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Abstract Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere,
we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF)
conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches
were initially segmented from the dayside storm enhanced density plume at the equatorward edge of the
cusp, by the expansion and contraction of the polar cap boundary due to pulsed dayside magnetopause
reconnection, as indicated by in situ Time History of Events and Macroscale Interactions during Substorms
(THEMIS) observations. Convection led to the patches entering the polar cap and being transported antisunward,
while being continuously monitored by the globally distributed arrays of GPS receivers and Super Dual
Auroral Radar Network radars. Changes in convection over time resulted in the patches following a range
of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed
nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the
patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Tromsø and
European Incoherent Scatter Tromsø UHF radar. After exiting the polar cap, the patches broke up into a number
of plasma blobs and returned sunward in the auroral return flow of the dawn and/or dusk convection cell.
The full circulation time was about 3 h.

1. Introduction

The Dungey convection cycle is a fundamental space physics process, resulting in energy and momentum
transfer from the solar wind to the magnetosphere and circulation in the coupled magnetosphere-
ionosphere system. This convection cycle is seen in the flow of ionospheric plasma antisunward over the
polar cap and the sunward return flow immediately outside the polar cap in the auroral ovals [Dungey,
1961]. It has two causes: reconnection in the magnetopause, which generates “open” magnetic flux that is
connected to the interplanetary magnetic field embedded in the solar wind flow and reconnection in the
cross-tail current sheet which recloses the magnetic flux, enabling it to migrate sunward, back to the
dayside, and so complete the cycle. Steady state, in which these two reconnection voltages are equal, is
rarely achieved and the normal behavior involves the substorm cycle, in which the magnetopause
reconnection voltage dominates in the initial “growth” phase, but the tail reconnection voltage dominates
in the later “expansion” and “recovery” phases [McPherron et al., 1973]. The instantaneous ionospheric flow
patterns for the Dungey cycle during substorms are given by the expanding-contracting polar cap (ECPC)
model [Cowley and Lockwood, 1992; Siscoe and Huang, 1985], which includes two basic time-dependent
components to drive the flow: one is the magnetopause coupling process (dayside reconnection) [e.g.,
Dunlop et al., 2011] and the other is the magnetotail reconnection process [e.g., Hones and Schindler, 1979].
Over the past 50 years, considerable effort has been expended to elucidate the nature of these flows and the
energy transport rate in the full Dungey cycle. For instance, Milan et al. [2007] surveyed the dayside and
nightside reconnection rates for the magnetic flux transport in the Dungey cycle by using a large data set
(with observations including satellite in situ particle data, global auroral observations, and ground-based
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radar measurements). It is impossible, however, to track a single reconnected field line (and the plasma frozen
on to it, collectively referred to as a flux tube) through themagnetosphere for a full Dungey cycle, simply because
of the huge extent of themagnetosphere. The ionosphere offers a unique opportunity to image the cyclic motion
of flux tubes. A clear distinction must be made, however, between the loci of the ionospheric feet of flux tubes
and the streamlines (equipotentials) of the pattern of ionospheric convection. Only in the steady state situation
are these the same and although the convection pattern gives the direction and speed of travel of a flux tube
at any one instant, in the general, nonsteady case, its locus will depend on the history of changes of the
convection pattern [Lockwood, 1993]. Thus, convection patterns from radars and magnetometer networks at
any one time do not tell us about the trajectories of flux tubes in the general, nonsteady case. This concept
is important for understanding the evolution of high-latitude F region ionospheric plasma (and of plasma
structures like patches), which depends on the locus of the flux tube [Lockwood, 1993].

Polar cap patches are defined as islands of high-density ionospheric plasma poleward of the auroral oval,
surrounded by plasma of half the density or less [Crowley, 1996]. It was recognized at an early stage that
midlatitude ionospheric plasma, produced by solar EUV, provided a viable reservoir of source plasma for
both discrete polar cap patches or for a continuous tongue of ionization (TOI), with the plasma being
drawn by convection into the polar cap [Knudsen, 1974; Foster and Doupnik, 1984; Foster et al., 2005]. In
addition, on entry into the polar cap the flux tube is subjected to the cleft-cusp-mantle magnetosheath
plasma precipitation sequence [Lockwood, 1997], which enhances and heats the ionospheric plasma
[Rodger et al., 1994].

Previous works [Lockwood and Carlson, 1992; Lockwood et al., 2005; Q.-H. Zhang et al., 2011, 2013a] have
demonstrated that observations of polar cap patches can be used to infer the variability of magnetopause
reconnection, which was confirmed by Time History of Events and Macroscale Interactions during
Substorms (THEMIS) in situ observations [Walsh et al., 2014]. Zhang et al. [2013b] also reported that the
exit of the patches from the polar cap is modulated by pulsed nightside reconnection, occurring as part of
the magnetospheric substorm cycle, consistent with observations of TOI/patch cold plasma density at 5.5
Re altitude at midnight (with coincident GPS total electron content (TEC) mapping) at the position of a
substorm depolarization [Foster et al., 2014]. Hence, the movement of polar cap patches can be used to
track the loci of flux tubes as they evolve around the full Dungey convection cycle [Zhang et al., 2013b;
Oksavik et al., 2010].

In this paper, we present continuous monitoring of flux tubes undergoing the Dungey cycle, using both
plasma density and flow over a large fraction of the northern hemisphere convection zone during a full
convection cycle (5 h, with time resolution of 5min) by combining observations of the total electron
content (TEC) from the large and dense array of GPS receivers [Coster et al., 2003] with the large-scale
coverage of the flows provided by the Super Dual Auroral Radar Network (SuperDARN) radars using the
“Map Potential” technique [Ruohoniemi and Baker, 1998; Chisham et al., 2007; Thomas et al., 2013], together
with measurements from the magnetometer at Tromsø and the European Incoherent Scatter (EISCAT)
Tromsø UHF radar.

2. Observations
2.1. Upstream Solar Wind and Interplanetary Magnetic Field Conditions

On 17 January 2013, a coronal mass ejection impacted the magnetopause, giving an enhancement of solar
wind dynamic pressure, PDyn and resulting in a small geomagnetic storm (Dst, minimum of �53 nT) [Walsh
et al., 2014]. A reverse shock (sudden decrease in PDyn mainly due to a sudden decrease in solar wind
number density) impacted the magnetosphere at about 15:30 UT. In Figure 1, we present an overview of
the solar wind and interplanetary magnetic field (IMF) conditions from the OMNI-2 data set (based on
the measurements from the Wind and ACE satellites) [King and Papitashvili, 2005] during the period
14:00–24:00 UT. Parameters shown are (a) the GSM IMF components, (b) the IMF clock angle (CA), (c) the
solar wind plasma number density (NSW), (d) the solar wind speed (V), and (e) the solar wind dynamic
pressure (Pdyn). The data have been lagged by 5min to allow for the propagation delay from the nose of
bow shock to the dayside magnetopause. Right at and after the reverse shock, the IMF Bx and By
components changed their polarity three times and remained weakly sunward and strongly dawnward
after about 17:06 UT, while the IMF Bz stayed strongly negative, except for a short positive excursion from
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16:31 to 17:00 UT (see Figure 1a). Hence, the IMF clock angle varied from 204° to 250° while the IMF magnitude
was large (>10nT) for an extended period after 17:06 UT (see Figure 1b), favoring a high magnetopause
reconnection rate. The solar wind density varied between about 34 and 64 cm�3 before the reverse shock
and decreased to about 2 cm�3 after 17:18 UT (see Figure 1c), while the solar wind velocity varied between
360 and 420 km/s (see Figure 1d), resulting in a prevailing solar wind dynamic pressure in the range
11–21 nPa before the reverse shock and in the range 0–2 nPa after 17:18 UT (see Figure 1f ).

2.2. GPS TEC Data and SuperDARN Convection Maps

Figure 2 shows the formation and evolution of patches, as revealed by mapping of the GPS TEC and the
SuperDARN convection patterns. The patches are characterized by local enhancements in TEC and
highlighted by the magenta circles or ellipses with numbers from P1 to P5. Note the change in scale used
in Figure 2 to better show the evolution of the patches. The different colors represent different TEC values
as shown by the color bars, where Figures 2a–2d use the upper color bar with a range of 0–20 TEC unit
(TECU; 1 TECU= 1016 elm�2) and Figures 2e–2i use the lower color bar with a range of 0–15 TECU. The TEC
unit is the standard unit for expressing total electron content, corresponding to the total number of
electrons contained in a column of cross-sectional area 1m2, extending upward from the Earth’s surface
through the ionosphere. One TECU is defined as 1 × 1016 el/m2. The dashed black with red circle in each
panel shows the Heppner-Maynard Boundary (HMB) [Heppner and Maynard, 1987], which represents the
latitudinal extent of the ionospheric convection pattern inferred from the SuperDARN radar observations
[Shepherd and Ruohoniemi, 2000] and whose equatorward motion indicates expansion to lower latitudes.
The expansion or contraction of the convection pattern as a whole is linked to, but not the same as, the
expansion or contraction of the polar cap [e.g., Imber et al., 2013]. The dotted line across each panel is the
day-night terminator at 100 km altitude. Figure 2a shows a typical two-cell convection pattern as observed
by SuperDARN radars using the Map Potential technique, with large values of GPS TEC in the dayside
lower latitude region due to the solar EUV ionization, but generally small TEC poleward of the HMB and in
the lower latitude region of the nightside sector. The region of high-density sunlit plasma is inclined
toward the duskside, with a cavity of lower-density plasma around 60° magnetic latitude and before 10:00
magnetic local time (MLT), due to the combined effect of the Earth’s rotation and polar ionospheric
convection. This interval corresponded to the growth phase of a small substorm (as revealed by the AE

Figure 1. An overview of the solar wind and IMF conditions from the OMNI-2 data set (based on measurements from the
Wind and ACE satellites). Parameters shown are (a) the GSM IMF components, (b) the IMF clock angle (CA), (c) the solar wind
plasma number density (NSW), (d) the solar wind speed (V), and (e) the solar wind dynamic pressure (Pdyn). The data have
been lagged by 5min to allow for propagation from the nose of bow shock to the magnetopause.
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index, not shown here) and at such times the dayside polar cap boundary (PCB) should expand equatorward,
as predicted by the ECPC model [Cowley and Lockwood, 1992; Siscoe and Huang, 1985] as do the Region 2
currents and hence the HMB [Iijima and Potemra, 1978; Bythrow et al., 1984]. The polar cap expansion is
caused by an increase in the global dayside reconnection rate, and the Region-2/HMB motion is a
response to the growth of open flux and transpolar voltage [Siscoe, 1982]. The equatorward motion of the
low-latitude edge of the convection pattern (the HMB) takes place rapidly, because the currents that shield
lower latitudes from the polar electric field take time to establish [Kelley et al., 1979]. Hence, transient
enhancements in convection can lead to short-lived subauroral flows (collectively known as subauroral
polarization streams [Foster and Burke, 2002]), which can reach deep into the plasmasphere and cause it to
erode by convecting dusk-sector magnetospheric flux tubes (called detached plasma regions [Chappell,
1974]) toward the near-noon magnetopause, where the plasma is lost to the magnetosheath as the field

Figure 2. Selected examples from a full series of 2-D maps of median-filtered TEC and ionospheric convection on a geomagnetic latitude/MLT grid with noon at the
top (Movie S1 in the supporting information). The dotted line across each panel is the day-night terminator at 100 km altitude. The magenta circles and ellipses with
numbers P1–P5 highlight the polar cap patches, the evolutions of which are followed here. The mauve star with a TRO represents the location of Tromsø, where the
EISCAT Tromsø UHF radar and Tromsø magnetometer are located (data from which are shown in Figure 4).
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line is opened by reconnection [Goldstein et al., 2003]. The ionospheric signature of such a plasmasphere
erosion event is seen as the storm enhanced density plume (SED) [Foster et al., 2004], which transports
EUV-enhanced plasma in the afternoon sector toward the cleft/cusp region and thence into the polar cap
through the “convection throat.” During the time period under investigation, in situ measurements at the
dayside magnetopause made by the THEMIS spacecraft confirmed that active reconnection was occurring
at the boundary [Walsh et al., 2014], a necessary requirement for the above sequence of events. After this
expansion, the polar cap boundary contracted poleward and the EUV-enhanced plasma that had become
entrained in the convection pattern was transported toward the convection throat to form a plasma patch
(patch P1 in Figure 2b). Such expansion and contraction of the PCB occurred repeatedly, due to pulsed
reconnection at the dayside magnetopause, and helped to form a series of patches in the polar
ionosphere (patches P1–P5), which moved poleward toward the nightside after formation, with a growth
in their size around the cusp region (shown in Figures 2c–2h), which would be consistent with the
enhancing effect of cusp precipitation on preexisting EUV-generated plasma [Rodger et al., 1994]. During
their transpolar evolution, the patches decreased their density and twisted, changing their shape. When they
reached the nightside auroral oval, the patches were dragged into a “T“ shape as they exited the polar cap
[Robinson et al., 1985], confirming that the patches could only leave the polar cap at locations that mapped
to ongoing magnetotail reconnection [Zhang et al., 2013b; Foster et al., 2014; Lorentzen et al., 2004;

Figure 3. The time series evolution of the TEC and the trajectories of selected points at the leading edge of each patch.
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Moen et al., 2007]. After exiting the polar cap, the patches evolved into “blobs” in the auroral sunward
return flow region on the duskside and/or dawnside (see Figures 2e–2i). The full evolution of these
patches can be seen most clearly in Movie S1 in the supporting information, which is the 5min
resolution movie of the same data set as shown in Figure 2.

In order to track each patch in some detail, we have picked a point on the leading edge of each patch and
extracted the TEC value at that point from each TEC map. Figure 3 presents the time series evolution of
the TEC (after median filtering by 3× 3 points around the selected point in each TEC map), together with
the trajectories of the selected points. Although these points have been selected by eye, which may result
in some artificial effects on the trajectories and their associated TEC, they clearly define the patch
evolution. We define the entry of the patch into the polar cap as the point where the TEC rises under the
influence of the cusp precipitation and define the exit as the point where the trajectory turns from
antisunward to east/west/sunward and the TEC decreases. We mark these entries and exits by vertical red
dashed lines. From Figure 3, we can see that the TEC inside each patch increased as it entered the polar
cap, maintained a relatively high value in the polar cap and quickly decayed to about 4–15 TECU around
the time of its exit from the polar cap. There are three potential causes for this rapid decay in density:
(1) the polar rain precipitation was shut off by magnetotail reconnection [Y. Zhang et al., 2011], (2) faster
convection caused an enhanced plasma loss rate [Lockwood et al., 2000], and (3) the effect of long residence
times away from production by either EUV radiation or auroral precipitation, which would reduce the density
even if the decay rates were not enhanced. Of these (3) does not appear to apply, because Figure 3 shows
that on leaving the polar cap, the slow antisunward migration of the patches turned to rapid eastward or
westward motion. Notice that the TEC in some of the patches slightly increased after they exited the polar
cap, which can be attributed to precipitation in the nightside auroral oval.

Figure 3 shows that the trajectory of patch P1 was directed toward the dawnside after it left the polar cap.
This patch reached the dayside and completely faded in the morning sector sunward return flow. On the
other hand, patch P3 moved only slightly duskward and completely faded near midnight. The other
patches each divided into three parts, whose trajectories evolved either dawnward or duskward, possibly
because the nightside reconnection occurred in different MLT sectors at different times [Mishin et al., 2001;
Cheng et al., 2002; Liu et al., 2010]. It is worth noting that patches P2a and P5a exited the polar cap around
19:00 MLT, which may suggest that the tail reconnection occurred at the dusk flank around this time. The
cross-cap transit time and lifetime of each patch are shown in Table 1. The transit times of these patches
may conceivably be somewhat less than the total transit times of the corresponding field lines, since it is
possible that the field lines may have been opened (and hence their antisunward motion may already
have started) before the first increase in total electron content occurred. Also, it is possible that the open-
closed field line boundary might have been located equatorward of the terminator, in which case the
patch might have been difficult to distinguish during the initial part of the field line transit, due to the
high density of the background plasma. Recognizing that they may be slightly underestimated, the cross-
cap transit times were in the range of 1.0–1.3 h for patches P2a, P2b, P2c, P4a, and P5a (see the fifth row of
Table 1), which were potentially associated with tail reconnection occurring at the dusk flank, while the

Table 1. The Time of the Polar Cap Entry and Exit and Completely Fading of Each Patch, Together With Its Cross-Cap
Transit Time and Lifetime as Well as the Evolution Distance of the Magnetic Field Lines, Associated With the Front
Edges of the Patches, From Their Open to Reclose Due to the Dayside and Nightside Reconnections

Patch No. Entry (UT) Exit (UT) Disappear (UT) Cross-Cap Transit Time (h) Evolution Distance(Re) Lifetime (h)

P1 18:15 20:20 21:40 ~2.1 450 ~3.4
P2a 19:25 20:25 20:55 1.0 215 1.5
P2b 19:25 20:35 21:25 ~1.2 258 2.0
P2c 19:25 20:35 22:25 ~1.2 258 3.0
P3 19:20 21:05 21:25 ~1.8 387 ~2.1
P4a 19:45 20:55 21:05 ~1.2 258 ~1.3
P4b 19:45 21:20 21:30 ~1.6 344 ~1.8
P4c 19:45 21:45 22:55 2.0 429 ~3.2
P5a 20:15 21:35 21:55 ~1.3 279 ~1.7
P5b 20:15 22:05 23:05 ~1.8 387 ~2.8
P5c 20:15 22:15 23:40 2.0 429 ~3.4
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transit times range between 1.6 and 2.1 h for the other patches or the other branches of patches (see the fifth
row of Table 1), whichmay be associated with the tail reconnection in themidnight sector. These transit times
are consistent with previous reports of 130min flux transport time from the dayside magnetosphere to the
magnetotail plasma sheet [Pitkänen et al., 2013] but are much shorter than the time scales of 3–4 h inferred
from the averaged interval between IMF By changes and the formation of transpolar arcs, reported by Fear
and Milan [2012]. Using our measured transit times and the average solar wind velocity during this period
(about 380 km/s), we can roughly deduce that the magnetic field lines threading the front edges of the
patches must have evolved over distances of between 215 and 450 Re in the solar wind, from the time of
their opening at the dayside magnetopause to their reclosure by nightside reconnection. It is worth noting
that the total lifetimes for patches P1, P2c, P4c, and P5c, which evolved through almost a full Dungey cycle
from dayside to nightside and back to dayside from the dawn flank, ranged from about 3.0 to 3.4 h, while
the lifetimes of the other patches or the weaker branches of patches (see the seventh row of Table 1) were
in the range from about 1.5 to 2.8 h. This suggests that the time taken for the full circulation of energy
and momentum from the solar wind to the magnetosphere was about 3 h. The variety of the transit times
and trajectories shown in Table 1 and Figure 3 emphasizes the variability in patch evolution due to
the nonsteady nature of both magnetopause and tail reconnection and the consequent variations in
convection which they generate.

2.3. Tromsø Magnetometer and EISCAT Tromsø UHF Radar Observations

Tromsø (in northern Norway) was located near the nightside polar cap boundary during the interval of
interest (shown as the mauve star with “TRO” in each panel of Figure 2) and was therefore an ideal place
to monitor the local signature of ongoing magnetotail reconnection and the exit of patches from the polar
cap. It is well known that auroral substorm intensifications are associated with negative deflections in the
H component of the ground magnetometer [e.g., Lorentzen et al., 2004]. Such negative deflections are a
ground signature of the diverted tail current closing in the ionosphere via the westward electrojet and are
indicative of an enhanced reconnection rate [cf. Russell and McPherron, 1973; Lorentzen et al., 2004]. The H
component of the magnetic field measured by the magnetometer at Tromsø is shown in Figure 4a. The
EISCAT Tromsø UHF radar was also operated after 20:45 UT on this day and was pointing close to the field-
aligned direction (azimuth �173.8°, elevation 77.5°). The EISCAT data covered the altitude range from
about 80 to 670 km. The bottom five panels in Figure 4 present 2min postintegrations of the UHF radar
observations between 20:45 and 22:45 UT (about 23:15 to 01:15 magnetic local time (MLT)) on 17 January
2013. Parameters shown are (b) electron density, (c) electron temperature, (d) ion temperature, (e) line of
sight ion velocity, and (f ) the integrated total electron content along the radar beam (up to 670 km
altitude) and the averaged GPS TEC at Tromsø, as a function of altitude and time.

From Figure 4, we can see that there were six negative deflections, marked by S1-6, in the H component
(Figure 4a), which we associate with six intervals of ongoing magnetotail reconnection. During each
negative deflection, there were clear electron precipitation events, reaching down to about 100 km and
enhancing the electron temperature in the F region and the electron concentration in the E region
(Figures 4c and 4b, respectively). These ionospheric signatures are consistent with intermittent local
magnetotail reconnection [Wood et al., 2009], while the ion temperature and ion line of sight velocity
showed evidence of slight heating and upwelling (Figures 4d and 4e), associated with Joule heating. Even
though the Tromsø magnetogram sometimes suggests an apparent overlap between the magnetometer
deflections and the occurrence of the patches (e.g., in the case of events S3 and P4c), the EISCAT data make
clear that the patches are generally well separated from the precipitation events and their associated
electron temperature enhancements, the only exception being for patch P5b, when the magnetometer
deflection (S5) is in any case rather small. Outside the magnetically disturbed intervals, particularly at the
beginning of the interval shown in Figure 4, the electron density was well structured in the F region,
showing clear enhancements reaching about 4× 1011 cm�3, while the electron temperature decreased and
the ion temperature was slightly enhanced within these density enhancements (Figures 4b–4d). These
density enhancements are characteristic of well-defined polar cap patches, consistent with previous
observations of high electron density and low electron temperature within the patches reported by Moen
et al. [2004] and Q.-H. Zhang et al. [2011, 2013a]. These data show that the patches were simply transported
through the polar cap by the transpolar plasma flow. We have highlighted these patches by two dashed
black vertical lines and marked by P2b, P4a-c, and P5b-c for comparison with the branches of the patches
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shown in Figures 2 and 3. The separation between the patches and the periods of electron precipitation (with
the exception of the period of the small deflection S5) suggests that the nightside PCB moved equatorward,
associated with electron precipitation due to the magnetic field reclosure associated with the nightside
reconnection, enabling the patches to exit the polar cap in the interval immediately following the electron
precipitation events. This strongly supports the concept that the patches could only exit the polar cap at
locations that mapped to ongoing magnetotail reconnection [Zhang et al., 2013b; Lorentzen et al., 2004]. The
integrated TEC enhancements shown in the EISCAT UHF radar data matched well to the arrival times of
patches seen in the GPS TEC data at Tromsø (Figure 4f) The radar integrated TEC, however, is much larger
than the GPS TEC, and the patches seen in the radar data correspond more to an increase in the GPS TEC
uncertainty rather than its mean value. This is partly because the time resolution of the radar TEC data is
2min and hence shorter than the GPS TEC data, which means that small-scale structure in the F region
plasma passing through the beam is measured by the radar but not resolved in the GPS measurements. In
addition, the GPS data would be averaged across these small-scale structures, due to the fact that the
oblique propagation of the signal between the individual receiver-satellite pairs used in making the
measurement implies a range of F region penetration locations and elevation angles for the propagation
path. Furthermore, the inversion to produce vertical TEC from the GPS slant-range observation assumes a
“regular” F region profile (e.g., Chapman layer). Differences from this model ionosphere will create further

Figure 4. The magnetic field observed by the Tromsø magnetometer and plasma parameters observed by EISCAT Tromsø
UHF radar between 20:45 and 22:45 UT on 17 January 2013. Data are (a) the horizontal component of the magnetic field;
(b) Ne, electron density; (c) Te, electron temperature; (d) Ti, ion temperature; (e) Vi, the line-of-sight velocity (positive away
from the radar); and (f ) the averaged GPS TEC and integrated UHF radar TEC as a function of time and altitude.
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differences in the comparison with
the signal from a narrow-beam inco-
herent scatter radar. Also, note that
some of the patches seen in the radar
data appear more significant because,
while their total electron content is
similar to other patches, the density
is concentrated over a narrower
altitude range. Such effects can
arise, for example, due to variations
in temperature, which affect the
plasma scale height. Figure 4f there-
fore suggests that patch signatures
identified using a time series of
densities around the F region peak
might appear much more clear-cut
than the corresponding signatures
in TEC data.

3. Discussion
and Conclusions

In Figure 2 the patches were seen
being formed around the cusp
region, due to the expansion and
contraction of the polar cap bound-
ary associated with the pulsed day-
side magnetopause reconnection
[Lockwood and Carlson, 1992; Q.-H.
Zhang et al., 2011, 2013a]. Figures 2
and 3, however, clearly show that
they grew in amplitude on passing
through the cleft and then cusp
region, indicating that they were
enhanced by magnetosheath-like
precipitation [Rodger et al., 1994].
The reconnection was directly con-
firmed by the in situ observations

of accelerated flows by the THEMIS spacecraft at the magnetopause [Walsh et al., 2014]. Walsh et al.
[2014] coordinated the ionospheric (global GPS TEC) and magnetopause (THEMIS in situ measurements)
observations during the same period and found that the spacecraft measurements showed signatures of
intermittent or bursty reconnection at the magnetopause, corresponding to the occurrence of patches
of enhanced TEC, convecting tailward on open field lines over the pole in the ionosphere. These authors
noted the existence of the patches in passing, but did not make any attempt to investigate them in detail.
After their formation, we have seen that the patches grew in size at different rates due both to precipitation
and the variation in local convection velocities [Q.-H. Zhang et al., 2011, 2013b] and were transported
poleward, along trajectories which reflected the changing balance between dayside and nightside
reconnection and their consequent effects on the convection pattern.

The patches were seen exiting the nightside auroral oval, breaking up into a number of plasma blobs, and
returning sunward in the auroral return flow of the dawn and/or dusk convection cell, consistent with the
predictions from the previous theories, observations, and trajectory analysis techniques [Robinson et al.,
1985; Sojka et al., 1993; Zhang et al., 2013b; Crowley et al., 2000]. Moen et al. [2007] provided statistics
showing that patches exit the polar cap from ~18:30–05:30 MLT with most exiting within a 3–4 h region
centered on 23:30 MLT. In order for a patch to exit the polar cap, however, ongoing nightside

Figure 5. Schematic of the northern polar ionosphere during a substorm
growth phase with southward IMF and By< 0. Convection streamlines are
in mauve. The boundary between open and closed field lines (OCB) lies close
to the poleward edge of the auroral oval: the blue/red OCB segments show
where magnetic reconnection at the magnetopause/magnetotail is gener-
ating/destroying open flux in the Dungey convection cycle. In this case,
magnetopause reconnection is dominant and the polar cap is expanding.
The yellow OCB segments are adiaroic (meaning “not flowing across”)
though flow streamlines cross the OCB because it is in motion and the
plasma moves with it. The grey scale indicates plasma concentration, with
white showing high values generated by solar EUV and black showing low
values where plasma has decayed on the nightside. Convection leads to
high-density plasma entering the polar cap from subauroral latitudes (arrow
1). The patches are then transported antisunward across the polar cap (arrow
2) and evolve into blobs. These have been seen leaving the polar cap on the
nightside but can only do so at locations that map to ongoing magnetotail
reconnection. This intermittent exit produces the plasma blobs seen in the
auroral sunward return flow region on the dusk (arrows 5 and 6) and/or dawn
side (arrows 3 and 4).
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reconnection is required. Without this, the polar cap boundary is “adiaroic” (see Figure 5) and the patch
can only migrate slowly equatorward with the expanding polar cap boundary (see in Figures 2d–2h and
Figure 4) and so would remain in the nightside polar cap (as for the portion of the patch on the dawn
convection cell in the schematic given in Figure 5). Such patches, trapped by a lack of tail reconnection,
would decay as the only source of production would be any residual polar rain precipitation. This
concept is confirmed by the observations from the local magnetometer and EISCAT UHF radar. Note that
there was no new patch formation, nor a TOI in the polar cap (i.e., the TEC levels in the polar cap
remained at relatively low levels, giving dark blue shading in Figure 2) after about 22:30 UT. This may be
because either (1) the polar cap boundary (see also the HMB) contracted poleward due to the decrease
in IMF Bz and/or the growth of Region 2 current shielding of the electric field; or (2) there was a lack
of high-density sunlit plasma at the right place for forming a TOI or patches, due to the low-density
cavity rotating toward the afternoon sector; or (3) the dayside reconnection stopped at the associated
magnetopause.

In Figure 5, we show an idealized view of the full evolution of these density features, demonstrating how the
plasma patches are convected across the polar cap toward the nightside auroral oval, where the intermittent
nature of tail reconnection restricts their ability to exit the polar cap and interacts with convection to
decompose them into smaller plasma blobs, which then enter the return flow at auroral latitudes. It is
important to emphasize, however, that such an idealized convection does not exist in practice; rather, the
pattern is continuously evolving due to changing solar wind conditions and the balance between dayside
and nightside reconnection rates. These changes determine which trajectories the patches and blobs
actually follow. The advantage of the broad coverage of the GPS data used here is that they have enabled
us to track these trajectories as conditions changed.

The patches were initially segmented from the SED at the equatorward edge of the cusp by the expansion
and contraction of PCB, due to the pulsed dayside magnetopause reconnection. After formation, the
patches entered the polar cap and evolved in a transpolar direction. When they arrived at the nightside
auroral oval, their exit from the polar cap was modulated by the pulsed ongoing nightside reconnection
implicit in the substorm cycle of the magnetosphere. Their behavior thus depended very strongly on the
time and location of their arrival near to the nightside polar cap boundary and the time and location of
reconnection in the cross-tail current sheet. After exiting the polar cap, the patches broke up into a number
of plasma blobs and evolved further in the sunward return flow of the dawn and/or dusk convection cell.
The lifetimes of the patches which exhibited this full evolution suggest that the total duration of energy and
momentum circulation from the solar wind to the magnetosphere was about 3 h.
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