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CONTROL SYSTEM DESIGN FOR ROBUST STABILITY AND
ROBUST PERFORMANCE

ABSTRACT

A central problem in control system design is how to design a controller to
guarantee that the closed-loop system is robustly stable and that performance re-
quirements are satisfled despite the presence of model uncertainties and exogenous
disturbance signals. The analysis problem, that is the assessment of control sys-
tems with respect to robust stability and robust performance, can be adequately
solved using the structured singular value p as introduced by Doyle. The cor-
responding design problem (how to choose a controller K to minimize u) is still
largely unsolved, but an approximate solution can be found using Doyle’'s D — K
iteration. In this thesis we present an alternative algorithm, called y — K iter-
ation, which works by flattening the structured singular value p over frequency.
As a prelude to this a classical loop shaping approach to robust performance is
presented for SISO systems, and is also based on flattening p.

In u-synthesis it is often the case that real uncertainties are modelled as com-
plex perturbations but the conservatism so introduced can be severe. On the other
hand, if real uncertainties are modelled as real perturbations then D — K iteration
is not relevant. It is shown that x — K iteration still works for real perturbations.
In addition, a geometric approach for computing the structured singular value for
a scalar problem with respect to real and/or complex uncertainty is described.
This provides insight into the relationship between real p and complex p.

A robust performance problem is considered for a 2-input 2-output high purity
distillation column which is an ill-conditioned plant. Analysis reveals the poten-
tially damaging effects on robustness of ill-conditioning. A design is carried out
using u — K iteration and the “optimum” u compared with that obtained by Doyle
and by Freudenberg for the same problem.
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Chapter 1

INTRODUCTION

1.1 Motivation

Feedback control mechanisms have been used for millenia, and are crucially impor-
tant to reduce the effects of plant uncertainties and to attenuate system response
to external disturbances. Plant uncertainty is always present since no mathemat-
ical system can exactly model a physical system. Actual systems will suffer from
parameter variations affecting low frequency behaviour and unmodelled dynamics
at high frequencies. And if the feedback is badly designed these modelling errors
might adversely affect the stability and performance of a control system. In ad-
dition to plant uncertainties, the performance of a closed-loop system can also be
compromised by exogenous disturbances acting on the system. Typically these dis-
turbances are caused by environmental effects. Disturbances result in regulation
and tracking error, and performance can degrade to the point of unacceptability.
Therefore, in control engineering a central problem is to design a control system
which remains stable and maintains at least minimum performance levels despite
the presence of model uncertainties and disturbance signals. Performance levels
concern such important objectives as command following, disturbance rejection,
noise attenuation, sensitivity reduction, etc. Yet this generic design problem is
still largely unsolved. The RSRP problem, as we shall call it, is to design an
optimal controller K(s) for robust stability (RS) and robust performance (RP).




1.2 Related Work

It is well known that for a plant with structured uncertainty, the singular value approach
for robust stability analysis can sometimes give conservative results. To remedy this con-
servatism, in 1982, Doyle proposed and developed the concept of the structured singular
value (§5V) which is a less conservative indicator of stability robustness [Doy82]. A
major advantage arising from this work was that robust H* performance tests could be
expressed as a robust stability test in the presence of a fictitious perturbation representing
performance uncertainty. A general framework for analyzing robust performance using
the structured singular value u as a measure of performance was introduced by Doyle who
proposed a controller synthesis procedure, called p-synthesis [Doy85]. In this procedure a
controller is sought which minimizes p, or which achieves levels of performance arbitrarily
close to the optimum g by D — K iteration. The D — K iteration algorithm is applicable
for a plant with complex uncertainties; it can, however, give arbitrarily conservative re-
sults when the uncertainties are real. From an engineering point of view, real parameter
variations (called parametric uncertainties) of a plant, which can be caused by movement
of the operating point at low frequencies, are a common occurrence. In this thesis, we
present an alternative algorithm to D — K iteration, called p— I iteration, which can also
be applied to real uncertainty without introduqing conservatism.

A major theme in this thesis is the use of loop shaping in control system design. Related
work in this area can be found in [McG90] [OrL91] [Fre90] [StD88]. In [McG90] the open-
loop singular values are first shaped by a pre and/or post compensator to correspond to
good performance and robust stability. The loop is closed through a robustly stabilization
controller which, if satisfactory, will not change the open-loop singular values significantly.
In [OrL91], a classical loop shaping methodology is applied to individual channels of
a multivariable system. In [Fre90], a loop shaping technique is used to minimize the
structured singular value, u, for robust performance. In [StD88], the general idea of loop
shaping approach to open-loop singular values is discussed. In this thesis we present a
new loop shaping approach for minimizing the robustness performance measure u.

Many authors have worked on the computation of u, [FaT88] [FTD91] [PFD88] [PaD88]
[Hel88]. In this thesis we also give some consideration to this important problem in the

particular case of a mixture of real and complex uncertainty blocks.




1.3 Contribution and Organization

The main contributions of this work are considered to be:

o A relationship between a mixed sensitivity H*-optimization problem and
classical loop shaping is investigated for SISO systems. This then provides
insight into a further development of loop shaping to minimize the structured
singular value for robust performance. This work has been published in

[PLGO1al.

o A new algorithm is developed, called p — K iteration, which can be used
to design a p-optimal controller for the RSRP problem when the plant
has structured real and/or complex uncertainties. The technique assumes
availability of an algorithm for computing p for a given controller. This
work has been accepted for publication in the forthcoming Special Issue of

Automatica on Robust Control [LPG91].

o By analyzing an ill-conditioned plant, namely a 2-input 2-output high purity
distillation column with a particular structure of controller, we reveal that
at low frequencies robust performance is concerned only with the low plant
gain (smallest singular value) whereas at high frequencies robust stability is
determined only by the high plant gain (largest singular value). In the inter-
mediate frequency range, both the low and high plant gains are coupled and
become significant in determining the robustness measure g. The p— K iter-
ation algorithm is applied to the distillation column example and compared
with the results of other methods. Some of this work was reported at the

30th IEEE Conference on Decision and Control, Brighton, 1991 [PLG91b].

o For a simple situation (namely one real parameter uncertainty and one com-
plex fictitious perturbation representing performance uncertainty), the circle-
invariant property of bilinear maps (linear fractional transformations) is used
to derive the structured singular value. From the derivation the relationship

between real-p and complex-p is more clearly understood.




The thesis is organized into eight chapters which can be summarized as follows:

Chapter 2: Signals and Systems

In this chapter we review the basic concepts concerning signals and systems,
concepts on which a theory of robust control can be developed. We introduce
appropriate norms for measuring the size of signals and systems. The singular
value decomposition, which plays a key role in robustness analysis, is covered in
detail. The well-posedness of a system, BIBQO stability and internal stability are
all defined. A statement of the small gain theorem is given because of its central
importance in the derivation of many stability tests using singular values. It is
useful because it does not need detailed information about the system and its

uncertainties.

Chapter 3: Uncertainties and Robustness

In this chapter we first introduce a linear fractional transformation which can
be used to represent all uncertainty models by means of the (G, A) format illus-
trated in Figure 1.1. If all the uncertainties occur in different parts of the system
and they are lumped into a single uncertainty, then this is the so called unstruc-
tured uncertainty. Otherwise, it is said to be structured uncertainty. Some robust
stability tests are given for unstructured uncertainty. Two examples are given to
illustrate that the singular value approach for robust stability analysis can some-
times give conservative results. To remedy this conservatism, Doyle’s structured
singular value (SSV) can be used to measure robustness. Some properties of u
and Osborne’s method for u-computation are presented in this chapter.

M || A(s) 'I

u | G® i

Figure 1.1: (@, A) format of a perturbed plant.

In reality, all parametric uncertainties in physical systems are structured. The

SSV can be used to characterize robust performance as well as robust stability. For




structured uncertainties, according to the performance robustness theorem, robust
performance is assuréd if and only if stability robustness is achieved with a fictitious
complex—disk-boundéd uncertainty introduced to characterize the performance
requirements. Doyle’s D — K iteration algorithm which can be used to find a
controller K to minimize the SSV is reviewed in this chapter.

An example is given to illustrate that a system which is robust with respect to
individual uncertainties can be destabilized by small simultaneous uncertainties.
Finally, for the disturbance rejection problem (minimum sensitivity problem) it is
shown that multiplicative input uncertainty of the plant causes more robust per-
formance problems than multiplicative output uncertainty when either the plant

or the controller is ill-conditioned.

Chapter 4: A Loop Shaping Approach to Robust Performance for
SISO Systems l

This chapter presents a procedure for solving a robust performance problem
for SISO systems using a loop shaping technique which has been published in
[PLGY91a]. Firstly the relationship between a mixed sensitivity H*-optimization
problem and classical loop shaping is investigated. It is shown how classical loop
shaping can be used to minimize the H* cost function. This then provides insight
into a further development of loop shaping to minimize the structured singular
value for robust performance. The approach is demonstrated by its application to

the control of a robot arm whose moment of inertia varies considerably with angle.

Chapter 5: y — K Iteration: A New Algorithm for u-Synthesis

In this chapter we present an alternative algorithm to D — K iteration for
solving robust performance problems by p-synthesis. Convergence properties of
the new algorithm are considered and demonstrated by examples. The algorithm,
called p — K iteration, works by flattening the structured singular value p over

frequency. Two examples are given to illustrate the method.

Chapter 6: Robust Control of a Distillation Column

The purpose of this chapter is to give insight into the problems associated with




the control of ill-conditioned plants, and to illustrate the usefulness of y-synthesis
by u — K iteration. As in [SMDS88] we focus on the control of a high purity
distillation column, and use the same linear plant model given by Skogestad et al.
(1988).

By analyzing a particular controller structure and design strategy, the poten-
tially damaging effects of an ill-conditioned plant on robust stability and robust
performance are revealed. The structured singular value p, used to measure ro-
bustness, is shown to be determined at high frequencies by high plant gain (largest
singular value) and at low frequencies by low plant gain (smallest singular value).
This is as one might expect since small loop gain is typically required at high
frequencies for robust stability, while large loop gain is usually required at low
frequencies for robust performance. In the intermediate frequency range both the
low and high plant gains are significant in determining pu.

A p-synthesis design is carried out for the distillation column using the y — K
iteration algorithm proposed by Lin et al. (1991). The design example addresses
the same p-optimal control problem considered by Skogestad et al. (1988) using
the D — K iteration algorithm, and by Freudenberg (1989) using a loop shaping
method. '

Chapter 7: p-Optimal Controller Design for Real Uncertainty by
u — K Tteration

This chapter presents a geometric approach for calculating the structured sin-
gular value with respect to complex uncertainties or mixed real (parametric un-
certainty) and complex (fictitious performance) uncertainties. With an algorithm
for calculating y, the u-optimal controller can then be derived by p — K iteration.

A robust performance problem is considered when the plant has one real para-
metric uncertainty and performance is characterized by a fictitious uncertainty
which must be complex. The approach is demonstrated by its application to a
SISO example. The controller obtained is just a cascaded combination of a phase
lead and a phase lag network, it is stable and has only 2 states compared with 2

for the nominal plant. Doyle’s D — K iteration algorithm is not appropriate in this




case unless one models the real uncertainty to be a complex uncertainty and then
the results are conservative. For the complex-u controller and the real-y controller
(obtained by p — K iteration), the curves of uc(M) and pr(M) are coincident in
both the low and high frequency ranges. However they are quite different in the
intermediate frequency range.

The circle-invariant property of a bilinear mapping (linear fractional trans-
formation) is seen to be useful in deriving the SSV and reveals an interesting

geometric relationship between complex-y and real-p.

Chapter 8: Conclusions and Further Work

This chapter contains concluding remarks and suggestions for further research.

1.4 Notation and Abbreviations

The following conventions will be adopted. The figures and equations are num-
bered consecutively within each chapter. The examples, lemmas, theorems and
corollaries are numbered consecutively within each section. Thus, for example,

Theorem 1 of Section 2.7 will be referred to as Theorem 2.7-1.

Notation
a€ s a is an element of set .S; a belongs to .S
Jae S there exists an element a of set .S
Vae S for every element a of set §
@ the empty set
S1N S, intersection of sets Sy and S
S1U S, union of sets S7 and S,
S1C S, set S; is contained in set S,
p=>q p implies ¢
pE=gq g implies p
pE>q p if and only if ¢; equivalently, p implies ¢ and ¢ implies p

A:=RB A is equal to B by definition




A=:B
allb
akb
a>b

A-—l
AT
e
4]

A>0
A>0
Ag’j

dla,g [(I}l, Ty e ]

B is equal to A by definition

curve a is parallel to curve b

a is much less than b

a is much greater than b

a is approximately equal to b

for all

such that

space of complex numbers

space of real numbers

space of complex n-vectors

space of real n-vectors

space of n X m complex matrices

space of n X m real matrices

+/—1; sometimes an index, as in Z;;

real part of complex number z
imaginary part of complex number z
complex-conjugate of complex number z
modulus of complex number 2

argument of complex number z

identity matrix of unspecified dimension
n X n identity matrix

inverse of the square matrix 4
transpose of the matrix A
complex-conjugate transpose of the matrix A
ndnnegative matrix; comprising the moduli of the entries of
the matrix A

matrix A is positive definite

matrix A is semi-positive definite

the (¢,7) element of the matrix A

diagonal matrix with diagonal elements z, g, -




det(A4) determinant of the square matrix A

tr (A4) trace of the square matrix A

cond (A4) condition number of the matrix 4

p(4) spectral radius of the square matrix A

Xi(4) ith eigenvalue of the square matrix A

M4) maximum eigenvalue of the square matrix 4

A(4) minimum eigenvalue of the square matrix 4

oi(A4) ith singular value of the matrix A

(A) maximum singular value of the matrix A

co(4) minimum singular value of the matrix A

pa(M) structured singular value of the matrix M with respect to A
A set of possible block diagonal perturbations

BA ={A:6(A)<1, AecA}

U i={U: U = diag [Uy, Vs, -+, U,], UU; =1, U € A}

D set of block diagonal scaling matrices conformed with A
Il = suDer i [M(jo)]

A model uncertainty

Ay fictitious performance uncertainty

A = diag {A, A,}, augmented block diagonal uncertainty
pe(M) structured singular value of the matrix M with respect to

the complex modelling and fictitious performance uncertainties
ur(M) structured singular value of the matrix M with respect to
the real parametric modelling uncertainty and complex

fictitious performance uncertainty

esssup essential supremum

sup supremum, i.e. least upper bound (l.u.5.)
inf infimum, i.e. greatest lower bound (g.l.5.)
max maximum

min minimum

arg inf, F(z) that value of  which minimizes F(z)
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Laplace transform of g(¢)

Fourier transform of g(#)

inverse Fourier transform of G(jw)

G(jw) = Flg(t)

norm of the vector z

p-norm of the vector z, 1 <p < o0

co-norm of the vector &

set of measurable functions whose pth powers are absolutely
integrable over R

set of essentially bounded measurable functions

T is an operator (or a function) mapping from A4 to B
norm of the operator T'

induced norm of the operator T

induced l-norm of the operator T'

induced 2-norm of the operator T

induced oo-norm of the operator T'

Frobenius norm of the matrix M >

= sup,er 7 [G(jw)] = ||T|l;,, the co-norm of the transfer
function matrix G(s) of the system operator T

set of stable matrix-valued functions G(s) with ||G||,, < oo
set of real-rational functions in H®

i={A(s): AeRH™, A(so) € BA, Vso 2 Re(so) > 0}
lower linear fractional transformation on M by A

upper linear fractional transformation on M by A

— dz(t)

T

the differentiation with respect to r
distance between points P and @
H*>-optimal controller

p-optimal controller




Abbreviations

cltf
e.g.

ie.

oltf
resp.
.S,
BIBO
CRHP
CRM
FDLTI
I/0
LFT
LHP
LLFT
MIMO
NP
NS
PID
PM
RHP
RP

RS
RSRP
sCc
SISO
SSvV
SVD
ULFT
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closed-loop transfer function

for example

that is

open-loop transfer function

respectively

root-mean-square

Bounded-Input Bounded-Output

Closed Right-Half Plane

Causality Recovery Methodology
Finite-Dimensional, Linear and Time-Invariant
Input-Output

Linear Fractional Transformation
Left-Half Plane

Lower Linear Fractional Transformation
Multi-Input Multi-Output

Nominal Performance

Nominal Stability

Proportional plus Integral plus Derivative
Phase Margin

Right-Half Plane

Robust Performance

Robust Stability

Robust Stability and Robust Performance
Standard Compensation Configuration
Single-Input Single-Output

Structured Singular Value

Singular Value Decomposition

Upper Linear Fractional Transformation




Chapter 2

SIGINALS AND SYSTEMS

2.1 Introduction

In this chapter we review the basic concepts concerning signals and systems on
which a theory of robust control can be developed. From a system analysis point of -
view a control system is a closed-loop system which interacts with its environment
through command signals, disturbance signals and noise signals. Tracking error
signals and actuator driving signals are also important in control system design.
It is essential for analysis and design that we have appropriate measures for the
size of these signals. These are given by suitably defined norms. From these signal
norms, we can define induced norms to measure the “gain” of linear operators
representing systems.

In Section 2.2, we introduce several norms for vectors and signals. Based on
these some useful operator norms are given in Section 2.3 which generalize the
scalar idea of system gain. The singular value decomposition, which plays a key
role in robustness analysis, is covered in Section 2.4. In Section 2.5 well posedness
is discussed since not all interconnections of subsystems are well-defined. What we
mean by stability (BIBO and internal) is defined in Section 2.6, while important

stability tests are given in Section 2.7.

12
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2.2 Norms for Vectors and Signals

Let X be a linear space over the field F' (typically, F' is the field of real numbers

R, or complex numbers C). Then a function
o] : X — R
that maps X into the real numbers R is a norm on X iff

(1) |lz|l >0, Vz€ X (nonnegativity) (2.1)
(2) ||z|| =04+ z =0 (positive-definiteness) (2.2)
3) [|Az]l =\l llzll, VA € F,Vz € X(homogeneity with respect to A)(2.3)
@) llz+yll < llzll +llvll, Vz,y € X (triangle inequality) (2.4)

Given a linear space X there might be many possible norms on X. For a given
norm |o|| on X, the pair (X, ||e|]) is called a normed space.

Norms of Vectors in C™: Let the linear space X be C™. More precisely,
2 € C™ means that ¢ = [21, %2, , m]T with z; € C, where superscript T' denotes
the transpose of a vector. Then the p-norm of a vector z is defined by

m

l-norm. ||zl = |z, forp=1 (2.5)
=
m 1/p
p-norm. |lz[|, := (Z |w,~|p) , forl<p<oo (2.6)
=1
co-norm. |z, = max |z, for p = o0 @2n

where ||z||, is the familiar Euclidean norm.
Norms of Signals: Let the linear space X be continuous or piecewise con-
tinuous time scalar-valued signals (¢), ¢ € R. The p-norm of a signal z is defined

by
l-norm. |z||, := /oo |z(t)| dt, forp=1 (2.8)

o0 1/p
p-norm. o], = ( I |x(t)|”dt> , for1<p< oo (2.9)

oo-norm. ||z||., = ess sup lz(®)], for p = co (2.10)
t€
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where
esssup lz(¢)| :=1inf{a € R: v [{t: |z(¢)| > a}] = 0} (2.11)
te
and v[A] denotes the Lebesgue measure of set 4. The corresponding normed
spaces are called, respectively, L'(R), L?(R) and L*(R). More precisely, let 2(¢)

be a function on (—0o,00) of the signal spaces, then
INR) = {:z;(t): loll, = | la(®)ldt < oo, convolution kemel} (2.12)
IXR) = {a:(t) : e, = ( /_ : l:c(t)|2dt>% < oo, finite energy} (2.13)
L®(R) := {w(t) ¢ lz)l, = ess sup |z(t)| < oo, bounded signal} (2.14)

From a signal point of view the l-norm, ||z||;, of the signal =(t) is the integral of
its absolute value. The square ||z||7 of the 2-norm is often called the energy of the
signal z(¢) since that is what it is when 2(¢) is the current through a 1 —Q resistor.
Finally the co-norm, ||z|,, is its amplitude or peak value.

Remark: Let X be a linear space of continuous or piecewise continuous vector-

valued functions of the form z(t) = [z1(2), za(),*+, 2w (?)]¥, t € R, then
1
L2 (R) := {x(t) 2 lell, = (/ ”x(t)”ﬁdt)y < oo, for1<p< oo}(2.15)

53(R) = {o0): el = esssup @)l < oo (2.16)

Power Signals: Some signals are useful for stochastic control system analysis.
For example, the sinusoidal signal, z(t) = Asin(wt + ¢), t € R, is not a 2-norm
signal. However the average power of z(t)

lim — [ a(t)dt (2.17
2T J-r A7)

T—o00

exists. The signal z(¢) will be called a power signal if the above limit exists. The
square root of expression (2.17) is well-known as the r.m.s. (root-mean-square)
value of z(¢). Unfortunately a nonzero signal can have zero average power, so
expression (2.17) is not a norm. It does, however, have all the properties of a

norm, except property (2).
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2.3 Norms for Linear Operators and Systems

We next turn to a discussion of the gain of a system, which is mathematically
defined as the norm of an operator. Figure 2.1 illustrates an input-output mapping
system. The system operator T maps the input signal z(t) into the output signal
y(t), where z € (X, ||o]|x), ¥ € (Y, |lo|ly-). Suppose that T is a linear and bounded

map
T: (X, flellx) — (i llelly) (2.18)

Then the norm, maximum system gain, of the operator T' is defined as

[ Tly

T\ :=sup —F— 2.19

=22 el 219
Obviously

ITlly < ITN - llellx (2:20)

X—-—_—-> T ez ¥
PFigure 2.1: Input-output mapping system.

Facts:

o Definition (2.19) is equivalent to

1T = sup |Tally = sup [Tzl (2.21)
llell =1 llllc <t

L x =

o ||T| is called the induced norm of the linear map 7' or operator norm induced

by the vector norms [jef|; and {[el|,.
o An operator T is called linear, if for any z,, £, € X and any scalar a € F,
T(zq + x3) = Ty + T2p (2.22)
T(az)=a Tz (2.23)

that is, T is additive and homogeneous.
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o An operator T is called bounded, if for any z € X, there exists a finite
constant M such that
ITzlly < M- |lz| 5 (2.24)

It is obvious that ||T'|| £ M by (2.19).

o If Ty and T3 are two linear bounded operators, then
I Lz|| = | T(Te2)|| < T3]l - | Teall < Tall - N T2l [lf] (2.25)

implies
ITTe|| < (Tall - (|1 T2 (2.26)

Linear operators can be represented by matrices with respect to a specific basis,
so that (2.19) may be used to define the norms of matrices. Consider the n x m
complex-valued matrix M as a linear map from X := C™ to Y := C" defined by
y = Mz. Then depending on the norms defined on X and Y, we obtain different
matrix norms [LaT85] for M € C™*™,

Norms of Matrices:

1. If the 1-norm is defined on both X and Y, then
n
|M], = 115%%}51; |mij],  (column sums) (2.27)
2. If the 2-norm is defined on both X and Y, then
o park
1M1, = max [A(MM)]= (2.28)

Where A;(A) denotes the ith eigenvalue of matrix A and the superscript * is the
complex-conjugate transpose. This matrix norm induced by the Euclidean vector
norm is known as the spectral norm, and it is probably the most widely used norm
in matrix analysis.

3. If the co-norm is defined on both X and Y, then

M|, = max Y |my|, (row sums) (2.29)
1<i<n =1
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4. The Frobenius norm ||o|| defined as

1Ml = (ii lmij|2) = [ix (MDY (2.30)

=1 j=1

is not an induced norm, but it is compatible with ||M|,:
1
S= Ml < Ml < ), form=m (21)

with tr (A4) denoting the trace of matrix 4.

Next we will introduce two norms of a causal and FDLTT system, induced by
the co-norm and 2-norm respectively.

Norms of Linear Systems: In the time-domain an input-output model for

a SISO convolution system with impulse response g(t) can be represented as

y(t) = /_o; gt—m)z(r)dr, teR
= (Tz)(t) (2.32)

Let the frequency response function G(jw) denote the Fourier transform of g(t)
(i.e. G(jw) = F[g(t)]). Then the norms of a SISO system induced by the signal

spaces of co-norm and 2-norm are given by the following theorems [DeV75].

Theorem 2.3-1(SISO systems): If the input and output signal spaces are
measured with co-norm, then ||T||, , the induced norm of the linear map T :

L*(R) — L*(R) is given by

ico?

ITlloo = llglhs = [ lo(r)] d (2.33)
Theorem 2.3-2 (SISO systems): If the input and output signal spaces are

measured with 2-norm, and assuming ¢ € L*(R), then ||T}|;,, the induced norm of

the linear map T': L?(R) — L%(R) is given by
[Tz = 1Gllo, = sup|G(je)| (2.34)
wER
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Remark: The impulse response g(t) of a FDLTI system should belong to
LY(R) to guarantee the existence of its Fourier transform G(jw). Let g -2 G

denote the Fourier transform G(jw) of g(t), which is defined as

Gliew) = Flg(®)] = [ g(t)e"d (2.35)

then [DeV75]
(a) L' L L™ (2.36)
(b) L* 25 I  (convergence with respect to L2-norm) (2.37)

(&) [~ 5@o(t)t = 5= [~ F(jw)G(jw)do (Paxseval theorem) (2.39)

@ lslls = —=IGl, (2.39)
Obviously, the definition of a Fourier transform leads to
GG < [ 1o ledt = [ |g(t)ldt = |gll (2.40)
then
Gl = sup |GGw)| < lglly (2.41)
hence
161 < llglly (2.42)

This means that g € L'(R) can be used to guarantee the existence of [|G]|,.
Furthermore, the norms of a MIMO system induced by the co-norm and
2-norm on the input and output vector-valued signal spaces are shown in the

following theorems [DeV75].

Theorem 2.3-3 (MIMO systems): For the linear and time-invariant MIMO
system T, T' : LP(R) — LP(R), with impulse response matrix g(¢), the induced

norm |||, is given by
Il = mx 30 gsl,  (row sums) (2.43)
S =

where g;; is the (4, 7) element of g.
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Theorem 2.3-4 (MIMO systems): For the linear, time-invariant MITMO
system T, T': LL,(R) — L1(R), with impulse response matrix g(¢), the induced

norm ||T||;, is given by

n
70, = max Zi: llgisll;  (column sums)

Theorem 2.3-5 (MIMO systems): For the linear, time-invariant MIMO
system T, T : L%(R) — L%(R), with impulse response matrix g(¢), gi;(-) €
L}(R), 1 <i<n,1<j<m,and corresponding frequency response matrix

G(jw), the induced norm ||T|;, is given by

T, = sup |G, (2.44)

The induced norm of an operator is equivalent to the maximum system gain
which depends on the yardsticks used to measure the size of input and output
signals. By definition the induced co-norm of the system represents the maximum
peak gain. On the other hand, the induced 2-norm of the system describes the
maximum energy gain. When the peak values of the signals in a control system
are of interest, e.g. actuator input signals, the induced co-norm is relevant; this
leads to L-optimization. In comparison the induced 2-norm which is concerned

with energy gain leads to H*-optimization.

2.4 Singular Value Decomposition

The aspects of system specification: stability, performance and robustness are of
crucial importance in control system design. By robustness is meant the abil-
ity to maintain some specified degree of stability and performance in the face of
plant modelling errors and exogenous disturbances. The eigenvalues (character-
istic gains) of a loop transfer function are directly related to feedback stability.
However they do not give an adequate characterization of closed-loop performance.

This is because the eigenvalues do not give a good description of the gain behaviour




20

of a system operator, unless the eigenvectors form an orthonormal set. Consider

a transfer function matrix

0 O

G(s) = | 100 o (2.45)
s+10

Both eigenvalues are zero for all s, yet it obviously has a very large gain for certain

inputs. Although not relevant to SISO systems, directionality is very important
in MIMOQO systems in addition to frequency considerations.

A convenient way of representing a matrix that exposes its internal structure
is known as the singular value decomposition (SV D) which is important in the
robustness analysis of the feedback systems. For a matrix M € C"*™, the SV D is
given by [Ste73] [AmH58]

&
M =UZV* =) owuw}, k:=min{n,m} (2.46)

i=1

where U and V are unitary matrices with column vectors denoted by

U = [u1,ug, U] (2.47)
V = [v,vg, ", n] (2.48)

and

o
= ol n>m, or (2.49)
S =[S 0], n<m (2.50)
where

Yo = diag {01,049, , 0%} (2.51)

with
Gi=0,2032->0r=202>0 (2.52)

By simple manipulation, (2.46) gives
M*MV = Vz? (2.53)

and

MM'U =U%? (2.54)
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It follows that the v; and u; are eigenvectors of M*M and M M*, respectively, with
respect to the eigenvalue 7. {0;}%, are known as the singular values (or principal
gains) of M; {v;}7, and {u;}%, are, respectively, the right and left singular vectors

of M.

Facts:
Mz, _
o max ——=% = (M) = || M| (2.58)
B el 4l |
Mz,

o mi =g(M 2.56

58 ey, M) (259

o U'U=UU*"=1=6(UM)=0c(M), (MU)=a(M) (2.57)

*Maz| =a(M 2.58

°  E = VM = 2 (2:58)
o (M) < \(M)| < 5(M) (2.50)

o M el =[] |INM)| = ] o:i(M) (2.60)

i=1 i=1
o MM*=M*'M = o;(M) = |X\(M)] (2.61)
1
-1 __ =177 - -1\ __
o det(M)# 0= M"'=VEZ'U* and d(M )= 200 (2.62)
k
o M| =tr(M*M) =Y o:i(M)* (2.63)
i=1
Let @ := vy, 4 = Uy, U:=v;, and v := v,, then it is clear that
Mo =&(M)u ‘ (2.64)
My=g(M)u (2.65)

From the system point of view, the vector o (u) corresponds to the highest
(lowest) gain input direction; and @ (u) corresponds to highest (lowest) gain output
direction. For a MIMO system with transfer function M(s), the gain of the system
depends on the frequency and direction of the input vector, z(¢) = vei**.

It is well-known that an ill-conditioned plant M(s) can be difficult to control.
By ill-conditioned we mean that the gain of the plant is strongly dependent on
the input direction, or equivalently that the plant has a high condition number at
some frequency. The condition number of M(jw) is defined as

a[M(jw)]

cond [M(jw)] = a[M(jw)]

(2.66)
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Thus an ill-conditioned plant is characterized by strong “directionality”. For tight
control of ill-conditioned plants the controller must compensate for strong direc-
tionality by applying high gain in the plant low-gain direction. This forces the
controller to be similar to G(s)~! in directionality, where G(s) is the transfer func-
tion of the plant. However, due to plant uncertainty, the high gain direction of the
controller will not exactly match the low-gain direction of the plant. This leads to
poor performance or instability.

Facts: The following are some inequalities which are useful for robustness

analysis, provided the dimension of the matrices involved are compatible.

o o(A)a(B) < 2(AB) < 5(A)a(B) < 5(AB) < 5(4)3(B)  (2.67)

o |6(A)—-5(B)| <(A+ B)<5(4A)+3(B) (2.68)
o o(A)—&(B) < a(A+ B) < o(A) + 5(B) (2.69)
o 1-3Q)I<5I+Q) <1+5(Q) (2.70)
o max{1-5(Q),e(Q) -1} <e(I+Q) < 1+2(Q) (2.71)
o max{5(4),5(B)} < 5([4 B]) < vV2max{5(4),5(B)} (2.72)
o det(B+A)=0=>g(B) < 5(A) (2.73)

2.5 Well-Posedness

Generally speaking, a system consists of interconnections of several subsystems.
There are three interconnections which interest us here: series, parallel and feed-
back. All interconnections in a system should be well posed, and behave properly.

This leads to the following definition of well-posedness [Che84].

Definition 2.5-1 ( Well-Posedness): Let every subsystem of a composite
system be described by a rational transfer function. Then the composite system
is said to be well posed if
(1) the transfer function of every subsystem is proper; and
(2) the closed-loop transfer function from any chosen input-output pair is well

defined (exists) and is proper. B
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Examples 2.4-1: The systems shown in Figures 2.2, 2.3, 2.4 and 2.5 are not

well posed.

1
r"f?—> Iy RS +I8 | S+1 v

Figure 2.2: PID controller.

Figure 2.3: Plant I/O configuration.

o Figure 2.2: The PID controller subsystem is not proper. Furthermore it is easy to
show that the transfer function from r to u is improper. In a practical realization,
the differentiator k3s could be approximated over any desired frequency range by
a proper one, for instance, T—’:% with 7 <« 1.

o Figure 2.3: The transfer function from r to u , i.e.

us) _

r(s) =s+1

is improper. It is interesting to note that it has no state-space representation.

o Figure 2.4:

oo 10
Gi(s)=1|" ° , and Gy(s) =

1 —s=1

1 st2 01

It can easily be shown that
det[ + G1(s)Ga(s)] =0
Therefore, the transfer function matrix from r to y, namely

y(s) = [I + G1(s)G2(s)] 7 Ga(s)r(s)
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is not well defined.
o Figure 2.5: Let w = 0 and w,; = 0, and

0 0

§=1
0 s+1

then the transfer function from w, to y is not proper.

Remarks: A rational function g(s) is said to be proper if g(co) is a finite
(zero or nonzero) constant. Otherwise, it is improper. Moreover g(s) is said to be
strictly proper if g(o0) = 0. From a system viewpoint, the transfer function of the
plant should be strictly proper; and if MIMO this means every transfer function

element is strictly proper.

G ()

G 9

Figure 2.4: Feedback system.

W] —_— . €
P
y
" +
+
K ) u+ “’2

Figure 2.5: Standard compensation configuration (SCC).

In Figure 2.3 the closed-loop transfer function from r to y is equal to 1, which is
independent of any stable plant. In other words, the system performance from r to
y is completely robust against any plant uncertainty. But as we have already shown
the system is not well posed since there exists an input-output pair whose transfer
function is improper. An improper transfer function has the effect of differentiation
on its input signals. Thus noise injected into the system will be significantly
amplified at the output; and might overwhelm the useful signals especially at high
frequencies. Furthermore, if the signal contains a discontinuous part, the effect of

differentiation might make the system saturate and burn out.
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Theorem 2.5-1 (Well-Posedness) [Doy84]: Suppose that P(s) and K(s)
are proper in the general interconnection system shown in Figure 2.5. Then the

system is well posed off

To gain insight, consider a SISO system. If 1 — Py(c0)K(00) = 0, then the
closed-loop transfer function has poles at s = co. This means that the number of

zeros is greater than the number of poles.

2.6 BIBO and Internal Stability

The minimum requirement of a system is stability. For an input-output mapping
system T, shown in Figure 2.1, the simplest concept of stability is that any bounded
input z results in a bounded output y = T'z. This leads to the following definition
of BIBQO-stability in the sense of the norms used for the input and output signal
spaces [Che84].

Definition 2.6-1 (BIBO Stability): A relaxed system is said to be BIBO
(bounded-input bounded-output) stable iff for any bounded input, the output is
bounded.

Remark: By this definition, a system with improper transfer function is not
BIBO stable, because improper systems might give unbounded outputs with
bounded inputs. For instance, a bounded input z(¢) = sin(wt?) produces an
unbounded output y(t) = 2wt cos(wt?), if G(s) = s.

In the definition, a system is said to be relaxed at time % if the initial conditions
at to are zero. For a relaxed system only zero-state responses are considered.
Mathematically a relaxed and FDLTI MIMO system T : & — y is BIBO
stable, ¢ff »

Vz € LY(R) => Tz =y € L?(R) (2.74)
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That is, 4ff the system operator T is bounded, namely ||T||;., < co. Note that
the definition of BIBO stability is suitable for linear, nonlinear, time-varying or
time-invariant systems. In particular, for a FDLTI system Theorem 2.3-3 gives

the following results:

BIBO stable <= |lgi;]l; < o0 (2.75)
= /_ lgi;(T)|dr < 00 (2.76)

for all (3,7), 1 <: < n, 1 < j < m, where g;;(t) denotes the (7,5) element of
the impulse response matrix g(t) of the system; and the corresponding Laplace
transform is G(s). Mathematically any time function in the signal space L!(R)
has a Laplace transform in some range of convergence of the complex-frequency
domain. Furthermore, Laplace transformation is an isomorphic mapping between
the function spaces in the time-domain and in the s-domain. We next present a

theorem which is useful in the frequency domain analysis of systems [Che84].

Theorem 2.6-1 (BIBO-Stability for FDLTI Systems):
A relaxed FDLTI system described by a proper rational transfer function matrix
G(s) is BIBO stable iff there are no poles of G(s) in Re(s) > 0 or, equivalently,
all the poles of G(s) have negative real parts, with Re(s) denoting the real part of

complex frequency s. |

For example a system with transfer function

1
82+ wi

G(s) =

has poles on the jw-axis at s = Zjwo. Then the bounded input signal z(¢) =

A coswgt results in the unbounded output signal y(¢) = Ef}'u_t sinwgt.

Definition 2.6-2 (Exponential Stability): A rational transfer function ma-

trix is exponentially stable iff it is proper and has no poles in CRHP.

Exponential stability is only defined for FDLTI systems and is equivalent
to BIBO stability for FDLTI systems. Mathematically it is also equivalent to
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G(s) € RH™, where RH™ is usually referred to as the set of proper and stable

matrix-valued real rational functions. In other words
G(s) is BIBO stable <= ||g;;]|; < 00 <= G(s) € RH® (2.77)

where G(s) = L[g(t)] denotes the Laplace transform of g(t).
Let us consider a feedback system shown in Figure 2.6. The system is BIBO
stable from r to y, but it is not BIBO stable from n to y because of the unstable

pole-zero cancellation between the compensator and plant. The transfer functions

are
we) _ L
r(s) =~ s+3° and
y(s) s +2

n(s) ~ (s+3)E-1)

o+ s-1 (+*y | 1 y
> -

s+2 s-1

Figure 2.6: A system with unstable pole-zero cancellation.

Thus the system will become unstable due to the noise excitation at the plant
input. Therefore, to guarantee stability of the overall system, transfer functions
of every input-output pair should be checked to be BIBO stable. This leads to

the concept of internal stability.

Definition 2.6-3 (Internal Stability): An interconnected system is said to
be internally stable iff the system is guaranteed to be BIBO stable for every

input-output pair.

To illustrate the definition of internal stability we consider the plant I/0O (in-
put/output) feedback configuration of Figure 2.7 [Che84]. In order to test for
internal stability, we examine the transfer functions between all possible input-
output pairs, as shown in Figure 2.8. The system is internally stable if the system

with input (r,n1,n2, n3, N4, ns) and output (e, wr, we, wa, wa, ws) is BIBO stable.
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Every n;, 1 < 7 < 5, represents a possible exogenous noise signal with bounded
magnitude injected into the system. So internal stability guarantees bounded out-
put signals for all bounded exogenous input signals. Needless to say, no unstable
pole-zero cancellation can exist in each subsystem. By definition internal stability
defined in the s-domain is equivalent to asymptotic stability defined in the time

domain.

G (s)

KI(S) —*?‘- Kz(s)

Figure 2.7: Plant I/O feedback configuration.

W5

ng
+%f y

K ) ’J

Figure 2.8: With input-output pairs added.

It is useful to have a theorem on internal stability for the basic feedback system

shown in Figure 2.5.

Theorem 2.6-2 (Internal Stability) [Mac89]: Consider the feedback system
shown in Figure 2.5. Assume that Pi;(s), Pi2(s) and Pyi(s) are all BIBO stable.
Then the feedback system is internally stable iff the transfer function matrix

(I —KPy)? K - PpK)™?
T P - KPp) (I - PpK)
is BIBO stable. Furthermore if K(s) is BIBO stable, then the feedback system
is internally stable iff My = Py(I — KPy;)~! is BIBO stable. |
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2.7 Small Gain Theorem

The small gain theorem is of central importance in the derivation of many stability
tests using singular values. However, it provides only a sufficient condition for
stability and is therefore potentially conservative. It is useful because it does not
need detailed information about the system.

Consider a FDLTT system operator
T: L% (R) — LI(R) (2.78)

with the transfer function matrix G(s). Recall that Theorem 2.3-5 gives the op-
erator gain

Tl = sup GG, (2.79)

when the elements of the impulse response matrix g(t), namely, the g;;(-)’s, are in

L}R), for 1 <i<n, 1 <j < m. Moreover (2.28) and (2.55) can be rewritten as

166G, = max {MEGw)aGw)}

1<i<
= {XG(jw)GUw)}’
_ sl6Ge) (2:50)

where A(M) denotes the maximum eigenvalue of matrix M. To summarize , we

give the following definition.

Definition 2.7-1 (co-norm of a FDLTI System): The co-norm (*-norm)

of an n X m system matrix G(s) is defined as

(Gl = sup GG, (a1
= ::gE[G(Jw)} (2.82)
where G(jw) = Flg(t)] with gi;(-) € L}(R), for 1 <i<n, 1 <j<m.

Facts

1Glloo = 1Tz, if gi() € LY(R), for 1<i<n, 1<j<m (2.83)
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Remark: By definition we have |G|, = ||Tl;p, so that the co-norm is an

operator norm. Therefore
1G1G2l < [1G1llo - |1Gallso (2.84)

Note that the co-norm here is used for a system operator, do not be confused with
oo-norm used in (input or output) function spaces. For SISO systems, |G|,
denotes the maximum value of the Bode plot of magnitude |G(jw)l.
n, + ~ M T |
+ (= i
[ - 1% ¥+ n,
L2 |

2

Figure 2.9: A feedback configuration.

The small gain theorem can be stated as follows.

Theorem 2.7-1 (Small Gain Theorem) [DeV75]: Consider a system illus-
trated in Figure 2.9. Assume that 7} and T3 are linear, bounded system operators.

Then
|TiTe]| < 1 and [|ITh|| < 1 = ||lwi]] < oo and |Jws]| < oo

when ||n1]] < oo and |[nz|| < oco. Furthermore, since ||T1T3| < |74 - || 72| and
1T < T3l - I T2, then

171 - |1T2]l < 1 = the closed-loop is internally stable

where ||o|| is taken to be any p-norm, 1 < p < co, for signals and induced p-norm

for system operators.

Suppose we take the 2-norm, p = 2, to measure the size of all signals in a
FDLTI system and let Gy(s) and G4(s) describe the transfer function matrices
corresponding to the linear bounded system operators Ty and 75, respectively.
Recall that ||T||;; = ||Glle. If Gi(s) and Ga(s) are stable and proper (i.e. Gy €
RH® and G € RH™), then by Theorem 2.7-1 we have the following corollary.
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Corollary 2.7-1 (Small Gain Theorem in co-norm) [DeV75]: For a
FDLTI system, if G4(s) and Gq(s) are stable, then

1G]l - 1G2|los < 1 == the closed-loop is internally stable

This result is the basis for many singular value robustness tests.

Remark: It is interesting to observe the relationship between the small gain
theorem well-known in control theory and the fixed point theorem well-known
in Mathematics. The Banach fixed point theorem, applicable in metric spaces
[Kre78], gives only a sufficient condition for the existence and uniqueness of a
fixed point for a contraction mapping T, (i.e. ||T| < 1 if T is a linear system

operator).




Chapter 3

UNCERTAINTIES AND
ROBUSTNESS

3.1 Introduction

No mathematical system can exactly model a physical system. Idealized models
are simplified representations of physical reality. The actual system will suffer
from parameter variations and the model will be inaccurate because of various
approximations and uncertainties. The modelling error might adversely affect the
stability and performance of a control system. The principal reason for using feed-
back control as opposed to open-loop control is the presence of model uncertainties
and load disturbances. With feedback it is possible to keep the system stable and
to maintain performance levels despite uncertainties.

This chapter reviews the singular-value-based methods for modelling uncer-
tainty and for analyzing the robustness of feedback systems. In Section 3.2 a
linear fractional transformation (LFT') is defined in terms of system components.
The LFT can be used to simplify a complex system structure, thereby simplifying
analysis. In Section 3.3 we consider unstructured uncertainty in which all uncer-
tainties are lumped into one single perturbation A for simplicity. There are six
kinds of perturbation which are frequently used to describe a perturbed system:

additive uncertainty (inverse and non-inverse), multiplicative input uncertainty

32
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(inverse and non-inverse) and multiplicative output uncertainty (inverse and non-
inverse). The inverse (resp. non-inverse) error models are related to the variation
of the poles (resp. zeros) of the perturbed plant. In Section 3.4, all six kinds of
perturbation are represented in a common format called (G, A). It is a generalized
uncertainty model described by an LFT'. Section 3.5 gives a robust stability test
for stable unstructured uncertainty. For unstructured uncertainty which is unsta-
ble, two theorems are presented in Section 3.6. Two examples are given in Section
3.7 to demonstrate that the singular value approach for robust stability analysis
can sometimes give conservative results.

To remedy this conservatism, Doyle’s structured singular value (S.SV) can be
used. This is discussed in Section 3.8. In reality, all uncertainties in physical
systems are structured. They cannot be lumped into one uncertainty without
introducing conservative consequences. In Section 3.9 it is shown how the SSV
can be used to characterize robust performance as well as robust stability.

To optimize the SSV, or u as it is also called, Doyle has introduced a pu-
synthesis procedure called D — K iteration. This is described in Section 3.10.
Finally in Section 3.11 an example is used to illustrate how small simultaneous

modelling errors can interact to cause instability.

3.2 Linear Fractional Transformation: LFT

The linear fractional transformation of interest can be traced back to circuit the-
ory [Red50] [Red60] in the late 1950’s. Some years later in the 1970’s Safonov
emphasized its role in control theory for modelling uncertainty and parameteriz-
ing sets of plants. Figure 3.1 illustrates a system with a component g,(s) of special
concern. From a control point of view, g;(s) may represent the system uncertainty
or the controller to be designed. The general framework to be used is illustrated

in the diagram of Figure 3.2.
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— @

A — 1z

d SYSTEM
—_—

~ €

Figure 3.1: A general system with a g;(s) of interest.

I A =
I

d____ M

= SE—

Figure 3.2: M — A structure.

The interconnection matrix M can be partitioned as

I:Mn Mu}

(3.1)
M My,

with My, conforming with A. By the signal flow diagram shown in Figure 3.3,

Mason’s formula gives
e = [Ma + MnA (I — MuA)™ M) d (3.2)

It is easy to see that the expression is well defined iff the inverse of (I — M1 A)

exists. When the inverse exists
F (M, A) := Myy + My A (I — My A)™ My, (3.3)

is called an Upper Linear Fractional Transformation (ULFT) on M by A, where
the subscript v on F, pertains to the “upper” loop of M closed by A. On the
other hand, in the system illustrated in Figure 3.4, the vectors ¢ and d Asatisfy
e = F(M,A)d, where

.F((M, A) = Ml] -+ M12A (I Bt .Z‘d‘ng)--1 M21 (3.4)

is called a Lower Linear Fractional Transformation (LLFT) on M by A, when
(I — M3A) is invertible.
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4 A v
Mlz MZI
d

/ Mo e

Figure 3.3: Signal flow diagram.

d . I -

M zZ

B

Figure 3.4: M — A structure.

Remark: If M is a 2 x 2 matrix with scalar elements M;;’s, then (3.3) becomes

1
F,(M,A) = M22+]Vf21A'1‘———"‘——M12

— M A
_ My — (MM, — My Mig) A (3.5)
- 1— MpA ‘

which is a bilinear transformation in A. Mathematically a bilinear transformation
transforms (generalized) circles into (generalized) circles in the complex plane.
This property will be used for robust stability and robust performance analysis in

Chapter 7. Let @ := A(I] — My1A)71, then (3.3) becomes
Fu(M,Q) = Maz + M2 QM (3.6)

which is an affine transformation of ), whereas (3.3) is a nonlinear transformation
of A.
Example 3.2-1: It is interesting to note that a state-space representation can

be described by an LFT. Consider the state space

&z = Axz+ Bu
y = Cz+ Du (3.7)

This can be modelled as in Figure 3.2 with

y=e, d=u, 2=2, v=a
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and

A B 1
M= . A==
Cc D s

Example 3.2-2: An LFT can be used to represent a transfer function with
uncertainty A. Consider the exponential function ™™, 0 < 7 < 1 minutes.

1 1=
T 2 (first-order Padé approximation)

2
()

%g_
(1+3)+5

where 7 = 1 4+ A, |A| < 0.5. Note that (1.8) can be represented by an LFT
2

fls)=e =

(3.8)

because it is a bilinear form in A. Simple manipulations yield

—3/2 1
M= [1+s/4 1+9/4J

—s 1-s/4
1+s/4  1+s/4

that is
e F(M,A), |A<L05

Remark: Assume |[My]| - ||A]| < 1 in Figure 1.2. Recall from the small gain
theorem that this assumption together with the stability of Myi(s) and A(s) can
be used to guarantee stability of the feedback system. Since |Mu] - |A] < 1
implies ||M11A]} < 1, it is easy to show that

IMuAll < 1= (71— Mua)™| < @ - [Mua])™ (3.9)
Hence
1F(M,A)| < [ Mool + 1Ml - | A (1 = [| M A7 - || M|
< Mol + | Moa]] - AN (L= | M) - AT - || M|
= Fu(IMlallA”) (3'10)
where
[”Mn” ||Ml2“}
M| = (3.11)
Mol || Mol

is a nonnegative matrix. Inequality (1.10) gives an upper bound on the gain from

input d to output e.
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3.3 Model Uncertainty Description

In this section, the uncertainties which might occur in different parts of a sys-
tem are lumped into one single perturbation A. We refer to this uncertainty
as “unstructured” uncertainty. More precisely, unstructured uncertainty means
that several sources of uncertainties, bounded real parameters and unmodelled
dynamics are described by a single perturbation A which is a full matrix whose
dimensions conform with those of the plant. A is uncertain, but norm-bounded. It
is important to note that robustness analysis will be erroneous if the uncertainty
description used is not adequate [Foo85].

Let G,(s) € 1 be any member of the set [] of possible perturbed plants, and
let Go(s) € T denote the nominal model of the plant. To describe unstructured
uncertainty the following six perturbations have been proposed:

o (al) additive uncertainty: (Figure 3.5)
Gy(s) = Gols) + Ba(s), 51A(j00)] < 8.(w) (3.12)
o (a2) inverse additive uncertainty: (Figure 3.6)
Go(8)™ = Go(s) ™ +Au(s), F[Au(iw)] < 8a(w) (3.13)
o (bl) multiplicative input uncertainty: (Figure 3.7)
Gy(s) = Go()I + Ai(s)], S1A(jw)] < 6(w) (3.14)
o (b2) inverse multiplicative input uncertainty: (Figure 3.8)
Go(s)™ = [T+ Au(s)]Go(s) ™, alAi(jw)] < i(w) (3.15)
o (c1) multiplicative output uncertainty: (Figure 3.9)
Gp(s) = [I + Ao(9)]Go(s), F[A,(jw)] < 6o(w) (3.16)
o (¢2) inverse multiplicative output uncertainty: (Figure 3.10)
Gol(s)™ = Gols) T+ A(s), 3(Au(jw)] < §u(w) (3.17)

The inverse error models are related to the variation of the poles of the plant in
(a2), (b2) and (c2). On the other hand (al), (bl) and (cl) describe the variation
of the zeros of the plant.
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A,6)
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L G0 %
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Figure 3.5: Additive uncertainty.

A

G

o(8)

Figure 3.6: Inverse additive uncertainty.
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Figure 3.7: Multiplicative input uncertainty.

v

I

u o+ N

’— Ai(s)

z

7
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Figure 3.8: Inverse multiplicative input uncertainty.
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Figure 3.9: Multiplicative output uncertainty.
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Figure 3.10: Inverse Multiplicative output uncertainty.
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3.4 Generalized Uncertainty Model: (G,A)
Format

For the purpose of robustness analysis, the uncertainty models of the preceding
section can be unified by an upper LFT, called (G, A) format, as illustrated in
Figure 1.11. Let G,(s) be the transfer function from the actuator input u(¢) to the
plant output y(¢) and let G(s) be an interconnection matrix partitioned to conform
with the input vectors v, u and output vectors z, y. Assume [I - G11(8)A(5)] is

invertible, then

Gyls) = Fu(G, B) (3.18)
A bit of thought reveals that
o (al) for additive uncertainty:
G= [0 ! ] » F[A(jw)] £ 8u(w) - (319)
I G
o (a2) for inverse additive uncertainty:
¢= {_G" G°] , 3lAu(0)] < () (3:20)
-Gy Go
o (bl) for multiplicative input uncertainty:
0 I
G= [Go Go] , olA(w)] < Gi(w) (3.21)
o (b2) for inverse multiplicative input uncertainty:
-I I R o
G= [—Go Go} » FlA(jw)] < diw) (3.22)

o (c1) for multiplicative output uncertainty:

0 Go )
G= ) 6[Ao(]w)] < 60(“’) (323)
I Gy
o (c2) for inverse multiplicative output uncertainty:

G= ~f Go F[A(jw)] < 6
= [_I Go]’ F[Aq(jw)] < do(w) (3.24)




40

A IA(s)[ z

u 1 G® ___i

Figure 3.11: (G, A) format of a perturbed plant.
3.5 Robust Stability: for Stable Unstructured
Uncertainty

Let us consider a FDLTI system shown in Figure 1.12, where the perturbed plant
is described by the (G, A) format and the transfer function of controller is given
by K(s). Since a plant perturbation can destabilize a nominally stable system, the
first issue to be addressed is robust stability (R.S). That is, does the closed-loop
system remain stable under a given plant perturbation? Stability will be taken to
mean that the perturbed system has no CRHP poles.

\4 ’A(S) Z

K (s) — G®

|'1
. \§+
v

Figure 3.12: A control system with perturbed plant.

v A (s) | z
= G(s)
u -K(s) y

Figure 3.13: Equivalent system, when r=0.

For the purpose of stability analysis, the command signal r(¢) can be set to

zero and Figure 1.12 redrawn as Figure 1.13. Absorbing —K(s) into G(s) Figure




3.13 can be reduced to 3.14, where matrix M is given by

M := F(G,-K)
v A © z
Vi (s)

Figure 3.14: General M — A structure for RS analysis.

By (3.25) and (3.19)-(8.24), we have

o (al) for additive uncertainty:
M = —K(I 4 GoK)™!
o (a2) for inverse additive uncertainty:

~

M

—Go+ GoK(I + GoK) ™Gy
~Go(I+ KGo)™!

Il

o (bl) for multiplicative input uncertainty:
M = —K(I+ GoK)™G,

o (b2) for inverse multiplicative input uncertainty:

~

M = —-I+EK({I+GK)'G,
= —(I+KG0)_1

o (c1) for multiplicative output uncertainty:
M = ~GoK(I + GoK)™!
o (¢2) for inverse multiplicative output uncertainty:

-

M = —I+GoK(I+ GoK)™
= —(I+GoK)™

41

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)



42

Furthermore, after scaling of A(s), it is easy to see that Figure 3.15 is equivalent

to Figure 3.14. The perturbation A(s) which satisfies

FAGw)] < a(w) , (3.32)
can be normalized by X
As) = é—((g (3.33)

where a(s) denotes a minimum phase, stable rational function which is used to
fit the error bounding function §(w) or §(w). Absorbing the scaling function a(s)
into M(s), we have the M — A structure shown in Figure 3.15, with

M(s) = as)M(s), and (3.34)
lal, < 1 (3.35)
v A® z
M (s)

Figure 3.15: General M — A structure with ||A[|, < 1.

Assume that both M(s) and A(s) are stable, then the following theorem is
easily established [CaD91] [MoZ89].

Theorem 3.5-1 (Robust Stability Theorem for Stable Unstructured
Perturbation): For a FDLTI system shown in Figure 3.15, assume that
(a) M(s) is stable, and
(b) A(s) is stable with ||A]l, €1
Then the closed-loop system is internally stable iff one of the following conditions
is satisfied:
(i) det[I — M(jw)A(jw)] #£ 0, Vw e R, VA3 4], <1
(i) M), <1 | 2

Remark: To gain insight, let us consider a SISO system shown in Figure

3.15. Theorem 3.5-1 implies that the Nyquist plot of M(s) must be strictly inside
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a unit circle centred at the origin in the M (jw)-plane to guarantee robust stability.
Otherwise, at some frequency wo, the so-called unity-gain frequency of M(jw), the
Nyquist plot of M(jw) crosses the unit circle, as illustrated in Figure 3.16. The
phase margin of M(jw) is 6 , i.e. M(jwo) = ™9 %) with 6, > 0. If we can
properly choose a stable A(s) such that

[A(jwo)l = 1, and (3.36)
ZA(]wo) = 7('-—9[) (337)

then clearly M(jwo)A(jwo) = 1 and det[1 — M(jwo)A(jwo)] = 0, and the closed-
loop system will sustain oscillations at wp and be unstable. Now let us construct
a stable transfer function A(s) to satisfy (3.36) and (8.37). A first order all-pass

function of A(s) can be chosen as
s—a
A(S) = S—_r;, a>0 (3.38)
Obviously (3.36) is achieved and (3.37) leads to

o\
a=wp <tan 50) (8.39)

when 0 £ 6y < w. The equation (3.37) also satisfies the extremal cases that if
6o = 0 or 8y = m, then A(s) = —1 or A(s) = 1, respectively. Furthermore if the
Nyquist plot of M(jw) crosses the unit circle in the first or second quadrant, then
A(s) can be constructed as

S —a

A(S)-: _S+CLJ

a>0 (3.40)

when —7w < 6y <0.

Remark: For all possible stable unstructured perturbations A(s), [|A]l,, < 1,
in Figure 3.15, the application of the small gain theorem does not introduce any
conservatism. However, the conservatism might become arbitrarily large if A(s)
is structured. To remedy this problem of the singular value approach, the concept

of structured singular value will be introduced in Section 3.8.
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" Mo
Figure 3.16: Nyquist plot of M (s).

3.6 Robust Stability: for Unstable Unstructured
Uncertainty

The derivation of the unstructured robust stability test of Theorem 3.5-1 is based
on the small gain theorem under the assumption of stability of the uncertainty
model A. This might be too restrictive. Much effort has been made to remove the
assumption and derive more general stability conditions, e.g. [PoF85] [ChD82]. In
this section two theorems are given under the condition that all members G, of
the set [T of possible plants have the same number of C RH P poles or zeros.
Consider a feedback system of Figure 3.12. Let L and Lo denote the perturbed
and nominal open-loop transfer function matrices, respectively. Clearly, Lo =

GoK, L = G,K and
I+L = [I+(L=Lo)I+Lo)™*| (I + Lo) (3.41)
= Q(I + Lo) (342)

with Q := I + (L — Lo)(I + Lo)™! = I + (Gp — Go) K(I + GoK)™1.

Furthermore expressions (3.12), (3.14) and (3.16) give

o (al) additive uncertainty:

i

T+ AK(I + GoK)™? (3.43)
det [T+ K(I + GoK) A, (3.44)

Q
det @

I

o (bl) multiplicative input uncertainty:

Q = I+ GoAK(I+GK)™? (3.45)
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detQ = det [T+ K(I+ GoK) ™ GoA] (3.46)
o (c1) multiplicative output uncertainty:

I+ AGoK(I + GoK)™ (3.47)
det [T+ GoK (I + GoK) 1A, (3.48)

Q
det @

Il

The formula det(] + AB) = det(I + BA) is used to obtain det @ in the above
equations. Comparing (3.44), (3.46), (3.48) with (3.26), (3.28), (3.30), respectively,

it is interesting to note that
det Q = det (I — MA) (3.49)

with A denoting A,, A; or A,, and & [A( jw)] < §(w), for additive or multiplicative
uncertainty. This leads to the following theorem [Lun89].

Theorem 3.6-1 (for Unstable Additive or Multiplicative Uncertainty):
Assume that '
(1) the closed-loop system is nominally stable, and
(2) G,(s) and Gofs) share the same number of CRH P poles.
Then the closed-loop system is robustly stable iff

o (M1 < gy » VweR
Remark: Mathematically the norm of the operator.A(s) is infinite because
A(s) is unstable. However & [A( jw)] might well exist. For example, if A(s) =L,
then & [A(Jw)] = (\/wz_—i—l)—l.
We have given a robust stability test for a system with unstable additive or
multiplicative uncertainty. Similar tests are also available for unstable inverse

additive or inverse multiplicative uncertainty. With open-loop transfer functions

Lo and L at hand, we have the following identities:

T+L7 = [T+(L7 =LY+ LY (T + Lgh) (3.50)
=: R(I+Lg") (3.51)
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with
R = T+ (L —LgYI+ L) =T+ (L7 = L3I+ L)Y Lo
= I+E7(G;' - G3") (I+ GoK) ' GoK (3.52)

Then it follows from (3.13), (3.15) and (3.17) that

o (a2) inverse additive uncertainty:

R = I+ K 'A(I4GK) Gk (3.53)
det B = det [T+ (I+ GoK)'GoA,]
= det [T+ Go(I+KGo)?A,] : (3.54)
o (b2) inverse multiplicative input uncertainty:
R = I+ K 'AGY I +GoK) 1 'GoK (3.55)
detR = det [T+ G (I+ GoK)GoAl]
= det [T+ (I +KGo) A} (3.56)

o (c2) inverse multiplicative output uncertainty:

R I+ K'G5PA (I + GoK) ™' GoK (3.57)

det R = det [T+ (I+GoK)™A,] (3.58)

i

Comparing (3.54), (3.56), (3.58) with (3.27), (3.29), (3.31), respectively, it can

be seen that
det R = det (I - MA) (3.59)

with A denoting A, A;or A, and & [A ( jw)] <8 (w), for inverse additive or inverse
multiplicative uncertainty. Then the following theorem is easily established.

Theorem 3.6-2 (for Unstable Inverse Additive or Inverse Multiplica-
tive Uncertainty) [Lun89] : Assume that
(1) the closed-loop system is nominally stable, and
(2) G,(s) and Gyo(s) share the same number of CRHP zeros.
Then the closed-loop system is robustly stable iff

Y S 1
O'[M(yw)]<%, YweR
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3.7 Two Examples

The singular-value approach is very useful for robust stability analysis if the un-
certainty of the plant is completely unstructured and norm-bounded. In practice,
however, both structured and unstructured information is often available on the
plant uncertainty. Consider a process plant with servo-controlled valves [Mac89].
We know that the uncertainty for each valve is not likely to directly affect the
others. If there are two such valves, a correct description of the multiplicative

input uncertainty of the process plant is

(51 0
A= , 161 <01, i=1,2
0 &

But when we write (A) < 0.1, we lose all the structural information, since this

description also allows perturbations such as
0.1 0.1
A= L
201 0.1
0 0
A =
01 0

which do not correspond to any real physical perturbation. Therefore the use of

and

the singular-value approach for robust stability analysis generally leads to com-
pensator designs which are unnecessarily conservative when the plant error model
is structured.

Let us consider the following two examples [Lun84].

Example 3.7-1 (A Two Independent Loop System): Consider a per-
turbed plant which consists of two independent loops, shown in Figure 3.17. The

transfer function matrices of nominal plant and controller are




r a";o—>| &) [ g0 I"i“
v, ——;»g;—:i k() I———>| £,(9) I-—+>?——~> Y
+

Ny

Figure 3.17: Block diagram of a system of two independent loops.

and
k(s 0
K(s) = ()
0 kz(s)
The matrix of stable additive model uncertainties is
A = | FIAGW)] < §w), i=1,2 VweR
S) = 7 5 0; 1= w
0 AQ(s) b .7 b b
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Assume that the system is nominally stable, then the closed-loop system is robustly

stable if the two independent inequalities

<%, i=12 YweR

k;
14 gik;

are satisfied for all s in the Nyquist contour.

In contrast to this result the singular-value approach yields

. - 0
M=(I+KGo) 'K = [”gl’” }

0 k2
1+g2k2

and the sufficient condition

S

oM< ==, VwEeER
[M] =N
for robust stability implies
k1 ky 1
max{ 1+ giky |7 |1+ goks } < max{4;, 6}’ VweR

But this condition might be very conservative for a large value of §; |
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|
=50 a0 o

>y2

r J?Sl?_xi k,(s) E

Figure 3.18: A simple coupling system.

Example 3.7-2 (A Simple Coupling System): Consider a closed-loop
control system, shown in Figure 3.18, with perturbed plant G,(s) and controller

K(s)

s) Ags
Gp(s) = l:gl( ) 12( )] 5 with &[Alg] S (s, Yw eER
0 92(3)
k(s 0
K(s) = 1(s)
0 kg(S)
Clearly
91(s) 0
0 ga(s)
and
0 Am(s)
As) = v BlA]=5[An] <6
0 0
Consider the nominal system
k]k 0
M=(I+I{G0)—1K= |:1+.qll .

0 1+g2k2
and assume that M(s) and the perturbation A(s) are stable. Then the sufficient
condition

_ 1
FM]< —=, YweR

Ay
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for robust stability implies
kq ko

max{ 14 gik1|’ |1+ gake

This is ridiculous, because from Mason’s gain formula the uncertainty A;2(s) does

’

}<215-, YweR

not even affect the stability of the closed-loop system. Thus, the degree of conser-

vatism is arbitrarily large !

3.8 Structured Singular Value (SSV)

A real system is always different from its “idealized” mathematical model. This
is of crucial significance because modelling errors and exogenous disturbances can
seriously affect the stability and performance of a feedback system. Generally
speaking, there are two types of uncertainties: unstructured and structured. Un-
structured uncertainties include unmodelled or neglected high frequency dynamics
(complex uncertainties) in the system, e.g. unmodelled lags, parasitic coupling,
hysteresis, resonance, and so on. All uncertainties occurring in different parts of
the system which are lumped into one single norm bounded perturbation A are
also referred to as unstructured uncertainty. On the other hand, some uncertain-
ties affect the low frequency range; for example, sensor or actuator failures, and
real parameter variations (called parametric uncertainties) caused by movement
of the operating point. Quantitatively these uncertainties might be described by
intervals of possible parameter values. From an engineering point of view, struc-
tured uncertainties of a plant are the most realistic. Unfortunately, when the plant
error model is structured, the standard singular value approach to robust stability
analysis may lead to controller designs which are unnecessarily conservative. To
remedy this problem, in 1982 Doyle proposed and developed the concept of the
structured singular value (SSV) which is a less conservative indicator of stability
robustness [Doy82] [DWS82] [Doy84].

Consider the interconnected system shown in Figure 3.19. We can rearrange the
block diagram into the standard form of Figure 3.20 , called the M — A structure,
by absorbing into M the weighting functions used to model the uncertainty. A
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is a block diagonal matrix and M is a FDLTI interconnection matrix. Note
that My, is the transfer function of nominal performance (with A = 0). Figure
3.20 is the format required for p-analysis. A,(s) is assumed to be stable with
7[Ai(jw)] < 1, Vi. For a discussion of situation when an individual perturbation

may be unstable see [FoP88].

d e 4 e,
= Gy(s) = G,(s)
e L
eé__._._ 3
Gys) [=

L]

Figure 3.19: An interconnection system.

v 4,0 0 .
0 A, 0
0 0 4
d, €
d, ¢,
dy | — M(s) ez | €3

Figure 3.20: M — A structure.

Example 3.8-1: It is interesting to consider an uncertain model of a one-mode
flexible structure having the transfer function
2

“n | (3.60)

G(s) = 8% + 2Cwns + w2

where ¢ and w,, are the damping ratio and natural frequency respectively with the

parametric uncertainties

¢ = G+A (3.61)
Wy = Wy + A, (3.62)
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¢o and wy, represent the nominal values of { and w,, respectively. From classical
control it is not easy to design a proper notch filter to catch up with w, because
of the uncertainty in w,. Therefore the bandwidth of the closed-loop system is
restricted to be within wy,/2, to roll off the magnitude of the frequency response
near wy,, when the damping ratio is quite small. Now let us show how to format
G(s) into the M — A structure suitable for p-analysis. A little thought reveals that
G(s) is equivalent to the closed-loop transfer function, from input u to output y,
of a unity feedback system with forward path transfer function

2

rEEN) :’; o (3.63)
as shown in Figure 3.21. Moreover Figure 3.21 can be decomposed into Figure 3.22
which is equivalent to Figure 3.23 with parametric uncertainties A, and A, as in
(3.61) and (8.62). Then the block diagram of Figure 3.23 can be rearranged into
the standard M — A structure in Figure 3.24 where the block diagonal uncertainty

structure is

YAV 0 0
A={0 A, 0 (3.64)
0 0 A
and
—Wne —s? 20,8 82
1 1 —Wno — 2(0$ —28 Wne
M= — 5 ° (3.65)
82+ 20owno s + Wiy | wy, 1 ~2wny 8 Wi
Wy 1 —2wnys Wi

oo [T o, y
T T e,

Figure 3.21: A perturbed one-mode flexible structure.
Note that there are two repeated Ay, ’s in A. This results from the fact that the
transfer function G(s) in (3.60) cannot be expressed as a bilinear transformation

of w,.
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Figure 3.23: An equivalent one-mode flexible structure.

To define the structured singular value pa(M), let M be an n X n complex-
valued matrix, M € C™", and let A be an underlying structure which involves
specifying three things: the type of each block, the total number of blocks and
their dimensions. There are two types of blocks: repeated scalar and full blocks.
Two integers, s and f, represent the number of repeated scalar blocks and the

number of full blocks, respectively. Now we define
A = {diag[8, L, -+, 8,1, A1, -+, Af] 1 6, €C, A € Cmxmi} (3.66)
and its bounded subset:
BA={A:5(A)<1, Ae A}
where

s f

E T -+ Z m;=n

i=1 j=1
The full blocks in (3.66) do not need to be square, but restricting them as such
saves a great deal in terms of notation. The p-toolbox of MATLAB can handle

nonsquare full blocks [BDGPS91].
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S o
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<
f 1
s of

0
n
o,

0 A

u | MG y

=

Figure 3.24: M — A structure of Example 3.8-1.

A (s)

M(s)

Figure 3.25: M — A structure.

Consider the M — A structure (with zero input) of the feedback system shown
in Figure 1.25. Assume A(s) is a stable structured uncertainty and M(s) is a stable
nominal system (with A = 0). Then it is well known that the stability of the closed-
loop system is determined by det[I — M(s)A(s)]. A little thought reveals that as
the size of the uncertainty A increases, some part of the Nyquist plot of det[] —
M (s)A(s)] might pass through the origin, as s traverses the Nyquist contour. In
this situation, there exists some frequency wq such that det[] — M (jwo)A(jwo)] = 0
(ie. [I— M(jwo)A(jwo)] is singular). This implies that there indeed exists a
minimum size (A) of A needed to make [I — M(jws)A(jwo)] singular. Recall
that for any fixed frequency w, M(jw) is a complex-value matrix. This motivates

the following definition.

Definition 3.8-1 (Structured Singular Value: SSV): For M € C***, the
structured singular value pa(M) of M with respect to A is the number defined
such that p3' (M) is equal to the smallest 5(A) needed to make (I—MA) singular.
That is

pal (M) == gneig{&(A) : det( — MA) =0} (3.67)

If no A € A such that det(I — MA) =0, then pa (M) := 0. |
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Example 3.8-2: Given

My Mi2 . ax2
M = , with detM =0, M € C***; and
a1 Ma2
A 0
A= |
0 A
then
det(I — MA) =1—my1 A1 — Mgyl
and hence

det(I — MA) =0 <= 1—mulsi—mplA;=0
= |mul- [Ar] + [mao| - [A2] 2 1

— 5(A) = max {|Ad], [ Ao} 2 (3.68)

[ma] + |mag|

————————— is a lower bound of (A 3.69
T T Tl (A)  (3.69)

Inequality (3.68) follows from

1 < mul - |Ad] + [maa| - |Ag| < (Imar] + [mag) - max {|Aq], |Aq]}

Choose
A e—jémn PN e—jimzz 57
= ————————  an - .70
! |mas] + |mael’ z |maa| -+ |[mae| ( )
then
1-— m11A1 - m22A2 = 0, and
1
7(A) = max {|A4],|As|} = (3.71)

[ma1] + |maa|
and combining (3.69) and (3.71) gives

1

—————— such that det(J] — MA)=0
[ma| 4 [maa|

min F(A) =

This implies that ua(M) = |mq| + |[ma2| by the definition of the SSV.
In much of what follows we will neglect the subscript A of pa(M) for brevity.
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The reciprocal of the structured singular value is a frequency dependent sta-
bility margin, k,, [Saf82] [DeS88], with respect to the uncertainty A € A, and a
nominally stable feedback system will be robustly stable against all uncertainties
in the set BA if and only if p[M(jw)] < 1, Vw. This definition tells us that if
M is easily destabilized, then u(M) is large, and vice-versa. Since M is frequency
dependent (M) must be calculated for “each” frequency.

It is clear that for any A € A, there exists e such that A = ¢A’, with A’ € BA,
namely 5(A') < 1. Therefore directly following from the definition of the SSV,

an alternative expression for u~1(M) is given by

1

wH(M) min {5(A): A € A, det(I — MA) =0}
min {|¢| : A € BA, det(I — eMA) =0}

min{]e[ . A €BA, det(%I —MA) = o}

]

]

min{|d: & € Ba, % = n(a))

Thus

w(M) = max{-lél-:AeBA, %:)\;(MA)}

max max {|L(MA)[}

]

SR M)
where p(MA) denotes the spectral radius of the square matrix (M A). This leads
to the following lemma [BDGPS91].

Lemma 3.8-1:  pu(M) = maxacpa p(MA) 4]

Furthermore the matrix function u has the following properties:

o waM)=l|a| (M)

o det(I —MA)#0, VAeBA = pu(M)<1

o ifA={6l,: 6§€C} (s=1,f=0; 1y =n) = p(M) = p(M) (3.72)
o fA=CY" (s=0,f=1; mi =n)= p(M)=35(M) (3.73)
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where I, denotes the identity matrix with dimension n x n. (3.72) and (3.73)
together imply the following theorem [Doy82].

Theorem 3.8-1:  p(M) < u(M) < 5(M)

These bounds are not practical for our purposes because the gap between p(M)
and (M) can be arbitrarily large. However, they can be refined by considering
transformations on M that do not affect u(M) , but do affect p(M) and 5(M).
Let

U:={U:U =diaglly,---, U], UfU; =1, U € A}
and
D:={D: D =diag[Dy,+, Dy, daIn,, > dsIn,]l, D; € C"¥%, D= D} >0, d; >0}

where the matrix sets U and D match the structure of A. Obviously U is a
diagonal structure of unitary matrices and D commutes with A, for all D € D
and A € A. It is easy to check that all three structures shown in Figures 3.26,
3.27 and 3.28 are equivalent. Furthermore, it is useful to note that U and D leave

A invariant in the sense that

o UeUand A€ A=U"€Uand U'A € A, with 3(U*A) = 5(A)
o DeDand A€ A= DAD'=A=>DAD™ € A, with 3(DAD™) =5(A)

Theorem 3.8-1 and the above facts imply that

p(MU) < p(MU) = w(M) = p(DMD™) < 5(DMD™) (3.74)

M

Figure 3.26: M — A structure.
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=] U [— M

Figure 3.27: M — A structure with U € U.

pl

!

D [~ A

{

= p! = M =] D

Figure 3.28: M — A structure with D € D.

The equality p(M) = u(DMD™!) means that the structured singular value
of M with respect to A is invariant under diagonal scaling. The consequence of

(3.74) leads to the following theorem [Doy82].
Theorem 3.8-2: maxyey p(MU) < w(M) < infpep 6(DMD™T)

This theorem provides the tighter upper and lower bounds on u(M). Math-
ematically infpep 8(DMD™!) denotes the least upper bound of (DM D) for
VD € D. In [Doy82] Doyle proved that the lower bound is actually an equality:

max p(MU) = p(M)
Unfortunately, this optimization problem is not convex. p(MU) can have multiple
local maxima which are not global and so direct computation of maxyey p(MU)
by gradient search might not find the actual maximum.

Example 3.8-3:, Consider A = diag {Ay, Ag, A3}, and

0 0 wo
M=|w, w, —wp
Cp Cn 0
taken from [SkMS88].
Let U = diag {e”l, el? e"”a} € U. The algebraic manipulation gives the charac-

teristic equation of MU as



59

The roots of the above equation are A = 0 and

A= % [<,upef‘"‘3 + \/wfjej”? — depwped(tos) 4cnwoej("1+"3)] (3.75)
Now
w(M) = max p(MU) = max Ixav)| (3.76)

which suggests we take the positive sign in (1.75) and set

wpe® = |w,| = Lwp+6,=0 (8.77)

wZej292 =|wi| => 24w, +26, =0 (3.78)
—denwpe P2t = 4w, | = Leg+ lwp+ (824 63) =7 (8.79)
depwoe?®1t0) = 4l wo] = Len 4+ Lwo+ (0, +65) =0 (3.80)

It is easy to check that the solution 6y = —/Zw,, 03 = 7 — Lc, and 6 = —(Lwg + 7)

satisfies the simultaneous equations (1.77)-(1.80). Therefore (1.76) gives

#() = 3 [l + /g 2l (gl + oD

On the other hand, the upper bound of p(M) is more easily found since
(DM D) is convex in In D [Doy87] [Se090]. Unfortunately, the upper bound is
not always equal to u(M). It can be shown that

u(M) = inf 5(DMD™), if 25+ f<3 (3.81)

The problem of u(M) is hence reduced to an optimal diagonal scaling problem.
Most algorithms for computing the structured singular value actually compute this
upper bound, which Doyle has conjectured, is always within 15% of the true value
of u(M). The lower bound can then be used to check the closeness of (DM D)
to p(M).

Remark: The definition of I shows that D; > 0 and d; > 0. The reason can
be explained briefly as follows. It is well known that any complex matrix D can

be represented in the polar form [LaT85]

D=UH
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where H > 0, is a positive semidefinite Hermitian matrix, and U is a unitary ma-
trix. Since the maximum singular value is invariant under unitary transformation,

this implies
F(DMD™Y) =g(UEMH'U*) =6(HMH™), H>0 (3.82)

assuming D is invertible, and so only positive Hermitian matrices are needed to

define the matrix set D.

Example 3.8-4: For the MIMO case, consider
0 M Ay O

M = 1 and A= '
le 0 0 A2

Both M;; and My, are matrices. Since A has just two non-repeated uncertainty

blocks, (3.81) holds. Let D = diag{I,dI}, d > 0, then

0 d—1 M, 12
DMD™! =
dM:; 21 0
Choose a permutation matrix
0 I
P =
I 0

which is also a unitary matrix. This leads to

dM> 0
FDMD™) = (PDMD ') =45
0 d_lﬂ/fu
= max{ds(Mp) , d"'5(Mx)}
Thus

u(M)

Il

inf 5(DMD™)

DeD

= inf max {d&(My) , d™'5(Mis)} (3.83)
V& (My2)5 (M) (3.84)

The solution d for the min-max optimization problem in (3.83) can be obtained

by setting do(Ma1) = d15(Miz).

I
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Example 3.8-5: Let

m m A 0
M=[ " 12Jecm, and A=[ b J

ma1 Mg 0 A

Choose D = diag {1,d}, d > 0. Let N := (DMD~1)*(DM D), then the charac-

teristic equation of N is
A — (tr N)A\+ det N =0 (3.85)
where tr V denotes the trace of N. It follows that

X+

A

>

= &N (3.86)
= detN (3.87)

>

where X and A denote, respectively, the maximum and minimum roots of equation
(1.85). Differentiating both sides in (1.86) and (1.87) with respect to d, and noting
that det N = |det(DMD-1)|* = |det M|? is independent of d yields

X d\ _ d(tz )

dd"ad- " ad
dA + dA
dd A+A dd 0

It follows that

i’l=0¢=>w=o, X#A (3.88)

dd
Since tr N = tr (DM D™)*(DMD™Y)} = ||DMD-Y||%, with ||e|; denoting the

Frobenius norm, we have

d(tr V) - [z
—_— = () = d = 3.89
dd \| ] - (389

Manipulation then leads to

my marl 12
u(A/I) = (iz_I;i(; &(DMD“) =a { ,: ! \/ Im1al m } } (3.90)

Imaz] |
[mag] 77021 M2

1/2
_ { k+ \/kz — 4lmyymaog — m12m21]2}

5 (3.91)
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with

k= [mu[? + |masl® + 2lmigma | (3.92)
It is interesting to note that:
o (1) the anti-diagonal elements of (DMD™!) in (3.90) have the same modulus.

6 (2) if myz = 0 or mgy =0, then
#(M) = max {|my], [maal}
o (8) if myy = 0 and mgg =0, then
H(M) = \/Imaz| - [mal|
o (4) if det M =0, i.e. m11Mmaz = M1aMmy, then
(M) = [maa| + |maq| (3.93)
which coincides with p(M) in Example 3.8-2.

u-Computation : (Osborne’s Method) Gradient search techniques can be
used to minimize &(DM D~'). However it becomes complicated by the fact that A
(DM D7) is not always differentiable at a “cusp” of repeated maximum singular
values. The alternative diagonal scaling approach of Osborne is fast and efficient.
In 1960, Osborne developed an iterative scheme to minimize |[DM D], [Osb60].
Based on the fact that |[e|| and (o) are equivalent norms [MoZ89):

1 -1 - -1 -1
7 |pmp| <a(DMD™) < |DMD|, (3.94)
where n is the dimension of (DM D). The minimization of ||[DMD~!||; usually
yields very good approximations for the optimal D which minimizes (DM D™1).

Mathematically the Frobenius norm is defined as

NANE =5 3 fag|® = tr (4*4) (3.95)
1

i=1 j=
and inequality (3.94) follows directly from the fact that A*A is positive semidefinite
(i.e. Ai(A*A) > 0); and

B(AY = X(A"A)S I M(AA) = i (4°4)

LAIE = 3" A(A*A) < nX(A*4) = na(4)? (3.96)

i=1
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That is,
5(A? < |4l < na(4)? (3.97)

which is equivalent to (3.94).
For simplicity, suppose M € C**® and D = diag{l,dy,dz}, di > 0, d;z > 0,
then

myy myadi? myady’
_DMD_]' = m21d1 Mg ngdldgl (3.98)
mady  Magdads? Mag
and
—1)|2 2 —1)2) 72 2 2\ 5-2
|paD=, = (Imal + Imasds™ ) df + (Jmaal?® + msadal?) di* +
(|mu|2 + |maal® + |mas|* + [ma1da|® + |m13d2_1!2>
= Bdi+nd+ar (3.99)
or
~1|2 2 -112) 72 2 2\ -2
[Py, = (Imanl® + Imoadi™ ) & + (fmsal? + Imaads[?) d +

(|‘m11|2 + |maz|? + [mas|? + [maadi|® + [m12d1_1[2)
=: fBadi+yd;? 4+ oy (3.100)

where B;, i, a; are independent of d;, for ¢ = 1,2. Then taking % ]]DMD‘lng.

in (3.99) and - [DMD=1||% in (3.100) to minimize the |[DMD~1||% with respect

to dy and ds, respectively, yields

5% "DMD—IH; =20id; — 27,d;® = 0

\1/4
= d;, = (%) , i=1,2 (3.101)
The optimal D is determined iteratively to find:
min |DMD|} (3.102)
d;>0 F )

Osborne’s algorithm can be summarized as follows:

Step 1: Start with some initial guesses for d;, e.g. D = I, for k = 0.
Step 2: Find §; and ; from |[DMD|[%, i = 1,2.
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Step 3: Let d; = (%)1/4, 1=1,2.
Step 4: Increase k:=k + 1.

Step 5: Go to Step 2 and repeat until convergence is obtained.

More information about numerical algorithms to compute p is given in the
papers [FaT88] [Hel88] [PFD88] {PaD88]. It should be appreciated that if some
uncertainties are real parameter variations or if phase information is available,
then complex-p analysis might give excessively conservative results. In such situa-
tions real-p or mixed-u computations are necessary for robustness analysis [Dai90]

[DeS88] [FTDO1].

3.9 Robust Stability (RS) and Robust Perfor-
mance (RP)

In this section, two basic theorems are given relating u, and robust performance
and robust stability for structured uncertainty [DWS82]. In control engineering
we want to design a control system which remains stable and maintains minimum
performance levels despite the presence of model uncertainties and disturbance
signals. The minimum requirement is usually robust stability.

Consider a system interconnection represented by an M — A structure as shown

in Figure 3.29. Let
BRH™ := {A(s) : A € RH®, A(so) € BA, Vs5 3 Re(sg) > 0} (3.103)

be a set of structured, stable, real rational transfer function matrices. The maxi-
mum modulus theorem shows that if A € BRH™, then ||A}ll, < 1, (i.e. [A(Jw)] £
1, Vw € R). Assume that the interconnection matrix M(s) is a stable nominal
system (with A = 0); and A(s) is a normalized, block diagonal, stable real rational
transfer function uncertainty matrix. Then the following theorem is established

[Doy85]:
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A (s)

M(s)

Figure 3.29: M — A structure without input: for RS analysis.

Theorem 3.9-1 (Robust Stability for Structured Uncertainty):
Assume that
(1) the nominal matrix M(s) is stable, and
(2) A(s) € BA and stable (i.e. A(s) € BRH®).
Then the perturbed closed-loop system in Figure 3.29 is stable iff

Il <1
where || M, := sup, u[M (jw)]. _ |

Note that the convenient notation || M|, is not actually a norm; it depends not
only on M but also the assumed structure of A. A general extension of the small-4
test for the robust stability is given in [FoP88], in which assumption (2) in Theorem
3.9-1 can be removed if the plant is assumed to belong to an arcwise connected
set of strictly proper rational transfer function matrices in the graph topology.
Anyway Theorem 3.9-1 guarantees that if the frequency plot of u[M(jw)] is less
than 1 for all frequency, then the closed-loop system is stable for all structured
uncertainties A(s) € BRH™. Otherwise, if u[M(jw)] > 1 at wp, then there exists
a structured uncertainty A(s) € BRH™ which destabilizes the system [ChD82).
The peak value on the pu-curve indicates the worst case of stability. Hence Theorem
3.9-1 may be interpreted as a generalized small gain theorem or small-y theorem
[DWS82).

In addition to the robust stability the performance of the closed-loop system
must be robust to perturbations such as exogenous disturbances acting on the
system. Typically these disturbances are caused by environmental effects: load
variations, sensor noise, wind gusts, road surface variations, wave surges, temper-

ature changes, and so on. Disturbances result in regulation and tracking error,
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and the performance will degrade to the point of unacceptability. Therefore the
issue of robust performance is to design a feedback system to maintain at least
minimum performance levels under external disturbances.

Let us now consider a general framework for this problem as illustrated in
Figure 3.30. In this figure, d and e are vector-valued signals: d is the exogenous
input with components typically consisting of command signals, disturbances and
sensor noise; e is the output with components typically being regulator output,
tracking errors, filtered actuator signals and error outputs due to disturbances
and/or noise, and so on. A is a normalized model uncertainty, unstructured or
structured, which is uncertain but norm-bounded. M(s) is the interconnection
matrix with element Mj;(s) representing nominal performance (NP) with A = 0.
Robust performance analysis is to determine whether the error e remains in a
desired set for the sets of inputs d and uncertainties A. What is required is a
yardstick to indicate the worst case level of performance degradation associated

with a given level of uncertainties.

[l

A (S)I
d M (s) e
e mm—] e imaaan =l

Figure 3.30: M — A structure with input: for RP analysis.

Obviously, the transfer function matrix from d to e can be expressed as the
linear fractional transformation.
F,(M,A)d
[Maz + Mo AT~ My A) M) d (3.104)

(1)
|

and the maximum gain of the system is

llell,
sup = sup |le
azo [|dll, lldll, <1 el
= ||Fu(M,A)|;,

i

|Fu(M, Al (3.105)



67

Hence the worst case of system gain in the presence of the uncertainties A € BA

is given by

llells
sup su = sup ||Fu(M,A)| 3.106
S R N, = SR RG] (3109

This leads to the following definition of robust performance.

Definition 3.8-1 (Robust Performance): The performance of the stable

system in Figure 3.30 is said to be robust if
|Fu(M, A <1 (3.107)
for all A € BA. Equivalently, if ||d||, < 1, then |¢]|, < 1, VA € BA. 3

Example 3.9-1 (SISO system): Consider a SISO system illustrated in Fig-
ure 3.31. Go(s) and K(s) denote the nominal plant and controller, respectively. A
represents the normalized multiplicative input uncertainty, with [|A]l < 1. Wa(s)
describes a modelling error function and Wi(s) denotes a performance weighting
function. The transfer function “seen” by A is given by

V4 —KGOW2

= = WL T,
v 14+ KGo 2o
where Tp := ﬁf—,?—g; denotes the nominal complementary sensitivity function. It

follows directly from the robust stability theorem 3.5-1 that
RS <= |W T, <1

Furthermore, the perturbed weighted sensitivity function S from d to e is given

by

€ W1
M d 1+ K(1+WA)Go
- _gkm TS (3.108)
14+ EG A 7 1 L WoTHA )

1+KGo
where S := 75 is the nominal sensitivity function. This gives the worst case
of [W; 5| as

sup sup ___Ii.I{];LS’_(J__l < sup sup |W150| < sup |W150|
lalwstweR 11+ WhToAl ~ wek oot 1 = [WoTo| - |A] ~ wer 1 — W, To]
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The above inequalities follow from ||W2Tp||,, < 1 and [|A]|,, < 1. Furthermore if

we choose A = —e~iL("2To)  |A| = 1, then the worst case of [W15] is equal to
sup WSl
wer 1 — |[WoTy|
which should be less than 1, for the requirement of robust performance. That is
WSl

<1, VWeR <= WS+ |Welh| <1, VweR
< |||[WiSo| + [WoTol]l,, <1

1= [WeTo|

el e, N
O g |- W %

=0 ‘_%R_" K(S)I

Figure 3.31: A SISO system with multiplicative input uncertainty.

Now let us close the loop from e to d in Figure 3.3(\!I by an artificial stable
transfer function matrix A,, ||A,]|,, < 1, which is illustrated in Figure 3.32. The -
A, is referred to as a fictitious performance uncertainty matrix and is a full matrix
of appropriate dimensions. Figure 3.32is an M — A, structure without input. The

transfer function matrix “seen” by A, is given by
M = F,(M,A) (3.109)

Recall from the robust stability theorem 3.5-1 that if A7 (s) is stable, then system
in Figure 3.32 is robustly stable ff

|| <1 (3.110)

Thus (3.109) and (3.110) show the equivalence between robust stability in Figure
3.32 and robust performance in Figure 3.30. In summary, we have robust perfor-
mance for the system in Figure 3.30 iff we have robust stability for the system in
Figure 3.32 with respect to the augmented block diagonal structure

A= [A 0 ], |3]_ <1 (3.111)

0 A, oo

The stability test for Figure 3.32 can be expressed in terms of the structured
singular value g of M with respect to A.
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Figure 3.32: M — A, structure without input.

Theorem 3.9-2 (Robust Performance) [Doy85]: Assume that
(1) F,(M, A) is robustly stable for VA € BRH*, and
@ 18,0, < 1.
Then the performance of the perturbed system in Figure 1.30 is robust ff

1M1, < 1 (3.112)

where y is taken with respect to the structure

A={A: A=dag{a,A}, AeBA, [|A,], <1}

Mathematically the conditions (1.111) and (1.112) show that

M, < 1 (3.113)

U O S A

pMGw)] <1, YweR

det (I - MA) #0, YweR, VA e BA

I—MuA  —MpA,
det #0, Ywe R, VA €BA, VA, € BA
—MuA I — MypA,

det(I — My A) - det {(I — MypA,) — M A(I = My A) ' Mip A} #0 (3.114)
det(I — My A) - det {T — [Myp + My A(I — My A)Y ™ Miz| Ay} #0

det(I — My A) - det {I — F,(M,A)A,} # 0, Yw € R, VA, VA, € BA

det(] — My A)# 0 and det[I — F,(M,A)A,] #0, Yw € R, YA,VA, € BA
[Mull, <1 and ||Fu(M,A)|, <1, VA, €BA

RS and RP for Figure 1.30 (8.115)
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(1.114) follows directly from Schur’s formula.

For the general case, consider a block diagonal structure. Let
A= {A A= diag{Al,Az}; A]_ S A]_, Ag € Az} (3.116)

Both A; and Ag are structured. Let py(e) denote the SSV with respect to
Aq, and pa(e) with respect to Ag. Derivations similar to the above lead to the

following theorem [BDGPS91].

Theorem 3.9-3 (Main Loop Theorem):

pi(My1) <1, and

pua(M) <1l <=
U2 [FU(M, Al)] < 1, VA; € BA,

{ uz(Ma2p) < 1, and
w1 [Fi(M, Ag)) <1, YA, € BAg
Therefore it is interesting to note that stability and performance robustness
are achieved simultaneously if and only if the perturbed system in Figure 1.32 is
stable for all perturbations with a particular block diagonal structure, diag [A, A,].
Note also that Theorem 3.9-2 is of great importance in the analysis of perturbed
feedback system and opens the way to systematic methods of synthesis.
Furthermore, let A; = diag{A,0} and A, := diag{0,4,}. Obviously, both
Ay and A, are special structures of A := diag {A,A,}, so that

pa(M) = max {pg, (M), pz,(M)} = max {pa(Mur), pa, (M)} (3.117)

The above inequality implies that a necessary condition for robust performance
(RP), [ux(M) < 1], is robust stability (RS), [ua(M11) < 1], and nominal perfor-
mance (N P), [pa,(Mz) = &5(Mz) < 1].

To recap, we list the following consequences:
For an interconnected system in Figure 1.30, assume that M(s) is nominally stable

and A(s) € BRH™, then



1

o NS <= M is internally stable.

NP & |Myp|, <1

[e]

RS <> || M|, <1, for unstructured uncertainty.

Q

o

RS <= ||Mu]], < 1, for structured uncertainty.

Q

RP = |M], < 1.

Example 3.9-2 (A SISO system): Consider the SISO system in Figure
3.31. To minimize the weighted perturbed sensitivity function from d to e, the
interconnection matrix M derived directly from the block diagram is given by

Wy —WoKS,
T MGeSe  WiSe
Since det M = 0, it follows directly from (3.93) that

p(M) = [WyTo| + |[W1So|
and Theorem 3.9-2 guarantees that
RP < [WTo| + |15 <1, VweR

This coincides with the findings in Example 3.9-1.

3.10 pu-Synthesis

The objective of feedback control system design is to achieve certain desired levels
of performance and to be tolerant of uncertainties. Performance levels concern such
things as command following, disturbance rejection, noise attenuation, sensitivity
reduction, etc. Yet this generic design problem is still largely unsolved. The RSRP
problem is to design an optimal stabilizing controller K(s) for robust stability (RS) !
and robust performance (RP). From the mathematical point of view, the design
objective is

inf sup p [M(P,K)] v (3.118)
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where P(s) is the nominal generalized plant compatible with structured error

model A(s), shown in Figures 1.33 and 1.34, and

M(P,K)

I

F(P,K)

Pll P12 P13 1
= + I((I - P33]{)— [P31 P32] (3.119)
P21 PZZ 23

|

>
e

i
=
Z

v

d | M@ e

———

Figure 3.34: M — A structure with input.

In [Doy85] Doyle suggested that the y-synthesis in problem (1.118) could be
solved by an iterative scheme, called D — K iteration. This is based on finding a
stabilizing controller K and diagonal scaling matrix D so that

. . — ; —1
jnf sup inf o [DF(P,K)D™] (3.120)

has a solution; see Figure 1.35.

v Z 1
e ] e N e Y e

Fah

Figure 3.35: A scaled generalized feedback system.

One approximate method to do this is to alternately minimize the above expres-

sion for either I or D while keeping the other constant. For fixed D the expression
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=) P
I_ LI ey B ‘——I
L=

Figure 3.36: An equivalent system.

(8.120) is just an H™ control problem and can be solved by an H*-optimization
method. For fixed K, the expression (3.120) can be minimized at each frequency
as a convex optimization problem in D (actually In D). The resulting diagonal
scaling matrix D can be approximated by a stable, rational transfer function with
stable inverse (the phase of D does not affect the norm). More precisely, it is easy
to see that both Figures 3.35 and 3.36 are equivalent to each other and hence we

can write
DM(P,K)D™' = DF{(P,K)D™! = F(DPD™,K) = F(P,K) (3.121)

with

5 D 0 L e
Dzz[o I] and P :=DPD™! (3.122)

So for fixed D, (3.121) implies that (3.120) becomes
int “F;(P,K)"oo (3.123)

Recall that ||o]|,, := sup, &(e).

This is a standard form of H*-optimization problem and (3.123) plays a key
role in y-synthesis. In real-u or mixed-u analysis, which arises when the elements
of A are purely real or a mixture of real and complex values, it might not be possi-
ble to approximate the structured singular value u(M) by infpep #(DMD™1), and
then D— K iteration fails. This is why p-synthesis by D— K iteration is only appli-
cable to feedback systems with complex uncertainties. If the technique is applied
to design a p-optimal controller of a system with real parametric uncertainties,
then the degree of conservatism may be arbitrarily large!

Let us consider a simple example in Figure 3.29. Assume M is stable and

A is a real scalar uncertainty with —1 < A < 1. Theorem 3.9-1 guarantees
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that the perturbed system is robustly stable iff ||M||, = sup,er #[M(jw)] =
sup,er [M(jw)| < 1 under the assumption that A is a complex number with
modulus less than or equal to 1. This means that the Nyquist plot of M(jw)
should be inside a unit circle centred at the origin. However the system is robustly
stable against the real uncertainty —1 < A < 1 if the Nyquist plot of M(jw) is
any curve which does not intersect the real axis at a distance greater than or equal
to one from the origin. This shows that the complex-p analysis gives conservative
results when the uncertainty is real. In Chapter 5, we present a new method
for synthesis, called p — K iteration, which is applicable for complex-u, real-u
and mixed-p cases. At this point we will outline the D — K iteration algorithm

[BDGPS91]:

Step 1: Start with an initial guess for D, normally D = I.
Step 2: Fix D, and solve for K by H®-optimization. That is

K = oxg 9t | (P, 10|

where P is given in (1.122).
Step 3: Fix K, and solve for D at each frequency by convex optimization. That

is
D=arg jnf 5 [DF(P,K)D™]

Step 4: Curve fit D(jw) to get D(s), then go to Step 2 and repeat until a specified

convergence tolerance is achieved.

This approximate solution has been implemented by Doyle [Doy85] who reports
good results. However he has also discovered a simple counterexample for which
such an iterative scheme will fail to find the K(s) and D(s). The reason can be
explained as follows:

It is well known that the Youla parametrization of all stabilizing controllers
can be described by

K=F(J,Q) (3.124)
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where the “parameter” ) ranges over all proper, stable transfer functions, (i.e.

Q € RH*™) [YIB76]. Substitution of (3.124) into (3.119) yields [Fra87]
F(P,K) = R[P,F(J,Q)] = T1 + T2QTs (3.125)
Furthermore, let f(Q) := &(Ty + T2Q73) and
Q:=AQ1+(1=X)Qs, 0<A<1, @, Q2 € RH® (3.126)

Obviously @ € RH* and

£(@) 5{T1 + QL+ (1 — /\)Qz]Ts}
FNT + BTy + (1= A(T1 + TQ:T5)]
ATy + T T3) + (1= N) - 6(Ty + T2Q.T3)

AF(Q) + (1= N)f(Q2) (3.127)

IN

Therefore (1} + T2QT3) is convex in @ and the optimization problem

inf sup inf a[DF,(P, K)D-l} = igfaup inf 5[D(T1 + T2QT3)D-1] (3.128)
is convex in either D (actually In D) or @ individually when the other is fixed.
Unfortunately, this does not guarantee however that (3.128) is jointly convex.

Furthermore, the compensator so obtained is not guaranteed to be globally
optimal. It depends on the initial guess of the diagonal matrix D. For the ill-
conditioned high purity distillation column [SkM86] considered in Chapter 6, an
initial guess of D as the identity matrix yields a very bad result. D — K iteration
might even fail to converge. In addition, the compensator obtained by D — K
iteration always has a relatively high order, which often needs to be reduced via
model reduction techniques. Several applications of p-synthesis can be‘found in

[BCD89] [STBS90] [Enn87] [DLP87] [MoZ89] [BaD89].

3.11 Simultaneous Uncertainties

In this section, we first consider a simple configuration of a two-degrees-of-freedom

controller as shown in Figure 3.37. (o denotes the nominal plant with stable
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multii)licative output uncertainty A = diag{A1,A;}, A, Ay € C and K =
diag {K;, K} is the controller. Gy is a model of a spinning satellite which is
considered to be a symmetric spinning body with torque input along two orthog-
onal transverse axes. The transfer function matrix from input torque to output
angular velocity is given by [Cam90]

s—a®  a(s+1)
, a=10
—a(s+1) s—a?

o
32+a2

Go(s) = (3.129)

Let

1 1 —a 1 0
Kl(s)zl-]-—cﬁ[a 1], Ky(s) = 0 1] (3.130)

It is easy to see that the interconnection matrix M “seen” from A is given by

— 1 a
M(s) = —Go(8)Ka(s)[I + Go(s)K(s)] ™! = S +11 [—a 1] (8.131)

which is illustrated in Figure 3.38 and obviously M(s) is stable. It is interesting to

note that the conditions for robust stability with respect to individual uncertainties

are:
if Ay =0, then RS <= Ayl < H_M;ZF —1 (3.132)
and
1
if Ap =0, then RS < “Allloo < W =1 (8.133)
|_ s y

Figure 3.37: System with two-degree-of-freedom control.

Note that these conditions are independent of the parameter a, and M, and
M1 have no effect on robust stability. Now let us consider robust stability of the
system with simultaneous uncertainties. With simple calculations, formula (3.91)
yields
(3.134)
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M (s)

#]

Figure 3.38: M — A structure.

Thus || M]|, = v/1 + a?, and for robust performance Theorem 3.9-2 gives
11
I, ~ Vit

This means that both [|[A4],, and [|Az]|,, should be less than \/-—I%f If a is large,

[Allee = max {[| Al , [ A2l } < (3.135)

then the stability margin is small. These consequences show that small simultane-
ous modelling errors can interact to cause instability in a system that is robustly
stable against much larger individual modelling errors. To gain insight, it is in-
structive to consider the transfer function “seen” from A, in Figure 3.38, which is
given by

Fy(M, A1) = mgg + mau Ay (1 — myAy) imy, (8.136)

where m;; denotes the (4,7) element of M. The characteristic equation of the

closed-loop system is equivalent to det[] — Fy,(M, A;)A;] = 0, namely
[mzz +ma1 Ay (1~ mnAl)-lmm] Ag=1 (8.137)
Suppose A; is very small, then (3.137) can be rewritten as
[ma2 + ma1Aimig] Ay = 1 (3.138)
It follows directly from (3.131) that
[mis| > |maal, i (3.139)
if a>> 1, and by (8.139) we have
LCSYASUTYAVESRL (3.140)
The minimum size of uncertainties A; and A, which satisfy (3.140) is

1 V1 +w?

|A1] = |Aq| ~ = (3.141)
\/|m12m21| a
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This result almost satisfies (3.137) when a >> 1; and gives

M (jw)] ~ 71%—&7 (3.142)

which is approximately the same as (3.134) when a >> 1.
ATy -k

Figure 3.39: System with multiplicative output uncertainty.

Fal

L=

M(s)

8k

Figure 3.40: M — A structure.

\‘I \|I

Next we study the robust performance problem for the M IMO system shown
in Figure 3.39 where Gy is a nominal plant with normalized multiplicative out-
put uncertainty A. The scaling functions W, and W; denote the error bounding
function and performance weighting function, respectively. The control objective
is to minimize the effect of the load disturbance, d. The interconnection matrix
M, shown in Figure 3.40, derived from the block diagram in Figure 3.39, is given
by

W, Ty —WaTh
= ~ (3.143)

| mS, WS,
where Ty = GoK(I + GoK)™ and So := (I + GoK)™! denote the nominal out-
put complementary sensitivity function and nominal output sensitivity function,
respectively. Robust performance is guaranteed by Theorem 3.9-2 if and only
if u(M) < 1 where p is evaluated with respect to the uncertainty structure
A = diag{A, A,}. We have
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det(I — MA) =0 (3.144)

—~WaTo A 0
[I I] =0
150 0 Ap
W,
det { T — [A A]b=0
W1So

-WaTo
det{I—[A A,] =0
WISO

det (I+ AWQTO bt prlso) =0

= det{[—

!

0=c[l+AW,Ty — AW, So]

0>1—&[AWLTy — A, WiSe], by (2.71)

0> 1—5(A)a(WaTo) — 5(A,)5(WiSe), by (2.68) (2.67)
F(A)T(WoTh) + 5(Ap)5(WiSs) > 1 (3.145)
max {5(A),5(A,)} - [F(WaTy) + 5(W1So)] > 1

max {5(A),5(Ap)} = [6(WoTo) +5(WiSo)]™, VA,VA,

minmax {7(A),5(A,)} 2 [6(WeTo) + a(WiSo) ™!

pH (M) = [3(WoTo) + 5(W1So)] ™!

p(M) < 3(WyTy) + 5(Wy.S,) (3.146)

frrrrorrreed

It follows directly from (3.143) that (3.146) is an equality for SISO systems. The

inequality (3.146) reveals that the sufficient condition for robust performance is
RP = ¢(WTp)+5(W1S) <1, VweR (8.147)

and this condition is somewhat conservative for MIMO systems. Moreover, in-

spection of the matrix M in (3.143) leads to
NP < (WS <1, YweR
and

RS = (WyIh)<1l, YweR
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A comparison with (3.146) reveals that both nominal performance (N P) and ro-
bust stability (RS) cannot guarantee the robust performance (RP) of the system,
but they can give an approximate check for RP.

Similarly, for the MIMO system shown in Figure 3.41, we have
I:_W2T0 —WzSo} ["'WZI

T S 3.148
WiTo  WiSo le}[" o] (5.148)

and calculations then lead to the same result in (3.146).

e

Figure 3.41: A perturbed system.

A 1f={a
.__’;?_@ I— .4*—| >.->€S___ e

Figure 3.42: System with multiplicative input uncertainty.

Figures 3.39 and 3.41 show that both uncertainties A and A, occur at the
same position. However for a system with multiplicative input uncertainty, shown
in Figure 3.42, the modelling uncertainty A, and the fictitious performance uncer-
tainty A, are separated by the nominal plant Gy. From a control point of view,
Figures 3.42, 3.43 and 3.44 are all equivalent. Therefore comparing Figure 3.44
with Figure 3.39 gives

GoAWLIGE! = AW,LT (8.149)

with
A = GoA Gt (3.150)

and

7(A) < 3(Go)3(A1)5 (G5) = cond (Go) - 5(A) (3.151)
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where cond (Gy) = 5(Go)d (G’al) = %g—g% denotes the condition number of Go.
Substituting the inequality (3.151) into (3.145), we can derive

,u(M) S COIld (Go) . a(WzTo) + 5'(W150) (3.152)
This implies

RP <= cond (Go) - 5(WyTo) + (WiSo) < 1, Yw R (3.153)

fel—la G |
re0 _to o [ (] %JXL—

Figure 3.43: An equivalent system.

= GBI 4 0
f’@ d _—

”T@

Figure 3.44: An equivalent system.

Similarly, shifting the blocks W)l and A; backwards to pass over the controller
K, we also have the equivalent system, shown in Figure 3.45. A comparison with

Figure 3.41 leads to A = K~1A; K and 3(A) < cond (K) - 5(A;), then we obtain
w(M) < cond (K) - 6(WpTp) + 6(W1.So) (3.154)

This gives
RP <= cond (K) - ¢(W,Tp) + 6(W1So) <1, VweR (3.1553)

The consequences of (3.152) and (3.155) are that if cond (Gy) or if cond (K)
is small (i.e. near to 1), then the sufficient condition is almost the same as that
derived for the multiplicative output uncertainty. However if either plant or con-

troller is ill-conditioned (i.e. with high condition number), then the value of u(M)
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(R 4
L

Figure 3.45: An equivalent system.

r=90 __;-?

might be quite large and the sufficient condition for robust performance may be
violated, even if the system is NP (||[WSo||,, < 1) and RS (||W,Ty||., < 1), where
Ty 1= KGo(I+KGp)™. This is the reason why the loop shaping method proposed

by Stein [Ste85] can be used to successfully design a robust controller for a MIMO

system with multiplicative output uncertainty, which then fails with multiplicative

input uncertainty.




Chapter 4

A LOOP SHAPING
APPROACH TO ROBUST
PERFORMANCE FOR SISO
SYSTEMS

4.1 Introduction

The performance specifications of a control system are said to be robust if they are
satisfied despite the presence of disturbance signals and model uncertainties. A
general framework for analyzing robust performance using the structured singular
value “ﬁ” was introduced by Doyle [Doy82] who also developed a controller synthe-
sis procedure called p-synthesis or D-K iteration [Doy85]. The procedure, which
aims to minimize y, is computationally demanding and the resulting controller
may not be globally optimal. Nevertheless it represents a practical, systematic
approach for addressing this important problem of robust performance; an alter-
native is given in Chapter 5. -

In 1988, Milich et al. presented a Causality Recovery Methodology (CRM) to
modify D-K iteration to obtain a globally optimal controller [MAVS88]. However,

the CRM is computationally inefficient and the huge number of computations

83
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required makes this method impractical.

In this chapter we will examine a particular robust performance problem for
SISO systems and show how the corresponding structured singular value can
be effectively minimized using a loop shaping approach. The approach is not
computationally demanding and has the advantage of being an extension of a
design procedure already familiar to practising control engineers.

In Section 4.2 we formulate pz (M) for SISO perturbed systems with additive
uncertainty, multiplicative input uncertainty or multiplicative output uncertainty.
The relationship between a mixed sensitivity H®-optimization problem and clas-
sical loop shaping is then investigated in the Section 4.3. It is shown how classical
loop shaping can be used to minimize the H* cost function. This then provides,
in Section 4.4, insight into a further development of loop shaping to minimize the
structured singular value for robust performance. In Section 4.5, the approach is
demonstrated by its application to the control of a robot arm whose moment of
inertia varies considerably with angle. Finally a brief summary will be given in

the last section.

4.2 WMotivation

Consider the scalar feedback configuration of Figure 4.1, where Gy is a nominal
plant model, A is a perturbation representing uncertainty, d is an energy-bounded
disturbance signal and K is a controller to be designed. The weights Wy and W,
describe the frequency-domain characteristics of the performance specifications
and model uncertainty, and can also be used for normalization purposes.

The robust performance (disturbance rejection) problem is to find a stabilizing
controller K such that the energy gain from d to e is less than 1 for all stable
perturbations A, where |A| < 1.

The feedback configuration of Figure 4.1 can be redrawn as in Figure 4.2 where

the interconnection matrix is

X “ (4.1)

=KW, =KW W, :l
—_— —1
14+Go K 14+GoK

]VI(S) — |: 14+Go K 1+Go K
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Tﬂ’,:?__> K9 Gy(®) L%, B :

Figure 4.1: System with additive uncertainty.

A(s) [
Z

a_ 1M

e
=

Figure 4.2: Equivalent M — A structure.

If we now introduce a fictitious performance perturbation A,, as shown in

Figure 4.3, where |A,| < 1, then robust performance is achieved if
pAlM(jw)l <1, YweR (4.2)

where px [o] denotes Doyle’s structured singular value (Doyle, 1982) with respect
to A.

K(s)

Iy S

€

Figure 4.3: General M — A structure.

Furthermore, it follows directly from (3.93) that

] | KW, A
waM) = |TrER +‘1+GOK
Wit
= —G’i— + |Wys] (4.3)
0




where

1
©) = TTGERE
1
1+1(s)

is the nominal sensitivity function,
i Go(s)K(s)
M) = 1T aG)Re)

I(s)
14 1(s)

is the nominal complementary sensitivity function, and
I(s) := Go(s)K(s)

denotes the nominal open-loop transfer function.

Similarly, if the model uncertainty is represented by a multiplicative input

perturbation as shown in Figure 4.4, we have

G 1%

=G KW, =KW, W, }
—1
1+Go K 14+Go K

M(S) - |: 14+Go K 1+Go K

) GoKW;
[Wat| + [Wis]

Wy
+ GoK

!

ls

\|/ N

= Vi(s)

As) —-I Wiis)
" N

kY

r=0

50— @ P

20—

Figure 4.4: System with multiplicative input uncertainty.

For a multiplicative output perturbation as in Figure 4.5, we have
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—-GUGK IWQ =Gy KG W1<W2
14 Y 14+Go K
M(s)=[ o iy } (4.9)
TFGoK T+Go
| GoEW, Wi
paM) = |T7Ex +l1+GoK
= |Wat| + [Was| (4.10)
d
@
r=0 " ++)A ++ e
o/ N/

—=0—=| K&) (G,

Figure 4.5: System with multiplicative output uncertainty.

It is interesting to note that uz (M) in expressions (4.3), (4.8) and (4.10) can

be expressed in a general form
BA(M) = [rys| + |rot] (4.11)
where the generalized weighting functions r; and r; are

ri(s) :== Wi(s) (4.12)

(4.13)
g—:((f)l for additive uncertainty

Therefore, given one of the above uncertainty models the robust performance

Wa(s) for multiplicative uncertainty
ra(s) :=

design problem is to find a stabilizing controller K(s) which satisfles
inf sup palM(jw)] = jnf sup {Ir(jw)s(jw)l + Ira(je)t(ier) } (4.14)

This is a nontrivial optimization problem. In the next section we will examine a
closely related H*-optimization problem and establish a relationship with classical

loop shaping.
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4.3 Mixed Sensitivity H*°-Optimization and
Classical Loop Shaping

An H*-optimization problem which has received considerable attention in the

literature is the so-called mixed sensitivity problem described by

int [t] = jntsup uG@)sG)P + ()il
I 20 (19
where
T(@) = In(jw)s(e) + ra(e)ie)? (4.16)

Let w, denote the crossover frequency of loop gain |I(jw)|, that is
Hjwe)| =1 (4.17)
and without loss of ge11eraﬁty, let us assume that

HGw)l > 1, for w<Kw, (4.18)
l(jw)] < 1, for w>w, (4.19)

Assumption (4.18) is essential for load disturbance rejection, and is therefore
a requirement for good performance. On the other hand, assumption (4.19) is
necessary for noise attenuation and robust stability. Moreover the assumptions

imply that

T@) = /InsP + st { APl fr v <on
\/m for w> w,

where we have neglected the angular frequency w for brevity. Clearly, J(w) is

expressed as a function of the open-loop transfer function I(jw) and the generalized

weighting functions in the low and high frequency ranges. In classical loop shaping

[{(jw)| is required to be large at low frequencies and small at high frequencies. From

(4.20) we see that these loop shaping objectives appear to be compatible with the




89

‘H>®-optimization problem in (4.15) since they each have the effect of decreasing
J(w) for a given pair of weights.
It is now interesting to investigate the shape of J(w) in the intermediate fre-

quency range around w = w,. It follows from (4.17) that

[s(we)l = [t(jwe)l
_ 1
14 1(jwe)]

1
—_— 4.21
2COS[ /A éwc ] ( )

where Zl(jw,) denotes the phase angle of {(jw) at w = w,. This implies
J(wc) = \/]"'1(.7""»’0)'2 + !TZ(jwc)Iz : """"‘]ﬁ“"‘“ (422)
2 cos[-J,i,—““l]

For an open-loop stable and minimum-phase system it is well known that phase
lag is approximately proportional to the roll-off rate of the Bode-plot of |I(jw)|.
Therefore in classical loop shaping, stability margins are improved by “Hattening”
|{(jw)| in the intermediate frequency range. This again is compatible with the
H>-optimization problem under consideration since in (4.22) we see that J(w.)
decreases as the roll-off rate of |I(jw,)| (and hence —£{(jw.)) is decreased. However,
if |I(jw)] is too large at low frequencies and/or too small at high frequencies, then
there may be little scope for flattening |I{(jw)| in the intermediate range.

Loosely speaking, J(w) will have a peak near w, if |I(jw)| is too large at low
frequencies and/or too small at high frequencies.

To summarize, equations (4.20) and (4.22) yield

I} for w K w,, if [r 32> |ref?
J(w) e { Irall for w>w,, if |r]* < |rlf? (4.23)
fr12+]r2|? £ ~
31:;, or w N w,
2cos[—‘(gﬁl] .

Now it is well known that the optimal H* cost function J(w) is a constant
independent of frequency. Therefore, the above expressions for J(w) indicate that
if classical loop shaping was being used to minimize the H® cost function, then

[l{jw)| should be made parallel to |ri(jw)]| in the low frequency range, parallel to
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|r2(jw)|~! in the high frequency range, and be shaped as flat as possible in the
intermediate frequency range.

Finally let us consider more carefully the effect of the numerator of J(w,).
Define the crossover-gap

Aw = wy —wy (4.24)

where w; and w, are respectively the first and second crossover frequencies for

\/|r1(jw)|2 + |ra(jw)|? as shown in Figure 4.6. If the crossover-gap is wide enough,
then |I(jw)| can be shaped easily near w. to decrease the cost function J(w).
Therefore the H*-optimal cost funcﬁon can be decreased by further separating
the curves of generalized weighting functions |ri(jw)| and |r(jw)|. In a given
design problem, however, the freedom for changing the weights may be limited by
other constraints. Thus the design difficulty is inversely proportional to the width

Aw of the crossover gap.

Figure 4.6: Crossover-gap Aw and |I(jw)[:

@) [1Gw)l; (2) y/IrGw) + Ir2(Gw)? & fra(iw)l;
(3) YIrs () + [ra(jw)|? = Irs(je)| and

@) (VRGP + GoF) = i)™

4.4 Robust Performance by Loop Shaping

Consider the robust performance problem of finding a stabilizing controller K(s)

which satisfies (4.14), i.e.
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it sup pa(M) = inf sup {[ri(jw)s(jw)] + Ira(e)i(iw)}
= g e (429
where
) = (o))l + Ira(je)i(iw)] (4.26)
Since
#w) 2 (@) (4.27)

the crossover-gap of u(w) is narrower than that of J(w) which implies that loop
shaping for robust performance will be more difficult than for the H* mixed
sensitivity problem of Section 3.

The following two facts are useful in understanding the relationship between
J(w) and p(w).
Fact 1: J(w) € pw) £ V2J(w), YweR
Fact 2: If there exits wg, such that

. T1 (jwo)
l = - 4.28
| (]wﬂ)] 7'2(,]‘&’0) ( )
then for the H*-optimal controller K, (s) satisfying (4.15) we have
max p(w) = V27 (4.29)

where 7o denotes the H*-optimal cost. An illustration of this fact is shown in

Figure 4.7.

N2%,
A
]
]
Yo : J)
]
i
0 ‘;b = o

Figure 4.7: Cost functions J(w) and pu{w) for Keo(s).
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In [Hel85] a general theorem is given which can be applied to the optimization
problem in (4.25) to infer that the optimal robust performance cost function u(w)
is a constant independent of frequency for some cases. This result together with
Fact 2 suggests the following loop shaping method for finding an approximate

solution to the robust performance problem:

Step 1: Obtain an H*-controller Ky(s), either approximately by loop shaping

as in Section 3, or exactly by H*-optimization. This gives
loo(8) = Koo(8)Go(s) (4.30)

and the corresponding p(w) will be similar in shape to that shown in Figure 4.7.

Step 2: Introduce a cascade compensator to decrease the maximum value of p(w)
by loop shaping, that is, decrease the loop gain at low frequencies and increase it

at high frequencies.

Step 2 has the effect of flattening the loop transfer function in the intermediate
frequency range thereby decreasing the peak value of yu(w). Note that as p(w) is
decreased to improve robust performance the H® cost J(w) will increase causing
a deterioration in nominal performance. This inherent trade-off between nominal

performance and robust performance should be no surprise.

4.5 A Robot Arm Example

In the section, the loop shaping approach to robust performance will be applied
to the design of a controller for an industrial robot arm [ANG86]. The transfer
function of the robot arm, from the motor current to the motor angular velocity

is
km(Jo82 +ds + k)

G(s) = 4.31
(s) (5 + P)[Jadms? + A(Ja + Jm)s + &(Ja + Jm)] (4.31)
where
Jm = 0002, k=100, kn=0.5, d=0.0001, p=001 and
J. € [0.0002,0.002]
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The moment of inertia of the arm varies considerably with arm angle. The small
constant p is added to avoid the so-called Model Matching Transformation zero
[OPG89] caused by a plant pole at the origin.

Let us examine the numerator of (4.31). The ratio of the coefficient of s?
to the constant term is very small, about 1075, and so (4.31) is numerically ill-

conditioned. After some manipulation, (4.31) can be changed to

En(J,8% +ds+ k)

G3) = — L R 4.32
® (3 + P)Jadm8? + d(Ja + Jm) + k(Ja + Jm)] (4:52)
where
§ = S
s 100’
$ = 0.0001, J,=2, k=10, kn=5, d=0.001 and
J. € [0.2,2]

which is numerically easier to work with.
We will describe the uncertain moment of inertia by an additive perturbation

as shown in Figure 4.1. The perturbed plant is therefore
G(s) = Go(s) + A(s) (4.33)

In Figure 4.8 Bode plots of the perturbed plant are shown for a range of values
of J,. The nominal plant Go(s) corresponds to J, = 0.0011, the middle value
of the variation. By a curve fitting method, the maximum additive-error can
be tightly bounded by a rational function Wa(s) which is stable and minimum
phase; see Figure 4.9. If the error is not bounded tightly, the design will be more
conservative. However the order of Wa(s) increases as the error bound is ti-ghtened‘

The weighting function Wy(s) is selected as

Wg(s) =
1.2731 x 1

oo (5 +20.1 & §238)(s + 50.7 & j226)(s + 49.8  199.2)(s + 99.5 = j3L.5)
(s + 194 & ;521)(s + 44.9 £ j396)(s + 4.42 = ;332)(s + 0.01)(s + 1500)

Note that it is not allowed to roll off at high frequencies since this would encourage

high gains in the H*-controller.
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On the other hand, the performance bounding function Wi(s)™! is chosen as
(3 +1)7°

(F+1°

which is compatible with the sensitivity functions achieved in [OHAPSS].

Wi(s) = 316

Step 1.

Using the command hinf in the robust-control toolbox of MATLAB, K.(s) is
found to be

Koo(s) =

(5 + 4.42 & §332)(s + 194 & j521)(s + 44.8 & j396)(s -+ 0.01)(s + 17.1)(s + 1500)

4
0047 T7312)(s + 176)(s + 22.0 & ;231)(s + 46.5 & j226)(s + 84.8 & J151)(s + 1.21)?

with
Yo = 0.7

The order of the controller is high because of the high order of Wy(s). The results
for the H*-controller are shown in Figures 4.10 and 4.11. It is interesting to note
that |{(jw)| is parallel with Wi(s) at low frequencies and parallel with I%[—l
at high frequencies.

Step 2.

The loop shaping method is now used to reduce the maximum value of p(w). The

p-controller K,(s) is chosen as

(s +41.8) y (2%0—{—1)
D)

by introducing compensation to shape the loop transfer function at low frequencies

K,(s) = % Koo(s) (4.34)

and at high frequencies. The results for the x4 controller are shown in Figures 4.12
and 4.13. At high frequencies both p(w) and J(w) go to zero because a suboptimal
nonequalizing H*®-controller is obtained from hinf.

Figure 4.14 shows the Bode plots of the output sensitivity function, the transfer
function from the disturbance d to the output e for 3 different values of J,. The
bandwidth is about w = 30 ~ 50 rad/sec. Figure 4.15 illustrates the output
step-responses to a unit disturbance for a variety of values of J,. The response is

oscillatory for small J,, i.e. J, = 0.0002, but is otherwise satisfactory.
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4.6 Summary

A loop shaping method has been presented for solving a scalar robust performance
problem. Useful insight was given into the relationship between classical loop
shaping and an H* mixed sensitivity problem. The approach was demonstrated
by its application to the control of a robot arm whose moment of inertia varies
considerably with angle. This was modelled as a perturbed plant with additive
uncertainty. To tightly bound the uncertainty thereby reducing conservatism a

high order weight was required which resulted in a high order controller.
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Figure 4.8: Bode plots of the perturbed plant for different values of Ja-
(1) Ja = 0.0002 and (2) Ja = 0.002.
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Figure 4.9: Bode plots of the additive-error and the error-bounding function:

(1) additive-error and (2) error-bounding function * 2(3).
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Figure 4.10: ?7°°-goptimal controller characteristics:

(1) [/0'a))]; (2) TK M I; (3) [W j(ju,)/GoO *)J;
-1
4) y|W.P + [W:GW)/Go(Gw)|: and (5) {ANWIA + mU<)IG,, (ju)l9)
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Figure 4.11: For 'W°-controller: (1) n{oj) and (2) J(w).
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Figure 4.12: //-optimal controller characteristics:
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4) y|W .:+|Wis3(Gw)/Go(jw)P and (5) (*|W,P + \W,(ju)IGo(jw)\-9)
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Figure 4.13: For //-controller: (1) //(w) and (2) J(w).
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Figure 4.14: Bode plots of sensitivity function for different values of Ja-

1) Ja = 0.0002; (2) Ja = 0.0011 and (3) Ja = 0.002.
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Figure 4.15: Step responses of the disturbance for different values of Ja'

(1) Ja = 0.002; (2) Ja = 0.0011; (3) J. = 0.0006 and (4) Ja = 0.0002.



Chapter &

p-K ITTERATION: A NEW
ALGORITHM FOR
p-SYNTHESLS

5.1 Introduction

Robust performance is said to be achieved if the design specifications of a controlled
system are satisfled in the presence of disturbance signals and model uncertain-
ties. A general framework for analyzing robust performance using the structured
singular value u as a measure of performance was introduced by Doyle [Doy82],
who later proposed a controller synthesis procedure, called p-synthesis [Doy85]. In
this procedure a controller is sought which minimizes u, or which achieves level of
performance arbitrarily close to the optimum g. This minimization problem has
not yet been solved, but in [Doy85] an approximate solution is given involving a
sequence of minimizations, called D — K iteration. _
Recall that in Section 3.10, the robust performance design problem can be

stated as

K stilz]l?;'tl‘izing igypg_ #A(M) (0‘1)

This problem has proved difficult to solve and a solution is still not available.

However, an approximate solution has been given by Doyle [Doy85] based on the

100
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following bound
~ inf & -1
ua(M) < inf 5 (DMD) (5.2)
The idea is to look for a solution to

¢ i, 5P jnf 7 (DMD™) (5.3)

even though the upper bound is not always equal to p. For fixed D, (1.3) is
equivalent to
it | BB, 10, (5.4)

as shown in (3.123), where P := DPD-! and D := diag {D, I'}. This is a standard
form of H°*-optimization problem. Therefore the approximation of infpep (DM D)
to uz (M) plays a key role in y-synthesis. In real-x or mixed-u analysis, the struc-
tured singular value uz (M) with respect to real parametric uncertainties or mixed
real/complex uncertainties might not be approximated by infpep &(DMD™1), in
which case D — K iteration fails. This is the reason why p-synthesis is only appli-
cable to a feedback system with complex uncertainties. In those cases Doyle has
conjectured that this upper bound is within 15% for the true value of uz (M). If
p-synthesis is used to design a p-optimal controller of a system with real paramet-
ric uncertainties, the degree of conservatism is arbitrarily large! However, p — K
iteration as proposed in this chapter can overcome these problems and is applicable
for controller design for complex-y, real-y or mixed-p cases.

The new procedure, p — K iteration, which will be presented here is motivated

by the following:

o In Helton [Hel88], it is stated that many optimization problems have the
property that an optimum solution must make the objective function con-

stant in w almost everywhere.

o In many examples, using D — K iteration it can be observed that the “u-
optimal” controller appears to flatten pz (M) at least over the bandwidth of
the system. A peak in the p-curve implies that a small perturbation exists
for which the desired levels of robust stability and robust performance will

not be achieved.
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The idea then in the new algorithm is to determine a sequence of controllers
which yield a flat structured singular value. This after all is what happens in H*
optimization where the H*-optimal controller results in a cost function with a flat
maximum singular value.

To get some insight into how this might be done we will consider a specific
robust performance problem for a single-input single-output plant. This is covered
in Section 5.2. Then in Section 5.3 the p— K iteration algorithm is presented for the
general robust performance problem. Convergence of the algorithm is considered
in Section 5.4, and two illustrative examples are described in Section 5.5. A brief

summary is given in the last section.

5.2 A SISO Robust Performance Problem

To gain insight into the new algorithm, u — K iteration, let us consider a SISO

control system configuration of Figure 5.1, with the following nomenclature:

Go: nominal plant, with multiplicative input uncertainty
A:  normalized model error, |A|l,, <1

W, : (model) error bounding function

Wiy : performance weighting function

A, ¢ normalized fictitious uncertainty to characterize performance, ||A,[l, <1

.

> "\{/g — A d_ ... Ap e = o =
* +

+

o— K ‘ =0+ G, =0 A

Figure 5.1: A SISO robust performance problem.

The configuration can be rearranged into the standard M — A structure of by
setting
A = diag(A, A,) (5.5)




In which case, the interconnection matrix M is given by
-WoTy —WoToGy!
T WiSeGe WS,

where

To = KGO(I + I{Go)_l

is the nominal complementary sensitivity function, and
S() = (I + G()I{)_l

is the nominal sensitivity function.
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(5.6)

(5.7)

(5.8)

The robust performance problem is to find a stabilizing controller K such that

the H* norm of the transfer function from d to e is less than 1 for all perturbations

A, J|All,, < 1. This is equivalent to finding a stabilizing controller K such that

A (M) < 1, and therefore it makes sense to try to solve (5.1).

For this relatively simple interconnection matrix M the following facts can be

shown:
Fact 1:
ua(M) <5(M), VweR
Fact 2:
(M) = | M|, the Frobenius norm of M
Fact 3:
pa (M) = |[WiSo| + |WeTo| , where |- | denotes modulus
Fact 4:

If at some frequency wq

|W]SOGOI = ]W2T[)GEII

then
pa(M)=5(M)

at the same frequency wy.

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)
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Suppose now that an H*-optimal controller Kj is found for M, i.e. we solve

121, (5.14)

K sttil?;'tl‘izing
It is well known that ¢[M(XKp)] is flat over frequency, and from the above facts
(and our observations) ux [M(Ky)] will often have a bandpass-like characteristic
as illustrated in Figure 1.2. A little thought suggests that a controller which forces
pa(M) to be flat will result in a convex &(M). Suppose then that we multiply
M by a bandpass-like rational function r(s) similar to the shape of uz[M(Ko)]
and calculate the H*-optimal controller K; for the product M. One might then
expect &[{M(K1)] to be convex with uz[M(K)] flatter than pz[M(Ko)]. This
leads us into the p — K iteration algorithm presented for a general multivariable

problem in the next section.

_. Gmag)!

-
-

S
/ A4
L Mg

-

@

S

Figure 5.2: The maximum and structured singular values of M(Kp).

5.3 u— K Iteration

The above discussion motivates the algorithm now proposed for finding an approx-

imate solution to the general robust performance problem

sup 4z [F(P, K)] (5.15)

K sti?ifl.izing weR
The basic strategy is to “flatten” the p-curve.
Find the stabilizing H*-optimal controller (a variety of methods exist)

Ko == arg iréf | 7P, K)|| o (5.16)
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The optimization is over stabilizing K, but for notational convenience in (1.16)
and much of what follows the word “stabilizing” has been omitted.
Find the p-curve corresponding to Ko (the Matlab toolbox, u-Tools [BDGPS91],
could be used for this)

to(jw) := px [FI(P, Io)] ' (5.17)

over a suitable range of frequencies.

Normalize po{jw) by its maximum value. Let fio(jw) denote the normalized po(jw).
Find a scalar stable minimum phase real rational function fo(s) by fitting to the
fio(jw)-curve obtained in Step 3.

Multiply the interconnection matrix Fi(P, K) by fio(s). In the specific example of
Section 2 this would correspond to multiplying each of the weights W; and W, by
Fio(s)-

Find the H*-optimal controller

Ky (s) := arg inf || Fo(s) FU(P, K)o (5.18)

Step 7:

Find the p-curve corresponding to K
tm(jw) = pa [E(P, K1) (5.19)

over the frequency range of interest.
Normalize p1(jw) and denote it by fiz(jw).
Curve fit iy (jw) to get f1(s).
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Step 10:
Find the H*-optimal controller

Ko (s) = arg inf |7 ()fio(s) FI(P, K, (5.20)

Step 11:

Find the p-curve corresponding to K,

(i) = pa [F(P, )] (5.21)

Subsequent steps of the algorithm should now be clear, and in ﬁractice would
be continued until the p-curve was sufficiently flat over the frequency range of
interest or until the desired level of performance (as measured by the peak value

of 1) had been reached.

5.4 Convergence

In this section we consider the convergence properties of the proposed u — K
algorithm.

The algorithm generates the following sequences:

Ko = arginf||Fi(P, K)|, po = pa [Fi(P, Ko)]
Ky = arginf ||AFi(P, K) = pg [Fi(P, Ky)]
Ky = arginf||infioFi(P, K)o 2 = pa [FU(P Ky)]

(5.22)

Suppose that we normalize each of the u-functions by dividing each curve by its

maximum value:

fin = n=0,1,2,.- (5.23)

ll#alleo *
Then, it is easy to see that

0< fn(jw) <1 VweR and |finll, =1, n=0,1,2,-- (5.24)
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Consider the infinite sequence {¢,}32, defined by

co = ||Fi(P, Ko)llo, = inf I F(P, K)o
a = ||geFi(P, K1)l = inf || Fi (P, Koo
& = ||frfoFi(P, K)ll, = inf |1 fio F2( Py K)o

(5.25)

Now because &[fip—1 - - - o Fi(P, K,)] is constant in w, it follows from (5.24) that

“lan-l . ﬁ'D-FI(Pv I{n)”oo = ”ﬁn/jn—-l e ﬂOE(Pl I{")”oo (526)
and hence
en = |fn=1 FoFU(P, Ku)lloo
= ”ﬁnﬁn_l e ﬁOE(Pv I{n)Hoo
> it | infin-1 -+ o PP, K)o
= Cum (5.27)
That is
Cp = Cny1 20 (5.28)

The sequence {c,}32, is therefore monotonically decreasing and bounded, and

by the Bolzano-Weierstrass theorem [Bar66] it has a limit point. That is
¢p, — limit point, as n — oo (5.29)

We now present a reasoned argument for believing that the sequence {fi,} will
converge to a frequency independent function equal to 1.

First, a Lemma which follows from [Hel85]:

Lemma 5.4-1 Let J(:) be a “well-posed” cost function i.e. it satisfies Helton’s
assumptions (1985, Theorem 4.1). Then if for a given controller K;, 5[J(K;)] is
frequency dependent, then there exists another controller K; such that &[J(K;)]
is frequency independent and [|J(Kj)l|,, < ||J(K).-
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Next, let
Jo(K) = fin—y -+ o Fi( P, K) (5.30)

and assume that Helton’s assumptions are satisfied. Then with this notation we

have from (5.27) that

en = [[Ja(Kn)lloo 2 1finTn(En)ll o (5.31)
Therefore if fi, is frequency dependent we have by the Lemma that

0 [[in Ju ()| < [linn (K)o (5.32)

or equivalently
Cnp1 < Cn (5.33)

But we have already shown that the sequence {c,} converges and therefore the
sequence {ji,} must also converge to a frequency independent function (which
must be 1 by normalization), otherwise {c,} may well decrease below the positive
limit.

The above argument is clearly lacking in rigour, but it does offer support to

the observed effectiveness of the algorithm.

5.5 Examples

Two examples are given to illustrate the application of the y — K iteration algo-
rithm. Example 5.5-1 is SISO and example 5.5-2 is MIMO.

Example 5.8-1: In this example we solve the following robust performance
problem:

inf  sup pz(M)

K stabilizing ,eR

where
—WoToGyl —WiWoToGy?

M = , Ba(M) = |[WrSo| + [WaToGy'
So WS NA()|10|I200|
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and
_ 0.5(1—3s)
Gols) = IR T05)
14 2
Wi(s) = 50t izE
1+ o007
3 __
Was) = 0.12561-1%2
2

The design problem corresponds to meeting disturbance rejection requirements in
the presence of plant uncertainty modelled by an additive perturbation; see Figure

5.3.

W) [ A 4

o= x| G b td ol |-

Figure 5.3: System with additive uncertainty.

Bode magnitude diagrams of the weighting functions and the open-loop gain
are shown in Figure 5.4. The p-curve is approximately flat after just 3 p — K
iterations as shown in Figure 5.5. The Bode magnitude diagram of the p-optimal

controller is given in Figure 5.6.

Example 5.5-2: This MIMQ example is taken from the MATLAB toolbox
manual, p-TOOLS [BDGPS91] where it is used to demonstrate y-synthesis. The
problem is to meet disturbance rejection requirements in the presence of plant
uncertainty modelled as a multiplicative perturbation at the plant input. The
plant model is known as HIMAT and represents a scaled version of a remotely

piloted aircraft. The nominal state-space model is

—0.0226 —36.6 —18.9 —32.1 ‘ 0 0
0 ~19 0983 0 o |0as o
T ] 00123 -11.7 —2.63 0 | —71.8 224

0 0 1 0 0 0
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0 573 0 O 00
C= D=
0 0 0 573 0 0

and the weighting functions for the multivariable version of the interconnection

matrix M as shown in (5.6) are

0.5(s 4+ 3
W) = S

50(s + 100
W) = Tt

where I, is the 2 X 2 identity matrix.

Bode magnitude diagrams of the weighting functions and the singular values
of the open-loop gain are shown in Figure 5.7. The p-curves for several u — K
iterations are shown in Figure 5.8. The Bode diagrams of the singular values of

the p-optimal controller are shown in Figure 5.9.

5.6 Summary

A new algorithm, pu— K iteration, has been presented for u-synthesis. The accuracy
of the algorithm depends on the curve fitting of the ji(jw) curves. In the examples
tested so far the algorithm compares well with D — K iteration and only requires a
single scalar function to be fitted over frequency at each iteration. Each iteration
does, however, require the calculation of 4 over a range of frequencies, and this
computation is known to be difficult in general. As with D — K iteration, there is
no a priori guarantee that the u — K iteration algorithm will converge to a global
minimum. When applied to ill-conditioned plants it has been observed (although
not shown here) that the p — K iteration is more stable (computationally) than
D — K iteration; this will be the topic of further research in the next chapter.
Furthermore, as will be shown in Chapter 7, the algorithm can be also used to
design a u-optimal controller for robust performance if the perturbed systems have

parametric (real) modelling uncertainties.
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Figure 5.4: Bode magnitude diagrams of the weighting functions and the open-loop

gain (Example 1).

1.45 I

1.4

1.35
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1.25
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[rad/sec]

Figure 5.5: Bode magnitude diagrams of the curves of the 3 fi —K iterations

(Example 1).
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Figure 5.6: Bode magnitude diagram of the //-optimal controller (Example 1).
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Figure 5.7: Bode magnitude diagrams of the weighting functions and the singular

values of the open-loop gain (Example 2).
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Figure 5.8: The *-curves for several jj —K iterations (Example 2).
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Figure 5.9: Bode diagrams of the singular values of the “-optimal controller

(Example 2).



Chapter 6

ROBUST CONTROL OF A
DISTILLATION COLUMN

6.1 Introduction

The purpose of this chapter is to give insight into the problems associated with the control
of ill-conditioned plants, and to illustrate the usefulness of u-synthesis by p — K iteration.
As in [SMD88] we focus on the control of a high purity distillation column, and use the
same linear plant model.

The paper of Skogestad, Morari and Doyle [SMD88] generated interest in controller
design for ill-conditioned distillation column systems and was followed up by a design case
study attempted by several authors at the 30th IEEE Conference on Decision and Control
held in Brighton, 1991, [HHL91] [PLG91b] [ZhK91] and [YaH91]. Skogestad, Morari and
Doyle [SMD88] also applied D — K iteration to design a u-optimal controller. It is therefore
of interest in this thesis to use this same example to design a g-optimal controller using
u— K iteration.

A full description of the distillation column is given in [SMD88]. A brief description of
the model is given below. The distillation column configuration to be studied is given in
Figure 6.19. The purpose of the distillation column is to separate the output feed into its
light (concentrated in the distillate) and heavy components (concentrated in the bottom
product). The manipulated variables are the boilup, the reflux and the distillate flow. The
measurements are the controlled variables, namely the top and bottom compositions. We

will only consider using two manipulated variables: reflux and boilup, which is so-called

114
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LV configuration. We will use the same linear model as in [SMD88].

Before determining the p-optimal controller we will consider some general problems
associated with ill-conditioned plants. By analyzing a particular controller structure and
design strategy, the potentially damaging effects of an ill-conditioned plant on robust
stability and robust performance are revealed. The structured singular value u, used to
measure robustness, is shown to be determined at high frequencies by the high plant gain
(largest singular value) and at low frequencies by the low plant gain (smallest singular
value). This is as one might expect since small loop gain is typically required at high
frequencies for robust stability, while large loop gain is usually required at low frequencies
for robust performance. In the intermediate frequency range both the low and high plant
gains are significant in determining p.

A design is carried out for the distillation column using the s — K iteration algorithm
proposed in Chapter 5. This design example addresses the y-optimal control problem also
considered by Skogestad et al. [SMD88] using D— K iteration, and by Freudenberg [Fre89b]
using a loop shaping method. It is observed that the p — K iteration method is able to
reduce the size of u below that reported in (Skogestad et al., 1988) and (Freudenberg, 1989)
after 5 iterations. The design objective are the same as in [SMD88], and consequently the
same weights are chosen. However, the design example is not very practical because no
amplitude and bandwidth constraints are placed on the controller.

The chapter is organized as follows. In Section 6.2, a particular controller structure
is presented for a 2-input 2-output system (corresponding to the distillation column).
Analysis in Section 6.3 then shows how an ill-conditioned plant can be easily destabilized.
In Section 6.4, it is shown how the optimal robustness measure yu is determined at high
frequencies by the high plant gain and at low frequencies by the low plant gain. The
robustness measure g is analyzed in Section 6.5 for a plant inverting controller, thereby
establishing the unsuitability of such a controller. From the analysis of Sections 6.3-6.5 a
design strategy for shaping the loop gains is established in Section 6.6. The strategy is not
easy to implement, but fortunately p — K iteration can be used as shown in Section 6.7
where it is applied to the distillation column example. The chapter concludes in Section

6.8 with a summary and discussion of some of the important features of p.
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6.2 A Particular Controller Structure

Consider a FDLTI perturbed plant with multiplicative uncertainty. The control require-
ment is to design a control system which remains stable and maintains a minimum per-
formance level despite the presence of a disturbance signal d and model uncertainty A.
The control configuration is shown in Figure 6.1, where Go is a nominal plant model with
multiplicative input uncertainty. The uncertainty is represented by a normalized pertur-
bation A (||Al|gg < 1), and an error bounding (weighting) function W.. $is a normalized
fictitious performance perturbation (|<Sloo < 1), with an associated weighting function
Wi. For round directionality [Fre89b], the weights Wi and W: are each assumed to be an
identity matrix multiplied by a scalar stable and minimum-phase rational function (i.e.
Wi = wil, W- = W:I). We win also assume that Go is nonsingular in the field of real

rational matrix functions of s.

dL

~(s)
Q) G,(5) A (s)

Figure 6.1: System with multiplicative input uncertainty.

Figure 6.1 can be rearranged into the M —A structure of Figure 6.2, where A :=
diag {A, f}, absorbing into M the weighting functions used to model the uncertainty and

performance. The interconnection matrix is

—W T, —tujT/Gn ~
M = (6.1)
. w\SoGo w\SQ

where the input complementary sensitivity function matrix is
T/:= AGo(F4-AGo)-* 6.2)
and the output sensitivity function matrix is
So:= {I+ GoKT" (6.3)

Recall that the ratio of the largest to the smallest singular value of a matrix is defined

to be its condition number, and therefore

a [Gofju)]

S.[Gotju3)] 6-4)

cond [Gofj(jj)] =



Figure 6.2: M — A structure of Figure 6.1.

If at some frequency the condition number equals one, then the level of gain is uniform in

all directions at that frequency. A large value of the condition number implies that the

gain of the system has a strong directional dependence and we say that it is ill-conditioned

at that frequency.
Now suppose the singular value decomposition of Gy is given by |

Go = ULV

(6.5)

It is then interesting, as in [Fre89b], to let the left and right singular subspaces of the

controller K(s) be dictated by the right and left singular subspaces of the plant. That is

we will assume that the controller can be written as
K=VTU"
By mathematical manipulation, this yields

Tr KGo(I+KGo)™ = VIZo(I +TZ) Vv =VTyv*

TGyt = VI,V - VI = vz

(I+GoK) ' '=UT + D) U = USoU*

&
1

S0Go = USoU*-USeV* = USoTV*

where T := T'Zo (I + ')~ and o := (I + Zpl)™%.

(6.6)

(6.7)
(6.8)
(6.9)

(6.10)
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On substituting (6.7)-(6.10) into (6.1), the interconnection matrix M becomes

[ —w, VYV —w, VTS5 U™
M =

| wiUSoZ VvV wiUSoU*

Vv 0] ~wdy —-wDi55']1[V o1
oo U |wiome  wido 0 U

'V 0 u v o]" 611
T lo vl 7™M v 1)
where . .
—wy Tt —szIEEI
Mg = . . (6.12)
wlsoz() w1.5'o
Since

o o)

is a block diagonal unitary matrix which conforms with the block diagonal matrix

" A0
A=
0 ¢
it follows that
(M) = 6(Mwa) (6.13)
and
B (M) = pz(Mya) (6.14)

As far as the determination of u is concerned, therefore, Figure 6.1 can be simplified

to Figure 6.3 below.

- o a1 N T
o= | A ool 5 ——%[ B —

Figure 6.3: An simplified system of Figure 6.1.

In Figure 6.3 the plant ¥y and controller I' are both diagonal and the corre-

sponding interconnection matrix is M,,q. Therefore, for ease of notation we will
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in the following discussions assume that the nominal plant Gy and controller K
are diagonal. Also since we will principally be concerned with 2-input 2-output

ill-conditioned plants we will assume that the nominal plant is given by

Go(s) = diag {g1(s), 2(s)} (6.15)

where

lg1(Gw)| > lg2(jw)], YweR (6.16)

In the next section we show how such an ill-conditioned system is potentially very

sensitive to small simultaneous perturbations.

6.3 Ill-Conditioned Plants and Robustness

The term “directionality” refers to the fact that multivariable systems possess
properties that vary spatially, or with direction, as well as with frequency. For
example, a multivariable plant may possess much higher levels of gain when acting
on signals in certain loops than when acting on signals in others.

It is well known that when the plant is ill-conditioned with high condition

number

cond [Go(jw)] := :—;’—:—8—% >1, YWweR (6.17)

and when uncertainty and disturbances are present simultaneously at different
points in the feedback loops, a singular value analysis may fail to yield a useful
assessment of robustness [StD85]. From a system viewpoint ill-conditioning at a
certain frequency means that the gain of the plant exhibits a strong directional
dependence.

An ill-conditioned plant can be destabilized by small simultaneous perturba-
tions as is now illustrated. Consider the system described in Figure 6.4 which is
equivalent to Figure 6.3.

When the perturbations are chosen as

A A 0 Ay b11 612 0 0
A= = , 6= = (6.18)
Ay Ay 0 0 81 a2 6 0
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= WAy, . Wdi =
) ky 5 &
K Wi, W3y, :X
W A,y T 8
k, = &
WA, Way, [

Figure 6.4: An equivalent system.
the characteristic equation, det(I — MA) = 0, of the closed-loop system is
(1 + k1g1) (1 + k2g2) + kaw2D12g1w1651 = 0 (6.19)

This implies

wr wakaga . 9_1A12621 -0 (6.20)

1+
1+ kigr l14+kg2 g2

that is
1+ wi 81 * Waly - §—1A12621 =0 (621)
2
where s; and #; denote the nominal sensitivity and nominal complementary sensi-

tivity functions, respectively.

Choose
Dyg = ! el (6.22)
Jwssal - fwata] - [2
and
by = ! ei% (6.23)
\/|w131| - Jwata] - |2
where
0, +0,=m— ¢ (w151 - Wty - z—:) (6.24)
It is clear that A, in (6.22) and 6, in (6.23) satisfy equation (6.21) and
|Aus| = 6] = . (6.25)

\/lesxl wsta - |2
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Therefore the structured singular value p (M) with respect to the structure A =

diag {A, 6} is

pi(M) = min {7 (A): det(I - MA) =0} = min max {5(4), 5(5))
1

AcA
\/]'wlsll + |waty| -

IN

max {|Agzl, [621]} = (6.26)

g
g2

This implies

g

pa(M) 2 \' fwisy| - [wats| - 7 (6.27)

The term |g1/g2} in the right hand side of the above inequality is just the condi-
tion number of the plant. Hence a feedback system whose plant is ill-conditioned,
( lg1(jw)/g92(w)|] > 1, Yw € R), is potentially very sensitive to small sizes of
“simultaneous” perturbations shown in (6.25) even though relatively much larger
“individual” perturbations cannot cause instability. For individual perturbations,

the system is robustly stable iff
lwat;| <1, Yw € R, i=1,2 (6.28)

and

Jwisi] <1, VweR, i=1,2 (6.29)

Furthermore, the design strategy (of keeping p small) requires that the terms
|wys1] and |wats| in (6.27) be kept small. This results from the interaction between
the upper and lower loops.

It is very instructive for us to study further the inequality (6.27). Define

91(Gw) (6.30)

J(w) = J hor(w)ss(Gw)l - fwa(j)tali)l | 750

We will consider the value of J(w) for 3 situations characterized by the nominal

open-loop transfer functions

Ii(s) = ki(s)gr(s), and
lo(s) = ka(s)ga(s)

I
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@
)
A o
“’1&\

Figure 6.5: System with |l;(jw)| < [(jw)|. (1): |L(jw)| and (2) : |L(jw)|.

0dB

e case (1): |L(jw)| < |l(jw)|, Vw € R; see Figure 6.5.

(a) at w = wy:

Gl =1 = G = vty = e
s ==

1.3 if Ll;(]wl) = —135°
i.e. the phase margin PM = 45°

L I o B
Thus
J(w1) = | 1.3 |wi(Jwr)]| - [we(fuwn)| - gl(]:wl)
92(jwr)
(b) at w = was
(el <1 = lsiGw)] = gy ~ 1

l(jwa)l =1 = |ts(jws)] = padell =13 if PM =45°
Thus

S 1310t |22

It is obvious that in this case both J(w;) and J(w;) will be large for an ill-
conditioned plant. Note that the weights w; and w, will typically be near 1 in the

crossover region.

e case (2): |l1(jw)| = |la(jw)|, Yw € R; see Figure 6.6.

This is the case for a plant-inverting controller. Let

[h(jw)| = [(jw)] =: [I(jw)]
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1)=(2)

0dB %\ ®

Figure 6.6: System with |l;(jw)| = [L(jw)|. (1): |L(jw)] and (2): [L(Fw)|-

At unity-gain crossover frequency wo, |{(jwo)| = 1, and we have

) 1 B i s
[s(jwo)| = TG =13 if PM =45
. _ _Gwo)|  _ . _ 4o
two)| = T3 Gaoll 1.3 if PM =45
Thus
= N (i |910@0)
J(wo) =1.3 [wy(jwa)l - [wa(jwa)l !yz(ng)

which is large for an ill-conditioned plant.
o case (3): |i(Jw)| > |l2(jw)|, Vw € R; see Figure 6.7.

(1)
)

S

Figure 6.7: System with [l;(jw)| > |l(jw)l. (1): |h(jw)] and (2) : |L(jw)]-

0dB

(a) at w = ws:

LW(w)l > 1 = [s:(w2)l = mmgay <!
[(ju)l =1 = [|ta(jws)| = podeals =13 if PM =45°

Thus J{(w,) will not be too large even if the plant is ill-conditioned.
(b) at w = wy:

Ill(]w1)|=1 S lsl(jwl)l = m=13 if PM = 45°
L) <1 = |l = gl ~ b)) <1
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Thus J(w;) will not be too large even if the plant is ill-conditioned.

The above discussions reveal that case (3), in which
[h(w) > [(jw)], YweR (6.31)

is the best way of keeping the value of yz (M) small for all frequencies of interest.

6.4 Analysis for u-Optimal Design

From the analysis of Section 6.2 it is clear that for the particular choice of controller
we can, without loss of generality, assume that both Gy and K are diagonal.

Therefore (6.1) gives

—U)ztl 0 —wgtlgfl 0
0 —wot 0 —wotagy?t
M= 22 229 (6.32)
w18141 0 w18y 0
0 Wy Sgs 0 w18y

It follows from [Doy82] that if the number of nonrepeated uncertainty blocks in A

is equal to or less than 3 in complex perturbation case, then
o =i F -1
pa(M)= inf & (pMD?) (6.33)

where the scaling matrix D = diag {;,dI,}, with d > 0. Consider, therefore,

—w2t1 0 '-"LU2t1gl_1d_1 0
0 —wgt 0 —watagytd?
DMD = 22 27292 (6.34)
wy8191d 0 w18 0
0 w;8292d 0 w183

The rows and columns of the matrix DM D! can be interchanged by a permuta-
tion matrix P, P = P~! = PT. Choose

1

P= (6.35)

o = O O
oo = O
= O o ©

0
0
0
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Then direct manipulation gives

—tU2t1 —wgtlgi_ld-l 0 0
d
P (DMD'l) Pl = w1191 W11 0 0
0 0 —wsts *Wztggz_ld—l
|0 0 w1 8292d w1S2
[My(d) 0 .
= . =: M(d) (6.36)
0 M,,(d)

Thus

ua(M) = inf 5 (DMD™) = jnf, & (PDMD™P™)

]

inf max{a [1()] 5 {z\zrn(d)]} (6.37)

Mathematical manipulation then gives
o 7 [1u@)] = [Ma@)],, 7 [Mn(d)] = M),
e both & [Mn(d)} and & [Mgg(d)] are convex functions of d.

e ming,od []\:f,,(d)} = |wat;| + |wnsi|, i =1,2, when

watig"

wW18iG:

d=

'=1d;

pa(M) > max {Jwats| + |wis1], [wate| + |wisa|}
The curves & [Mu(d)] and & [Mn(d)] are crucial in determining ux (M)
and therefore their study is clearly worthwhile. Three cases are shown in Figure

6.8.

10} ) a) @) W
@
t
i 1
! I ! N
' d ! : d [ d
d,d, d d, d d,
case (a) case (b) case (c)

Figure 6.8: Curves of (1): & [Mu(d)] and (2): & [Mzg(d)}.
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Furthermore, recall from Section 6.3 that for optimal x4 thé open-loop transfer
functions should satisfy |l;(jw)| > |lb(jw)|, Vw € R. This directly implies the
following results:

o at low frequencies: |L(jw)| > 1, i=1,2
[ta(jw)l = [h(w)l =1
ls2(j)l m L), (o)l = h(iw) ™
Thus
(6.31) = [s2(jw)| > [s1(Gw)l
= |wats] + |wisa| > |wats]| 4 |wisi]
= inf & [Mn(d)] > inf & [Mu(d)]
This corresponds to case (a) in Figure 6.8 and px (M) = infgyo & [.Z\%ﬁd)].
o at high frequencies: |L(jw)| <1, 1=1,2

[s2(jw)| = [si(jw)| =1
()l = [LGw)l, [h(w)] = |L(jw)]
Thus

(6.31) = [t2(jw)| < [t1(5w)]
= |waty| + |wisz| < |wats] + |wisy]
— inf & [Man(d)] < inf & [Mu(d)]
This corresponds to case (¢) in Figure 6.8 and pz (M) = infyso & [Mu(d)].

The structured singular value u, has therefore been shown to be determined
at low frequencies by the low gain g; in the lower loop. At high frequencies p is
dependent on the higher gain g, in the upper loop. This is not too surprising since
robust performance requires high gains at low frequencies and robust stability
demands low gains at high frequencies. Thus there exists no coupling between the
upper and lower loops due to A;; and §;; with ¢ # j at low and high frequencies.
However a coupling effect does occur at intermediate frequencies for case (b), the

transitional stage of the curves between case (a) and case (c).
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6.5 Plant-Inverting Controllers

As multivariable control theory has developed there has been (particularly in the
early days) a keen interest in controllers which aim to invert the plant. Consider

therefore what happens when the single-loop controllers are chosen as

I

B(s)g:1(s)™!, and (6.38)
B(s)g2(s)™? (6.39)

ki(s)
ka(s)

where J(s) is a scalar loop transfer function which makes k;(s) and ky(s) proper
and ensures stability of the closed-loop system. We will calculate the structured
singular value to evaluate the corresponding performance levels. For k; and k,

given by (6.38) and (6.39), we have

B(s
ti(s) = ts)= 1—;%%—5 =:1(s), and (6.40)
1
51(8) = s(s8) = T8 =: $(s) (6.41)
from which (6.36) becomes
—wyt  —watgy d? 0 0
. d 0 0
M) = |29 o (6.42)
0 0 —wat  —wytgyld™!
0 0 w18g2d wys

The following results are useful:

¢ ming,o & [Mu(d)] = |wqt| + |wys|, when

wytgr!

w18g1

e ming, & [Mn(d)] = |wyt| + |wys|, when

watgy”

=: d: .
w1892 : (6.44)
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o Z=lal <1, sincelq|> lgl

o di<dy and mingso & [Mu(d)] = mineso & [Ma(d)] imply

5 [My(d)] > & [Mu(d)], and (6.45)
5 [Mu(da)] > & [Ma(da)] (6.46)

d

o 4 |
Figure 6.9: Curves for (1): & [Mu(d)] and (2): & {Mgz(d)].

The latter are illustrated in Figure 6.9 which corresponds to case (b) in Figure
6.8. The value of uz (M) is given by

pa(M) = inf max {7 [Mu(d)],7 [Man(d)]}
= inf max {|M(d)],, || ¥(d)|,.} (6.47)

d>0

and the optimal value d of (6.47) is

d arg 325 max {"M“ (d)"}r ’ ”M”(d) ”F}

ws {a 1@}, = itato],
arg {d: “Mn(d)"F = “Mn(d)np}

|'UJ2t| 1
= ,, T — 6.48
lwis|  |g192 ( )

This last equality follows directly from

~ 2
|¥u(d)], = lwstl? +lwis]? + fwrsgud]® + lwatgT’d" %, and  (6.49)

[#taa],

[wat|? + Jwis|® + |wisgad|? + |watgyd | (6.50)

]
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and thus
paQO = fonel + st + s -t |12 2]
lg2| ~ 1gal
1
= I’wlslz + ]wzt]z -+ [wls[ . I’wg‘tl . [cond (Go) + (;n—d(TO)-] (651)

Moreover, if the plant is ill-conditioned, cond(Go) > 1, and then (6.51) shows
that p 5 (M) achieved by the plant-inverting controller is proportional to the square
root of the condition number of the plant, with constant of proportionality equal
to the geometric mean of the nominal performance and robust stability functions,

that is

pi(M) =~ \/|wls| - Jwat| - cond (Go) (6.52)
For scalar plant, cond (Gp) = 1, and (6.51) gives

ua(M) = fwrs| + hoat] (6.53)

6.6 A Design Strategy

From our analysis and the expectation that the optimal x4 will be constant, at least

over the frequencies of interest, we desire

pi (M) |wysz] + |watz| = ¢, in the low frequency range, and (6.54)

px (M) [wys1] + |wati| = ¢, in the high frequency range (6.55)

I

where ¢ is a frequency independent constant. Furthermore, we can establish the

following properties/guidelines for the optimal loop gains.

o In the low frequency range: |L(jw)| > 1 = [t;(jw)| = 1 and |sx(jw)| =

[1/;(jw)|. Assume that [ws(jw)| is constant in the low frequencies, then (6.54)

implies

w(jw)m—ij ~ Jwi(jw)sa(jew)] = ¢ — [wa(jw)ta(jw)| ~ ¢ — [wa(jw)| = constant
and hence

the loop gain |lo(jw)| // |wi(jw)| at low frequencies
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where a // b denotes that a is parallel to b.

o In the high frequency range: |l;(jw)| € 1 == [t;(jw)| = [ (jw)| and |s; (jw)| =

1. Assume that |w;(jw)] is constant in the high frequencies, then (6.55) implies
lwe(Jw)h (jw)| = lwa(jw)ti(Jw)| = ¢ — |wi(jw)s:(jw)| = ¢ — |wi(jw)| = constant
and hence

[—1

the loop gain [h(jw)| // |wa2(jw) at high frequencies

) 3 )

[0
Figure 6.10: Curves of (1): |wisi|+jwats], (2) 1 |wise|+ |watyl and (3) 1 pz (M).

But what should happen to |l;(jw)| at high frequencies and |[;(jw)| at low
frequencies? The open-loop gains [l;(jw)| and |l;(jw)| should be shaped to re-
duce the coupling effect between the loops in the intermediate frequency range

corresponding to case (b) in Figure 6.8. Note that in (6.27)

px(M) > \lelsll - Jwsta] j—‘
2

which reveals the coupling effect of the simultaneous perturbations, A;; and 6,
between the upper and lower loops.

It is very difficult to determine the optimal value ¢ of u5(M) and to properly
shape the loop gains for optimality. Fortunately, we can use p — K iteration as

will be demonstrated in the next section.

6.7 Distillation Column Example

In this section a p-optimal controller for an ill-conditioned plant is designed by u—

K iteration [LPG91]. The plant we consider is a simplified model of a high purity
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distillation column (LV-configuration) which was originally studied by Skogestad
et al. [SMDB88]. For more details of the process see [SMD88]. We will compare our
results with those reported by Freudenberg [Fre89b] using a loop shaping method
and by Skogestad et al. [SMD88] using Doyle’s D — K iteration methodology
[Doy85].

The transfer function of the nominal plant is
1 {0.878 —0.864}

Gol®) = 75571 | 1082 —1.006

(6.56)

and it is assumed that all the uncertainties can be represented by a normalized
multiplicative input perturbation A, [|All,, < 1, with error bounding function

s+ 0.2

W2(3)=‘w2I=2 s+ 2

I (6.57)

Performance is characterized by the performance weighting function

1 0.1
Wl(s) = w1[= 5 s

I (6.58)

The singular value decomposition of Go(s) is given by

Go(s) = USo(s)V* (6.59)
where
0.6246  0.7809 0.7066  0.7077
= , V= (6.60)
0.7809 —0.6246 —0.7077 0.7066
and
. 1.972 0.01391
Du(s) = diog {50075 1 1) (6.61)

Note that the singular subspaces do not vary with frequency and the condition

number is constant

cond [Go(jw)] = 141.7 VweR (6.62)

The controller K(s) is assumed, as in [Fre89b], to be
K(s) =VT(s)U* (6.63)

with
T'(s) := diag {k1(s), k2(3)} (6.64)
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In the sequel, we will use “u— K” iteration to design a diagonal p-optimal con-
1.972  0.01391

troller T' := diag {k1(s), k2(s)} for the nominal diagonal plant &y = diag {755+1, E v

The interconnection matrix M(s) shown in (6.32) can be rearranged into the

more compact form:

M = PMP™!
—wgty  —wytigy 0 0
_ w1S191 w181 0 0
a 0 0 —waty  —watagy!
0 0 w1829 w89
=: diag {M, M} (6.65)

by use of a permutation matrix P as in (6.35).
Because of the special structure of M and K, we can solve for k; and k,
separately. To see this consider the first stage of g — K iteration, which in this

case is the following H>-optimization:

It

Jnf sup & [M(jw)] Jnf sup & [M(jw)|

max {% "M“"oo’iﬁf ”Mgg“oo} (6.66)

i

The above expression reveals that the optimal controllers k;(s) and kq(s) can be
obtained separately from each loop, without loop coupling. It also demonstrates
a benefit of super-optimal H*-optimization over standard H*-optimization. A

problem with (6.66) is that kq(s) is hard to find by H*-optimization because

—waty —watagy!

[#22], = ~ [watags?| (6.67)

W18292 Wi S2

due to the fact that |g5?| is very large and dominates all of the other terms. A
remedy for this problem is to scale M, without changing the value of p A(M).
Let the scaling matrix D := diag {I, d,}, d > 0, then

oz (DMD™) = uz(M)

o &(DMD™Y)=g(PDMD™'P1)

where (PDMD~'P~1) is as shown in (6.36) and the nasty property of gy(s) has

1.
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been modified by the scaling factor d. In this example, d is chosen to be 141.7, i.e.
d = cond(Gy). i — K iteration can now be applied directly to DM D! instead
of M. After five u — K iterations the u-curve is reasonably flat and its maximum
value is less than was obtained by [Fre89b] and [SMD88]. Note that the curve
fitting for fi(jw), normalized u(jw), becomes harder as x4 gets flatter. The optimal
k; and ky are given by

(s +0.014)(s + 0.09)(s? + 5.1s + 3.15)(s + 10.6)(s + 25.5)(s + 53.4)
(s +10-3)(s + 0.027)(s? + 9.55 + 5.3)(s + 31.5)(s + 79.6)(s + 100)

(s + 0.014)(s? + 4.55 + 3.38)(s -+ 37.16)
(s + 10-5)(s + 0.27)(s + 22.54)(s + 84.47)

ky(s) = 2637

ky(s) = 397.6

Thus the p-optimal controller is K(s) = VI'(s)U* with matrices V and U shown
in (6.60); and T'(s) = diag {k1(s), ko(s)}. All the simulation results are shown in
Figures 6.12 to 6.18. Figures 6.12 and 6.13 show the Bode plots of the diagonal
subplants g1(s), g2(s) and the weightings, respectively. Figure 6.14 shows the u-
values of five u — K iterations. Bode plots of the optimal diagonal subcontrollers
k1(s) and ko(s) and the compensated loop gains are shown in Figures 6.15 and
6.16, respectively. The relationships between |wist| + |wati], |wyisz| + |watz| and
the “optimal” u-curve are shown in Figure 6.17. Figure 6.18 shows the comparison
of the p-curve obtained by p — K iteration with that proposed by Freudenberg
[Fre89b)] via a loop shaping method and that by Skogestad et al. [SMD88] via
Doyle’s D — K iteration methodology.

6.8 Discussion and Summary

The RSRP problem of an ill-conditioned plant, in this case a simplified model of
a high purity distillation column, has been solved by p — K iteration as proposed
in Chapter 5. The method was applied to DM D! instead of M to improve
convergence. The example illustrated how the u-curve becomes flatter when p— K
iteration is applied.

Because of the inequality ux [M(jw)] < &[M(jw)], there are 3 kinds of rela-
tionship between pz [M(jw)] and & [M(jw)] as illustrated in Figure 6.11.
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case (a) case (b) case (c)

Figure 6.11: Curves of (1): &(M) and (2): u(M).

o Case (a): px [M(jw)] = & [M(jw)] at some frequency w = wo
The demo example in the pu-toolbox of MATLAB [BDGPS91] corresponds to this
case. This demo example shows how to apply D — K iteration to the pitch axis

control for plant HIMAT which was presented in Example 5.5-2.

o Case (b): pjz [M(jw)] = & [M(jw)] for a frequency band w; S w < w;
The benchmark example proposed by G. Stein and J.C. Doyle in [StD88] corre-
sponds to this case. The plant is

B g
Go(s) = |: 8 ..1_.] , cond(G,) = 625 (6.68)
25s
with
_02(s+1) _200(s +1)
Wi(s) = 3 0.000) I, and Wy(s) = (s + 1000) L (6.69)

Without scaling of M, u— K iteration can be applied successfully to cases (a) and
(b), although the cond (Gy) of case (b) is much larger than the value of 141.7 for
the high purity distillation column.

o Case (c): The curve of uz [M(jw)] does not touch the curve of & [M(jw)].
The example of the distillation column is like this. It is so nasty that the intercon-
nection matrix M must be scaled before  — K iteration can be used effectively
to design a p-optimal controller. But note that not all examples corresponding to

case (c) have to be pre-scaled; it depends on the example.
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Furthermore recall that the interconnection matrix

—WoT; _‘W2TIGO_1
= (6.70)
W1S0Go WiSo
and the weightings are given by
15401 +0.2
Wi(s) = i)l = 5 ——— L, Wa(s) = wy(s)l =2 ss — L (67

A little thought reveals that
0 —2K(c0)

Mloe) = [0 0.5I;

] , and p[M(c0)] =05

Therefore the optimal solution to this problem does not give a flat p-curve over
all frequencies, but drops down in the high frequencies, as shown in Figure 6.14.
Therefore the control requirement for the RSRP problem is to flatten the p-curve
over a frequency range greater than the closed-loop bandwidth.

Finally it is worth emphasizing the interesting results obtained in Section 4;

see Figure 6.17:

o At low frequencies:

pA (M) = |wats| + [wiss| (6.72)

Thus “robust performance” is effectively determined by the “lower gain”

subplant gs(s).

o At high frequencies:

pa(M) = |wats| + lwis| (6.73)
Thus “robust stability” is effectively determined by the “higher gain” sub-

plant g1(s).

o At intermediate frequencies:

pa(M) > max{|wsts| + |wisi, [wata] + Jwrsa} (6.74)

Thus a “coupling effect” occurs between the upper and lower loops in Figure

6.4 in this frequency range.
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Figure 6.12: Bode plots of the diagonal subplants gifs) and g”is).
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Figure 6.13: Bode plots of the weightings uii(s) and W:(s).
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Figure 6.14: yu-vaJues of five /z—K iterations.
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Figure 6.15: Bode plots of optimal diagonal subcontrollers ki{s) and "2(s).



138

101

10«

10-1 10° 101

[rad/min]

Figure 6.16: Bode plots of loop gains li{s) and I:{s).

1.2
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Figure 6.17: Bode plots of -f lu2%*il, |wiS2|+ \w:t2| and optimal //-curve.
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Figure 6.18: Comparison of //-curves: (1) J+ hy 4, —K iteration, (2) loop shaping

by Preudenberg and (3) //-synthesis by Skogestad et al.
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Figure 6.19: The distillation column system.



Chapter 7

u~-OPTIMAL CONTROLLER,
DESIGN FOR REAL
UNCERTAINTY BY u—K
ITERATION

7.1 Introduction

For a SISO, linear and time-invariant plant with one real parameter uncertainty
and one complex fictitious perturbation representing performance uncertainty, the
structured singular value, pjz (M), is calculated in this chapter. Then y — K
iteration is used to design a u-optimal controller for a simple example. The results
are compared with those obtained for the same system with the real parameter
modelled as a complex perturbation. This illustrates the conservatism that can be
introduced by treating real uncertainty as complex uncertainty.

Feedback is mainly motivated by the incompleteness of the knowledge of the
system to be controlled. A nominal plant is a simplified, ideal, mathematical model
which is used to design a controller which will be robust against the modelling
uncertainties and exogenous disturbance signals. Generally speaking, a plant has

two kinds of uncertainties:

140
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o uncertain real parameters (real uncertainties) which are produced, for ex-
ample, by the variations of parameters with different operating points and

typically affect low frequency behaviour.
o unmodelled dynamics {(complex uncertainties) at high frequencies.

For real-parameter variations, complex-y analysis, as proposed by Doyle [Doy82],
can give arbitrarily conservative results.

For u-synthesis, recall from the discussion in Section 3.10 that the D — K
iteration proposed by Doyle [Doy85] is based on

o o T _1
pa(M)~ jof 5 (DMD™) (7.1)

for non-repeated complez uncertainty blocks. Expression (1.1) does not hold when
real uncertainty blocks are present, and hence in this case D — I iteration would
fail to find the p-optimal controller by H*-optimization. However, the ability of
up — I iteration to flatten u still works. Thus u — K iteration has an advantage
over D — K iteration when real uncertainty is present.

This chapter is organized as follows. In Section 7.2, some properties of bilinear
mappings are presented which are useful for calculating complex-p ! and real-u 2 in
the later sections. In Section 7.3, as an alternative to the conventional method of
caleulating complex-y by pz (M) = infpep & (DM DY), with M € C**?, a closed
form method is derived using a geometric approach. Building on this, in Section
7.4, a method for calculating real-u is given when there is one real modelling
uncertainty and one complex fictitious performance uncertainty. The section ends
with a simple algorithm for finding real-y. In Section 7.5, a p-optimal controller is
obtained by u — K iteration for a SIS0 example with real modelling uncertainty.
The results are compared with those obtained by treating the real uncertainty as

complex. Concluding remarks are given in Section 7.6.

lcomplex p := p when all the uncertainty blocks are complex.

2real 4 1= p when at least one of the uncertainty blocks is real.
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7.2 Properties of LFTs

Let C denote the set of complex numbers. The equation of a circle in the complex

z-plane centred at ¢ with radius rg is

[Z—Co[=?‘o, z2€C 22—502—602-1-6050:7‘(2)

—-rxalt 2] [j:o (7.2)

—Eo Co(_io —To

Now consider the following equation

L
[z 1]M, I:l =0 (7.3)
in the complex z-plane with
a b ‘
M, := 5 oal’ a,deR, beC (7.4)

where R denotes the set of real numbers. It is obvious that M, = M} and if a = 0,
then (7.3) gives
bz+bz+d=0 (7.5)

This is an equation of a straight line in the complex z-plane. Furthermore, if

a # 0, then (7.3) yields ,
1 21z
(2 1]{ ‘;] LJ =0 (7.6)

Comparing (7.6) with (7.2), it is clear that (7.6) represents a circle in the z-plane

ol

with
b :
centre ¢y = - (7.7)
radius ry = v=detM, (7.8)
|al
2 2 _d
and |cof® — o= — (7.9)

(7.9) implies that the circle does not contain the origin if ¢ > 0.
Geometrically, the straight line of (7.5) is the degenerate case of a circle with

infinite radius.
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To recap

i M= M, (7.10)

then [z 1]M, [j] =0 (7.11)

is an equation of a circle in the complex z-plane.
Let us now consider a bilinear mapping from the z-plane to the é-plane, defined

by
7z 43§ PO
= o rq — PS 0 7.12
3 Forgr 4P # (7.12)
which can be rewritten to describe the inverse mapping as
ré + s

z= , rq—psF#0 7.13
pE+yq 1-pef (7.19)

[T S] = [ qi _1 =R (7.14)
p g |- F

Then the circle defined by (7.10) and (7.11) in the 2-plane will be mapped to the

where

é-plane by the following equations:

2 L réts
[z 1]M2[1}=0 = (B 1]Mz{”5;‘7]=0
_ _ +
> [FE+3F pE+TIM, . =
p£+q
p
= 1][ 6} [ H=0
3
= [£ 1]M, ) (7.15)
where
M; := R*M,R (7.16)
Therefore
M} = M, => M} = M, (7.17)

The consequences are summarized in the following theorem (e.g. [StT83]):
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Theorem 7.2-1 (Bilinear Mapping): Under a bilinear transformation (or

LFT) the image of any circle is again a circle. |

In this theorem, straight lines are treated as generalized circles. Moreover, the
centre and radius of the mapped circle in the {-plane can easily be obtained by (7.7)
and (7.8). Note that a bilinear transformation is a linear fractional transformation

as described in Chapter 3.

7.3 Complex-u

In 1982, Doyle [Doy82], motivated by the conservativeness of singular values in
robustness analysis and design, proposed and developed the concept of the struc-
tured singular value (SSV). By introducing a fictitious bounded (in the unit disk)
uncertainty A, to represent performance requirements, robust performance can be
guaranteed against uncertainty A if and only if a robust stability test is satisfied
as described in Theorem 3.9-2. The problem is illustrated in Figure 7.1 below,
where A = diag {A, AL}

=

—{af—

— M

Figure 7.1: M — A structure.

If uz(M) is to be determined algebraically, as in Example 3.8-5, using the
identity pz (M) = infpep & (DMD™') with M € C**?, then it must be assumed
that the uncertainty blocks A and A, are complex. However, as we will show a
geometric approach can be derived using the properties described in the preceding
section when M € C?*? and A is “complex” or “real”. In this section, we will de-

velop the approach first for complex A. Needless to say, the fictitious performance
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uncertainty A, must be complex.
In Figure 7.1, the transfer function “seen” by A is Fi{ M, A,) using the notation

introduced in Chapter 3 for linear fractional transformations. Suppose

b
d] € C¥? (7.18)

a
M=[

c

then
_ bed, a-—-84,
FI(M,A,,)—a-I-l_dAP——l_dAP (7.19)

where § := det(M) and we assume 1 — dA, # 0. Then det(I — MA) = 0 implies,

and is implied by,
1—-A-F(M,A)=0 (7.20)
In which case

_dA, 1
T A, —a’

A = [R(M,A,)] 68, —a#0 (7.21)

Clearly, A is then a bilinear mapping of A, and vice versa. And, if there is a circle

with radius r centred at the origin in the A,-plane, then both (7.14) and (7.16)
—a 1771 0
My =R'My,R =

—a 1
-6 d 0 —r?| -6 d

la]? — |6]*r* —a + 8dr?
| —a+8dr 1- |d[?r?

imply that

(7.22)

and by (7.7) and (7.8), the circle in the Ap-plane is mapped into a circle in the
A-plane with

—G 4 8dr?
centre Co —“W (723)
radius ry, = _lbelr (7.24)
D [lal = s '

Note that the circle degenerates to a straight line when r = ll%ll

Then according to the definition of the SSV, it follows that
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WEOM) = Zneig{ 5(A): dei(T - MB) =0, Aec, A, ec]
aein o { mex 1AL 14,0} 1~ A F(M,4,) = 0}
{ max (a1} & = [0, 8,)] 7 = 7(a,)}

= pip{ mas (@180} S8 = S22

= min,{ max (15(8,)], 1811}

Ap

= uip gin {max {11 (") .|}

- mp gy { el ()] o}

= wip {mex {3 |1 ()|} }

= mip {max{ge(r) 1} (7.25)

r>0

min
A€eC, ApeC

where
ge(r) = min_|f (re’)| (7.26)

All the steps in (7.25) are straightforward except the interchange of max and min.
The latter can be seen to be valid by considering separately what happens (i) if
If (rej3)| < r at some 0, (ii) if |f (rej”)} > r V6, and (iii) if lf (rej")| <r V.
This is left to the reader.

Let
o Cp:= the circle with radius r and centred at the origin in the A,-plane.
o Cp, 1= the mapped circle of f(A,) in the A-plane.
o 7, := the radius of circle C, when circles C,, and C), are tangent.

o O := the origin of the complex plane.

dist (P, @) := the distance between points P and Q).

[}

It is obvious that g¢(r) is the minimum distance between the circle C,, and the
origin in the A-plane when the radius of circle €, is r. There are three cases which
need to be considered as r increases gradually from zero to some appropriately large

value; these are illustrated in Figure 7.2 below.
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S \ S ‘ S
S > 7 p [
case (a) case (b) case (¢)

Figure 7.2: Relationships between circles C, and C,.

e case (a): 0<r<r; (CnandC, are disjoint)
max {ge(r),r} = max {dist (P, 0), r} = dist (P, O); see case (a) in Figure 7.2.

e case (b): r=r, (Cp and C, are tangent)

max {ge(r),r} = max {ri, r;} = r; see case (b) in Figure 7.2.

e case (¢): r > 71, (Cm and C, intersect)

max {gc(r),r} = max {dist (P,0),r} =r > ry; see case (c) in Figure 7.2.

Furthermore, the following theorem is necessary to guarantee that dist (P, O) > r,

when 0 <r < ry.

Theorem 7.3-1:
(1) <0, for 0Sr<jy, and
2 >0, for r>f

Proof: It is obvious that
(i) if |co| > T, Cm does not contain the origin, then ge(r) = |co| — 1o
(i1) if |eo] < r0, Cin contains the origin, then ge(r) = ro — |col
and hence
I—Zi + 5dr2| — |belr
laf? — |§]*r

9c(r) = |leo| = ro|=

by (7.23) and (7.24).
From (7.9), (7.22), (7.23) and (7.24) we have the following identity:

|-a + 8dr?| = \/[bel?r? + (1 = |dPr?) (|al? — [6]r?) (7.27)
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Differentiating the term on the right hand side of (1.27) with respect to r yields

d = _ (bc|® = |ad|? — |8]%) r + 2|d6|?r®
o e+ i’} = et 5]

which is useful in finding d—g-g;_(ﬂ. Furthermore it follows directly from identity (1.27)

that
0= Lo (728)
r)= = .
g l-—ﬁ + 6dr2l + |belr
o In therange 0 <r < '—;—‘: we have
1 — |d|*r?
gelr) = e (7.29)

[—a + Sdrzl + |belr
Mathematical manipulation then yields
dge(r) _ 1 )
dr (|-a+ ar2| + lbelr)” - |-a + 8dr?|

{~ (1d?r% +1) Jbe| - |- + 8dr?| — (fbel? + ad]* - |6]%)

(bl = o + It s (7.30)
The last two terms in the numerator can be simplified to
(|bc|2 + |ad|® — |6[2) r o= (ad55+ aofbc) r, and
(lecl® — |ad|* + 16]%) [d]*r® — (b26 + bes) ||

It follows that
(1bef? + ladf? — [62) 7 + (Jbel? — lad]? + [61%) |dItr° = 25%e [bc&r (a— dsr?) ]

where Re(e) denotes the real part of (e), and

IA

IchEr (d — dgrz)l
2lbe| - [d|r - [a — d&r?|

—2Re [chr (d - d3r2) ]

Thus the numerator of dge(r)/dr is equal to
— (1P +1) lbel - |-a + 8dr?| — 2e [chr (a - dsr?) ]

= (1d[*r® + 1) Jbe] - |~a + 8dr®| + 2[be] - |d}r - |a — d&r?|

~ (|dlr = 1)? [be] - |~ + 8ar?|

A

IN

0
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Therefore dge(r)/dr < 0 in the range 0 < r < I%T’
o In the range r > i (7.28) gives that

_ 1—|d|*r?
l—(’i + Sdrzl + |bejr

ge(r) =

which is of opposite sign to (7.29) and hence dg¢(r)/dr = 0. This completes the
proof. |

Straightforward substitution into (7.28) reveals that gc(0) = 1, ge(f) = 0
and ge¢(o0) = {g—}. Furthermore, it follows directly from (7.30) that if r approaches
’—;T from below, then dge(r)/dr = —1(%5; on the other hand dge(r)/dr = %%5, if r
approaches ‘%‘ from above. Therefore gc(r) is continuous, but not differentiable at

r= |_¢1iT when d # 0.
The consequence of the three situations in Figure 7.2 and Theorem 7.3-1 is

illustrated in Figure 7.3. By (7.25), it is clear that

HE (M) = min {max {ge(r),r}}
= mip {r:gc(r) =1}
= mip {rileo =ro =1}
Hence
pa(M) = max {1 feol =0 = r} (7.31)

Figure 7.3: Curves show: pz (M) =1/r,.
By (7.23) and (7.24), the equation |co| — ro = r is equivalent to the following
equation

l—l—l + 3(11'2] Jbe|r _

|a? —18]2r> " [a? = [8]2r? ~
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The second term on the left hand side of the above equation can be shifted to the
right hand side, then squaring both sides yields

|61 — (laf? + |dJ? + 2be]) 2 + 1 =0
Equivalently, this can be written as

(%)4 = (Jal” + |dJ* + 2Jbe]) (3)2 +167=0

r

so that

1 (laf? + 1] + 2lbel) £ /(Jaf? + |d]* + 2]be])* — 462

r? 2

Hence from (7.31)

gty = [ Qof 10+ 200e) (ol + 4 + 2l — 457 ”

This coincides with the formula obtained in (3.91).

J’TT 4 Real-p

In the preceding section, the SSV for complex modelling uncertainty A and com-
plex performance uncertainty A, was derived. We will now consider the SSV for
a real parameter uncertainty A and a complex A,.

Similar to the development in (7.25) we have
W) = mir_l{ 5(A): det(I — MA) =0, AER, A, € c}
Aed

= omin f mac AL 8 = [F(,8,)] 7 = 18}

AER, Ape
= E,l,g(l:{ max {|f(Ap) NR], |4} : f(A,) = Zﬁ::i}
= min, { max{|f (re") ] 1}

= mip fmox g |7 (o) 1))}
= rrn>1l§1 {ma,x{gn(r),r}} (7.32)
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where

gr(r) = oé%igﬂ- lj' (reje) n ‘Rl (7.33)

and N denotes the intersection between two sets.

Therefore, jr(r) denotes the minimum distance between the origin and the
crossover points of the circle C,, on the real-axis in the A-plane. Let L be any
straight line passing through the origin in the A-plane, (we will later let L = R). It
is obvious that there exists one or two crossover points between the circle C, and
the line L if C,, and L are not disjoint. Let §r(r) denote the minimum distance

between the crossover points and the origin. Mathematically, we have

gr(r) = ‘f (reje) n LI (7.34)

min
0<6<2r
Then the following lemma can be established.

Lemma 7.4-1: If C,, N L 5 ¢, then §(r) decreases with r in the range

0<r< I}TI’ where ¢ denotes the empty set.

Proof: The bilinear transformation of

A=f(Ay)= %‘:—%
is a conformal mapping from the Aj-plane to the A-plane, if bc # 0. Thus
two nontouching circles, C; and C;, centred at the origin, are mapped into two
nontouching circles, ¢; and G, as is illustrated in Figure 7.4. It is clear that
dist (P2, 0) < dist (P, 0) if Cy, increases with r, and P;, P, are as shown in
Figure 7.4.

Recall that the circle Cy, passes through the origin when r = l_:lf and degenerates

to a straight line when r = ]I%I[' This determines the following two cases for special

consideration:

1 {be|r Cy, does not contain the origin
laf? — |§f>r? ry increases with r

=> §r(r) decreases with r
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C,» does not contain the origin
005r<%} =>ro=la’f_‘i;|r=> " &

ro increases with r

== §r(r) decreases with r

e r= ]l%ll = C,, degenerates to a straight line

C,. contains the origin
cR<r<g = n=gEEm =y ¢

ro decreases with r

= §1(r) decreases with r

Therefore §i(r) decreases with r in the range 0 < r < T«I?T’ which completes the

proof. n

A=f(Ap)

(AN AN s
Y/ "

2

Py

g

Figure 7.4: Mapping from A,-plane to A-plane.

If we choose line L to be the real-axis in the A-plane, then the following theorem
is established.

Theorem 7.4-1: If C;,, N R # ¢, then Gr(r) decreases with r in the range
0r< ﬁT’, where ¢ denotes the empty set. |

Now let us consider (7.33). Firstly, define ,
¢ := the radius of circle C), when the circle C,, is tangent to the real-axis.
There are many cases which need to be considered in detail when the radius r of

A, increases gradually from zero to a sufficiently large value.
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3
% %
/ N Tp o
N\ |/ «a@
case (a) case (b1)

Figure 7.5: Relationships between circles C,, and C): case (a) and case (bl).

e case (a): 0<r <7 (Cm does not touch the real-axis)
Then det(I — MA)#0

Define ma.x{g—g(r),r} = oo; see case (a) in Figure 7.5.

e case (b): r =7 (Cy, is tangent to the real-axis)

This prompts us to consider the following two situations:

(b1): if circle C, contains the tangent point T, as shown in case (bl) of Figure

7.5, then
13}__33: {gn(r),r} = I'E__a;)'( {dist (T, O),ﬂ} =7
Geometrically, if r increases and becomes greater than 7,, then Theorem 7.4-1
implies
gr(r) < dist (T, 0)
Thus

max {ﬁn(r),r} =r >

r>Fe
Hence (7.32) gives
B3 (M) =7 (7.35)

(b2): if circle C, does not contain the tangent point T, as shown in case (b21)

of Figure 7.6, then

max {gr(r),r} = dist (T;,0)

r=f




C

\ - N N
qn \ \\E 'Tp AN . \\:
o c‘ N

case (b21) case (b22) case (b23)
Figure 7.6: Relationships between circles C,, and Cp: case (b2).

Z=l

Geometrically, if r increases above 7;, Theorem 7.4-1 implies
gr(r) < dist (T, 0)
Thus with 7, and P,, defined as shown in case (b22) of Figure 1.6, it is clear that

max {gk(r), r} < dist (T, 0)

Fm>T>T

Therefore, increasing r in the range 7, > r > 7, will decrease the value of
max {gr(r),r}. The case (b22) in Figure 1.6 illustrates the situation where one
of the crossover points between C,, and C, just appears on the real-axis for some

proper value of r, called 7,,. Then
max {§R(r), r} = Fpp = dist (P, O)

If r increases further without exceeding ‘—};I- as shown in case (b23) of Figure 1.6,

then Theorem 7.4-1 gives

dist (P,0) < dist (P, 0) =

max {gn(r),r} =7>f,
To recap, in case (b2), the minimum value of

max {or(r),7}
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occurs in the case of (b22) in Figure 7.6, and hence (7.32) gives
,uZ(M) = (7.36)
To summarize, cases (bl) and (b2) are illustrated in Figure 7.7. Comparing

with the complex-p derived in the preceding section, the real-z in (7.35) or (7.36)

can be arbitrarily smaller.

Figure 7.7: Curves show: puz (M) = 1/F; or pz (M) = 1/7pn.

Let us now consider finding 7, in (7.35) , and then 7, in (7.36). Since the circle

Cr. in the case (bl) of Figure 7.5 is tangent to the real-axis, we have
[Zm(co)| = 1o (7.37)
where Z,,(co) denotes the imaginary-part of ¢co. Substituting co and ry from (7.23)
and (7.24) into (7.37) yields
|Zn (@ - 8dr?)| = |belr
Straightforward manipulation and squaring both sides of the above equation shows

that
[z (5d)]2r4 ~ [16F + 220(@) - 2o (Ba)|* + Zn@F =0 (7.38)
and 7; is the minimum positive root of this equation.
Now to find 7. The case (b22) of Figure 7.6 is redrawn in Figure 7.8. Geo-
metrically, it follows that

[Re(co)] = Vrd — [Zm(co)* =7 (7.39)

Shifting the term |[Re(cp)| to the right hand side of the above equation, substituting

for ¢ and rq, squaring both sides and a little manipulation shows that

l617r* + (1dI” — lal*) r* + 1 = —2|Re(a) — Re (8d) r?|r
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Figure 7.8: To find 7y,.

Squaring both sides again gives
6% + {2[5[2 (1df? ~ laf?) - 4[%6 (Sd)]z}r6
+ {(14[2 —la]?)” — 2/8]* + 8Re(a) - Re (&z)}r*
- {2 (IdI? = |al?) + 4 [me(a)]“}r? +1=0 (7.40)

and 7,, is the minimum positive real root of this equation. The roots of equations
(7.38) and (7.40) can easily be found using MATLAB, for example. The real-u

computation can be summarized as follows:

Step 1: Solve (7.38) for , then obtain ¢o and 7 by substituting » = 7, into (7.23)
and (7.24).

Step 2: If 7, > |Re(co)l, then pz (M) = 77, stop; otherwise, do Step 3.

Step 3: Solve (7.40) for 7, then pz (M) = 7,1, stop.

The above algorithm has been coded into a Matlab m-file in which some ad-
ditional routines have been included to avoid the extra roots resulting from the

squaring process in equations (7.38) and (7.40).

7.5 A Simulation Example

This simulation example is given to illustrate the application of u — K iteration in
the design of a p-optimal controller for a plant with real parameter uncertainty.

The control system shown in Figure 7.9 is the same as Example 5.5-1, except
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that the modelling uncertainty A is real. It is a SISO plant with an additive
perturbation A € R and fictitious performance uncertainty A, € C. The nominal

plant and weighting functions are

0.5(1 — s)
Gols) = HIDGT05)
14 2o
Wils) = 50128
0.007
1 —
Wa(s) = 0.1256—1”-0—{;—_9l

2

W(s)

K(s) Gq(s) W(s)

Figure 7.9: System with additive real parameter uncertainty.

The simulation results are shown in Figures 7.10 through 7.14. 3 iterations were
required to find the “optimal” complex-u controller and 8 iterations were required
to find the “optimal” real-u controller. By “optimal” we mean a reasonably flat y.
Figure 7.10 illustrates the characteristics of the optimal controllers: H*, complex-
p and real-p. Note that real-u is less than complex-y. The curves of 5(M),
pc(M) and pr(M) for H*, complex-u and real-y optimal controllers are shown in
Figures 7.11, 7.12 and 7.13, respectively. Bode plots for the compensated open-loop
transfer functions and the weightings for complex-u and real-p optimal controllers
are also shown in Figure 7.14. Figure 7.15 illustrates the real-u optimal controller
characteristics: before and after model reduction of the optimal controller. The

p-optimal controller after balanced model reduction is

(s + 0.498)(s + 2.057)

K(s) = 1844 = 5507)(s + 2.639)

(7.41)

It is interesting to note that the controller K(s) is a cascade combination of a
phase lead and a phase lag network, it is stable and has only 2 states compared

with 2 for the nominal plant Gg(s). The curves (M) and pr(M), before and
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after the reduction of the controller, are shown in Figure 7.15, and illustrate little

change in using the reduced order controller.

7.6 Discussion

It is natural for a plant model to suffer from real para,mé’cric uncertainty at low
frequencies. On the other hand, complex uncertainty is typically present at high
frequencies because of unmodelled dynamics. However, in robust control it fre-
quently happens that real parametric uncertainty is modelled as a norm bounded
complex perturbation. This chapter has illustrated the conservatism that can be
introduced by this practice. The chapter has also shown how y — K iteration can
be used to design a p-optimal controller for the case of real modelling uncertainty
mixed with a complex fictitious perturbation representing uncertainty. Doyle’s
D — K iteration fails in this case because uz (M) cannot be expressed as a linear
fractional transformation of the controller K(s).

The simulation results in Figure 7.12 show that ug(M) coincides with uc(M)
in both low and high frequency ranges. Geometrically this corresponds to the
case that both circles C,, and C, are tangent to each other with the tangent
point just on the real-axis. However, ur(M) and pe(M) are quite different in the
intermediate frequencies. The complex-p optimal controller therefore gives a more
conservative design.

We have shown that the circle-invariant property of a bilinear mapping is useful
in determining the SSV. But if the number of uncertainties increase, the situation
becomes more complicated. The problem of calculating the SSV is known to be
difficult and only a few papers are available on the subject. An “exact” method
is given in [Ack85] but this is simply a brute force global search over a grid of
parameter values. It involves an exponential growth in computation time as a
function of the number of parameters, and taking fewer grid points to avoid this
results in loss of exactness. Gaston and Safonov presented a method [DeS88] to

reduce the computational burden using the mapping of det(I — kMA) from a
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hypercube of A to the complex plane with k as a parameter. The minimum value
of k such that det(] — kMA) = 0 was defined as the stability margin which is
the inverse of pz (M). In 1991 Fan et al. presented a paper [FTD91] to calculate
4 in the presence of mixed parametric uncertainty and unmodelled dynamics. It
is computationally attractive, but potentially inexact. The main idea is to get
upper and lower bounds using local search methods which are computationally
inexpensive, but it may fail to find the global solution.

It is interesting to note that whatever kinds of uncertainties are present in
the system, if a computational method for calculating uz (M) is available for a
given controller, then p — K iteration will be applicable for designing a p-optimal
controller. Therefore p — K iteration is potentially useful for practical control

system design.
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Figure 7.10: Characteristics of the optimal controllers:
(1): cer(M) for 7i°° optimal controller; (2): for the complex-/:/ optimal

controller; and (3): /% (M) for the real-// optimal controller.
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Figure 7.11: optimal controller characteristics:

(1) d-(M)] (2) //e(M); and (3) //% (M).
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Figure 7.12: Complex-/! optimal controller characteristics:

(1) A(M); (2) //e(M); and (3) Hii(M).
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Figure 7.13: Real-/! optimal controller characteristics:

1) atMm)] (2) 'e(M); and (3)
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Figure 7.14: Bode-plots for the compensated open-loop transfer functions and the

weightings: (1) 2) |le(jw)]|; 3) and (4) |[TFi(Gw)|.
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Figure 7.15: Real /i optimal controller characteristics, a (M) and
upper curves: lower curves:

solid lines: before reduction; dashed lines: after reduction.



Chapter 8

CONCLUSIONS AND
FURTHER WORK

8.1 Summary

This thesis has studied the robust stability and robust performance (RSRP) prob-
lem which is central to control system design. A new design algorithm for the
RSRP problem has been presented for multivariable feedback conttrol systems in
Chapter 5. We have confined ourselves to the treatment of finite dimensional lin-
ear time-invariant models with modelling uncertainties because these are the most
commonly used models in practical design. It is argued that the p — K iteration
algorithm can be used to design p-optimal controllers for the RSRP problem when
the plant has real and/or complex modelling uncertainties. The idea is motivated
from an engineering point of view and takes advantage of H*™-optimization. u— K
iteration is therefore seen as a potentially useful tool for practical control system
design. ‘

A loop shaping approach to robust performance design for SISO systems was
also presented in Chapter 4. Although it is not easy to extend this approach to
multivariable systems, it reveals an interesting and useful relationship between
a mixed sensitivity H*-optimization problem and classical loop shaping. The

insight provided by this relationship led to the development of the loop shaping

163
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approach for minimizing the structured singular value for robust performance.

In Chapter 6, an ill-conditioned 2-input 2-output high purity distillation col-
umn was analyzed. The plant has a large value of condition number which implies
that the gain of the system has strong directionality as well as frequency depen-
dence, and is detrimental to robust stability and robust performance. Although
the large condition number causes controller design problems, it does have a nice
“separation property”: robust performance depends only on the low plant gain
in the low frequencies and robust stability depends only on the high plant gain
in the high frequencies. A p-synthesis design is carried out for the distillation
column using u — I{ iteration algorithm, and comparisons are made with results
in [SMD88] and [Fre89b].

In Chapter 7, based on the circle-invariant property of a linear fractional trans-
formation, a geometric approach for calculating the real and/or complex structured
singular value was proposed. This is useful because the method of p — K iteration

is strongly dependent on the precision of the u-computation.

8.2 Recomimendations for Further Work
Suggestions for further research include:

(1) The loop shaping approach to robust performance is particularly useful for
SISO systems. The extension of this approach to M IMO systems needs to

be investigated.

(2) The optimization problem given in Section 4.2 is to find a stabilizing con-

troller IK(s) which satisfies
it sup {Im(jw)s(ie)l + Ira(jw)tGw)l}
This problem does not yet have an analytical solution.

(3) As in Doyle’s D — K iteration algorithm, there is no @ priori guarantee

that the u — K iteration algorithm will converge to a global minimum. The




(4)

(5)
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modification of ¢ — K iteration to obtain a globally optimal controller is an

important area of study.

The high purity distillation column design example presented in this the-
sis, and previously discussed by Skogestad et al. [SMD88] and Freudenberg
[Fre89b] is not very practical because no amplitude and bandwidth con-
straints are placed on the controller. The choice of weighting function to im-
prove the bandwidth of the control energy is not obvious. The relationship
between the p-curve and this bandwidth is critical to the synthesis problem
and deserves more study. A more detailed performance specification for this
example was given at the 1991 IEEE Conference on Decision and Control,

Brighton and could form the basis of further study.

The geometric approach presented in Chapter 7 is useful for computing the
structured singular value with respect to real and/or complex uncertainties.
The question remaining is, to what extent, the geometric approach used here

can be extended if the number of uncertainties increases.
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