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C O N T R O L  S Y S T E M  D E S IG N  F O R  R O B U S T  S T A B IL IT Y  A N D  

R O B U S T  P E R F O R M A N C E  

A B S T R A C T

A central problem in control system design is how to design a controller to 

guarantee that the closed-loop system is robustly stable and that performance re­

quirements are satisfied despite the presence of model uncertainties and exogenous 

disturbance signals. The analysis problem, that is the assessment of control sys­

tems with respect to robust stability and robust performance, can be adequately 

solved using the structured  singular value jj. as introduced by Doyle. The cor­

responding design problem (how to choose a controller K  to minimize jj.) is still 

largely unsolved, but an approxim ate solution can be found using Doyle’s D — K  

iteration. In this thesis we present an alternative algorithm, called /j, — K  iter­

ation, which works by flattening the structured singular value jj. over frequency. 

As a prelude to this a classical loop shaping approach to robust performance is 

presented for S I  SO  systems, and is also based on flattening y..

In //-synthesis it is often the case tha t real uncertainties are modelled as com­

plex perturbations but the conservatism so introduced can be severe. On the other 

hand, if real uncertainties are modelled as real perturbations then D — K  iteration 

is not relevant. It is shown th a t y — K  iteration still works for real perturbations. 

In addition, a geometric approach for computing the structured singular value for 

a scalar problem w ith respect to real and /o r complex uncertainty is described. 

This provides insight into th e  relationship between real y  and complex y.

A robust performance problem is considered for a 2-input 2-output high purity 

distillation column which is an ill-conditioned plant. Analysis reveals the poten­

tially damaging effects on robustness of ill-conditioning. A design is carried out 

using y  — K  iteration and the “optim um” y  compared with that obtained by Doyle 

and by Freudenberg for the  same problem.
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6.9 Curves for (1) : â  [Mii(d)j and (2) : â ĵ M22(d)J.................................. 128

6.10 Curves of (1) : -|- |w2f i|, (2) : |i«iS2| +  iw/2^2| and (3) : //^ (M ).130

6.11 Curves of (1) : a{ M )  and (2) : //(M )....................................................  134

6.12 Bode plots of the diagonal subplants ÿi(s) and g2 {s)........................... 136

6.13 Bode plots of the weightings w i(s) and W2 {s) ......................................  136

6.14 //-values of five y  — K  iterations................................................................ 137

6.15 Bode plots of optim al diagonal sub controllers kx{s) and k2 {s). . . . 137

6.16 Bode plots of loop gains lx{s) and l2 {s).........................................  13^
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C hap ter 1 

IN T R O D U C T IO N

lo i  M o t iv a t io n

Feedback control mechanisms have been used for millenia, and are crucially impor­

tan t to reduce the effects of plant uncertainties and to attenuate system response 

to external disturbances. P lant uncertainty is always present since no m athem at­

ical system can exactly model a physical system. Actual systems will suffer from 

param eter variations affecting low frequency behaviour and unmodelled dynamics 

at high frequencies. And if the feedback is badly designed these modelling errors 

might adversely affect the stability and performance of a control system. In ad­

dition to plant uncertainties, the performance of a closed-loop system can also be 

compromised by exogenous disturbances acting on the system. Typically these dis­

turbances are caused by environmental effects. Disturbances result in regulation 

and tracking error, and performance can degrade to the point of unac^ceptability. 

Therefore, in control engineering a central problem is to  design a control system 

which remains stable and maintains at least minimum performance levels despite 

the presence of model uncertainties and disturbance signals. Performance levels 

concern such im portant objectives as command following, disturbance rejection, 

noise attenuation, sensitivity reduction, etc. Yet this generic design problem is 

still largely unsolved. The R S R P  problem, as we shall call it, is to design an 

optim al controller K (s )  for robust stability (RS)  and robust performance (RP).

1



1,2 R elated  Work

It is well known that for a plant with structured uncertainty, the singular value approach 

for robust stability analysis can sometimes give conservative results. To remedy this con­

servatism, in 1982, Doyle proposed and developed the concept of the structured singular 

value (SSV)  which is a less conservative indicator of stability robustness [Doy82], A 

major advantage arising from this work was that robust H°° performance tests could be 

expressed as a robust stability test in the presence of a fictitious perturbation representing 

performance uncertainty. A general framework for analyzing robust performance using 

the structured singular value // as a measure of performance was introduced by Doyle who 

proposed a controller synthesis procedure, called //-synthesis [Doy85]. In this procedure a 

controller is sought which minimizes //, or which achieves levels of performance arbitrarily 

close to the optimum y h y D  — K  iteration. The D — K  iteration algorithm is applicable 

for a plant with complex uncertainties; it can, however, give arbitrarily conservative re­

sults when the uncertainties are real. From an engineering point of view, real parameter 

variations (called parametric uncertainties) of a plant, which can be caused by movement 

of the operating point at low frequencies, are a common occurrence. In this thesis, we 

present an alternative algorithm to D — K  iteration, called y  — K  iteration, which can also 

be applied to real uncertainty without introducing conservatism.

A major theme in this thesis is the use of loop shaping in control system design. Related 

work in this area can be found in [McGQO] [OrL91] [FreQO] [StD88]. In [McG90] the open- 

loop singular values are first shaped by a pre and/or post compensator to correspond to 

good performance and robust stability. The loop is closed through a robustly stabilization 

controller which, if satisfactory, wiU not change the open-loop singular values significantly. 

In [OrLQl], a classical loop shaping methodology is applied to individual channels of 

a multivariable system. In [Fre90], a loop shaping technique is used to minimize the 

structured singular value, //, for robust performance. In [StD88], the general idea of loop 

shaping approach to open-loop singular values is discussed. In this thesis we present a 

new loop shaping approach for minimizing the robustness performance measure y.

Many authors have worked on the computation of //, [FaT88] [FTD91] [PFD88] [PaD88] 

[Hel88]. In this thesis we also give some consideration to this important problem in the 

particular case of a mixture of real and complex uncertainty blocks.



1.3 C on tr ib u tion  and O rgan ization

The main contributions of this work are considered to be:

o A relationship between a mixed sensitivity ?i°°-optimization problem and 

classical loop shaping is investigated for S I S O  systems. This then provides 

insight into a further development of loop shaping to minimize the structured 

singular value for robust performance. This work has been published in 

[PLGQla].

o A new algorithm is developed, called y  — K  iteration, which can be used 

to design a //-optimal controller for the R S R P  problem when the plant 

has structured real and /o r complex uncertainties. The technique assumes 

availability of an algorithm for computing y  for a given controller. This 

work has been accepted for publication in the forthcoming Special Issue of 

A utom atica on Robust Control [LPG91].

o By analyzing an ill-conditioned plant, namely a 2-input 2-output high purity 

distillation column with a particular structure of controller, we reveal tha t 

at low frequencies robust performance is concerned only with the low plant 

gain (smallest singular value) whereas at high frequencies robust stability is 

determined only by the high plant gain (largest singular value). In the inter­

m ediate frequency range, both the low and high plant gains are coupled and 

become significant in determining the robustness measure y.  The y  — K  iter­

ation algorithm is applied to the distillation column example and compared 

w ith the results of other methods. Some of this work was reported at the 

30th IEEE Conference on Decision and Control, Brighton, 1991 [PLC91b].

o For a simple situation (namely one real parameter uncertainty and one com­

plex fictitious perturbation  representing performance uncertainty), the circle- 

invariant property of bilinear maps (linear fractional transformations) is used 

to  derive the structured  singular value. From the derivation the relationship 

between real-// and complex-// is more clearly understood.



The thesis is organized into eight chapters which can be summarized as follows:

C h a p te r  2; S ignals a n d  S y stem s

In this chapter we review the basic concepts concerning signals and systems, 

concepts on which a theory of robust control can be developed. We introduce 

appropriate norms for measuring the size of signals and systems. The singular 

value decomposition, which plays a key role in robustness analysis, is covered in 

detail. The well-posedness of a system, B I B O  stability and internal stability are 

all defined. A statem ent of the small gain theorem is given because of its central 

im portance in the derivation of many stability tests using singular values. It is 

useful because it does not need detailed information about the system and its 

uncertainties.

C h a p te r  3: U n c e r ta in tie s  a n d  R o b u s tn e ss

In this chapter we first introduce a linear fractional transform ation which can 

be used to represent all uncertainty models by means of the (G, A) form at illus­

tra ted  in Figure 1.1. If all the uncertainties occur in different parts of the system 

and they are lumped into a single uncertainty, then this is the so called unstruc­

tured  uncertainty. Otherwise, it is said to  be structured uncertainty. Some robust 

stability tests are given for unstructured uncertainty. Two examples are given to 

illustrate th a t the singular value approach for robust stability analysis can some­

times give conservative results. To remedy this conservatism, Doyle’s structured 

singular value ( S S V )  can be used to measure robustness. Some properties of ^  

and Osborne’s m ethod for //-computation are presented in this chapter.

A(s)

G(s)

Figure 1.1: (G, A) format of a perturbed plant.

In reality, all param etric uncertainties in physical systems are structured. The 

S S V  can be used to characterize robust performance as well as robust stability. For



structured uncertainties, according to the performance robustness theorem, robust 

performance is assured if and only if stability robustness is achieved with a fictitious 

complex-disk-bounded uncertainty introduced to characterize the performance 

requirements. Doyle’s D — K  iteration algorithm which can be used to find a 

controller K  to minimize the S S V  is reviewed in this chapter.

An example is given to  illustrate th a t a system which is robust with respect to 

individual uncertainties can be destabilized by small simultaneous uncertainties. 

Finally, for the disturbance rejection problem (minimum sensitivity problem) it is 

shown th a t multiplicative input uncertainty of the plant causes more robust per­

formance problems than  multiplicative output uncertainty when either the plant 

or the controller is ill-conditioned.

C h a p te r  4: A  L o o p  S h a p in g  A p p ro a c h  to  R o b u s t  P e r fo rm a n c e  fo r 

S IS O  S y s te m s

This chapter presents a procedure for solving a robust performance problem 

for S I S O  systems using a loop shaping technique which has been published in 

[PLGQla]. Firstly the relationship between a mixed sensitivity 7^°°-optimization 

problem and classical loop shaping is investigated. It is shown how classical loop 

shaping can be used to minimize the 'H°° cost function. This then provides insight 

into a further development of loop shaping to  minimize the structured singular 

value for robust performance. The approach is dem onstrated by its application to 

the control of a robot arm  whose moment of inertia varies considerably with angle.

C h a p te r  5s (j. —\K I te ra t io n s  A  N ew  A lg o r ith m  fo r //-S y n th esis

In this chapter we present an alternative algorithm to D  — K  iteration for 

solving robust performance problems by //-synthesis. Convergence properties of 

the new algorithm are considered and dem onstrated by examples. The algorithm, 

called IX — K  iteration, works by fiattening the structured singular value // over 

frequency. Two examples are given to illustrate the method.

C h a p te r  6 s R o b u s t  C o n tro l o f a  D is tilla tio n  C o lu m n

The purpose of this chapter is to give insight into the problems associated with



the control of ill-conditioned plants, and to illustrate the usefulness of //-synthesis 

hy fj, — K  iteration. As in [SMD88] we focus on the control of a high purity 

distillation column, and use the same linear plant model given by Skogestad et al. 

(1988).

By analyzing a particular controller structure and design strategy, the poten­

tially damaging effects of an ill-conditioned plant on robust stability and robust 

performance are revealed. The structured singular value //, used to measure ro­

bustness, is shown to be determined at high frequencies by high plant gain (largest 

singular value) and at low frequencies by low plant gain (smallest singular value). 

This is as one might expect since small loop gain is typically required at high 

frequencies for robust stability, while large loop gain is usually required a t low 

frequencies for robust performance. In the intermediate frequency range bo th  the 

low and high plant gains are significant in determining //.

A //-synthesis design is carried out for the distillation column using the jx — K  

iteration algorithm proposed by Lin et al. (1991). The design example addresses 

the same //-optimal control problem considered by Skogestad et al. (1988) using 

the D — K  iteration algorithm, and by Freudenberg (1989) using a loop shaping 

method.

C h a p te r  7: //-O p tim a l C o n tro lle r  D esign  fo r  R e a l U n c e r ta in ty  by 

IX — K  I te r a t io n

This chapter presents a geometric approach for calculating the structured sin­

gular value with respect to  complex uncertainties or mixed real (param etric un­

certainty) and complex (fictitious performance) uncertainties. W ith an algorithm 

for calculating //, the //-optimal controller can then be derived by // — K  iteration.

A robust performance problem is considered when the plant has one real para­

metric uncertainty and performance is characterized by a fictitious uncertainty 

which m ust be complex. The approach is dem onstrated by its application to a 

S I S O  example. The controller obtained is just a cascaded combination of a phase 

lead and a phase lag network, it is stable and has only 2 states compared w ith 2 

for the nominal plant. Doyle’s D — K  iteration algorithm is not appropriate in this



case unless one models the real uncertainty to be a complex uncertainty and then 

the results are conservative. For the complex-// controller and the real-// controller 

(obtained by // — AT iteration), the curves of //j(M ) and //%(M) are coincident in 

both the low and high frequency ranges. However they are quite different in the 

interm ediate frequency range.

The circle-invariant property of a bilinear mapping (linear fractional trans­

formation) is seen to  be useful in deriving the S S V  and reveals an interesting 

geometric relationship between complex-// and real-//.

C h a p te r  8 : C o n c lu s io n s  an d  F u r th e r  W o rk

This chapter contains concluding remarks and suggestions for further research.

1.4 N o ta tio n  an d  A b b rev ia tion s

The following conventions will be adopted. The figures and equations are num­

bered consecutively within each chapter. The examples, lemmas, theorems and 

corollaries are numbered consecutively within each section. Thus, for example. 

Theorem 1 of Section 2.7 will be referred to as Theorem 2.7-1.

N o ta t io n

a £ S  a is an element of set S'; a belongs to  S

3a G S  there exists an element a of set S

Va G S  for every element a of set S

<j) the em pty set

S\  n  Sg intersection of sets S\  and Sg

Si U Sg union of sets Si and Sg

Si C S2 set Si is contained in set Sg

p  = >  q p  implies q

p  4 =  q q implies p

p 4=> q p if and only if g; equivalently, p  implies q and q implies p

A  := B  A is equal to B  by definition



A  =: B  B  is equal to A  by definition

a / /  b curve a is parallel to curve b

a <^b a is much less than b

b a is much greater than  b

a fn b a is approximately equal to b

V for all

3 such th a t

C space of complex numbers

TZ space of real numbers

C” space of complex n-vectors

space of real n-vectors 

space of n X m complex matrices

space of n X m real matrices

j  a /—1; sometimes an index, as in X{j

^e ( z )  real p art of complex number z

Tmiz)  imaginary part of complex number z

z  complex-conjugate of complex num ber z

|z| modulus of complex number z

Zz argum ent of complex number z

I  identity m atrix of unspecified dimension

In n X n  identity m atrix

A~^ inverse of the square m atrix A

AF transpose of the m atrix A

A* complex-conjugate transpose of the m atrix A

|A| nonnegative matrix; comprising the moduli of the entries of

the m atrix  A 

A >  0 m atrix  A is positive definite

A >  0 m atrix  A is semi-positive definite

Aij the ( f , i )  element of the m atrix A

diag [a;i, X2, • • •] diagonal m atrix with diagonal elements æi, ®2, • ’ ’



det(A) 

tr(A ) 

cond(A)

A,(A) 

A(A) 

A(A)

o-i(A)

â(A)

01(A)

^A (M )

U

D

l|M |L
A

Â

//c(M )

//%(M)

ess sup

sup

inf

max

min

arg inf a; F(x)

determ inant of the square m atrix A

trace of the square m atrix  A

condition number of the m atrix A

spectral radius of the square m atrix A

ith  eigenvalue of the square m atrix A

maximum eigenvalue of the square m atrix A

minimum eigenvalue of the square m atrix A

ith  singular value of the m atrix A

maximum singular value of the m atrix  A

minimum singular value of the m atrix  A

structured  singular value of the m atrix  M  with respect to A

set of possible bloclc diagonal perturbations

;=  {A : a(A)  < 1, A  G A )

: = { U :  17 =  diag[17i,U2,...,[Z„], U G A }

set of block diagonal scaling matrices conformed with A

:=  8up^6% PA [M{ju)]

model uncertainty-

fictitious performance uncertainty

:=  diag {A, A^}, augmented block diagonal uncertainty 

structured  singular value of the m atrix  M  with respect to 

the complex modelling and fictitious performance uncertainties 

structured singular value of the m atrix  M  with respect to 

the real param etric modelling uncertainty and complex 

fictitious performance uncertainty 

essential supremum

supremum, i.e. least upper bound {l.u.h.) 

infimum, i.e. greatest lower bound (g.l.b.) 

maximum 

minimum

th a t value of x  which minimizes F(x)
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C[g{t)] Laplace transform of g(t)

F[g(t)] Fourier transform of g(t)

inverse Fourier transform  of G(ju>)

G G(iw) :=  F[g{t)]

||x|| norm  of the vector x

||æ||p p-norm of the vector æ, 1 <  p <  oo

||æ ||^ oo-norm of the vector x

UiJZ)  set of measurable functions whose p th  powers are absolutely

integrable over TZ 

L°°{7Z) set of essentially bounded measurable functions

T  : A  — > B  T  is an operator (or a function) mapping from A to  5

||T || norm of the operator T

||T||j- induced norm of the operator T

||T||j.j induced 1-norm of the operator T

IITII,-2 induced 2-norm of the operator T

||T||,-^ induced oo-norm of the operator T

||M||p, Frobenius norm of the m atrix M  ^

||G ||^  :=  8up,„g^ â  [G(jw)] =  ||T ||.2 , the oo-norm of the transfer

function m atrix G(s) of the system operator T  

'H°° set of stable matrix-valued functions G(s) with ||G ||^  <  oo

TZH°° set of real-rational functions in 7i°°

BTeTT' := {A(a) : A G TeTT', A(ao) G B A , Vao 3 %e(ao) >  0}

Fi(M,  A) lower linear fractional transform ation on M  by A

Fu(M,  A) upper linear fractional transform ation on M  by A

T(() dx(t)
dt

jj: the differentiation with respect to r

dist (P, Q) distance between points P  and Q

Koo(^) 77°°-optimal controller

Kn(s)  //-optimal controller
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A b b re v ia tio n s

cl t f closed-loop transfer function

e.g. for example

i.e. th a t is

o l t f op en-loop transfer function

resp. respectively

r.m.s. root-m ean-square

B I B O Bounded-Input Bounded-Output

C R H P Closed Right-Half Plane

Causality Recovery Methodology

F D L T I Finite-Dimensional, Linear and Time-Invariant

110 Input-O utput

L F T Linear Fractional Transformation

L H P Left-Half Plane

L L F T Lower Linear Fractional Transformation

M /M O M ulti-Input M ulti-O utput

N P Nominal Performance

Nominal Stability

P I D Proportional plus Integral plus Derivative

P M Phase M argin

R H P Right-Half Plane

R P Robust Performance

AS" Robust Stability

R S R P Robust Stability and Robust Performance

5"00 Standard Compensation Configuration

6 '/5 '0 Single-Input Single-Output

S tructured Singular Value

S 'y /) Singular Value Decomposition

U L F T Upper Linear Fractional Transformation



C h ap te r  2 

SIGNALS A N D  SYSTEM S

2.1 In tro d u ctio n

In this chapter we review the basic concepts concerning signals and systems on 

which a theory of robust control can be developed. From a system analysis point of 

view a control system is a closed-loop system which interacts with its environment 

through command signals, disturbance signals and noise signals. Tracking error 

signals and actuator driving signals are also im portant in control system design. 

It is essential for analysis and design th a t we have appropriate measures for the 

size of these signals. These are given by suitably defined norms. From these signal 

norms, we can define induced norms to measure the “gain” of linear operators 

representing systems.

In Section 2.2, we introduce several norms for vectors and signals. Based on 

these some useful operator norms are given in Section 2.3 which generalize the 

scalar idea of system gain. The singular value decomposition, which plays a key 

role in robustness analysis, is covered in Section 2.4. In Section 2.5 well posedness 

is discussed since not all interconnections of subsystems are well-defined. W hat we 

mean by stability { B I B O  and internal) is defined in Section 2.6, while im portant 

stability tests are given in Section 2.7.

12
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2.3 N o rm s for V ectors and  S ignals

Let A  be a linear space over the field F  (typically, F  is the field of real numbers 

%, or complex numbers C). Then a function

||o|| : X

th a t maps X  into the real numbers 77. is a norm on X  iff

(1) ||z || > 0 ,  Væ G X  (nonnegativity) (2.1)

(2) ||z|| =  0 <=> a; =  0 (positive-definiteness) (2 .2)

(3) ||Aæ|| =  |A| • ||æ|| , VA G jF,Va: G X(homogeneity w ith respect to  A)(2.3)

(4) ||z  +  y|l < ||æ|| +  l|y|| , Væ, y G X  (triangle inequality) (2.4)

Given a linear space X  there might be many possible norms on X . For a given 

norm ||o|| on X , the pair (X, ||®||) is called a normed space.

N o rm s  o f  V ec to rs  in  C™: Let the linear space X  be C™. More precisely, 

X G means that x = [xi,X2 , - • •, Xm]'^ w ith Xj G C, where superscript T  denotes

the transpose of a vector. Then the p-norm of a vector x  is defined by

1-n o rm . ||æ||^ :=  ^  |æ ,|, for p =  1 (2 .5)
i= l
/  m \ 1/P

p -n o rm . ||œ||p :=  , for 1 <  p <  oo (2 .6)

oo-norm . Ibll :=  m a x Iæ J , for p =  oo (2.7)
" l< i< m  ' ' ^

where H l̂jg is the familiar Euclidean norm.

N o rm s  o f  S ignals; Let the linear space X  be continuous or piecewise con­

tinuous tim e scalar-valued signals x(t),  i  G 77. The p-norm of a signal x  is defined

by

1-n o rm . ||æ||^ :=  J  \x(t)\dt,  for p =  1 (2 .8)

a oo \  l / p
\x{t)Y dt j  , for 1 <  p <  oo (2.9)

oo-norm . ||a;||^ :=  ess sup |æ (t) |, for p =  oo (2 .10)
ten
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where

ess sup |x(i)| :=  inf{a G 77 : z/ [{i : |æ(t)| >  a}] =  0} (2.11)
ten

and v[A] denotes the Lebesgue measure of set A.  The corresponding normed 

spaces are called, respectively, T^(77), T^(77) and More precisely, let x{t)

be a function on (—oo, oo) of the signal spaces, then

T^(77) :=  |a^(t) : ||x ||i =  J  |æ(t)|dt <  oo, convolution kernel j  (2.12)

T^(77) :=  |æ ( t)  : \\xW2  = (  [  |æ(t)|^dfl <  00 , finite en erg y | (2.13)

L°°(1Z) :=< x( t ) :  ||æ ||^ =  esssup |æ(t)| <  00 , bounded signal > (2.14)
I <6% J

From a signal point of view the 1-norm, ||æ||^, of the signal x(t) is the integral of 

its absolute value. The square IjzUg of the 2-norm is often called the energy of the 

signal x(t)  since that is what it is when x(t)  is the current through a 1 — fZ resistor. 

Finally the oo-norm, ||æ ||^ is its am plitude or peak value.

R e m a rk ; Let X  be a linear space of continuous or piecewise continuous vector- 

valued functions of the form x{t) =  [æi(i), æ2(i), • • •, aZm(t)]^, t G 77, then

^ ^ (% ) := : Ikllp =  (^]_^ IkWllp '  <  00 , for 1 <  p <  oo |(2.15)

L m { ^ )  :=  : Ik IL  =  ess sup \\x{t)\\^ < 001 (2.16)
L J

P o w e r  S ignals; Some signals are useful for stochastic control system analysis.

For example, the sinusoidal signal, x(t) =  A sin(wt -t- 9̂ ), t Ç. 77, is not a 2-norm

signal. However the average power of x(t)

r T

T'l“ 2 r

exists. The signal x(t)  will be called a power signal if the above limit exists. The 

square root of expression (2.17) is well-known as the r.m.s. (root-mean-square) 

value of x(t).  Unfortunately a nonzero signal can have zero average power, so 

expression (2.17) is not a norm. It does, however, have all the properties of a 

norm, except property (2).



15

2.3  N o rm s for L inear O perators an d  S y stem s

We next tu rn  to a discussion of the gain of a system, which is m athem atically 

defined as the norm of an operator. Figure 2.1 illustrates an input-output m apping 

system. The system operator T  maps the input signal x(t)  into the output signal 

y(t),  where x  G (X,  ||©||x)> V E (F, ||@||y). Suppose th a t T  is a linear and bounded 

map

r -W I I » l lA - ) - ^ ( i '. l l» l iy )  (2.18)

Then the norm, maximum system gain, of the operator T  is defined as

||T x ||^
|1T|| :=  sup

Obviously

IPILy

l|Tx||y <  ||T|| . llxlu

T

Figure 2.1: Input-output mapping system.

F ac ts ;

0 Definition (2.19) is equivalent to

||T || =  sup \ \ T x \\y  =  sup ||T z ||y

(2.19)

(2.20)

(2 .21)

o ||T || is called the induced norm of the linear map T  or operator norm induced

by the vector norms ||0 ||^  and .

o An operator T  is called linear, if for any xi, X2  € X  and any scalar a  E F,

T{xi  -I- za) =  T x i  H- Tx2  (2.22)

T{ax)  = a  - T x  (2.23)

th a t is, T  is additive and homogeneous.
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o An operator T  is called bounded, if for any x £ X ,  there exists a finite 

constant M  such tha t

\ \ T x \ \ y < M . \ \ x \ \ ^  (2.24)

It is obvious tha t ||T|| <  M  by (2.19).

o If Ti and Ta are two linear bounded operators, then

\\T,T2x \\ = ||Ti(TaT)|| <  llTill • ||Taa;|| <  ||Ti|| • ||Ta|| • ||z|| (2.25)

implies

||T iT 2 ||< ||T i||. ||T a || (2.26)

Linear operators can be represented by matrices with respect to a specific basis, 

so th a t (2.19) may be used to define the norms of matrices. Consider the n x  m  

complex-valued m atrix M  as a linear map from X  := to  F  := C" defined by 

y = M x .  Then depending on the norms defined on X  and F , we obtain different 

m atrix norms [LaT85] for M  G 

N o rm s  o f  M a trice s ;

1. If the 1-norm is defined on bo th  X  and F , then

||M ||i =  m ax l^ü l) (column sums) (2.27)

2. If the 2-norm is defined on both X  and F , then

IlMllg =  ^max [Ai(M*M)]2 (2.28)

W here A,(A) denotes the ith  eigenvalue of m atrix A  and the superscript * is the 

complex-conjugate transpose. This m atrix norm induced by the Euclidean vector 

norm is known as the spectral norm, and it is probably the most widely used norm 

in m atrix  analysis.

3. If the oo-norm is defined on both X  and F , then

(row sums) (2.29)
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4. The Frobenius norm ||©||ir defined as

II^IIf -  E E  (2.30)
\ i = l  j = l  J

is not an induced norm, but it is compatible with IjMUg:

<  IIMII2 <  ||M ||^ , f o rn  =  m (2.31)

with tr  (A) denoting the trace of m atrix A.

Next we will introduce two norms of a causal and F D L T I  system, induced by 

the oo-norm and 2-norm respectively.

N o rm s  o f  L in ear S y s te m s; In the time-domain an input-output model for 

a S 'J6 '0  convolution system with impulse response g{t) can be represented as

y{t) — J  g ( t -  t )x (t ) dr, t e F

=: (Tæ)(t) (2.32)

Let the frequency response function G(ju>) denote the Fourier transform of g(t)

(i.e. G{joj) =  X[y(t)]). Then the norms of a S I  SO  system induced by the signal 

spaces of oo-norm and 2-norm are given by the following theorems [DeV75].

T h e o re m  2 .3 -l(S IS O  sy s te m s) ; If the input and output signal spaces are 

m easured w ith oo-norm, then  the induced norm  of the linear map T  :

L°°(F)  — )• L°°(77) is given by

ll l̂lioo — Iblli — J _ ^  l5'('̂ )l dr  (2.33)

T h e o re m  2.3-2 (S ISO  sy s te m s) : If the input and output signal spaces are 

measured w ith 2-norm, and assuming g £ L^{F),  then ||T||^2, the induced norm  of 

the linear m ap T  : L^(77) — > L^(77) is given by

M I,2 =  l|G |L =  sup|(;(;w)| (2.34)
wen

m
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R e m a rk s  The impulse response g(t) of a F D L T I  system should belong to 

L^{F)  to guarantee the existence of its Fourier transform  G(ju>). Let g G

denote the Fourier transform  G{joj) of g{t), which is defined as

G{ju)  =  F[g{t)\ :=  g(i)e~^'^^dt (2.35)

then [DeV75]

(a) L" (2.36)

(b) L^ L^ (convergence w ith respect to L^-norm) (2.37)

/OO 1 /•CO
f ( t )g{t)dt  =  —  / F*{ju)G{ ju)du  (Parseval theorem) (2.38)

-OO 2,7T j —CO

(d) 11,11, =  ̂ | | G | | ,  (2.39)

Obviously, the definition of a Fourier transform  leads to

/OO . fOO
| , ( i ) | - |e - '" ‘ |A =  /  WOldi =  llsll, (2.40)

"OO J —oo

then

=  sup |G (;w )| <  Ijyll  ̂ (2.41)
wen

hence

l |G L  <  (2.42)

This means th a t g £ L^{TV) can be used to  guarantee the existence of ||G ||^ .

Furtherm ore, the norms of a M I M O  system induced by the oo-norm and

2-norm on the input and output vector-valued signal spaces are shown in the

following theorems [DeV75].

T h e o re m  2.3-3  (M IM O  sy s te m s); For the linear and time-invariant M I M O  

system T, T  : L^(77) — > L ^ ( F ) ,  w ith impulse response m atrix g{t), the induced 

norm ||T ||-^  is given by

II ÎLoo =  (row sums) (2.43)
j=i

where gij is the ( i , j )  element of y. □
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T h e o re m  2.3-4 (M IM O  sy s te m s) ; For the linear, time-invariant M I M O  

system T, T  : T^(77) — >• with impulse response m atrix g{t), the induced

norm  ||T|| .̂  ̂ is given by

=  m^ax ^  \\gij||  ̂ (column sums)

□
T h e o re m  2.3-5 (M IM O  sy s te m s) ; For the linear, time-invariant M I M O  

system T, T  : T^(77) — >• w ith impulse response m atrix g{t), gij(-) G

H ( F ) ,  1 < i < n, 1 < j  < m,  and corresponding frequency response m atrix

G(ju) ,  the induced norm ||T ||̂ 2 is given by

||T||(, =sup||G{ia.)||, (2.44)

□
The induced norm of an operator is equivalent to the maximum system gain 

which depends on the yardsticks used to  measure the size of input and output 

signals. By definition the induced oo-norm of the system represents the maximum 

peak gain. On the other hand, the induced 2-norm of the system describes the 

maximum energy gain. W hen the peak values of the signals in a control system 

are of interest, e.g. actuator input signals, the induced oo-norm is relevant; this 

leads to  /-^-optimization. In comparison the induced 2-norm which is concerned 

w ith energy gain leads to 7/°°-optimization.

2 .4  S ingular V alue D e co m p o sitio n

The aspects of system specification: stability, performance and robustness are of 

crucial im portance in control system design. By robustness is meant the abil­

ity to  m aintain some specified degree of stability and performance in the face of 

plant modelling errors and exogenous disturbances. The eigenvalues (character­

istic gains) of a loop transfer function are directly related to feedback stability. 

However they do not give an adequate characterization of closed-loop performance. 

This is because the eigenvalues do not give a good description of the gain behaviour
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of a system operator, unless the eigenvectors form an orthonorm al set. Consider 

a transfer function m atrix

G(s) =
0 0

1000 n
L 3+10 ^

(2.4S)

Both eigenvalues are zero for all s, yet it obviously has a very large gain for certain 

inputs. A lthough not relevant to S I S O  systems, directionality is very im portant 

in M I M O  systems in addition to frequency considerations.

A convenient way of representing a m atrix th a t exposes its internal structure 

is known as the singular value decomposition (S VD )  which is im portant in the 

robustness analysis of the feedback systems. For a m atrix  M  £ the S V D  is

given by [Ste73] [AmH58]

M  =  C/SW  =  ^  (XiUiVi, k :=  min{n, m}
«■=1

where U and V  are unitary matrices w ith column vectors denoted by

XJ —

V  =

and

S  =
So'

0
s  =  [ 2 o  ‘ 0] ,

n > m ,  or 

n < m

where

So =  d iag{<71,0-2, • • •

w ith

0- : =  0-1 >  0-2 >  • • • >  o-fc = :  7  >  0

By simple manipulation, (2.46) gives

M ’̂ M V  = y s ^

and

M M ^ U  =  US^

(2.46)

(2.47)

(2.48)

(2.49)

(2.60)

(2.51)

(2.62)

(2.63)

(2.64)
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It follows th a t the u,- and Ui are eigenvectors of M * M  and M M *,  respectively, with 

respect to the eigenvalue cr?. {cr,}*_i are known as the singular values (or principal 

gains) of M ; and are, respectively, the right and left singular vectors

of M .

F ac ts ;

o max =  â{M)  =  IIMII2 (2.55)
12

o U'[f =  (7(7' =  /= > ÿ ( [7 M )  =  ^(M), ÿ(Miy) =  ^(M) (2.57)

o max =  â{M)  (2.58)
Ihll2=lhll2=i ^  ^

o o:(M) <  |A,.(M)| <  ÿ(M ) (2.69)

o M  € = >  n  =  n  (2.60)
î=i î=i

o MM* =  M *M  =)> or,.(M) =  |A,.(M)| (2.61)

o det(M ) ÿ 6 0 = >  M -^ =  VT,-^U*,  and â{M~^)  = (2.62)

k
0 ||M||^ =  tr (M*M) =  ^  cr,.(M)̂  (2.63)

t= l

Let ü :=  u\,  u :=  v :=  ui, and v :=  Vm, then it is clear- that

M v  =  â ( M ) ü  (2.64)

M v  =  2 .{M)u (2.65)

From the system point of view, the vector v (u) corresponds to the highest 

(lowest) gain input direction; and v, (w) corresponds to highest (lowest) gain output 

direction. For a M I M O  system with transfer function M (s), the gain of the system 

depends on the frequency and direction of the input vector, x(t)  =

It is well-known th a t an ill-conditioned plant M (s) can be difficult to  control. 

By ill-conditioned we mean th a t the gain of the plant is strongly dependent on 

the input direction, or equivalently tha t the plant has a high condition number at 

some frequency. The condition number of M ( j u )  is defined as
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Thus an ill-conditioned plant is characterized by strong “directionality” . For tight 

control of ill-conditioned plants the controller must compensate for strong direc­

tionality by applying high gain in the plant low-gain direction. This forces the 

controller to  be similar to  G (s)“  ̂ in directionality, where G{s) is the transfer func­

tion of the plant. However, due to plant uncertainty, the high gain direction of the 

controller will not exactly m atch the low-gain direction of the plant. This leads to 

poor performance or instability.

F a c ts ; The following are some inequalities which are useful for robustness 

analysis, provided the dimension of the matrices involved are compatible.

0 < ^(A)s:(R) < ÿ(AB) < (2.67)

o |ÿ(A) -  ÿ(B)| < ÿ(A 4- B) < ÿ(A) 4- ÿ(B) (2.68)

o 01(A) -  â(H) <  g.(A 4- B) < oi(A) 4- ^(B) (2.69)

o | l - ^ ( Q ) |< ^ ( Z 4 - Q ) < l4 - ^ ( 0 )  (2.70)

o m a x |l  -  d-{Q), a{Q) -  l }  < çr(14- Q) < 1 4- s iQ)  (2.71)

o m ax |â (A ), â ( H ) | <  â([A  H]) <  V 2 m ax |â (A ), ô-(B)| (2.72)

o det (B 4- A) =  0 = >  ç[(B) < â(A) (2.73)

2.5 W ell-P o sed n ess

Generally speaking, a system consists of interconnections of several subsystems. 

There are three interconnections which interest us here: series, parallel and feed­

back. All interconnections in a system should be well posed, and behave properly. 

This leads to  the following definition of well-posedness [CheS4].

D e fin itio n  2.5-1  ( W e ll-P o sed n e ss); Let every subsystem of a composite 

system be described by a rational transfer function. Then the composite system 

is said to  be well posed if

(1) the transfer function of every subsystem is proper; and

(2) the closed-loop transfer function from any chosen input-output pair is well 

defined (exists) and is proper. 0
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E x a m p le s  2.4-1; The systems shown in Figures 2.2, 2.3, 2.4 and 2.5 are not 

well posed.

1 « 1
s -t 1

Figure 2.2: PID controller.

Figure 2.3; Plant I /O  configuration.

0 Figure 2.2: The PID controller subsystem is not proper. Furthermore it is easy to 

show th a t the transfer function from r  to m is improper. In a practical realization, 

the differentiator k^s could be approxim ated over any desired frequency range by 

a proper one, for instance, with r  <C 1. 

o Figure 2.3: The transfer function from r  to  u , i.e.

r(a)

is improper. It is interesting to note th a t it has no state-space representation. 

0 Figure 2.4:

—s "1 O's+1 3+2 , and G 2 (s) =
_i_L 3+1

— 3—1
5-f-2 - 0 1

It can easily be shown that

det[J +  G î("S)G2('S)] =  0 

Therefore, the transfer function m atrix from r to y, namely 

y(s)  =  [I +  G ,(s)G 2(s)]-'G ,(^)K 3)
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is not well defined.

• Figure 2.5: Let to =  0 and tog =  0, and

0 0

0 3 — 1 
3 4-1 -

and K

then the transfer function from lOi to  y is not proper.

R e m a rk s ;  A rational function g{s) is said to be proper if g{oo) is a finite 

(zero or nonzero) constant. Otherwise, it is improper. Moreover g{s) is said to  be 

strictly proper if g{oo) =  0. From a system viewpoint, the transfer function of the 

plant should be strictly proper; and if M I M O  this means every transfer function 

element is strictly proper.

Gi(s)
y

Figure 2.4: Feedback system.

w

K
+

Figure 2.5: S tandard compensation configuration (SCO).

In F igure 2.3 the closed-loop transfer function from r  to  y is equal to 1, which is 

independent of any stable plant. In other words, the system performance from r  to 

y is completely robust against any plant uncertainty. But as we have already shown 

the system is not well posed since there exists an input-output pair whose transfer 

function is improper. An im proper transfer function has the effect of differentiation 

on its input signals. Thus noise injected into the system will be significantly 

amplified a t the output; and might overwhelm the useful signals especially at high 

frequencies. Furtherm ore, if the signal contains a discontinuous part, the effect of 

differentiation might make the system sa tu ra te  and burn out.
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T h e o re m  2.5-1 (W e ll-P o se d n ess)  [Doy84]; Suppose tha t P(s)  and K(s )  

are proper in the general interconnection system shown in Figure 2.5. T hen  the 

system is well posed iff

det[I — P 2 2 (oo)K(oo)] ^  0

0

To gain insight, consider a S I S O  system. If 1 — P2 2 (oo)K(oo)  =  0, then  the 

closed-loop transfer function has poles at s =  oo. This means that the num ber of 

zeros is greater than the number of poles.

2.6 B IB O  and  In tern a l S ta b ility

The minimum requirement of a system is stability. For an input-output mapping 

system T , shown in Figure 2.1, the simplest concept of stability is that any bounded 

input X results in a bounded output y = Tx .  This leads to the following definition 

of B JB O -stab ility  in the sense of the norms used for the input and outpu t signal 

spaces [Che84].

D e fin itio n  2.6-1 (B IB O  S ta b il i ty ) ;  A relaxed system is said to be B I B O  

(bounded-input bounded-output) stable i f f  for any bounded input, the ou tpu t is 

bounded. B

R e m a rk ; By this definition, a system with im proper transfer function is not 

B I B O  stable, because im proper systems might give unbounded ou tpu ts with 

bounded inputs. For instance, a bounded input x{t) =  sin(u;t^) produces an 

unbounded output y{t) = 2ut  cos(u>t^), if G(s)  =  s.

In the definition, a system is said to be relaxed at tim e to if the initial conditions 

at to are zero. For a relaxed system only zero-state responses are considered. 

M athem atically a relaxed and F D L T I  M I M O  system T  : x — > y is B I B O  

stable, i ff

Vz G Z:^(7e) =#' Tæ =  y G T-(%) (2.74)
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T hat is, i f f  the system operator T  is bounded, namely ||T||j-^ < oo. Note tha t 

the definition of B I B O  stability is suitable for linear, nonlinear, time-varying or 

tim e-invariant systems. In particular, for a F D L T I  system Theorem 2.3-3 gives 

the following results:

BIBO stable 4=#- <  oo (2.75)

\gij{r)\dT < oo (2.76)/:
for all (%, j ) ,  1 < i < n,  1 <  i  <  m, where gij{t) denotes the (%, j )  element of 

the impulse response m atrix g{t) of the system; and the corresponding Laplace 

transform  is G{s). M athematically any tim e function in the signal space L^(JV) 

has a Laplace transform in some range of convergence of the complex-frequency 

domain. Furtherm ore, Laplace transform ation is an isomorphic mapping between 

the function spaces in the time-domain and in the s-domain. We next present a 

theorem  which is useful in the frequency domain analysis of systems [Che84].

T h e o re m  2.6-1 (B IB O -S ta b ility  fo r  F D L T I S y s te m s):

A relaxed F D L T I  system described by a proper rational transfer function m atrix 

G(s) is B I B O  stable i ff  there are no poles of G(s) in %e(a) >  0 or, equivalently, 

all the poles of G(s) have negative real parts, with 3%e(a) denoting the real p art of 

complex frequency s. 0

For example a system with transfer function

= 7 : ^
has poles on the jw-axis at s =  iijcoo. Then the bounded input signal x(t)  =

2woAcosüJot  results in the unbounded output signal y(t) =  sinwgt.

D e fin itio n  2 .6-2  (E x p o n e n tia l S ta b il i ty ) ;  A rational transfer function m a­

trix  is exponentially stable i ff  it is proper and has no poles in C R H P .  0

Exponential stability is only defined for F D L T I  systems and is equivalent 

to B I B O  stability for F D L T I  systems. M athem atically it is also equivalent to
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G{s) G TVhC^, where is usually referred to as the set of proper and stable

matrix-valued real rational functions. In other words

G{s) is BIBO stable liâ'üHi <  oo 4==  ̂ G{s) G 'R-H° (2.77)

where G{s) =  C[g{t)] denotes the Laplace transform  of g{t).

Let us consider a feedback system shown in Figure 2.6. The system is B I B O  

stable from r  to y, but it is not B I B O  stable from n to y because of the unstable 

pole-zero cancellation between the compensator and plant. The transfer functions

y(f) ^  1
r(s)  s -b 3 ’ 
yjs) _  s + 2
n(a)

and

(s 4- 3)(s — 1)

-  1 
+ 2

Figure 2.6: A system with unstable pole-zero cancellation.

Thus the system will become unstable due to the noise excitation at the plant 

input. Therefore, to guarantee stability of the overall system, transfer functions 

of every input-output pair should be checked to be B I B O  stable. This leads to 

the concept of internal stability.

D e fin itio n  2.6-3 ( In te r n a l  S ta b il ity ) ; An interconnected system is said to 

be internally stable i ff  the system is guaranteed to be B I B O  stable for every 

input-output pair. E3

To illustrate the definition of internal stability we consider the plant I/O  (in­

p u t/o u tp u t)  feedback configuration of Figure 2.7 [Che84]. In order to test for 

internal stability, we examine the transfer functions between all possible input- 

output pairs, as shown in Figure 2.8. The system is internally stable if the system 

with input ( r , n i , 712, 13 , ^ 4, mg) and output (e ,wi ,W 2 ,W3 ,Wi,ws)  is B I B O  stable.
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Every n,-, 1 <  i <  5, represents a possible exogenous noise signal w ith bounded 

m agnitude injected into the system. So internal stability guarantees bounded out­

put signals for all bounded exogenous input signals. Needless to say, no unstable 

pole-zero cancellation can exist in each subsystem. By definition internal stability 

defined in the s-domain is equivalent to asymptotic stability defined in the  time 

domain.

♦ Q

G(s)

K;(S)

Figure 2.7: Plant I/O  feedback configuration.

G(s)

Figure 2.8: W ith input-output pairs added.

It is useful to have a theorem on internal stability for the basic feedback system 

shown in Figure 2.5.

T h e o re m  2.6-2 ( In te r n a l  S tab ility )  [Mac89]; Consider the feedback system 

shown in Figure 2.5. Assume that Pn(s) ,  P u i s )  and P2 i(s)  are all B I B O  stable. 

Then the feedback system is internally stable iff the transfer function m atrix

M  ::
(T -

is B I B O  stable. Furtherm ore if K{s)  is B I B O  stable, then the feedback system 

is internally stable iff  M 2 1  =  PzzC-f — K P 2 2 )~^ is B I B O  stable. ■
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3.T S m all G ain  T h eorem

The small gain theorem is of central im portance in the derivation of many stability 

tests using singular values. However, it provides only a sufficient condition for 

stability and is therefore potentially conservative. It is useful because it does not 

need detailed information about the system.

Consider a F D L T I  system operator

T : LUK) LliTl) (2.T8)

with the transfer function m atrix G(s). Recall tha t Theorem 2.3-5 gives the op­

erator gain

||T||,., =sup||G(ia.)||, (2.79)

when the elements of the impulse response m atrix g(t), namely, the 5̂ ij(-)’s, are in 

L^iF) ,  for 1 < i < n ,  1 < j  < m.  Moreover (2.28) and (2.55) can be rew ritten as

=; {X[G(;w)"G(jw)]}'

=  a[G{j(jj)] (2.80)

where Â(M) denotes the maximum eigenvalue of m atrix  M .  To summarize , we 

give the following definition.

D e fin itio n  2.7-1 (o o -n o rm  o f a  F D L T I S y s te m ); The oo-norm (?7°°-norm) 

of an n X m system m atrix  G{s) is defined as

II^IL  ■•= sup t|G(;w)||2 (2.81)

=  supâ[G (/w )] (2.82)

where G(jto) = F[g{t)] w ith gij(-) E L^{F),  for 1 <  i <  n, 1 <  j  <  m. B

F ac t:

l|G |U  =  P | l i 2 . if S,■,■(■) € £"(K ), for 1 <  i <  n, 1 <  ,' <  m  (2.83)
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R e m a rk s  By definition we have ||G ||^  =  ||T||,-2, so tha t the oo-norm is an 

operator norm. Therefore

IIG1 G2 II0 0  <  ll̂ l̂lloo • ll<̂ 2||oo (2.84)

Note th a t the oo-norm here is used for a system operator, do not be confused with 

oo-norm used in (input or output) function spaces. For S I S O  systems, 

denotes the maximum value of the Bode plot of m agnitude |G(jw)|.

0 -2-

Figure 2.9: A feedback configuration.

The small gain theorem can be stated  as follows.

T h e o re m  2.7-1 (S m a ll G a in  T h e o re m )  [DeV75]s Consider a system illus­

tra ted  in Figure 2.9. Assume tha t Ti and T2 are linear, bounded system operators. 

Then

llTiTgll <  1 and HT2T1H < 1 =>- ||w i|| <  00 and \\w2W < 00

when ||n i|| <  00 and ||n2|| <  00. Furtherm ore, since HT1T2II <  ||Ti|| • UTall and 

IIT^rill <  ||T ,|| . ||T ,||, then

||Ti|| • IIT2II <  1 the closed-loop is internally stable

where ||©|| is taken to be any p-norm, 1 <  p <  00, for signals and induced p-norm 

for system operators. B

Suppose we talce the 2-norm, p =  2, to measure the size of all signals in a 

F D L T I  system and let G i(s) and (^2(5) describe the transfer function matrices 

corresponding to the linear bounded system operators T\  and T2, respectively. 

Recall th a t ||T ||̂ 2 =  ||G ||^ . If C?i(s) and ^ 2(3) are stable and proper (i.e. G\  E 

FH°°  and G 2  E F'HF’), then by Theorem 2.7-1 we have the following corollary.
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C o ro lla ry  2.7-1 (S m a ll G a in  T h e o re m  in  oo-norm ) [DeV75]s For a 

F D L T I  system, if G i(s) and G 2 {s) are stable, then

ll^illoo ■ ll^alloo <  1 the closed-loop is internally stable

This result is the basis for many singular value robustness tests.

R e m a rk ; It is interesting to observe the relationship between the small gain 

theorem well-known in control theory and the fixed point theorem well-known 

in M athem atics. The Banach fixed point theorem, applicable in metric spaces 

[Kre78], gives only a sufficient condition for the existence and uniqueness of a 

fixed point for a contraction mapping T, (i.e. ||T|| <  1 if T  is a linear system 

operator).



C h ap ter 3

U N C ER TA IN T IES AND 

RO BU STN ESS

3.1 In tro d u ctio n

No m athem atical system can exactly model a physical system. Idealized models 

are simplified representations of physical reality. The actual system will suffer 

from param eter variations and the model will be inaccurate because of various 

approximations and uncertainties. The modelling error might adversely affect the 

stability and performance of a control system. The principal reason for using feed­

back control as opposed to  open-loop control is the presence of model uncertainties 

and load disturbances. W ith  feedback it is possible to keep the system stable and 

to m aintain performance levels despite uncertainties.

This chapter reviews the singular-value-based methods for modelling uncer­

tainty and for analyzing the robustness of feedback systems. In Section 3.2 a 

linear fractional transform ation (LF T)  is defined in term s of system components. 

The L F T  can be used to  simplify a complex system structure, thereby simplifying 

analysis. In Section 3.3 we consider unstructured uncertainty in which all uncer­

tainties are lumped into one single perturbation A for simplicity. There are six 

kinds of perturbation  which are frequently used to describe a perturbed system: 

additive uncertainty (inverse and non-inverse), multiplicative input uncertainty

32
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(inverse and non-inverse) and multiplicative output uncertainty (inverse and non­

inverse). The inverse (resp. non-inverse) error models are related to the variation 

of the poles (resp. zeros) of the perturbed plant. In Section 3.4, all six kinds of 

perturbation  are represented in a common format called (G ,A ). It is a generalized 

uncertainty model described by an L FT.  Section 3.5 gives a robust stability test 

for stable unstructured uncertainty. For unstructured uncertainty which is unsta­

ble, two theorems are presented in Section 3.6. Two examples are given in Section 

3.7 to dem onstrate th a t the singular value approach for robust stability analysis 

can sometimes give conservative results.

To remedy this conservatism, Doyle’s structured singular value ( S S V )  can be 

used. This is discussed in Section 3.8. In reality, all uncertainties in physical 

systems are structured. They cannot be lumped into one uncertainty without 

introducing conservative consequences. In Section 3.9 it is shown how the S S V  

can be used to characterize robust performance as well as robust stability.

To optimize the S S V ,  or g, as it is also called, Doyle has introduced a fx- 

synthesis procedure called D  — K  iteration. This is described in Section 3.10. 

Finally in Section 3.11 an example is used to illustrate how small simultaneous 

modelling errors can interact to cause instability.

3.3 L inear F raction al T ransform ation: L F T

The linear fractional transform ation of interest can be traced back to circuit the­

ory [Red50] [RedGO] in the late 1950’s. Some years later in the 1970’s Safonov 

emphasized its role in control theory for modelling uncertainty and param eteriz­

ing sets of plants. Figure 3.1 illustrates a system with a component gi(s) of special 

concern. From a control point of view, gi(s) may represent the system uncertainty 

or the controller to be designed. The general framework to be used is illustrated 

in the diagram  of Figure 3.2.
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9|(s)

Figure 3.1: A general system with a Qi{s) of interest.

F igure 3.2: M  — A structure.

The interconnection m atrix  M  can be partitioned as

Afii M i '2,
M (3.1)

A/21 M 2 2

with M il conforming w ith A. By the signal flow diagram shown in Figure 3.3, 

M ason’s formula gives

e — ĵ M22 4" M 21A (J  — M il A) M i2j d (3.2)

It is easy to  see tha t the expression is well deflned i ff  the inverse of (J  — M u  A) 

exists. W hen the inverse exists

-fu(M, A) :— M 22 +  M 21A (J  — M il A)  ̂Mi 2 (3.3)

is called an U pper Linear Fractional Transformation (UL F T)  on M  by A , where 

the subscript u on Fu pertains to the “upper” loop of M  closed by A. On the 

other hand, in the system illustrated in Figure 3.4, the vectors e and d  satisfy 

e =  Fi(M, A)d ,  where

F)(M, A) :— M il 4- M 12A (J  — M 22A)  ̂M 21 (3.4)

is called a Lower Linear Fractional Transformation ( L L F T )  on M  by A, when 

( I  — M 22 A) is invertible.
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.Z

M]

M
M

Figure 3.3: Signal flow diagram.

M

Figure 3.4: M  — A structure.

R e m a rk : If M  is a 2 x 2 m atrix with scalar elements M ,/s , then (3.3) becomes

1
F'u(ikf, A) — M22 4" M 21A

1 -  M il A
Ml

Mg 2 — (M 11M 22 — M 21M 12) A
(3.5)1 — M il A

which is a bilinear transform ation in A. M athem atically a bilinear transform ation 

transform s (generalized) circles into (generalized) circles in the complex plane. 

This property will be used for robust stability and robust performance analysis in 

Chapter 7. Let Q :=  A (J  — M n A )“ ,̂ then (3.3) becomes

Fu{M, Q) — Mg2 +  MgiQMig (3.6)

which is an afflne transform ation of Q, whereas (3.3) is a nonlinear transform ation 

of A.

E x a m p le  3 .2-1: It is interesting to note tha t a state-space representation can 

be described by an L F T .  Consider the sta te  space

X = A x  -f- B u  

y =  Cx  H- Du

This can be modelled as in Figure 3.2 with

y = e, d = u, z = x, v ~ x

(3.7)
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and

M  = A =

E x a m p le  3 .2-3: An L F T  can be used to represent a transfer function with 

uncertainty A. Consider the exponential function e " " ,  0 <  r  <  1 minutes.

1 -

/(a ] 1 +
(first-order Fade approximation)

( i - i )
As
2

Ai.
2

(3.8)
(l + l) +

where r  — |  H- A, |A | <  0.5. Note th a t (1.8) can be represented by an L F T  

because it is a bilinear form in A. Simple m anipulations yield

M  =
 Î--

l + s /4  l+ s /4
—a 1—s/4  

L l+ s /4  l+ s /4  J

th a t is

(3.9)

e -" « fL (M ,A ), |A |< 0 .5

R e m a rk : Assume ||M n || • ||A || <  1 in Figure 1.2. Recall from the small gain 

theorem  th a t this assum ption together w ith the stability of M n(s) and A(s'^ can

be used to  guarantee stability of the feedback system. Since ||M n|| • ||A || <  1

implies ||M nAjj <  1, it is easy to show tha t

liMnAII <  1 = »  | ( J - M j ,A ) - ' | |  <  (1 -  | |M „ A |i) - ‘

Hence

A )|| <  \\M2 2W +  IIM21II ■ ||A || (1 -  ||M ,iA ll) -' . ||*f,2||

^  IIM22II +  P^2i|l • i|A|| (1 — ||M ii|| • ||A ||)  ̂ • IIMl

=  FL(|M |,||A ||)

where

|M | :=

(3.10)

(3.11)
■||Mn|| ||M i2

.IIM21II IIM22

is a nonnegative m atrix. Inequality (1.10) gives an upper bound on the gain from 

input d to output e.
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3.3  M!odel U n certa in ty  D escr ip tio n

In this section, the uncertainties which might occur in different parts of a sys­

tem  are lum ped into one single perturbation A. We refer to this uncertainty 

as “unstructured” uncertainty. More precisely, unstructured  uncertainty means 

tha t several sources of uncertainties, bounded real param eters and unmodelled 

dynamics are described by a single perturbation A which is a full m atrix whose 

dimensions conform with those of the plant. A is uncertain, but norm-bounded. It 

is im portant to note th a t robustness analysis will be erroneous if the uncertainty 

description used is not adequate [Foo85].

Let Gp(s) G n  be any member of the set 0  of possible perturbed plants, and

let Go(s) E n  denote the nominal model of the plant. To describe unstructured

uncertainty the following six perturbations have been proposed:

0 (a l)  additive uncertainty: (Figure 3.5)

Gp(s) =  Go(s) + Aa{s),  ÿ[Aa(;w)] <  Sa(uj) (3.12)

o (a2) inverse additive uncertainty: (Figure 3.6)

Gp(a)-^ =  Go(3)-' +  A .(s) , ÿ [Â .(M ] <  6.(w) (3.13)

© (b l)  multiplicative input uncertainty: (Figure 3.7)

Gp(s) =  Go(a)[jT +  Ai(s)], ÿ[A,(;w)] <  ff(w) (3.14)

o (b2) inverse multiplicative input uncertainty: (Figure 3.8)

=  [Z -b Â ,(s)]G o(a)-\ ^[Â,(;w)] <  6{(w) (3.16)

o (c l) multiplicative ou tpu t uncertainty: (Figure 3.9)

Gp(s) =  [/-!- Ao(s)]Go(a), ô-[Ao(;w)] <  fg(w) (3.16)

o (c2) inverse multiplicative output uncertainty: (Figure 3.10)

Gp(s)-:  ̂ =  Go(a)-'[f -b Â,(s)], a[Â,(jw)] <  6.(w) (3.17)

The inverse error models are related to the variation of the poles of the plant in 

(a2), (b2) and (c2). On the other hand (a l) , (b l) and (c l) describe the variation 

of the zeros of the plant.
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Figure 3.5: Additive uncertainty.

v
AaW

GoW

Figure 3.6: Inverse additive uncertainty.

Figure 3.7: Multiplicative input uncertainty.

A i(s)

Figure 3.8: Inverse multiplicative input uncertainty.

A.(s)

Figure 3.9: Multiplicative output uncertainty.

Figure 3.10: Inverse Multiplicative output uncertainty.
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3 .4  G en era lized  U n certa in ty  M odel; (G, A) 

F orm at

For the purpose of robustness analysis, the uncertainty models of the preceding 

section can be unified by an upper L F T ,  called (G, A) format, as illustrated in 

Figure 1.11. Let Gp{s) be the transfer function from the actuator input u(t)  to  the 

plant ou tpu t y(t)  and let G(s)  be an interconnection m atrix  partitioned to  conform 

with the input vectors v, u and output vectors z, y. Assume J j — G n (s)Â (s)| is 

invertible, then

Gp(a) =  Â) (3.18)

A bit of thought reveals th a t 

0 (a l)  for additive uncertainty:

0 I
G , cr[A„(jo;)] <  Sa(uj)

G

/  Go

(a2) for inverse additive uncertainty:

—Go Go 

—Go Go

(b l)  for multiplicative input uncertainty:

■ 0 I  

Go Go

(b2) for inverse multiplicative input uncertainty: 

- I  I

G =

, o-[Â.(;w)] <  f.(w )

, o-[A,(;w)] <  8i{uj)

G , cr[A{(jw)] <  8i{oj)
—Go Go

0  (c l) for multiplicative output uncertainty:

0 Go'

Z Go_

0 (c2) for inverse multiplicative output uncertainty:

—I  Go

G = , a[Ao(juj)] < 8o(lo)

G =
—I  Go

, o-[Ao(;w)] <  6o(w)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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G (s)

Figure 3.11: (G, Â) form at of a perturbed plant.

3.6 R o b u st S tab ility : for S tab le  U n stru c tu red  

U n certa in ty

Let us consider a F D L T I  system shown in Figure 1.12, where the perturbed plant 

is described by the (G, A) format and the transfer function of controller is given 

by K{s).  Since a plant perturbation can destabilize a nominally stable system, the 

first issue to be addressed is robust stability (RS) .  T hat is, does the closed-loop 

system rem ain stable under a given plant perturbation? Stability will be taken to 

mean th a t the perturbed system has no C R H P  poles.

A(s)

K(s)
u G(s)

Figure 3.12: A control system with perturbed  plant.

A (s) =3-

G(s)

Figure 3.13: Equivalent system, when r=0 .

For the purpose of stability analysis, the command signal r(t) can be set to 

zero and Figure 1.12 redrawn as Figure 1.13. Absorbing —K{s)  into G(s) Figure
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3.13 can be reduced to 3.14, where m atrix M  is given by

M :=  F}(G,-AT)

V A(s) z

----- £= A(s)

Figure 3.14; General M  — A structure for R S  analysis.

By (3.25) and (3.19)-(3.24), we have 

0 (a l)  for additive uncertainty:

M  =  - K ( I  + GoK)-^

0  (a2) for inverse additive uncertainty:

M = -Go + GoAr(f + GoAr)-̂ Go 

=  - G o ( f  +  % G o)-'

0 (b l)  for multiplicative input uncertainty:

jkr =  -jir(F+G o;<:)-"G o

0 (b2) for inverse multiplicative input uncertainty:

M  =  - I  +  A:(Z +  G o ^ )- 'G o

=  —{I  +  K G q) ^

o (cl) for multiplicative ou tpu t uncertainty:

M  = - G o K { I  + GqK)-^

o (c2) for inverse multiplicative output uncertainty:

M  =  - I  + GoK{I  + GoK)-^

=  —(F +  GqK )  ^

(3.26)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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Furtherm ore, after scaling of A (s), it is easy to see th a t F igure 3.15 is equivalent 

to Figure 3.14. The perturbation  A(s) which satisfies

can be normalized by

<r[A(jw)] <  a(w)

Â (6)
A (6) :=

a(a)

(3.32)

(3.33)

where a(s)  denotes a minimum phase, stable rational function which is used to 

fit the error bounding function S(oj) or S(u>). Absorbing the scaling function o;(s) 

into M{s),  we have the M  — A structure shown in Figure 3.15, with

M (s )  :=  a{s)M(s) ,  and

i|A| CO < 1

v
A(s)

z

M(s)

(3.34)

(3.36)

Figure 3.15: General M  — A structure w ith ||A ||^  <  1.

Assume th a t both  M (s )  and A(a) are stable, then the  following theorem  is 

easily established [CaD91] [MoZ89].

T h e o re m  3.5-1 (R o b u s t  S ta b ility  T h e o re m  fo r S ta b le  U n s tr u c tu r e d  

P e r tu rb a t io n ) :  For a F D L T I  system shown in Figure 3.15, assume th a t

(a) M (s)  is stable, and

(b) A (s) is stable w ith ||A ||^  <  1

Then the closed-loop system is internally stable iff one of the following conditions 

is satisfied:

(i) det[F -  M(;w)A(;w)] 0, Vw € VA 3 ||A |L < 1

(ii) ||M |L  < 1  o

R e m a rk : To gain insight, let us consider a S I S O  system shown in Figure 

3.15. Theorem  3.5-1 implies th a t the Nyquist plot of M (s) m ust be strictly inside
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a unit circle centred at the origin in the M (jw )-plane to guarantee robust stability. 

Otherwise, at some frequency cuq, the so-called unity-gain frequency of the

Nyquist plot of M ( j u )  crosses the unit circle, as illustrated in Figure 3.16. The 

phase m argin of M{juj)  is 9q , i.e. M(jwo) =  w ith 6 0  > 0. If we can

properly choose a stable A(s )  such that

|A(;wo)| =  1, and (3.36)

ZA(;wo) =  ?r-go (3.37)

then clearly M(ju>o)A(ju>o) =  1 and det [1 — M(juJo)A(juJo)] = 0, and the closed-

loop system will sustain oscillations at ujq and be unstable. Now let us construct

a stable transfer function A (s) to  satisfy (3.36) and (3.37). A first order all-pass 

function of A (s) can be chosen as

A (s) =  —-— , a >  0 (3.38)
s 4- G

Obviously (3.36) is achieved and (3.37) leads to

a =  Wo ^tan —^ (3.39)

when 0 <  ^0 <  7T. The equation (3.37) also satisfies the extremal cases th a t if 

^0 =  0 or ^0 =  7T, then A (s) =  —1 or A (s) =  1, respectively. Furtherm ore if the 

Nyquist plot of M ( j u )  crosses the unit circle in the first or second quadrant, then 

A (s) can be constructed as

A (s) =  — j — ^ , a > 0 (3.40)

when —7T <  ^0 <  0 .

R e m a rk ; For all possible stable unstructured perturbations A(s), ||A ||^  <  1, 

in Figure 3.15, the application of the small gain theorem does not introduce any 

conservatism. However, the  conservatism might become arbitrarily large if A(a) 

is structured. To remedy this problem of the singular value approach, the concept 

of structured  singular value will be introduced in Section 3.8.
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ImMCjCo)

ReMCjoû)

MCM

Figure 3.16: Nyquist plot of M(s) .

3.6 R o b u st S tab ility : for U n sta b le  U n stru c tu red  

U n ce rta in ty

The derivation of the unstructured  robust stability test of Theorem 3.5-1 is based 

on the small gain theorem under the assumption of stability of the uncertainty 

model A. This might be too restrictive. Much effort has been made to remove the 

assumption and derive more general stability conditions, e.g. [PoFS5] [ChD82]. In 

this section two theorems are given under the condition th a t all members Gp of 

the set n  of possible plants have the same number of C R H P  poles or zeros.

Consider a feedback system of Figure 3.12. Let L  and Lq denote the perturbed  

and nominal open-loop transfer function matrices, respectively. Clearly, L q —  

GqK, L  = GpK  and

I F  L =  - f  ( F  — Lq)ÇI - f  L q)  ( /  -f- L q)  (3.41)

= :  Q { I  - f  L q)  (3.42)

with Q := F 4- (F -  Fo)(F 4- Fo)-^ =  F 4- (Gp -  Go) FT(F -k GoFT)-\

Furtherm ore expressions (3.12), (3.14) and (3.16) give 

o (a l)  additive uncertainty:

Q =  F4-A.Fr(F4-GoFT)-^ (3.43)

detQ  =  det[F4-FT(F4-GoFf)-^A.] (3.44)

0 (b l)  multiplicative input uncertainty:

Q =  F4-GoA,Fr(F4-GoFf)-i (3.45)
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detQ  =  det [ j+ F r (H -G o J F )“ ^GoAi] (3.46)

0 (c l) multiplicative output uncertainty:

Q =  F +  A.GoFr(F +  GoFT)-" (3.47)

detQ  =  det[F +  GoFr(F +  GoFT)-^Ao] (3.48)

The formula det(J +  A B )  =  det(J  +  B A )  is used to obtain det Q in the above

equations. Comparing (3.44), (3.46), (3.48) with (3.26), (3.28), (3.30), respectively, 

it is interesting to note tha t

det Q =  det — M Â ) (3.49)

with Â denoting A^, A; or A^, and â [Â(jo;)| <  F(w), for additive or multiplicative 

uncertainty. This leads to  the following theorem [Lun89].

T h e o re m  3.6-1 (fo r U n s ta b le  A d d itiv e  o r M u ltip lic a tiv e  U n c e r ta in ty ) ;

Assume th a t

(1) the closed-loop system is nominally stable, and

(2) Gp{s) and Go(s) share the same num ber of C R H P  poles.

Then the closed-loop system is robustly stable iff

6(w)

R e m a rk ; M athem atically the norm of the operator A(g) is infinite because 

Â (s) is unstable. However â  |^Â(jw)j might well exist. For example, if Â (s) =  

then â  [Â(jw)| =  .

We have given a robust stability test for a system with unstable additive or 

m ultiplicative uncertainty. Similar tests are also available for unstable inverse 

additive or inverse multiplicative uncertainty. W ith open-loop transfer functions 

L q and L  at hand, we have the following identities:

F +  F -: =  [ l -K F -^ -F ô " ) ( I  +  F ô ')- '](F  +  Fô') (3.50)

= : R { I  + L q^) (3.51)
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with

R  :=  I  +  ( F - ' - F ô ' ) ( I  +  F ô ') - '  =  I  +  ( F - i - V ) ( I  +  F o r 'F o

=  F +  (G ;" -  Gô") (F +  GoFT)-^ GoFT (3.62)

Then it follows from (3.13), (3.15) and (3.17) that 

0 (a2) inverse additive uncertainty:

FZ =  F +  F r-^Â .(F  +  GoFT)-:GoFr (3.63)

det R  =  det | f  +  (F +  GqK )  ^GoA^j

=  det[F  +  Go(F +  FTGo)-"A.] (3.64)

© (b2) inverse multiplicative input uncertainty:

FZ =  F +  Ff-^Â ,G ôX F+G oFf)-iG oFr (3.66)

detFZ =  det[F4-G ôX F+G oFr)-"G oÂ {]

=  det [F +  (F +  FTGo)-"A{] (3.66)

0 (c2) inverse multiplicative output uncertainty:

FZ =  F +  Fr-^Gô"Â„(F +  GoFr)-^GoFT (3.67)

detFZ =  det [f  +  (F +  GoFT)-^Ao] (3.58)

Comparing (3.54), (3.56), (3.58) with (3.27), (3.29), (3.31), respectively, it can 

be seen th a t

det R  =  det { l  — MÂ^ (3.59)

with Â  denoting A^, A« or A^, and â |^A(jw)j <  6(w), for inverse additive or inverse 

multiplicative uncertainty. Then the following theorem is easily established.

T h e o re m  3.6-2 (fo r U n s ta b le  In v e rse  A d d itiv e  o r  In v erse  M u ltip lic a ­

tiv e  U n c e r ta in ty )  [Lun89] : Assume tha t

(1) the closed-loop system is nominally stable, and

(2) Gp{s) and Gq(s) share the same num ber of C R H P  zeros.

Then the closed-loop system is robustly stable iff

â \M{ju)] < , Vw G 7Z.
 ̂ g(w)

□
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3.T T w o E xam p les

The singular-value approach is very useful for robust stability analysis if the un­

certainty of the plant is completely unstructured and norm-bounded. In practice, 

however, both  structured and unstructured information is often available on the 

plant uncertainty. Consider a process plant with servo-controlled valves [Mac89]. 

We know th a t the uncertainty for each valve is not likely to  directly affect the 

others. If there are two such valves, a correct description of the multiplicative 

input uncertainty of the process plant is

"(5i 0
A := |f,.| <0 .1 ,  * =  1,2

But when we write g(A ) <  0 .1, we lose all the structural information, since this 

description also allows perturbations such as

' 0.1 0 . 1 '

0.1 0.1- I
and

A =
0 0

0.1 0

which do not correspond to  any real physical perturbation. Therefore the use of 

the singular-value approach for robust stability analysis generally leads to  com­

pensator designs which are unnecessarily conservative when the plant error model 

is structured.

Let us consider the following two examples [Lun84].

E x a m p le  3.7-1 (A  T w o In d e p e n d e n t L oop S y s te m ); Consider a per­

turbed plant which consists of two independent loops, shown in Figure 3.17. The 

transfer function matrices of nominal plant and controller are

' gi (s)  0 

. 0
Go{s) =
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î*i — — - l%(s)

—== Aĵ (s)
4"

gi(s)

&(s)
4"

A%(s)

->71

-£=• ^2

Figure 3.17: Block diagram  of a system of two independent loops.

and

Fir(a)
ki(s)  0

0 &2(s)

The m atrix  of stable additive model uncertainties is 

^A i(a) 0

0 A 2(a)

Assume th a t the system is nominally stable, then the closed-loop system is robustly 

stable if the two independent inequalities

A(a) , cr[Ai(iw)] < Si(oj) , z =  1,2 Vw e 7Z.

ki
< -  , * =  1,2

Oi1 +  Qih

are satisfied for all s in the Nyquist contour.

In contrast to this result the singular-value approach yields

Al— 0
M  = {I  + KG o ) -^ K  

and the sufficient condition

l+Sl fci 
0 1+52̂ 2

â[M] <
1

ÿ[A]:
Vw G R-

for robust stability implies

kt
i P g i k i ’ 1 +

<
1 -, Vw G %

max{(5i,^2}'

But this condition might be very conservative for a large value of 8i !
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I*, H  i%(s)1

r.2

Figure 3.18: A simple coupling system.

E x a m p le  3.7-2 (A  S im p le  C o u p lin g  S y s te m ); Consider a closed-loop 

control system, shown in Figure 3.18, w ith perturbed plant Gp(s) and controller

0 5̂2(3)
&i(s) 0

0 63(3)

, w ith cr[Ai2] <  ^, Vw G 7^

Clearly

and

G q{ s )
9\{s) 0

0 fif2(s)

0 A i2(a)

0 0
, ÿ[A] =  ÿ[Ai3] <  6

—h — 0
i+aiti

A(3) =

Consider the nominal system 

M  = 11 ------
14-32̂ 2 J

and assume th a t M{s)  and the perturbation  A(a) are stable. Then the sufficient 

condition

Vw e  71



h k2
1 +  9iki ’ 1 +  92^2
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for robust stability implies

< Vw e %0

This is ridiculous, because from Mason’s gain formula the uncertainty A i2(s) does 

not even affect the stability of the closed-loop system. Thus, the degree of conser­

vatism is arbitrarily large !

3.8  S tru ctu red  Singular V alue (S S V )

A real system is always different from its “idealized” m athem atical model. This 

is of crucial significance because modelling errors and exogenous disturbances can 

seriously affect the stability and performance of a feedback system. Generally 

speaking, there are two types of uncertainties: unstructured and structured. Un­

structured  uncertainties include unmodelled or neglected high frequency dynamics 

(complex uncertainties) in the system, e.g. unmodelled lags, parasitic coupling, 

hysteresis, resonance, and so on. All uncertainties occurring in different parts  of 

the system which are lum ped into one single norm bounded perturbation A are 

also referred to as unstructured  uncertainty. On the other hand, some uncertain­

ties affect the low frequency range; for example, sensor or actuator failures, and 

real param eter variations (called param etric uncertainties) caused by movement 

of the operating point. Quantitatively these uncertainties might be described by 

intervals of possible param eter values. From an engineering point of view, struc­

tured  uncertainties of a plant are the most realistic. Unfortunately, when the plant 

error model is structured, the standard singular value approach to robust stability 

analysis may lead to controller designs which are unnecessarily conservative. To 

remedy this problem, in 1982 Doyle proposed and developed the concept of the 

structured  singular value ( S S V )  which is a less conservative indicator of stability 

robustness [Doy82] [DWS82] [Doy84].

Consider the interconnected system shown in Figure 3.19. We can rearrange the 

block diagram  into the standard  form of Figure 3.20 , called the M  — A structure, 

by absorbing into M  the weighting functions used to model the uncertainty. A
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is a block diagonal m atrix and M  is a F D L T I  interconnection m atrix. Note 

th a t M 22 is the transfer function of nominal performance (with A =  0). Figure 

3.20 is the format required for //-analysis. A ,(s) is assumed to be stable with 

< 1 , 'ii. For a discussion of situation when an individual perturbation  

may be unstable see [F0P 88].

di

Figure 3.19: An interconnection system.

0 0 
0 Ag 0 
0 0 Ag

Figure 3.20: M  — A  structure.

E x a m p le  3 .8-1: It is interesting to consider an uncertain model of a one-mode 

flexible structure having the transfer function

, ,2
(3.60)-t- 2CuJnS 4- Ul

where C and are the damping ratio and natural frequency respectively w ith the 

param etric uncertainties

C — Co +  A(

w .  =  (jJno +  A t,

(3.61)

(3.62)
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Co and ujno represent the nominal values of C and respectively. From classical 

control it is not easy to design a proper notch filter to catch up with because 

of the uncertainty in Therefore the bandw idth of the closed-loop system is 

restricted to be within w„o/2 , to roll off the magnitude of the frequency response 

near u>no, when the damping ratio is quite small. Now let us show how to form at 

G(s) into the M  —A structure suitable for //-analysis. A little thought reveals tha t 

G(s) is equivalent to the closed-loop transfer function, from input u to ou tpu t y, 

of a unity  feedback system with forward p a th  transfer function

(3.63)
s(s + 2(^Un)

as shown in Figure 3.21. Moreover Figure 3.21 can be decomposed into Figure 3.22 

which is equivalent to Figure 3.23 with param etric uncertainties A( and Â ^̂  as in 

(3.61) and (3.62). Then the block diagram  of Figure 3.23 can be rearranged into 

the standard  M — A structure in Figure 3.24 where the block diagonal uncertainty 

structure is

A =

and

M  =

'Au,. 0 0 ■

0 Aw. 0

0 0 Ac.

1 — 2Co-s

(3.64)

2uJnS

-2 a
(3.66)

Figure 3.21; A perturbed one-mode flexible structure.

Note th a t there are two repeated A^,^'s in A. This results from the fact th a t the 

transfer function G(s) in (3.60) cannot be expressed as a bilinear transform ation 

of Wn.



Figure 3.22: An equivalent one-mode flexible structure.
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jiûJ
u

Figure 3.23: An equivalent one-mode flexible structure.

To define the structured singular value let M  be an n x n complex­

valued m atrix, M  E and let A  be an underlying structure which involves

specifying three things: the type of each block, the to tal number of blocks and 

their dimensions. There are two types of blocks: repeated scalar and full blocks. 

Two integers, s and / ,  represent the num ber of repeated scalar blocks and the 

num ber of full blocks, respectively. Now we define

A  =  { d i a g - - - , 6.7,., A l , , Ay] : 6,- E C, Ay E (3.66)

and its bounded subset:

B A  =  {A : ÿ(A) <  1, A E A }

where

/

i=l i=l

The full blocks in (3.66) do not need to  be square, but restricting them  as such 

saves a great deal in term s of notation. The /^-toolbox of MATLAB can handle 

nonsquare full blocks [BDGPS91].
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0 /ib) 0

Figure 3.24; M  — A structure of Example 3.8-1.

A(s)

Figure 3.25: M  — A structure.

Consider the M  — A structure (with zero input) of the feedback system shown 

in Figure 1.25. Assume A(s )  is a stable structured uncertainty and M(s)  is a stable 

nominal system (with A =  0). Then it is well known th a t the stability of the closed- 

loop system is determined by det[7 — M (s)A (s)]. A little thought reveals th a t as 

the size of the uncertainty A increases, some part of the Nyquist plot of de t[7 — 

M (s)A (s)] might pass through the origin, as s traverses the Nyquist contour. In 

this situation, there exists some frequency ojq such th a t det[7—M (_)wg) A (jWo)] =  0 

(i.e. [7 — M(jwo)A(ja?o)] is singular). This implies th a t there indeed exists a

minimum size â{A)  of A needed to make [I — M{jLOo)A(ju>o)] singular. Recall 

th a t for any fixed frequency w, M{ju}) is a complex-value matrix. This motivates 

the following definition.

D é fin itio n  3.8-1 (S tru c tu re d  S in g u la r  V alue; SSV ): For M  E the 

structured singular value of M  w ith respect to A  is the number defined

such th a t is equal to the smallest â(A ) needed to make { I —M A )  singular.

T hat is

:=  m in |0-(A) : det(7 -  M A )  =  o |  (3.67)

If no A E A  such th a t det(7 — M A ) =  0, then (J./^{M) :=  0.
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E x a m p le  3 .8-2; Given 

M  =

A =

m il mi2

"221 m22
A l 0 ■

0 A 2 .

with det M  =  0, M  € and

then

det (7 — iV7A) =  1 — ttih A i — TÏI2 2 A 2

and hence

det (7 — M A )  = 0 4=> 1 — m u  A i — m^g Ag =  0

=#" |m ii| • |A i| +  |m 22| • IA2I >  1 

= »  ô^(A) =  m ax { |A i|, IA2I} >

1

1

N u l  +  |m 22|

N i i |  +  |m 22Î 

is a lower bound of ÿ(A) (3.69)

Inequality (3.68) follows from

1 <  [mnj • |Ai|-H |m22| • IA2I <  ( |m n |  + |m 2 2 |) -n ia x { |A i | , |A 2 |}

Choose

A l
N i l  I +  N 22I

, and A 2 =
0-j^m22

N i l  I +  N 22I
(3.70)

then

1 — m u  A l — TTI2 2 A 2  — 0 , and

cr(A) =  max {IAll, IA2I} 

and combining (3.69) and (3.71) gives

1
m in a(A)  =  7 , . ,
A e A  N 11I +  N 22I

N i l !  +  N 22I

, such tha t det(7 — M A )  =  0

(3.71)

This implies tha t fj ,^{M)  =  N u l  +  N22I by the definition of the SS V .

In much of what follows we will neglect the subscript A  of jJ.^{M) for brevity.
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The reciprocal of the structured singular value is a frequency dependent sta­

bility margin, [Saf82j [DeS88], with respect to the uncertainty A E A , and a 

nominally stable feedback system will be robustly stable against all uncertainties 

in the set B A  if and only if fj,[M(ju>)] <  1, Vw. This definition tells us th a t if 

M  is easily destabilized, then fJ.(M) is large, and vice-versa. Since M  is frequency 

dependent m ust be calculated for “each” frequency.

It is clear th a t for any A E A , there exists e such th a t A =  eA*, with A ' E B A , 

namely ô-(A') < 1. Therefore directly following from the definition of the S S V ,  

an alternative expression for is given by

=  m in{ÿ(A ) : A E A , det(J  — M A ) =  0}

=  min{|e| : A E B A , det(J — eM A) =  0}
,1

=  m in | | e |  : A E B A , d e t ( - J  — M A ) =  o |  

=  m in |[e | : A E B A , ^  =  A ,(M A )|

Thus

n{M)  =  max < : A E B A , -  =  A,(MA)
I Ml G

=  m a ^  m^ax{|Aj(MA)|}

=  max p ( M A )

where p { M A )  denotes the spectral radius of the square m atrix (M A ). This leads 

to  the following lemma [BDGPS91].

L e m m a  3.8-1: ;u(M) =  maxAgSA p{ M A)  Q

Furtherm ore the m atrix  function p, has the following properties:

o p(oiM)  =  |(%| • p( M)

0 det(7  -  M A ) ^  0, VA E B A  4=> /^(M) <  1

o if A  =  {6In : S E C} (s =  1, /  =  0; r i =  n) ==^ /^(M) =  p(M ) (3.72)

o if A  =  (a =  0, /  =  1; m i =  u) = >  ^ (M ) =  ÿ(M ) (3.73)
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where denotes the identity m atrix w ith dimension n X n. (3.72) and (3.73) 

together imply the following theorem [Doy82].

T h e o re m  3.8-1: p(M)  < p (M)  < &(M)

These bounds are not practical for our purposes because the gap between p{M)  

and â (M ) can be arbitrarily  large. However, they can be refined by considering 

transform ations on M  th a t do not affect p ( M )  , but do affect p{M)  and â{M).

Let

U  : = { [ / :  [7 =  diag[[7i, - - -, [7̂ ], [7;[7,. =  7, [7 E A}

and

D := {D  : D =  diag [Di , . . . ,  di7,^„ - - -, d/7„,J, A  E , D, =  D? >  0, d,- > o}

where the m atrix  sets U  and D  match the structure of A. Obviously U  is a 

diagonal structure of unitary matrices and D  commutes with A, for all 7? E D 

and A e A .  It is easy to  check tha t all three structures shown in Figures 3.26,

3.27 and 3.28 are equivalent. Furtherm ore, it is useful to note that U  and D  leave 

A  invariant in the sense tha t

o C7 E U  and A E A  C7* e  U  and £7*A E A , with â{U*A)  =  ô-(A)

0 7? E D  and A  E A  ==^ DAD~^  =  A  = >  DAD~^  E A , with â{DAD~^)  =  5(A)

Theorem 3.8-1 and the above facts imply tha t

XMC7) < ^(M[7) =  ^(M) =  //(DMD-^) <  ÿ(DM7)-^) (3.74)

A

M

Figure 3.26: M  — A structure.
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Figure 3.27: M  — A structure with [7 E U.

Figure 3.28: M  — A  structure with D  E D.

The equality p ( M )  =  p{DMD~^)  means tha t the structured singular value 

of M  w ith respect to A  is invariant under diagonal scaling. The consequence of 

(3.74) leads to the following theorem [Doy82].

T h e o re m  3.8-2; m a x u p { M U )  < p ( M)  < a ( D M D  ^)

This theorem provides the tighter upper and lower bounds on p(M) .  M ath­

ematically inîDÇ-Q â{DMD~^)  denotes the least upper bound of a{DMD~^)  for 

V D  E D . In [Doy82] Doyle proved tha t the lower bound is actually an equality:

maxp{M U)  =  yu(M)

Unfortunately, this optim ization problem is not convex. p(MU)  can have multiple 

local m axim a which are not global and so direct computation of maxf/gu p{MTJ) 

by gradient search might not find the actual maximum.

E x a m p le  3 .8-3: Consider A =  diag {Ai, Ag, A 3}, and
0 0 Wo

M  — UJp LOp —Wp

.  0
taken from [SkM88].

Let U =  diag e-’̂ ,  j- E U. The algebraic manipulation gives the charac­

teristic equation of M U  as

-  WpĜ '̂ 'A -b -  c»woe '̂M'+''=)] 1 = 0
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The roots of the above equation are A =  0 and

A =  i  ±  — 4c„Wpe7M2+®3) +  4c„Woe7Mi+®3)J (3.75)

Now

p{M)  =  max p{MU)  =  max |Â(MU)| (3.76)

which suggests we take the positive sign in (1.75) and set

=  |wp| Zwp +  ^2 =  0 (3.77)

^ 2gj202 _  1^21 2Lojp +  2^2 =  0 (3.78)

—4c„Wpê M2+^3) _  4|c„o;p| = >  Zc„ +  ZWp +  (^2 +  ^3) =  tt (3.79)

4cnWoe'( '̂"'^^) =  4|c„Wo| = >  Lcn +  Zwo +  (^1 +  ^3) =  0 (3.80)

It is easy to  check th a t the solution 6 2  — — ZWp, ^3 =  tt — Zc„ and di — — (Zwq +  tt)

satisfies the simultaneous equations (1.77)-(1.80). Therefore (1.76) gives

p{M)  =  -  |̂wp| +  y|wpM +  4|cn| (|wp| +  |wo|)j

On the other hand, the upper bound of p{M)  is more easily found since 

a{DMD~^)  is convex in InD  [Doy87] [SeO90]. Unfortunately, the upper bound is 

not always equal to p(M) .  It can be shown tha t

X M ) =  W 5 (D M D -:^ ) , if 2a +  / < 3  (3.81)

The problem of p{M)  is hence reduced to  an optimal diagonal scaling problem. 

Most algorithms for computing the structured singular value actually compute this 

upper bound, which Doyle has conjectured, is always w ithin 15% of the true value 

of p{M).  The lower bound can then be used to check the closeness of a{DMD~^)  

to p(M) .

R e m a rk s  The definition of D  shows th a t Di > 0 and d{ > 0. The reason can 

be explained briefly as follows. It is well known th a t any complex m atrix D  can 

be represented in the polar form [LaT85]

D = U H
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where i J  >  0 , is a positive semidefinite Hermitian m atrix, and U is a unitary  m a­

trix. Since the maximum singular value is invariant under unitary transformation, 

this implies

(3.82)

assuming D  is invertible, and so only positive Hermitian matrices are needed to 

define the m atrix set D.

E x a m p le  3.8-4: For the M I M O  case, consider

0 Ml 2 'A l 0 '
M  = and A  =

M 21 0 0 Aa_

Both M l2 and M^x are matrices. Since A  has just two non-repeated uncertainty 

blocks, (3.81) holds. Let D  =  diag {7, df}, d >  0, then

D M D - ^  =  f “
dM2i 0

Choose a perm utation m atrix

P  =
0 7 

7 0

which is also a unitary m atrix. This leads to

5(D M 7)-^) =  â ( P D M D - ^ )  = â
dM^x 0 

0 d-^M i 

=  m ax |d5 (M 2i) , d~^5(Mi2)}

Thus

/%(M) inf 5(DM 7P-^)r»eD '' ^
=  inf m ax|d<r(M 2i)  , d ^cr(Mi2) |  

=  a/5(M i2)5(M 2i)

(3.83)

(3.84)

The solution d for the min-max optimization problem in (3.83) can be obtained 

by setting d5 (M 2i) =  d~^a{Mx 2 )-
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E x a m p le  3.8-6: Let

mi l *7*12 ' 'A i 0 ■
M  = and A =

.*7*21 m 2 2 . 0 A 2

Choose D  =  d iag{l,d} , d > 0 .  Let N  :=  { D M D  ^ y ( D M D  ^), then the charac­

teristic equation of N  is

A ^ -( tr iV )A 4-detiV  =  0

where triV  denotes the trace of iV. It follows that

(3.85)

A -t- A =  tv N  

Â ' A =  det N

(3.86)

(3.87)

where Â and A denote, respectively, the maximum and minimum roots of equation 

(1.85). Differentiating both sides in (1.86) and (1.87) w ith respect to d, and noting 

th a t detiV  =  |det(£>MD“^)|^ =  |detM |^  is independent of d yields

dÂ , dA d(trAT)
dd_ dd dd

It follows th a t
dA

(3.88)

Since tri\T =  tr  [(DMD~'^y{DMD~^)]  =  \\DMD~'^\\l,  w ith ||ej|^ denoting the 

Frobenius norm, we have

d(trjV )
dd

=  0 |m i2|

M anipulation then leads to

H(M)  =  mîâ(DMD~'^ )  = â
d>0

mil

/iB lll.w  ■ "^21 *7*22

k 4- \ / k ‘̂ — 4|miiTO22 — "*12)7*2112 '
2

(3.89)

(3.90)

(3.91)
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with

k :=  \m i i p +  |?7*22+  2\m,i2Tn2i\ (3.92)

It is interesting to note that:

0 (1) the anti-diagonal elements of (DMD~^)  in (3.90) have the same modulus.

0 (2) if m i2 =  0 or 77*21 =  0, then

A*(M) =  m a x { |m n |, 1*7*221}

0 (3) if m u  =  0 and 77*22 =  0, then

H{M) = \Z|n*i2| • 1*7*21!

0 (4) if det M  =  0, i.e. ***1177*22 =  *7*1277*21, then

ld{M) = |*7*ii| -h 177*221 (3.93)

which coincides with fd(M) in Example 3.8-2.

yU "C om putation : (O s b o rn e ’s M e th o d )  Gradient search techniques can be 

used to  minimize a{DMD~^).  However it becomes complicated by the fact tha t 

â( DM D~ ^)  is not always differentiable at a “cusp” of repeated maximum singular 

values. The alternative diagonal scaling approach of Osborne is fast and efficient. 

In 1960, Osborne developed an iterative scheme to minimize ||D M i9“ ^||^, [Osb60]. 

Based on the  fact th a t ||®||p. and ë(o) are equivalent norms [MoZ89]:

^  <  a ( D M D ' ^ )  < ||D M D -" ||^  (3.94)

where n  is the dimension of The minimization of \\DMD~^\\p usually

yields very good approximations for the optim al D  which minimizes d-(DMD~^).  

M athem atically the Frobenius norm is defined as

:= È  È  =  tr (A*A) (3.96)
i= l  i = i

and inequality (3.94) follows directly from the fact tha t A*A  is positive semidefinite 

(i.e. Aj(A’*A) >  0); and

^(A)" =  A (A "A )< f]A ,(A *A ) =  tr (A ’'A)
:=1

|2 _ ^  
j= l

=  Ë  < »Â(A*A) =  nÿ(A)" (3.96)
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T hat is,

ÿ(A)" <  ||A ||^  <  nÿ(A)" (3 .97)

which is equivalent to (3.94).

For simplicity, suppose M  E and D  =  diag {1, c?i, 0̂2}, di > 0 ,  dg >  0, 

then

and

DMD~^  =

m il m i2d^^ migdg  ̂  ̂

mgidi 77*22 77*23(̂ 1̂ 2̂

_ 77*31^2 77*32 d 2 d [ ^  77*33

(3.98)

I D M D  ^ 11 ^  =  ( | m 2 i p  +  | m 2 3 < i 2  (^1  +  ( | m i 2 p  +  | m 3 2 d 2 | ^ ^  c ? i  ^ +

( | m i i | ^  +  | m 2 2 | ^  +  | m 3 3 p  +  | m 3 i d 2 p  +  j m i s d g

=: y^idj +  7 id]̂   ̂4- «1 (3.99)

Id m d - Ip, — (|77*3iP 4 - |m32di 1̂̂  ̂^2 4 - (|m i3p 4 - |m23<fip) ^2  ̂ 4-

( |m iip  4- |m 22|̂  4- |m 33|̂  4~ |m 2i(Zi|^ 4- |m i2<fi 

=: ^ 2(̂ 2 +  T2<̂2  ̂4- q;2 (3.100)

where 7 ,-, ai are independent of d,', for * =  1,2. Then taking ||D M D “ ^||^

in (3.99) and ^  ||D M D ~^||^  in (3.100) to  minimize the \\DMD~^\\^p w ith respect 

to di and d2, respectively, yields

ad.
=  2/?,-dj — 27,-dj-  ̂ =  0  

1 /4

* =  1,2

The optim al D  is determined iteratively to  find:

min |D M D -^ L  
d i> 0  II II

(3.101)

(3.102)

Osborne’s algorithm can be summarized as follows:

S te p  1 : S tart with some initial guesses for d,, e.g. D = I,  for k = 0. 

S te p  2 ; F ind and 7 ,- from IjDMD"^!!^, * =  1,2.
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S te p  3 ; Let d, =   ̂ , * =  1,2.

S te p  4 : Increase k := k + 1-

S tep  5: Go to Step 2 and repeat until convergence is obtained.

More information about numerical algorithms to compute jj. is given in the 

papers [FaT88] [Hel88] [PFD88] [PaD88]. It should be appreciated tha t if some 

uncertainties are real param eter variations or if phase information is available, 

then complex-/* analysis might give excessively conservative results. In such situa­

tions real-/* or mixed-/* com putations are necessary for robustness analysis [Dai90] 

[DeS88] [FTD91].

3.9 R o b u st S ta b ility  (R S ) and R o b u st P erfor­

m an ce  (R P )

In this section, two basic theorems are given relating /*, and robust performance 

and robust stability for structured uncertainty [DWS82]. In control engineering 

we want to design a control system which remains stable and maintains minimum 

performance levels despite the presence of model uncertainties and disturbance 

signals. The minimum requirement is usually robust stability.

Consider a system interconnection represented by an M —A structure as shown 

in Figure 3.29. Let

:= {A(a) : A E A(ao) E B A , Vao 3 %e(ao) > 0} (3.103)

be a set of structured, stable, real rational transfer function matrices. The maxi­

mum m odulus theorem shows th a t if A E B7?.74°°, then 1| A||_^ <  1, (i.e. â-[A(jw)] <  

1, Vw E TZ). Assume th a t the interconnection m atrix M (s) is a stable nominal 

system (with A  =  0); and A(a) is a normalized, block diagonal, stable real rational 

transfer function uncertainty matrix. Then the following theorem is established 

[Doy85]:
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A (s)

Figure 3.29: M  — A  structure without input: for R S  analysis.

T h e o re m  3.9-1 (R o b u s t  S tab ility  fo r S t ru c tu r e d  U n c e rta in ty ) :

Assume th a t

(1) the nominal m atrix M (s)  is stable, and

(2) A (s) e  B A  and stable (i.e. A(s)  G

Then the perturbed closed-loop system in Figure 3.29 is stable iff

where ||M || :=  sup^/x[M(jw)]. m

Note th a t the convenient notation ||M ||^ is not actually a norm; it depends not 

only on M  bu t also the assumed structure of A. A general extension of the small-/ii 

test for the robust stability is given in [F0P 88], in which assumption (2) in Theorem

3.9-1 can be removed if the plant is assumed to belong to  an arcwise connected 

set of strictly proper rational transfer function matrices in the graph topology. 

Anyway Theorem 3.9-1 guarantees tha t if the frequency plot of /f[M(yw)] is less 

than  1 for all frequency, then the closed-loop system is stable for all structured 

uncertainties A(s) 6  Otherwise, if /j,[M(ju>)] >  1 at Wg, then there exists

a structured  uncertainty A (s) G which destabilizes the system [ChD82].

The peak value on the ^-curve indicates the worst case of stability. Hence Theorem

3.9-1 may be interpreted as a generalized small gain theorem or small-^ theorem 

[DWS82].

In addition to the robust stability the performance of the closed-loop system 

must be robust to perturbations such as exogenous disturbances acting on the 

system. Typically these disturbances are caused by environmental effects: load 

variations, sensor noise, wind gusts, road surface variations, wave surges, tem per­

ature changes, and so on. Disturbances result in regulation and tracking error.
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and the performance will degrade to the point of unacceptability. Therefore the 

issue of robust performance is to design a feedback system to maintain at least 

minimum performance levels under external disturbances.

Let us now consider a general framework for this problem as illustrated in 

Figure 3.30. In this figure, d and e are vector-valued signals; d is the exogenous 

input w ith components typically consisting of command signals, disturbances and 

sensor noise; e is the ou tpu t with components typically being regulator output, 

tracking errors, filtered actuator signals and error outputs due to disturbances 

and /o r noise, and so on. A is a normalized model uncertainty, unstructured or 

structured, which is uncertain but norm-bounded. M[s )  is the interconnection 

m atrix w ith element M 2 2 {s) representing nominal performance (N P )  w ith A =  0. 

Robust performance analysis is to determine whether the error e remains in a 

desired set for the sets of inputs d and uncertainties A. W hat is required is a 

yardstick to  indicate the worst case level of performance degradation associated 

with a given level of uncertainties.

A (s)|=3— ^

M  (s)

Figure 3.30: M  — A structure with input: for R P  analysis.

Obviously, the transfer function m atrix from d to e can be expressed as the 

linear fractional transformation.

e =  Fu{M,  A)d

=  [M2 2  +  M2iA (J  -  M n A )-^M i2] d (3.104)

and the maximum gain of the system is
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Hence the worst case of system gain in the presence of the uncertainties A G B A  

is given by

sup s u p | ^ =  sup ||F l(M , A ) ||^  (3.106)
A g B A  d^O | | « | |2  A e B A  

This leads to the following definition of robust performance.

D e fin itio n  3.9-1 (R o b u s t  P e rfo rm a n c e ) : The performance of the stable 

system in Figure 3.30 is said to be robust if

| |F . ( M ,A ) |L < 1  (3.107)

for all A G B A . Equivalently, if ||d ||2 <  1, then ||e ||2 <  1, VA G B A . 0

E x a m p le  3.9-1 (S IS O  sy s te m ): Consider a S I S O  system illustrated in Fig­

ure 3.31. G q( s )  and K ( s )  denote the nominal plant and controller, respectively. A 

represents the normalized multiplicative input uncertainty, w ith || A ||^  <  1. W 2 {s) 

describes a modelling error function and W i(s) denotes a performance weighting 

function. The transfer function “seen” by A  is given by

where To :=  denotes the nominal complementary sensitivity function. It

follows directly from the robust stability theorem 3.5-1 tha t

j Z 6 '^ | |W 2 2 o |L < l

Furtherm ore, the perturbed  weighted sensitivity function S  from d to  e is given

by

WrS : =  4=  ^d 1 -f- K(1  -t- W2A)(?o

(3.108)W<Go __ Wi5o
1 +  '1  +  W2T)A

where S q :=  is the nominal sensitivity function. This gives the worst case

of |Wi5'| as

Wi,9osup sup
1 -j- H/jTqA

|W i% | ^

-  S | | a1u <i 1 -  IWlîol • |A | -  1 -  IWjTol



The above inequalities follow from HWgToHoo <  1 and ||A ||^  <  1. Furtherm ore if

we choose A =  |A | =  1, then the worst case of |W i5| is equal to

iWi^ol 
wG% 1 — IWjTol

which should be less than  1, for the requirement of robust performance. T h a t is

iWi^ol
1 — |W2^o|

<  1, Vw E 'R- IWiFol +  IW2T0I <  1, Vw E R

^  ll|T^i^o|+ |W 2% I L < l

Figure 3.31: A S I S O  system with multiplicative input uncertainty.

I
Now let us close the loop from e to  d in Figure 3.3l8 by an artificial stable

transfer function m atrix Ap, ||A p||^ <  1, which is illustrated in Figure 3.32. The

Ap is referred to as a fictitious performance uncertainty m atrix  and is a full m atrix 

of appropriate dimensions. Figure 3.32 is an M  —Ap structure without input. The 

transfer function m atrix “seen” by Ap is given by

M  =  FL(M,A) (3.109)

Recall from the robust stability theorem 3.5-1 that if M (s) is stable, then system 

in Figure 3.32 is robustly stable iff

I I  Mil <  1 (3.110)

Thus (3.109) and (3.110) show the equivalence between robust stability in Figure 

3.32 and robust performance in Figure 3.30. In summary, we have robust perfor­

mance for the system in Figure 3.30 i ff  we have robust stability for the system in 

Figure 3.32 w ith respect to the augmented block diagonal structure

A =
A 0 

0 Ap j
A <  1 (3.111)

The stability test for Figure 3.32 can be expressed in term s of the structured  

singular value fi oî M  w ith respect to A.
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M

Figure 3.32: M  — Ap structure without input.

T h e o re m  3.9-2 (R o b u s t  P e rfo rm a n c e )  [Doy85]s Assume that

(1) Fu{ M,A )  is robustly stable for VA E and

(2) IIApIL <  1-
Then the performance of the perturbed system in Figure 1.30 is robust i ff

l |M ||, <  1 (3.112)

where fj, is taken with respect to  the structure

Â  =  |À  : Â  =  diag{A , Ap}, A E B A , ||A p||^  <  l}

M athem atically the conditions (1.111) and (1.112) show that 

< 1

fj. [M(jco)] <  1, Vw E R  

4=^ det ( l  — M A ^  7̂  0, Vw E R ,  VÂ E B A

(3.113)

det ^ 0 , Vw E 7̂ , VA E B A , VA. E B A
I  — Mxx A —Mfg Ap

—M 2 1 A  I  — M 22 Ap 

d e t(J  — MxiA) • det -| (̂J — M 22Ap) — M 2XA(J — MxxA)"^Mx2A pj ^  0 (3.114) 

d e t(J  — Mxx A) • det — ĵ M22 +  Mjx A (J  — Mxx A) ^Mx2j Ap j- 7  ̂ 0 

det(f -  Mil A) - det { f  -  FL(M, A)Ap} 7É 0, Vw E VA, VAp E B A  

d e t(J  -  Mix A) 7̂  0 and det [I — P„(M , A)Ap] 7  ̂ 0, Vw E R ,  VA, VAp E BA  

||M ii||^ < l and ||F L (M ,A )|L <1, VAp E B A

R S  and R P  for Figure 1.30 (3.115)
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(1.114) follows directly from Schur’s formula.

For the general case, consider a block diagonal structure. Let

A  =  {A : A  =  diag{A i, A 2}; A% E A i ,  A 2 E Ag} (3.116)

Both A i  and Ag are structured. Let /^x(©) denote the S S V  with respect to 

A i ,  and /X2(o) with respect to  Ag. Derivations similar to  the above lead to the 

following theorem  [BDGPS91].

T h e o re m  3.9=3 (M a in  L oop  T h e o re m ): 

Âa (M ) <  1 4=4'
/^i(M n) <  1, and

1̂2 [P«(M, Ai)] <  1, VAi E B A i

lJ.2 i.M2 2 ) < 1, and

Hi [FiiM, A 2)] <  1, VA2 E BA g

Therefore it is interesting to note tha t stability and performance robustness 

are achieved simultaneously if and only if the perturbed system in Figure 1.32 is 

stable for all perturbations w ith a particular block diagonal structure, diag [A, Ap]. 

Note also th a t Theorem 3.9-2 is of great importance in the analysis of perturbed 

feedback system and opens the way to systematic m ethods of synthesis.

Furtherm ore, let Àx :=  diag {A, 0} and Â 2 :=  diag (0, Ap}. Obviously, both 

Ax and Â 2 are special structures of Â :=  diag {A, Ap}, so tha t

f^Â(M) > m ax { ^ ^ j(M ),^ ^^ (M )}  =  max (^a(M xx), ^ ^ ( - ^ 22)} (3.117)

The above inequality implies th a t a necessary condition for robust performance 

(RP) ,  [fJ.Â(M) < 1], is robust stability (RS) ,  [/Ua(Mxx) <  1], and nominal perfor­

mance (N P ) ,  [hAp(M2 2 ) =  ô'(M2 2 ) < 1].

To recap, we list the following consequences:

For an interconnected system in Figure 1.30, assume th a t M (s)  is nominally stable 

and A(g) E then
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0 N S  4=4> M  is internally stable.

0 N P  4=4- IIM22II00 <  1

o R S  4=4- ||M ii||^  <  1, for unstructured uncertainty.

0 R S  4=4 <  1, for structured uncertainty.

0 R P 4 = 4  ||M ||^ <  1.

E x a m p le  3.9-2 (A  S IS O  sy s te m ); Consider the S I S O  system in Figure 

3.31. To minimize the weighted perturbed sensitivity function from d to  e, the 

interconnection m atrix M  derived directly from the block diagram is given by

—W2T0 —W ^K S q 

WiGo^'o

Since det M  =  0, it follows directly from (3.93) that 

X M ) =  IWgTl)! +  iWiSol

and Theorem 3.9-2 guarantees tha t

P P  4=4 IW2TLI +  |W i% | <  1, Vw E P.

This coincides with the findings in Example 3.9-1.

3.10  /^-Synthesis

The objective of feedback control system design is to achieve certain desired levels 

of performance and to be tolerant of uncertainties. Performance levels concern such 

things as command following, disturbance rejection, noise attenuation, sensitivity 

reduction, etc. Yet this generic design problem is still largely unsolved. The R S R P  

problem is to design an optim al stabilizing controller K{s)  for robust stability {RS)  

and robust performance {RP).  From the mathem atical point of view, the design 

objective is

inf sup h [M{P,K)]  (3.118)
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where P(s)  is the nominal generalized plant compatible with structured error 

model A (s), shown in Figures 1.33 and 1.34, and

■ P n Px2 P 1 3 '
= +

P 22. P 23.
R:(7-P337r)-"[P3i P32] (3.119)

A(s)

P(s)

K(s)

Figure 3.33: General framework.

'A (s)l ^

M(s)

Figure 3.34: M  — A structure with input.

In [DoyS5] Doyle suggested tha t the ^-synthesis in problem (1.118) could be 

solved by an iterative scheme, called D — K  iteration. This is based on finding a 

stabilizing controller K  and diagonal scaling matrix D so th a t

^(«) 0/671-DeD

has a solution; see Figure 1.35.

inf sup inf â  [l)Fi(P,K)I)-Kfs) Den I (3.120)

Figure 3.35: A scaled generalized feedback system.

One approximate m ethod to do this is to alternately minimize the above expres­

sion for either JC or D  while keeping the other constant. For fixed D the expression
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Figure 3.36: An equivalent system.

(3.120) is ju st an 'H°° control problem and can be solved by an 77°°-optimization 

method. For fixed AT, the expression (3.120) can be minimized at each frequency 

as a convex optim ization problem in D  (actually InD).  The resulting diagonal 

scaling m atrix  D  can be approxim ated by a stable, rational transfer function with 

stable inverse (the phase of D  does not affect the norm). More precisely, it is easy 

to see th a t bo th  Figures 3.35 and 3.36 are equivalent to  each other and hence we 

can write

D M ( P ,  K)D~^  =  DFi{P, K ) D ' ^  =  F i{D P D~ \  K )  =  F}(P, K )  (3.121)

with

D
D  0 

0 I
and P  := D P D '

So for fixed D,  (3.121) implies that (3.120) becomes

(3.122)

(3.123)

Recall th a t ||o ||^  :=  sup^ ô-(®).

This is a standard form of 77“^-optimization problem and (3.123) plays a key 

role in ^u-synthesis. In real-// or mixed-// analysis, which arises when the elements 

of A are purely real or a m ixture of real and complex values, it might not be possi­

ble to  approxim ate the structured  singular value //(M ) by inf^jgD cr(DMD~^),  and 

then D — K  iteration fails. This is why //-synthesis h j  D — K  iteration is only appli­

cable to feedback systems w ith complex uncertainties. If the technique is applied 

to design a //-optimal controller of a system with real param etric uncertainties, 

then the degree of conservatism may be arbitrarily large!

Let us consider a simple example in Figure 3.29. Assume M  is stable and 

A is a real scalar uncertainty with —1 <  A < 1. Theorem 3.9-1 guarantees
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th a t the perturbed  system is robustly stable iff ||M ||^  =  sup^^g^j/ / [M(iw)] =  

sup^^gTj \M(joj)\ < 1 under the assumption that A  is a complex number with 

modulus less than  or equal to  1. This means tha t the Nyquist plot of M(juj)  

should be inside a unit circle centred at the origin. However the system is robustly 

stable against the real uncertainty —1 <  A <  1 if the Nyquist plot of M ( j u )  is 

any curve which does not intersect the real axis at a distance greater than  or equal 

to one from the origin. This shows tha t the complex-// analysis gives conservative 

results when the uncertainty is real. In Chapter 5, we present a new m ethod 

for synthesis, called // — AT iteration, which is applicable for complex-//, real-// 

and mixed-// cases. At this point we will outline the D — K  iteration algorithm 

[BDGPS91]:

S te p  1 : S tart w ith an initial guess for Z), normally D  = I.

S te p  2: Fix D,  and solve for K  by 7Z°°-optimization. T hat is

where P  is given in (1.122).

S te p  3 : Fix K ,  and solve for D  at each frequency by convex optimization. T hat 

is

D  =  arg inf â  [PP ,(P , AC)p-^]

S te p  4 ; Curve fit D{juj) to get D(s),  then go to Step 2 and repeat until a specified 

convergence tolerance is achieved.

This approxim ate solution has been implemented by Doyle [Doy85] who reports 

good results. However he has also discovered a simple counterexample for which 

such an iterative scheme will fail to find the K{s)  and D(s).  The reason can be 

explained as follows:

It is well known th a t the Youla param etrization of all stabilizing controllers 

can be described by

AT =  F}(J,Q) (3.124)
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where the “param eter” Q ranges over all proper, stable transfer functions, (i.e. 

Q e  [YJB76]. Substitution of (3.124) into (3.119) yields [Fra87]

P ,(P , % ) =  P,( J, Q)] =  (3.126)

Furtherm ore, let f ( Q )  :=  d-(Ti +  T2 QT3 ) and

Q :=  AQi +  (1 — X)Q2 , 0 <  a <  1, Qi, Q 2  £ (3.126)

Obviously Q £ RH°°  and

/(Q )  =  ^{Ti+21:[AQ x +  ( l - A ) 0 2 ] r 3 }

=  ÿ  [A(Tx +  T2Q1T3) +  (1 -  A)(Ti +  TzQaT^)]

< A.ÿ(ri+r2Qx7^) +  (l-A).^(Tx+T2Q27^)

=  A/(Qx) +  ( l - A ) / ( Q 2 )  (3.127)

Therefore â(T i +  T 2 QT 3 ) is convex in Q and the optim ization problem

- [ o F , ( P ,K ) D - ' ]  =  inf sup M  û [p (T . +  (3.128)

is convex in either D  (actually InD ) or Q individually when the other is fixed. 

Unfortunately, this does not guarantee however that (3.128) is jointly convex.

Furtherm ore, the com pensator so obtained is not guaranteed to  be globally 

optimal. It depends on the initial guess of the diagonal m atrix D.  For the ill- 

conditioned high purity distillation column [SkM86] considered in Chapter 6, an 

initial guess of D  as the identity m atrix yields a very bad result. D — K  iteration 

might even fail to converge. In addition, the compensator obtained by D  — AT 

iteration always has a relatively high order, which often needs to be reduced via 

model reduction techniques. Several applications of //-synthesis can be found in 

[BCD89] [STBS90] [Enn87] [DLP87] [MoZ89] [BaD89].

3.11 S im u ltan eou s U n certa in ties

In this section, we first consider a simple configuration of a two-degrees-of-freedom 

controller as shown in Figure 3.37. Gq denotes the nominal plant w ith stable
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m ultiplicative output uncertainty A =  diag{A i, A 2}, Ax, A 2 E C and K  =  

diag{ATx, AC2} is the controller. Go is a model of a spinning satellite which is 

considered to  be a symmetric spinning body with torque input along two orthog­

onal transverse axes. The transfer function m atrix from input torque to  output 

angular velocity is given by [Cam90]

1 s — c? a(s 4-1)
s2 +  a2 _|_ 1) s - a ?Go(s) — a =  10 (3.129)

Let

K\{s)  =
1 —a '1  O'

, -PT2(̂ ) =
a 1 0 1_

(3.130)1 4- «2

It is easy to see that the interconnection m atrix  M  “seen” from A is given by

M (s) =  -Go(a)Ar2(6)[Z4-Go(3)A:2(s)]-' =
- 1 1 a 

—a 1
(3.131)

5 + 1

which is illustrated in Figure 3.38 and obviously M (s) is stable. It is interesting to 

note th a t the conditions for robust stability with respect to  individual uncertainties 

are;

and

if Ax =  0, then R S

if A 2 =  0, then  R S

IIA2L  <  

l lA iL  <

11M 22I

1
||M i

(3.132)

(3.133)

Figure 3.37: System with two-degree-of-freedom control.

Note th a t these conditions are independent of the param eter a, and Mx2 and 

M 2X have no effect on robust stability. Now let us consider robust stability of the 

system with simultaneous uncertainties. W ith simple calculations, formula (3.91) 

yields
\ / l  +  (P 
vT + w ^

(3.134)
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M(s)

Figure 3.38: M  — A  structure.

Thus ||M ||^ =  v T + ^ ,  and for robust performance Theorem 3.9-2 gives 

||A ||„  =  m a x { ||A i ||„ , ||A 2 ||„ }  <  ̂ ^
l|M ||„ -  V T T ^

This means th a t both ||A i||^  and HA2II00 should be less than  If a is large,

then the stability margin is small. These consequences show th a t small sim ultane­

ous modelling errors can interact to cause instability in a system tha t is robustly 

stable against much larger individual modelling errors. To gain insight, it is in­

structive to consider the transfer function “seen” from Ag in Figure 3.38, which is 

given by

Fu(M,  A i) =  17122 +  m 2iA i(l -  m iiA i)“ ^mi2 (3.136)

where ruij denotes the ( i , j )  element of M .  The characteristic equation of the 

closed-loop system is equivalent to det[7 — Fu(M,  A i)A 2] =  0, namely

[m22 4- m2i A i( l -  m uAi)~^mi2] A 2 =  1 (3.137)

Suppose A i is very small, then (3.137) can be rewritten as

[?Ti22 +  ^2iA im i2] A 2 % 1 (3.138)

It follows directly from (3.131) that

l^ ijl >  |?tî22|, % f  ;  (3.139)

if a 1, and by (3.139) we have

m2iAimi2A2 % 1

The minimum size of uncertainties A% and A2 which satisfy (3.140) is

|A i| =  |A2|
V Î T

77112̂ 21

(3.140)

(3.141)



This result almost satisfies (3.137) when a 1; and gives 

which is approximately the same as (3.134) when a 1.
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(3.142)

d,___

K I £=

Figure 3.39: System with multiplicative output uncertainty.

F igure 3.40: M  — A structure.

Next we study the robust performance problem for the M I M O  system shown 

in Figure 3.39 where Gq is a nominal plant with normalized multiplicative out­

pu t uncertainty A. The scaling functions W 2  and Wi  denote the error bounding 

function and performance weighting function, respectively. The control objective 

is to minimize the effect of the load disturbance, d. The interconnection m atrix 

M , shown in Figure 3.40, derived from the block diagram in Figure 3.39, is given 

by

M  = (3.143)
- W 2 T0  - W 2 T0

where To :=  GqK{I  -f GqK)~^ and S q :=  ( I  + GqK)~^ denote the nominal out­

put complementary sensitivity function and nominal ou tput sensitivity function, 

respectively. Robust performance is guaranteed by Theorem 3.9-2 if and only 

if //(M ) <  1 where fx is evaluated w ith respect to  the uncertainty structure 

A =  diag {A, Ap}. We have
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4=4- det 1 1  

det 1 1

det 1 1 A A.

[ I  I]  

[A  Ap

A 0

0 Ap

: 0

0

=  0

d e t(J  -  M A ) =  0 (3.144)
-W aTo^

WiJo _

WiS-o
det (X -f- ATFgXo — ApWiiSo) =  0 

4=> 0 =  oi[J+ A W 2 T o - A pWi5o]

= >  0 >  1 -  ÿ [AW];])) -  ApWk^o], by (2.71)

==> 0 >  1 -  ÿ(A)ÿ(W ::% ) -  ^(A p)ÿ(W i% ), by (2.68) (2.67)

4=> ÿ(A)ÿ(W231)) +  ÿ(Ap)ÿ(Wi5'o) > 1 (3.145)

==^ m ax {ô-(A),â(Ap)} • [ ^ ( # 2% ) +  â(WiS'o)] >  1 

4=4' max{ÿ(A),ÿ(Ap)}>[ÿ(W 221)) +  ?(W i5'o)r\ VA,VAp 

4=^ m m m ax{ô-(A ),â(A p)} >  [ '̂(WgXo) +  ô^(Wi5o)]''^

/:-X M ) >  [^(WgTL) +  ^(WiS-o)]-'

4=> X^)<^C M ^% ) +  ^(Wi:9o) (3.146)

It follows directly from (3.143) th a t (3.146) is an equality for S I S O  systems. The 

inequality (3.146) reveals th a t the sufficient condition for robust performance is

jLP 4 =  ^(Wizlo) +  ^(WiS-o) < 1 , Vw 6 % (3.147)

and this condition is somewhat conservative for M I M O  systems. Moreover, in­

spection of the m atrix M  in (3.143) leads to

4=^ ÿ (W i6 'o )< l,  Vw6 7^

and

R S  4=> <t(W2To) < 1 ,  Vw E %
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A comparison with (3.146) reveals tha t bo th  nominal performance ( N P )  and ro­

bust stability (RS)  cannot guarantee the robust performance (RP)  of the system, 

bu t they can give an approxim ate check for RP.

Similarly, for the M I M O  system shown in Figure 3.41, we have

M  =
'-W aXl) '-W zX '

:io  %]

and calculations then lead to  the same result in (3.146).

A — I

Figure 3.41: A perturbed system.

r =0
r S Ï H Â r n  

 ^ Go — ^ I

(3.148)

Figure 3.42: System with multiplicative input uncertainty.

Figures 3.39 and 3.41 show th a t both  uncertainties A  and Ap occur at the 

same position. However for a system with multiplicative input uncertainty, shown 

in Figure 3.42, the modelling uncertainty A i and the fictitious performance uncer­

tainty Ap are separated by the nominal plant Go- From a control point of view.

Figures 3.42, 3.43 and 3.44 are all equivalent. Therefore comparing Figure 3.44

with Figure 3.39 gives

GoAiT^XGô" =  AWgX (3.149)

w ith

A =  GoAiGo^ (3.150)

and

ÿ(A) < ÿ(Go)cr(Ai)ÿ (Gô^) =  cond (Go) - cr(Ai) (3.151)
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where cond(Go) := â-(Go)â (Gq^^ =  denotes the condition num ber of Gq.

Substituting the inequality (3.151) into (3.145), we can derive

n ( M )  <  cond (Go) • ^■(WjaTo) +  d’(WiS'o) (3.152)

This implies

Æ P 4 = co n d (G o )-ÿ (W 2 lL ) +  ^ (W i5 'o )< l,  VwET^ (3.153)

r  =0 K

I —^  A,

Go ÏÏJL

Figure 3.43: An equivalent system.

r  =0 K Go

I Ai 3

Figure 3.44: An equivalent system.

Similarly, shifting the blocks W^I  and A i backwards to  pass over the controller 

AT, we also have the equivalent system, shown in Figure 3.45. A comparison with 

Figure 3.41 leads to A =  Ar~^AiAT and d-(A) <  cond (AT) • ô’(A i), then we obtain

This gives

,u(M) <  cond (AT) - ^(WgJl,) +  ^(WjS'o) (3.154)

ÆP4=cond(AT).ÿ(W;231)) +  ÿ(W }5'o)<l, Vw€% (3.155)

The consequences of (3.152) and (3.155) are tha t if cond (Go) or if cond (IT) 

is small (i.e. near to 1), then the sufficient condition is almost the same as tha t 

derived for the multiplicative output uncertainty. However if either plant or con­

troller is ill-conditioned (i.e. w ith high condition number), then the value of fx(M)
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- T

I C \K  I—I 

 & G„ =Ô-r—= ]g_I

Figure 3.45: An equivalent system.

might be quite large and the  sufficient condition for robust performance may be 

violated, even if the system is N P  (||Wi<S'o||oo <  1) and R S  <  1), where

Ti  :=  K G o { I + KGo)~^. This is the reason why the loop shaping method proposed 

by Stein [SteS5] can be used to  successfully design a robust controller for a M I M O  

system with multiplicative ou tput uncertainty, which then fails with multiplicative 

input uncertainty.



C hap ter 4

A LOOP SH A P IN G  

A P P R O A C H  TO RO BU ST 

P E R F O R M A N C E  FO R  SISO 

SYSTEM S

4.1 In tro d u ctio n

The performance specifications of a control system are said to be robust if they are 

satisfied despite the presence of disturbance signals and model uncertainties. A 

general framework for analyzing robust performance using the structured singular 

value “/i” was introduced by Doyle [Doy82] who also developed a controller synthe­

sis procedure called yw-synthesis or D-K iteration [Doy85]. The procedure, which 

aims to minimize fj., is com putationally demanding and the resulting controller 

may not be globally optimal. Nevertheless it represents a practical, systematic 

approach for addressing this im portant problem of robust performance; an alter­

native is given in Chapter 5. '

In 1988, Milich et al. presented a Causality Recovery Methodology { C R M )  to 

modify D-K iteration to obtain a globally optimal controller [MAVS88]. However, 

the C R M  is com putationally inefficient and the huge number of computations

83
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required makes this m ethod impractical.

In this chapter we will examine a particular robust performance problem for 

S I S O  systems and show how the corresponding structured singular value can 

be effectively minimized using a loop shaping approach. The approach is not 

com putationally demanding and has the advantage of being an extension of a 

design procedure already familiar to practising control engineers.

In Section 4.2 we formulate yu^(M) for S I S O  perturbed systems with additive 

uncertainty, multiplicative input uncertainty or multiplicative output uncertainty. 

The relationship between a mixed sensitivity 7^‘̂ -optim ization problem and clas­

sical loop shaping is then investigated in the Section 4.3. It is shown how classical 

loop shaping can be used to minimize the 7i°° cost function. This then provides, 

in Section 4.4, insight into a further development of loop shaping to minimize the 

structured singular value for robust performance. In Section 4.5, the approach is 

dem onstrated by its application to the control of a robot arm whose moment of 

inertia varies considerably w ith angle. Finally a brief summary will be given in 

the last section.

4.2  M o tiv a tio n

Consider the scalar feedback configuration of Figure 4.1, where Go is a nominal 

plant model, A is a perturbation  representing uncertainty, d is an energy-bounded 

disturbance signal and K  is a controller to be designed. The weights Wi  and W 2  

describe the frequency-domain characteristics of the performance specifications 

and model uncertainty, and can also be used for normalization purposes.

The robust performance (disturbance rejection) problem is to find a stabilizing 

controller K  such tha t the energy gain from d to e is less than 1 for all stable 

perturbations A, where |A | <  1.

The feedback configuration of Figure 4.1 can be redrawn as in Figure 4.2 where 

the interconnection m atrix  is

M{s)  =
-KW^, -KW^W-,l+Go-fC l+GoK

1 m
I+Gq/VT 1-j-Go/C -

(4.1)
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r=0

Figure 4.1: System w ith additive uncertainty.

d

A(s)

V

Figure 4.2: Equivalent M  — A  structure.

If we now introduce a fictitious performance perturbation Ap, as shown in 

Figure 4.3, where |Ap| <  1, then robust performance is achieved if

(4.2)

where denotes Doyle’s structured singular value (Doyle, 1982) w ith respect

to  À .

% )

M(s)

A 0

Figure 4.3: General M  — A  structure.

Furtherm ore, it follows directly from (3.93) that

1 +  GoK + Wi
1 +  GoK

Go (4.3)
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where

a(a)  :=

is the nom inal sensitivity function,

t(s) :=

1 +  Go(a)A:(6)
1

1 +  1(a)

G o (4 ^ (a )
1 +  Go{s)K(^s) 

f(a)

(4.4)

1 +  1("S)

is the nom inal complementary sensitivity function, and

Z(g) :=  Go(3)Ar(a)

denotes the nominal open-loop transfer function.

Similarly, if the model uncertainty is represented by a multiplicative 

perturbation  as shown in Figure 4.4, we have

M (s)  =
-GnKW o -KW^ W,. 
I'i'OoI'C 1-j-Go-fC

Go Wl
I-̂ ĜqIC l-t'GoI'C

= 1 + GoK 
=  |W2t| +  |W is|

Wi
1 +  GqK

(4.5)

(4.6)

input

(4.7)

(4.8)

r=0

Figure 4.4: System with multiplicative input uncertainty. 

For a multiplicative ou tpu t perturbation  as in Figure 4.5, we have
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M (s) =
-GnKWo. -GnKW , W, 
I+GqK 1+GqK

JVx_
- 1+GqK l+G oK

1 +  G qK  

| W |  +  |Wk3|

Wi
1 +  G qK

(4.9)

(4.10)

V^(s)

r=0

Figure 4.5: System with multiplicative ou tpu t uncertainty.

It is interesting to note tha t in expressions (4.3), (4.8) and (4.10) can

be expressed in a general form

/“ a W  =  +  ka(|

where the generalized weighting functions r i and are

n ( s )  : =  P F i ( s )

1̂ 2(5) for multiplicative uncertainty
^2(5) :=

for additive uncertainty

(4.11)

(4.12)

(4.13)

Therefore, given one of the above uncertainty models the robust performance 

design problem is to  find a stabilizing controller K(s )  which satisfies

inf sup ^^[M(ju>)] = inf sup { |ri(;w )s(;w )| +  |r2(;w )((;w)|} (4.14)

This is a nontrivial optim ization problem. In the next section we will examine a 

closely related "^-optimization problem and establish a relationship w ith classical 

loop shaping.



4 .3  M ix ed  S en s itiv ity  7Y°°-Optim ization and  

C lassica l L oop  Shaping

An 7-f"^-optimization problem which has received considerable attention in the 

literature is the so-called mixed sensitivity problem described by

inf
K(s )

ris

V2 t
= inf sup ^/\rl{juJ)s{ju)\'^ + |r2(jw )t(;w )|2 

A  (a )

=: inf sup

where

J{u)  :=  y |ri(;w )s(;w )|3  +  |r2(;wX(;w)|2

Let Wo denote the crossover frequency of loop gain |Z(jw)|, that is

ll(jwc)l =  1

and without loss of generality, let us assume tha t

KO’o;)! >  1, for w <  Wo

|Z(jw)| <  1, for w >  Wo

(4.16)

(4.18)

(4.19)

Assumption (4.18) is essential for load disturbance rejection, and is therefore 

a requirement for good performance. On the other hand, assumption (4.19) is 

necessary for noise attenuation  and robust stability. Moreover the assumptions 

imply tha t

^ (4.20)
[ y I n p  +  |r2lp for w > W o

where we have neglected the angular frequency w for brevity. Clearly, J(w) is 

expressed as a function of the open-loop transfer function l ( ju)  and the generalized 

weighting functions in the low and high frequency ranges. In classical loop shaping 

\l(juj)\ is required to be large at low frequencies and small at high frequencies. From 

(4.20) we see tha t these loop shaping objectives appear to be compatible w ith the
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7f°°-optimization problem in (4.15) since they each have the effect of decreasing 

J(w) for a given pair of weights.

It is now interesting to investigate the shape of J(w ) in the intermediate fre­

quency range around w =  w .̂ It follows from (4.17) tha t

|a(;wc)| =  |t(;wc)|
1

|1 + l(jiOc)\

2 c o s [% d ]

where Ll(juc)  denotes the phase angle of IÇjco) at w =  Wg. This implies

J(wc) =  y|ri(;w,)|2 +  |r2(;wc)p -  ------------------------------ (4.22)
2cos[-

For an open-loop stable and minimum-phase system it is well known th a t phase 

lag is approxim ately proportional to the roll-off rate of the Bode-plot of |/(jw )|. 

Therefore in classical loop shaping, stability margins are improved by “flattening” 

\l(joj)\ in the interm ediate frequency range. This again is compatible w ith the 

7i°°-optimization problem under consideration since in (4.22) we see th a t J(wc) 

decreases as the roll-off rate of |Z(ywc)| (and hence —ll(ju>c)) is decreaised. However, 

if |Z(jw)| is too large at low frequencies and /o r too small a t high frequencies, then 

there may be little scope for flattening |Z(jw)| in the intermediate range.

Loosely speaking, J(w) will have a peak near Wg if |/(iw )| is too large at low 

frequencies and /o r too small at high frequencies.

To summarize, equations (4.20) and (4.22) yield

In}! for w C  Wc, i f | r i y p > | r 2p

J(w) fa  ̂ _____  for w >  w ,̂ if |n |^  <  |r2 |̂^ (4.23)

.

Now it is well known th a t the optim al 7i°° cost function J(w) is a constant 

independent of frequency. Therefore, the above expressions for J(w) indicate tha t 

if classical loop shaping was being used to minimize the 'H°° cost function, then 

|Z(jw)| should be made parallel to |ri(jw )| in the low frequency range, parallel to
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\r2 {j(^)\~^ in the high frequency range, and be shaped as flat as possible in the 

interm ediate frequency range.

Finally let us consider more carefully the effect of the num erator of 

Define the crossover-gap

Aw — wg — u)i (4.24)

where oji and wg are respectively the first and second crossover frequencies for 

y^|ri(jw)|2 +  |r2(iw)|^ as shown in Figure 4.6. If the crossover-gap is wide enough, 

then |l(jw )| can be shaped easily near Wc to decrease the cost function J(w). 

Therefore the Ti'^-optimal cost function can be decreased by further separating 

the curves of generalized weighting functions |ri(jw )| and |r2(iw)|. In a given 

design problem, however, the freedom for changing the weights may be lim ited by 

other constraints. Thus the design difficulty is inversely proportional to the w idth 

Aw of the crossover gap.

ÙÙ

CO

Figure 4.6: Crossover-gap Aw and |/(yw)|:

(1) |/(iw )|; (2) y |r i(iw ) |2  -)- |r2(iw )|2 % |ri(;w )|;

(3) yk i(jw } |2  +  |r2(iw)|2 % |r2(iw)| and

(4) ( \ / |r i ( ;w )p  -h |r2(;w )p) % |r2(iw )|“ h

4 .4  R o b u st P erform an ce  by  L oop Shaping

Consider the robust performance problem of finding a stabilizing controller K(s )  

which satisfies (4.14), i.e.
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inf sup =  mf sup { |ri(;w )a(;w )| +  |r2(;w)<(;w)|}I\{S) K\S\,.,iZ'T7  ̂ ^K{s)coeiz 
-: inf sup u(uj) (4.25)

(4.26)

where

/z(w) :=  \ri{jüj)s{jüj)\ +  \r2 {joj)t{jüj)\

Since

/,(w) >  J(w ) (4.27)

the crossover-gap of ^(w) is narrower than  th a t of J(w ) which implies th a t loop 

shaping for robust performance will be more difficult than  for the 7l!°° mixed 

sensitivity problem of Section 3.

The following two facts are useful in understanding the relationship between 

J(w) and

F ac t Is J(w ) <  /%(w) <  \/2 J(c j), Vw 6 %

F ac t 2 s If there exits wq, such that

riijojo)
K(jWo)| r2(jWo)

then for the  ?f°°-optimal controller Kooi^) satisfying (4.15) we have

m j^

(4.28)

(4.29)

where 70 denotes the 7f°°-optimal cost. An illustration of this fact is shown in 

Figure 4.7.

J(CO)

Figure 4.7: Cost functions J(w ) and ^u(w) for Koo(s
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In [Hel85] a general theorem  is given which can be applied to the optim ization 

problem in (4.25) to infer th a t the optim al robust performance cost function yu(o;) 

is a constant independent of frequency for some cases. This result together with 

Fact 2 suggests the following loop shaping method for finding an approximate 

solution to  the robust performance problem:

S te p  1 : O btain an controller K od(s ), either approximately by loop shaping 

as in Section 3, or exactly by 7f°°-optimization. This gives

Zoo(a) =  Koo{s)Go(s) (4.30)

and the corresponding //(cu) will be similar in shape to th a t shown in Figure 4.7. 

S te p  2 : Introduce a cascade compensator to decrease the maximum value of yu(a;) 

by loop shaping, tha t is, decrease the loop gain at low frequencies and increase it 

at high frequencies.

Step 2 has the effect of flattening the loop transfer function in the interm ediate 

frequency range thereby decreasing the peak value of Note that as /j (w) is

decreased to  improve robust performance the H°° cost J(w ) will increase causing 

a deterioration in nominal performance. This inherent trade-off between nominal 

performance and robust performance should be no surprise.

4.5  A  R ob ot A rm  E xam p le

In the section, the loop shaping approach to robust performance will be applied 

to the design of a controller for an industrial robot arm [ÂNG86]. The transfer 

function of the robot arm, from the m otor current to the motor angular velocity 

is
G(s) = ___________ kmjJgS^ + d s  + k)____________ a .S l )

(s + p)[JaJmS^ +  d(J„ -|- Jra)s -f kÇJa 4- Jm)\
where

Jm =  0.002, k =  100, kjn =  0.5, d =  0.0001, p  =  0.01 and 

Ja e  [0.0002,0.002]



93

The moment of inertia of the arm  varies considerably with arm  angle. The small 

constant p  is added to avoid the so-called Model Matching Transformation zero 

[OPG89] caused by a plant pole at the origin.

Let us examine the num erator of (4.31). The ratio  of the coefficient of 

to the constant term  is very small, about 10~®, and so (4.31) is numerically ill- 

conditioned. After some manipulation, (4.31) can be changed to

G(S) = ----------- . ,   (4.32)
(3 +  +  /„ )»  + +  J„)l

where

^ ÏÔÔ'
p = 0.0001, Jm =  2, îc = 10, km = 5, d =  0.001 and

J. e  [0.2,2]

which is numerically easier to  work with.

We will describe the uncertain moment of inertia by an additive perturbation  

as shown in Figure 4.1. The perturbed plant is therefore

G(s) =  (?o(s) 4- A(a) (4.33)

In Figure 4.8 Bode plots of the perturbed plant are shown for a range of values 

of Ja. The nominal plant Go{s) corresponds to J„ =  0.0011, the middle value 

of the variation. By a curve fitting m ethod, the maximum additive-error can 

be tightly bounded by a rational function W 2 {s) which is stable and minimum 

phase; see Figure 4.9. If the error is not bounded tightly, the design will be more 

conservative. However the order of W2(s) increases as the error bound is tightened.

The weighting function W 2 (s) is selected as

W]2(a) =
2731 X 1 q3 +  20.1 ±  j238)(s 4- 59.7 4= j226)(s 4- 49.8 4= j99.2)(s 4- 99.5 ±  j31.5)

{s 4-194 ± i5 2 1 )(s  4- 44.9 ± ;3 9 6 )(s  4- 4.42 ± ;3 3 2 )(s  4- 0.01)(s 4- 1500)

Note th a t it is not allowed to roll off at high frequencies since this would encourage 

high gains in the 7f°°-controller.
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On the other hand, the performance bounding function is chosen as

which is compatible with the sensitivity functions achieved in [OHÂP88].

S te p  1 .

Using the command hinf in the robust-control toolbox of MATLAB, Koo{s) is 

found to be

JToo(6) =
(a +  4.42 ±  ;332)(a +  194 ±  ;521)(a +  44.8 ±  ;396)(a +  0.01)(a +  17.1)(a +  1500) 

' (a +  7312)(a +  176)(a +  22.9 ±  ;231)(a +  46.5 ±  ;226)(a +  84.8 ±  ; 151)(a +  1.21)̂

with

7o =  0.7

The order of the controller is high because of the high order of T'UjC'?). The results 

for the 7f°°-controller are shown in Figures 4.10 and 4.11. It is interesting to  note 

th a t \l{ju!)\ is parallel w ith Wi(a) at low frequencies and parallel with 

at high frequencies.

S te p  2 .

The loop shaping m ethod is now used to reduce the maximum value of p{io). The 

^-controller K^{s)  is chosen as

“ V+W ( * + 1 )

by introducing compensation to shape the loop transfer function at low frequencies 

and at high frequencies. The results for the fj. controller are shown in Figures 4.12 

and 4.13. At high frequencies both /f(w) and J(w) go to zero because a suboptim al 

nonequalizing 7f°°-controller is obtained from hinf.

Figure 4.14 shows the Bode plots of the output sensitivity function, the transfer 

function from the disturbance d to the output e for 3 different values of Ja. The 

bandw idth is about w =  30 ~  50 rad/sec. Figure 4.15 illustrates the output 

step-responses to a unit disturbance for a variety of values of J^. The response is 

oscillatory for small J^, i.e. =  0.0002, bu t is otherwise satisfactory.



96

4 .6  S u m m ary

A loop shaping m ethod has been presented for solving a scalar robust performance 

problem. Useful insight was given into the relationship between classical loop 

shaping and an mixed sensitivity problem. The approach was dem onstrated 

by its application to the control of a robot arm whose moment of inertia varies 

considerably with angle. This was modelled as a perturbed plant w ith additive 

uncertainty. To tightly bound the uncertainty thereby reducing conservatism a 

high order weight was required which resulted in a high order controller.
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Figure 4.8: Bode plots of the perturbed plant for different values of Ja- 

(1) J a  =  0.0002 and (2) Ja  =  0.002.

101

10°

101

[rad/sec]

Figure 4.9: Bode plots of the additive-error and the error-bounding function: 

(1) additive-error and (2) error-bounding function ^ 2 (3 ).
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Figure 4.10: ?^°°-optimal controller characteristics: 

( 1 )  | / 0 ' u , ) | ;  ( 2 )  I K M I ;  ( 3 )  | W j ( j u , ) / G o O ^ ) | ;

(4) y |W .P  +  |W :(;w )/G o(;w )|: and (5) {^J\Wl\^ +  m U < ^ ) I G „ ( j u ) \ ‘)
- 1
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Figure 4.11: For 'W°°-controller: (1) n{oj) and (2) J(w).
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Figure 4.12: //-optim al controller characteristics: 

( 1 )  | / ( j u , ) | ;  ( 2 )  IT F iO 'u .)!;  ( 3 )  I W ' j G u j / G o O ' o ) ) ! ;

(4) y |W . | : + |W 3 (;w )/G o(jw )P  and (5) (^ |W ,P  +  \W,( ju)IGo( jw) \- ‘)
-1
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Figure 4.13: For //-controller: (1) //(w) and (2) J(w).
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Figure 4.14: Bode plots of sensitivity function for different values of Ja- 

(1) Ja =  0.0002; (2) Ja =  0.0011 and (3) Ja =  0.002.
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Figure 4.15: Step responses of the disturbance for different values of Ja'. 

(1) Ja =  0.002; (2) Ja =  0.0011; (3) J . =  0.0006 and (4) Ja =  0.0002.



C h ap te r  5 

i t e r a t i o n ? a  n e w

A L G O R IT H M  FO R  

SYNTHESIS

5.1 In tro d u ctio n

Robust performance is said to  be achieved if the design specifications of a controlled 

system are satisfied in the presence of disturbance signals and model uncertain­

ties. A general framework for analyzing robust performance using the structured  

singular value fj, as & measure of performance was introduced by Doyle [Doy82], 

who later proposed a controller synthesis procedure, called //-synthesis [Doy85]. In 

this procedure a controller is sought which minimizes //, or which achieves level of 

performance arbitrarily close to  the optim um  //. This minimization problem has 

not yet been solved, bu t in [Doy85] an approxim ate solution is given involving a 

sequence of minimizations, called D — K  iteration.

Recall th a t in Section 3.10, the robust performance design problem can be 

stated as

This problem has proved difficult to solve and a solution is still not available. 

However, an approxim ate solution has been given by Doyle [Doy85] based on the

100
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following bound

/‘à W S  m f (5.2)

The idea is to  look for a solution to

inf sup inf â (d MD~^)  (5.3)
K  s ta b i l i z i n g  ajÇ,Tl. D & D  ^  '

even though the upper bound is not always equal to  //. For fixed Z>, (1.3) is 

equivalent to

as shown in (3.123), where P  :=  DPD~^  and D := diag {D, I} .  This is a standard  

form of ?t;°°-optimization problem. Therefore the approxim ation of inf£>gD d'(DMD~^]  

to / /^ (M ) plays a key role in //-synthesis. In real-// or mixed-// analysis, the struc­

tured singular value //^ (M ) w ith respect to  real param etric uncertainties or mixed 

real/com plex uncertainties might not be approximated by inf^pgD ô"(PM P"^), in 

which case D — K  iteration fails. This is the reason why //-synthesis is only appli­

cable to  a feedback system with complex uncertainties. In those cases Doyle has 

conjectured th a t this upper bound is within 15% for the true value of //^ (M ). If 

//-synthesis is used to design a //-optimal controller of a system with real param et­

ric uncertainties, the degree of conservatism is arbitrarily large! However, fj, — K  

iteration as proposed in this chapter can overcome these problems and is applicable 

for controller design for complex-//, real-// or mixed-// cases.

The new procedure, fi — K  iteration, which will be presented here is motivated 

by the following:

0 In Helton [HelS5], it is stated th a t many optim ization problems have the 

property th a t an optim um solution must make the objective function con­

stan t in u) almost everywhere.

o In m any examples, using D — K  iteration it can be observed that the “//- 

optim al” controller appears to flatten //^ (M ) at least over the bandw idth of 

the system. A peak in the //-curve implies tha t a small perturbation exists 

for which the desired levels of robust stability and robust performance will 

not be achieved.
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The idea then in the new algorithm is to  determine a sequence of controllers 

which yield a flat structured singular value. This after all is what happens in 7i°° 

optim ization where the Tü'^-optimal controller results in a cost function w ith a flat 

maximum singular value.

To get some insight into how this might be done we will consider a specific 

robust performance problem for a single-input single-output plant. This is covered 

in Section 5.2. Then in Section 5.3 the ii—K  iteration algorithm is presented for the 

general robust performance problem. Convergence of the algorithm is considered 

in Section 5.4, and two illustrative examples are described in Section 5.5. A brief 

summary is given in the last section.

5.2 A  SISO  R o b u st P erform an ce P rob lem

To gain insight into the new algorithm, (x — K  iteration, let us consider a S I S O  

control system configuration of Figure 5.1, w ith the following nomenclature:

Go : nominal plant, w ith multiplicative input uncertainty

normalized model error, ||A ||^  <  1 

(model) error bounding function 

performance weighting function

A :

Wg

Wi

A „; normalized fictitious uncertainty to  characterize performance, || A^ <  1

Figure 5.1: A S I S O  robust performance problem.

The configuration can be rearranged into the standard M  — À structure of by 

setting

Â =  diag(A, Ap) (5.5)



In which case, the interconnection m atrix M  is given by

M

where

103

(5.6)

ll,:=JirG o(f +  jirGo)-" (6.7)

is the nominal complementary sensitivity function, and

^ o := (;  +  Go7ir)-' (5.8)

is the nominal sensitivity function.

The robust performance problem is to find a stabilizing controller K  such that 

the norm  of the transfer function from d to e is less than  1 for all perturbations 

A, ||A ||^  <  1. This is equivalent to finding a stabilizing controller K  such that

f x ^(M)  < 1, and therefore it makes sense to try  to solve (5.1).

For this relatively simple interconnection matrix M  the following facts can be 

shown:

Fact Is

,Lf^(M) < ÿ(M ), Vw € 7̂  (5.9)

Fact 2 s

d-(M) = ||M ||^  , the Frobenius norm of M  (5.10)

Fact 3s

=  |Wi5o| +  IWa^ol , where | • | denotes modulus (5.11)

Fact 4s

If at some frequency Wo

iWi -̂oGol =  iWzlLGô'l (5.12)

then

^^(M ) =  ÿ(M) (5.13)

at the same frequency ujq.
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K  s t É i z i n g

Suppose now th a t an 9Y°°-optimal controller K q is found for M , i.e. we solve

(5.14)

It is well known tha t d-[M{Ko)] is flat over frequency, and from the above facts 

(and our observations) ijl̂ [ M { K q)] will often have a bandpass-like characteristic 

as illustrated  in Figure 1.2. A little thought suggests th a t a controller which forces 

to  be flat will result in a convex a{M).  Suppose then tha t we multiply 

M  by a bandpass-Hke rational function r(s) similar to  the shape of n^[M{Ko)]  

and calculate the 7Y°°-optimal controller Kx for the product rM .  One might then 

expect a[M{Kx)\  to be convex with n^[M{Kx)]  flatter than fj,^[M{Ko)]- This 

leads us into the n — K  iteration algorithm presented for a general multivariable 

problem in the next section.

CO

Figure 5.2: The maximum and structured singular values of M ( K q).

5.3 — jiC Itera tio n

The above discussion motivates the algorithm now proposed for finding an approx­

im ate solution to the general robust performance problem

The basic strategy is to “flatten” the curve.

S tep  I s

Find the stabilizing 7^°°-optimal controller (a variety of methods exist)

(5.15)

Aro:=argmf||F)(f,Ar) (5.16)
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The optim ization is over stabilizing üf, but for notational convenience in (1.16) 

and much of what follows the word “stabilizing” has been omitted.

S te p  2 ;

Find the yu-curve corresponding to K q (the M atlab toolbox, yU-Tools [BDGPS91], 

could be used for this)

/^o(iw) :=  [F)(P, Ifo)] (5.17)

over a suitable range of frequencies.

S te p  3 :

Normalize by its maximum value. Let yûo(iw) denote the normalized fio(ju)).

S te p  4 :

Find a scalar stable minimum phase real rational function yüo(-s) by fitting to  the 

yüo(io;)-curve obtained in Step 3.

S te p  5 ;

Multiply the interconnection m atrix Fi(P,K)  by p.o(s). In the specific example of 

Section 2 this would correspond to multiplying each of the weights Wi  and W 2  by 

yûo(a).

S te p  6 ;

Find the ?i°°-optimal controller

Jfi(s )  :=  arg inf iT )IL  (5-18)

S te p  7 ;

Find the yu-curve corresponding to  Ki

:=  /^A (5.19)

over the frequency range of interest.

S te p  8 :

Normalize and denote it by

S te p  9 ;

Curve fit to get fii(s).
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Step  10:

Find the 'H°°-optimal controller

1^2(5) :=  arg inf ||/«i(s)/io(s)F;(P, K ) \ \ ^  (5.20)

S tep  11 ;

Find the yu-curve corresponding to K 2

=  f^Â -^2)] (5.21)

Subsequent steps of the algorithm should now be clear, and in practice would

be continued until the yU-curve was sufficiently flat over the frequency range of

interest or until the desired level of performance (as measured by the peak value 

of yu) had been reached.

5.4  C on vergen ce

In this section we consider the convergence properties of the proposed n  — K  

algorithm.

The algorithm  generates the following sequences:

%  =  a rg m f||P ,(P ,^ ir) |U  W =  % [ P ,( P ,% ) ]

Kr =  a rg in f ||j i„ P ,(P ,^ f)IL  «  =  A W (P , Jïi)l

(5.22)

Suppose th a t we normalize each of the //-functions by dividing each curve by its 

maximum value:

a  =  0, 1, 2, . . .  (5.23)
IIA*n||oo

Then, it is easy to see th a t

0 <  yUn(itt̂ ) <  1 Vw 6 P  and =  1, n =  0 ,1,2, ••• (5.24)
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Consider the infinite sequence defined by

CO :=  | |W ,J i r o ) L  =  w ||JF } (P ,F r)|L  

Cl :=  | M ( P , ^ i ) L  =  w | |m W , ^ ) l l (

C2

(5.25)

Now because <7[/<n-i • • • f^oFi(,P, Kn)] is constant in w, it follows from (5.24) tha t

- - - M ( p ,  =  II ' ' ' ^oP,(P, (5.26)

and hence

=  ||yU „_l • • • j l o F i { P ,  A 'n ) I L

>  inf ||/ï„yü„_i •• •/üoP/(P,JO||^ 

=  c„+i

T hat is

(5.27)

(5.28)Cji ^  ^  0

The sequence {c„ } ^ q is therefore monotonically decreasing and bounded, and 

by the Bolzano-Weierstrass theorem [Bar66] it has a limit point. That is

limit point, as n —> oo (5.29)

We now present a reasoned argument for believing th a t the sequence {fin} will 

converge to  a frequency independent function equal to  1.

F irst, a Lemma which follows from [Hel85]:

L e m m a  5.4-1 Let /( • )  be a “well-posed” cost function i.e. it satisfies Helton’s 

assumptions (1985, Theorem 4.1). Then if for a given controller Ki, cr[J{K{)] is 

frequency dependent, then there exists another controller K j  such tha t d-[J(Kj)] 

is frequency independent and \ \J{Kj)\\^ < ||J(PTi)||^. H



108

Next, let

J,.(JT) =  AT) (5.30)

and assume th a t Helton’s assumptions are satisfied. Then with this notation we 

have from (5.27) that

c,. =  II J»(ATn)L >  llÂ^"'/"(^n)L (5.31)

Therefore if fin is frequency dependent we have by the Lemma that

inf ||f i„ /„ (Jf)IL  <  (5.32)

or equivalently

Cn+l ^  (5.33)

But we have already shown th a t the sequence {c„} converges and therefore the

sequence { f i n }  must also converge to a frequency independent function (which 

must be 1 by normalization), otherwise {c„} may well decrease below the positive 

limit.

The above argument is clearly lacking in rigour, bu t it does offer support to 

the observed effectiveness of the algorithm.

5.5 E xam p les

Two examples are given to  illustrate the application of the n  — K  iteration algo­

rithm . Exam ple 5.5-1 is S I S O  and example 5.5-2 is M I M O .

E x a m p le  5.5=1? In this example we solve the following robust performance 

problem:

inf sup yUx(M)
K  s ta b i l i z i n g  ^

where

M  =
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and

G q( s )
0.6(1 - a )

(s +  2)(a +  0.5)
1  j  1 -

=  60—
1 +  

0.1256

0.007

1 + ?
1 + f

The design problem corresponds to meeting disturbance rejection requirements in 

the presence of plant uncertainty modelled by an additive perturbation; see Figure 

5.3.

Figure 5.3: System with additive uncertainty.

Bode magnitude diagrams of the weighting functions and the open-loop gain 

are shown in Figure 5.4. The /j,-curve is approximately flat after ju st 3 /j, — K  

iterations as shown in Figure 5.5. The Bode magnitude diagram of the //-optimal 

controller is given in Figure 5.6.

E x a m p le  5 .5-2: This M I M O  example is taken from the MATLAB toolbox 

manual, //-TOOLS [BDGPS91] where it is used to dem onstrate //-synthesis. The 

problem is to  meet disturbance rejection requirements in  the presence of plant 

uncertainty modelled as a multiplicative perturbation at the plant input. The 

plant model is known as HIMAT and represents a scaled version of a remotely 

piloted aircraft. The nominal state-space model is 

-0.0226 -3 6 .6  -18 .9  -32 .1  

0 -1 .9  0.983 0

0.0123 -1 1 .7  -2 .63  0

0 0 1 0

A  = B

0 0

-0 .414  0

-7 7 .8  22.4

0 0
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0 67.3 0 0 0 O'
c  = D  =

0 0 0 67.3 0 0

and the weighting functions for the multivariable version of the interconnection 

m atrix M  as shown in (5.6) are

" ' " I  -  

« ■ >  -

where I 2  is the 2 x 2  identity matrix.

Bode magnitude diagrams of the weighting functions and the singular values 

of the open-loop gain are shown in Figure 5.7. The //-curves for several /j, — K  

iterations are shown in Figure 5.8. The Bode diagrams of the singular values of 

the //-optimal controller are shown in Figure 5.9.

5.6 S u m m ary

A new algorithm, jx—K  iteration, has been presented for //-synthesis. The accuracy 

of the algorithm depends on the curve fitting of the curves. In the examples

tested so far the algorithm compares well w ith D — K  iteration  and only requires a 

single scalar function to be fitted over frequency at each iteration. Each iteration 

does, however, require the calculation of // over a range of frequencies, and this 

com putation is known to be difficult in general. As w ith D  — K  iteration, there is 

no a priori guarantee th a t the fx — K  iteration algorithm will converge to  a global 

minimum. W hen applied to ill-conditioned plants it has been observed (although 

not shown here) th a t the (x — K  iteration is more stable (computationally) than 

D  — K  iteration; this will be the topic of further research in the next chapter. 

Furtherm ore, as will be shown in Chapter 7, the algorithm  can be also used to 

design a //-optimal controller for robust performance if the perturbed systems have 

param etric (real) modelling uncertainties.
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Figure 5.4: Bode m agnitude diagrams of the weighting functions and the open-loop  

gain (Exam ple 1).
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Figure 5.5: Bode m agnitude diagrams of the curves of the 3 fi — K  iterations 

(Exam ple 1).
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Figure 5.6: Bode m agnitude diagram of the //-optimal controller (Exam ple 1).
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Figure 5.7: Bode m agnitude diagrams of the weighting functions and the singular 

values of the open-loop gain (Example 2).
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Figure 5.8: The ^-curves for several jj, — K  iterations (Example 2).
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Figure 5.9: Bode diagrams of the singular values of the ^-optimal controller 

(Example 2).



C h a p t e r  6

RO B U ST CO NTROL OF A 

DISTILLA TIO N  COLUM N

6.1 Introduction

The purpose of this chapter is to give insight into the problems associated with the control 

of ill-conditioned plants, and to illustrate the usefulness of /^-synthesis by /i — /sT iteration. 

As in [SMD88] we focus on the control of a high purity distillation column, and use the 

same linear plant model.

The paper of Skogestad, Morari and Doyle [SMD88] generated interest in controller 

design for iU-conditioned distillation column systems and was followed up by a design case 

study attempted by several authors at the 30th IEEE Conference on Decision and Control 

held in Brighton, 1991, [HHL91] [PLG91b] [ZhK91] and [YaH91]. Skogestad, Morari and 

Doyle [SMD88] also appKed D —K  iteration to design a ^-optimal controller. It is therefore 

of interest in this thesis to use this same example to design a /^-optimal controller using 

H — K  iteration.

A full description of the distillation column is given in [SMD88]. A brief description of 

the model is given below. The distillation column configuration to be studied is given in 

Figure 6.19. The purpose of the distillation column is to separate the output feed into its 

light (concentrated in the distillate) and heavy components (concentrated in the bottom 

product). The manipulated variables are the boilup, the reflux and the distillate flow. The 

measurements are the controlled variables, namely the top and bottom compositions. We 

win only consider using two manipulated variables: reflux and boilup, which is so-called

114
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LV configuration. We will use the same linear model as in [SMD88].

Before determining the yu-optimal controller we wiU consider some general problems 

associated with iU-conditioned plants. By analyzing a particular controUer structure and 

design strategy, the potentiaUy damaging effects of an iU-conditioned plant on robust 

stabiUty and robust performance are revealed. The structured singular value fj,, used to 

measure robustness, is shown to be determined at liigh frequencies by the high plant gain 

(largest singular value) and at low frequencies by the low plant gain (smallest singular 

value). This is as one might expect since smaU loop gain is typically required at high 

frequencies for robust stability, while large loop gain is usually required at low frequencies 

for robust performance. In the intermediate frequency range both the low and high plant 

gains are significant in determining /i.

A design is carried out for the distillation column using the ji — K  iteration algorithm 

proposed in Chapter 5. This design example addresses the /^-optimal control problem also 

considered by Skogestad et al. [SMD88] using D —K  iteration, and by Freudenberg [Fre89b] 

using a loop shaping method. It is observed that the jj, — K  iteration method is able to 

reduce the size of below that reported in (Skogestad et al., 1988) and (Freudenberg, 1989) 

after 5 iterations. The design objective are the same as in [SMD88], and consequently the 

same weights are chosen. However, the design example is not very practical because no 

amplitude and bandwidth constraints are placed on the controller.

The chapter is organized as follows. In Section 6.2, a particular controller structure 

is presented for a 2-input 2-output system (corresponding to the distillation column). 

Analysis in Section 6.3 then shows how an ill-conditioned plant can be easily destabilized. 

In Section 6.4, it is shown how the optimal robustness measure jj, is determined at high 

frequencies by the high plant gain and at low frequencies by the low plant gain. The 

robustness measure is analyzed in Section 6.5 for a plant inverting controller, thereby 

establishing the unsuitability of such a controller. From the analysis of Sections 6.3-6.5 a 

design strategy for shaping the loop gains is established in Section 6.6. The strategy is not 

easy to implement, but fortunately n — K  iteration can be used as shown in Section 6.7 

where it is applied to the distillation column example. The chapter concludes in Section 

6.8 with a summary and discussion of some of the important features of /z.
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6.2 A  Particular Controller Structure

Consider a F D L T I  perturbed plant with multiplicative uncertainty. The control require­

ment is to design a control system which remains stable and maintains a minimum per­

formance level despite the presence of a disturbance signal d and model uncertainty A. 

The control configuration is shown in Figure 6.1, where Go is a nominal plant model with 

multiplicative input uncertainty. The uncertainty is represented by a normalized pertur­

bation A (||A||gg < 1), and an error bounding (weighting) function W2 . <5 is a normalized 

fictitious performance perturbation (||<5||oo < 1), with an associated weighting function 

Wi. For round directionality [Fre89b], the weights Wi and W2  are each assumed to be an 

identity matrix multiplied by a scalar stable and minimum-phase rational function (i.e. 

Wi  =  w i l ,  W 2  =  W2 I). We win also assume that Go is nonsingular in the field of real 

rational matrix functions of s.

dL__
^ ( s )

o G„(s) ^ ( s )
e !

Figure 6.1: System with multiplicative input uncertainty.

Figure 6.1 can be rearranged into the M  — Â  structure of Figure 6.2, where A := 

diag {A , f} , absorbing into M  the weighting functions used to model the uncertainty and 

performance. The interconnection matrix is

—'W2 T 1  —tu jT /G n  ^
M  =

, w\ S oG q w \S q 

where the input complementary sensitivity function matrix is

(6 .1)

T / : =  A G o ( F 4 - A G o ) - ^  

and the output sensitivity function matrix is

S o : =  {I +  GoKT^

(6.2)

(6.3)

Recall that the ratio of the largest to the smallest singular value of a matrix is defined 

to be its condition number, and therefore

â [Go{ju)]
cond [Go{j(jj)] =

S.[Go{ju;)]
(6.4)
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Figure 6.2: M  — À  structure of Figure 6.1.

If at some frequency the condition number equals one, then the level of gain is uniform in 

all directions at that frequency. A large value of the condition number implies that the 

gain of the system has a strong directional dependence and we say that it is ill-conditioned 

at that frequency.

Now suppose the singular value decomposition of Go is given by

(&5)

It is then interesting, as in [Fre89b], to let the left and right singular subspaces of the 

controller K{s)  be dictated by the right and left singular subspaces of the plant. That is 

we win assume that the controller can be written as

By mathematical manipulation, this yields

Tf =  .BrGo(7+.BrGor^ =  y r s o ( z  +  r 2 o r ^ ; ^  =  y T f y '  (6.7)

Jo  = (T + GoJir)-i = [f(7 4 E o r)-^ [^ ' =  Cfjo[^'

JoGo = rJoC/̂ " (^Zoy" = !7joZoy" 

where f /  := FZo ( /  -b FZo)"  ̂ and Jo := ( /  + S or)-\

(6 .8)

(6.9)

(6.10)
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M

On substituting (6.7)-(6.10) into (6.1), the interconnection m atrix M  becomes

—W2 T 1  —w^TiHq^ 

wiSoHo wiSo
'V  o'
0 u

y 0
0 u
y 0
0 u

■y o'
0 u_

■^svd (6 .11)

where

Since

M s v d  '■ =
—W2 TI —W2 TITIQ ^

lüi^oSo wiSo
(6 .12)

'V  0

0 u

is a block diagonal unitary m atrix which conforms with the block diagonal matrix

'A  O'

0 S
A :=

it follows th a t

and

cr(M) =  a{Msvd) (6.13)

(G-14)

As far as the determ ination of jj. is concerned, therefore. Figure 6.1 can be simplified 

to Figure 6.3 below.

Figure 6.3: An simplified system of Figure 6.1.

In Figure 6.3 the plant So and controller F are bo th  diagonal and the corre­

sponding interconnection m atrix  is Therefore, for ease of notation we will
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in the following discussions assume tha t the nominal plant Go and controller K  

are diagonal. Also since we will principally be concerned with 2-input 2-output 

ill-conditioned plants we will assume th a t the nominal plant is given by

(6.15)

where

ki(;w)| >  |g2(;w )|, 'iu ell (6.16)

In the next section we show how such an ill-conditioned system is potentially very 

sensitive to small simultaneous perturbations.

6.3 Ill-C o n d itio n ed  P la n ts  and R o b u stn ess

The term  “directionality” refers to the fact that multivariable systems possess 

properties th a t vary spatially, or with direction, as well as with frequency. For 

example, a multivariable plant may possess much higher levels of gain when acting 

on signals in certain loops than  when acting on signals in others.

It is well known th a t when the plant is ill-conditioned with high condition 

number
I/7-. (  - ï / f ï M

(6.17)cond [(?o(jw)] := > 1 ,  \/oj e  71
|g2(jw)|

and when uncertainty and disturbances are present simultaneously at different 

points in the feedback loops, a singular value analysis may fail to yield a useful 

assessment of robustness [StD85]. From a system viewpoint ill-conditioning at a 

certain frequency means th a t the gain of the plant exhibits a strong directional 

dependence.

An ill-conditioned plant can be destabilized by small simultaneous pertu rba­

tions as is now illustrated. Consider the system described in Figure 6.4 which is 

equivalent to Figure 6.3.

W hen the perturbations are chosen as

(6.18)A =
A n A i 2 ‘0 A i2 'Sn S1 2 ■ 0 O'

, s =
Agi A 22 _ 0 0 S2 1 S2 2  _ S2 1  0
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Figure 6.4: An equivalent system, 

the characteristic equation, d e t(J  — M À ) =  0 , of the closed-loop system is

(1 +  kxQi) (1 4- ^2fl'2) 4- ^2^ 2^ 12fl'l^l^21 =  0 (6.19)

This implies

th a t is
1 +  kxQi 1 4- ^2̂ 2 92

1 4" • 11̂ 2̂ 2 * ~^12^21 — 0

(6 .20)

(6 .21)

where si and <2 denote the nominal sensitivity and nominal complementary sensi­

tivity functions, respectively.

Choose

A i2 —
- |W2(3| - |g-|

and

where

2̂1 —
ÿ k i a i l  - I W 2I - |g-|

9i

(6.22)

(6.23)

(6.24)4- ^2 =  ^  WiSi ■ 102(2 • —
\  <72,

It is clear th a t A 12 in (6.22) and 621 in (6.23) satisfy equation (6.21) and

IA12I =  1̂ 21 I =   /===- :  ÿ (6.25)
wiail - IW al- 1^1
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Therefore the structured singular value with respect to the structure À =

diag {A, 5} is

=  min |cr (À ) : d e t(I  — M À ) =  0} =  minmax{(T(A), (7(5)}

1
A 6 A

< m ax{|A i2 |, |52i |}
k i^ i i  ■ 1102(2! • 5

This implies

> |îOlSi| • 1202(2!

(6.26)

(6.27)

The term  !^i/g2| in the right hand side of the above inequality is just the condi­

tion num ber of the plant. Hence a feedback system whose plant is ill-conditioned, 

( \gi(ju))/g2 {joj)\ 1, Vco G TV), is potentially very sensitive to small sizes of

“simultaneous” perturbations shown in (6.25) even though relatively much larger 

“individual” perturbations cannot cause instability. For individual perturbations, 

the system is robustly stable iff

|2Ü2(i! < 1 ,  Vw E %, % =  1,2 (6.28)

and

!20is ,'! <  1, Vco E 72., ( =  1,2 (6.29)

Furtherm ore, the design strategy (of keeping ji small) requires th a t the term s 

!tOiSi| and !202(2! in (6.27) be kept small. This results from the interaction between 

the upper and lower loops.

It is very instructive for us to study further the inequality (6.27). Define

J (w )  := (6.30)
^2(;w)

We will consider the value of J(w ) for 3 situations characterized by the nominal 

open-loop transfer functions

h(s)  :=  ki(s)gi{s),  and 

/2(a) :=  &2(3)g2(a)
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OdB

Figure 6.5: System w ith |/i(jw )| <  |/2(iw )|. (1) : |/i(jw )| and (2) : |?2(jw )|.

•  case  (1 ); |Zi(jw)| <  |/2( i ^ ) | , Vw 6 7 ;̂ see Figure 6.5.

(a) at w =  w%:

=  1.3 if =  -136"

i.e. the phase m argin P M  =  45°

Thus

J(w .)

(b) at w =  W2 :

IfiUwg)! c  1 

|Za(jw2)| =  1

|ai(jW2)| |l+(l(jW2)|
IMAslL 1.3 if P M  =  45"

Thus

J(a?2)
\

1.3 |Wl(;W2)| - |u;3(jW3)|

It is obvious th a t in this case both J(w i) and J(w 2) will be large for an ill- 

conditioned plant. Note th a t the weights wi  and W2  will typically be near 1 in the 

crossover region.

•  case  (2 ); |Zi(jw)| =  |/2( iw ) |, Vw E see Figure 6.6.

This is the  case for a plant-inverting controller. Let
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OdB

Figure 6.6: System with |/i(jw)| =  |/3(jw)|. (1) : |/i(jw)| and (2) :

At unity-gain crossover frequency wo, |/(jwo)| =  1, and we have

1
|d(;wo)| =

|t(;wo)| =

|1 +  ^(jWo)l 
|/(jwo)|

|i  +  /(iwo)l

1.3 if P M  =  45"

1.3 if P M  =  45"

Thus

J(wo) =  1.3 |wi(;k;o)| - iM'aUwo)!
giO'wo)

which is large for an ill-conditioned plant.

# case (3): \Ii(juj)\ > jZa^'w)!, Vw E "P; see Figure 6.7.

OdB

Figure 6.7: System with > \l2 {ju>)\. (1) : |h (jw )| and (2) :

(a) at w =  wg:

IZiO'wa)! »  1 = >  kiUwg)! =  c  1

IZzUwg)! =  1 =  1.3 if P M  =  45"

Thus J(wg) will not be too  large even if the plant is ill-conditioned.

(b) a t w =  wi :

" |a i(jw i)||/i(.;wi)| =  1

|Za(;wi)| <  1
|i+h(iwi)|
lb(w)|

1.3 if PM  =  45"
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Thus J(w i) will not be too large even if the plant is ill-conditioned.

The above discussions reveal tha t case (3), in which

|Zi(;w)| >  IJ2M I , Vw e  7  ̂ (6.31)

is the best way of keeping the value of small for all frequencies of interest.

From the analysis of Section 6.2 it is clear th a t for the particular choice of controller 

we can, w ithout loss of generality, assume tha t both Gq and K  are diagonal. 

Therefore (6.1) gives

M

—Wail 0 - W 2 hg i  ^ 0

0 —Wâ a 0

WiSigi 0 WiSi 0

0 WiS2 g2 0 WiSa

(6.32)

It follows from [Doy82] th a t if the number of nonrepeated uncertainty blocks in À 

is equal to or less than  3 in complex perturbation case, then

(6.33)

where the scaling m atrix D  — diag {J2, dJa}, w ith d >  0. Consider, therefore.

—wati 0 - W 2 hg i  ^d ^ 0

1 _ 0 —Waia 0 - W 2 t 2 g2 ^d~^

WiSigid 0 WiSi 0

0 WiS2 g2 d 0 WIS2

(6.34)

The rows and columns of the m atrix D M D   ̂ can be interchanged by a perm uta­

tion m atrix  P,  P  = P~^ =  P ^ . Choose

1 0 0 0^

0 0 1 0

0 1 0  0

0 0 0 1

P  = (6.35)
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Then direct m anipulation gives

-W2^1 0 0

1 _ wistgid 0 0

0 0 — W2̂ 2

0 0

M n(d)

0

0

-^22 (d)
=: M (d) (6.36)

Thus

D€D

=  inf max|(T [Mu(d)] ,<t [M22( d ) ] | (6.37)

M athem atical m anipulation then gives

# a [Mii(d)] = ||Mii(d)||^, â [M22(d)j = ||M22(d)||^
e both â  jMii(d)] and â  [M22(d)j are convex functions of d.

• min<i>oâ [M,-,(d)| =  |tü2̂ .| +  |w ia ,|, i = 1,2, when

# ^ ^ (M ) >  max{|u)2<i| +  |toiai|,|w2(3| +  |wiS2 |}

The curves â  [M n(d)j and â |̂ M22(d)] are crucial in determining 

and therefore their study is clearly worthwhile. Three cases are shown in Figure 

6 .8 .

(1)

(2)

I  I
I  I

*1 “ 2
case (a) case (b) case (c)

Figure 6.8: Curves of (1) : â  [M ii(d)l and (2) : â  [M22(d)l.
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Furtherm ore, recall from Section 6.3 th a t for optimal fj. thé open-loop transfer 

functions should satisfy \li(ju>)\ >  \l2 (j to)\ , Vw E %. This directly implies the 

following results;

0 at low frequencies: |?,(jw)| ;> 1, i = 1 , 2

\h(j<^)\ |(i(;w )| % 1

|s2(iw)| % |/2 ( iw )r’-, |ai(;w )| % |Zi(;w)r^

Thus

(6.31) |-S2(iw)| >  |5i(iw)|

|w2t 2 I 4- |'WiS2| >  |u;2t l | 4- |wiSxl

inf â  [M22(d)j >  inf â  [Mn(d)]

This corresponds to case (a) in  Figure 6.8 and = inf â  ĵ M22( d ) |.

8 at high frequencies: |/j(jw )| <C 1, i = l , 2

|s2(iw)l Py |-Sl(iw)l PS 1

liaO'w)! % |l2(jw )|, |<i(jw)| M |li(;w )|

Thus

(6.31) =4* |t2(iw)| <  |ii(iw )|

==> 1̂ 2̂ 21 4- |wiS2| <  |w2tl| +  |w iSi|

=4- inf â [M22(d)| <  inf â  [Mn(d)]

This corresponds to case (c) in Figure 6.8 and =  infd>o d  [M n(d)].

The structured  singular value fj,, has therefore been shown to be determined 

at low frequencies by the low gain Q2  in the lower loop. At high frequencies yu is 

dependent on the higher gain gi in the upper loop. This is not too surprising since 

robust performance requires high gains at low frequencies and robust stability 

demands low gains at high frequencies. Thus there exists no coupling between the 

upper and lower loops due to  A,j and with i ^  j  at low and high frequencies. 

However a coupling effect does occur at intermediate frequencies for case (b), the

transitional stage of the curves between case (a) and case (c).



127

6.5 P la n t-In v er tin g  C ontrollers

As multivariable control theory has developed there has been (particularly in the 

early days) a keen interest in controllers which aim to invert the plant. Consider 

therefore w hat happens when the single-loop controllers are chosen as

&i(s)

tz(a)

(6.38)

(6.39)

where /3{s) is a scalar loop transfer function which makes ki{s)  and ^^(s) proper 

and ensures stability of the closed-loop system. We will calculate the structured 

singular value to evaluate the corresponding performance levels. For ki  and 

given by (6.38) and (6.39), we have

1 4-
1

l  +  y9(y

(^) — ^z(^) —

Si(s) = S a ( s )  =  

from which (6.36) becomes

M(d)

The following results are useful:

•  minj>o â  [Mn(d)l =  [togfl 4- |w is|, when

=: t(s),  and 

= : s(a)

(6.40)

(6.41)

—  W2 t —W2 tgi ^d~^ 0 0

wxsgid WiS 0 0

0 0 —W2< —W2 tg 2 ^d~^

0 0 WiS

(6.42)

min<i>o d  |M 22(d)| =  \w2 t\ 4- |w is|, when

(6.43)

(6.44)
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di < c?2 and minj>o ^  [Mn(d)] =  minj>o d- [M22(d)] imply

ÿ [M!z2(di)] >  ÿ [A^i(di)] , and

â  [ ^ 11(^2)] >  ^  [-^22(^2)]

(6.45)

(6.46)

Figure 6.9; Curves for (1) : a  [Mxi(d)] and (2) : a  [ ^ 22(4 ] -

The la tte r are illustrated in Figure 6.9 which corresponds to case (b) in Figure 

6.8. The value of / i^ (M ) is given by

y . ^{M)  =  inf m a x |â  [Mii(d)] [M22(d)j ]■ 

and the optim al value d of (6.47) is

=  arg {d : ||M n(d)||^ =  | |^ 3 (4 | |j r}

(6.47)

arg ||Mxi(d)|

|W | 1

This last equality follows directly from

II2

(6.48)

M ii(d )||^  =  \w2 t \ ^+  \wis\^+ \wisgid\^+ \w2 tg^'^d and (6.49) 

M22(d)|| =  \w2 tŸ + \wis\^ + \wisg2 d\^ + \w2 tg2 ^d~^Ÿ (6.50)
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and thus

+  \w2 t\'  ̂+ |wi6| • \w2 t\

=  llüiSp +  \w2 t f  +  |w is| • \w2 t\ cond (Go) + (6.61)
cond (Go)

Moreover, if the plant is ill-conditioned, cond (Go) 1, and then (6.51) shows 

th a t achieved by the plant-inverting controller is proportional to the square

root of the condition number of the plant, w ith constant of proportionality equal 

to the geometric mean of the nominal performance and robust stability functions, 

th a t is

H ^{ M )  % y |w is | • |u)2t | • cond (Go) (6.52)

For scalar plant, cond (Go) =  1, and (6.51) gives

yu^(M) =  |w is| +  \w2 t\ (6.53)

6 .6  A  D esig n  S tra teg y

From our analysis and the expectation th a t the optimal /i will be constant, at least 

over the frequencies of interest, we desire

=  IwiSgl H- [togtgl =  c, in the low frequency range, and (6.54) 

= |w isi| -I- [wgtil =  c, in the high frequency range (6.55)

where c is a frequency independent constant. Furthermore, we can establish the 

following properties/ guidelines for the optim al loop gains.

o In the low frequency range: \Î2 (ju;)\ 1 \t2 (ju})\ % 1 and |s2(iw )| %

Assume th a t \w2 {joj)\ is constant in the low frequencies, then (6.54)

implies

1
2(;w)

and hence

l'w^i(iw)'S2(iw)| =  c — |w2(jw)^2(jw)| M c — \w2{juj)\ =  Constant

the loop gain |?2(î <̂ )| / /  |w i(jw )| at low frequencies
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where a j j  h denotes tha t a is parallel to h.

• Iq the high frequency range: |Zi(jw)| <C 1 = >  |/i(jw )| % |/i(jw )| and |3i(jw )| :

1. Assume tha t |tOi(jw)| is constant in the high frequencies, then (6.55) implies

|t03(jw)Zi(jw)| »  |w3(jw)*i(jw)| =  c -  |u;i(jw)ai(;w)| % c -  |wi(;w)| =  constant

and hence

the loop gain |Zi(jw)| / /  |w2(jw)|"^ at high frequencies

c

CD

Figure 6.10; Curves of (1) ; jiciSij +  (2) ; |roiS2l +  1̂ 2̂ 21 and (3) :

But w hat should happen to |/2(jw)| a t high frequencies and |/i(jw )| a t low 

frequencies? The open-loop gains |fi(jw )| and |Z2(jw)| should be shaped to  re­

duce the coupling effect between the loops in the intermediate frequency range 

corresponding to case (b) in Figure 6.8. Note that in (6.27)

> ItüiSi • kü2<2|

which reveals the coupling effect of the simultaneous perturbations, A 12 and ^21, 

between the upper and lower loops.

It is very difficult to determine the optim al value c of fj .^(M)  and to  properly 

shape the loop gains for optimality. Fortunately, we can use fj, — K  iteration  as 

will be dem onstrated in the next section.

6 .7  D istilla tio n  C olu m n  E xam p le

In this section a /^-optimal controller for an ill-conditioned plant is designed hy /i — 

K  iteration [LPG91]. The plant we consider is a simplified model of a high purity
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distillation column (LV-configuration) which was originally studied by Skogestad 

et al. [SMD88]. For more details of the process see [SMD88]. We will compare our 

results w ith those reported by Freudenberg [Fre89b] using a loop shaping m ethod 

and by Skogestad et al. [SMD88] using Doyle’s D — K  iteration methodology 

[Doy85].

The transfer function of the nominal plant is

Go(s) —
0.878 -0.864

1.082 -1.096
(6.56)7 5 s+  1

and it is assumed tha t all the uncertainties can be represented by a normalized 

m ultiplicative input perturbation  A, ||A ||^  < 1, w ith error bounding function

TF2(s) =  =  2 Tg (6.67)

Performance is characterized by the performance weighting function

W i(s) =  W]_I =  -  —̂ —  I 2  (6.58)

The singular value decomposition of G q{ s )  is given by

Go(3) =  172]o(4T *̂ (6.59)

where

and

Note th a t the singular subspaces do not vary with frequency and the condition 

num ber is constant

cond [Go(iw)] =  141.7 V w €?e (6.62)

The controller K{s)  is assumed, as in [Fre89b], to be

u  =
'0.6246 0.7809 ' 

0.7809 -0.6246
, y  =

■ 0.7066 0.7077" 

-0.7077 0.7066
(6.60)

So(s) =  diag
f 1.972 0.01391) (6.61)
l75s +  l ’ 75a + 1  ;

with

A:(a) =  y r (a )[P '

F(s) := diag {ti(a),& 2(s)}

(6.63)

(6.64)
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In the sequel, we will use — AT” iteration to design a diagonal /^-optimal con­

troller r  :=  diag {ki{s),  63(a)} for the nominal diagonal plant So =  diag

The interconnection m atrix  M (a) shown in (6.32) can be rearranged into the 

more compact form:

M P M P - ^

—W2t\ -W2tx9x^ 0 0

wxsxgx WiSx 0 0

0 0 -W2t2 —W2t292 ^

0 0 W1 S2 9 2 W1 S2

=: diag {M h, M 22} (6.65)

by use of a perm utation m atrix  P  as in (6.35).

Because of the special structure of M  and AT, we can solve for 6% and 63 

separately. To see this consider the first stage oî fx — K  iteration, which in this 

case is the following ^ “̂ -optimization:

inf sup cr [M{ju)\ki,k2 w
m f sup Ü

=  max < inf M u , inf M 22
k i  I I  I I 0 0  & 2  II  I

(6 .66)

The above expression reveals th a t the optim al controllers ki(s) and 62(5) can be 

obtained separately from each loop, w ithout loop coupling. It also dem onstrates 

a benefit of super-optimal ^^““-optimization over standard ^^““-optimization. A 

problem w ith (6 .66) is th a t 62(a) is hard to find by ^^““-optimization because

Mo ||w2^ (6.67)
—̂ 2^2 ~ ‘̂ 2't292 

WxS^g^ W1 S2

due to  the fact that \q2 \̂ is very large and dominates all of the other term s. A 

remedy for this problem is to  scale M 22 w ithout changing the value of 

Let the scaling matrix D  :=  d iag { l2, M 2}, d >  0, then 

o ; ,^ ( D M D - i )  =  / ,^ (M )

o { D M D - ^ )  =  â  ( P D M D - ^ P - ^ )

where (PDMD~^P~^)  is as shown in (6.36) and the nasty property of 9 2 (3 ) has
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been modified by the scaling factor d. In this example, d is chosen to be 141.7, i.e. 

d =  cond (Go), fx — K  iteration can now be applied directly to DMD'~^ instead 

of M . After five [x — K  iterations the fx-cuvve is reasonably fiat and its maximum 

value is less than was obtained by [Fre89b] and [SMD88]. Note th a t the curve 

fitting for fx(ju>), normalized ix(juj), becomes harder as jx gets flatter. The optim al 

ki and 63 are given by

h (  ̂ = 9637 +  0-014)(6 +  0.09)(s^ +  5.1s +  3.15)(s +  10.6)(s +  25.5)(s +  53.4)
"  (a +  10-5)(a +  0.027)(a= +  9.5a +  5.3)(a +  31.5)(a +  79.6)(a +  100)
_  on? R (a +  0.014)(a:: +  4.5a +  3.38)(a +  37.16) 

' (a +  10-5)(a +  0.27)(a +  22.54)(a +  84.47)

Thus the ^u-optimal controller is K{s)  =  yF(a)17* with matrices V  and U shown 

in (6.60); and F(a) =  diag {61(a), 63(a)}. All the simulation results are shown in 

Figures 6.12 to 6.18. Figures 6.12 and 6.13 show the Bode plots of the diagonal 

subplants gi{s), ^3(3) and the weightings, respectively. Figure 6.14 shows the fx- 

values of five fx — K  iterations. Bode plots of the optim al diagonal subcontrollers 

61(a) and 63(a) and the compensated loop gains are shown in Figures 6.15 and 

6.16, respectively. The relationships between |w iai| +  \w2 t\\, Iwiag] +  1102̂ 31 and 

the “optim al” curve are shown in Figure 6.17. Figure 6.18 shows the comparison 

of the curve obtained by // — AT iteration with tha t proposed by Freudenberg 

[Fre89b] via a loop shaping m ethod and tha t by Skogestad et al. [SMD88] via 

Doyle’s D  — K  iteration methodology.

6.8  D iscu ssio n  an d  Sum m ary

The R S R P  problem of an ill-conditioned plant, in this case a simplified model of 

a high purity  distillation column, has been solved hy jx — K  iteration as proposed 

in C hapter 5. The m ethod was applied to  DMD~^  instead of M  to  improve 

convergence. The example illustrated how the //-curve becomes flatter when j x - K  

iteration is applied.

Because of the inequality [M(jcu)] <  there are 3 kinds of rela­

tionship between [x^ [M{juj)\ and â [M(joj)] as illustrated in Figure 6.11.
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m

(2)

case (a)

0^ (%

case (b) case (c)

-tû

Figure 6.11: Curves of (1) : cr(M) and (2) : ^(M ).

•  Case (a): [M(joj)] =  â [M(ju})] a t some frequency w =  Wq

The demo example in the /i-toolbox of MATLAB [BDGPS91] corresponds to this 

case. This demo example shows how to apply D — K  iteration to the pitch axis 

control for plant HIMAT which was presented in Example 5.5-2.

# Case (b ): fx^ [M(juj)] = â [M(jux)] for a frequency band Wi <  w <  w.

The benchm ark example proposed by G. Stein and J.C . Doyle in [StD88] corre­

sponds to  this case. The plant is

Go{s)
0

2 S s

cond (Go) =  625

with
0.2(s -f-1)

I 2 , and 1̂ 2(5)
200(s 4-1)

(6.68)

(6.69)
(a 4- 0.001) "  " (a 4-1000)

W ithout scaling of M , fx — K  iteration can be applied successfully to cases (a) and 

(b), although the cond (Go) of case (b) is much larger than  the value of 141.7 for 

the high purity  distillation column.

•  Case (c): The curve of fx^ [M(jw)j does not touch the curve of â [M(juj)]. 

The example of the distillation column is like this. It is so nasty that the intercon­

nection m atrix  M  m ust be scaled before fx — K  iteration can be used effectively 

to  design a ^-optim al controller. But note tha t not all examples corresponding to 

case (c) have to be pre-scaled; it depends on the example.
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Furtherm ore recall th a t the interconnection m atrix

- W 2 T 1  -W aT jG o ''
M

and the weightings are given by

=  =  i

A little thought reveals th a t

0 -2AT(oo)
M(oo)

^2, — W2 {s)l 2

(6.70)

(6.71)

, and yu [M(oo)j =  0.5
0  0 .5/2

Therefore the optimal solution to this problem does not give a flat //-curve over 

all frequencies, but drops down in the high frequencies, as shown in Figure 6.14. 

Therefore the control requirement for the R S R P  problem is to flatten the //-curve 

over a frequency range greater than  the closed-loop bandwidth.

Finally it is worth emphasizing the interesting results obtained in Section 4; 

see Figure 6.17:

o At low frequencies:

//^ (M ) =  \w2 t 2 \ +  IW1S2I (6.72)

Thus “robust performance” is effectively determined by the “lower gain” 

subplant §2 (3 ).

o At high frequencies:

/f^ (M ) =  |w2^i| +  |wi-9i| (6.73)

Thus “robust stability” is effectively determined by the “higher gain” sub­

plant pi(s).

o At interm ediate frequencies:

//^ (M ) >  max{|w2fi| •+■ jwiai], \w2 t 2 \ + |wi62|} (6.74)

Thus a “coupling effect” occurs between the upper and lower loops in Figure

6.4 in this frequency range.
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10»
jgl(|W)l

io->

10 *
10“ 10110-1

[rad/min]

Figure 6.12: Bode plots of the diagonal subplants gi{s)  and g^is).

10-1
101

[rad/min]

Figure 6.13: Bode plots of the weightings u ii(s) and W2 (s).
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1.3

1.2

0.9

0.8

0.7

0.6

0.5 10110010-1

[rad/min]

Figure 6.14: yu-vaJues of five /z — K  iterations.

10“

101

[rad/min]

Figure 6.15: Bode plots of optimal diagonal subcontrollers ki{s) and ^2 ( 5 ).
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101

10“

10110°10-1

[rad/min]

Figure 6.16: Bode plots of loop gains l i {s)  and l2 {s).

1.2

Iwl
0.8

iw2tll

0.6

0.4 j w ï s î f '

10110-1

[rad/min]

Figure 6.17: Bode plots of -f lu'2 *il, |wiS2 | +  \w2 t 2 \ and optimal //-curve.
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1.05 u4-

0.95

0.9

0.85

101

[rad/min]

Figure 6.18: Comparison of //-curves: (1) 1J.4  hy /j, — K  iteration, (2) loop shaping  

by Preudenberg and (3) //-synthesis by Skogestad et al.
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Figure 6.19: The distillation column system.



C hap t

//-OPTIM AL C O N TR O LLER 

D E SIG N  F O R  REAL 

U N C E R T A IN T Y  B Y  f i - K  

IT E R A T IO N

7ol I n t r o d u c t io n

For a iS'15'0, linear and time-invariant plant with one real parameter uncertainty 

and one complex fictitious perturbation representing performance uncertainty, the 

structured singular value, is calculated in this chapter. Then [x — K

iteration is used to design a //-optimal controller for a simple example. The results 

are com pared with those obtained for the same system with the real param eter 

modelled as a complex perturbation. This illustrates the conservatism th a t can be 

introduced by treating real uncertainty as complex uncertainty.

Feedback is mainly motivated by the incompleteness of the knowledge of the 

system to be controlled. A nominal plant is a simplified, ideal, m athem atical model 

which is used to design a controller which will be robust against the modelling 

uncertainties and exogenous disturbance signals. Generally speaking, a plant has 

two kinds of uncertainties:

140
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o uncertain real param eters (real uncertainties) which are produced, for ex­

ample, by the variations of param eters with different operating points and 

typically affect low frequency behaviour.

o unmodelled dynamics (complex uncertainties) at high frequencies.

For real-param eter variations, complex-// analysis, as proposed by Doyle [Doy82], 

can give arbitrarily  conservative results.

For //-synthesis, recall from the discussion in Section 3.10 that the D — K  

iteration proposed by Doyle [DoyS5] is based on

«  j n f  ^  {d M D - ^ )  (7.1)

for non-repeated complex uncertainty blocks. Expression (1.1) does not hold when 

real uncertainty blocks are present, and hence in this case D — K  iteration would 

fail to find the //-optimal controller by W°°-optimization. However, the ability of 

fjL — K  iteration  to fiatten // still works. Thus jx — K  iteration has an advantage 

over D — K  iteration when real uncertainty is present.

This chapter is organized as follows. In Section 7.2, some properties of bilinear 

mappings are presented which are useful for calculating complex-//  ̂ and real-//  ̂ in 

the later sections. In Section 7.3, as an alternative to the conventional m ethod of 

calculating complex-// by //^ (M ) =  infggD ÿ (D M D "^), w ith M  G a closed 

form m ethod is derived using a geometric approach. Building on this, in Section 

7.4, a m ethod for calculating real-// is given when there is one real modelling 

uncertainty and one complex fictitious performance uncertainty. The section ends 

w ith a simple algorithm for finding real-//. In Section 7.5, a //-optimal controller is 

obtained by // — K  iteration for a S I  S O  example with real modelling uncertainty. 

The results are compared with those obtained by treating the real uncertainty as 

complex. Concluding remarks are given in Section 7.6.

^complex / / : = / /  when all the uncertainty blocks are complex, 

^real / / : = / /  when at least one of the uncertainty blocks is real.
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7o2 P r o p e r t i e s  o f  L F T s

Let C denote the set of complex numbers. The equation of a circle in the complex 

2-plane centred at cq with radius ro is

\z — Col =  ro, 2 G C 22 — Co2 — CoZ CoCo =

<=^ [z 1 

Now consider the following equation

in the complex 2-plane with

1 -Co 2

-Co coCo -  rg _1_
=  0 (7.2)

(7.3)

, a ,  d  G 77-, 6 G C (7.4)
a b 

b d

where TZ denotes the set of real numbers. It is obvious th a t =  M* and if a =  0, 

then (7.3) gives

bz -\- bz d — (7.5)

This is an equation of a straight line in the complex 2-plane. Furtherm ore, if 

a 7̂  0, then  (7.3) yields

i; =  0 (7.6)

Comparing (7.6) with (7.2), it is clear th a t (7.6) represents a circle in the 2-plane 

with

centre cq =  — -

radius vq =  

and jcof —

V — det Mz 
|a| 

o d

(7.7)

(7.8)

(7.9)

(7.9) implies tha t the circle does not contain the origin if ^ >  0.

Ceometrically, the straight line of (7.5) is the degenerate case of a circle with 

infinite radius.
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To recap

if M : =

then !z  11M , =  0

(7.10)

(7.11)

is an equation of a circle in the complex 2-plane.

Let us now consider a bilinear mapping from the 2-plane to the (f-plane, defined

r? -)- -5
(7.12)C , r g - p S ÿ é Opz  4- g

which can be rewritten to describe the inverse mapping as

2 =  —r- —  , rq — p s j l \ j

where
r  s ' 9 - â '

p q —p r
■-■.R

(7.13)

(7.14)

Then the circle defined by (7.10) and (7.11) in the 2-plane will be mapped to the 

i^-plane by the following equations:

[2 1]M,
r r<+3 1

_1_ =  0 #
1 ]M ,

p(+q

1

[f^ + s p i  + q]M,

^  [ë  1]

[ë

=  0

+ s

r p r s

J  9. P g. _i_

=  0

=  0

0

where

Therefore

:= R*MzR

M ; = M , = ^  M l  =

The consequences are summarized in the following theorem (e.g. [StT83]):

(7.15)

(7.16)

(7.17)
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T h eorem  7.2-1 (B ilinear M apping); Under a bilinear transformation (or 

L F T )  the image of any circle is again a circle. ■

In this theorem, straight lines are treated  as generalized circles. Moreover, the 

centre and radius of the m apped circle in the ^-plane can easily be obtained by (7.7) 

and (7.8). Note that a bilinear transform ation is a linear fractional transform ation 

as described in Chapter 3.

7.3 C om p lex-p

In 1982, Doyle [Doy82], motivated by the conservativeness of singular values in 

robustness analysis and design, proposed and developed the concept of the struc­

tured singular value (55U ). By introducing a fictitious bounded (in the unit disk) 

uncertainty A , to represent performance requirements, robust performance can be 

guaranteed against uncertainty A if and only if a robust stability test is satisfied 

as described in Theorem 3.9-2. The problem is illustrated in Figure 7.1 below, 

where Â  =  diag {A, Ap}.

Figure 7.1: M  — A structure.

If / i^ (M ) is to be determined algebraically, as in Example 3.8-5, using the 

identity //^ (M ) =  infpgD d (DMD~^)  w ith M  E then it must be assumed 

th a t the  uncertainty blocks A and Ap are complex. However, as we will show a 

geometric approach can be derived using the properties described in the preceding 

section when M  E and A  is “complex” or “real” . In this section, we will de­

velop the approach first for complex A. Needless to say, the fictitious performance
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uncertainty Ap must be complex.

In Figure 7.1, the transfer function “seen” by A is Fi{M,  Ap) using the notation 

introduced in Chapter 3 for linear fractional transformations. Suppose

a b 

c d
M  = g (7.18)

then

Fl(M,Ap) =  o +
a — SAr-

1 -  dAp 1 -  dAp

where 6  := det(M ) and we assume 1 — dAp ^  0. Then d e t(J  — M Â )  =  0 implies, 

and is implied by,

l -A .F l(M ,A p )  =  0 (7.20)

In which case

A = [ F ,( M ,A ,) r  = (7.21)

Clearly, A is then a bilinear mapping of Ap and vice versa. And, if there is a circle 

with radius r  centred at the origin in the Ap-plane, then both (7.14) and (7.16) 

imply th a t

(7.22)

—a 1 '1 0 —a 1

- 6  d 0 - 8  d
M a =  =

— 6 (

P — —a +  Sdr"^

-a +  Sdr'^ 1 — |d p p

and by (7.7) and (7.8), the circle in the Ap-plane is m apped into a circle in the 

A-plane w ith

-a +  Sdr"^
centre Cq =  

radius Tq =

la |2 -  |(J|2r2 
|6c|r 

|a|2 —

(7.23)

(7.24)

Note th a t the circle degenerates to a straight line when r  =  W. 

Then according to the definition of the S S V ,  it follows th a t
|5 | -
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= m in | cr(Â) : det(J — M Â ) =  0, A E C, Ap E c l  
^  A6ÀI. )

p in  (  m ax{|A |, |Ap|} : 1 - A  f)(M,Ap) =  o l  

=™%Gc{ l^pl} : ^  Ap)]  ̂ =: /(A ,

mm 
A e c ,

A ec

dAn — 1min m a .x { |/(A p ) |, |A p |} :/(A p )=

m in { m ax{ |/(A p)| , |Ap
Ap=reĴ  L

min min (  max (1 / (re^^) I , r>o o<ô<27t L U \ / r  I iJ J

o S S ,{  m a x { | / ( r e ' ' ) | , r } |

if {“ “' { o S S ,k P ' ' ) k } }

in jm a x { g c (r) ,r} j (7.25)

mmr>0

mmr>0

where

S rc M ~ -^ m in J /( re i '’) |  (7.26)

All the steps in (7.25) are straightforward except the interchange of max and min. 

The la tte r can be seen to be valid by considering separately what happens (i) if 

| /  <  r  at some 0, (ii) if | /  >  r  V^, and (iii) if | /  | <  r  V0.

This is left to  the reader.

Let

0 (7p :=  the circle with radius r and centred at the origin in the Ap-plane. 

o Cm :=  the m apped circle of /(A p ) in the A-plane.

0 Vi :=  the radius of circle Cp when circles Cm and Cp are tangent, 

o O :=  the origin of the complex plane, 

o dist (P, Q) :=  the distance between points P  and Q.

It is obvious th a t gc{r) is the minimum distance between the circle Cm and the 

origin in the  A-plane when the radius of circle Cp is r. There are three cases which 

need to be considered as r increases gradually from zero to some appropriately large 

value; these are illustrated in Figure 7.2 below.
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case (a)

^ 1 »

(
V '•  /

case (b) case (c)
Figure 7.2: Relationships between circles Cm and Cp.

•  case (a ): 0 <  r  <  r< {Cm and Cp are disjoint)

max {gc{r), r )  =  max {dist (P, O), r}  =  dist (P, O); see case (a) in Figure 7.2.

• case (b ): r = rt {Cm and Cp are tangent)

m ax {gc{r), r} =  max {r#, r,} =  r«; see case (b) in Figure 7.2.

•  case (c): r  >  rj {Cm and Cp intersect)

max {<7c(r), r} =  max {dist (P, O), r} =  r > r,; see case (c) in Figure 7.2.

Furtherm ore, the following theorem is necessary to guarantee tha t dist (P , O) >  r«, 

when 0 <  r  <  Tj.

T h eorem  7.3-1:

(1) ^ 0 ,  for 0 <  r <  , and

(2) > 0 ,  for r >

Proof: It is obvious that

(i) if I Co I >  ro. Cm does not contain the origin, then gc{r) =  |co| -  ro

(ii) if I Col <  ro, Cm contains the origin, then gc{r) = tq — |co| 

and hence

-â +  Wr^ — |6c|r
9c(r) Co -  ro

by (7.23) and (7.24).

From (7.9), (7.22), (7.23) and (7.24) we have the following identity: 

1—0 +  8 dr^\ =  y^|6c|2r2 +  (1 — |d|2r2)(|a|2 — l^j^r^) (7.27)
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Differentiating the term  on the right hand side of (1.27) w ith respect to r  yields

A ; i _ a  +  m Æ  =  ( W - +
dr tl U |- ü  +  6dr2|

which is useful in finding Furtherm ore it follows directly from identity (1.27)

tha t
1 — |d |V

«c(r) =  I ' p 1̂  , I (’■■28)
—a +  odr^l + \bc\r 

0 In the range 0 <  r  <  |^ : we have

M athem atical m anipulation then yields 

dfi'c(r) 1

^|—a +  +  |6c|r^ - |—a +  ^dr ĵ

(|d|^r^ +  l )  |6c| • |—Ô +  5dr^| — (|&c|^ +  |ad|^ — |(5| )̂ r

-  (|5cr -  |ad|" +  |g|::) |d|"r4 (7.30)

The last two term s in the num erator can be simplified to

(|6cp +  |adp — r  =  (adbc + adbc^ r, and 

— |ad|^ H- |dpr^ =  — (bcS +  bcS'j |d|V^

It follows th a t

(|6c|^ +  jadp — r  +  (l&cp — jadp +  |d fr^  =  23îe|^fecdr — d5r^) 

where %e(o) denotes the real part of (#), and

—2%e ĵ 6cdr — dSr^^ j <  |26cdr (a — dJr^ j  |

=  2|6c| • |d |r • |a — d^r^|

Thus the num erator of dgc(r)/dr  is equal to

— (jdpr^ + l )  ]6cj • j—d  + 5dr^| — 23îe ĵ fecdr ( d  — d^r^) j
<  — (|dpr^ +  l )  |6c| • | — d  +  6dr^| +  2|6c| • |d |r  • |d  — d5r^|

=  — (|d|;— 1)^ |6c| • |—d +  5dr^|

< 0
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Therefore dgc(r)/dr  <  0 in the range 0 <  r  <  p-. 

•  In the range r >  p :  (7.28) gives tha t

1 —

j—a +  +  |6c|r

which is of opposite sign to (7.29) and hence dgc(r)/dr > 0. This completes the 

proof. ■

Straightforward substitution into (7.28) reveals th a t gc(0) =  p, S 'c(p) =  0 

and gc(oo) = M. Furtherm ore, it follows directly from (7.30) that if r  approaches 

p  from below, then dgc{r)/dr  =  — on the other hand dgc{r)/dr =  K ,  if r  

approaches p  from above. Therefore gc{r) is continuous, bu t not differentiable at 

r  =  p  when d ^ Q .

The consequence of the three situations in Figure 7.2 and Theorem 7.3-1 is 

illustrated  in Figure 7.3. By (7.25), it is clear that

=  ™ n { m a x { g c (r) ,r}}  

=  : !7c(r) =  r}

=  min : |co| — r-o =  r |

Hence

{ -  : -  ro =  r}  (7 31)

y=r

Figure 7.3: Curves show: fx^{M )  =  1/r*.

By (7.23) and (7.24), the equation |co| — ro =  r  is equivalent to the following 

equation

I—d-f-M r^l |6c|r
|o|2 -  I'rZ "  |a|2 -  |2r3 ^  ^
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The second term  on the left hand side of the above equation can be shifted to  the 

right hand side, then squaring both sides yields

1̂1 V  -  (|n|" +  |d|" +  2|5c|) r" +  1 =  0

Equivalently, this can be w ritten as

+  MP +  2|6c|j T -'j +  \8\^ =  0.r

so that

1 _  (|aP +  |dP +  2|6c|) ±  V (|aP  +  \d\^ +  2|6c|)' -  4|(?|  ̂
r3 2

Hence from (7.31)

( \a \^  4- \d \^  4- 2 l/)cn  -t- A/ f l f l F 4- \d\'^ 4- 2 l / ) c i r  -( | a | 2  +  | d | 2  +  2 | 6 c | )  +  y ( | a | 2  +  | d | 2  +  2 | 6 c | ) " - 4 | 5 | 2  

2

This coincides with the formula obtained in (3.91).

T.4 R,eal-)L6

In the preceding section, the S S V  for complex modelling uncertainty A and com­

plex performance uncertainty A , was derived. We will now consider the S S V  for 

a real param eter uncertainty A and a complex Ay.

Similar to  the development in (7.25) we have

= m in i â (À ) : det(J — M Â ) =  0, A G 7?., Ap 6 
A6Â I J

=  m ax{|A |, |Ap|} : A =  [F)(M, Ap)]  ̂ = : / ( A p ) |

=  min I  m ax { |/(A p) n  7^|, |Ap|} : /(A p) =  ̂  |

=  min jm a x  {^mm^ \ f  ( r4 « ) n  % |. r}  |

min {m ax{^7e(r),r} }  (7.32)
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where

and n  denotes the intersection between two sets.

Therefore, g n if)  denotes the minimum distance between the origin and the 

crossover points of the circle Cm on the real-axis in the A-plane. Let L  be any 

straight line passing through the origin in the A-plane, (we will later let L  = TZ). It 

is obvious th a t there exists one or two crossover points between the circle Cm and 

the line L  if Cm and L  are not disjoint. Let g iir )  denote the minimum distance 

between the crossover points and the origin. Mathematically, we have

h ( r )  :=  ^min^ | /  (re^^) fl L| (7.34)

Then the following lemma can be established.

L e m m a  7.4-1: If Cm V\ L  ^  <j), then gi{r) decreases with r in the range 

0 <  r  <  p ,  where (j> denotes the empty set.

Proof: The bilinear transform ation of

is a conformai mapping from the Ap-plane to the A-plane, if be 0. Thus 

two nontouching circles, C\ and C2, centred at the origin, are mapped into two 

nontouching circles, C\ and C2, as is illustrated in Figure 7.4. It is clear tha t 

d is t(P 2 ,0 )  <  dist (P i, O) if Cm increases with r, and Pi, P 2 are as shown in 

Figure 7.4.

Recall th a t the circle Cm passes through the origin when r  =  p  and degenerates 

to  a straight line when r  =  || | .  This determines the following two cases for special 

consideration:

ease l: p  <  |§[, then

1 lôclr Cm does not contain the origin
° ^ ^ -  ïdl ^  lap -  |($|2r2 ^  I •I I I I I I ' ( ro increases with r

= >  ^ i( r)  decreases with r
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cags_2: ^  |§t, then

„   \bc\r
^ 0  —  | a | i - | S p r i (Cm does not contain the origin 

To increases w ith r 

==> ÿ i( r)  decreases w ith r  

Cm degenerates to a straight line

{Cm contains the origin 

To decreases with r  

==> g i i f )  decreases w ith r

Therefore g%,(r) decreases with r  in the range 0 < r  <  |4 , which completes the 

proof. ■

• |f| <  ?* <  |d| ==> f'Q — |a|2-|5|V2

Figure 7.4: M apping from Ap-plane to  A-plane.

If we choose line L  to be the real-axis in the A-plane, then the following theorem 

is established.

T h e o re m  7.4-1; If Cm n  72. ^  then g%(r) decreases with r  in the range 

0 <  r  <  pj, where ^ denotes the em pty set. ■

Now let us consider (7.33). Firstly, define 

ft :=  the radius of circle Cp when the circle Cm is tangent to  the real-axis.

There are many cases which need to be considered in detail when the radius r of 

Ap increases gradually from zero to a  sufficiently large value.
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T p

case (bl)case (a)

Figure 7.5: Relationships between circles Cm and Cp: case (a) and case (b l).

• case (a): 0 <  r  <  f , (Cm does not touch the real-axis)

Then det(7 -  M Â ) 96 0

Define m a x |^ 7j ( r) , r |  =  00; see case (a) in Figure 7.5.

•  case (b ): r  =  f , (Cm is tangent to  the real-axis)

This prom pts us to consider the following two situations:

(b l) ;  i f  circle Cp contains the tangent point Tp, as shown in case (b l)  of Figure 

7.5, then

{gn ir), r j  =  {dist (Tp, O), =  r,

Geometrically, if r  increases and becomes greater than  f<, then Theorem  7.4-1 

implies

^%(r) <  dist (3},, O)

Thus

{^%(r), r} =  r >  r,

Hence (7.32) gives

/%^(M) =  f, (7.35)

(b 2 ): i f  circle Cp does not contain the tangent point Tp, as shown in case (b21) 

of Figure 7.6, then

m ^  {gn{r), r} =  dist (Tp, 0 )
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\ r

—  c\  p

y---v/pm o \

f .A
V

case(b2I) case (b22) case(b23)
Figure 7.6: Relationships between circles Cm and Cpi case (b2).

Geometrically, if r  increases above r«, Theorem 7.4-1 implies

ÿ%(r) <  dist (3},, O)

Thus w ith fm and Pm defined as shown in case (b22) of Figure 1.6, it is clear that

. max. {gn(r), r}  <  dist (Tp, O)

Therefore, increasing r  in the range >  r  >  n  will decrease the value of 

max {#%(r),r}. The case (b22) in Figure 1.6 illustrates the situation where one 

of the crossover points between Cm and Cp ju st appears on the real-axis for some 

proper value of r , called fm- Then

r}  =  =  dist O)

If r  increases further without exceeding as shown in case (b23) of Figure 1.6, 

then Theorem 7.4-1 gives

d is t (P ,O) < dist (F m ,0 ) =  f„

and

max
r > f m

{9% (r),r}

To recap, in case (b2), the minimum value of

r >  r.
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occurs in the case of (b22) in Figure 7.6, and hence (7.32) gives

(7.36)

To summarize, cases (b l)  and (b2) are illustrated in Figure 7.7. Comparing 

with the complex-/; derived in the preceding section, the real-/; in (7.35) or (7.36) 

can be arbitrarily smaller.

y=r

Figure 7.7: Curves show: n ^ ( M )  =  l/r«  or = l / r ^ .

Let us now consider finding f, in (7.35) , and then in (7.36). Since the circle 

Cm in the case (b l)  of Figure 7.5 is tangent to the real-axis, we have

|T m ( C o ) l  —  T'a (7.37)

where Z^(co) denotes the im aginary-part of cq. Substituting cq and tq from (7.23) 

and (7.24) into (7.37) yields

|Xn (ô — I =  |6c|r

Straightforward manipulation and squaring both sides of the above equation shows 

tha t

-  [|5c|: 4- 2Z;,.(a). i; ,  (w )]r2  4- [%^(a)]' =  0 (7.38)

and ft is the minimum positive root of this equation.

Now to find fm- The case (b22) of Figure 7.6 is redrawn in Figure 7.8. Geo­

metrically, it follows th a t

|3?e(co)| -  )/rg -  \Xm{co)f =  r (7.39)

Shifting the term  |3?e(co)| to  the right hand side of the above equation, substituting 

for Co and tq, squaring both  sides and a little manipulation shows that

4- — |ap^ r '  4-1 =  —2 j%e(a) — 3?e r^| r
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(7.40)

Figure 7.8: To find f^ .

Squaring both  sides again gives

+  L j f  I" (|d|: -  |o|:) -  4 (6d)] '

+ {(M'

— ^2 +  4 [3îe(a)]^|r^ +  1 =  0

and fm is the minimum positive real root of this equation. The roots of equations 

(7.38) and (7.40) can easily be found using MATLAB, for example. The real-/; 

com putation can be summarized as follows:

Step 1: Solve (7.38) for ft,  then obtain cq and tq by substituting r =  f, into (7.23) 

and (7.24).

Step 2: If ft  > |%e(co)|, then n ^ (M )  =  stop; otherwise, do Step 3.

Step 3 ; Solve (7.40) for fm, then //^(M) =  f “ ,̂ stop.

The above algorithm has been coded into a M atlab m-file in which some ad­

ditional routines have been included to avoid the extra roots resulting from the 

squaring process in equations (7.38) and (7.40).

7.5 A  S im u la tion  E xam p le

This simulation example is given to illustrate the application of /; — AT iteration  in 

the design of a /«-optimal controller for a plant with real param eter uncertainty. 

The control system shown in Figure 7.9 is the same as Example 5.5-1, except
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tha t the modelling uncertainty A is real. It is a S IS O  plant with an additive 

perturbation  A  £1Z  and fictitious performance uncertainty A , € C. The nominal 

plant and weighting functions are

0.5(1 -  a)
Go(a)

ty i(a)

(a +  2)(a +  0.5) 
1 +  ï i i s50
1 +

0.1256^
1 +  Ô

Figure 7.9: System with additive real param eter uncertainty.

The sim ulation results are shown in Figures 7.10 through 7.14. 3 iterations were 

required to  find the “optim al” com plex-con tro ller and 8 iterations were required 

to find the “optim al” real-/i controller. By “optim al” we mean a reasonably fiat fj,. 

Figure 7.10 illustrates the characteristics of the optimal controllers: H°°, complex- 

and resl-fj.. Note th a t vesà-fi is less than  complex-//. The curves of â (M ), 

//c(M ) and //%(M) for 7i°°, complex-// and real-// optimal controllers are shown in 

Figures 7.11, 7.12 and 7.13, respectively. Bode plots for the compensated open-loop 

transfer functions and the weightings for complex-// and real-// optimal controllers 

are also shown in Figure 7.14. Figure 7.15 illustrates the real-// optimal controller 

characteristics: before and after model reduction of the optim al controller. The 

//-optimal controller after balanced model reduction is

(a 4- 0.498)(a 4- 2.057)%(a) =  1.844 (7.41)(a-|-0.007)(a-|-2.639)

It is interesting to note th a t the controller K {s) is a cascade combination of a 

phase lead and a phase lag network, it is stable and has only 2 states compared 

with 2 for the nominal plant Gq{s ). The curves ô-(M) and //%(M), before and
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after the reduction of the controller, are shown in Figure 7.15, and illustrate little 

change in using the reduced order controller.

7o6 D isc u ss io n

It is natural for a plant model to suffer from real param etric uncertainty at low 

frequencies. On the other hand, complex uncertainty is typically present at high 

frequencies because of unmodelled dynamics. However, in robust control it fre­

quently happens tha t real param etric uncertainty is modelled as a norm bounded 

complex perturbation. This chapter has illustrated the conservatism th a t can be 

introduced by this practice. The chapter has also shown how // — K  iteration can 

be used to design a //-optimal controller for the case of real modelling uncertainty 

mixed w ith a complex fictitious perturbation representing uncertainty. Doyle’s 

D — K  iteration fails in this case because //^ (M ) cannot be expressed as a linear 

fractional transform ation of the controller K{s).

The simulation results in Figure 7.12 show that coincides with Hc{M)

in both  low and high frequency ranges. Geometrically this corresponds to the 

case th a t bo th  circles Cm and Cp are tangent to each other with the tangent 

point just on the real-axis. However, //%(M) and //c(M ) are quite different in the 

interm ediate frequencies. The complex-// optimal controller therefore gives a more 

conservative design.

We have shown tha t the circle-invariant property of a bilinear mapping is useful 

in determining the S S V .  But if the number of uncertainties increase, the situation 

becomes more complicated. The problem of calculating the S S V  is known to be 

difficult and only a few papers are available on the subject. An “exact” method 

is given in [AckS5] but this is simply a brute force global search over a grid of 

param eter values. It involves an exponential growth in computation tim e as a 

function of the number of parameters, and taking fewer grid points to avoid this 

results in loss of exactness. Gaston and Safonov presented a method [DeSSS] to 

reduce the com putational burden using the mapping of det(J — k M A )  from a
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hypercube of A to the complex plane with k as a. param eter. The minimum value 

of k such th a t det(7 — k M A )  =  0 was defined as the stability margin which is 

the inverse of In 1991 Fan et al. presented a paper [FTD91] to  calculate

fj, in the presence of mixed param etric uncertainty and unmodelled dynamics. It 

is com putationally attractive, but potentially inexact. The main idea is to get 

upper and lower bounds using local search methods which are computationally 

inexpensive, but it may fail to  find the global solution.

It is interesting to note th a t whatever kinds of uncertainties are present in 

the system, if a com putational method for calculating //^ (M ) is available for a 

given controller, then fj, — K  iteration will be applicable for designing a //-optimal 

controller. Therefore n — K  iteration is potentially useful for practical control 

system design.
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Figure 7.10: Characteristics of the optimal controllers:

(1): cr(M) for 7ï°° optim al controller; (2): for the complex-/:/ optimal

controller; and (3): //%(M) for the real-// optimal controller.
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Figure 7.11: optim al controller characteristics:

(1) d-(M)]  (2) //c(M ); and (3) //%(M).
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Figure 7.12: Complex-/! optim al controller characteristics: 

(1) â (M ); (2) //c(M ); and (3) Hti(M) .
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Figure 7.13: Real-/! optim al controller characteristics: 

(1) â { M) ]  (2) /!c(M ); and (3)
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Figure 7.14: Bode-plots for the compensated open-loop transfer functions and the 

weightings: (1) (2) |/c(jw)|; (3) and (4) |TFi(;w)|.
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Figure 7.15: Real / i  optim al controller characteristics, a ( M )  and 

upper curves: lower curves:

solid lines: before reduction; dashed lines: after reduction.
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CO N CLU SIO N S AND 

F U R T H E R  W O R K

8.1 Su m m ary

This thesis has studied the robust stability and robust performance (R S R P )  prob­

lem which is central to control system design. A new design algorithm for the 

R S R P  problem has been presented for multivariable feedback control systems in 

Chapter 5. We have confined ourselves to  the treatm ent of finite dimensional lin­

ear time-invariant models w ith modelling uncertainties because these are the most 

commonly used models in practical design. It is argued th a t the fj, — K  iteration 

algorithm can be used to  design /^-optimal controllers for the  R S R P  problem when 

the plant has real and /o r complex modelling uncertainties. The idea is motivated 

from an engineering point of view and takes advantage of ?-^°°-optimization. jj, — K  

iteration is therefore seen as a potentially useful tool for practical control system 

design.

A loop shaping approach to  robust performance design for S IS O  systems was 

also presented in Chapter 4. Although it is not easy to  extend this approach to 

multivariable systems, it reveals an interesting and useful relationship between 

a mixed sensitivity ?Y°°-optimization problem and classical loop shaping. The 

insight provided by this relationship led to the development of the loop shaping

163
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approach for minimizing the structured singular value for robust performance.

In C hapter 6, an ill-conditioned 2-input 2-output high purity distillation col­

um n was analyzed. The plant has a large value of condition number which implies 

th a t the gain of the system has strong directionality as well as frequency depen­

dence, and is detrim ental to robust stability and robust performance. A lthough 

the large condition number causes controller design problems, it does have a nice 

“separation property”: robust performance depends only on the low plant gain 

in  the  low frequencies and robust stability depends only on the high plant gain 

in the high frequencies. A synthesis design is carried out for the distillation 

column using (j. — K  iteration algorithm, and comparisons are made with results 

in [SMD88] and [Fre89b].

In Chapter 7, based on the circle-invariant property of a linear fractional trans­

formation, a geometric approach for calculating the real and /o r complex structured  

singular value was proposed. This is useful because the m ethod oi fx — K  iteration 

is strongly dependent on the precision of the /^-computation.

Suggestions for further research include:

(1) The loop shaping approach to robust performance is particularly useful for 

S IS O  systems. The extension of this approach to  M IM O  systems needs to 

be investigated.

(2) The optimization problem given in Section 4.2 is to find a stabilizing con­

troller K {s) which satisfies

inf sup { |ri(jw )a(;w )| 4- \r2 {joj)t{juj)\\

This problem does not yet have an analytical solution.

(3) As in Doyle’s D — K  iteration algorithm, there is no a •priori guarantee 

th a t the /x — K  iteration algorithm will converge to  a global minimum. The
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modification oî fx — K  iteration to  obtain a globally optim al controller is an 

im portant area of study.

(4) The high purity distillation column design example presented in this the­

sis, and previously discussed by Skogestad et al. [SMD88] and Freudenberg 

[Fre89b] is not very practical because no am plitude and bandw idth con­

strain ts are placed on the controller. The choice of weighting function to  im­

prove the bandwidth of the control energy is not obvious. The relationship 

between the /x-curve and this bandw idth is critical to the synthesis problem 

and deserves more study. A more detailed performance specification for this 

example was given at the 1991 IEEE Conference on Decision and Control, 

Brighton and could form the basis of further study.

(5) The geometric approach presented in Chapter 7 is useful for computing the 

structured  singular value with respect to real and /o r complex uncertainties. 

The question remaining is, to  what extent, the geometric approach used here 

can be extended if the num ber of uncertainties increases.
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