised azimuth- and current sheet-integrated total equatorial 
radial current, plotted versus (p jR cse \  for a power law equatorial magnetic field 
(Eq. (3.33) with m = 2.71) and ‘current sheet’ approximate mapping to the ionosphere. The 
normalization constants are given by Eqs. (4.33c) and (4.33d). The solid lines show the full 
solutions given by Eqs. (4.33c) and (4.33d), while the long-dashed lines show the small- 
and large-/?* forms given by Eqs. (4.34c,d) and (4.35c,d), drawn to a common boundary at 
(pe/RCSe) = 1̂l2 . The short-dashed lines show the higher order large-p e approximation. 
The tick-marks are in the same format as Fig. 4.15.
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Figure 4.17 Plots of (a) the normalised equatorial field-aligned current density per unit 
magnetic field strength, plotted versus normalised equatorial radial distance (pe /RD̂ ), and 
(b) the normalised field-aligned current density just above the ionosphere, plotted versus 
normalised distance from the magnetic axis {pl /RDl)  in the ionosphere, for a power law 
equatorial magnetic field (Eq. (3.33) with m -  2.71) and ‘current sheet’ approximate 
mapping to the ionosphere. The normalization constants are given by Eqs. (4.33e) and 
(4.33f). The solid lines show the full solutions given by Eqs. (4.33e) and (4.33f), while the 
long-dashed lines show the small-/?e form given by Eqs. (4.34e,f), and the short dashed line 
shows the higher-order large-pe approximation given by Eqs. (4.36e,f) The tic-marks are in 
the same format as Fig. 4.15.
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The lowest-order large-p e forms are again given by taking {coj Oj)L = 0 , so that Eq. (4.33) 

yields (again assuming that p e is large)

= 2 ,
V * PCS J L

( I 'L p

\lpcs JL
- 4 n (4.35a,b)

(  • >\ in

' j  pcs J
'Sol)
V /? J ^ pcs) l

= 8 K , (4.35c,d)

SMB.
OJB),

= 0 , and
'cs'L

JllL.1 = 0 .
v  WiCS'l

(4.35e,f)

Eqs.(4.34) and (4.35) are equivalent to Eqs. (4.4) and (4.5) when expanded out into un

normalised form. The higher-order large-p e form obtained by substituting Eq. (4.32) into 

Eq. (4.33), to yield

f  . \
I n

V 1p c s  JL
= 2 1 - a { m ) '  I  'l P

\Ipcs J L<

= 4 n

2 A

1 - a ( m ) Ap_

\  R  CSi J

, (4.36a,b)

f  • '\
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k pc s  J  i

= 4
RCSe

V r e

R
2\

m CSe

e y V ̂ pcs j  L>
= 8 n 1 - a { ,

R
2\

m CSe

e y
(4.36c,d)

(MB
y(j\\/b )cs j n

and

4 -m

J u l .1 -  4 a { m { ^ \
\\iCS' L ’

(4.36e,f)

Comparison with Figs. 4.2-4.4 shows similarities, but also major differences with the 

currents for the dipole field. The differences arise from the fact that the current sheet field 

lines reach die ionosphere in a narrow band at a finite co-latitude, rather than continuously 

approaching the pole with increasing radial distance, as for the dipole. The ionospheric 

Pedersen current (Eq. (4.36a)), while being proportional to the displacement of the band
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from the magnetic axis -JfJ B jRj2 , then varies with co-latitude only through the variation 

of the plasma angular velocity. As seen in Fig. 4.15a, the Pedersen current therefore peaks 

at the poleward edge of the band where the angular velocity is zero, and falls monotonically 

with distance from the boundary as the angular velocity approaches rigid corotation 

(Fig. 4.14b). This implies that the azimuth-integrated total current also varies 

monotonically with distance, the total equatorial current (Eq. (4.36d)) thus rising with 

increasing equatorial distance towards 8nF0Zp Q3 (strictly, 8nFJZP Qj) at infinity, as seen 

in Fig. 4.16b. This behaviour also implies that the radial current intensity (Eq. (4.36c)) 

rises to a peak value with increasing distance, and then falls as p ~ l at large distances, as 

seen in Fig. 4.16a. The further implication of a monotonically increasing total current is 

that the field-aligned current is unidirectional in this approximation, flowing consistently 

from the ionosphere to the equatorial current sheet, as shown in Fig. 4.17a and 4.17b. 

Closure o f the current system must then occur outside the region described by the model. 

This behaviour thus mirrors the numerical results presented previously by Cowley and 

Bunce (2001b) and Cowley, Nichols and Bunce (2002) using the full current sheet field 

model illustrated in Fig. 3.5. A comparison with numerical results will be presented in the 

next section.

In like manner to the dipole results, the normalised solutions given above show how the 

form and amplitude o f the plasma angular velocity and currents vary with the system 

parameters in the case o f a power law current sheet field. Eqs. (4.26) and (4.29) show that 

the solutions scale spatially in the equatorial plane and in the ionosphere as

p e a c ( Z p / M f  and Apt oc [m / Z p ĵ  ̂ , respectively, while Eq. (4.33) shows that the
♦ *

amplitude o f each component of the current system scales as some power of Ep and M  of 

the same form as Eq. (4.19), but with y  equal to 1 -2 /m  for the equatorial radial current, 1 

for the Pedersen current and azimuth-integrated total field-perpendicular current (such that 

these currents scale linearly with Ep and are independent of M ), and 3 - 4 Jm for the 

field-aligned current density. Since these values of y  are consistently higher for a given 

current component for the current sheet model than for the dipole (at least for m>  2 , as 

investigated here), the implication is that the currents scale as a somewhat higher power of 

the conductivity for the current sheet model than for the dipole, and as a somewhat lower
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power o f the mass outflow rate. The corresponding behaviours at small and large distances, 

such that the solutions obey Eqs. (4.4) and (4.5), are

is X M p / ' ' r)X — ^ ^  , (4.37)

and

h «  , (4.38)
Pe

as can be verified by substituting the appropriate approximations (‘5” and ‘Z’) for the 

angular velocity into Eq. (4.33). Thus for example, with y - \ - 2 / m ,  the equatorial radial
Iff—1 —1current increases as p e in the inner region and falls as p e at large distances, while the 

field-aligned current with y - 3  -  4 /m grows as p f mX) in the equatorial plane in the inner 

region and approaches zero in this approximation at large distances, as indicated above 

(Figs. 4.17a,b). The spatial variation of the field-aligned current in the large-distance limit 

may then be obtained from the higher-order large-distance approximation (Eq. (4.32)), from 

which it is found that the current varies as p f A~m) in the equatorial plane, and as 

Ap^~m̂ m~2̂ in the ionosphere. A comparison of these dependencies for the dipole and 

power law current sheet fields will be given below in Section 4.5. Table 4.3 also 

summarises the amplitudes and positions of the peak currents in normalised units for the 

m = 2.71 power law field.

4.4.3. Un-normalised numerical and approximate analytic solutions for the 

current sheet model

We now consider how the un-normalised solutions for the current sheet field vary with the 

system parameters, comparing the approximate analytic results for the power law field 

derived above with numerical results using the full field shown in Fig. 3.5. The format of 

the presentation follows that for the dipole in Section 4.2.3, so that simple comparison can
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Feature (  \  

'•RcSe'

( A
' 1 - 1\Q j)

Maximum sheet-integrated equatorial radial 
current ( i =1-2109

1.6142 0.7118 0.5113

(  \
Plasma angular velocity falls to -  0.5

\£2j)
1.6521 0.7002 0.5

Maximum upward field-aligned current 
density
(Oll/S)/0\\lB)cS\ax = Oil*/J\\iCSXiar *1-5274

2.3777 0.5407 0.3339

Maximum height-integrated ionospheric 
Pedersen current (ipliPcs)max ~ ^
Maximum azimuth-integrated total current 
( V ^ L  = 25.133 
Field-aligned current goes to zero

oo 0 0

Table 4.3. Principal features of the plasma angular velocity and coupling current system for 

the power law current sheet field in normalised units, obtained (with m = 2.71) from the 

approximate analytic solution of Section 4.4.
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Figure 4.18 Plasma angular velocity profiles for the current sheet magnetic field model are 
plotted (a) versus equatorial radial distance yPe, and (b) versus magnetic co-latitude 0i . 
Profiles are shown in each case for \Zp / M j= 2 x l0 '4 ,10~3,and 5X10"3 mho skg-1, as 
marked. The solid lines show numerically computed solutions of Eq. (3.27) using the full 
field model described in Section 3.3.6, starting from the near-rigid corotation value given 
by Eq. (4.3) at p e = 5 Rj. The long-dashed lines show the small- p e approximation given 
by Eq. (4.3), the corresponding large-p e form being just (cojOj)L = 0 ,while the tick-marks 
show the limits of validity of these approximations according to the criterion given by 
Eq. (4.12) (the large- p e limits only lying within the range in plot (b)). In the ionospheric 
projection in (b), the solution curves are continued beyond the 120 Rj limit of plot (a) 
(mapping to a co-latitude of 15.62° in the ionosphere) towards the limiting latitude defined 
by die current sheet field line from infinity (mapping to -14.95° in the ionosphere), which 
lies at the left-hand edge of the plot. The angular velocity curves in this regime are shown 
by dot-dashed lines. The short-dashed lines in both plots show the approximate analytic 
solution in the power-law field region given by Eq. (4.27) with K  = 0 and 
FQ = Fe( p ,= 1 0  R >  3.22 x 104 nT R / . The horizontal dotted lines indicate the condition 
for rigid corotation, (a > m )=  1 -
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Figure 4.19 Set of solutions for (a) the height-integrated Pedersen current intensity, and
(b) the azimuth- and height-integrated total ionospheric Pedersen current for the current
sheet field model, shown for M  held fixed at 1000 kg s-1 while Zp takes the values 0.2,1,
and 5 mho as marked. These are plotted versus ionospheric co-latitude. The format
follows that in Fig. 4.18, such that the solid lines show values obtained by numerical
integration of Eq. (3.27) using the full field model together with Eqs. (3.10) and (3.14), the
long-dashed lines show the approximate forms given by Eqs. (4.4a,b) and (4.5a,b) with
limits of validity indicated by the tick-marks, while the short-dashed lines show the
approximate analytic solution in the power-law field region given by Eqs. (4.27) and
(4.33a,b). Note that there is only one ‘sm all-approxim ation  (long-dashed) curve in
each plot corresponding to the fixed M  value, while the three ‘large- p j  approximation

*
curves are simply proportional to ZP .
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Figure 4.20 Set of solutions for (a) the sheet-integrated equatorial radial current intensity,
(b) the azimuth- and sheet-integrated total equatorial radial current for the current sheet

—1 *field model, shown for M  held fixed at 1000 kg s while Zp takes the values 0.2, 1, and
5 mho as marked. These are plotted versus equatorial radial distance. The format follows
that in Fig. 4.18, such that the solid lines show values obtained by numerical integration of
Eq. (3.27) using the full field model together with Eqs. (3.12) and (3.13), the long-dashed
lines show the approximate forms given by Eqs. (4.4c,d) and (4.5c,d) with limits of validity
indicated by the tick-marks, while the short-dashed lines show the approximate analytic
solution in the power-law field region given by Eqs. (4.27) and (4.33c,d). Again, note that
there is only one ‘small-/? / approximation (long-dashed) curve in each plot corresponding
to the fixed M  value, while the three ‘large-/?/ approximation curves are simply 

*
proportional to Zp .
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Figure 4.21 Set of solutions for (a) the equatorial field-aligned current density per unit 
magnetic flux, and (b) the ionospheric field-aligned current density for the current sheet 
field model, shown for M  held fixed at 1000 kg s-1 while Zp takes the values 0.2, 1, and 
5 mho as marked. These are plotted versus equatorial radial distance and ionospheric co
latitude respectively. The format follows that in Fig. 4.18, such that the solid lines show 
values obtained by numerical integration of Eq. (3.27) using the full field model together 
with Eqs. (3.15) and (3.17), the long-dashed lines show the approximate forms given by 
Eqs. (4.4e,f) and (4.5e,f) with limits of validity indicated by the tick-marks, while the short- 
dashed lines show the approximate analytic solution in the power-law field region given by 
Eqs. (4.27) and (4.33e,f). Again, note that there is only one ‘small- p f  approximation 
(long-dashed) curve in each plot corresponding to the fixed M  value, while the three 
‘large- p f  approximation curves are simply proportional to Zp .
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Figure 4.22 Set o f solution curves for (a) the height-integrated Pedersen current intensity, 
and (b) the azimuth- and height-integrated total ionospheric Pedersen current for the current 
sheet field model, shown for Zp* held fixed at 1 mho while M  takes the values 200, 1000, 
and 5000 kg s_1. The format is the same as for Figs. 4.19-4.21. Note that in this case there 
is only one ‘large-/?/ approximation (dashed) curve in each plot corresponding to the fixed 
Zp value, while the three ‘small-p e' approximation curves are simply proportional to M .
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Figure 4.23 Set of solution curves for (a) the sheet-integrated equatorial radial current
intensity, and (b) the azimuth- and sheet-integrated total equatorial radial current for the

*
current sheet field model, shown for Zp held fixed at 1 mho while M  takes the values 
200, 1000, and 5000 kg s_1. The format is the same as for Figs. 4.19-4.21. Again, note that 
in this case there is only one Targe- p j  approximation (dashed) curve in each plot 
corresponding to the fixed ZP value, while the three ‘small-/?/ approximation curves are 
simply proportional to M .
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Figure 4.24 Set of solution curves for (a) the equatorial field-aligned current density per
unit magnetic flux, and (b) the ionospheric field-aligned current density for the current

*
sheet field model, shown for Ep held fixed at 1 mho while M  takes the values 200, 1000, 
and 5000 kg s_1. The format is the same as for Figs. 4.19-4.21. Again, note that in this case 
there is only one Targe- p f  approximation (dashed) curve in each plot corresponding to the 
fixed Ep value, while the three ‘small-/?/ approximation curves are simply proportional 
to M .
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also be made between the results for the two fields. Figs. 4.19-4.21 thus show how the 

current components for the current sheet model vary with Zp at fixed M  (solid lines), 

specifically for Zp =0.2, 1, and 5 mho at M  - 1000 kg s_1 (as in Figs. 4.6-4.8 for the 

dipole), while Figs. 4.22-4.24 show how they vary with M  at fixed Zp , specifically for 

M  = 200,1000, and 5000 kg s_1 at Zp =1 mho (as in Figs. 4.9-4.11). As before, these two 

sets o f solutions correspond to only one set o f angular velocity profiles, for 

(Z p / m )=  2 x 10-4,10~3, and 5 x 10^ mho s kg-1, as shown by the solid lines in Fig. 4.18. 

These solutions were obtained by numerical integration o f Eq. (3.27), initialised using 

Eq. (4.3) at the inner edge of the Io torus at p e -  5 Rj. Plots in the equatorial plane are 

again shown to a distance o f 120 Rj, roughly the limit o f the outbound Voyager-1 field data 

employed in the ‘KK’ model, while in the ionosphere they are extended beyond this point 

(plotted dot-dashed) to the poleward boundary formed by the current sheet field line from 

infinity (lying at the left-hand edge o f the ionosphere plots), in order to show in principle 

the behaviour at large distances. Fig. 4.18a shows that the angular velocity profiles are 

quite similar to those for the dipole in the equatorial plane (Fig. 4.5), as found previously 

by Pontius (1997) and Cowley, Nichols and Bunce (2002), while Fig. 4.18b shows that as a 

result o f the different poloidal field structure the profiles are very different in the 

ionosphere, with breakdown of rigid corotation mapping to much larger co-latitudes for the

current sheet model than for the dipole. Consequently, while the coupling current system in
*

Figs. 4.19-4.24 shows many of the same basic trends with Zp and M  as noted above for 

the dipole, the increased ionospheric distances from the magnetic axis result in the 

magnitude of the currents for given system parameters being considerably larger for the 

current sheet than for the dipole. In addition, the sense of the field-aligned current is 

unidirectional over the range of distances considered for reasons discussed above. Further 

comparison will be made in Section 4.5.

We now compare the numerical results with the approximate analytic solutions derived 

above. In order to fix the approximation, it is necessary to choose the value o f Fo, related 

to the distance from the magnetic axis that the current sheet field lines are taken to map to 

the ionosphere. Any value can be chosen that is representative of the current sheet field 

lines in the region considered. Here we take F0 to be equal to Fe at a radial distance of

70 Rj, roughly the centre o f the power-law field region in the equatorial range considered.
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This value is ~ 3.22 xlO4 nTR ./, corresponding to an ionospheric distance from the 

magnetic axis o f ~0.27 Rj, or a dipole co-latitude of 15.9°. We then find from Eqs. (4.26) 

and (4.29) that the modified equatorial and ionospheric ‘Hill’ distances are

—̂  »  56.38 
Rj

Ep (mho) 

A /(l000kgs~‘)

2.71

and RCSi

R>
*0.0197 ^(lOOOkgs'1)- 

X /(m ho) _

0.71
2.71

(4.39)

such that for (Z p / M )=  2x10"4,10 3,and 5 x 1 0 3 mho skg 1 we have RCSe *31.1, 56.4, 

and 79.1 Rj, again comparable to the spatial scale of the middle magnetosphere, while 

RcSi * 0.013, 0.020, and 0.030 Rj, small compared with p. „ « 0.258 Rj as assumed above.

Using these values, the equatorial angular velocity profiles obtained from Eq. (4.27) with

K  = 0 are shown by the short-dashed lines in Fig. 4.18, where the ionospheric profiles have

been mapped (as for the numerical results) from the equator using the full expression for

the flux function (Eq. (3.35b)), rather than using the approximate mapping of Eqs. (4.29)

and (4.30). Since the power law field on which the approximation is based is valid in the
*

full model only beyond p e *21.78 Rj, the approximations are plotted only beyond this 

point (corresponding to 0i <17.1° in the ionosphere). It can be seen that the agreement 

between the approximations and the numerical results in this region is very good, especially 

for the larger values of /m ) . This being so, we may expect that Eq. (4.33) will also 

form good approximations for the currents. This is indeed the case as seen in Figs. 4.19- 

4.24, though the approximations (short-dashed lines) overestimate the currents somewhat at 

larger distances, particularly in the dot-dashed portions o f the ionospheric plots where the 

choice F0 = *2.85 xlO4 n T R / would have led to better estimates. It is also seen in

Figs. 4.21b and 4.24b that while the approximate curves for the field-aligned current go to 

zero at the poleward boundary of the current sheet region as discussed above, the numerical 

curves reverse sense to small negative values close to the boundary. This results from the

fact that in the numerical solutions the total equatorial (and ionospheric) current rises with
*

increasing distance to a maximum value slightly above %nF^ZP Q3 before falling with 

decreasing F  to the latter value at infinity, rather than following the strictly monotonically

81



Chapter 4: Dependence on Ionospheric Pedersen Conductivity and Mass Outflow Rate

rising behaviour o f the approximation. However, for the range of system parameters 

considered, the maximum in the total current and the concurrent reversal in sense of the 

field-aligned current typically take place at equatorial distances o f several hundred to 

several thousand Rj, far beyond the limit of physical applicability o f the model. Within the 

region o f applicability the agreement between the numerical and approximate analytic 

results is very good. This statement applies also to the other current components in this 

region, such that the analytic formulas are found to provide close approximations to the 

numerical results in the power law region. In Table 4.4 we thus summarise in physical 

units the peak values and locations of the various current components derived from the 

approximate formulas for the m = 2.71 power law field. Comparison with Table 4.2 giving 

related quantities for the dipole field is instructive, and further discussion will be presented 

below in Section 4.5.

The un-normalised small- and large- p e approximate forms for the current sheet field model

are just those given by Eqs. (4.3) to (4.5) and are shown by the long-dashed lines in 

Figs. 4.18-4.24. The limits of validity are again given by Eq. (4.12) and shown by tick- 

marks in Figs. 4.18-4.24. The small- p e approximation is drawn to the point where

in Eq. (4.3) falls to zero, beyond which the large- p e approximation is shown. The

long-dashed lines overall in these figures thus again show the current profiles that would be 

driven by an angular velocity profile given by to the point where the latter falls to

zero, with zero being taken beyond.

As discussed in Section 4.2, Eq. (4.4) shows that in general the departure of the plasma

from rigid corotation in the inner region is proportional to M  and inversely proportional to

X * , as already found for the dipole case above. Consequently we again find that the
*

currents in the inner region depend only on M  and not on Xp . Since these currents 

depend only M , only one small- p e approximation curve is shown in each panel of 

Figs. 4.19-4.21 where XP is varied at fixed M . In this case each numerically-determined 

solution then follows the same curve at small distances, before falling away from the curve 

at a distance which increases with increasing Xp (shown by the tick-marks), as for the 

corresponding dipole plots in Fig. 4.6-4.8. In Figs. 4.22-4.24, on the other hand, where M
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Feature
wU J KR, )

Maximum sheet-integrated equatorial radial 
current

I
8.690^2 /  (mho) '71 A / ( io 3kgs-1) )171 m A m ' 1

91.02
Ep (mho)

A/(l0^kgs *)

2.71

0.01400
10  ̂kgs ' I

0.71

2.71

V E p  (mho)

Plasma angular velocity falls to = 0.5
93.15

'  X p*(mho) '  

Af(l0^kgs *)

2.71

0.01377
A f(l0^kgs 

E p  (mho)

0.71
2.71

Maximum upward field-aligned current 
density

( j, / b  L  -
i

2.808^2/ (mho)3 42 M(io3kgs'1)^7' )271 pAm’2nT"‘ 134.

•/||imax ~
l

2.404^2/ (mho)3 42 M(io3kgS_1)^71 j271 mA

06
/  E p  (mho) " 

■A/(l0^kgs ^)

2.71

0.01063
il/(10̂ kgs 

E p  (mho)

0.71
2.71

m

Maximum height-integrated ionospheric 
Pedersen current
iP max * 2.95027/ (mho) A m"1
Maximum azimuth-integrated total current

= _  » 7 2 5 .8 ^ /(mh„)MA
Field-aligned current goes to zero

Table 4.4. Principal features of the plasma angular velocity and coupling current system for 

the power law current sheet field in physical units, obtained (using B0 = 5.4 x 104 nT, 

m = 2.71, « 2.85 x 104 nT R / , and F0 » 3.22 x 104 nT Rj2) from the approximate

analytic solution o f Section 4.4.
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m m * • 
is varied at fixed Zp , the small- p e approximation curves vary in simple proportion to M ,

and the numerically computed curves follow them to distances which decrease with

increasing M , again as for the dipole plots in Figs. 4.9-4.11. This behaviour can readily be

quantified within the power-law field region using the analytic approximations derived

above, since in this regime (in like manner to the dipole case) we found in the previous

section that the small- p e approximations are valid (in the sense of Eq. (4.12)) to a distance

which is proportional to RCSe (specifically p e » 0.410Z?C&), and hence to (zf / t i f f m.

Thus, for example, the equatorial radial current given by Eq. (4.5c) grows as M pem~x in the

inner power law field region to a distance proportional to (zp* / M j m, where it thus attains

a value proportional to ( l p m~xM f  , in agreement with the normalised form Eq. (4.33c) 

and with the behaviour observed in Figs. 4.19-4.24 outlined above. Corresponding 

statements apply to the behaviour of the other current components shown in these figures.

The large- p e forms given by Eq. (4.5) depend only on Zp and not on M  and thus these

approximations, to which the numerical results asymptote in Figs. 4.19-4.21, are in simple 
*

proportion to Zp , while only one large- p e approximation curve applies in each panel of 

Fig. 4.22-4.24. The radial distance at which the approximation becomes valid (shown by

the tick-marks in the ionosphere plots in Figs. 4.19-4.24) again varies as ( z p* /  

according to the approximate analytic results (specifically located at p eL » 5.16\RCSe as 

given above), where the value of the current at the limit again scales as indicated by the 

normalised forms in Eqs. (4.33).

4.5. Comparison of the system behaviour for the dipole and current 
sheet field models

In this section we finally provide a summary and comparison of how the major features of
*

the plasma flow and coupling current system vary with Zp and M  for the dipole and 

current sheet field models. Specifically we consider the location of corotation breakdown,
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the magnitudes and locations of the peak values of the various current components, and the

latitudinal width in the ionosphere of the region of upward field-aligned current. With the

exception of the latter parameter, in effect we here provide plots showing how the

quantities in Tables 4.2 (for the dipole) and 4.4 (for the power law field approximation) 
*

vary with I p and M , augmented in the latter case by spot values obtained by numerical 

integration using the full current sheet field.

Fig. 4.25 shows how the spatial scale on which plasma corotation breaks down depends

Ip  and M  for the two fields. Specifically we show the position where (co/Dj)= 0.5, as

previously given in Tables 4.1-4.4. In Fig. 4.25a the equatorial distance is plotted versus

I p in log-log format for M  = 100,1000, and 10,000 kg s-1, while in Fig. 4.25b it is plotted
*

versus M  in similar format for I p =0.1, 1 and 10 mho. Solid lines give results for the 

dipole field obtained from Eqs. (4.7) and (4.8), showing that the distance increases with the
* I ̂  * _i/4conductivity as I p , and decreases with the mass outflow rate as M  1 . The dashed

lines show corresponding results obtained from the power law field approximate solutions

Eqs. (4.26) and (4.27) (with m = 2.71 and F0 «3.22 x 104 nT r /  as above), which of
*

course are not applicable to the full field model at distances smaller than p e » 21.78 Rj. 

These increase more rapidly with I p and decrease more rapidly with M , as I P*X/2JX and

respectively. Overall, however, the equatorial distances of corotation breakdown 

are similar for the dipole and current sheet fields as noted above, but are generally 

somewhat larger for the current sheet model than for the dipole, particularly for larger 

values of I P and smaller values of M . The solid dots in the figures provide spot values

obtained by numerical integration of the full current sheet solution, their close association
. * 

with the dashed lines clearly indicating the values of M  (in Fig. 4.25a) and I p (in

Fig. 4.25b) employed. This close association also confirms that the analytic solutions 

provide good approximations to the numerical results in the power law regime over 

essentially the whole parameter range considered here. The only notable deviations occur

at small I P* and large M  where corotation breakdown occurs at equatorial distances
*

approaching the radial limit of the power law field region at p e »21.78 R;. In this case
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Figure 4.25 Plots showing the location of plasma corotation breakdown, specifically where 
(o)/Oj)= 0.5, and its dependence on the system parameters Ep and M . Plot (a) shows 
the equatorial distance at which (&>//^)=0.5 versus EP in log-log format for 
M - 100,1000, and 10,000 kgs-1, while (b) shows this distance similarly plotted versus 
M  for Ep = 0.1, 1 and 10 mho. Solid lines give results for the dipole field obtained from 
Eqs. (4.7) and (4.8), while the dashed lines show corresponding results derived from the 
power law field approximation solutions for the current sheet model Eqs. (4.26) and (4.27). 
The solid dots provide spot values obtained from numerical integration of the full current 
sheet solution, whose M  (in (a)) and Ep (in (b)) values are obvious from their close 
association with the corresponding dashed lines. Corresponding plots of the ionospheric 
co-latitude at which =0.5 are shown versus Ep and M  in (c) and (d). The
horizontal dotted line shows the latitude of the field line from infinity in the current sheet 
field model.
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the numerical results give somewhat larger distances than the analytic approximation, as 

also seen in Fig. 4.18a.

Corresponding results projected to the ionosphere are shown in Figs. 4.25c and 4.25d, in a 

similar format. The horizontal dotted line at « 14.95° shows the co-latitude of the 

current sheet field line from infinity (the corresponding limit for the dipole being, o f course, 

the pole at -  0°). These plots again emphasise the significantly larger distance from the 

magnetic axis at which plasma corotation breaks down in the ionosphere for the current 

sheet field than for dipole, despite the similarity of the equatorial results. They also display 

the relative lack of response of this distance to the system parameters in the current sheet 

model, this forming the basis of the ‘current sheet’ approximation Fe ~F0 employed to 

obtain the analytic results in Section 4.3.2.

Turning now to the current components, in Fig. 4.26 we show the behaviour of the

magnitude and location of the peak Pedersen current, plotted in a similar format to
* •

Fig. 4.25. The magnitude of the peak current, plotted versus Zp and M  in Figs. 4.26a and 

4.26b, respectively, shows that for the dipole (solid lines) the peak Pedersen current 

increases with the conductivity as Fp*1/%, while also increasing weakly with the mass

outflow rate as M^8 (Eq. (4.15a), while for the current sheet (dashed line) approximations
*

the peak current varies linearly with Ep but is independent of M  (Eq. (4.33a)). The 

modestly lower numerically-determined spot values in the latter case result from our taking 

F0 = Fe(pe = 70 R j) in the approximation, as above. Very close agreement would have 

been obtained if  we had instead taken Fo = F00. These plots also show that for given system 

parameters the peak Pedersen current for the current sheet model exceeds that for the dipole 

by relatively constant factors of -3  to -5  (typically -4). This difference arises from the 

different ionospheric mappings of corotation breakdown as shown in Figs. 4.25c and 4.25d. 

Figs. 4.26c and 4.26d show the co-latitude of the peak Pedersen current, which for the 

dipole field lies typically at ~5° and is such that the distance from the magnetic axis varies 

with the system parameters as £ p*~̂  and (Eq. (4.9)), while for the current sheet

approximation it is located consistently at the poleward boundary of the current sheet field 

lines at -14.95° (dotted line) where the plasma angular velocity falls to zero. The 

numerically computed positions are located at slightly higher co-latitudes, typically by
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Figure 4.26 Plots showing the magnitude and location o f the peak height-integrated
♦

Pedersen current intensity in the ionosphere, and their dependence on I p and M . Plot
*

(a) shows the magnitude of the peak Pedersen current plotted versus I p in log-log format 
for M  = 100,1000, and 10,000 kg s”1, while plot (c) show the ionospheric location of the 
peak. Plots (b) and (d) similarly show the magnitude and location of the peak Pedersen 
current plotted versus M  for I p =0.1, 1, and 10 mho. Solid lines give results for the 
dipole field obtained from Eq. (4.15a), while the dashed lines show corresponding results 
derived from the approximate solutions for the power law current sheet field given by 
Eq. (4.33a). The solid dots show spot values obtained from numerical integration using the 
full current sheet solution. For the case of the current sheet approximation the peak current 
depends only on EP and not on M , so that only one dashed line is shown in plot (a), valid 
for all M . The peak current in this case always occurs at the poleward boundary of the 
current sheet field lines, as indicated by the horizontal dotted lines at -14.95° in plots (c) 
and (d).
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-0.1°. In practical application the peak current will thus be limited instead by the radial 

extent o f the region to which the model is taken to apply, with the peak value occurring at 

its outer (poleward) boundary. Nevertheless, the results given here should provide an 

indication of the peak currents involved.

Fig. 4.27 similarly provides results for the peak equatorial radial current, a parameter which 

relates directly to the magnitude of the azimuthal magnetic field outside of the current sheet 

(Fig. 3.1) (2^(nT)«0.63 i^m Am '1)). Figures 4.27a and 4.27b show that for the dipole

field the peak current varies as E*^2 and M x/1 (Eq. (4.15c)), while for the current sheet

* 1.71/2.71
approximation it varies more strongly with the conductivity as Ep , and less strongly

with the mass outflow rate as M 1/271 (Eq. (4.33c)). The values given by the numerical 

integrations are in close agreement with the latter. The current sheet model values are 

again higher than the dipole values by factors of ~3 to -5  (typically -4), for reasons 

discussed above. Figs. 4.27c and 4.27d show that the equatorial distance of the peak is 

typically located at -50  Rj for the dipole model, varying with the system parameters as 

Ep 4̂ and M _1/4, while for the current sheet approximation it is generally located at

somewhat larger distances -90 Rj, and varies more strongly as Ep 1/211 and M _1/271. The 

positions given by the numerical integrations are again in close agreement with the latter, 

except for small Ep and large M  where the position of the peak approaches 

p*  »21.78 Rj. In fact for small Ep and large M  the peak current in the numerical 

solutions lies consistently at p e where the field models are joined. Such points are omitted 

from the plots. At large distances the radial regime of applicability is again limited, such 

that the peak radial currents will actually occur at the outer boundary of the region for 

sufficiently large Ep and/or sufficiently small M , as can be determined from the position 

of the peak in Figs. 4.27c and 4.27d.

Results for the magnitude and location of the peak azimuth-integrated total equatorial radial 

current, equal, o f course, to twice the peak azimuth-integrated total Pedersen current in 

each conjugate ionosphere, are shown in Figs. 4.28 and 4.29. Figs. 4.28a and 4.28b show 

that the magnitude of the peak current for the dipole field increases with the conductivity as
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Figure 4.27 Plots showing the magnitude and location of the peak sheet-integrated
*

equatorial radial current intensity, and their dependence on Zp and M . Plot (a) shows the
*

magnitude of the peak current versus I p in log-log format for M  = 100,1000, and 

10,000 kg s_1, while plot (c) shows the corresponding equatorial location of the peak in a

similar format. Plots (b) and (d) similarly show the magnitude and location of the peak
♦

current versus M  for Zp =0.1, 1, and 10 mho. Solid lines give results for the dipole field 

obtained from Eq. (4.15c), while the dashed lines show corresponding results derived from 

the approximate solutions for the power law current sheet model given by Eq. (4.33c). The 

solid dots show spot values obtained from numerical integration of the full current sheet 

solution.
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Figure 4.28 Plots showing the magnitude and location of the peak azimuth-integrated total
equatorial current, and its dependence on EP and M . Plot (a) shows the magnitude of the
peak total equatorial radial current (equal to twice the peak total ionospheric Pedersen
current) versus EP in log-log format for M  = 100,1000, and 10,000 kg s_1, while plot (c)
shows the corresponding equatorial location of the peak in a similar format. Plots (b) and
(d) similarly show the magnitude and location of the azimuth-integrated peak total current 

• *
versus M  for Ep =0.1, 1, and 10 mho. Solid lines give results for the dipole field 
obtained from Eq. (4.15d), while the dashed lines show corresponding results derived from 
the approximate solutions for the power law current sheet model given by Eqs. (4.33d). 
The peak total current in the latter model is independent of M , so that only one dashed line 
is shown in (a). It occurs at infinity in the equatorial plane so that no dashed lines are 
shown in (c) and (d). The solid dots show spot values obtained from numerical integration 
of the full current sheet solution. In this case the peak values occur at large but finite 
distances such that only the closest of them are included in (c) and (d).
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Figure 4.29 Plots showing location of the peak azimuth-integrated total ionospheric
*

Pedersen current, and its dependence on (a) M  and (b) Zp in the same manner as in 
Fig. 4.28. Solid lines give results for the dipole field obtained from Eq. (4.15b), while the 
dashed lines show corresponding results derived from the approximate solutions for the 
power law current sheet model given by Eqs. (4.33b). As in Fig. 4.28, the peak total 
current in the latter model is independent of M , and occurs at infinity in the equatorial 
plane, or equivalently at the poleward boundary of current sheet field lines in the 
ionosphere at ~14.95° as shown here by the dotted line. The solid dots show spot values 
obtained from numerical integration of the full current sheet solution.
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£ p*3f4, and less strongly with the mass outflow rate as M l/4 (Eqs. (4.15b) and (4.15d)), 

while for the current sheet approximation it is linearly proportional to Ep and independent

of M  (Eqs. (4.33b) and (4.33d)). The numerical values shown by the dots in the latter case 

are a little lower than the dashed line approximation for reasons given above for the 

Pedersen current. The value of the peak current is factors of ~5 to ~20 (typically ~10) 

larger for the current sheet than for the dipole. The location of the peak in the equatorial 

plane (where the field-aligned current passes through zero), is shown in Figs. 4.28c and 

4.28d. It is located typically at ~90 Rj for the dipole field, scaling as Ep*]/4 and M~x/4, but

occurs at infinity for the current sheet approximation (such that no dashed lines are shown

in Figs. 4.28c and 4.28d), or in other words at the outer boundary o f the relevant region in

practical application. The peak value in the numerical curves, shown by the dots, occurs at

large but finite radial distance as mentioned previously in Section 4.3.4, typically well

beyond the region of physical applicability (~500 to -5000 Rj). Only the closest o f them 
*

(for small Ep and large M ) are included in Figs. 4.28c and 4.28d. The corresponding 

location of the peak azimuth-integrated Pedersen current in the conjugate ionosphere is 

shown in Figs. 4.29a and 4.29b. It is located typically at ~6° for the dipole field, scaling as 

S ’-'1* and as before, but for the current sheet approximation it is located consistently 

at the poleward boundary of the current sheet field lines at ~ 14.95° (dotted line).

Figs. 4.30 and 4.31 shows results for the upward-directed field-aligned current density, a

parameter o f relevance to the origins of the jovian auroras. The magnitude of the peak

upward current is shown in Figs. 4.30a and 4.30b in a similar format to the above, where,

since y)M and (j\JB) are simply related through the constant factor 2Bj in the approximation

for the ionospheric magnetic field employed here (Eq. (3.14)), one plot serves the purposes

of both parameters according to the left and right-hand scales. These plots show that for the
*

dipole field the peak upward current density depends linearly on Ep and is independent of 

M  (Eqs. (4.15e) and (4.15f)), while for the current sheet approximation it increases 

somewhat more rapidly with the conductivity as 2 1/ 3 42/2 71 (i.e. as ~E P ), while

decreasing slowly with the mass outflow rate as M~°71/271 (Eqs. (4.33e) and (4.33f)). The 

latter values agree well with those obtained from numerical integration, and exceed those 

obtained for the dipole field by factors of ~10 to ~50 (typically by ~25). The position of
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Figure 4.30 Plots showing the magnitude and equatorial location of the peak upward-
*

directed field-aligned current density, and their dependence on Zp and M . Plot (a) shows 
the magnitude of the peak total current density versus Zp in log-log format for 
M  = 100,1000, and 10,000 kg s '1, where the right-hand scale shows the peak current 
density in the ionosphere, while the left-hand scale shows the peak ( j j B )  value, simply 
related to the former via Eq. (3.16). Solid lines give results for the dipole field obtained 
from Eqs. (4.15e) and (4.15f), while the dashed lines show corresponding results derived 
from the approximate solutions for the power law current sheet model given by Eqs. (4.33e) 
and (4.33f). The solid dots show spot values obtained from numerical integration of the 
full current sheet solution. Plot (c) shows the corresponding location of the peak ( j j B ) in 
the equatorial plane in a similar format. Plots (b) and (d) similarly show the magnitude and 
equatorial locations of the peak current density versus M  for Zp = 0.1, 1, and 10 mho.
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Figure 4.31 Plots showing the ionospheric location and half-width of the peak upward-
*

directed field-aligned current density, and their dependence on Z p and M  . Plot (a) shows
*

the location of the peak field-aligned current in the ionosphere versus Zp in log-log format 
for M  = 100,1000, and 10,000 kg s'1. Solid lines give results for the dipole field obtained 
from Eqs. (4.15f), while the dashed lines show corresponding results derived from the 
approximate solutions for the power law current sheet model given by Eqs. (4.33f). The 
solid dots show spot values obtained from numerical integration of the full current sheet 
solution. Plot (b) similarly shows the ionospheric location of the peak current density 
versus M  for Zp =0.1, 1, and 10 mho. Plots (c) and (d) show the latitudinal width of the 
upward field-aligned current region in the ionosphere in a similar format, defined as the full 
width at half maximum.
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the peak value o f ( j j B )  in the equatorial plane is shown in Figs. 4.30c and 4.30d. It lies 

typically at distances o f -50  Rj for the dipole field and varies as ZP Â and , while 

lying at larger typical distances beyond -100 Rj for the current sheet model and varies as 

Z p ^ llx and M ~ l/2JX. The position of the peak field-aligned current density in the 

ionosphere is shown in Figs. 4.31a and 4.31b. For the dipole it lies typically at a co-latitude 

of -8° and scales in distance from the magnetic axis as Z p ~x/* and M 1/8, while for the

current sheet model it lies just equatorward of the boundary of current sheet field lines, with

variations which are in the same sense as for the dipole, but with amplitudes which are

much smaller. In Figs. 4.31c and 4.3 Id we finally show a measure of the latitudinal width

of the region of upward field-aligned current, potentially related to the latitudinal width of
* •

associated jovian auroras, plotted versus Z p and M  respectively. The width given here is

the full width at half maximum. The solid and dashed lines show results for the dipole and

approximate power law current sheet fields, respectively. The results were derived from

the fact that in the equatorial plane the value of ( j j  B) reaches half its peak positive value

for the dipole field at normalised radial distances (pe/R Dte) of -0.629 and -1.470 (see

Fig. 4.4a), while for the power law current sheet approximation the corresponding values of

iPe/RCSe)  are -0.940 and -8.337 (see Fig. 4.17a). The dots again show spot values

obtained numerically using the full current sheet field. It can be seen that the width for the
♦

dipole field is typically ~3°-5°, decreasing modestly with increasing Z p and increasing 

modestly with increasing M  (as Z p ~l/i and M^8, respectively). For the current sheet

model the thickness is reduced to ~0.5°-1.5° (less if  the system is limited in radial distance),
*  - 0.26

varying in the above manner more strongly with the system parameters (as -  Zp and 

-  M 026).

4.6. Summary

In this chapter we have considered the steady-state properties of the magnetosphere- 

ionosphere coupling current system that flows in Jupiter’s middle magnetosphere, 

associated with the enforcement of partial corotation on outward-flowing plasma from the
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Io torus. The solutions depend on the values of two parameters, the effective Pedersen 

conductivity o f the jovian ionosphere Ep , and the mass outflow rate o f iogenic plasma M , 

these being taken to be constants. However, their values remain uncertain at present, thus 

prompting the study presented here of how the solutions depend on these parameters over 

wide ranges of the latter. We have also focussed on two models of the magnetospheric 

poloidal field, taken for simplicity to be axisymmetric. The first is the planetary dipole 

alone, which constitutes an instructive paradigm. Some general results for this case have 

previously been given by Hill (1979, 2001) (see Chapter 3). Here we have provided a 

complete analytic solution for this case, showing how the plasma angular velocity and 

current components scale in space and in amplitude with Ep and M . We find that the 

plasma angular velocity and current components scale in equatorial radial distance as

as found previously by Hill (and correspondingly as (m /E *  | /8 in the

ionosphere), while each current component scales in amplitude as Ep m ^~^2 , where

y  has a particular value for each component. The scales in space and amplitude then

combine to produce current values which depend only on M  at a fixed position at small
*

radial distances, and only on Ep at a fixed position at large radial distances, these 

dependencies then requiring current variations at small and large distances with particular 

powers of the distance, as p ^ +r̂  at small distances, and as p~^~7̂ at large distances.

These results provide useful background for the second more realistic field model, based on 

Voyager data, in which the equatorial field strength is significantly less than for the dipole 

field due to the radial distension of the middle magnetosphere field lines, and is taken to
—m * *vary with distance as a power law p e . Solutions for a few spot values of Ep and M  

have previously been presented by Cowley, Nichols and Bunce (2002) and Cowley, Bunce 

and Nichols (2003), obtained by numerical integration of the corresponding Hill-Pontius 

equation. Here we have derived an analytic approximation, applicable to the power law 

regime, which shows how the plasma angular velocity and current components scale with 

Ep and M  in this case. We find that these solutions provide accurate approximations to 

the full numerical results within the power law regime (roughly p e > 20 R;) over very wide 

ranges o f the system parameters, provided (e p / m ) is not too small (~10~4 mho s kg-1 or 

larger). The results show that the conclusions concerning the nature of the current sheet
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solutions, and their relation to the dipole solutions, which were drawn previously on the 

basis o f a limited number o f numerical investigations are generally valid over wide ranges 

of the parameters. In particular it has been shown that in the current sheet model the field- 

aligned current flows unidirectionally outward from the ionosphere into the current sheet 

over the whole current sheet, in all cases of interest. The closure of this current must then 

occur on field lines at higher latitudes which map to the outer magnetosphere and tail, 

which are not described by the present theory. This situation contrasts with the dipole 

model, in which (at least in principle) all the flux in the system is described by the theory, 

such that complete current closure occurs between the equator and the pole. The results for 

the power law current sheet show that the plasma angular velocity and currents now scale in

radial distance as ( l P , while each current component again scales in amplitude as

I P * M^~r 2̂, where the values of y  for each component exceed those of the

corresponding component for the dipole field (at least for m > 2 as considered here). The

current components thus scale as a somewhat higher power of I p for the current sheet

than for the dipole, and as a somewhat lower power of M . These scales in space and

amplitude again combine to produce current values which depend only on M  at a fixed
*

position at small radial distances, and only on I p at a fixed position at large radial 

distances (both being general properties of the solutions), these dependencies then requiring 

current variations as p gm̂ +r̂ 2 at small distances, and as p ~ m̂ ~7̂ 2 at large distances. The

absolute values of the currents are also higher for the current sheet model than for the 

dipole, by factors of -4  for the Pedersen and equatorial currents, -1 0  for the total current 

flowing in the circuit, and -25 for the field-aligned current densities. These factors do not 

vary greatly over the range of system parameters considered here.
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Chapter 5

Magnetosphere-Ionosphere Coupling Currents in 

Jupiter’s Middle Magnetosphere: Effect of 

Precipitation-Induced Enhancements of the 

Ionospheric Pedersen Conductivity

5.1. Introduction

An important limitation of the calculations of previous authors discussed in Chapter 3 and 

those in Chapter 4 of this thesis is that they all assume a constant value of the effective 

ionospheric Pedersen conductivity, though Pontius (1997) discussed the effect of variations 

of this parameter produced by varying atmospheric ‘slippage’ associated with the possible 

onset o f instabilities induced by atmospheric velocity shear. However, given the newly- 

understood linkage with the ‘main oval’ auroras, it seems clear that a far more important 

conductivity modulation mechanism results from the ionospheric ionisation produced by 

precipitating accelerated ‘main oval’ electrons. For example, as indicated in Chapter 4 

Strobel and Atreya(1983) estimated that a Pedersen conductivity of a fraction of a mho 

produced solely by solar UV radiation could be increased to -10  mho (uncorrected for 

atmospheric slippage) under conditions o f intense auroral precipitation. These conclusions 

have recently been confirmed by more detailed calculations presented by Millward et 

al. (2002), using the JIM jovian coupled ionosphere-thermosphere model of Achilleos et 

al. (1998). Millward et al. (2002) calculated the effect on the ionospheric conductivity of 

precipitating monoenergetic electron beams, and found, for example, that a beam of 

-60  keV electrons (comparable to the energies determined by Cowley and Bunce (2001b)) 

associated with an upward field-aligned current of -1 pA m'2 (on the high side of those 

determined here) will produce an increase in height-integrated Pedersen conductivity from
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a background value o f less than 0.1 mho to a value of -7.5 mho (uncorrected for 

atmospheric slippage).

It is the primary purpose of this chapter to investigate the effect on the plasma angular 

velocity profiles, and on the magnetosphere-ionosphere current circuit, o f precipitation- 

induced changes in the ionospheric conductivity. In so doing, we will also address two 

other issues left open from previous studies. The first is the issue addressed specifically by 

Pontius (1997), which concerns the fact that observed values of the plasma angular velocity 

in the outer part o f the middle magnetosphere do not fall as fast with increasing radial 

distance as anticipated from simple constant-conductivity models (e.g. Kane et al., 1995; 

Krupp et al., 2001). Cowley and Bunce (2001b) anticipated that such effects could result 

from precipitation-induced enhancements in the ionospheric conductivity and the 

consequent atmospheric torque. The second concerns the radial profile o f the outward- 

directed field-aligned currents which feed the radial current in the equatorial plasma. In the 

constant-conductivity models derived previously, these currents are broadly distributed 

over the whole middle magnetosphere region, such that the equatorial radial current, 

integrated over local time, grows monotonically with increasing distance (see Chapter 4), 

closing in the exterior region outside the middle magnetosphere not described by the model. 

However, analysis of Galileo magnetometer data presented by Khurana (2001) indicates 

that the outward field-aligned current into the equatorial plane is actually concentrated in 

the inner region between radial distances of -10  and -30  Rj, peaking near 20 Rj, such that 

the total radial current, integrated in local time, is approximately constant at distances 

beyond. These results for the location of the upward field-aligned current are also in rough 

accord with the observed locations of the ‘main oval’ auroras (Clarke et al. 1998; Prange et 

al., 1998; Grodent et al., 2003). Here we will show that the effect of precipitation-induced 

enhancement o f the ionospheric conductivity is just such as to concentrate the upward 

current into the inner middle magnetosphere region, as deduced from the Galileo data.

This chapter will be organised as follows. In the next section an update to the ‘current 

sheet’ field model (see Chapter 3) to be used in the calculations in this chapter will be 

described. In Section 5.3 we then derive an empirical model of how the conductivity 

depends on the field-aligned current, estimated from the results presented by Millward et 

al. (2002). In Section 5.4 we present solutions for the plasma angular velocity and the
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current using simplified conductivity models motivated by the empirical results, allowing 

us to investigate the nature of the solutions and their relation to the previous solutions 

derived for constant conductivity. In Section 5.5 we then present results using the full 

empirical conductivity model, and compare them with the current profiles derived by 

Khurana (2001) from Galileo data.

5.2. Magnetic field model

In the modelling work described in previous chapters we have used the ‘Voyager-1 / 

Pioneer-10’ model of Connemey et al. (1981) (the ‘CAN’ model) at small distances, and 

the Voyager-1 model of Khurana and Kivelson (1993) (the ‘KK’ model) at large distances, 

the models being joined at an equatorial radial distance of pe ~ 21.78 Rj, where the two 

model curves meet (see Section 3.3.6). Although there is then no discontinuity in the field 

magnitude at this point, there is a discontinuity in the first derivative. Here instead we 

employ a field model which is very close to that previously used, but is continuous over the 

range of interest. The model equatorial field is given by

B z e ( P e )  =  ~ ' exp
\ r e  J

r \ 5/2
£ e

V Peo J
+ A

/  vrA (5.1a)
\ r e  J

where BQ = 3.335 x 105 nT, peo = 14.501 Rj, A = 5.4 x 104 nT and m = 2.71. The second 

term in this expression is simply the KK model, applicable at large distances, while the first 

term is a modified dipole in form. The corresponding flux function is given by

F ( p  ) = Fao+ B°- J -T
A P e )  2  P eo

f  V/2 
Pe

V P eo  J
+

(m -2 )

/  \ m - 2

f * j
\ r e  J

(5.1b)

where F«>» 2.841 x 104 nT Rj2 is the value of the flux function at infinity, and T(af) is the 

incomplete gamma function given by Eq. (4.28). This field model is such that the values of 

both Bze and Fe at the inner edge of the middle magnetosphere current sheet at pe = 5 Rj are
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exactly those given by the CAN model (in the Edwards et al. (2001) approximations). 

These values are ~  3177 nT and ~ 8.819 x 104nTRj2, compared with ~ 3411 nT and 

~ 8.528 x 104 nT Rj2 for the dipole field alone, the differences reflecting the stretched out 

nature o f the field due to the presence of the current sheet. The model is also such that the 

flux threading through the current sheet between 5 Rj and infinity is exactly equal to that of 

the CAN/KK model employed previously, such that the values of F® in the two models are 

also exactly equal. Consequently, the models map into exactly the same dipole latitude 

band in the ionosphere, spanning dipole co-latitudes between -2 7 °  and -1 5 °  for radial 

distances between 5 Rj and infinity. In Fig. 5.1 we show plots of \Bze\ (the actual values of

are, of course, all negative), Fe, and the ionospheric co-latitude 6\ versus equatorial

radial distance over the range 0 to 100 Rj (as employed throughout this chapter). The solid 

lines show the values for the above field model, while the dashed lines show the values for 

the planetary dipole alone. The dotted lines in the \Bze\ plot show the values for the

CAN/KK model, which are only clearly visible when they are projected beyond . The 

ionospheric mapping is given by Eqs. (3.2) and (3.3) such that the outermost field line in 

the plot, mapping to 100 Rj in the equatorial plane, maps to ~ 15.7° in the ionosphere. The 

horizontal dashed lines in the Fe and 6i plots show the asymptotic values of these quantities 

at large distances.

5.3. Dependence of the Pedersen conductivity on the field-aligned 

current

Recent modelling work presented by Millward et al. (2002) has investigated how the 

height-integrated conductivities in Jupiter’s auroral zones are enhanced by auroral electron 

precipitation. In their model runs the precipitating electrons were taken to be a 

monoenergetic electron beam with energy ranging from 1 to 100 keV, thus spanning the 

range expected from the initial studies of Cowley and Bunce (2001b), Cowley, Nichols and 

Bunce (2002),and Cowley, Bunce and Nichols (2003). In their paper, results are shown for 

two cases o f electron flux, one for a fixed flux of 6.25 x 1012 m'2 s"1 (corresponding to a

94



Chapter 5: Effect o f Precipitation-Induced Enhancements o f the Pedersen Conductivity
\Bze\/nT

1 0 0 0 0

1 0 0 0

100

10 K K D ip o le

Model

20 4 0 60 80 10 0
FJnTR/ (a)

8 0 0 0 0

6 0 0 0 0

4 0 0 0 0

2 0 0 0 0

20 40 60 80 10 0
OJdeg (b)

25

20

15

10

60 80 1 0020 40 (C )

Figure 5.1. Plots showing the parameters of the current sheet field model employed in this 
chapter (solid lines) compared with values for the planetary dipole field alone (dashed 
lines). Plot (a) is a log-linear plot of the modulus of the north-south component of the 
equatorial magnetic field \Bze\ in nT threading the equatorial plane, shown versus 
jovicentric equatorial radial distance p e, and where we note that the actual values are 
negative (i.e. the field points south). The solid line shows the field model employed in this 
paper, given by Eq. (5.1a), which is based on the CAN-KK model described in Section
3.3.6. The dotted lines show the CAN and KK models themselves, plotted beyond their 
intersection for ease of visibility. Plot (b) similarly shows the equatorial flux function of 
the model field Fe in nT m'2 versus jovicentric equatorial radial distance p e, given by 
Eq. (5.1b). The dotted line shows the value of the flux function at infinity, Fx. Plot (c) 
shows the mapping o f the field lines between the equatorial plane and the ionosphere, 
determined from Eqs. (3.2) and (3.3). The ionospheric co-latitude of the field line 6i is 
plotted versus jovicentric equatorial radial distance p e. The dotted line shows the 
ionospheric co-latitude of the field line which maps to infinity in the equatorial plane for 
our current sheet field model.
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current density o f 1 pA m'2), their Fig. 7, the other for a fixed energy flux of 10 mW m'2, 

their Fig. 8 (we note that in their paper the units of the fixed flux are misprinted as cm'2 s'1). 

The empirical conductivity models employed here are based on the results shown in these 

two figures (kindly provided in digital form by G.H. Millward, personal communication, 

2003).

Millward et al.’s (2002) results show that, for a given value of the number flux, the 

enhancement in the Pedersen conductivity is dependent on the precipitating electron 

energy, strongly peaking in the energy band between -50  to ~80 keV, where the electrons 

deposit most o f their energy within the Pedersen layer. Electrons e.g. of significantly 

higher energies deposit their energy too low down in the atmosphere to significantly affect 

the conductivity. In order to estimate the conductivity enhancement associated with a given 

field-aligned current (and hence number flux) we thus also need to estimate the energy of 

the precipitating electrons. To do this we employ the kinetic theory of Knight (1973), as 

discussed in Section 3.3.3. Specifically, we use Eq. (3.20) for the minimum field-aligned 

voltage required to drive a given field-aligned current and Eq. (3.23) for the corresponding 

precipitating energy flux. The approximations in Eqs. (3.20) and (3.23) correspond to the 

case where y||f. » j ]]i0, as will generally be satisfied in the middle magnetosphere, as

discussed previously by Cowley and Bunce (2001b), Cowley, Nichols and Bunce (2002), 

and Cowley, Bunce and Nichols (2003). In this case, therefore, the electron population will 

indeed form an essentially monoenergetic beam at high altitudes, because e0^>W th.

Consequently, the results presented by Millward et al. (2002) indicate that the ionospheric 

conductivity will be strongly enhanced when the field-aligned current passes through 

values such that the accelerating voltage lies in the range -50  to 80 keV, and will be 

significantly smaller outside this range. However, judging from the case of the Earth (see 

e.g. Paschmann et al. (2002), chapter 4), the monoenergetic beam will be strongly scattered 

by wave-particle interactions underneath the accelerating region, forming a broad 

distribution covering a wide range of energies, thus smoothing the variation of conductivity 

with current. This seems the most likely scenario at the present time, and is the case which 

will be assumed here.
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Specifically, we have assumed that the auroral electron distribution is isotropic over the 

downward-going hemisphere (due to the large increase in field strength between the 

acceleration region at a few Rj altitude and the top of the ionosphere), and is given as a 

function o f electron velocity v by

/ ( v )  = /.
C \

\ Vo j

a /  \ P

VVo J

(5.2)

such that for p  > a , the distribution varies as v “ for v < v0, and v p for v > v0. The 

velocity where the spectrum ‘breaks’ between exponents a  and P  is taken to be given by the 

accelerating voltage <Z>, i.e.

(5.3)

such that the population with slope a  for v < v0 corresponds to degraded primary particles, 

while that with slope p  for v > v0 corresponds to a steeply falling high energy tail produced 

by the wave-particle interactions. The value of f 0 is determined by the requirement that 

the downward-going particles carry current j w, i.e.

fo= — (5.4)

and, for the examples employed here, for a given value of a  we have determined the value 

of p  such that the total precipitating energy flux is just that given by Eq. (3.23). Example 

distributions are shown in Figs. 5.2a and 5.2b for the cases a  = 0, p =  10 and a  = 2, p =  8 

respectively. In each case we show the distributions (plotted versus electron energy 

wt = my i 2  in keV) corresponding to both j {[i =0.1 pAm'2 and 1.0 pAm'2, where the

magnetospheric ‘parent’ population has a density # = 0 .0 1  cm’3 and a thermal energy
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Figure 5.2. Two examples of auroral electron distribution functions, plotted versus electron 
energy We = m ev 2l l  in keV, determined from Eqs. (5.2)-(5.4), employed here with 
N  =  0.01 cm'3 and Wth = 2.5 keV. Plot (a) shows the case for a =  0 and J3= 10, while plot 
(b) shows the case for a =  2 and /?= 8. In both plots the distributions are shown for 
j w =0.1 pA m'2 and 1.0 pA m'2. The dashed lines show the asymptotes of the respective 
power law variations.
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We - 2 .5  keV, these values being based on Voyager data presented by Scudder et 

al. (1981), as also employed in previous related studies. In this case, the limiting current in 

Eqs. (3.20) and (3.23) is y||f0 = 0.0134 pA m'2, while the limiting energy flux is

0.067 mW m’2.

To estimate the enhancement in the height-integrated Pedersen conductivity produced by 

such precipitating electron distributions we have calculated the precipitating number flux 

Tn in each o f ten contiguous energy bands spanning the energy range from 5 to 105 keV,

centred on the ‘monoenergetic’ energy values of 10, 20, ... 100 keV employed by Millward 

et al. (2002). We have then taken the Pedersen conductivity values determined by 

Millward et al. (2002) for a fixed number flux T0 =6.25 x 1012 m'2 s*1 at each energy, ZPn, 

and have summed the contributions of each energy band according to

10
Pn

n= 1

% (5.5)

The exponent y„ has been determined by comparing the conductivity values determined at 

fixed number flux shown in Millward et al.’s (2002) Fig. 7, with those determined at fixed 

energy flux in their Fig. 8. The values of yn so determined vary from ~0.5 at the lower 

energies -10-20 keV, to -0 .8  at the higher energies -70-80 keV. The rationale for 

employing a power law variation of ZPn with the number flux at fixed energy, while

linearly summing the contributions of differing energy bands rests on the fact that electrons 

of differing energy produce their ionisation at differing heights through the ionosphere, as 

can be seen in Millward et al.’s (2002) results, and are thus additive to a lowest 

approximation. While we thus believe that our procedure makes reasonable use of existing 

information, we nevertheless recognise that it represents a rather crude approximation.

The solid lines in Fig. 5.3 show how Zp depends on j ¥ for four model auroral distribution

functions (a, ft values) for a hot magnetospheric ‘source’ electron population with the 

above values o f N  and Wth. It can be seen that the curves are reasonably similar, rising 

from small values for small currents to values of -2  mho for j w -0 .4  pA m'2 (a slope of
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Figure 5.3. Plots of the height integrated Pedersen conductivity Z p in mho versus 
ionospheric field-aligned current density f .  (pA m"2) using four models of the auroral 
electron distribution functions. The respective a  and ft values are indicated on the plot. 
The results are based on Millward et al.’s (2002) computations, using Eq. (5.5). The 
dashed line shows the analytic form given by Eq. (5.6).
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~5 mho (jiA  m"2)'1). For larger currents, the behaviour of the conductivity depends rather 

more on the assumed spectrum, specifically on die slope at small energies, below that 

produced by the voltage drop. However, rather than employing these curves directly, 

which would be impractical in the numerical integrations which follow, we have instead 

employed a simple analytical form taken to be representative of these results. This is given, 

for ./„><), by

(-/»,) = 0.! 6/||( + 2.45
U /0 -0 7 5 )2

i+(y„,/o.075): [l + e x p (- ( /Hl. -0 .22)/0 .12)]
(5.6)

where Ep is in mho and j w is in pA m'2. This form is shown by the dashed line in 

Fig. 5.3.

It should be realised that the results shown in Fig. 5.3 are appropriate only to the above 

values of the magnetospheric hot electron source parameters, and that differing 

dependencies of the conductivity on the current will be appropriate to other values. In 

general, therefore, the conductivity will be a function of both the field-aligned current and 

the position (i.e. the flux function). For simplicity, however, and in the absence of any 

established model of the properties of die hot magnetospheric electrons, we have taken the 

source parameters to be constant throughout the middle magnetosphere, as seems 

appropriate to an initial investigation. We have thus employed a fixed conductivity model 

Ep = Ep ( j ¥ ), independent of position, in all the solutions derived in this chapter. Two

further points should also be made. The first is that the quantity Ep derived above and

shown in Fig. 5.3 is our estimate of the true value of the height-integrated Pedersen 

conductivity, while the value required by the theory in Section 3.3.2 is the ‘effective’ value, 

reduced from the true value by atmospheric slippage. This is related to the true value by 

Eqs. (3.11) and (3.9), thus depending on parameter k. The value of k is not well known at 

present, but recent work with the JIM model indicates that k ~ 0.5 for large current values 

of ~ 1 \iA m'2 (G.H. Millward, personal communication, 2003). Application of Eq. (5.6) in 

Section 5.5 is thus modified by the multiplication of the true conductivity by the factor 

(l — At), where we assume that k ~ 0.5. Second, noting that the analytical form Eq. (5.6)
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goes to zero as j ¥ -»  0 , we also add a small constant value -0.05 mho, representing the

residual conductivity (produced, for example, by solar illumination) in the absence of 

precipitation. Further details will be given below.

5.4. Solutions for near-linear variations of the conductivity

Rather than proceed directly to the discussion of solutions tailored specifically to jovian 

conditions, employing the empirical conductivity model given by Eq. (5.6), in this section 

we first discuss the results of a somewhat wider investigation using simplified conductivity 

models, which provide insight into the nature of the solutions and their relation to those 

derived in earlier studies using constant conductivity.

5.4.1. Method o f obtaining solutions

We first discuss the method adopted to obtain the solutions required. In the case where 

Ep* is considered to be a constant, as discussed in previous chapters, the equation to be

solved is the Hill-Pontius equation, Eq. (3.27). This is a first order linear equation for co, 

which can be solved numerically with the use of one initial or boundary condition, i.e. with 

the arbitrary choice of the value of co at one particular position p e. However, for a given

position p e, there is only one choice for co which satisfies the physical requirement that the

the plasma near-rigidly corotates at small radial distances, the latter corresponding to the 

solutions first derived by Hill (1979) and Pontius (1997). All other solutions diverge at 

small p e, those starting with a smaller value of co eventually diverging to large negative

values, while those starting with a larger value of co diverging to large positive values. 

Some examples of such divergent solutions are shown in the Appendix of the paper by 

Cowley and Bunce (2003a). The required solution which does not diverge at the origin can 

then be found by iterating the value of co at the ‘boundary’ position.

99



Chapter 5: Effect o f Precipitation-Induced Enhancements o f the Pedersen Conductivity

If we now consider the variable conductivity problem in which 27/ depends on j w

according to some model such as Eq. (5.6), then two equations must be solved 

simultaneously. That is Eq. (3.16) for parallel current, and the Hill-Pontius equation 

Eq. (3.27) for the plasma angular velocity, which now depends on the parallel current 

through the dependence of 27/. We thus must solve two coupled first order equations for 

j v and a, thus requiring the choice of two boundary or initial conditions. These choices 

are conveniently the values of j w and co at a given point, p e, taken throughout here to be 

the outer boundary of the model at 100 Rj. The choice of j w at the outer boundary also 

fixes the value o f 27/ at the boundary, of course, through the chosen conductivity model. 

For a given value of j w (and 27/) at the outer boundary we then iterate co to find the

physically acceptable solution which near-rigidly corotates at small radial distances, using 

the divergent behaviour of the Hill-Pontius equation at small radial distances outlined 

above, which applies here also to the general problem. It is found that co must generally be 

specified to very many (typically ~13) decimal places at 100 Rj in order to follow the 

required solution in towards the quasi-dipolar inner magnetosphere without diverging either 

to large positive or negative values. In practice this procedure has typically been used to 

track the required solution in from 100 Rj to p e ~ 10 to 20 Rj, the solution then being

completed by the use of an approximation which is appropriate to the inner region, as we 

now discuss.

5.4.2. Inner region approximations

The behaviour o f the physically required solutions in the inner region where the plasma 

near-rigidly corotates has been discussed previously in Chapter 4 for the case of constant 

conductivity, and is now applied here to the more general case. It was found in Section 4.2 

that the amount of (small) slippage from rigid corotation required to drive the current ip

which maintains near-rigid corotation is given by Eq. (4.3), valid for the situation where 

( l - o / / 2 y) 1. Hence in this regime the azimuth-integrated equatorial radial current Ip

and the ionospheric field-aligned current j w were found to be given by Eqs. (4.4d) and
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(4.4f) respectively. It was therefore shown that the currents in the innermost region depend 

only on M  and the model of the poloidal field and not on Zp* (or the model dependence of

Zp* on j {]i), though o f course the radial extent of the region to which Eqs. (4.4d) and (4.4f) 

apply does depend on Zp* ( j {[i) as we will find. However, the plasma angular velocity in 

the inner region then does depend on Zp* (f . ) (with j w determined from Eq. (4.4f)), the 

departure from rigid corotation varying inversely with the conductivity.

It will be noted from Eq. (4.4f) that j w approaches small values in the inner region, being 

given by

3 M Q , 4
(5 .7)

where the field is quasi-dipolar, i.e. \Bze\ « B jR f /  p*  (Eq. (5.7) is simply the equatorial

mapping o f Eq. (4.23f), and is related to the latter via Eq. (3.3)). The ionospheric

conductivity thus perforce approaches the small constant value Zp* = Zp* (f .  = 0) in the

inner region. An additional iterative approach to approximation in the inner region can then 

be useful in cases where the conductivity does not vary strongly with the parallel current. 

We can then first solve the Hill-Pontius equation using the constant conductivity

Zp ( j\\i -  0 ) , from which an approximation to f .  is derived, which can be used to derive a

varying conductivity profile from the model for Zp* (j {{i) which is an explicit function of

position. This can then be used to solve the Hill-Pontius equation again, yielding a ‘first 

iteration’ to the angular velocity and currents, from which a modified varying conductivity 

profile is derived. In principle this procedure can then be repeated to find successive 

iterations to the solution in the inner region.
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5.4.3. Results for a near-linear conductivity model

We now present results, derived as discussed above, for a simplified conductivity model in 

which the Pedersen conductivity has a small near-constant value for j w negative (i.e.

downward field-aligned current), while increasing near-linearly with the field-aligned 

current density when j w is positive (i.e. upward field-aligned current). Specifically the

function employed is

which is such that Zp -  EPo* for j w «: -  j* , and Ep -  Ep * + Sjw for j w »  

value o f the limiting conductivity in the inner region of the system is then

. The

z;(jw=o)=zP; + s j
J  Ik 

2v y
(5.9)

In the results presented here we have taken Ep * = 0.05 mho (motivated, e.g., by the results 

of Hill (1980) obtained from analysis of plasma angular velocity profiles in the innermost 

region), j* =0.01 pAm'2 (a somewhat arbitrary small value, which is such that the

conductivity varies between the above two behaviours over a narrow range of 

j w -0 .0 1  pA m'2 about j w = 0), and three values o f the slope S = 0.1,1.0 and

10 mho (pA m*2)'1. We show these three models for the conductivity in Fig. 5.4, plotted 

versus j w over the physically interesting range out to 1 pA m'2. We note that the initial

slopes o f the empirical curves for the true value of the Pedersen conductivity (as opposed to 

the ‘effective’ value discussed here) shown in Fig. 5.3, lie between the two larger of these 

values of S. Results for the smallest value, S = 0.1 mho (pA m'2)'1, are included in order to 

address the issue o f the relation between the solutions derived here and those obtained for 

constant conductivity in previous studies.
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Figure 5.4. Plots of the effective height integrated Pedersen conductivity Zp *in mho versus 
ionospheric field-aligned current density j w (pA m"2) using the near-linear conductivity 
model given by Eq. (5.8). Three cases are shown for S =  0.1, 1, and 10 mho (fiA m'2)'1, as 
indicated.
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We thus begin here with the latter case, S =  0.1 mho (pA m*2)'1, and also choose 

M  = 1000 kg s'1 as a typical value as indicated above. In Figs. 5.5 and 5.6 we show results 

in a standard form that will be used throughout the chapter. The two panels of the first 

figure (Fig. 5.5) show, respectively, the plasma angular velocity normalised to Q3 and the

azimuth-integrated equatorial radial current /  in MA, while the two panels of the second

figure (Fig. 5.6) show the field-aligned current density at the top of the ionosphere j w in

pA m ', and the effective height-integrated Pedersen conductivity Ep in mho, all plotted

versus radial distance p e. The last two quantities, of course, correspond to the values at the

respective feet of the field lines concerned, but they have been plotted here versus p e so

that the relationships between all these quantities can be most readily appreciated. In the 

next section we will also show solutions projected into the ionosphere and plotted versus 

dipole co-latitude, so that the ionospheric distributions can also be appreciated.

The dot-dashed lines in the figure panels show the small- p e approximations given by

Eqs. (4.3), (4.4d), and (4.4f), with Ep evaluated at j w given by Eq. (4.4f). These

approximations should be valid in the inner region where the departure of the plasma from 

rigid corotation is small. The dashed lines also show the solution obtained, as in previous 

works, if  the conductivity is taken to be the constant value Ep ( j w = 0), equal (from

Eq. (5.9)) to 0.0505 mho in this case. According to the above discussion, these are then the 

curves to which our solutions should asymptote in the inner region as j w falls to small

values, such that the conductivity falls to Ep (j w = 0). It can be seen that j w for this

solution peaks at a value of -0.055 pA m’ at —30 Rj, and falls to —0.028 pA m’ at the 

outer boundary at 100 Rj. We note that such values of j w result in only modest increases in

the conductivity according to our assumed model, e.g. reaching -  0.0562 mho for j w «

0.056 pA m*2. If we then choose a value of j w at the outer boundary at 100 Rj which is

close to that o f the constant conductivity curve, we may expect to derive a closely similar 

solution. This solution is shown by the central solid curve in each of the panels in Figs. 5.5 

and 5.6, which shows the solution obtained by numerical integration of Eqs. (3.16) and 

(3.27) which near-rigidly corotates at small p e and has the value j w = 0.03 pA m' at
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Figure 5.5. Plots of (a) the plasma angular velocity co normalised to the planet’s angular 
velocity , and (b) the azimuth-integrated equatorial radial current /  in MA for the 
near-linear conductivity model (Eq. (5.8)) with slope S = 0.1 mho (jiA m'2)'1 (solid lines), 
for constant conductivity E * (j w = 0) = 0.0505mho (dashed lines), and the near-rigid 
corotation approximations given by Eqs. (4.3) and (4.4d) (dot-dashed lines). The three 
solid lines represent boundary condition choices of j w (100 Rj) = 0.10, 0.03 and 
-0.04 pA m*2 as indicated in plot (b). In plot (a) the three solid curves are closely similar to 
one another, and are therefore not labelled. The solutions in each case are tracked to 13 Rj, 
inside which they are completed by the ‘first-iteration’ approximation discussed in 
Section 5.4.2. Both parameters are plotted versus jovicentric equatorial radial distance p e.
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Figure 5.6. Plots o f (a) the field-aligned current density at the feet o f the field lines y|(i in 
pA m'2, and (b) the effective height-integrated Pedersen conductivity 27* in mho for the 
near-linear conductivity model (Eq. (5.8)) with slope S =  0.1 mho (pA m*2)’1 (solid lines), 
for constant conductivity 27/ ( j w = 0) = 0.0505 mho (dashed lines), and the near-rigid 
corotation approximation given by Eq. (4.4f) (dot-dashed lines). The three solid lines 
represent boundary condition choices of ^.(lOO Rj) = 0.10, 0.03 and -0.04 pAm’2 as 
indicated. Again, the solutions in each case are tracked to 13 Rj, inside which they are 
completed by the ‘first-iteration’ approximation discussed in Section 5.4.2. Both 
parameters are plotted versus jovicentric equatorial radial distance p e.
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p e = 100 Rj. (Note, however, that in Fig. 5.5a the solid lines are so close to each other that

they are essentially indistinguishable). It can be seen that, as expected, this solution is very 

close to the constant conductivity solution over the whole range of distances. The iterated 

value o f co/Qj at 100 Rj, for example, is (ffl//2y) »  0.1114 compared with

(o //2 y) «  0.1065 for the constant conductivity solution. We thus confirm that the solutions

obtained here reduce to those found previously for constant conductivity in the appropriate 

limit.

Two other variable conductivity solutions are also shown in Figs. 5.5 and 5.6, for 

j w =0.10 pAm'2 and j w = -0.04 pA m'2 at p e 100 Rj, such that the current at the outer

boundary deviates considerably from that of the constant conductivity solution, one to 

larger positive values, the other to negative values. It can be seen that these solutions are 

closely similar to that for j ¥ = 0.03 pA m'2 in the inner region, diverging only at larger

distances towards the boundary condition imposed at 100 Rj. If the solution curves are 

projected (somewhat unphysically) beyond 100 Rj, it is found that the solution for negative 

j w at the boundary diverges to large negative currents at a radial distance just beyond

100 Rj, while the solutions for positive currents at the boundary grow approximately 

linearly with the distance (results not shown). However, as can be seen in Fig. 5.5a, the 

solutions for (<»//2y) in all cases remain very close to that for the constant conductivity

Zp = Zp ( ./’h, = 0) = 0.0505 mho, shown by the dashed line.

We now turn to cases with significantly larger values o f the slope S in the conductivity 

model, such that the enhancement of the conductivity with current is by a more substantial 

factor. For example, for S = 1 mho (pA m'2)'1 the conductivity increases from 0.055 mho 

when j w = 0  to 0.150 mho when j w =0.1 pAm*2, while for S =  10 mho (pA m'2)*1 the

corresponding increase is from 0.1 to 1.052 mho (see Fig. 5.4). Results for these values of 

S are shown in Figs. 5.7 and 5.8, and 5.9 and 5.10, respectively, where again we take 

M  = 1000 kg s'1. The format of the figures is similar to Figs. 5.5 and 5.6. It can be seen in 

Figs. 5.7a and 5.9a that in the innermost region the plasma angular velocity decreases from 

near-rigid corotation with increasing distance, in line with expectations based on the
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Figure 5.7. Plots of (a) the plasma angular velocity co normalised to the planet’s angular 
velocity /2y , and (b) the azimuth-integrated equatorial radial current I  in MA, for the 
near-linear conductivity model (Eq. (5.8)) with slope 5'= 1.0 mho (pA m'2) 1 (solid lines), 
for constant conductivity Zp ( j w = 0) = 0.055 mho (dashed lines), and the near-rigid 
corotation approximations given by Eqs. (4.3) and (4.4d) (dot-dashed lines). Also shown 
by the dotted lines is the outer region approximation calculated from Eqs. (5.10)-(5.13). 
The three solid lines represent boundary condition choices o f y(|. (100 Rj) = 0.10, 0.03 and -  
0.04 pA m‘2 as indicated, as in Fig. 5.5. The solutions in each case are tracked to 13 Rj, 
inside which they are completed by the ‘first-iteration’ approximation discussed in 
Section 5.4.2. All parameters are plotted versus jovicentric equatorial radial distance p e.
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Figure 5.8. Plots o f (a) the field-aligned current density at the feet of the field lines j w in 
(j,A m*2, and (b) the effective height-integrated Pedersen conductivity Z*p in mho, for the

1near-linear conductivity model (Eq. (5.8)) with slope 5 =  1.0 mho (pA m* )' (solid lines), 
for constant conductivity Ep* (y,lf = 0) = 0.055 mho (dashed lines), and the near-rigid 
corotation approximation given by Eq. (4.4f) (dot-dashed lines). Also shown by the dotted 
lines is the outer region approximation calculated from Eqs. (5.10)-(5.13). The three solid 
lines represent boundary condition choices of (100 Rj) = 0.10, 0.03 and -0.04 \iA m'2 as 
indicated, as in Fig. 5.6. The solutions in each case are tracked to 13 Rj, inside which they 
are completed by the ‘first-iteration’ approximation discussed in Section 5.4.2. All 
parameters are plotted versus jovicentric equatorial radial distance p e.
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Figure 5.9. As for Fig. 5.7 but with S' = 10 mho (jiA m'2)*1.
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constant conductivity solution with i f  = Z f  ( j ¥ = 0) shown by the long-dashed line, and

the near-rigid approximation Eq. (4.3), shown by the dot-dashed line. The field- 

perpendicular and field-parallel current components shown in Figs. 5.7b and 5.8a, and 5.9b 

and 5.10a correspondingly increase in accordance with Eqs. (4.4d) and (4.4f). However, as 

the parallel current increases in accordance with Eq. (4.4f), so does the ionospheric 

Pedersen conductivity in accordance with Eq. (5.8), such that when the increase in 

conductivity becomes comparable with or larger than Z f  ( j w = 0), the plasma angular

velocity departs from the constant conductivity solution (long-dashed line), and falls less 

rapidly with distance, in accordance with Eq. (4.3) (dot-dashed line). The onset of this 

behaviour occurs at smaller radial distances for larger values of S, and hence at smaller 

departures of the angular velocity from rigid corotation, as can be seen by comparing 

Figs. 5.7a and 5.9a. Beyond this point, the increase of the conductivity with the parallel 

current given by Eq. (4.4f) is such that the angular velocity given by Eq. (4.3) (dot-dashed 

line) shows a shallow minimum, with (co/Qf) «0.85 at p e «25  Rj for

S = 1 mho (pA m'2)'1 in Fig. 5.7a, and with (<y//2y) » 0.97 at « 15 Rj for 

S =  10 mho (pA m'2)'1 in Fig. 5.9a, before slowly increasing again at larger distances (the 

departure from rigid corotation decreasing as ~ p f m~2̂ in this regime, where m is the 

exponent o f the KK field model in Eq. (5.1a)). Equations. (4.3), (4.4d), and (4.4f) thus 

imply that for S > 1 mho (pA m'2)*1 the enhancement in the ionospheric conductivity can 

be such that near-rigid corotation conditions (given by Eq. (4.3)) can be maintained to large 

distances, and with it the growth of the current components according to Eq. (4.4d) and 

(4.4f). The numerical results (solid lines) show that this is indeed the case, the computed 

solutions for the angular velocity following the near-rigid corotation value given by 

Eq. (4.3) (approximately for S = 1 mho (pA m'2)"1̂  Fig. 5.7a, and very closely for 

£ = 1 0  mho (pA m'2)_1in Fig. 5.9a) out to a certain radial distance determined by the outer 

boundary condition before falling to lower values at larger distances. The distance to which 

the near-rigid corotation approximation is followed increases with the chosen value of j w

(and hence Z f )  at the outer boundary at 100 Rj, as can be seen in the figures. These

results therefore confirm the conjecture of Cowley and Bunce (2001b) that precipitation- 

induced enhancements of the Pedersen conductivity can act to maintain the plasma angular
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velocity closer to rigid corotation to much larger radial distances than anticipated on the 

basis o f previously presented solutions using typical constant ‘background’ Pedersen 

conductivities o f a few tenths o f a mho.

The corresponding behaviour of the current components shown in Figs. 5.7b and 5.8a, and 

5.9b and 5.10a is thus that in the inner region they follow the near-rigid corotation 

approximations given by Eqs. (4.4d) and (4.4f), increasing rapidly with increasing distance 

depending on M  and the equatorial magnetic model \Bze\, over the radial range where the

angular velocity remains close to the near-rigid corotation approximation Eq. (4.3).

Beyond this distance, where the angular velocity falls away from this behaviour, the field-

aligned current also falls away to smaller positive values, rapidly in the case of 
0 15 = 1 0  mho (pA m' )* shown in Fig. 5.10a, to the value o f the chosen boundary condition 

at p e = 100 Rj. Correspondingly, the value of the Pedersen conductivity also falls with 

distance in the outer region, as seen in Figs. 5.8b and 5.10b, while the total current Ip

shown in Figs. 5.7b and 5.9b tends towards a constant value. Overall it can be seen that in 

cases where the conductivity increases rapidly with the current density (i.e. S is large), the 

form of the current profiles differ significantly from those derived previously for constant 

conductivity. In the latter case the upward field-aligned current density tends to be broadly 

distributed over the middle magnetosphere current sheet outside of ~20 Rj for typical 

parameters (see, e.g., the solutions in Chapter 4), such that the total radial current I  grows

gradually with increasing distance. In the solutions found here for large S, however, the 

field-aligned current input to the current sheet is instead concentrated in the inner part of 

the region where the conductivity is also enhanced, and then falls to smaller but still 

positive values in the region beyond, die radial extent of the main upward field-aligned 

current region then depending on the outer boundary condition. The total radial current 

then grows with distance according to Eq. (4.4d) within the main region of field-aligned 

current in the inner region, while plateauing at almost constant values in the region beyond.
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5.4.4. Outer region approximations

Approximate solutions based on these results can then be developed for the outer region, 

using the governing equations given in Section (2). Specifically we replace Eq. (3.16) by

/  = %nZfFeQ j 1 - 0)
~Oj

« constant (5.10)

in which case the Hill-Pontius equation, in the form given by Eq. (3.26), can be integrated 

directly to give

f  \ ( ( \CO P e CO

l  V I

+ ■f 7fc(rM -FM (5.11)

where [coj Q f)  is a known value of the angular velocity at some radial distance p'e . We 

then assume that the angular velocity and current components follow the near-rigid 

corotation approximations given by Eqs. (4.3), (4.4d), and (4.4f) out to distance p'e , then 

breaking away to the behaviour defined by Eqs. (5.10) and (5.11) at larger distances, such 

that j w and hence Ep reach the value specified at the outer boundary p e = p eB (100 Rj in

the results presented here). Thus, introducing Eq. (4.4d) into Eq. (5.10), the position p'e 

where the break occurs is determined from the imposed boundary conditions by solving the 

equation

2M Q ,

B.
V ) l

=  ^ X p ' ( p e B ) F e ( p e B ) 0 J (5.12)
SBJ

where from Eq. (5.11)
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f  \ (  O 2 /  \CO P e CO

J B <PeB > J
+ • (513)

and (co/D j) is determined from Eq. (4.3) evaluated at p'e . With the value p'e so

determined, the approximate angular velocity profile is given by Eq. (5.11), the constant

value o f Ip by Eq. (4.4d) evaluated at p ’e , and the conductivity profile from Eq. (5.10).

The parallel current is determined by inversion of the expressions for the conductivity 

model given by Eq. (5.8). These approximations are shown by the dotted curves in 

Figs. 5.7 to 5.10, and are seen to agree quite well with the numerical solutions, particularly 

with the results for S = 10 mho (pA m'2)"1 shown in Figs. 5.9 and 5.10.

5.4.5. Solution dependence on M

The results shown above in Figs. 5.5 to 5.10 have all employed a fixed typical value of the 

iogenic plasma mass outflow rate M  of 1000 kg s'1. Here we consider how the solutions 

depend on M  for a given conductivity model. In Figs. 5.11 and 5.12 we show results in 

our standard format for M  = 1000, 2000, and 3000 kg s'1 (our particular interest in larger 

values becoming clearer in Section 5.5), for 5=10 mho (pA m*2)'1, and for the fixed 

boundary condition that j l{i =0.03 pAm'2 at pe = 100Rj. In this case, however, three

constant conductivity solutions are now shown in each plot for 27/ (f .  -  0) =0.1 mho,

corresponding to the three values of M  (dashed lines as marked), and also three curves for 

the near-rigid corotation approximations given by Eqs. (4.3), (4.4d) and (4.4f). However, 

for the case o f the plasma angular velocity shown in Fig. 5.11a, although the departure of 

the angular velocity from rigid corotation is proportional to M  in the innermost region 

where Ep * > Sj{|(j in Eq. (5.8), over most of the radial range, where the opposite inequality 

applies, the near-rigid corotation approximation depends only on the slope S and not on the 

mass outflow rate M . That is, if  we put 27/ = Sjw over most of the range, as given by

Eq. (5.8), then substituting for j w from Eq. (4.4f) into Eq. (4.3) yields
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co
C2j

« 1 - P,\B„
2

ASCi.B.F. dB„
dp .

(5.14)

such that the departure from rigid corotation is inversely proportional to S (as can be seen in 

Figs. 5.7a and 5.9a), but is independent of M . The angular velocity profiles in Fig. 5.11a 

thus follow essentially the same curves as each other in the inner region, before falling 

away from the near-rigid corotation approximation at larger distances. This latter distance 

decreases with increasing M  (for fixed boundary condition) as can be seen in Fig. 5.11a, 

such that the plasma angular velocity at the outer boundary falls with increasing M . 

Similarly, the current components and conductivity grow more rapidly in the inner region 

in proportion to M , as shown in Figs. 5.1 lb to 5.12b and as expected from Eqs. (4.4d) and 

(4.4f), while also falling away from this behaviour at smaller radial distances with 

increasing M . The overall effect is that the main region of field-aligned current flow into 

the current sheet moves inwards as M  increases, for a given value of j w at the outer 

boundary. The value at which the total radial current ‘plateaus’ in the outer region is also 

found to increase modestly with M  under these condition, as can be seen in Fig. 5.1 lb.

5.4.6. Results for a more realistic conductivity model

The final point we wish to discuss in this section concerns the effect of the behaviour of the 

ionospheric Pedersen conductivity with the field-aligned current, it being assumed in the 

above calculations via Eq. (5.8) that the current increases essentially linearly with the 

current for all positive values of the latter (Fig. 5.4). This potentially results in very large 

values of the conductivity being obtained, as can be seen, for example, in Figs. 5.10b and 

5.12b. It may be noted in the results presented in Section 5.3, however, that near-linear 

behaviour of the conductivity may only prevail for sufficiently small values of the field- 

aligned current density, with the conductivity tending to plateau or possibly even fall in 

value for larger values of f . . We now investigate the effect of such conductivity behaviour

by modifying the S =10 mho (pA m'2)'1 model such that beyond a certain value of the field-
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Figure 5.11. Plots of (a) the plasma angular velocity co normalised to the planet’s angular 
velocity Q 3 , and (b) the azimuth-integrated equatorial radial current Ip in MA for the 
near-linear conductivity model (Eq. (5.8)) with slope S =  10 mho (pAm'2)'1 (solid lines), 
for a constant conductivity Zp (j w = 0) =0.1 mho (dashed lines), and the near-rigid 
corotation approximation given by Eqs. (4.3) and (4.4d) (dot-dashed lines) for three values 
of the iogenic plasma mass outflow rate M  = 1000, 2000 and 3000 kg s'1 (as indicated). 
The solutions in each case are tracked to 13 Rj, inside which they are completed by the 
near-rigid corotation approximation. All parameters are plotted versus jovicentric 
equatorial radial distance p e.
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Figure 5.12. Plots of (a) the field-aligned current density at the feet of the field lines j ]}i in 
jiA m‘2, and (b) shows the effective height-integrated Pedersen conductivity E*p in mho for 
the near-linear conductivity model (Eq. (5.8)) with slope S =  10 mho (pAm*2)'1 (solid 
lines), for a constant conductivity EP* (j w = 0) =0.1 mho (dashed lines), and the near-rigid 
corotation approximation given by Eq. (4.4f) (dot-dashed lines) for three values of the 
iogenic plasma mass outflow rate M  = 1000, 2000 and 3000 kg s*1 (as indicated). The 
solutions in each case are tracked to 13 Rj, inside which they are completed by the near- 
rigid corotation approximation. Both parameters are plotted versus jovicentric equatorial 
radial distance p e.
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aligned current density the conductivity increases much less rapidly than for small values of 

the current. Specifically, the model adopted is

(-4 ) ~ ^ po + 0 Sl + . s 2
1

( ' \ n " I
1+ h  • **

j

(V -4  +  -4  +  4 ) ’ (5.15)

which is such that Zp* — Zp * for j w negative, varies as Zp* -  ZPo* +(S{+S2) f .  for 

positive j w less than y|(i" and greater than j \u*, and then as Zp* -  ( z po* + S2j l{** j + S{j w for 

j v greater than j w~ . Here we have taken ZPo* =0.05 mho and f *  =0.01 pAm'2, as 

before, together with Sx =0.1 mho (pA m'2)'1, S2 = 9.9 mho (pA m'2)'1, f** = 0.25 pA m'2

and n = 8. This function is shown in Fig. 13 (solid line), together with the 

S =10 mho (pA m'2)'1 model given by Eq. (5.8) (dashed line). It can be seen that the two 

models are essentially identical for small positive and all negative values of j w, the

conductivity increasing at the rate of ~10 mho (pA m'2)'1 for positive j w less than

j  ** = 0.25 pA m'2. Above this value of the current, however, the conductivity curve

rapidly flattens to increase at the much reduced rate of 0.1 mho (pA m*2)'1.

Results using this conductivity model are shown in Figs. 5.14 and 5.15 in the same format 

as Figs. 5.5 to 5.12. Here we compare the solution obtained with the above model with 

that obtained with the 5 =  10 mho (pA m'2)'1 model of Eq. (5.8), for the same value of 

M  = 1000 kg s'1, and with the same boundary condition j w = 0.03 pA m'2 at p e = 100 Rj. 

We note that the dashed line showing the constant conductivity solution for 

Z p = Z p ( j w = O) = 0.1 mho is the same for both models. The current profiles of the near-

rigid corotation approximations Eqs. (4.4d) and (4.4f), shown by the dot-dashed lines, are 

also the same for the two calculations, being dependent only on M  and the equatorial 

magnetic field model. However, the angular velocity profiles in the latter approximation 

given by Eq. (4.3) are in general different, being dependent on the conductivity model. As 

can be seen in Fig. 5.14a, the two profiles are very similar to each other in the inner region
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Figure 5.13. Plot of the effective height integrated Pedersen conductivity E*p in mho 
versus ionospheric field-aligned current density j w (pA m' ) using the revised conductivity 
model given by Eq. (5.15) (solid line). This is compared with the near-linear conductivity 
model given by Eq. (5.8) with slope 5 = 1 0  mho (pA m'2)*1 (dashed line).
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Figure 5.14. Plots of (a) the plasma angular velocity co normalised to the planet’s angular 
velocity, and (b) the azimuth-integrated equatorial radial current Ip in MA for the near- 
linear conductivity model (Eq. (5.8)) with slope S = 10 mho (pA m'2)'1, and the revised 
conductivity model (Eq. (5.15)) (solid lines as labelled), for constant conductivity 
£ *  (y(|. = o) =0.1 mho (dashed lines) and for the near-rigid corotation approximations 
given by Eqs. (4.3) and (4.4d) (dot-dashed lines). The solutions are tracked to 13 Rj and 
21 Rj for the near-linear and revised models respectively, inside which they are completed 
by the near-rigid approximation. Both parameters are plotted versus jovicentric equatorial 
radial distance p e.
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Figure 5.15. Plots of (a) the field-aligned current density at the feet of the field lines j w in 
pA m'2, and (b) the effective height-integrated Pedersen conductivity E*p in mho for the 
near-linear conductivity model (Eq. (5.8)) with slope S =  10 mho (pAm -2)'1, and the 
revised conductivity model (Eq. (5.15)) (solid lines as labelled), for constant conductivity 
Ep* ( j w = 0) = 0.1 mho (dashed lines) and for the near-rigid corotation approximation 
given by Eqs. (4.4f) (dot-dashed lines). The solutions are tracked to 13 Rj and 21 Rj for the 
near-linear and revised models respectively, inside which they are completed by the near- 
rigid approximation. Both parameters are plotted versus jovicentric equatorial radial 
distance p e.



Chapter 5: Effect ofPrecipitation-Induced Enhancements o f the Pedersen Conductivity

where the field-aligned current given by Eq. (4.4f) lies below j w~ =~0.25 pAm'2, such 

that the model Ep* values are closely similar to each other. However, the field-aligned 

current approximation exceeds this value at and beyond p e ~ 25 Rj, such that in the revised 

model the conductivities then fall significantly below those given by the near-linear model 

with 5=10 mho (pA m'2)'1 (Fig. 5.13), and with it, the departure of the plasma from rigid 

corotation given by Eq. (4.3) also significantly increases. It can be seen in Fig. 5.14a that 

in the inner region the numerically integrated angular velocity profiles follow their 

respective approximations, closely in the case of the 5=10 mho (pA m*2)*1 near-linear 

model out to ~  40 Rj, and approximately in the case o f the revised conductivity model 

given by Eq. (5.15) out to 50 Rj, before falling more rapidly in the outer region to values 

which are quite similar at the outer boundary. The current profiles shown in Figs. 5.14b 

and 5.15a are also similar to each other. The parallel current for the revised conductivity 

model in Fig. 5.15a lies modestly below that of the 5=10 mho (pAm'2)'1 model beyond 

~ 20 Rj, while peaking at a larger value at a larger distance, before falling precipitately to 

small values beyond ~ 40 Rj. The total radial current profiles shown in Fig. 5.14b behave 

in a corresponding manner, with closely similar values being achieved at the outer 

boundary at p e =100 Rj. Turning now to the conductivity profile shown in Fig. 5.15b, it

can be seen that the effect of the revised conductivity model is to truncate the increase in 

conductivity in the central regions to reach a peak of only ~ 3 mho, compared with 

~ 7.5 mho for the near-linear model. Nevertheless, the elevation of the conductivity in the 

revised model is still sufficient to maintain the plasma angular velocity and the current 

components close to the values given by the near-rigid corotation approximation out to 

significant distances. The main distinction between the two models is that the angular 

velocity is more significantly depressed from rigid corotation in the revised model, such as 

to maintain similar values of the currents.

5.5. Solutions appropriate to jovian conditions

In this section we examine solutions for the angular velocity and current components which 

are appropriate to conditions in the jovian magnetosphere, and consider how well they fit to
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available observations. Specifically, we derive solutions based on the empirical 

conductivity model given by Eq. (5.6), shown by the dashed line in Fig. 5.3, and we also 

choose boundary conditions that yield solutions appropriate to the jovian system.

5.5.1. Observed radial current profile

The jovian observations to which we refer are the radial profiles of the radial equatorial 

current ip derived from Galileo magnetometer data by Khurana (2001). As discussed in the

introduction, the radial current is associated with bending of the magnetic field lines out of 

meridian planes, and hence with the appearance of a B9 field which reverses in sense about

the centre o f the equatorial current sheet, as shown in Fig. 3.1. Applying Ampere’s law to 

an azimuthally aligned loop passing through the current sheet and closing in the region 

outside we find

2AR,
ip =-F----- L , (5-16)

where ABv is the azimuthal field outside the current sheet (the planetary azimuthal field is

negligible at middle magnetosphere distances). The upper sign applies to observations 

north of the current sheet, while the lower sign applies to observations south of the sheet, 

and we assume north-south symmetry of the field line bending. In Fig. 5.16b we show the 

radial profile o f the radial current derived from Galileo data, kindly provided at increased 

5 Rj radial resolution by K.K. Khurana (personal communication, 2002). This has been 

derived using Eq. (5.16) from magnetic data outside the current sheet, within a 3 hour local 

time sector centred on midnight. Data from this sector have been chosen since it is less 

likely to contain systematic contributions from other effects that produce magnetospheric 

By , such as field line bending associated with the day-night asymmetry of the

magnetospheric cavity due to the dynamic pressure of the solar wind. The resulting values 

of ip derived from Eq. (5.16) have then been multiplied by 2npe in order to represent the

total radial current integrated in azimuth, as seems appropriate as a first approximation (see 

also Khurana (2001)). It can be seen that the total radial current inferred from these data
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Figure 5.16. Plots o f (a) the plasma angular velocity co normalised to the planet’s angular 
velocity 72y , and (b) the azimuth-integrated equatorial radial current 7 in MA using 
M  = 1000 kg s'1 and constant effective height-integrated Pedersen conductivities of 0.1, 0.2 
and 0.3 mho (dashed lines as labelled), together with the near-rigid corotation 
approximations given by Eqs. (4.3) and (4.4d) (dot-dashed lines). Both parameters are 
plotted versus jovicentric equatorial radial distance p e. In plot (b) the theoretical curves 
are compared with the radial profile of the radial current derived from Galileo data in the 
midnight sector, as described in the text.
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increases rapidly in the inner region, between -  15 and 25 Rj, before plateauing at a value 

of -100 MA at distances beyond, out to -100 Rj. As noted previously by Khurana (2001), 

these results imply that the upward-directed field-aligned currents which feed the current 

sheet are concentrated in the inner region, centred near ~20 Rj, with the upward field- 

aligned current density in the ionosphere derived from the slope of the curve in this region 

being typically -0 .2  -  0.3 pA m'2.

5.5.2. Comparison with constant conductivity model results

The dashed lines in Fig. 5.16b show solution curves for I  derived for the typical value of

M  = 1000 kg s'1 and various constant values of the effective Pedersen conductivity, 0.1, 

0.2 and 0.3 mho, as marked, in the range used in previously published studies. These are 

plotted together with the limiting value of the current given by Eq. (4.4d), shown by the 

dot-dashed line. Other parameters of these solutions are also shown, specifically ((o/Qj)

in Fig. 5.16a and j w in Fig. 5.17. It can be seen that although these constant conductivity 

solutions produce Ip profiles which are comparable to that derived from the Galileo data in 

certain regions, they do not provide a good overall fit, for any reasonable values of the 

system parameters EP* and M . The ‘best fit’ solutions (e.g. that for M  = 1000 kg s'1 and

Ep = 0.2 to 0.3 mho in Fig. 5.16b) tend to rise too gradually in the inner region and to

overshoot at larger distances, associated with the broadly-distributed profile of the upward 

field-aligned current shown in Fig. 5.17.

In Figs. 5.18-5.20 we also show for future reference the plasma angular velocity and current 

components for these constant conductivity solutions mapped along field lines into the 

ionosphere, using Eqs. (3.2) and (3.3). In this format the plots extend from a co-latitude of 

-15.7°, mapping to 100 Rj in the equatorial plane, to 19°, mapping to -12.1 Rj. In 

Fig. 5.18a we show the angular velocity profiles (dashed), together with the approximate 

forms (dot-dashed), while in Figs. 5.18b and 5.19a we show the total height-integrated 

Pedersen current integrated in azimuth, equal to half the conjugate equatorial current Ip ,

together with the similarly halved Galileo data, and the field-aligned current density,
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Figure 5.17. As for Fig. 5.16, but showing the field-aligned current density at the feet of 

the field lines y||f in |iA m'2.
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Figure 5.18. Plots o f (a) the plasma angular velocity a  normalised to the planet’s angular 
velocity , and (b) the azimuth-integrated equatorial radial current /  in MA for constant 
conductivity along with the Galileo data shown previously in Fig. 5.16, but now projected 
along current sheet model magnetic field lines into the jovian ionosphere and plotted versus 
dipole co-latitude 9i , using Eq. (3.6). In panel (b) the equatorial radial current Ip has also 
been divided by a factor of two to show the azimuth-integrated Pedersen current flowing in 
one ionosphere, IP .
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Figure 5.19. Plots of (a) the field-aligned current density at the feet of the field lines j w in 
pAm'2 as shown previously in Fig. 5.17, but now projected along current sheet model 
magnetic field lines into the jovian ionosphere and plotted versus dipole co-latitude , 
using Eq. (3.6), and (b) the minimum accelerating voltage & in kV required to drive the 
field-aligned current obtained from the exact form of Eq. (3.20), also plotted versus dipole 
co-latitude 9i .
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Figure 5.20. Plot of the precipitating energy flux as a consequence of the field-aligned 
current shown in Fig. 5.19a, Ef  in mW m‘2, obtained from the exact form of Eq. (3.23), 
plotted versus dipole co-latitude 6i .
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respectively, in a similar format. These theoretical plots are entirely representative of 

previously-published results, showing, for example, the field-aligned current density 

peaking at a few tenths of a pA m'2 near the poleward boundary of the ionospheric region 

mapping to the middle magnetosphere, and falling to small values over a latitudinal scale of 

-1.5° FWHM (i.e. -2000 km) in the ionosphere. In Figs. 5.19b and 5.20 we also show 

estimates o f the auroral accelerating voltage and the precipitating auroral electron energy 

flux, derived from Eqs. (3.20) and (3.23) (using the full formulae rather that the 

approximate forms), with magnetospheric electron parameters jV= 0.01 cm'3 and 

Wth « 2.5 keV, as employed in previous chapters and in Section 5.3 of this chapter. These

show that accelerating voltages o f several tens of kV are anticipated, together with 

precipitating energy fluxes o f a few tens of mW m'2, in line with previous results (e.g. 

Cowley and Bunce, 2001b; Cowley, Nichols and Bunce, 2002; and Cowley, Bunce and 

Nichols, 2003). We recall that at -20% conversion efficiency, an energy flux of 10 mW m' 

2 corresponds to a UV luminosity of -100 kR, such that typical luminosities are expected to 

be of this order, as observed.

5.5.3. Empirical conductivity model

We now turn to the results for varying conductivity, and first discuss the conductivity 

model to be employed. As indicated above, this is based on the empirical form Eq. (5.6) 

derived in Section 5.3 above from the modelling results presented by Millward et 

al. (2002). However, the quantity estimated above is the true height-integrated Pedersen 

conductivity Ep, while the value required here is the ‘effective’ value Z * , equal to

(l - k)Zp, reduced from the tme value by atmospheric ‘slippage’ discussed in Section 3.3.2

above. The appropriate value of k is not conclusively known at the present time, but recent 

modelling results (G.H. Millward, personal communication, 2003) indicate that k ~ 0.5 

under circumstances appropriate to those discussed in this chapter. Here we will therefore 

adopt this value, such that we will take the factor (1-&) = 0.5 in Eq. (3.11). Noting that

the empirical form Eq. (5.6) goes to zero for j ]{i = 0 , we will also add a small constant

conductivity Z p *. As found in Section 5.4, the value of Zp * governs the nature of the
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angular velocity profile at small distances where j ¥ becomes small. This value of Zp * has

thus been determined from the results presented by Hill (1980), who examined Voyager-1 

angular velocity data in the inner region (from -12 Rj to -20  Rj) and compared the data 

with constant conductivity solutions for a dipole field model (which is reasonably realistic 

in the inner region). The theoretical angular velocity profiles depend on the quotient 

Z p / M ,  the results obtained by Hill (1980) indicating that

Zp / M  « 2.75 x 10~5 mho (kg s'1). Although it is not a major point of our study, we have

therefore employed here Zp * =0.0275 x M jl 000 kg s'1) mho, such that the calculated

angular velocity profile perforce asymptotes to the form determined by Hill (1980) in the 

inner region (and by which we do not wish to imply that the ‘background’ ionospheric 

conductivity is somehow physically determined by the mass outflow rate from Io). In 

summary, therefore, here we employ the following empirical conductivity model

Zp = 0.0275M  + 0.08 L  +1.225 '  U ./0-075)2
l+ (y ||(/0.075)3 l + ex p [-(y ||(-0 .22)/0 .12]

, (5-17)

where M  is in units of 1000 kg s'1, and j w is in pA m'2. In Fig. 5.21 we show ZP* versus 

j w for M  = 1000,2000 and 3000 kg s'1, as employed below.

5.5.4. Results using the empirical conductivity model

Results using the empirical conductivity model given by Eq. (5.17) are shown in our 

‘standard’ format in Figs. 5.22 and 5.23. The solid lines show three numerically computed 

solutions for M  = 1000, 2000 and 3000 kg s'1, each employing differing values of j ¥ at

the boundary at p e -  100 Rj, such that the total current Ip at 100 Rj is equal to 100 MA, in 

approximate agreement with the values obtained at large distance from the Galileo data. 

The values o f (100 Rj) employed are -0.264, -0.171 and -0.133 pA m'2 for M  = 1000,

2000 and 3000 kg s'1 respectively. The dot-dashed lines show the corresponding ‘near- 

rigid’ corotation approximations given by Eqs. (4.3), (4.4d) and (4.4f), while the dashed
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Figure 5.21. Plot of the effective height integrated Pedersen conductivity Z*p in mho 
versus ionospheric field-aligned current density f .  (pA m'2) using the empirical 
conductivity model given by Eq. (5.17).
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Figure 5.22. Plots of (a) the plasma angular velocity co normalised to the planet’s angular 
velocity Q j , and (b) the azimuth-integrated equatorial radial current Ip in MA obtained 
using the empirical conductivity model (Eq. (5.17)) (solid lines), constant conductivity 
Z *  = Zp ( j w = 0) (dashed lines), and the near-rigid corotation approximations given by 
Eqs. (4.3) and (4.4d) (dot-dashed lines), for three values of the iogenic plasma mass 
outflow rate M  = 1000, 2000 and 3000 kg s'1 (as indicated). The empirical conductivity 
model solutions have the boundary condition on j l{i set such that the value of the azimuth- 
integrated equatorial radial current in each case is equal to 100 MA at 100R j . The 
solutions are tracked numerically to 12 Rj, inside which they are completed by the ‘first- 
iteration’ approximation of Section 5.4.2. Both parameters are plotted versus jovicentric 
equatorial radial distance p e. In plot (b) the theoretical curves are shown together with the 
radial profile o f the radial current derived from Galileo B9 data provided by K.K. Khurana.
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Figure 5.23. Plots of (a) the field-aligned current density at the feet of the field lines in 
pA  m'2, and (b) the effective height-integrated Pedersen conductivity E*p in mho obtained 
using the empirical conductivity model (Eq. (5.17)) (solid lines), constant conductivity 
Ep = Ep* ( j w = 0) (dashed lines), and the near-rigid corotation approximation given by 
Eqs. (4.4f) (dot-dashed lines), for three values of the iogenic plasma mass outflow rate 
M  = 1000, 2000 and 3000 kg s 1 (as indicated). The empirical conductivity model 
solutions have the boundary condition on y„. set such that the value of the azimuth- 
integrated equatorial radial current in each case is equal to 100 MA at 100Ry . The 
solutions are tracked numerically to 12 Rj, inside which they are completed by the ‘first- 
iteration’ approximation of Section 5.4.2. Both parameters are plotted versus jovicentric 
equatorial radial distance p e.
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lines show the constant conductivity solutions with Zp* = Zp* ( j w = 0 ). There is only one 

constant conductivity solution for the angular velocity due to the above choice of the form

We begin by comparing the Ip profiles shown in Fig. 5.22b with the values derived from

the Galileo data. It can be seen that the shape of the theoretical curves agree reasonably 

well with the Galileo data, consisting of a sharp rise in the inner region, followed by an 

extended region o f almost constant values. However, it can be seen that the initial rise in 

the current occurs at too large a radial distance for M  = 1000 kg s'1, and approaches more 

satisfactory agreement as M  increases to 2000 and 3000 kg s'1, thus explaining our interest 

in larger values o f M  indicated above. However, even the results for 3000 kg s 1 do not 

quite reach the mean of the Galileo data in the innermost region, while the observational 

estimates outlined in the Introduction suggest an upper limit of the mass transport rate of 

-2000 kg s'1, with smaller values o f -1000 kg s 1 being more typical. The implication may 

therefore be that the mean \Bze\ in the model employed here is too large (see, e.g.

Eq. (4.4d)) in the critical upward current region, a possibility that needs to be carefully 

examined in future study.

Turning now to the results for the field-aligned current, shown in Fig. 5.23a, we see that the 

f .  profiles all strongly peak in the inner region with similar peak values of between -0.22

and -0.28 pA m'2 for M  = 3000 kg s'1 and 1000 kg s'1 respectively, before falling rapidly 

at larger distances. However, as may be expected from the results discussed in Fig. 5.22b, 

the position o f the peak moves in towards the planet as M  increases, from p e « 30 Rj

when M  = 1000 kg s'1, to p e ~ 20 Rj when M  = 3000 kg s'1. The Pedersen conductivity 

curves in Fig. 5.23b show a corresponding behaviour, peaking in the inner region at 

-0 .7  mho.

Finally, the corresponding angular velocity curves are shown in Fig. 5.22a. These show 

similar initial decreases to each other in the innermost region (as guaranteed by the choice 

of Z P *), before rising again outside -15 Rj in line with the ‘near-rigid’ corotation
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approximation Eq. (4.3) shown by the dot-dashed lines, and then falling more gradually at 

larger distances to values at the outer boundary which decrease with increasing M . These 

results show how it is possible to deduce small values of Zp* (for typical values of M )

from plasma angular velocity profiles in the inner region, as found by Hill (1980), while 

values at larger distances are much higher than would be anticipated on this basis, as found, 

e.g. by Kane et al. (1995) and Krupp et al. (2001).

In Figs. 5.24-5.26 we show these parameters mapped along the current sheet model field 

lines into the ionosphere, together with auroral parameters derived from Eqs. (3.20) and 

(3.23), as in Figs. 5.19b and 5.20. Figure 5.24a shows that the elevated conductivity 

conditions produced by the auroral precipitation maintains near-rigid corotation conditions 

up to dipole co-latitudes o f -17°, before falling rapidly to smaller values over ~1° latitude 

in the poleward region. The total height-integrated Pedersen current curves (Ip = I p/ 2 )

shown in Fig. 5.24b exhibit related behaviour, with values elevated between -16.5° and 

17.5° by the precipitation-enhanced Pedersen conductivity. The field-aligned current 

profiles shown in Fig. 5.25a show similar curves peaking between -0.22 and -0.28 pA m' 

for M  = 3000 kg s'1 and 1000 kg s'1 respectively, at colatitudes moving equatorward from 

16.7° to 17.2° as M  increases from 1000 kg s*1 to 3000 kg s'1, in corresponding behaviour 

with the Ip curves. Comparison with the profiles for constant conductivity shown in 

Fig. 5.19a show that the current distributions are now significantly narrower, with a width 

(FWHM) of -1 °  (-1300 km). The conductivity profiles in Fig. 5.25b show corresponding 

behaviour, peaking at -0 .7  mho at -17°. This is significantly larger than both the 

‘background conductivity’ and the assumed constant conductivity values which have been 

taken in previous chapters. The estimated accelerating voltages and precipitating energy 

fluxes which produce the elevated conductivities are shown in Figs. 5.26a and 5.26b 

respectively. The peak voltages are -50  kV, falling somewhat with increasing M , with 

peak energy fluxes o f -14  mW m'2, again falling somewhat with increasing M , in a region 

whose width (FWHM) is -0.6° (-800 km), significantly narrower than the profiles for 

constant conductivity shown in Fig. 5.20. These energy fluxes correspond to a UV 

luminosity o f -80-140 kR in this region, which compares reasonably with ‘main oval’ 

observations (Clarke et al. 1998; Prange et al., 1998; Grodent et al., 2003).
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Figure 5.24. Plots o f the solutions shown in Fig. 5.22 are shown projected along the field 
lines into the ionosphere, using the same line style format. Both parameters are plotted 
versus dipole co-latitude 0t . Plot (a) shows the plasma angular velocity co normalised to 
the planet’s angular velocity O j , plot (b) shows the azimuth-integrated ionospheric 
Pedersen current IP in MA, together with the Pedersen current derived from Galileo data.
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Figure 5.25. Plots o f the solutions shown in Fig. 5.23 are shown projected along the field 
lines into the ionosphere, using the same line style format. Both parameters are plotted 
versus dipole co-latitude 0i . Plot (a) shows the field-aligned current density at the feet of 
the field lines j ¥ in pA na2, while plot (b) shows the effective height-integrated Pedersen 
conductivity 27* in mho.
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Figure 5.26. Plot (a) shows the minimum accelerating voltage & in kV required to drive 

the field-aligned current shown in Figs. 5.22a and 5.24a, obtained from the exact form of 

Eq. (3.20), while plot (b) shows the precipitating energy flux Ef  in mW m'2 obtained from

the exact form of Eq. (3.23).
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Finally, in order to display results which cover a reasonable range of variations within the 

jovian magnetosphere, in Figs. 5.27-5.34 we show results in a similar format for the same 

conductivity model, but where the value of the radial current at the outer boundary at 

100 Rj is fixed at values which are a factor of 1.5 larger (Figs. 5.27-5.30) and 1.5 smaller 

(Fig. 5.31-5.34) than in Figs. 5.22-5.26, i.e. at 150 MA and 67 MA, respectively. In order 

to keep the presentation reasonably compact, however, we simply show the plasma angular 

velocity and total equatorial radial current plotted versus p e in Figs. 5.27 and 5.31, the

angular velocity and Pedersen current plotted versus co-latitude in Figs. 5.28 and 5.32, the 

field-aligned current and Pedersen conductivity plotted versus co-latitude in Figs. 5.29 and 

5.33, and finally the accelerating voltage and precipitating electron flux plotted versus co

latitude in Figs. 5.30 and 5.34 respectively. Comparison with Figs. 5.22-5.25 show that 

when the field-perpendicular current is increased to 150 MA, the angular velocities are 

elevated and the field-aligned current is increased by a factor of —1.8, while its spatial 

distribution is shifted polewards by -0.2°. Consequently, the accelerating voltages are 

increased to -100 kV in this case, and the peak energy fluxes to -50 mW m'2, 

corresponding to an enhanced UV auroral luminosity of 500 kR. The latitudinal region in 

which the energy fluxes achieve such values is -0.5° (FWHM), corresponding to 650 km in 

the ionosphere. By contrast, when the total current is reduced to 67 MA at the boundary at 

100 Rj, the field-aligned currents are correspondingly reduced in rough proportion, as are 

the accelerating voltages to -25 kV, while the precipitating energy flux then falls to 

-5  mW m"2, corresponding to a weak UV luminosity o f 50 kR. This extends over a 

latitudinal region -0.7° (FWHM), corresponding to 910 km.

5.6. Summary

In this chapter we have considered the problem of the coupling current system that flows

between the ionosphere and the middle magnetosphere current sheet in the jovian system,

which imparts angular momentum to the plasma outflowing from the Io torus. In

modelling this current system we have for the first time considered the enhancement in the

ionospheric Pedersen conductivity which is produced by the precipitating energetic

electrons in regions o f upward-directed field-aligned current flow. The properties of the
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Figure 5.27. As Fig. 5.22, except with the boundary condition Ip (lOORj) =150 MA.
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Figure 5.28. As Fig. 5.24, except with the boundary condition Ip (lOORj) = 150 MA.
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Figure 5.29. As Fig. 5.25, except with the boundary condition Ip (lOORj) =150 MA.
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Figure 5.30. As Fig. 5.26, except with the boundary condition Ip (lOORj) =150 MA.
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Figure 5.31. As Fig. 5.22, except with the boundary condition Ip (lOORj) = 67 MA.
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Figure 5.32. As Fig. 5.24, except with the boundary condition I p (lOORj) = 67 MA.
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Figure 5.33. As Fig. 5.25, except with the boundary condition Ip (lOORj) = 67 MA.
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Figure 5.34. As Fig. 5.26, except with the boundary condition Ip (lOORj) = 67 MA.
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electron precipitation are estimated from Knight’s (1973) kinetic theory, while the effects 

on the ionospheric conductivity have been determined using Millward et al.’s (2002) 

modelling results. For simplicity we have employed these inputs to derive a model for the 

dependence o f the effective height-integrated Pedersen conductivity on the upward field- 

aligned current density, which is taken to be valid at all points in the middle 

magnetosphere. Inclusion o f the effects of spatial dependence would require development 

of models o f the spatial dependence of the properties of the hot magnetospheric source 

electron population, that do not exist at present. We have also employed a number of other 

simplified models o f the conductivity dependence on the field-aligned current, which have 

allowed us to examine how the results depend on the properties of the model. We have 

then incorporated these models into the description of the M-I system, solving for the 

currents with the changing conductivity self-consistently included. One element of 

inconsistency which remains, however, is that the Knight (1973) theory requires the 

presence o f field-aligned voltages of -20-100 kV on the auroral field lines, whose effects 

are not included in our mapping of the flow between the magnetosphere and ionosphere, 

where we have assumed equipotential field lines. This factor is considered in the analysis 

presented in Chapter 6.

Following definition of the Pedersen conductivity model as discussed above, two coupled 

first-order differential equations must then be solved simultaneously, the first being the 

Hill-Pontius equation for the plasma angular velocity based on Newton’s laws, the second 

being the current continuity equation (Eqs. (3.27) and (3.16)). To define a particular 

solution then requires choice of two boundary conditions, one of which is set by the 

requirement that the plasma angular velocity does not diverge at small radial distances, but 

rather that the plasma rigidly corotates with the planet in this limit. Practically, however, 

solution o f the equations requires the choice of values of the plasma angular velocity and 

field-aligned current at one ‘boundary’ location, taken here to be the outer boundary of the 

model current sheet at 100 Rj, the choice of the field-aligned current also being equivalent 

to the choice o f the ionospheric conductivity at the outer boundary, via the conductivity 

model employed. In the majority of calculations we have then held the field-aligned 

current (and therefore also the ionospheric conductivity) constant at the boundary and have 

then iterated the angular velocity to find the solution that does not diverge at small 

distances.
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The solutions so obtained show a number of important features which are different from 

those obtained previously with constant assumed ionospheric conductivities, and which 

potentially resolve some outstanding issues concerning the distribution of plasma angular 

velocity and current in Jupiter’s middle magnetosphere. First, concerning the plasma 

angular velocity, because the field-aligned current density falls to small values in the 

innermost regions, the precipitation-induced enhancement of the ionospheric conductivity 

is also small in this region. The angular velocity thus tends to fall relatively rapidly with 

distance in the innermost region, out to -15 Rj in the models derived in Section 5.5, which 

were intended to represent reasonably realistic conditions in the jovian magnetosphere. 

Thus, for example, Hill (1980) derived values of the Pedersen conductivity of -0.05 mho 

for typical iogenic source rates of -2000 kg s'1 from Voyager-1 angular velocity data in the 

inner region. However, the field-aligned current and conductivity grow rapidly on field 

lines that map to the equator at distances beyond -15 Rj (corresponding to dipole co

latitudes poleward o f -18° in the ionosphere), thus maintaining the plasma angular velocity 

at much higher values in the outer region than would be obtained from the conductivities 

deduced in the inner region. This result thus confirms the conjecture of Cowley and Bunce 

(2001b) to this effect, and provides an explanation o f the elevated angular velocities 

deduced from energetic ion anisotropies in the outer region by Kane et al. (1995) and by 

Krupp et al. (2001). In our ‘realistic’ models we then find that the field-aligned current 

peaks at values -0.22 -  0.28 pA m'2 on field lines which map in the equatorial plane to 

distances o f -2 0  -  30 Rj (16.7° - 17.3° co-latitude in the ionosphere), the peak field-aligned 

currents corresponding to peak ionospheric Pedersen conductivities of -0.7 mho according 

to our model. The field-aligned currents and conductivities then fall to smaller values at 

larger distances, determined by the choice of boundary condition. In our ‘realistic’ models 

this has been set by imposing the condition that the total radial current flowing in the 

equatorial current sheet reaches 100 MA at 100 Rj, in conformity with the results derived 

from Galileo azimuthal magnetic field data by Khurana (2001). The resulting solutions for 

the current system are then found to be very similar in form to that derived from the 

magnetospheric field data, with the upward-directed field-aligned current input into the 

current sheet being concentrated in the inner part of the system at -25 Rj in the equatorial 

plane, with the equatorial radial current becoming plateaued at near-constant values at 

distances beyond. However, matching the position of the field-aligned current input

120



Chapter 5: Effect o f Precipitation-Induced Enhancements o f the Pedersen Conductivity

deduced from Galileo data, centred at -20  Rj, favours large values of the iogenic source 

rate, o f around 3000 kg s'1 or more. Such large values seem rather unrealistic when 

compared with a range o f previous estimates of the plasma production rate within the toms, 

and the (smaller) outward transport rate within the equatorial plasma disc. These suggest 

instead an upper limit on the outward plasma transport rate of -2000 kg s'1, with 

~1000 kg s'1 being a more typical value. A possible explanation of this discrepancy, which 

is suggested by Eq. (4.4d) (which should be valid in the region in question), is that the 

strength o f the north-south field threading through the current sheet in this region is too 

large in existing models. This possibility should be examined in future work.

We finally note that the location of the upward-directed field-aligned currents deduced in 

this model are comparable with the observed location of the jovian main auroral oval 

deduced from HST and Galileo data (e.g. Prange et al., 1998; Clarke et al., 1998; Vasavada 

et al., ,1999; Grodent et al., 2003). Although the field-aligned current is directed out of the 

ionosphere into the equatorial current sheet over the whole o f the current sheet, as found in 

previous calculations (such that the current must close outside of the middle magnetosphere 

in the poleward region not described by the model) the concentration of the field-aligned 

current in the inner region, relative to solutions with constant conductivity, leads to a 

related concentration in the ionosphere. We then find in our ‘realistic’ models that the 

peaks in the field-aligned current map to 16.7° - 17.3° co-latitude in the ionosphere for 

mass outflow rates of 1000 -  3000 kg s'1 respectively, in a region whose FWHM is -1° 

(1200 km north -  south). The corresponding accelerating field-aligned voltages required by 

Knight’s (1973) theory are then -50  kV, and the peak precipitating electron energy fluxes 

are -1 4  mW m'2, located in a region of FWHM -0.6° (-800 km north -  south), the latter 

energy flux then resulting in a ‘main oval’ UV aurora o f -140 kR.
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Chapter 6

Magnetosphere-ionosphere coupling currents in 

Jupiter’s middle magnetosphere: Effect of 

magnetosphere-ionosphere decoupling by field- 

aligned auroral voltages

6.1. Introduction

In the calculations in Chapters 4 and 5 of this thesis, as well as those of previous authors, 

there is one inconsistency that remains. This is that the calculations of the plasma angular 

velocities and the coupling currents were performed assuming perfect mapping of the 

electric field and plasma flow along equipotential field lines between the equatorial plane 

and the ionosphere. The associated field-aligned voltages were then calculated from the 

field-aligned current using Knight’s (1973) theory. In principle, however, this field-aligned 

voltage would modify the mapping of the electric field, and hence the plasma flow, 

between these two regions. This topic was considered briefly by Cowley and 

Bunce (2001b), who showed that the field-aligned voltages of order -50-100 kV are small 

compared to the field-perpendicular voltages associated with plasma corotation, which are 

several MV across the middle magnetosphere region considered. Hence they suggested that 

only modest modification of the potential structures across the field lines are implied.

It is the purpose o f this chapter to examine quantitatively the effects of the magnetosphere- 

ionosphere decoupling due to the field-aligned voltages, and hence to test Cowley and 

Bunce’s (2001b) suggestion. In the following section we derive the governing equations, 

while in Sect. 6.3 we go on to present the results of their numerical evaluation.
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6.2. Governing equations

6.2.1 Magnetosphere-ionosphere decoupling by field-aligned voltages

voltages <?n (7h.) calculated from Knight’s (1973) kinetic theory, between the

magnetosphere and ionosphere, which imply that the ionospheric electric field and flow 

values are not simply obtained by mapping the equatorial values along equipotential 

magnetic field lines. In this section we derive the relationship between the ionospheric and 

equatorial plasma angular velocities when a field-aligned voltage is present. We note that 

the current sheet model for the equatorial field Bze used in this chapter is that discussed in

For the purposes o f derivation it is convenient to use the flux function F  as the spatial 

coordinate, related to the physical coordinates p e and 0t through Eqs. (3.3) and (3.4), such

are given by the functions coe(F ), (F ) and ( F ) , respectively. We assume a steady

flow, such that the electric field E ~ - v x B  can be described by a scalar potential &, 

through E  -  - V O  . It is then easy to show using B - ( \ l p ) V F x ( p  that the plasma 

angular velocity is related to the gradient of & by

The primary new feature o f the calculations presented here is the inclusion of field-aligned

Sect. 5.2.

that the equatorial and ionospheric plasma angular velocities and the field-aligned voltage

V 0  = oNF  , (6.1)

such that

and

in the equatorial plane and the ionosphere, respectively. Now if  <PB (F ) is the field-aligned 

voltage, taken to be positive when the ionosphere has a higher potential thatn the equatorial
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plane (i.e. the case for upward-directed electric field and corresponding downward 

precipitating electrons), then

which, when differentiated with respect to F  and combined with Eqs. (6.2a,b), yields

This is the equation which relates the ionospheric and equatorial angular velocities in the 

presence o f a field-aligned voltage, and which we refer to as the magnetosphere-ionosphere 

decoupling equation. We note that cai > coe in regions where <P(1 increases with increasing

F, while coi < coe in regions where decreases with increasing F.

It is also necessary to specify how <2>|( depends on the physical conditions present in the

magnetosphere. Here, in common with work discussed in previous chapters, we use 

Knight’s (1973) kinetic theory, which gives the field-aligned voltage required to drive a 

given field-aligned current j w which exceeds the maximum value j lli0 that can be carried

by unaccelerated precipitating magnetospheric electrons alone. For a magnetospheric 

population which is isotropic and Maxwellian, y||l0 is given by Eq. (3.19). Knight’s (1973)

theory then shows that the minimum field-aligned voltage required to drive a current 

greater than j Wo is given by Eq. (3.20). In principle will vary with F  on differing flux

shells due to variations in the magnetospheric electron source population parameters N  and 

Wth. However, in the absence of any detailed models for these parameters at present, we 

here employ the constant values used in previous chapters based on Voyager data, i.e. 

N  = 0.01 cm'3 and Wth = 2.5 keV. In this case varies with F  due to variations in j w

only. Substitution o f Eq. (3.20) into Eq. (6.4) then gives

(6.3)

(6.4)

(6.5)
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This equation is strictly valid only for j w > j Wo. However, this condition is met essentially

everywhere in the middle magnetosphere, except in the innermost region where the field- 

aligned current drops to small values. Here, therefore, we assume that Eq. (6.5) is valid for 

all j w > 0 , i.e. that it is valid throughout the middle magnetosphere. This is equivalent to

making the approximation on the RHS of Eq. (3.20), which is generally well satisfied 

throughout the middle magnetosphere. It is also worth recalling at this point that the 

corresponding precipitating energy flux is then given by Eq. (3.23).

6.2.2 Current circuit equations

In this section we outline the calculation of the components o f the current system illustrated 

in Fig. 3.1. This is essentially the same as that given previously in Chapter 3 except that we 

now specifically use the ionospheric plasma angular velocity co. to derive the ionospheric

electric field in the rest frame of the neutral atmosphere and hence the Pedersen and field- 

aligned currents.

As in previous works, we define a quantity Q 3 which represents the angular velocity in 

the inertial frame o f the neutral atmosphere in the Pedersen layer, which is reduced from 

the planet’s angular velocity Q 3 (1.76XKT4 rads*1) due to ion-neutral collisional drag. 

This slippage can be parameterised by the factor k in the equation

The value o f k is not well known at present, but recent modelling work (Millward et 

al., 2004) suggests that k » 0.5 under the circumstances appropriate to the jovian auroral 

ionosphere. Assuming to a sufficient approximation that the polar magnetic field is vertical 

and equal to 2B3 in strength, the equatorward ionospheric electric field in the rest frame of

the neutral atmosphere is given by

(6.6)

such that when k takes a value between 0 and 1, Q 3 takes a value between Q3 and

E, — 2{{2j C0jj p tBj , (6.7)
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where p. is again the perpendicular distance from the magnetic axis. Hence employing

Eq. (6.6), the ionospheric equatorward-directed height-integrated Pedersen current is given 

by

ip — 2EP {Q j co^pfij -  2ZP (oi) p tBj , (6.8)

where Z *  is the effective value of the height-integrated Pedersen conductivity, related to 

the true value Z P by Eq. (3.11).

Current continuity in the circuit shown in Fig. 3.1 requires that p eip = 2ptip , taking account 

of both north and south hemispheres, such that the equatorial radial current ip is given by

_ 4 £ £ F { £ l - 3 )
(6.9)

where we have used F -  B jp f  on a flux shell from Eq. (3.3). We hence find that the total 

radial current, integrated in azimuth, is

!P = 2 W p  = ^ Z p Q jF Q j
(6.10)

which is equal, o f course, to twice the azimuth-integrated Pedersen current in each 

conjugate ionosphere IP. The field-aligned current density is then calculated from the

divergence o f either /  or Ip . Using the former, we have

J\\,I i = - Z ^  = - 4 Z ; bjS1j
2 n  dF dF

F  1 -
CO;
n j  y

(6.11)

this being the parallel current to be substituted in Eq. (6.5) in order to determine the 

difference between cot and coe for given source parameters. Note that in deriving
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Eq. (6.11) we have assumed for simplicity that Zp* is constant (see Sect. 3.3.2 for a full 

explanation o f this derivation).

6.2.3 Conservation o f angular momentum (the Hill-Pontius equation)

The analysis is completed by consideration of conservation of angular momentum of the 

equatorial plasma. Following Hill (1979) and Pontius (1997), this is described by the 

equation

_d_
dF

r \
„ 2 G)t

V — J J M Q j
(6.12)

where M  is the iogenic plasma mass outflow rate, assumed to be constant in space and 

time. Note that this form uses the flux function F  as the spatial coordinate, but recalling 

that dF  = p eBzed p e from Eq. (3.4) we recover the more usual form

r \

dp,e \

3 l.
C2j

p B  Ir ' e ze  p 
M Q j

(6.13)

Substitution o f Eq. (6.10) for Ip into Eq. (6.12) then yields the modified Hill-Pontius 

equation

d_
dF

r \
2V —

V Q i j

%nZfF
M

(6.14)

where we note that the LHS now specifically contains coe , the angular velocity of the 

equatorial plasma, while the RHS, representing the ionospheric torque on the equatorial 

plasma, contains coi .
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6.2.4 Governing equation

There are three equations to be solved, these being the decoupling equation in the form 

incorporating Knight’s (1973) theory, i.e. Eq. (6.5), the equation for the parallel current 

Eq. (6.11), and the Hill-Pontius equation Eq. (6.14). Substitution of Eq. (6.11) into 

Eq. (6.5) yields

£2j Q j eh» dF2
1 - 3 _

G j
(6.15)

Introducing the dimensionless parameter e given by

4 £pW m
eh io R J

(6.16)

and noting that the first term in the differential vanishes, Eq. (6.15) becomes

co.
Clj Q j dF1

3 .
Q j

(6.17)

Note that in all the works described in previous chapters, solutions have been obtained in 

the limit s  -»  0 , such that coe -> cot . The value of e can be made arbitrarily small by

choosing Wth/ej^i0 0 , in which case 0  ̂ 0 according to Eq. (3.20). For canonical

system parameters Z *  -  0.1 mho, j m « 0.01 pA m'2, and Wth = 2.5 keV, for example, we

find f « 1 .5 x l0 -5. Substitution of Eq. (6.17) into the Hill-Pontius equation Eq. (6.14), 

finally yields the governing equation for coi as
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This is a third order linear inhomogeneous equation for cot , from which coe can be obtained

from Eq. (6.17), and the current system and field-aligned voltage from Eqs. (6.10), (6.11) 

and (3.20).

6.2.5 Series solution o f the governing equation

The general solution o f Eq. (6.18) is the sum of a complementary function which solves the 

homogeneous equation and contains three arbitrary constants, together with some particular 

integral. The physical solution which we require here, however, is the particular integral 

which reduces to our previous solutions in the limit that e  —> 0. This solution may be 

obtained as a power series in e  given by

f  \co,
= 2 > "

f  \co,

n=0

(6.19)

where each o f the coefficients is a function of F. Substitution of Eq. (6.19) into

Eq. (6.18) gives

d
dF p ? 1 L s "

r  \  ^CO,

n= 0 P j ) . M

r \  '  co,

+BjR /
dF

n=0

2 d 1
dF2

) n

00

+

r  ̂co,

«=0 y Q , j 
V J J n J

(6.20)

from which the required functions are found by equating terms of the same power of £ . 

For the zeroth order, i.e. n = 0 , we have

_d_
dF

r \  
3 l

7(o)

8 TtZpF
M

1 -
r ^

3 .
\  y(0)

(6 .21)
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which is identical to the Hill-Pontius equation that has been solved in previous chapters. 

The solution required is the particular integral for which (cofQ f) —»1 as p e -» 0 , i.e. for 

which the plasma rigidly corotates at small distances. For n > \  we have

d
dF

r ^CO.

\ Q j  f i n )
M

r  ̂co.
f i j + b j r j

2 d_ 
dF

2 d 2 r \CO:

)(*-<)
, (6.22)

which is a first order linear inhomogeneous equation for (*y.//2y)^ , in which the

inhomogeneous term contains the derivative o f the solution of the previous order, 

^ . The solutions required of these equations are the particular integrals which

satisfy (c o fO j)^  —» 0 as p e —> 0 for all n > 1. In principle we can then solve Eqs. (6.21)

and (6.22) in sequence to any desired order in e . Here we will obtain solutions up to 

second order ( n -  2 ).

The other parameters o f interest are obtained by substitution of Eq. (6.19) and equating 

powers o f e . Thus for coe we obtain from Eq. (6.17)

r \  co.
f2j

r CO:

C2j\  J  y(o)
(6.23a)

which was our original formulation, while for n>  1 we have

r ^CO: (6.23b)

The total radial and field-aligned currents follow from Eqs. (6.10) and (6.11), respectively. 

The former is then given by the power series

. <6-24a>w=0
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where for n = 0 we have

1 -
(°)_

(6.24b)

while for n >  1, we have

Ip(n) ~ Q jF
r ^CO:

(6.24c)

The field-aligned current is similarly given by

Av ~1l s  h(n) »
n=0

(6.25a)

where for « = 0 we have

r \
1 -F

J

and for n > 1 we have

(6.25b)

dF J(h)
(6.25c)

Since we can write from Eqs. (3.20) and (6.11)

1̂1 “  Z f  * e I t  '* ~ sBJRJ2Qn=0

d_
dF

r \  co.
1 1 (6.26a)

in the approximation employed here, we have on substituting Eq. (6.19) for {co jQ j)
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(6.26b)

i.e. to lowest order the parallel voltage is zero as in previous published solutions, while for 

n - 1  we have

^ iiO) — dF
1 -

m .
(6.26c)

and for n > 2  we have

dF \& j i)
(6.26d)

Hence, if  we evaluate (coJO j) and (oajFif) to second order, for example, we can 

determine the parallel voltage to third order, etc.

With regard to the precipitating energy flux, we have from Eqs. (3.20) and (3.23)

E fn 
E , ~ — wv J

(6.27)

Therefore we express Ef  to the same order as , such that if we determine the plasma

flows to a given order, we can compute the precipitating energy flux to the next highest 

order.

6.2.6 Inner region approximations

Series solutions for (co fQ j)  can also be obtained for the inner region, i.e. where p e is 

small, which describe the initial breakdown of rigid corotation. As in Chapter 4, we 

employ (A //27 /) as the formal expansion parameter to write
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j =Z«.m=0

/  * \«
(6.28)

which we substitute into Eq. (6.22) and then equate the coefficients of equal powers of 

{M /Z p j . We find that a0 =1 , which represents rigid corotation at smallest distances, 

while for higher orders we have the following recurrence relation

a  = —!— \ ——\ p e am l l  ~ £ B j R j 2 — —m 87 tF [d F l  e w"lJ J J dF Pe ) (6.29)

In particular, with aQ = 1, we find

=
1 8nFB„ ’

(6.30a)

<3-, =
2___ \ d _

(8 tt)2 F {d F
Pe 1 - sB .R ,2 — 0 dl A  ----TW l1 * 0 J J dF ‘ dF2 o .

(6.30b)

and

(8tt) F

dF
Pe d
F dF

^BjRji_d_  
dF dF 

d 3
dF3

v Bze j j dF2
Pe > +

dF1 \B ze j

(6.30c)

and so on. Note that ax is independent of e , a2 contains a term proportional to e , while 

a3 contains up to e 2. In general, am contains terms up to e m~x. Collecting terms with 

specific powers o f s , we obtain the small- p e expressions for the nth order solutions for
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( m j a , ) ,  i.e. (c o J O j)^ , [coJO j) ^ , etc. From Eq. (6.30) we thus have, correct to third 

order in (m /2 7 /)

a> ]
_  j ( 2 M   ̂ 2 M 1 d

{ P' 1
2 M 1 d \ p :  d ( P? \

(o) (g * -  )2z ; * F d F I (8/r f z f ’F d F F dF I r a J J
+ ... , 

(6.31a)

co. 2BjRj2M 2 d

and

(8/r) Z p 2F dF

2BjR 2M 3 d  
(8;r)3 Z p lF dF

2 d 2 I I
dF2 \^ z e  J

dF dF2 \ ^ z e  J
+ F-

dF3

/3 {  . 2  ^
P e

(6.31b)

r \  co,  2B /R /M 3 d  | 2 d
n ,  J(2) = (8tt)3 dF p ‘ dF3 dF2 \B ze j

■ + . (6.31c)

From these equations it can be seen that the lowest order term in the expansion of 

{a > jn j){m) is a term proportional to ( m / x / )  . The implication of this result is that the

lowest order term describing the breakdown of rigid corotation in the ionosphere, 

proportional to ( m / x / )  , does not depend on £ , i.e. to that order (co jQ j) ,  and

consequently the currents in the inner region, are independent of s  and the field-aligned 

voltage. Specifically, this approximation is

f \  CO.

J

= 1+
M

i\nZpFBz
(6.32)

where we recall that Bze is negative. This is the same approximation for co as found in 

previous analyses (Eq. 4.3), which is such that the currents in the inner region are given by
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Eqs. (4.4d) and (4.4f). That is, in the inner region the behaviour of tot and the currents

remain unchanged compared with previous solutions to a lowest approximation. Physically 

this is because the lowest order approximation provides a current in Eq. (6.14) that is just 

such as to maintain rigid corotation of the plasma. Thus if  we put (coe/O j)  = 1 as the 

lowest approximation in the LHS of the Hill-Pontius equation Eq. (6.14), we then find

3 . M pe d p e 
AnEfF dF

(6.33)

which, when we recall that dF /dpe ~ p eBze, leads to Eq. (6.32). This is not true for coe, 

however. To lowest order in (i.e. considering up to linear terms only), we have

from Eq. (6.17)

r \  co.
= 1 + M

AnZpFBz AnZ,
t  B jR f

\ ^ z e  J
(6.34)

which is such that the departure from rigid corotation of (c o jQ f)  required to drive the 

currents in Eqs. (4.4d) and (4.4f) is slightly smaller than obtained in previous analyses.

It is illuminating to evaluate these approximations for a dipole magnetic field, for which 

Fe -  BjR /  / p e and Bze = - B jR /  / p * , and which should be a valid approximation in the 

inner region o f the system. Introducing the Hill distance RDe, given by Eq. (4.7) as a 

characteristic length scale for the plasma angular velocity profiles, we find for the

ionospheric plasma angular velocity to second order in (M jZ p j

/  \
= 1 - 1

c  \ 4 ( \ 8 (  „ >
P e 3 + — P e l - \ 4 e P e

2 K̂ De ) 4 \^De) J (6.35)

which is the equivalent of Eqs. (6.31a) and Eq. (6.31b), while for the angular velocity in the 

equatorial plane we have from Eq. (6.17)
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f  \
= 1 - 1

(  \ 4 (  \ -i /  N8r /  \ -icoe P e 1-12 £ P e_ 3
+ — P e 1-70* P e

2 K̂ De I J 4 <^De;

We note that in the limit that e  —» 0 both Eqs. (6.35) and (6.36) reduce to Eq. (4.11), which 

is the small- p e approximation to the plasma angular velocity for the dipole given 

previously in Chapter 4.

6.3. Results

In this section we present the results o f the numerical evaluation of the equations discussed 

in Sect. 6.2 in order to assess the significance o f the effects of field-aligned voltages under 

typical jovian conditions. In this study we have used our ‘canonical’ values of 

Z f  =0.1 mho and M  = 1000 kg s'1, along with magnetospheric electron ‘source’

population parameters o f / ||i0 « 0.01 fiA m*2, and Wth = 2.5 keV. Under these conditions we

find s  w 1.5x10-5, as indicated above, which is small, such that a power series solution in 

s  seems appropriate.

We begin with a brief outline of the zeroth order solution, which is identical to those given 

in previous chapters, and which forms a basis against which the higher order terms may be 

compared. We then go on to present the first and second order terms of the series solution, 

along with their sum, for the plasma angular velocity, azimuth-integrated equatorial radial 

current, and field-aligned current. We finally show overall profiles of the current system 

parameters including the zeroth, first and second order terms, and compare them with the 

zeroth order solution.

Figures 6.1 to 6.4 show the results of the zeroth order solution (i.e. for n = 0), which is the 

basic solution representative of those published previously. Figures 6.1 and 6.2 show 

system parameters plotted versus jovicentric radial distance p e, while Figs. 6.3 and 6.4

shows profiles mapped along field lines into the ionosphere and plotted versus co-latitude. 

The solid lines in the figures show the full solution obtained by solving Eq. (6.21) for the
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Figure 6.1. Plots o f the magnetosphere-ionosphere coupling current system parameters for 

the zeroth order solution, i.e. for n = 0 . Both parameters are plotted versus jovicentric 

radial distance p e. The solid lines represent the full solution obtained by integrating

Eq. (6.21), while the dot-dashed lines show the small- p e approximation computed from

Eq. (6.31), shown here to second order in (A //2 7 /) . Panel (a) shows the equatorial plasma

angular velocity normalised to that o f the planet (equal in this case to the ionospheric 

angular velocity on the same field lines). The horizontal dotted line represents rigid 

corotation. Panel (b) shows the total equatorial radial current given by Eq. (35b) in MA.
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Figure 6.2. Plots o f the magnetosphere-ionosphere coupling current system parameters for 

the zeroth order solution, i.e. for n = 0 . Both parameters are plotted versus jovicentric 

radial distance p e. As in Fig. 6.1, the solid lines represent the full solution obtained by 

integrating Eq. (6.21), while the dot-dashed lines show the small- p e approximation 

computed from Eq. (6.31), shown here to second order in . Panel (a) shows the

field-aligned current at the feet of the field lines given by Eq. (6.25b) in pA m 2. Panel (b) 

shows a log-linear plot o f the zeroth order electrostatic potential 0 Le obtained from 

Eq. (6.37) in kV, together wjth the first order field-aligned voltage calculated from the 

angular velocity profile shown in panel (a) through Eq. (6.26c).
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Figure 6.3. Plots o f the magnetosphere-ionosphere coupling current system parameters for 

the zeroth order solution, plotted here versus ionospheric co-latitude 0i . The format is the 

same as in Fig. 6.1. Panel (a) shows the ionospheric plasma angular velocity normalised to 

that o f the planet. Panel (b) shows the field-aligned current at the feet of the field lines 

given by Eq. (6.25b) in pA m‘2.
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Figure 6.4. Plots o f the magnetosphere-ionosphere coupling current system parameters for 

the zeroth order solution, together with the first order field-aligned voltage as in Fig. 6.2, 

plotted here versus ionospheric co-latitude Qi . The format is the same as in Fig. 6.3. Panel 

(a) shows the first order field-aligned voltage calculated from the angular velocity profile 

shown in Fig. 6.3a through Eq. (6.26c). Panel (b) shows the precipitating energy flux 

calculated from the profile shown in panel (a) through Eq. (6.27).
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plasma angular velocity, while the dot-dashed lines show the small- p e approximation given

by the series in Eq. (6.31a) (shown here to second order in (M /Zp  ) ). The plasma angular

velocity profile is shown in Fig. 6.1a. In this case ( c o f Q j since there is no

decoupling between the equatorial plane and the ionosphere at zeroth order, as indicated by 

Eq. (6.23a). It can be seen that the angular velocity is near to rigid corotation in the inner 

magnetosphere, and falls monotonically to -0 .2  Q j at the outer edge of the model at

100 Rj. The numerical solution was initialised at p e = 5 Rj using the value of the second

order small- p e approximation at this point. It can be seen that the numerical solution

closely follows the small- p e approximation out to a distance of ~15 Rj, after which the

approximation diverges to large values. The ionospheric mapping of the angular velocity 

profile is shown in Fig. 6.3a, in which it can be seen that the drop in angular velocity occurs 

over a region -2.5° in latitudinal width. Figure 6.1b shows the azimuth-integrated 

equatorial radial current which follows from the angular velocity profile shown in Fig. 6.1a, 

calculated using Eq. (6.24b). It can be seen that the current has small values in the inner 

region and rises monotonically to -60  MA at 100 Rj. Figure 6.2a similarly shows the field- 

aligned current profile computed from Eq. (6.25b). Note that this is the field-aligned 

current at the feet o f the field lines, mapped into the equatorial plane and plotted versus pe 

for ease o f comparison with the other parameters. Large field-aligned currents occur 

beyond -2 0  Rj, with a peak value of -0.12 pA m'2 at -48  Rj. The ionospheric profile of the 

field-aligned current is shown in Fig. 6.3b, in which it can be seen that the large currents 

occur over a region -2.5° wide in latitude, with the peak at -16.2° co-latitude. Finally, the 

‘upper’ line in Fig. 6.2b shows the associated zeroth order electrostatic potential 

versus radial distance in the equatorial plane, calculated from

. (6-37>

where the arbitrary zero of potential is taken to be at the outer edge of the model at 100 Rj. 

Note that in the zeroth order solution the field-aligned voltage is taken to be zero, such that 

this one potential profile corresponds to both the equatorial plane and the ionosphere. We 

also note that the voltage drop across the region associated with large field-aligned currents, 

between 20 Rj and the outer edge of the model at 100 Rj, is —3 MV. This is approximately
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two orders o f magnitude larger than the first order field-aligned voltage computed from the 

zeroth order angular velocity profile through Eq. (6.26c), which is shown for comparison 

by the ‘lower’ line in Fig. 6.2b. The ionospheric mapping of the first-order field-aligned 

voltage is shown in Fig. 6.4a, while the precipitating energy flux calculated from this 

voltage using Eq. (6.27) is shown in Fig. 6.4b.

As indicated above, the profiles shown in Figs. 6.1 to 6.4, while being representative of 

previously presented results, are considered in this chapter to be just the first terms in a 

series, the higher orders o f which introduce the decoupling due to field-aligned voltages. It 

is to these higher order terms which we now turn in Fig. 6.5, which shows the first and 

second order terms for the plasma angular velocity, given the ‘typical’ jovian parameters 

outlined above. Specifically, Figs. 6.5a and 6.5b show the first and second order terms 

£(6)/f2 j){x) and e 1 (cofQ j)^ , plotted versus radial distance p ei while Fig. 6.6 shows the

sum of these two (Aco/Qj ). The solid lines in the figures show the higher order terms for

the ionospheric plasma angular velocity calculated from Eq. (6.22), while the long-dashed 

lines show the same terms for the equatorial plasma angular velocity obtained from 

Eq. (6.23b). Also shown in the figures (and in all succeeding plots) are the small- pe

approximations to these profiles, shown up to the leading term in j , i.e. to second

order in {̂ M/ f o r  the first order term and to third order in ( m / x / )  for the second 

order term. The small- p e approximations to the ionospheric angular velocity terms, given 

by Eqs. (6.3 lb,c) for the first and second order ionospheric profiles, respectively, are shown 

by the dot-dashed lines. The small- p e approximations to the equatorial plasma angular

velocity, obtained from Eq. (6.23b), are shown by the double-dot-dashed lines. 

Considering the first order ionospheric angular velocity term shown in Fig. 6.5a, it can be 

seen that the profile initially takes small negative values in the inner region, dropping to a 

minimum value o f —0.0015 at ~21 Rj. After a second minor minimum at -36  Rj the values 

then monotonically rise, passing through zero at ~41 Rj and reaching -0.008 at the outer 

edge o f the model at 100 Rj. The initial variations of this profile in the region inside -40  Rj 

results from the nature o f the Bze model used, which exhibits relatively sharp behaviour in 

the transition region at -2 0  Rj between the dipolar form and the power law form (Fig. 5.1a), 

along with the fact that the inhomogeneous term in Eq. (6.22) for (co fQ j)^  involves the
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Figure 6.5. Plots o f higher order terms in the series solution for the plasma angular 
velocity. Panel (a) shows the first order term s(co/f2j)^y and panel (b) shows the second 
order term e 2{cd/O j ) ^ ,  both plotted versus radial distance p e. The solid lines represent 
the ionospheric plasma angular velocity profiles calculated from Eq. (6.22) with n = 1,2 for 
panels (a) and (b), respectively. The dashed lines show the equatorial plasma angular 
velocity profiles obtained from the ionospheric solution through Eq. (6.23b), with n~ 1,2 
as appropriate. The single-dot-dashed lines represent the small- p e approximations to the 
ionospheric angular velocity, given by Eqs. (6.3 lb,c) for the first and second order profiles, 
respectively. The double-dot-dashed lines show the small- p e approximations to the 
equatorial plasma angular velocity, obtained from the ionospheric approximations through 
Eq. (6.23b). Both approximations are shown up to the leading term in (m /2 7 /) , i.e. to 
second order in (M / Z p ) for the first order term shown in panel (a), and to third order in 
[m !E p ) for the second order term shown in panel (b).
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Figure 6.6. Plot o f the sum of the first and second order terms for the plasma angular
velocity shown in Fig. 6.5, (Aco/f2j), plotted versus p e. The format is the same as in
Fig. 6.5.
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third order derivative o f Such rapid variations do not occur if a simple dipole

model is used in place o f our empirical current sheet model, though the overall nature of the 

results remain similar. The main point, however, is that the magnitude of the first order 

term, o f order a few thousandths o f the planetary angular velocity, is approximately two 

orders below that o f the zeroth order angular velocity profile shown in Fig. 6.1a, such that 

the first order term can be considered to be very small with respect to the zeroth order term. 

For the second order ionospheric angular velocity term shown in Fig. 6.5b, it can be seen 

that the magnitude is even smaller, approximately one order below the first order term. 

Relatively rapid variations again occur in the region within ~40 Rj, although they are in 

anti-phase with those in the first order profile. The effect o f this can be seen in Fig. 6.6, 

where the first and second order terms are summed, and the profile appears to be similar to 

the first order term, but is somewhat smoother in the region inside -40  Rj. The overall 

effect o f the field-aligned voltage, therefore, is that the ionospheric angular velocity is 

modestly less than calculated in previous analyses in the region within -35 Rj, and slightly 

greater in the region beyond. Considering now the equatorial plasma angular velocity 

terms, it can be seen that the first order term shown in Fig. 6.5a initially takes positive 

values, rising to a peak o f -0.004 at -23 Rj, before falling slowly to small negative values 

at 100 Rj. We note that the equatorial and ionospheric first order terms are equal to each 

other at p e «  48 Rj, meaning that at this point the total equatorial and ionospheric angular

velocities are equal to first order. This occurs at the point where the zeroth order field- 

aligned current, and consequently the first order field-aligned voltage, reach their maximum 

values, such that the second term on the RHS of the decoupling equation Eq. (6.4) is zero. 

The second order term in the equatorial angular velocity, shown in Fig. 6.5b, exhibits peak 

displacements o f ~+ 8 .5 x l0 '5 and — 2x10“*, which are much smaller than the magnitude 

of the peak displacements of the first order term, such that the sum of the first and second 

order terms shown in Fig. 6.6 looks very similar to the first order profile alone.

Figures 6.7 and 6.8 show, in a format similar to Figs. 6.5 and 6.6, the first and second order 

terms for the azimuth-integrated equatorial radial current given by Eq. (6.24c), along with 

their sum. It can be seen that the profile of the first order term e lp{}) shown in Fig. 6.7a is

similar in shape, but opposite in sign, to the first order ionospheric angular velocity term 

shown in Fig. 6.5a. It rises initially to a peak of -0.14 MA at -21 Rj, followed by a minor 

peak at -3 6  Rj, and then monotonically decreases to —0.56 MA at 100 Rj. The magnitude
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Figure 6.7. Plots o f higher order terms for the azimuth-integrated equatorial radial current 

in MA. Panel (a) shows the first order term s l p{̂ , and panel (b) shows the second order 

term £-2/^ 2) , both plotted versus radial distance p e. The solid lines represent the radial 

current profiles calculated from Eq. (6.24c) with n = 1,2 for panels (a) and (b), 

respectively. The dot-dashed lines represent the small- p e approximations to the radial 

current, calculated from the appropriate small- p e approximations to the ionospheric plasma 

angular velocity shown in Fig. 6.5.
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Figure 6.8. Plot o f the sum of the first and second order terms for the azimuth-integrated

equatorial radial current shown in Fig. 6.7, A p l o t t e d  versus p e. The format is as in

Fig. 6.7.
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o f this term is, as with the angular velocity, approximately two orders smaller than that of 

the zeroth order solution shown in Fig. 6.1b. The second order term s 2I ^  shown in

Fig. 6.7b also takes a similar shape to the second order ionospheric angular velocity profile 

shown in Fig. 6.5b, but reversed in sign. Again, the magnitude of the second order term is 

approximately an order below that o f the first order term, such that the sum of the two 

terms AIp , shown in Fig. 6.8, is similar to the first order term, but with less variation 

within ~40 Rj.

Turning now to the field-aligned current, Figs. 6.9 and 6.10 similarly show the first and 

second order terms given by Eq. (6.25c), along with their sum. Note that as in Fig. 6.2a, 

this ionospheric parameter has been mapped along the field lines into the equatorial plane 

and plotted versus p e for ease o f comparison with the other current system parameters.

The first order term for the parallel current e shown in Fig. 6.9a exhibits variations

within —40 Rj in a similar manner to the angular velocity and the radial current, after which 

it drops to negative values, peaking at —0.0036 pA m'2 at -75  Rj. Again, the magnitude of 

this term is approximately two orders below the zeroth order term. As with the angular 

velocity and radial current, the second order field-aligned current term e 2j^ 2) shown in

Fig. 6.9b also shows relatively large variations within -40  Rj, after which the value 

becomes almost constant at -3X 10-4 pA m'2, approximately an order o f magnitude below 

the magnitude o f the first order term. The variations in the second order term are again in 

anti-phase with those in the first order term, such that the sum of the two terms Aj  ̂ shown

in Fig. 6.10 is relatively smooth below -40  Rj. The main feature in the A/((f. profile is the

minimum o f —0.0033 pA m'2 at -72  Rj, implying a slight reduction in the amplitude of the 

field-aligned current compared with the zeroth order solution.

We finally show in Figs. 6.11 to 6.14, in a similar manner to Figs. 6.1 and 6.4, the sums of 

the zeroth, first, and second order terms for the system parameters shown as solid lines, 

along with the appropriate small- p e approximations, and compare them with the zeroth 

order solution, which is shown by the short-dashed lines. Figure 6.11a shows the sum of

the equatorial plasma angular velocity terms (coJO j) , i.e. the sum of the profile in 

Fig. 6.1a with the dashed-line profile in Fig. 6.6. It can be seen that this profile is closely
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Figure 6.9. Plots o f higher order terms for the ionospheric field-aligned current in pA m'2. 

Panel (a) shows the first order term s y||l(1), and panel (b) shows the second order term 

e 2 j\\i{i) > both plotted versus radial distance p e. The solid lines represent the field-aligned 

current profiles calculated from Eq. (6.25c) with n = 1,2 for panels (a) and (b), 

respectively. The dot-dashed lines represent the small- p e approximations to the field- 

aligned current, calculated from the appropriate small- p e approximations to the ionospheric 

plasma angular velocity shown in Fig. 6.5.
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Figure 6.10. Plot of the sum of the first and second order terms for the ionospheric field-

aligned current shown in Fig. 6.9, A/*lf, plotted versus p e. The format is the same as in

Fig. 6.9.
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Figure 6.13. Plots o f the sums of the zeroth, first, and second order terms for the current 

system parameters. All parameters are plotted versus ionospheric co-latitude 9i . The 

format is the same as in Fig. 6.10. Panel (a) shows the sum of the ionospheric plasma 

angular velocity terms {coJO j ' j . Panel (b) shows the sum of the field-aligned current 

terms j l{' in pA m'2.
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Figure 6.12. Plots o f the sums of the zeroth, first, and second (and third in the case of the 

field-aligned voltage) order terms for the system parameters. All parameters are plotted 

versus radial distance p e. The format is the same as in Fig. 6.11. Panel (a) shows the sum 

of the field-aligned current terms in pAm*2. Panel (b) is a log-linear plot of the 

equatorial electrostatic potential in kV calculated from the equatorial plasma angular 

velocity profile shown in panel (a) using Eq. (6.37), together with the sum of the field- 

aligned voltage terms calculated from the ionospheric plasma angular velocity profile 

shown in Fig. 6 .13a using Eq. (6.26d) with n = 3.
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Figure 6.11. Plots of the sums of the zeroth, first, and second order terms for the system 

parameters. All parameters are plotted versus radial distance p e. The format is the same as 

in Fig. 6.1, except that the zeroth order solution is also shown by the short-dashed lines for 

comparison. Panel (a) shows the sum of the equatorial plasma angular velocity terms 

(coejQ J s) . Panel (b) shows the sum of the azimuth-integrated equatorial radial current 

terms I ' in MA.
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Figure 6.14. Plots o f the sums of the zeroth, first, and second (and third in the case of the 

field-aligned voltage) order terms for the current system parameters. All parameters are 

plotted versus ionospheric co-latitude 0t . The format is the same as in Fig. 6.10. Panel (a) 

shows the sum of the field-aligned voltage terms in kV. Panel (b) shows the 

precipitating energy flux Ef ' calculated from the field-aligned voltage profile shown in 

panel (a) through Eq. (6.37).
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similar to the zeroth order profile above, such that the effect of adding the (A<0c/ / 27) 

profile shown in Fig. 6.6 can hardly be distinguished on this scale. The same is true for the 

equivalent plot for the ionospheric plasma angular velocity (co fOf)  (i.e. the sum of the

profile in Fig. 6.3a and the solid line profile in Fig. 6.6), shown in Fig. 6.13a. It is only 

really possible to see the difference in the very poleward region, corresponding to the 

relatively large positive values of (A a t jQ j )  in the outer region of Fig. 6.6, and even here 

the difference is very small. Figure 6.1 lb  shows the corresponding sum of the terms for the 

azimuth-integrated equatorial radial current Ip , i.e. the sum of the profiles shown in

Figs. 6.1b and 6.8. It can be seen that, as with the angular velocity, the profiles are very 

similar, with a modest reduction in the current amplitude in the outer region corresponding 

to the negative values of AIp in the outer region of Fig. 6.8. Figure 6.12a shows the sum of

terms for the field-aligned current y(|/ , i.e. the sum of the profiles shown in Figs. 6.2a and

6.10. Again, the difference between this profile and the zeroth order profile is small. The 

peak in the current is reduced by -0.0033 pA m'2, a value which is approximately two 

orders of magnitude below the peak amplitude of -0.12 pA m*, and is shifted inward by 

-2  Rj, a distance that is small considering the peak covers the majority of the middle 

magnetosphere. The ionospheric mapping of the field-aligned current is shown in 

Fig. 6.13b, where it can be seen that the inward shift of the peak in the current in the 

equatorial plane corresponds to a slight equatorward shift o f the peak in the ionosphere by 

-0.1°, which is small with respect to the -2.5° width of the peak. Considering now the 

voltages shown in Fig. 6.12b, the ‘upper’ solid line in the figure shows the equatorial

electrostatic potential computed from the equatorial plasma angular velocity profile 

shown in Fig. 6.11a using Eq. (6.37). The difference between this and the zeroth order 

profile is negligible, such that the difference cannot be seen on this scale. As in Fig. 6.2b,

the field-aligned voltage calculated from this order of the angular velocity is also

plotted in the ‘lower’ solid line in Fig. 6.12d, such that the field-aligned voltage here is 

shown to the next, i.e. third, order (Eq. (6.26d)). On this log scale the difference between 

this and the first order voltage, shown dashed, is not easily visible, and may more readily be

distinguished on the ionospheric mapping of the field-aligned voltage shown in

Fig. 6.14a. It can be seen that the difference in the field-aligned voltage is similar to that
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for the field-aligned current, i.e. a slight decrease in magnitude and a ~0.1° equatorward 

shift o f the peak. The same is true for the precipitating energy flux Ef ' shown in

Fig. 6.14b, which is calculated from the field-aligned voltage shown in Fig. 6.14a using 

Eq. (6.27).

6.4. Summary and conclusion

In this chapter we have considered the magnetosphere-ionosphere coupling current system

that flows in Jupiter’s middle magnetosphere and is believed to be associated with the

jovian main auroral oval. Previous works have assumed perfect mapping of the electric

field and flow along equipotential field lines between the ionosphere and the

magnetosphere, while it is known that substantial field-aligned voltages must exist to drive

the currents responsible for the main oval auroras. However, Cowley and Bunce (2001b)

noted that these field-aligned voltages, generally of order a few tens of kV, are much

smaller than the radial voltage due to plasma corotation, which is of order ~3MV across the

middle magnetosphere, and they therefore suggested that the effect on the system would not

be great. In this chapter we have, for the first time, self-consistently incorporated these

field-aligned voltages into the modelling of the system. The inclusion of field-aligned

potential drops has the effect of decoupling the magnetospheric and ionospheric electric

fields, such that the plasma angular velocities in these two regions will generally differ

from each other, with consequences for the currents flowing in the system. The field-

aligned voltages were incorporated into the model using Knight’s (1973) kinetic theory,

which gives the potential drop required to drive a given field-aligned current. This

dependency o f the field-aligned voltage on the field-aligned current is incorporated into the

equation which decouples the ionospheric and the magnetospheric angular velocity

(Eq. (6.5) above), which is one of three first order differential equations that must be

solved. The other two consist of the current continuity equation that gives the parallel

current from the ionospheric Pedersen current, and the Hill-Pontius equation for the plasma

angular velocity, which is based on Newton’s second law (Eqs. (6.11) and (6.14)). These

three equations can be combined to form one third order linear inhomogeneous equation for

the ionospheric plasma angular velocity (Eq. (6.18)) that can be solved as a power series in

s , given that e  is small. The dimensionless parameter e  is related to the magnetospheric
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‘source’ electron parameters that determine the field-aligned voltages, but in principle 

could be set arbitrarily large or small, representing large or small field-aligned voltages. 

However, given the values o f the system parameters expected to exist at Jupiter, and which 

we have used in this and previous chapters, we find that e  is small, of order -1.5 xlO-5. 

Hence a power series solution is appropriate to the jovian system. The zeroth order 

solution corresponds to those which have been presented previously, in which there is no 

decoupling between the ionosphere and magnetosphere. Higher orders then introduce the 

decoupling due to field-aligned voltages, such that the ionospheric and equatorial plasma 

angular velocity profiles are modified, as are the resulting current profiles. In this chapter 

the solution was taken to second order.

The results o f the numerical evaluation of the equations showed that for the given values of 

the system parameters taken in this study, representative of the jovian conditions, the 

decoupling effect due to the existence of field-aligned voltages is small, as suggested by 

Cowley and Bunce (2001b). The overall effect on the equatorial plasma angular velocity is 

such that over the majority of the middle magnetosphere it is raised above the zeroth order 

result by values peaking approximately two orders of magnitude below those of the zeroth 

order term, such that the effect is very small. The ionospheric plasma angular velocity is 

modified by similar factors, initially dropping below the zeroth order result in the inner 

region, while rising above the latter in the outer region, although again the effect is small. 

The field-perpendicular and field-aligned current values are similarly reduced by values 

approximately two orders of magnitude below the zeroth order results, and the peak in the 

field-aligned current is shifted equatorward by -0.1°, which is small compared to its -2.5° 

latitudinal width. The field-aligned voltage and precipitating energy flux are likewise 

slightly reduced and shifted. Overall, we find that the effect of the field-aligned voltages in 

this study is small for typical jovian conditions, thus validating the procedures adopted in 

previous chapters, and the results obtained, as reasonable approximations.
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Chapter 7 

Summary and Future Work

7.1. Introduction

The magnetosphere o f Jupiter is the largest object in the solar system. It is unfortunate that 

it is not visible from Earth, because if  it were it would appear to be as large as the Sun in 

the sky. However, the jovian magnetosphere has been under scrutiny from Earth since the 

1950s, when the nature of the magnetic field was inferred from jovian radio emissions. In 

the 1970s the study o f Jupiter changed from being astronomy to space science when the 

first spacecraft reached the planet, imaging the planet and observing the plasma 

environment. To date, seven spacecraft have visited Jupiter, these being Pioneer-10 and 

-11, Voyager-1 and -2, Ulysses, Galileo, and Cassini. What was discovered was a 

magnetosphere vastly different from our own. The large strength of the planetary field, the 

rapid spin of the planet, and the existence of the most volcanic moon in the solar system, Io, 

combine to create a magnetosphere, the dynamics of which are largely driven by internal 

processes rather than external processes as in the case of the Earth. The Io plasma source is 

estimated to have a sulphur and oxygen plasma production rate of order one tonne per 

second, a value which is equivalent to that of an active comet. The iogenic plasma is 

accelerated by the rapidly spinning magnetic field and diffuses centrifugally outwards. 

Conservation o f angular momentum causes the plasma angular velocity to reduce as the 

plasma diffuses radially outwards, a process which is resisted by ion-neutral collisions at 

the ionospheric end o f the field lines. As a consequence, a current system is set up, the 

result o f which is that equatorial plasma is accelerated back up towards corotation with the 

planet. A key feature of the current system is the existence of substantial upward-directed 

field-aligned currents, which are believed to be associated with the ‘main oval’ aurorae on 

Jupiter. The first theoretical model for the magnetosphere-ionosphere coupling current 

system was provided by Hill (1979), who considered the case of the dipole field. This was 

later generalised to include a more realistic field by Pontius (1997), who concluded that the
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field model was not a significant factor in the system for the equatorial plasma angular 

velocity. In neither paper were the currents specifically computed, however. Cowley and 

Bunce (2001b) calculated the currents using an empirically-based ‘current sheet’ field 

model and an empirical model of the equatorial plasma angular velocity, and concluded that 

the field model was indeed a factor, as the field-aligned currents were an order of 

magnitude larger for the current sheet model than for the dipole. They thus suggested that 

the main oval aurorae originate from the field-aligned currents driven by this system. The 

work was extended by Cowley, Nichols and Bunce (2002), who calculated both the 

equatorial plasma flow and the currents from first principles using the theory of Hill and 

Pontius, and confirmed the result of Cowley and Bunce (2001b). However, their model 

lacked self-consistency in key two areas, these concerning the jovian ionospheric Pedersen 

conductivity and field-aligned auroral voltages. The work described in this thesis examines 

the effect o f self-consistently including these parameters in the model.

7.2. Dependence on the Pedersen conductivity and the mass outflow 

rate

The above cited papers all make key assumptions concerning two of the model input 

parameters, specifically the ionospheric Pedersen conductivity and the iogenic plasma mass 

outflow rate. They all use ‘reasonable’ spot values of both, of order a few tenths of a mho 

for the Pedersen current and of order a thousand kg s '1 for the mass outflow rate. However, 

the values of these parameters are not accurately known at present. This uncertainty 

prompted the study presented in Chapter 4, which looked at the behaviour of the system 

over wide ranges of the two parameters, and compared the results for both the dipole and 

current sheet models. We showed that the results o f the previous studies, for example that 

the field-aligned current is much larger for the current sheet field model than the dipole, are 

generally valid over these ranges. The knowledge of how the system behaves with respect 

to these parameters, particularly the Pedersen conductivity, proved a useful background 

with which to pursue the more complex studies of later chapters.
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7.3. Effect o f precipitation-induced enhancements o f the Pedersen
conductivity

A major limitation o f previous work on the magnetosphere-ionosphere coupling current 

system is the lack o f any self-consistent treatment of the ionospheric Pedersen conductivity, 

which had just been treated as a constant parameter in the model. However, the existence 

of significant field-aligned currents, as predicted by the theory, is expected to enhance the 

Pedersen conductivity by anything up to an order o f magnitude in the region of current 

flow. In the work presented in Chapter 5 o f this thesis we have, for the first time, taken into 

account the enhancement of the Pedersen conductivity in regions of field-aligned current 

flow. We used Knight’s (1973) theory to estimate the properties o f the electron 

precipitation due to the field-aligned current, and combined this with the modelling results 

o f Millward (2002) to develop a dependence of the Pedersen conductivity on the field- 

aligned current. We then incorporated this into the model for the magnetosphere- 

ionosphere coupling current system. The results help reconcile the theoretical predictions 

with three separate aspects of observational evidence. For twenty-five years it has not been 

understood why the plasma angular velocity in the equatorial plane does not decrease as 

fast as predicted by Hill’s (1979) theory. Indeed, this was a motivation behind 

Pontius’ (1997) generalisation o f the theory to include a more realistic field model than the 

dipole, a study which found the angular velocity to be insensitive to the field model. We 

have shown that the effect of including precipitation-induced enhancements of the Pedersen 

conductivity is just such to maintain the plasma near to rigid corotation out to much further 

distances than predicted by a constant conductivity model. The equatorial radial current 

profile shows a rapid increase in the inner region and plateaus off thereafter, in accordance 

with Galileo observations o f the equatorial magnetic field. The field-aligned current, 

meanwhile, is concentrated in a peak in the inner region at -20-30 Rj, which is the region to 

which the observed main oval has traditionally been mapped.
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7.4. Effect o f magnetosphere-ionosphere decoupling by field-aligned 
auroral voltages

The second aspect o f the model which lacked any self-consistent treatment concerned the 

field-aligned voltages required to drive the computed field-aligned currents. In calculating 

the currents flowing in the system, the electric field and plasma flow were mapped between 

the ionosphere and the equatorial plane along equipotential field lines, and the field-aligned 

voltages were subsequently computed using Knight’s (1973) theory. In general, however, 

it is expected that field-aligned voltages will decouple the ionospheric and equatorial 

electric fields, such that the plasma velocities in these two regions will be different. 

However, Cowley and Bunce (2001b) noted that the calculated field-aligned voltages are 

much smaller than the field-perpendicular voltages associated with plasma corotation and 

they suggested that the effect would be small. In the work presented in Chapter 6 we have 

self-consistently incorporated the potential drops in calculating the plasma flows and 

currents. We developed a third order differential equation for the ionospheric plasma 

angular velocity which was solved as a power series under ‘typical’ jovian conditions. The 

zeroth order solution in the power series was just the case presented previously, with the 

field-aligned voltage taken to be zero. Higher orders then introduced the effect of field- 

aligned potential drops. In Chapter 6 we presented results to second order. We showed 

that the effect o f the inclusion of field-aligned voltages is small, such that the typical 

difference between the zeroth order profiles and those taken to second order was two orders 

of magnitude below the zeroth order values. The main conclusion was that the assumption 

made in previous works that the calculated field-aligned voltages have only a small effect 

on the solution is generally valid, such that their results obtained are reasonable 

approximations.

7.5. Future work

A number o f issues arise following the work presented in this thesis. First, the empirical 

model o f the Pedersen conductivity greatly improved the ‘fit’ o f the theoretical radial 

current profiles with the observed profile obtained from Galileo data. However, we saw
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that even with the empirical model, the innermost data points had values much higher than 

the theoretical profile in this region, unless the mass outflow rate was raised significantly 

higher than observational evidence suggests it is. The conjecture was, therefore, that the 

values o f the north-south equatorial magnetic field model are too high in this region, and 

may need to be revised. Therefore, a study of the validity of the model with respect to 

observed Bze profiles is warranted.

Another result o f the use of an empirical model for the conductivity was the concentration 

of the field-aligned current profile into a peak in the inner region of the middle 

magnetosphere. Previous work, which had resulted in a field-aligned current peak that was 

spread over the entire middle magnetosphere, led to suggestions that the brightness of the 

main oval would be anti-correlated with the strength of the solar wind at Jupiter (Cowley 

and Bunce, 2003b). The reasoning behind this is that if  the strength of the solar wind 

decreases, for example, the magnetosphere then expands, such that the ionosphere needs to 

work harder to maintain the corotation of equatorial plasma out to these further distances. 

Hence, the currents required to enforce this corotation, and the consequential auroral 

brightness, would increase. However, no such variations in the brightness of the main oval 

have been observed. In light of the results presented in Chapter 5, however, a potential 

resolution of this problem becomes apparent. If the field-aligned currents responsible for 

the main oval flow much deeper within the magnetosphere than previously thought, then 

they may be much less susceptible to changes in the solar wind and outer regions of the 

magnetosphere than originally predicted. Therefore a study along the lines of Cowley and 

Bunce (2003b), but with the incorporation o f the empirical model for the conductivity, is 

warranted to discover whether this is indeed the case.

A third potential development lies in the fact that the models presented in this thesis are all 

one dimensional. That is, they contain no information about the azimuthal dependence of, 

say, the plasma mass outflow rate, the non-dipolar terms in the ionospheric field, or the 

day-night asymmetry due to dayside pressure from the solar wind. A brief look at the 

jovian aurora, such as in the image shown in Fig. 2.8, indicates that the main oval is not, 

strictly, an oval. Rather, it is more like a kidney-bean in shape. The kidney-bean is 

observed to corotate with the dipole, such that is seems that the most important factor is the 

non-axisymmetric planetary field. Therefore, a substantial improvement in our
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understanding o f the observations would be made if azimuthal effects were incorporated 

into the model.

Looking more widely, another timely topic at present concerns the kronian magnetosphere, 

as within the last few months Cassini arrived at Saturn. Relatively little is known about 

Saturn’s magnetosphere, although this will hopefully change as Cassini sends back data 

over the coming years. The kronian magnetosphere is very different again from that of 

Jupiter. The strength o f the planetary field is less than Jupiter’s, and there does not exist 

one substantial internal plasma source comparable to Io, although it is thought that the rings 

and the moons Dione and Rhea do contribute significantly. It has been suggested by 

Cowley and Bunce (2003b) that, although the same current system exists at Saturn, it is not 

strong enough to generate aurorae. They suggested, therefore, that Saturn’s auroral oval is 

not driven by the same mechanism that energises Jupiter’s, but may be more like the 

Earth’s in nature and driven by external processes. With the new in situ data, it will be 

possible to investigate the plasma flows, currents and magnetic fields in detail to determine 

the processes occurring in Saturn’s magnetosphere. In any case, there is much more to be 

discovered about the magnetospheres of both these and other worlds.
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