
Compressed Representation of

XML Documents with Rapid

Navigation

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Mohammad Kamel Kharabsheh

Department of Computer Science

University of Leicester

January 2014

Declaration of Authorship

I hereby declare that content of this thesis is my own work and that it is the result

of work done during the period of registration. To the best of my knowledge, it

contains no material previously published or written by another person nor material

which to a substantial extent has been accepted for the award of any other degree

or diploma of the university or other institute of higher learning, except where due

acknowledgement has been made in the text.

i

Abstract

XML(Extensible Markup Language) is a language used in data representation and

storage, and transmission and manipulation of data. Excessive memory consump-

tion is an important challenge when representing XML documents in main memory.

Document Object Model (DOM) APIs are used in a processing level that provides

access to all parts of XML documents through the navigation operations. Although

DOM serves as a a general purpose tool that can be used in different applications,

it has high memory cost particularly if using näıve. The space usage of DOM has

been reduced significantly while keeping fast processing speeds, by use of succinct

data structures in SiXDOM [1]. However, SiXDOM does not explore in depth XML

data compression principles to improve in-memory space usage. Such XML data

compression techniques have been proven to be very effective in on-disk compres-

sion of XML document. In this thesis we propose a new approach to represent XML

documents in-memory using XML data compression ideas to further reduce space

usage while rapidly supporting operations of the kind supported by DOM.

Our approach is based upon a compression method [2] which represents an XML

document as a directed acyclic graph (DAG) by sharing common subtrees. However,

this approach does not permit the representation of attributes and textual data,

and furthermore, a naive implementation of this idea gives very poor space usage

relative to other space-efficient DOM implementations [1]. In order to realise the

potential of this compression method as an in-memory representation, a number

of optimisations are made by application of succinct data structures and variable-

length encoding. Furthermore, a framework for supporting attribute and textual

data nodes is introduced. Finally, we propose a novel approach to representing the

textual data using Minimal Perfect Hashing(MPH).

We have implemented our ideas in a software library called DAGDOM and performed

extensive experimental evaluation on a number of standard XML files. DAGDOM

yields a good result and we are able to obtain significant space reductions over ex-

isting space-efficient DOM implementations (typically 2 to 5 times space reduction),

with very modest degradations in CPU time for navigational operations.

Acknowledgements

First and foremost I would like to thank God. You have given me the power to

believe in myself and pursue my dreams. I could never have done this without the

faith I have in you, the Almighty.

I take immense pleasure in expressing my sincere and deep sense of gratitude to

my supervisor, Professor Rajeev Raman, for his guidance, understanding, patience,

encouragement, and, most importantly, his friendship. Without his supervision and

constant help this thesis would not have been possible. Apart from the subject

of my research, I learnt a lot from him, which will be useful in different stages of

my life. I solemnly submit my honest and humble thanks to him for bringing my

dreams into reality. I would also like to thank Professor Rick Thomas, PhD tutor,

Dr Fer-Jan de Vries and Professor Thomas Erlebach, who morally boosted me and

provided me with their guidance, support and assistance. I would also like to thank

two special colleagues: Dr ONeil Delpratt for his assistance and kindness throughout

the early stage of my research, and Stelios Joannou for his support and help during

my research.

Also, I wish to extend my gratitude to thank my colleagues and staff at the Com-

puter Science Department, University of Leicester, especially those members of my

doctoral committee who have willingly and ably helped me out throughout my doc-

toral research.

I also thank my friends (too many to list here but you know who you are!) for

providing support and friendship that I needed. Their motivation has given me

the confidence to reach this stage in my work. I will never forget all the chats and

beautiful moments I shared with some of my friends. They were fundamental in sup-

porting me during stressful and difficult moments. I would like to thank Dr Sameeh

Al-Sarayreh, Dr Anan Younes, Dr Maen Aljezawi, Dr Mustafa Al-khawaldeh, Dr

Hamza Aldabbas, Mohammed Alabdullatif, Mohammad Alshira′h, Abdullah Au-

dat, Moneer Nusir, Abdularhaman Alshabeb and Ayman Albarasneh, who person-

ally supported and encouraged me during my PhD journey. My special gratitude

goes to my friend Dr Ehsan Khalefa for her moral support and motivation, which

drives me to give my best, and for being with me through the thick and thin of life.

I find myself lucky to have friends like these in my life.

iii

I would like to acknowledge the people who mean the world to me: my mom, my

sister Reem, my brothers Qutaibah, Sa′ad and Obaidah, and Obaidahs wife Reham

and his kids Kamel and Mohammad for their faith in me and allowing me to be

as ambitious as I wanted. Their support and unending encouragement have been

unconditional all these years. They have cherished with me every great moment and

supported me whenever I needed it. I consider myself the luckiest man in the world

to have such a supportive family standing behind me with their love and support.

Finally, this thesis is detected to the memory of my Father. He was a wonderful

father and showed a genuine interest in and concern for my life, my work and my

wellbeing.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 XML Processing . 2

1.2 XML Bloat . 4

1.3 XML Compression . 5

1.4 In-Memory Representation . 6

1.4.1 Our Approach . 7

1.5 Contributions and Organisation of Thesis 8

2 Preliminaries 11

2.1 XML . 12

2.1.1 Markup and Text . 12

2.1.2 Components of an XML Document 13

v

Contents

2.1.3 Well-Formed and Valid XML Documents 15

2.1.4 XML Tree . 15

2.2 DOM Architecture and Standards . 16

2.2.1 DOM Node Types . 17

2.3 Parsing and Traversing XML Documents. 19

2.3.1 Parsing the XML Document 19

2.3.2 Traversing an XML Document Using Node API 19

2.3.3 Traversing an XML Document Using TreeWalker 20

2.4 Succinct Data Structures . 21

2.4.1 Bit-Vector Data Structure . 21

2.4.2 Bit-String Access . 23

2.4.3 Succinct Prefix Sum . 24

2.5 Introduction to Libbzip2 . 26

3 Previous Work 31

3.1 XML Compression . 31

3.2 XML Compressors with DOM-like Support 32

3.3 XML Compressors . 34

3.4 Query-friendly XML Compressors . 36

3.5 SiXDOM Implementations . 38

3.5.1 SiXDOM Architecture . 39

3.5.2 SiXDOM Interface . 48

3.6 Summary . 49

4 In-Memory Representation Based upon MacMill 50

4.1 MacMill . 51

4.1.1 Overview . 51

4.1.2 MacMill Output Format . 51

vi

Contents

4.2 DOM with MacMill . 57

4.3 Algorithms and Implementation . 59

4.4 Experimental Evaluation . 70

4.4.1 Basic Setup . 71

4.4.2 Main Memory Usage . 71

4.4.3 Running Time . 73

4.5 Summary . 73

5 In-Memory Representation of the XML Document Using DAG-

DOM 75

5.1 Auxiliary Attribute Removal Phase 77

5.2 Share Node Reduction Phase . 80

5.3 Variable Length Encoding . 87

5.4 Experimental Evaluation . 94

5.4.1 Basic Setup . 95

5.4.2 Main Memory Usage . 96

5.4.3 Running Time . 96

5.5 Summary . 97

6 Representing Attributes and Textual Data 98

6.1 Attribute and Text Nodes . 99

6.2 Representing Textual Data . 106

6.2.1 Compressing Textual Data . 107

6.2.2 Random Access To Compressed Textual Data 107

6.2.2.1 Delpratt et al.’s Approach 108

6.2.2.2 Wavelet Trie . 110

6.2.3 Document Order Versus Element Order 110

vii

Contents

6.2.3.1 Compression Ratio: Document order versus Element

order . 111

6.2.3.2 Decompression Time: Document order versus Ele-

ment order . 113

6.3 Labelled String Sequence Problem . 114

6.4 Solution to the Labelled String Sequence Problem 116

6.4.1 Minimal Perfect Hashing . 116

6.4.2 The Labelled String Sequence Mapping Strategy 118

6.4.3 Summary . 122

7 Conclusion 123

7.1 Technical Contributions . 124

7.2 Future Work . 126

A XML Data Files 127

B RSDic Library 129

C DOM methods supported by DAGDOM 130

Bibliography 132

viii

List of Figures

2.1 Representation of the XML document as a DOM tree [3] 16

2.2 DOM modules defined in the DOM specification [4] 17

3.1 XMill Architecture [5] . 35

3.2 XML Document as a Tree [6] . 37

3.3 XBW Transform Example [6] . 37

3.4 DOM architecture. SiXDOM is stored in the Document node. SiX-

DOM components are shown with dotted boxes. Connecting lines

show relationships between data structures [7] 40

3.5 (a): Simple XML document fragment. (b): Corresponding DOM tree

representation. (c) Parentheses representation of the tree structure

with double numbering of nodes. [7], [8] 42

4.1 (a) XML Document Shown on the Left. (b) Virtual Skeleton on the

Right . 52

4.2 Minimal DAG of Virtual Skeleton . 52

4.3 XML file output by MacMill . 53

4.4 Compressed Skeleton . 55

4.5 Part of Order.xml and the Output of MacMill on the Right 56

4.6 Part of VS and CS . 60

4.7 Sequence of Multiple Navigation Operations 68

ix

List of Figures

5.1 SiXDOMNode Tree Representation. For example, the double number

of the <student id> element node is (3, 4) since it is the third node in

document order and the corresponding open parenthesis is in position

4. 79

5.2 Auxiliary Attributes Removal Phase 81

5.3 In-Memory Representation of DAGDOM A vs SiXDOM 83

5.4 Running Time for DAGDOM A vs SiXDOM 83

5.5 In-Memory Representation of DAGDOM A, B and SiXDOM 86

5.6 Running Time for for DAGDOM A, B and SiXDOM 86

6.1 Virtual Skeleton with Attribute and Text Nodes 100

6.2 XML Document with two sub-trees that have the Same Element

Names But with Different Attribute and Text Nodes (Considered

the same in original MacMill but not once when we have text and

attribute nodes) . 101

6.3 Compression Ratio in Document Order VS Element Order 112

6.4 Decompression Time in Document Order VS Element Order 113

6.5 Perfect Hash Function . 117

6.6 Minimal Perfect Hash Function . 117

6.7 Labelled String Sequence Mapping Strategy 120

x

List of Tables

1.1 Space usage of XML Representations in DOM(Xerces) and SiXDOM

(in seconds) . 7

1.2 Running time of XML Representations in DOM(Xerces) and SiXDOM 7

2.1 libBZip2-block compression ratio(Bytes): Textual data of XML doc-

uments is arranged in document order 29

2.2 libBZip2-block decompression time(second): Textual data of XML

documents is arranged in document order 30

4.1 The Performance of MacMill Compression 56

4.2 Main Memory Usage of XML representations in Xerces, DAGDOM

and SiXDOM(MB). The File Sizes in MB. * The space usage is too low 72

4.3 Compression Ratio (CR) in CS to VS and Main Memory Usage (MMU)

in DGADOM to Xerces . 72

4.4 Running Time of XML Representations in Xerces, DAGDOM and

SiXDOM (seconds) . 73

5.1 In-Memory Representation of MacMill and Virtual Skeleton by SiX-

DOM. File Sizes in MB . 76

5.2 Pseudocode for NextSibling() in DAGDOM A and SiXDOM 82

xi

List of Tables

5.3 Statistics for Sample of the XML files. Column four shows how many

values in Multi are greater than 255, and column five shows how many

nodes are shared with stsize and multi equal to 1 84

5.4 The behaviour of real and synthetic data files regarding the idref

values. The test is performed to calculate the actual number of bytes

to represent the id ref number (in binary) for share nodes; the last

column is the average bytes per node 87

5.5 Main Memory Usage for Stsize File After Applying the VLE (how

many bits per node for each data file) 92

5.6 Main Memory Usage for id ref File After Applying the VLE (how

many bits per node for each data file) 93

5.7 Main Memory Usage for Multi File After Applying the VLE (how

many bits per node for each data file) 93

5.8 Running Time (seconds) for Stsize File After applying the VLE . . . 93

5.9 Running Time (seconds) for id ref File After Applying the VLE . . . 94

5.10 Running Time (seconds) for Multi File After Applying the VLE . . . 94

5.11 Main Memory Usage of XML Representations in Xerces, DAGDOM,

DAGDOM C, and SiXDOM (MB) . 96

5.12 Running time (seconds) of XML representations in Xerces, DAG-

DOM, DAGDOM C and SiXDOM 97

6.1 Sizes of XML Data Files: original, VS (elements only) and the sizes af-

ter we handled the attribute and text nodes in the VS. CS-Size (com-

pressed skeleton without attribute and text),CS1-Size (compressed

skeleton with attribute only), CS2-Size (compressed skeleton with at-

tribute and text nodes) and No.Ele(number of elements in the XML

file. All the CS Sizes after MacMill2) 101

6.2 Analysis The Raw data of Table 6.1, 102

xii

List of Tables

6.3 Main Memory Usage of XML Representations in Xerces, DAGDOM,

DAGDOM+ and SiXDOM . 105

6.4 Running time of XML Representations in Xerces, DAGDOM, DAG-

DOM+ and SiXDOM . 106

6.5 Comparison between Gzip and BZip2 for Document and Element Order111

6.6 Comparisons Between BDZ and CHD Algorithms. Elapsed Time:Sum

is time for all elements. 121

6.7 Main Memory Usage of LSSP Compared to Naive and SSP 121

6.8 Running Time Performance of LSSP compared to Naive and SSP in

seconds . 122

A.1 Description of XML files in our XML corpus taken from [9]. 128

xiii

Chapter 1

Introduction

Extensible Markup Language (XML) is a language standardised by the World Wide

Web Consortium (W3C). XML is a markup language and is a multipurpose data

format designed to transport and store data. In addition, it is designed to be self-

descriptive and you must define your own tags [10]. However, XML was created to

overcome the HTML limitations, the Hypertext Markup Language that is the basis

for all Web pages and that is designed to display data not to carry data [11]. HTML

was designed for human web users. Therefore, the user knows the information,

but the machine does not know what the information is. Now, developers can

use XML with self-describing data to create documents and how people are using

those documents to improve the web. More significantly, it is easy for a machine to

process the information as well. XML is well-suited to the representation of complex,

hierarchically structured data [11].

XML has a variety of uses in many aspects of web development, e-business, portable

applications and IT applications. For example, in web publishing XML makes cre-

ating e-commerce applications perceptive by allowing the creation of interactive

pages [12]. Many web pages are represented in XML, and it is easier and more

1

Chapter 1. Introduction

efficient to retrieve useful results when using web searching and XML, making infor-

mation access easier for applications and devices; there are XML-based standards for

access and data exchange, such as e-business applications, Web-Services Description

Language (WSDL) [13], Simple Object Access Protocol (SOAP) [14] and Univer-

sal Description, Discovery, Integration (UDDI) [15]. XML is also used to express

metadata in reusable format, and to store scientific data such as the VO-Table XML

format [16], and the MEDLINE XML format [17]. XML is used in databases, with

a number of query languages that have been developed (e.g. XQuery) just like the

SQL standard for traditional database systems; to provide access and retrieval of

the data.

1.1 XML Processing

When working in XML there are several standard ways for processing XML docu-

ments. We take some of the standard APIs (Application Programming Interfaces)

and languages to describe the processing of XML documents:

• Simple API for XML (SAX) [18]. This is an event-driven functionality, which

accesses the XML document from the beginning to the end sequentially, and

sends a stream of event to the programmer by call-back methods that the

programmer has written.

• Document Object Model (DOM) APIs [3]. The DOM is very popular, and

is used to parse and process XML documents. It is a standard for exposing

document elements for programming functionality.

• eXtensible Stylesheet Language Transformations (XSLT) [19]. By using XSLT

we can process multiple XML documents and transform XML documents to

2

Chapter 1. Introduction

other XML documents or another form such as PDF, HTML, etc. XSLT

applies user-defined transformation to an XML document.

• XQuery [20]. XML is a language for querying XML documents. XQuery uses

a number of query languages to retrieve the data and is supported by all major

databases [3], [7], [10]; also XQuery can express queries across all parts of XML

documents and is built on XPath expressions.

• XPath [21] is a language for locating and processing nodes in an XML doc-

ument. Because an XML document is a hierarchical structure and XPath

operates on the tree structure of the XML documents, it becomes possible to

use path expressions for finding information by navigating in XML documents.

To summarise, the SAX presents a linear view of the document, SAX does not

provide any support for performing processing that requires a tree-like view of the

XML document and SAX is read-only, i.e. we cannot insert or delete nodes. Unlike

SAX, DOM requires a pre-processing phase to construct a representation of the

document and will be able to access all parts of XML document representation

through navigation operations.

SAX uses little memory in representation and is extremely fast and works for huge

documents but the API is less intuitive as it is event-based. DOM is memory-

based; the XML document is parsed to create a DOM tree structure, which makes it

traversable and editable. Since the XML structure is resident in memory, the larger

the XML structure is the more memory it will consume. In comparison to SAX,

DOM can be much slower due to it is resource usage.

Although DOM is a relatively low-level interface and, as we mention above, has to

load the entire document before data can be read, it is the basis for a large number

of real-world applications (e.g. the Zorba [22] XQuery processors document store

3

Chapter 1. Introduction

only supports XDM (XQuery and XPath Data Model) operations on the document:

XDM and DOM are quite similar. DOM serves as a general-purpose tool that can

be used as a stand-alone or with other standard applications and they are considered

high-level processors, such as XPath, XSLT and XQuery [20]. In addition, DOM

provides a robust API to easily modify and extract data from an XML document.

1.2 XML Bloat

As we mentioned above, XML has some advantages over things like CSV files, such

as: it can represent hierarchical data simply and many applications use XML. How-

ever, XML is not especially good at handling very large amounts of data, can quickly

become difficult to read if a lot of information is included in one file, and certain

types of data (images, other binary data) are not represented well in XML.

XML files are always much larger than the flat file, because when representing any

flat file XML adds tags to it to indicate the meaning of the text or to separate

the document into sections. For example, if we take the file called orders.xml from

the Relational Database Benchmark [9](see Appendix A for the full description of

the standard files). The orders file contains the following field (O ORDERKEY,

O CUSTKEY, O ORDERSTATUS, O TOTALPRICE, O ORDERDATE, O ORDER-

PRIORITY, O CLERK, O SHIP-PRIORITY, and O COMMENT) and if we take

the first line from the orders flat file as follows: 1,370, O, 172799.49, 1996-01-02,

5-LOW, Clerk#000000951, 0, blithely final dolphins solve– blithely blithe packages

nag blith.

Then tags are added to this flat line to convert it to XML:

4

Chapter 1. Introduction

<T><O ORDERKEY>1</O ORDERKEY><O CUSTKEY>370

</O CUSTKEY><O ORDERSTATUS>O</O ORDERSTATUS>

<O TOTALPRICE>172799.49</O TOTALPRICE><O ORDERDATE>1996-

01-02</O ORDERDATE><O ORDER-PRIORITY>5-LOW</O ORDER-

PRIORITY><O CLERK>Clerk#000000951</O CLERK><O SHIP

PRIORITY>0</O SHIP PRIORITY><O COMMENT> blithely final

dolphins solve– blithely blithe packages nag blith.</O COMMENT> </T>

We can notice the size of the flat orders file is 1.6MB and 5.1MB as XML format,

so the size of this file has tripled. This problem with XML documents is XML

bloat. So this problem will increase the transmission times and the space usage,

particularly in machines that have limited space, such as mobile devices. And the

costs of storage/backup in PCs and servers will be increased.

1.3 XML Compression

One way to solve XML bloat and to address the space consumption of XML docu-

ments is through data compression. Compressors can be normal text compressors

(Gzip, Bzip) or XML-specific compressors (Xmill [5] or Xbzip [6]). We achieved

very good compression ratio from the XML-specific compressors. Unfortunately,

the above-mentioned XML compressors do not support processing operations such

as navigation without potentially decompressing the whole document. Some query-

friendly XML compressors have recently been developed that support operations on

the compressed file while requiring (at most) partial decompression, such as [5, 6].

Although some of these such as XBzipIndex [6] support DOM-like navigation, they

are orders of magnitude slower than standard DOM implementations. We need to

5

Chapter 1. Introduction

investigate in-memory XML document representations that support fast DOM-like

operations.

1.4 In-Memory Representation

Many applications use XML not just as an archival format, but also process XML

documents through standard interfaces/languages such as DOM, XSLT or XQuery,

all of which store the XML document in a document tree held in the main memory.

The main memory (RAM) usage of standard implementations of these interfaces

that support DOM-like operations such as Xerces can be up to 15 times larger

than the (already ’bloated’) XML file. The standard implementations of DOM

use a näıve approach of representing the document tree. For example, in Xerces,

an element node may contain pointers to: first child, last child, parent, next and

previous siblings, element name, attributes, owner document, etc. These pointers

are essential for navigation but come a very high space cost.

We are now going to consider the problems caused by excessive memory usage. We

take a look at the memory usage of two implementations of DOM, Xerces [23] (in

C++, a reference implementation of DOM) and a space-efficient DOM implemen-

tations called SiXDOM [7], in Table 1.1 which shows the space usage percentage of

XML representations compared to the original size of the XML files. As an example,

proteins.xml file of memory with size 600 MB after representation to process the

size will occupy 11GB when using Xerces, and 163MB when using (SiXDOM) [7].

Therefore, if the memory needed to represent an XML document is greater than the

physical RAM on the machine, then the document may not load, or a substantial

part may be stored on Virtual Memory (VM). In other cases VM is either limited

(e.g. in Java VM is at most 2GB), or not available at all (e.g. the Android operating

6

Chapter 1. Introduction

Table 1.1: Space usage of XML Representations in DOM(Xerces) and SiXDOM
(in seconds)

File Name Size(MB) SiXDOM DOM(Xerces)

Orders 5.1 98% 1051%

Protiens 600.0 23% 1525%

Factor1 116.5 52% 404%

Factor2 233.7 23% 1608%

Table 1.2: Running time of XML Representations in DOM(Xerces) and SiX-
DOM

File Name Size(MB) SiXDOM DOM(Xerces)

Orders 5.1 0.02 0.01

Proteins 600.0 5.18 360.65

Factor1 116.5 0.43 0.19

Factor2 233.7 0.87 0.37

system). We can notice some XML files such as factor96.xml (with size 2.9 GB)

in our tests were not able to be processed by our test machine when using Xerces;

this is because they exceed the maximum virtual space.

In Table 1.2 we draw comparisons of running time (wall clock time in a second)

when visiting all nodes in XML documents (traversal speed) between SiXDOM and

Xerces. Table 1.2 shows XML processing much slower and badly affects the traverse

speed when we need a huge amount of memory to represent the XML documents

such as proteins.xml

1.4.1 Our Approach

In summary, the problem of representation of XML documents in main memory still

exists and the above-mentioned XML compressors do not support processing oper-

ations such as navigation without potentially decompressing the whole document.

7

Chapter 1. Introduction

In [7] the DOM is implemented using succinct data structures. As an example,

SiXDOM avoids using pointers between nodes in the XML document tree by storing

a balanced parenthesis string of 2n bits to encode the tree structure, and using a

succinct index to perform rapid navigation in the tree. As we noted in Section 1.4,

SiXDOM [7] shows better savings of the memory usage, but SiXDOM did not use

any kind of compression in representations. For example, a highly regular tree with

n nodes and a randomly generated tree with n nodes would both take 2n bits to

represent. XML trees, however, are generally quite regular and therefore should be

compressible.

Therefore, the objective of this research is to achieve DOM functionality with speed

performance while using tree compression methods to exploit the regular structure

of typical XML documents, and in addition to improve the space usage.

The objectives of this thesis are as follows:

(a) To develop a space-efficient in-memory representation of XML documents with

memory usage an order of magnitude less than existing DOM implementations.

(b) Fast support for DOM operations at a speed that is comparable to standard

DOM implementations.

1.5 Contributions and Organisation of Thesis

In this thesis we propose a new approach called DAGDOM to support navigation

operations with space efficiency regarding the in-memory representation, as follows:

(a) We introduce a new approach to represent XML documents in-memory in a

highly-compressed format, while supporting operations of the kind supported

by DOM. More details are as follows:

8

Chapter 1. Introduction

• We created a compressed in-memory representation in order to support

fast navigation without the need for decompression, by using a standard

DOM API. At the first stage we achieved this by making navigation opera-

tions in the compressed tree as a directed acyclic graph (DAG) by sharing

common subtrees, called a compressed skeleton, with the same efficiency

as navigating on the virtual tree (original tree without compression). But,

at this stage, we ignored the other components of XML document such as

attribute and text data.

• We improved the space usage of the compressed skeleton representation

by application of other space-efficient Xerces DOM implementations (SiX-

DOM) [1].

• We developed the compression method which we used to represent the

tree skeleton in-memory, and further compression is performed to yield a

shrunken skeleton in order to obtain significant space reductions, in addi-

tion to handling all components of the XML document such as attribute

and text data.

• We made further improvements in DAGDOM by creating a new represen-

tation for any sequence of integers called Variable Length Encoding. This

representation contains five approaches of encoding called: Näıve approach,

Threshold, Byte Based, Bit Based and Fixed Bit Based.

(b) We advance the knowledge of representing the textual data in XML documents

by investigating the efficient representation and access of the individual textual

data. Where existing solutions focus on the textual data compression, we show

the importance of compressing the pointers to the individual textual data them-

selves, which would generally be expensive. We present new strategies based

upon grouping together the textual data that shares the same parent element

and give them the same label, then used the minimal perfect hash function in

9

Chapter 1. Introduction

order to maintain the mapping strategy between skeleton document order and

textual element order numbering very space-efficiently.

(c) We provide experimental evaluation of DAGDOM against other DOM imple-

mentation and a space-efficient DOM implementations. There is a significant

space reduction using DAGDOM over existing space-efficient DOM implemen-

tations (typically 2 to 5 times space reduction), with very modest degradations

in CPU time for navigational operations.

The rest of the thesis is organised as follows: Chapter 2 gives background details of

XML, the DOM architecture and standards, and Succinct Data Structures. Chap-

ter 3 gives the overview of XML compression and details of XML compressors with

support for DOM-like in-memory representation, as well as an overview of SiXDOM

implementation details. In Chapter 4, we define the properties of the compres-

sion methods and the first implementation of DAGDOM. Chapter 5 presents an

in-memory representation of the XML document using DAGDOM, and how we

developed the compression method, and presents a new variable length encoding.

Chapter 6 giving a study of representing the text and attribute node representa-

tion of XML documents efficiently, also presents a strategy to efficiently store and

access textual data contained in XML documents. Finally, in Chapter 7 we give

the closing remarks of the thesis achievements and contributions, and outline future

development of DAGDOM.

10

Chapter 2

Preliminaries

In this chapter, we introduce basic background knowledge on XML. Then we give

details of the DOM specification. We also discuss succinct data structures and finally

we give an introduction to libbzip2.

In Section 2.1, we will give an overview about XML, the syntax rules of XML, com-

ponents of an XML document and we will talk about XML validation. In addition

we will give an example that shows the XML document as XML tree. Section 2.2

will focus on the DOM architecture and standards. In this section we will talk

about DOM node types. Next, in Section 2.3 we will discuss parsing and traversing

of XML documents by using Node API and TreeWalker. In Section 2.4, we will

discuss succinct data structures and we will give examples to show the differences

between näıve and succinct representation. Finally, in Section 2.5 we will give an

introduction to the Burrows-Wheeler transform in addition to an overview of Bzip2

and how the block size affects compression performance.

11

Chapter 2. Preliminaries

2.1 XML

As we mentioned in Chapter 1, XML is a markup language was designed to transport

and store data

2.1.1 Markup and Text

Generally, the flat file is just a text; when we add the tags to structure and describe

these data then the data are marked up and called an XML document. The markup

is to put the text itself inside the symbols < and >. For example, if we look at a

file containing the following fields (STUDENT ID, STUDENT NAME, DOB), and

containing the following data under the fields: 099019620, Tom Smith, 19-01-1990,

markups construct the tags beginning with < and ending with >, which are called

start-tags, in addition to ending the tags by end-tags beginning with </ and ending

with >, then the XML document will be as follows:

<STUDENT ID>099019620 </STUDENT ID><STUDENT NAME> Tom Smith

</STUDENT NAME><DOB>19-01-190</DOB>

The tags help to distinguish a piece of text from any other piece of text, and often

give information about, or provide meaning, to the text they contain. From the

above example, in element <STUDENT NAME> Tom Smith </STUDENT NAME> we know

that the content is probably a string for the student name. Elements cannot stand

alone unless they are the root element or there is only one element, and may contain

other elements providing they are properly nested, and they must be contained

within a hierarchy of elements that begins with the root element.

12

Chapter 2. Preliminaries

2.1.2 Components of an XML Document

Each XML document contains several components, see Example 2.1. Optional com-

ponents include document prolog at the start of the XML documents which contains

the XML declaration and DTD [24]. e.g. <?xml version="1.0">, and processing

instructions which appear on the prolog or the body of the XML document. Docu-

ment instance component: this is the main part of XML documents after the prolog

which contains the following sub-components:

• Elements: these are labels inside the markup symbols < and >. Each XML

document considers the first element on the document after the prolog as a

root element like <biblio> in Example 2.1. The elements must follow the

XML naming rule. The XML element names contain letters, digits and other

characters, but must start with a letter, colon or underscore and cannot contain

spaces.

• Attributes: these represent certain properties of the elements in the XML

document. The attributes appear after the element name and before closing

the opening tag and they consist of attribute name (which is an XML name)

followed by equal sign, then the attribute must have a value between double

(or single) quotes. In Example 2.1 see the id (attribute name) with value ’1’

(attribute value) after the element book.

• Entity References: used when we need to use special characters, and cannot

enter them on the keyboard. The Entity References are preceded by the

ampersand (&) symbol followed by a semicolon (;), the XML specification

defines five entities in XML:

– " (double quotation mark)

– & (ampersand)

13

Chapter 2. Preliminaries

– ' (apostrophe)

– < (less than sign)

– > (greater than sign)

• Comments: these are used to make explanatory notes on the XML document

appear in the form <!-- --> like the HTML comments.

• CDATA section: this markup is used when we need to insert any kind of text,

and is interpreted as characters not as markup or entity references. For exam-

ple, sub-program code like: <![CDATA[while(int i=1; i<=5) Product=

Product*i; i++]]>.

• Processing Instruction: these allow the document to insert instructions for

applications and are enclosed between <? and >, the XML name, called the

target, followed by a list of value pairs called the data. The common use of

the processing instruction is for the style-sheet, for example:

<?xml-stylesheet href= "headlines.css" type="text/css" ?> (style-sheet

declaration connected to the document).

Example 2.1: Part of a Large Bibliographic Database [6]

<?xml version="1.0">

<biblio>

<book id = "1">

<author>J. Austin</author>

<title>Emma</title>

</book>

<book id = "2">

<author>C. Bronte</author>

14

Chapter 2. Preliminaries

<title>Jane Eyre</title>

</book>

</biblio>

2.1.3 Well-Formed and Valid XML Documents

XML documents are classified into two levels:

• Well-formed XML documents, which obey to the syntax of rules that defined

by XML specification [10]. The document contains XML tags and these tags,

as we mention above, contain a piece of text. All the tags are nested properly

and start from a single element root and the data values should be within start

and end tags.

• Valid XML documents: this level must conform to the well-formed level and

check the rules that it is defined in a Document Type Definition (DTD). The

DTD rules are associated with a file that describes the format of an XML

document’s markup [25].

2.1.4 XML Tree

In an XML tree we can see the hierarchical structure of the element content in the

document instance. The XML tree labelled the element names as tree nodes and

if the elements have data values these will be stored at the leaves in the tree. In

Section 2.2, Figure 2.1 we will see as an example the order of element nodes reading

from top to bottom with the same order of the elements in the document after we

parse the XML document (such as Example 2.1 in Section 2.1.2) as a tree structure.

15

Chapter 2. Preliminaries

Figure 2.1: Representation of the XML document as a DOM tree [3]

2.2 DOM Architecture and Standards

The DOM is used to access and manipulate XML and HTML documents by a set of

application programming interfaces (APIs) that defines the logical structure [4], [26].

The DOM APIs are divided into groups called modules and categorised into levels.

According to the feature they support each module will be given a name, and each

level has its own operation for the APIs.

The DOM parses the entire XML document as a tree structure in-memory using

a standard parser like a SAX parser and loads the entire document. Through the

navigation operations, the DOM provides access to all parts of the representation of

the XML document and provides flexibility of repeated navigation, retrieval and/or

update of the document. In addition, it serves as a general-purpose tool that can

be used stand-alone or with other standard applications, such as XPath, XSLT and

XQuery [21], [19], [20] [27], [28]. An example of the DOM is given in Figure 2.1,

which represents the XML document in Example 2.1 as a DOM document tree.

16

Chapter 2. Preliminaries

Figure 2.2: DOM modules defined in the DOM specification [4]

The DOM is divided into modules such as Core Module, XML Module, and Traversal

Module as we can see in Figure 2.2. These modules contain the DOM APIs [3].

Further details will be given in the next sections.

2.2.1 DOM Node Types

The APIs in the Core Module contains the Node (Basic API), and there are twelve

values, based upon the type of node as follows:

• Element node: when we represent the element in the XML document, then we

can access these elements through the Node and Element interface.

• Attribute node: this type of node is not part of the DOM tree and represents

the attributes of an element node in the XML document; we can access this

17

Chapter 2. Preliminaries

type of node by the variable in the Node interface which is a NameNodeMap

interface.

• Text node: this node is the textual value of an element in the XML document

which appears as a leaf node only; we can access it through Node, Text and

CharacterData interface

• CDATASection node: we can access this type of node through Node and CDATASection

interfaces.

• EntityReference node: we can access this type of node through the Node and

EntityReference interface.

• Entity node: we can access this type of node by interface Node and Entity

interface.

• ProcessingInstruction node: this leaf in the DOM tree represents a pro-

cessing instruction in the XML document.

• Comment node: this node appears as a leaf in the DOM tree and represents a

comment in the XML document.

• Document node: in the XML document there is a single root to the document

which is represented at the root of the DOM that supports the creation of

node objects and we can access the entire DOM tree.

• DocumentType node: we can see this kind of node as a child of the document

node and it represents the DTD in the XML document. The DOM tree has

only one instance of the DocumentType node.

• DocumentFragment node: this kind of node is used in dynamic implementa-

tions of DOM and represents a sub-tree inserted into the DOM tree.

18

Chapter 2. Preliminaries

• Notation node: notations defined in the DTD and having no parent nodes,

represent a notation in the XML document.

2.3 Parsing and Traversing XML Documents.

2.3.1 Parsing the XML Document

In order to read and to manipulate XML documents, we can use an XML parser

in a processing phase (such as Xerces [23], [29]) to read the XML document and

convert it to the XML DOM object in memory. After that we can use the traversal

module for navigation as is shown in the next section.

2.3.2 Traversing an XML Document Using Node API

As we mentioned before, the Node interface contains a number of variables, such as

nodeName, nodevalue and attributes, and also contains the navigation operations

based upon the DOM tree as follows: firstChild, nextSibling, previousSibling,

parent and lastChild.

In the traversal module there is Document order, which is the order in which nodes

are visited in the document during parsing. The node ordering that is the opposite

of document order is called Reverse document order.

We can traverse the document based on the navigation operations of the Node in-

terface. For example, in document order traversal we start from the root node to

navigate the DOM tree. Through all first child nodes and not at a leaf node or if

we have visited the current node’s sub-tree before, we then navigate to the right

sibling nodes. We repeat this process until we have reached the last leaf node on

19

Chapter 2. Preliminaries

the right-most sub-tree. In Reverse document order from the right-most sub-tree we

can use the previousSibling, lastChild and parent to complete traversal.

2.3.3 Traversing an XML Document Using TreeWalker

Both orders of traversal are applied to the TreeWalker or NodeIterator interfaces as

follows:

• The NodeIterator helps us to view the XML documents logically in a flat

manner. We can move forward, as in an array of nodes by the operation

nextNode(), and this represents document-order. By the operation previousNode()

we can move backward, and this represents reverse document order traversal.

• The TreeWalker has similar operations to the Node API operation used in tree

navigation in addition to the three operations: nextNode(), PreviousNode()and

getCurrentNode(). All the TreeWalker operations are used to maintain the

tree (or sub-tree) structure of the document. When we call any navigation op-

eration that returns a node to the user, then the iterator of the current node

which is held within TreeWalker will be updated, providing that the node

returned is not null.

The main difference between these two interfaces is that the TreeWalker presents

a tree-oriented view of the nodes in a subtree, rather than the iterator’s list-

oriented view. In other words, an iterator allows you to move forward or back,

but a TreeWalker allows you to also move to the parent of a node, to one of

its children, or to a sibling [30]

20

Chapter 2. Preliminaries

2.4 Succinct Data Structures

This section is based on Chapter 4 of the thesis by Delpratt [7]).

Succinct data structures use space that approaches the information-theoretic lower

bound on the space that is required to represent the data, and support operations

upon the representation in constant time. When we need to represent certain data

objects (for each kind of object) by succinct data structures we begin by giving their

succinct lower bound [8]. In order to support a number of operations upon the data

object, we then discuss the corresponding data structures that use a small amount

of space in addition to the succinct bound. We now give examples of succinct lower

bounds.

2.4.1 Bit-Vector Data Structure

The set of objects in this core is the set of all bit-strings of length n. It is assumed

that the algorithm knows that it has to store a bit-string, and also knows the length

of the bit-string. Since there are 2n such bit-strings, by taking the logarithm base

two of this number, we get:

Proposition 2.1:([7], Chapter 4)The succinct lower bound for representing a bit-

string of length n bits is n bits.

Operations

Efficient query operations such as RANK and SELECT to be used to encode a sequence

of variable-length items (more details in Chapter 5, Section 5.3)

RANK and SELECT are two operations that are used in a bit-string representation,

such as a Bit Vector data structure [31], [32], represent the object as a bit-string

21

Chapter 2. Preliminaries

and use these operations to be support. For a bit-string x of length n, the definitions

of these operations are:

• SELECT1(x,i): Given an index i, returns the position of the ith 1 bit in x

• RANK1(x,i): Returns the number of 1s to the left of i, and including, position

i in x.

For example, if a bit-string x= 1001101001 of length n=10, then: SELECT1(x,

5)=10, RANK1(x, 5)=3. SELECT0 and RANK0 are defined analogously for the 0 bits

in the bit-string.

Naive Representation

To support RANK1 by a naive representation would be to explicitly store the count of

1s at each position in the bit-string in an array of length n, with space usage nlgn

bits. As mentioned above, RANK0 would be automatically supported. To support

SELECT1 we could explicitly store the position of each 1 in the bit-string in an array

of length n1, where n1 is the count of 1s; therefore the space usage is n1lgn bits.

Supporting SELECT0 is analogous, but applied to the 0s. Supporting RANK and

SELECT together requires 2nlgn bits(upper bound).

Succinct Representation

The following is known about a bit-string of length n:

Theorem 2.1:([33], Chapter 37) There are bit-vector data structures that use

n+O(n) bits to support SELECT and RANK operations in O(1) time.

22

Chapter 2. Preliminaries

2.4.2 Bit-String Access

In many cases we will have to store a sequence of integers and encoded them by

Variable Length Encoding (VLE). A Bit-String access is a data structure that stores

a bit-string of length n in an integer array of size ⌈n/32⌉, and supports the following

operations:

• subBitString(i,j): extracts the substring from positions i to j from the

bit-string. We assume that the extracted subBitString fits into a single word,

i.e. j-i+1<=32.

• getAlignedword(i): this returns the substring from position i to i+31 from

the bit-string.

The code is carefully optimised since these operations are used frequently. For

example, considering 32-bit integers, we need to compute ⌊n/32⌋ and i mod 32, to

determine the integer containing the ith bit, and the offset of the ith bit within the

integer. The former is computed using shifts, and the latter by AND with a pre-

computed mask. The main reason for separating the functions subBitString and

getAlignedWord is that the former requires a branch statement to separate the cases

where the substring is all in one word and where the substring is split across two

words, and the latter does not. Since branch mis-predictions are quite expensive,

the latter should be faster. In addition, the former also needs to perform division

and modulo operations on two indices, while the latter does this only on one index,

and has very simple code [7]. We used in VLE the subBitString operation, more

details in 5,Section 5.3.

23

Chapter 2. Preliminaries

2.4.3 Succinct Prefix Sum

The set of objects here is a sequence x=(x1, .., xn) of positive integers that add up

to m. It assumed that the algorithm knows n and m. It can be shown that there

are l =
(

m−1

n−1

)

such objects in the set. For example, for n=2 and m=4 we have 3!

1!2!
= 3

sequences: (1,3), (3,1) and (2,2). Taking the logarithm base two of l, and using the

inequality
(

m

n

)

≤ (me
n
)n [34] we obtain:

Proposition 2.2.([7],Chapter4) The information-theoretic lower bound for repre-

senting a sequence of n positive integers that add up to m is ⌈lgl⌉ ≤ nlg(m
n
) + nlge

bits.

Operations

The object to be represented is a sequence of positive integers x=(x1, .., xn) where
∑n

i=1
xi = m. The operation to support is as follows:

• SUM(x, j) : Returns
∑j

i=1
xi

For example, if x= 2, 1, 5, 6 then SUM(x, 3) = 8

Naive Representation

To support the SUM operation by a naive representation would be to explicitly

store each prefix SUM value, requiring n ⌈lgm⌉ bits.

24

Chapter 2. Preliminaries

Succinct Representation

Theorem 2.2. [35] A sequence x with |x| = n and
∑n

i=1
xi = m can be represented

in nlg(m/n) +O(n) bits so that SUM(x, i) can be computed in O(1) time.

The performance bounds were achieved by the following data structure. Let yi=

SUM(x, i) for i=1,..,n. Let u be an integer, 1 ≤ u < lgm:

• We use a bit-string R of length n(lgm-u) bits, which stores the lower-order

lgm-u bits of each yi value concatenated together.

• We use a bit-string P of length n+2n bits. The multi-set of values formed by

the top-order u bits is represented by coding the multiplicity of each of the

values 0,..,2u-1 in unary using 0s, with the 1s as separators. The unary values

are concatenated together (P has n 0s and 2u 1s)

We select u = ⌊lgn⌋, so |P | = O(n). We augment this bit-string with additional

bits to support SELECT0 (using an implementation from Section 4.2.1). SUM(x, i)

is computed as follows: we first retrieve the lower-order bits represented in R by

the substring starting at pointer z = (j − 1)× (lgm− u) + 1 and ending at pointer

y = j(lgm − u). The top-order bits are retrieved by computing SELECT0-j on P.

The lower and upper order values are concatenated to give yi , which is returned in

O(1) time.

The Prefix-Sum class contains a constructor that takes the array of string lengths

in addition to the number of strings. For example: if an array of strings s1, s2,..sn is

stored in one single character array, called A. Then if we store the length of strings

into an array of integers as ls1, ls2,lsn the Prefix-Sum class will take this array of

length with n strings. In order to access i-th string Prefix-Sum and by the SUM

methods will compute j = SUM(i) then we will access the i-th string by return a

pointer to A[j].

25

Chapter 2. Preliminaries

2.5 Introduction to Libbzip2

There are different compression methods, and we have used some of them in this

thesis in order to store textual data in a compressed way and with less decompres-

sion time, such as a compression library of Bzip2 [36] data format called libBzip2

with different block sizes. Before we describe the library of Bzip2, we will discuss

the compression algorithm called Burrows-Wheeler transform (BWT)(block-sorting

compression) [37] which is used by Bzip2 to compresses files. Let S=s1,s2,..,sk be a

string of characters. BWT(S) is computed as follows:

1. Create k × k matrix A:

• i -th row of A is the string S rotated by i-1positions.

2. Sort rows of A in lexicographic order and call the sorted matrix A′. Suppose

the original string S is now row number i of A′. Output this number i.

3. Output, row-by-row, the symbols in the last column ofA′.

For example:

Input: good, jolly good

g o o d , j o l l y g o o d <- original

o o d , j o l l y g o o d g

o d , j o l l y g o o d g o <- shift by 2

d , j o l l y g o o d g o o

, j o l l y g o o d g o o d

j o l l y g o o d g o o d ,

j o l l y g o o d g o o d ,

26

Chapter 2. Preliminaries

o l l y g o o d g o o d , j

l l y g o o d g o o d , j o

l y g o o d g o o d , j o l <- shift by 9

y g o o d g o o d , j o l l

g o o d g o o d , j o l l y

g o o d g o o d , j o l l y

o o d g o o d , j o l l y g

o d g o o d , j o l l y g o

d g o o d , j o l l y g o o

g o o d g o o d , j o l l y

j o l l y g o o d g o o d ,

, j o l l y g o o d g o o d

d , j o l l y g o o d g o o

d g o o d , j o l l y g o o

g o o d , j o l l y g o o d <- row number 6

g o o d g o o d , j o l l y

j o l l y g o o d g o o d ,

l l y g o o d g o o d , j o

l y g o o d g o o d , j o l

o d , j o l l y g o o d g o

o d g o o d , j o l l y g o

o l l y g o o d g o o d , j

o o d , j o l l y g o o d g

o o d g o o d , j o l l y g

y g o o d g o o d , j o l l

27

Chapter 2. Preliminaries

Output: y,dood oloojggl

The purpose of the BWT is to group characters according to their context, or the

characters that immediately follow it. Knowledge of the context of a character helps

compression: for example, if we know the context of a character hat.., then we know

that the given character is very likely to be one of w, W, t or T, rather than any of

the other possible ASCII characters. To isolate the different contexts, BWT is often

followed by a move-to-front (MTF) transform. The output of the MTF will have

small integers within a given context, but will have larger integers when moving

across contexts, and provided we have enough occurrences of any given context,

the output will consist mainly of small integers which are highly compressible. The

software BZIP2 [36] implements the above procedure, but since sorting all rotations

of a given input file is computationally expensive, BZIP2 usually breaks up an input

file into blocks of a fixed size and compresses each block individually. The smaller

the block size, generally speaking, the faster the compression, but since in small

blocks there will be fewer occurrences of any context, the compression ratio will be

lower. As a compromise BZIP2 uses block sizes of 64KB as default. In addition

to a command-line compressor (bzip2), there is also a compression library libbizip2,

which is more useful to us. We now describe some of its features.

BZ2 bzBuffToBuffCompress

int BZ2 bzBuffToBuffCompress(char* dest, unsigned int* destLen, char* source,

unsigned int sourceLen, int blockSize100k, int verbosity, int workFactor);

By this method we attempt to compress the data in the source into the destination

buffer. One of two values are returned as follows:

28

Chapter 2. Preliminaries

Table 2.1: libBZip2-block compression ratio(Bytes): Textual data of XML doc-
uments is arranged in document order

File B=512 B=1024 B=2048 B=4096 B=8192

Orders 1.46 1.85 2.33 2.90 3.51

SwissProt 1.58 1.90 2.37 2.94 3.61
dblp 1.45 1.82 2.23 2.66 3.11

Treebank e 1.57 1.84 2.09 2.27 2.40

Proteins 1.49 1.70 1.99 2.43 2.92

• The destination buffer is big enough for the data from the source and the

destination buffer is set to the size of the compressed data. The compressed

data is bzip2 format.

• The compressed data does not fit; the destination buffer is unchanged and

returns output buffer is full

We measure the compression ratio as follows:

Compression Ratio = Size of original XML file size/Size of compressed XML file

size

We run the test on different block sizes(Bytes); 512, 1024, 2048, 4096 and 8192,

on our data files (Orders, SwissProt, dblp, treebank and Proteins) and report the

compression ratio(Bytes) for all blocks as we can see in Table 2.1

We observe that the compression ratio by using libBZip2 with larger block sizes is

generally better than smaller block sizes.

BZ2 bzBuffToBuffDecompress

int BZ2 bzBuffToBuffDecompress(char* dest, unsigned int* destLen, char*

source, unsigned int sourceLen, int small, int verbosity);

29

Chapter 2. Preliminaries

Table 2.2: libBZip2-block decompression time(second): Textual data of XML
documents is arranged in document order

File B=512 B=1024 B=2048 B=4096 B=8192

Orders 0.00004 0.00006 0.00010 0.00016 0.00028

SwissProt 0.00003 0.00006 0.00010 0.00016 0.00028
dblp 0.00004 0.00006 0.00010 0.00017 0.00030

Treebank e 0.00003 0.00005 0.00010 0.00017 0.00033

Proteins 0.00004 0.00006 0.00011 0.00018 0.00032

By this method we attempt to decompress the data in the source into the destination

buffer. One of two return values are as follows:

• The destination buffer is big enough for the data from the source and the

destination buffer is set to the size of the uncompressed data. The compressed

data is bzip2 format.

• The compressed data does not fit; the destination buffer is unchanged and

returns output buffer is full and the source assumed to hold a bzip2 format.

We run the test on different block sizes(Bytes), 512, 1024, 2048, 4096 and 8192, on

our data files (Orders, SwissProt, dblp, treebank and Proteins).

The report of the decompression time(second) in all blocks can be seen in Table 2.2.

We observe that the libBZip2 with smaller block size is generally better than larger

block size. Therefore, applications would benefit from the smaller block size because

the decompression of the smaller block is faster.

30

Chapter 3

Previous Work

In this chapter, we discuss some XML compressors, in addition to discussing the

SiXDOM implementations. In Section 3.1 we talk about the XML compression.

Next, in Section 3.2 we will discuss some XML compressors with DOM-like support.

In Section 3.3 we discuss some of the previous work on XML compressors that have

in-memory and/or disk-based representations. In Section 3.4, also we discuss some of

Query-friendly XML compressors. Finally, in Section 3.5 we describe the SiXDOM

architecture and interface in addition to providing a summary in Section 3.6.

3.1 XML Compression

As we noted in Chapter 1, XML bloat increases the cost of storage/backup of XML

files in PCs and servers, but it can be solved through data compression, in particular

XML-specific compressors.

The XML-specific compressors are designed to represent the XML documents. Each

compressor treats XML characteristics in a different way, but the aim is to provide

better compression. In this Chapter we focus on in-memory representations and

31

Chapter 3. Previous Work

support-tree navigation. There are some compressors that separate the structures

of XML documents for the data values, and represent the structure in-memory,

leaving the data values on the disk. Good results have been produced from many

of these compressors such as, ([38], [27], [39], [40], [41], [42], [43], [44], and [45]). In

addition give more details on a specifec XML compresser and related to our work

such as [2], [6], [5] and [26],

Usually the representations of the XML compressors are:

• Local homogeneity: represents the structure of the XML document separately

to the data values which are grouped into containers such as XMill [5].

• Homomorphic: which preserves the structure of the XML document with data

values such as XGrind [44].

We can measure the compression performance of XML compressors based upon

standard categories of XML documents such as Data-centric documents, which focus

on the regular structure of tags, and Document-centric, which focus on the text of

XML documents. We can measure the compression ratio as follows:

Compression ratio=Size of compressed XML data/Size of original XML data.

We now discuss some XML-specific compressors that achieve very good compression

ratios.

3.2 XML Compressors with DOM-like Support

DDOM

In [46] an XML compressor called Dictionary-compression based Document Object

Model (DDOM) was implemented in Java and considered to be locally homogeneous.

32

Chapter 3. Previous Work

In DDOM the tree structure of the XML document is represented by two arrays;

the representations are in a document-order. The first array is to maintain the

node type information, which is called TYPE, and the second one is to maintain

an index value for each element to its name. In this compressor the Text nodes are

maintained in dictionaries associated with their parent node. Compared to Xerces-J

and Crimson (DOM implementation) [47], DDOM showed a good compression ratio;

it was between 20% and 60% for data-centric XML files and between 70% and 80%

for document-centric XML files. But DDOM does not provide a solution for XML

bloat because for real life XML documents have a large space usage and is 3 to 4

times more than the size of the file.

BPLEX

BPLEX has a very compact pointer-based representation of the XML tree structure

and is locally homogeneous [29]. The data values in this compressor are represented

in string buffers for the leaf text nodes and for the attribute values which are as-

sociated with the element nodes. In this compressor we can make the navigation

with partial decompression and the DOM interface can be supported in addition to

storing the string buffers with standard techniques [38] more space-efficiently.

SEDOM

This compressor is a DOM implementation and is considered to be locally homo-

geneous. SEDOM [26] supports retrieval, update and XPath operations on the

document and contains the following components:

• Name index: stores the unique element names.

33

Chapter 3. Previous Work

• Framework or document structure: this represents the document tree as a

one-dimensional array in document-order.

• Compressed containers: stores the data values arranged into blocks for fast

retrieval and updating.

• Container block index: this represents indexing information for each block in

the compressed containers.

The results for SEDOM showed that its main memory usage is less than 6.9% of the

main memory usage of the pointer-based DOM implementations for the XML files

that are discussed in [26]. By SEDOM we can support a DOM update with large

documents, but it is much slower than a single pointer access for the pointer-based

DOM such as Xerces.

3.3 XML Compressors

We now discuss one of the specialised XML compressor that achieve an excellent

compression ratio [5], but does not support query processing operations such as

navigation without potentially decompressing the whole document.

XMiLL

XMill [5] is a popular tool and three principles were applied during the compression:

• Separate structure (element tags and attribute names) from data and tokenise

the tags and attributes. Start tags and attribute names are dictionary-encoded,

such as T1, T2,..., etc. Replace end tags with / token. In order to distin-

guish an attribute name from an element name, the attributes are represented

34

Chapter 3. Previous Work

Figure 3.1: XMill Architecture [5]

with a prefixed symbol @ , and the data values are replaced with their container

ID number, as we can see in the next step.

• Group related data items into a single container; compress each container

separately. The mapping strategy in this technique is to assign containers to

specific paths by the data values path and by user parameters.

• Apply appropriate semantic compressors to each container. Grouping related

data items with similar patterns of data into a single container led to the

provision of a better compression. XMill applies a specialised compressor for

each container.

Figure 3.1 shows the architecture of XMill. XMill provides a good compression

performance, but the compressed data does not supporting querying.

35

Chapter 3. Previous Work

3.4 Query-friendly XML Compressors

Some query-friendly XML compressors have recently been developed that support

operations on the compressed file while requiring (at most) partial decompression

such as [6]. Although some of these such as XbzipIndex [6] support DOM-like

navigation, they are significantly an order of magnitude slower than standard DOM

implementations.

XBzipIndex

XBzipIndex uses the XBW transform to maintain the XML document in a highly

compressed format and, by uncompressing only a tiny fraction of the data, enables

both navigation and searching. XBzipIndex which is focus on a query-friendly [6].

In XBzipIndex, the document is represented as a tree as in Figure 3.2, as follows:

start from <biblio>, which is the root of the XML document, and replace all the

element string like <biblio> by <biblio; add this symbol @ at the start of the

attribute name, which is stored on the tree as an element node like @id; create a

special node starting with = called a skip for text and another one for the textual

value starting with Ø character, which is considered a child for the skip node. After

that, as we show in Figure 3.3, create three columns as follows: the first column

for the string called Slast (if the node Sα is a last child a 1 is stored, otherwise

a 0 is stored), the second for string Sα (the label for each node in the tree), and

the third for Sπ (shows the upward path of nodes, starting from parent). Then the

XBW transform applies a stable sort according to the string Sπ on the left part

of Figure 3.3 (Slast, Sα, Sπ) in lexicographical order to create the representation

shown on the right side of the same Figure. In the bottom of Figure 3.3 we show

36

Chapter 3. Previous Work

 Figure 3.2: XML Document as a Tree [6]

Figure 3.3: XBW Transform Example [6]

the output of the XBW transform three arrays S^last, S^α, (labels of the internal

nodes) and S^pcdata (textual values).

The authors experimentally show that XBzipIndex is better compared to other com-

pressors and faster on some paths and content search operations, but significantly

slower than standard DOM implementations when they support DOM-like navi-

gation. In addition, the complex structure of the Xbzip representation means that

37

Chapter 3. Previous Work

efficiently supporting additional operations on the document while keeping the space

usage may be challenging, as suggested by the conclusions section of [6].

Path Queries on Compressed XML

In [2] compression is provide on the XML tree structure, which represents an XML

document as a directed acyclic graph (DAG) by sharing common subtrees. [2] reduces

the XML tree to a minimal DAG representation and further reduction was achieved

to the size of the minimal DAG representation by using multiplicity counters for

consecutive equal subtrees. Further details will be provided in Chapter 4.

Vectorizing and Querying Large XML Repositories

In [48] a locally homogeneous compressor is presented for a query-friendly. As we

mention in [2], this compressor compressed the XML tree structures as DAG rep-

resentation and was extended to supports XQuery with partial decompression as

in [2], which support only XPath. In this technique the data values was represented

as containers called vectors as in XMill [5]. The experimental evaluation of the

XQuery system of [48] (called VX) is better than MonetDB [27] and Galax [49] for a

particular query that required constructing portions of the original XML document

by almost 2.5 orders of magnitude, but MonetDB was significantly better than VX

for the queried the matching of all data values.

3.5 SiXDOM Implementations

This section is based on Chapter 7 of Delpratt’s thesis [7]. In this section, we will

describe the SiXDOM implementation [7].

38

Chapter 3. Previous Work

3.5.1 SiXDOM Architecture

There are four components in SiXDOM as we can see in Figure 3.4, starting from

the DOM document node that contains a pointer to each component in SiXDOM

components as follows:

• STree, which is the succinct tree data structure (DS).

• Namecode DS stores the XML names for the nodes in the document.

• Text DS handles the textual data in the document.

• Attribute DS handles the attribute nodes in the document and their associ-

ations to the element nodes.

A compressed representation to the textual data was provided by SiXDOM-CT after

replacing the Text DS component with a text data structure; we will discuss this in

more detail in Chapter 6.

We now discuss each component in more detail, to see which operations they support

in each component and how they support those operations.

STree & Node Object

STree & Node Object support the below operations:

• parent()

• childNodes()

• firstChild()

• hasChildNodes()

39

Chapter 3. Previous Work

Figure 3.4: DOM architecture. SiXDOM is stored in the Document node.
SiXDOM components are shown with dotted boxes. Connecting lines show rela-

tionships between data structures [7]

• lastChild()

• compareDocumentPosition()

• nextSibling()

• previousSibling()

In addition, it supports the following:

• The TreeWalker interface. Here we have the same navigation operations as

in the Node interface, in addition to the nextNode(), previousNode() and

currentNode() operations.

40

Chapter 3. Previous Work

• The item() and length() operations in the NodeList helper interface are avail-

able to the DOM.

• The following, preceding, descendant and ancestor in XPath.

SiXDOM avoided using pointers to represent the tree node objects and used PAREN+

(more details in [7], Chapter) representation as the tree structure, and used a double

number to represent the node: the node number ith in document order (from 1 to n

) and its position ϕ (i) in the succinct tree bit-string representation (from 1 to n),

where n is the number of nodes in the tree. We can recall that i = RANK0(ϕ (i)),

if we represent "(" by 0 and ")" by 1. Each node object contains the integers and

a reference to the containing document node. We can navigate by first accessing

in the node the pointer to the document node, and accessing the PAREN+ object,

then calling the navigation operations of the underlying succinct tree representa-

tion, which in turn gives the answer as a double number, which is then wrapped in a

node object. SiXDOM creates a node object as we need this to make a navigational

operation on the existing node object, unlike a pointer-based DOM implementation.

When the XML document is parsed, SiXDOM does not create all the node objects

in a document, becuase creates a node object whenever a navigational operation is

invoked on an existing node object.

In order to represent an internal node, we need 192 bits (it assumed 64 bit machine)

to represent the double number and the document node pointer, because we access

all the SiXDOM internal components by document node object, unlike a DOM

implementation (such as Xerces), which requires several more pointers to represent

an internal node in particular. Through the navigational operations we can navigate

the tree representation and the C++ object must be explicitly freed. Using the

TreeWalker class is an alternative way to avoid the creation of node objects.

41

Chapter 3. Previous Work

Figure 3.5: (a): Simple XML document fragment. (b): Corresponding DOM
tree representation. (c) Parentheses representation of the tree structure with

double numbering of nodes. [7], [8]

At this stage, SiXDOM focuses only on the structure of the DOM tree and ignores

the storage of the node type information. In Figure 3.5 we can see the parentheses

sequence of the XML document in (a) element nodes are identified in circles and

text nodes in boxes in (b) and the parentheses string in (c). The double numbering

is encapsulated in a node class object to represent the nodes. For example, the 8−th

node (the element ”title”) is at the 14th position in the bit-string. The entity &ent;

represents the text ”GmbH”.

SiXDOM defined two operations on the parentheses representation to improve PAREN+

with the speedup of the primitive operation to go from a node to the next/previous

node in document order as follows:

• NEXTOPEN(): returns (i + 1,ϕ (i+ 1)) if i <n and NULL otherwise, where

x =< i, ϕ (i) > (return the position and RANK of the next opening parenthesis

given that we are at the opening parenthesis at position x in the bit-string)

• PREVIOUSOPEN(): analogous.

42

Chapter 3. Previous Work

NameCode Data Structure

NameCode Data Structure is used to store the name and type of information of

each node in the DOM tree and primarily supports the below operations of the

DOM Node interface:

• getNodeName()

• getNodeType()

• getTagName()

• hasChildNodes(

• getPrefix()

• lookupPrefix()

• getLocalName()

• getPrefix()

In addition, it supports the following:

• The operations getElementByTagName()and getElementByTagNameNS() in the

Document interface.

• The operation getTagName()in the Element interface.

In order to support the operations above, SiXDOM provided a solution with three

parts: isTextNode bit-vector, the Namepool and the shortCode data structure.

43

Chapter 3. Previous Work

Namepool Data Structure

There is a name-code table to store each unique element name in an array as

64 bits. We then split the nodes into text nodes and number them from 1..t in

document order, and the non-text tree nodes from 1.. e (mostly element nodes,

but including comment nodes, entityReference nodes etc.), where t and e are the

number of text nodes and non-text tree nodes, respectively (note t+e=n); then we

can compress effectively. SiXDOM used the isTextNode bit-vector for the splitting,

as below.

IsTextNode Bit-Vector

The isTextNode is defined as follows: if the ith node in document order is a text

node then the ith bit is set to 1, otherwise it is set to 0, and we can use the RANK

operation into the isTextNode bit-vector to provide consecutive numbering of text

nodes from 1 to t and of non-text tree nodes from 1 to e.

Short-Code Data Structure

A short-code is a positive integer. An array of size e created to fill with short-code

for the ith non-text tree node in document order, it was interpreted as follows:

• If the ith short-code is 12 or less, then the ith node is not an element node, and

the short-code value gives its node type. The possible node types and their

values are: (CDataSection (4), entityRef (5), processingInstruction (7),

comment (8) or docType (10) and Entity (6), Notation (12)). We notice that:

(Element (1), Attributes (2), Text (3), and Document (9)).

44

Chapter 3. Previous Work

• If the ith short-code j is 13 or greater, then the node is an element node, and

j− 13 is an index into the name-code table, pointing to the entry in this table

corresponding to the i-th element name.

Textual Data Structure

Textual Data Structure is used to store and retrieve the textual data of individual

nodes or groups of nodes within the XML document. Primarily this component

supports the DOM operations of the Node interface given below:

• getNodeValue()

• getTextContent()

In addition, it supports the following:

• The getElementByID() method of the Document interface.

• The getValue() method of the Attribute interface.

• The getData() method of the ProcessingInstruction interface.

In SiXDOM store the textual data of the XML document into a single C++ array.

The textual data for the following node types are stored:

• Text: data value associated with the text node.

• Attributes:attribute node value.

• Processing Instruction:data component of the processing instruction.

• Comment:content of the comment node.

45

Chapter 3. Previous Work

• CDATASection:content of the CDATA Section.

More detail about the textual data structure will be provided in Chapter 6.

Attribute Data Structure

Attribute Data Structure provides mapping of attribute nodes to the element nodes

in the DOM tree by store the name information of each attribute node and the

associated node value. Mainly this component supports the DOM operations of the

NamedNodeMap and the Attribute interfaces given below:

• item()

• getName()

• length()

• getOwnerElement()

• getNamedItem()

• isID()

• getNamedItemNS()

In addition, it supports the following:

• The getElementById()and getElementByTagNameNS() methods of the Document

interface.

• The getAttributes()and hasAttributes() methods of the Node interface.

46

Chapter 3. Previous Work

• The getAttribute(), getAttributeNS(), getAttributeNode(), getAttributeNodeNS()

and hasAttribute() methods of the Element interface.

• The getTarget() method of the ProcessingInstruction interface.

• The getName() method of the DocType interface.

• The getNotationName() method of the Entity interface.

Separately from the tree representation, SiXDOM represents attribute nodes, and

provides a mapping strategy to map elements to their attributes, and attribute

names to their values.

As in NameCode Data Structure, use the isTextNode bit-vector number’s non-

text tree nodes from 1 to e. We then created a sequence of non-negative integers

X = (x1, .., xe) of length e as follows. If the ith non-text tree node is an element

node, then xi is the count of attributes it has. If the ith non-text tree node is any

of processingInstruction, CDataSection, docType, document or comment nodes,

give it a dummy attribute with xi = 1. Represent X to satisfy the below goals:

• All attributes should be numbered from 1 to a (where a is the total number

of attributes, including dummy attributes) and the attributes associated with

a given non-text tree node should be numbered consecutively.

• Given a non-text tree node, it should be possible to determine quickly the

range of integers that number its (dummy) attributes, if any.

47

Chapter 3. Previous Work

3.5.2 SiXDOM Interface

Class Structure

SiXDOM is an application that was designed to support DOM and is compatible with

XSLT/XQuery processors. There is an intermediate interface that calls the succinct

data structures directly, which in turn is called by the DOM operations. Similar to

the interface that is used in Saxon [50], the intermediate interface has the NodeInfo

and DocumentInfo interfaces and we can access the TinyTree data structure directly

(TinyTree is the internal tree structure in Saxon). SiXDOM application also in

C++ supported a ported version of the NodeInfo and DocumentInfo interfaces to

be a plug-in replacement for TinyTree The TinyNodeImpl (which implements the

NodeInfo) was replaced with SiXDOM’s Node class. In order to represent the node

object directly, the Node class consists of two integers for the node and a pointer

to the Document node, with an additional layer implementing the NodeInfo. We

can access the SiXDOM data structure by the Document node. Some of the DOM

operations directly match those in the NodeInfo; for example in the NodeInfo we

can retrieve the node type information of a node by getNodeKind(), which has the

same function as the DOM operation getNodeType(). In SiXDOM’s NameCode data

structure we can directly retrieve the name-code of a node by the getNameCode()

operation, which uses this operation by the DOM operation getNodeName(), where

we find in the hash table the matching node name to the name-code.

SiXDOM provides direct support for the DOM node navigation operations, In ad-

dition it supports the iterateAxis operations of NodeInfo, except the namespace

axes.

48

Chapter 3. Previous Work

3.6 Summary

In SiXDOM, the DOM is implemented using succinct data structures. As an exam-

ple, SiXDOM avoids using pointers between nodes in the XML document tree by

storing a balanced parenthesis string of 2n bits to encode the tree structure, and

using a succinct index to perform rapid navigation in the tree. A standard repre-

sentation of the document tree would use at least three pointers (parent, first child

and next sibling), so the savings can be considerable. Speeds comparable to stan-

dard DOM implementations, together with memory usage (typically a fraction of the

XML file size), are achieved by SiXDOM [1] by using succinct data structures [33].

However, SiXDOM did not use any kind of compression in representations. For

example, a highly regular tree with n nodes and a randomly generated tree with n

nodes would both take 2n bits to be represented. XML trees, however, are generally

quite regular and therefore should be compressible.

49

Chapter 4

In-Memory Representation Based

upon MacMill

In this chapter we examine the XML compression method MacMill [2] in detail.

MacMill is a compression method that represents the XML document by extracting

the attributes and textual data, leaving a skeleton. The skeleton is then compressed

into a directed acyclic graph (DAG) by sharing common sub-trees. In this chapter

we outline our approach to representing XML documents in-memory in a highly

compressed format, while supporting operations of the kind supported by DOM.

Our approach is based upon the MacMill compression method.

This chapter is organised as follows. In Section 4.1 we explain MacMill. Then we

explain how to support DOM-like navigation using MacMill in Section 4.2. Next, in

Section 4.3 we give some details of the algorithms and implementation. In Section

4.4 we present experimental results and analyse them. Finally, we give a summary

in Section 4.5.

50

Chapter 4. In Memory Representation Based upon MacMill

4.1 MacMill

MacMill describes the structure of XML documents by storing the tree whose nodes

are labelled with the names of the elements only.

4.1.1 Overview

Given an XML document, if we remove attributes and textual data, we are left

with just the structure and the names of the elements. We call this document the

Virtual Skeleton (VS)1. Figure 4.1(a) shows an example of an XML document and

Figure 4.1(b) shows the VS. Buneman et al. describe how to compress the VS by

representing each distinct sub-tree only once in order to create a minimal DAG.

On the left of Figure 4.2 we show the minimal DAG for the above VS of Figure 4.1(b)

obtained by sharing common sub-trees. For example, nodes X and Z in the VS

have identical sub-trees, so we merged these sub-trees into one sub-tree. Another

observation is that on the left of Figure 4.2 there are multiple out-edges from the

same node such as nodes X, A or Z, etc., and on the right of Figure 4.2 the consecutive

multiple out-edges to the same node are collapsed into one edge, and the number of

collapsed edges are added as additional information to the node the we called the

Compressed Skeleton(CS).

4.1.2 MacMill Output Format

Buneman et al. created the software package MacMill that implements the above

compression method. In this section we will give more details about the output of

1Virtual skeleton is used in a similar context to skeleton: document-tree structures whose nodes
are labelled with elements only

51

Chapter 4. In Memory Representation Based upon MacMill

Figure 4.1: (a) XML Document Shown on the Left. (b) Virtual Skeleton on the
Right

 Figure 4.2: Minimal DAG of Virtual Skeleton

52

Chapter 4. In Memory Representation Based upon MacMill

Figure 4.3: XML file output by MacMill

MacMill. In Figure 4.3 we show the output of MacMill for the XML document in

Figure 4.1(a).

MacMill produces the CS in the form of an XML file. The output of MacMill

contains an additional tag which is called document and considers the root of the

CS. Every element in the output of the MacMill file is one of two kinds: a normal

or a shared node.

• Normal node (with the same element name as in the VS) contains attribute

named macmill:id; the value for this attribute for all nodes is a unique string.

• Shared node that contains attributes named macmill:ref; the value for these

attributes for all nodes is string refer to an ID (i.e. normal node) [2]

Every node in the VS is represented by a node in the CS called representative. All the

representative nodes are normal nodes. The share nodes refer to the representative

node by the first attribute value of these nodes. All nodes can have a second attribute

53

Chapter 4. In Memory Representation Based upon MacMill

called macmill:multi, which contains a string value that shows how many out-edges

there are to the same node, as we have shown in the right of Figure 4.2.

The output of MacMill is shown as a DOM tree in Figure 4.4. We notice that the

differences between the right of Figure 4.2 and Figure 4.4 as follows: there is a shared

sub-tree in the right of Figure 4.2 which is represented as a node in Figure 4.4 called

ms (macmill:share), and refer to normal node by share it attribute value. The

other difference is to add another attribute for any node has multi-out edges.

For example, in Figure 4.2 we can see the sub-trees with root A repeated two times

as a child of node X and one time as a child of node Z, and the sub-tree with root

B repeated two times as a child of node Z. In the CS in Figure 4.4, the first two

sub-trees with parent A and children of X are represented in the left part as three

nodes A[multi= 2], B[multi= 2], and C[multi= 2] with one edge from X; then the

third sub-tree with root A which is a child of Z is represented as a single node called

ms with one out-edge from Z and points to the A sub-tree in the left part with a

dashed line. The two sub-trees with parent B which are child of Z are represented

as a node called ms [multi =2] with one out-edge from Z and are pointing to the B

sub-tree in the left part with a dashed line.

The advantage of using XML as the output format is that it includes more infor-

mation than the others; it often provides information about or gives meaning to

the text it contains. In addition, we can read the XML file by using any stan-

dard DOM parser, including Xerces and SiXML, which are available for all popular

programming languages.

We now evaluate the performance of MacMilll as a pure compressor. Table 4.1 shows

the performance of MacMill in comparison to the VS. We notice from Table 4.1 that

MacMill provides an excellent compression ratio (reducing the skeleton size after

making the compression) on highly compressible data files, in particular if the file

54

Chapter 4. In Memory Representation Based upon MacMill

Figure 4.4: Compressed Skeleton

has many common sub-trees such as orders.xml. The VS size for order.xml is 3.7

MB; using MacMill reduced the size to 600 Bytes and compressed very well as we

show in Figure 4.5.

However, if the file has few common sub-trees this approach does not give a good

result, e.g., consider the file treebank e.xml; we can clearly see the VS file is much

smaller than the CS. The output of MacMill is very verbose because a significant

amount of markup is added in the compressed file output, which explains why the

skeleton is much larger than the original file if not many sub-trees are shared. An-

other observation from Table 4.1 is the number of nodes in VS to the number of

55

Chapter 4. In Memory Representation Based upon MacMill

 Figure 4.5: Part of Order.xml and the Output of MacMill on the Right

Table 4.1: The Performance of MacMill Compression

XML File
Original
(MB)

Virtual
Skele-

ton(MB)

Compressed
Skele-

ton(MB)

Number
of Nodes
in VS

Number
of Nodes
in CS

Order 5.1 3.7 0.0006 150002 11

SwissProt 109.5 43.2 41.0 2977032 777871

Treebank e 82.1 24.7 80.5 2437667 1295124
Dblp 127.7 53.7 13.7 3332131 279499

Proteins 600 348.2 43.0 21305819 864461

Factor38.4 4608 1126.4 179.6 64152027 3505541

nodes in CS; we can see that, if MacMill failed to reduce the number of nodes, then

we will suffer from these nodes because they have a lot of information.

56

Chapter 4. In Memory Representation Based upon MacMill

4.2 DOM with MacMill

We now explain how to support DOM-like navigation on the CS such as for basic

navigation operations: (getFirstChild(), getLastChild(), getNextSibling(),

getPreviousChild() and getParent()). We need additional requirements in order

to support DOM-like navigation before using MacMill directly. In this section we

will consider the main obstacles below:

• As noted in Section 4.1.2, each node in the VS is represented by a normal node

in the CS. However, a single normal node in the CS may represent many nodes

in the VS. Therefore we need to distinguish between the different nodes.

• Nodes may have multiple parents. When trying to find the parent() in the

VS, we need to know which of the possible representatives in the CS are the

true parent.

• There are two kinds of pointers: one is the DAG idref to id pointer, and the

other is pointers as in C++; because if we meet a share node we need to take

the attribute value (ref) and start a search in the XML file for a normal node

that has the same attribute value (id).

Our Solution

The first consideration is what kind of DOM-like access we can support using the

CS. It seems that the most convenient approach is to use navigation similar to the

TreeWalker DOM interface.

As we support a TreeWalker interface, our approach will be as follows:

57

Chapter 4. In Memory Representation Based upon MacMill

• For each node in the CS, we will store its sub-tree size. Therefore, start from

the root and for every node in the CS, it computes the size of the sub-tree

under the node in the VS.

For example if we look at Figure 4.1(b) in Section 4.1.1 and want to find the next

sibling of node V on the VS but look to navigate on the compressed tree, as is shown

in Figure 4.4, this operation will be difficult because on the CS (unlike the VS) we

find the previous sibling is a node called ms, which points to the node A without

keeping the node number in the virtual skeleton (DFS numbering) as a factor in the

navigation.

• The TreeWalker will contain a stack for going up in the tree to find the parent.

For example, from Figure 4.1(b) if we are looking to find the parent of node A21, it

will be very easy to find that it is node Z, but from Figure 4.4 it will be difficult to

find the parent because maybe the node in the CS has more than one parent, such

as the parent of node A is node X or node Z.

• Hash tables. We build a hash table so that for any node we can retrieve the

corresponding sub-tree size (this was not present in [2]). We need to build a

hash table for the macmill:id in order to find the representative for the share

node.

In theory, we can support node ids on the VS. That is, given a node id in the VS

(e.g. a position in document order) we can generate a TreeWalker for that node

reasonably efficiently. Inside TreeWalker there is a node object which contains not

only node id, but also a number from 1 to 2n (where is n is the number of nodes in

VS). More details in Chapter 5, section 5.1.

58

Chapter 4. In Memory Representation Based upon MacMill

4.3 Algorithms and Implementation

We now give some details of the algorithms for navigation in the tree. We assume

that the CS is stored in a DOM representation that supports node ids (e.g. each

node in the CS can be referred to by an id). As noted above, we have two hash

tables: one, called stsize, maps each id of a node in the CS to its sub-tree size.

The second, called idref, maps the value of each macmill:ref attribute in the CS

to the id of its representative node in the CS.

The TreeWalker as noted above will contain a stack. If the treewalker is at some

node v in the VS, then the top of the stack in the TreeWalker will point to the

representative of v in the CS. In addition, it will contain:

• CurrentPosition: the node number in VS document order.

• CopyNumber: the order number of a node between all the nodes with the same

parent.

• OfNumber: the order of out-edges for a node.

From Figure 4.6, we can see A3 is the first copy of A (CurrentPosition=3 and

CopyNumber=1), A10 is the second copy of A (CurrentPosition=10 and CopyNumber=2)

and A has a two copies of B (OfNumber=2)

The item below in the stack points to the representative in the CS of the parent of

v, together with all the above auxiliary information, and so on (the bottom of the

stack contains the root of the CS).

We now show how to support the operations: getFirstChild(), getLastChild(),

getNextSibling() getPreviousSibling() and getParent().

v is the node current position of the TW in the VS

59

Chapter 4. In Memory Representation Based upon MacMill

Figure 4.6: Part of VS and CS

getFirstchild(a)

Let the top of the stack point to node a

Let b be the first child of a in the CS

IF a has no first child in the CS THEN // Using DOM FirstChild()

v has no First Child

Return NULL

IF b is a share node THEN

b = idref[b]

Create new stack node, make it point to b

Set the CurrentPosition to CurrentPosition+1

Set the CopyNumber to 1

60

Chapter 4. In Memory Representation Based upon MacMill

IF no Mullti Attribute THEN

Set the OfNumber to 1

ELSE

Set the OfNumber to the value of Multi

Set push on top of stack

ELSE // if b is a Normal node NOT share

Create new stack node, make it point to b

Set the CurrentPosition to CurrentPosition+1

Set the CopyNumber to 1

IF no Mullti Attribute THEN

Set the OfNumber to 1

ELSE

Set the OfNumber to the value of Multi

Set push on top of stack

Return b

getLastChild(a)

Let the top of the stack point to node a

Let b be the last child of a in the CS

61

Chapter 4. In Memory Representation Based upon MacMill

IF a has no last child in the CS THEN // Using DOM getLastChild()

v has no Last Child

Return NULL

IF b is a share node THEN

b = idref[b]

Create new stack node, make it point to b

Set the CurrentPosition to CurrentPosition + (Subtree-size of b - Subtree-

size of a)

IF no Multi Attribute THEN

Set the OfNumber to 1

Set the CopyNumber to 1

ELSE

Set the OfNumber to the value of Multi

Set the CopyNumber to the value of Multi

Set push on top of stack

ELSE // if b is a Normal node NOT share

Create new stack node, make it point to b

Set the CurrentPosition to CurrentPosition + (Stsize [b] - Stsize[a])

IF no Multi Attribute THEN

62

Chapter 4. In Memory Representation Based upon MacMill

Set the OfNumber to 1

Set the CopyNumber to 1

ELSE

Set the OfNumber to the value of Multi

Set the CopyNumber to the value of Multi

Return b

getNextSibling(a)

Let the top of the stack point to node a

Let b be the next sibling of a in the CS

IF a has no next sibling in the CS THEN // Using DOM NextSibling()

v has no next sibling

Return NULL

IF CopyNumber of a less than OfNumber THEN

Set CopyNumber of b to 1

IF b is a share node THEN

share node then b = idref[b]

Set CurrentPosition = CurrentPosition +Stsize[b]

ELSE

Set CurrentPosition = CurrentPosition +Stsize[b]

63

Chapter 4. In Memory Representation Based upon MacMill

Return b

ELSE // b is NOT Normal

b is a share node

b = idref[b]

Let c be the next sibling of b in the CS

IF b has no next sibling in the CS THEN

v has no next sibling

Return NULL

Move the stack node, make it point to c

Set CurrentPosition = CurrentPosition +Stsize[b]

Set CopyNumber to 1

IF no Mullti Attribute THEN

Set the OfNumber to 1

ELSE

Set the OfNumber to the value of Multi

Return b

getPreviousSibling(a)

Let the top of the stack point to node a Let b be the previous sibling IF a has

no next sibling in the CS THEN // Using DOM getPreviousSibling()

64

Chapter 4. In Memory Representation Based upon MacMill

v has no previous sibling Return NULL

IF CopyNumber of a -1 less than 1 THEN

v has no previous sibling

Return NULL

IF b is a share node THEN

b = idref[b]

Set the CurrentPosition to CurrentPosition - Stsize [a]

IF no Multi Attribute THEN

Set the OfNumber to 1

Set the CopyNumber to 1

ELSE

Set the OfNumber to the value of Multi

Set the CopyNumber to the value of Multi

ELSE // b is Normal NOT share

Set the CurrentPosition to CurrentPosition - Stsize [a]

Set the CopyNumber to the value of CopyNumber -1

Set the OfNumber to the value of OfNumber

ELSE // b is share NOT normal

b is share node

65

Chapter 4. In Memory Representation Based upon MacMill

b = idref[b]

Let c be the previous sibling of b in the CS

IF b has no previous sibling in the CS

v has no previous sibling

Return NULL

Move the stack node, make it point to c

Set the CurrentPosition to CurrentPosition - Stsize [a]

Set the CopyNumber to the value of CopyNumber -1

Set the OfNumber to the value of OfNumber

Return b

getParent(b)

Let the top of the stack point to node a Let the below of the stack point to

node b

IF b has no ancestor in the CS THEN

Return NULL

ELSE

Set a the ancestor of b

Return a

66

Chapter 4. In Memory Representation Based upon MacMill

In Figure 4.7 we illustrate multiple uses of navigation operations on the compressed

skeleton of Figure 4.4 when using DAGDOM, if we are looking to find the last child

for the node Z, with current position number= 19 on the VS. This operation, after

applying the getLastChild() of DAGDOM, will find the last child is G with current

position= 34. This is a simple operation because node Z pointed directly to node

G in the CS (the same as the VS). However, if we are looking to find the previous

sibling for node G, this operation will be difficult because in the CS we find the

previous sibling is a node called ms with multi = 2, and a pointer to the node B,

without considering the current position as a factor in navigation. Nonetheless, after

applying getPreviousSibling() as in DAGDOM we will find the B with current

position = 31.

Implementation

In this section we will describe some implementation details. We have a C++ DAGDOM

class. The data members of this class are:

• p skel of type DOMNode // pointer to skeleton.

• stsize, reftable are hash tables.

In the DAGDOM class, there are the following functions:

• DAGDOM(): this is the constructor that takes the output of the MacMill file

then parses this file by using Xerces and set p skel to the root of the parsed

document(CS).

• DAGDOM initialize(): takes the root of the CS and, for every node in the CS,

it computes the size of the sub-tree under that node in the VS. Furthermore,

67

Chapter 4. In Memory Representation Based upon MacMill

Figure 4.7: Sequence of Multiple Navigation Operations

68

Chapter 4. In Memory Representation Based upon MacMill

it sets up a hash table so that for any node, its sub-tree size can be retrieved,

and for any CS pointer, the target of the pointer can be found.

• getRoot(): returns a pointer to the root of the VS, which is represented by

DAGDOM object after initialising the data members of DAGDOM Node class, as

in the pseudocode below.

The pre-processing time is not measured in the thesis. There was no detailed opti-

misation of this.

getRoot()

Let v be the root of VS

Create new stack node, make it point to p skel

Set the CurrentPosition = 1

Set the CopyNumber = 1

Set the OfNumber = 1

Set the ancestor of stack node to NULL

Return v

Let x be the root of CS

DAGDOM initialize()

IF Share node THEN

Set subtreesize = stsize[ref] // ref is the attribute value of share node

which refers to the attribute value of normal node

69

Chapter 4. In Memory Representation Based upon MacMill

Return Multi* subtreesize

ELSE

Set reftable[id]=x // id is the attribute value of normal node

Set subtreesize=1

FOR x has a firstchild

x has a nextsibling

subtreesize = subtreesize+ recursive call DAGDOM initialize()

ENDFOR

4.4 Experimental Evaluation

In this section we draw comparisons of the space usage between Xerces and DAG-

DOM. We tested DAGDOM and Xerces on five XML files taken from the XML

corpus [9]. Our choice of files gives us a range of typical XML documents.

Our tests obtained document-order traversals (FirstChiled, NextSibling, and

Parent). In [1] obtained document-order traversals and reverse document-order

traversals (LastChild, PreviousSibling, and Parent) and the result approxi-

mately shows no differences between both tests. Therefore, in our tests we consid-

ered document-order traversals (FirstChiled, NextSibling, and Parent).

Before we started our test, we put the Xerces and DAGDOM into the same envi-

ronment to be fair in our test. So this was done by the following:

70

Chapter 4. In Memory Representation Based upon MacMill

• In DOM (Xerces), we take the XML file such as orders.xml file and create a

new file called VSorders.xml considering the element node only and ignoring

the other components of the XML document (attribute, text node, etc).

• In DAGDOM we take the XML file such as orders.xml file and by using

MacMill software we create a compressed file called Morders.xml consider-

ing the element nodes only and ignoring the other components of the XML

document (attribute, text node, etc).

We note that the virtual skeleton of XML file such as, VSorders.xml or the com-

pressed skeleton such as Morders.xml represented in main memory using Xerces.

4.4.1 Basic Setup

The test machine was an Intel(R) Pentium(R) with 8GB RAM, 2.80GHzCPU and

a 3MB cache size, running Ubuntu 10.04.4 LTS. The compiler was g++.

4.4.2 Main Memory Usage

In Table 4.2 we draw comparisons of the space usage (MB) between Xerces, DAG-

DOM (Using Xerces with MacMill), and SiXDOM. If we look at an XML file such

as orders.xml we can see that DAGDOM shows much better memory usage than

Xerces, because in Xerces there is no ability to use the compressed file in the rep-

resentation. But, the VS of orders.xml with size 3.7MB used more memory usage

in-memory representation.

On the other hand, for example in Treebank e.xml, we can notice that the MacMill

software did not give a good compression ratio. Therefore, DAGDOM uses up to

double the space usage of Xerces.

71

Chapter 4. In Memory Representation Based upon MacMill

Table 4.2: Main Memory Usage of XML representations in Xerces, DAGDOM
and SiXDOM(MB). The File Sizes in MB. * The space usage is too low

File Name Files Size Xerces DAGDOM SiXDOM
Orders 5.1 28.62 * 4.5

SwissProt 109.5 553.38 540 33.8

Treebank e 82.1 452.8 949.9 31.1

dblp 127.7 614.86 185.1 39.2

proteins 600 3920.93 563.9 86

factor38.4 4608 11775.89 2245.7 221

Table 4.3: Compression Ratio (CR) in CS to VS and Main Memory Usage
(MMU) in DGADOM to Xerces

XML File
VS Size
(MB)

CS Size
(MB)

CR(CS:VS) MMU

Order 3.7 0.0006 6466.2:1 28620:1
SwissProt 43.2 41 1.1 1
Treebank e 24.7 80.5 0.3 0.5
dblp 53.7 13.7 3.9 3.3
proteins 348.2 43 8.1 7
factor38.4 1126.4 179.6 6.3 5.2

The experimental results shows that SiXDOM has the ability to reduce memory

usage more efficiently than DAGDOM, even though we used the same VS files as

we used in Xerces without any compression.

Therefore, in the next chapter we will make further optimisations of the information

stored in the CS to improve the memory usage of DAGDOM.

In Table 4.3, another observation is that if we look at the results of all our data

that, in our approach using the same underlying DOM implementation, we can see

the compression ratio very useful (which means that if we compress the XML file

on disk, then main memory usage of the XML representation was reduced). As a

result, the space usage is improved when we have more compression ratio.

72

Chapter 4. In Memory Representation Based upon MacMill

Table 4.4: Running Time of XML Representations in Xerces, DAGDOM and
SiXDOM (seconds)

File Name
File Size
(MB) Xerces DAGDOM SiXDOM

Orders 5.1 0.01 0.19 0.01

SwissProt 109.5 0.11 6.70 0.21

Treebank e 82.1 0.16 6.03 0.28

dblp 127.7 0.12 7.35 0.20

proteins 600.0 0.83 44.85 1.97

factor38.4 4608.0 360.00 143.52 5.70

4.4.3 Running Time

In Table 4.4 we draw comparisons of running time (wall-clock time in seconds)

between Xerces, DAGDOM (Using Xerces with MacMill), and SiXDOM.

Table 4.4 shows the traversal time for the basick navigation operations (FirstChild,

NextSibling, and Parent) in a second. The result shows 20 times slowdown in

CPU time for navigational operations in comparison with SiXDOM. Compared to

Xerces implementation we notice in some data files like proteins.xml are 50 times

slower, but on the large files such as factor38.4.xml, Xerces is two times slower.

4.5 Summary

Our approach yields a good result in comparison to Xerces but it is still outperformed

by SiXDOM. If we look at Table 4.3 in Section 4.4.2, we can see the compression

ratio between CS and VS. If we look at the results in all data we will see that, in our

approach using the same underlying Xerces DOM implementation, the space usage

is improved. But we lose to SiXDOM space usage and CPU time for navigational

operations, so we are investigating further optimisations of the information stored in

73

Chapter 4. In Memory Representation Based upon MacMill

the CS to improve the memory usage of our approach. Further optimisation to the

DAGDOM naive implementation by careful application of succinct data structures

will be detaild in Chapter 5.

74

Chapter 5

In-Memory Representation of the

XML Document Using DAGDOM

As we saw in Chapter 4 a naive implementation of our approach (DAGDOM) gives

very poor space usage and CPU time for navigational operations relative to other

space-efficient DOM implementations (e.g. SiXDOM) [1]. DAGDOM uses the

Xerces DOM implementation to represent the CS in-memory, but DAGDOM does

not work very well because the compression method [2] may result in a bad com-

pression ratio on some XML files and, as a result, in cases such as treebank e.xml

the memory usage could be double even that of Xerces, and 30 times more than

SiXDOM.

An obvious optimisation is to replace the use of Xerces to represent the CS in

DAGDOM with SiXDOM. In Table 5.1 we compare the space usage just of loading

the output of MacMill into SiXDOM (without creating the hash tables: idref and

stsize) versus the space usage of VS in SiXDOM. In Table 5.1 we can see the

main memory usage representation for the VS files by using SiXDOM in column 3

and the main memory usage of the output of MacMill by using SiXDOM as well in

75

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.1: In-Memory Representation of MacMill and Virtual Skeleton by SiX-
DOM. File Sizes in MB

XML file
VS
File Size

SiXDOM-VS
(MB)

MacMill
File Size

SiXDOM-
MacMill
(MB)

Orders 3.7 4.5 0.0006 0.6

SwissProt 43.2 33.8 41 54.3

Treebank e 24.7 31.1 80.5 148.1
Dblp 53.7 39.2 13.7 19.9

Proteins 348.2 86.0 43 61.4

column 5. The result shows the in-memory representation of some VS files is better

than MacMill files.

At this stage, the main memory usage when we use SiXDOM to represent the skele-

ton is better than previous results of our approach, but this is not very promising.

We notice that SiXDOM does not compress the attributes, and that each element

in the output of the MacMill file has at least one attribute. Table 5.1 shows that

simply substituting Xerces by SiXDOM in DAGDOM still gives very poor space

usage.

In this chapter we further develop our approach in order to obtain significant space

reductions over existing space-efficient Xerces DOM implementations as follows:

• Auxiliary Attribute Removal Phase: as we noted in Chapter 4, the output

of MacMill is very verbose, and one particular problem is the use of auxiliary

attributes. In Section 5.1, we consider efficient storage of the information con-

tained in these auxiliary attributes which makes use of some special properties

of SiXDOM. The resulting approach, called DAGDOM A, is then experi-

mentally evaluated.

76

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

• Share Node Removal Phase: to further improve the space usage, we have

made some of statistics test to the output of MacMill data files; we had some

observations (such as, share nodes with sub-tree size equal to 1) which have

led to modifying the output of MacMill, in addition to representing the auxil-

iary information in a compressible way. We show that by post-processing the

output of MacMill appropriately, we can get significant space improvement.

This is discussed in Section 5.2. The resulting approach, called DAGDOM

B, is then experimentally evaluated.

• Variable Length Encoding Phase: We have made further optimisations to

representations of auxiliary information by using variable length encoding in

order to obtain more space reduction. This is discussed in Section 5.3. The

resulting approach, called DAGDOM C, is then experimentally evaluated.

Finally, we analyse the experimental results of the above phases and show the im-

provements of the space usage and running time in Section 5.4. We note that

DAGDOM A-C are incremental enhancements.

5.1 Auxiliary Attribute Removal Phase

We now look at the reasons why loading MacMill files into SiXDOM yields poor

results. As noted in Chapter 4, the output of Macmill is verbose. In particular, each

node in the MacMill output has either one or two attributes as follows:

• macmill:id attribute: each normal node in the CS has an attribute called

macmill:id. The value of this attribute appears to be a memory address in

hexadecimal, on a 32-bit machine; the attribute value is a string with up to

10 characters (0x followed by the address with 8 hexadecimal digits).

77

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

• macmill:ref attribute: each share node in the CS has an attribute called

macmill:ref. The value of this attribute appears to be a memory address in

hexadecimal and refers to a particular normal node in the CS.

• macmill:multi attribute: most of the element nodes in the CS’s contain a

second attribute value which is called macmill:multi.

We note that SiXDOM does not store attribute values in compressed form. This

can be a significant overhead. For example, treebank e.xml has a total of 1.25

million macmill:id or macmill:ref attributes (see Table 5.3). Even just storing

these attributes will require up to 25MB of space. Thus, the auxiliary attribute

values added by MacMill can be very space-consuming. We now discuss how to

remove these attributes.

MacMill:id Attributes

We need this attribute in order to support navigation on the CS. If we have a share

node, we look at value on macmill:ref as the first step. We then search for an equal

value on macmill:id (from normal nodes) as a second step to retrieve the element

node.

However, SiXDOM effectively numbers nodes in document order from 1..n where

n is the number of nodes in the tree, and does not create node objects upon loading

the document. A Node object containing DOM represents the nodes by a double

number: document order number and its position in the succinct tree bit-string

representation (from 1 to 2n) [51], [1]. Figure 5.1 shows an example for SiXDOM

node tree representation. Thus, we can remove macmill:id attributes.

78

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

 Figure 5.1: SiXDOM Node Tree Representation. For example, the double num-
ber of the <student id> element node is (3, 4) since it is the third node in docu-

ment order and the corresponding open parenthesis is in position 4.

MacMill:ref Attributes

If a share node points to another node, we just replace it by its node number as we

mentioned above. However, accessing a node by document-order number is not in the

DOM API. Therefore, an additional non-standard operation GetNodebyNumber(x)

is implemented in SiXDOM by Stelios Joannou, in order to obtain a Node object

from just the document-order number of the node. Using GetNodebyNumber(x) we

are able to strip all macmill:ref attributes from the CS as we mentioned above

In the Auxiliary Attributes Removal Phase we will read the MacMill file and tra-

verse this file in document-order. For every node in the CS, stripping macmill:id,

macmill:ref and macmill:multi attributes creates a new shrunken XML file (shrink

skeleton), and at the same time sets up three auxiliary text files as follows:

• Id ref.txt: store -1 if a normal node, else the node number (document-order)that

the share node refers to (after following macmill:ref).

• Multi.txt: store the multi value (from macmill:multi).

• Stsize.txt: store sub-tree size for all nodes.

79

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

In Figure 5.2 we show the auxiliary attribute removal phase and the new data input

format.

As we have shown in Figure 5.2, we will represent in main memory the three

auxiliary text files into three arrays of 32-bit integers and implement a new al-

gorithm to use SiXDOM components instead of the Xerces DOM implementation.

Then the navigation operations will be as in the previous version of our approach:

getFirstChild(), getLastChild(), getNextSibling(), getPreviousChild(),

getParent() call this DAGDOM A.

In Table 5.2 we show the pseudocode for NextSibling() as an example and to

compare the same operation in DAGDOM with the new version, DAGDOM A.

Performance

The performance of in-memory representation of DAGDOM A in comparison to

SiXDOM is shown in Figure 5.3. We notice from Figure 5.3 that DAGDOM A

compared to SiXDOM reduced the main memory usage in most data files, but if we

look at treebank e.xml we can see that SiXDOM is still better than DAGDOM A

but not by much. In Figure 5.4 we draw comparisons of running time (wall clock

time in seconds) between DAGDOM A and SiXDOM, which shows DAGDOM A is

slower than SiXDOM, but much faster than DAGDOM.

5.2 Share Node Reduction Phase

DAGDOM A currently yields good results compared to Xerces but SiXDOM still

provides better space usage in some files such as treebank e.xml. Therefore we

80

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Figure 5.2: Auxiliary Attributes Removal Phase

81

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.2: Pseudocode for NextSibling() in DAGDOM A and SiXDOM

DAGDOM: NextSibling()
Let the top of the stack point to node a.

Let b be the next sibling of a in the
CS1.
IF a has no next sibling in the CS THEN
v has no next sibling.
Return FALSE

IF CopyNumber less than OfNumber
THEN

Set CopyNumber to 1
IF b is a share node THEN
share node then b = idref[b]
Set CurrentPosition =

CurrentPosition +Stsize[b]
ELSE

Set CurrentPosition =
CurrentPosition +Stsize[b]

Return TRUE
ELSE

b is a share node
share node then b = idref[b]
Let c be the next sibling of b in the

CS.
IF b has no next sibling in the CS

THEN
v has no next sibling.
Return FALSE

Move the stack node, make it point
to c

Set CurrentPosition =
CurrentPosition +Stsize[b]

Set CopyNumber to 1
IF no Mullti Attribute THEN

Set the OfNumber to 1
ELSE

Set the OfNumber to the value of Multi
Return TRUE.

DAGDOM A: NextSibling()
Let currentWaker the top of the stack.
Let the nodeNum is the Node Number In
VS
IF CopyNumber less than OfNumber
THEN

Set CopyNumber = CopyNumber +1
Set CurrentPosition =

CurrentPosition+ Stsize[nodeNum]
Return TRUE

ELSE
IF currentWaker has no next sibling in

the CS THEN // Tested using DOM
NextSibling method
v has no next sibling.
Return FALSE

Set CopyNumber = 1
Set CurrentPosition =

CurrentPosition+ Stsize[nodeNum]
Set OfNumber = Multi[nodeNum]
Return TRUE

82

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Figure 5.3: In-Memory Representation of DAGDOM A vs SiXDOM

Figure 5.4: Running Time for DAGDOM A vs SiXDOM

83

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.3: Statistics for Sample of the XML files. Column four shows how many
values in Multi are greater than 255, and column five shows how many nodes are

shared with stsize and multi equal to 1

XML File No.Normal No.Share
No.Multi
>255

No.Share(Stsize
& Multi=1)

Orders 11 0 1 0

SwissProt 58610 719261 1 331180

Treebank e 471312 823812 7 501751
Dblp 4700 274799 9 35691

Proteins 77186 787275 38 81963

Factor1 73264 307913 1 174350

Factor2 100635 469299 1 240141

Factor38.4 206197 3299344 1 456853

investigate further optimisations to the auxiliary files of the auxiliary attribute re-

moval phase.

We investigate two directions:

• In order to improve the speed of our approach we investigate removal of the

unnecessary shared nodes.

• In order to improve the space usage of our approach we investigate using a

threshold-based variable-length storage for multi and stsize.

We calculated some statistics for samples of the XML files (five XML files created by

MacMill) as we have shown in Table 5.3. The number of normal and shared nodes

for each file are shown in column 2 and 3 respectively. In column 4 we show how

many nodes in each file have a value of multi greater than 255, and finally in the

last column we show how many nodes are shared with the sub-tree size and multi

value equal to one.

From Table 5.3, we make the following observations:

84

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

• The Multi array contains values which are most likely to be less than 255, and

we used an array of integers for each node. Therefore, instead of using integer

array we can use unsigned char array to store all values that are less than 255

and use a small hash map to store the values that are greater than 255. The

same optimisation can be performed on sub-tree size.

• In the array of id ref that contains -1 for the normal nodes and the actual

node number for the share node, we can replace all the share nodes that have

multi and sub-tree size which is equal to 1 with normal node (actual node

name); after that we notice more than 50% of those arrays will contain -1.

Therefore, we modified the MacMill to create a new output called MacMill2.

As a result, this modification will improve the speed of DAGDOM.

We created a new version of our approach after we made the developments based

upon the above observations and called it DAGDOM B.

Performance

We draw comparisons of the in-memory representation and running time between

DAGDOM A, DAGDOM B and SiXDOM. In Figure 5.5 we show the performance

of in-memory representation between the above implementations.

The experimental results in Figure 5.5 show the in-memory representation of DAG-

DOM B achieves greater space reduction than DAGDOM A and SiXDOM. At this

stage DAGDOM B is better than DAGDOM A and outperformed SiXDOM in all

data files; however, the running time in Figure 5.6 shows approximately two times

slower in CPU time for navigational operations (FirstChild, NextSibling and

Parent) in comparison with SiXDOM, but it is better than DAGDOM A.

85

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Figure 5.5: In-Memory Representation of DAGDOM A, B and SiXDOM

Figure 5.6: Running Time for for DAGDOM A, B and SiXDOM

86

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.4: The behaviour of real and synthetic data files regarding the idref
values. The test is performed to calculate the actual number of bytes to represent
the id ref number (in binary) for share nodes; the last column is the average bytes

per node

File Name Shared% 1-Byte% 2-Bytes% 3-Bytes%
Avg-
Bytes%

SwissProt 0.5 0.71 0.26 0.03 1.32

Treebank e 0.25 0.33 0.50 0.17 1.84
dblp 0.86 0.02 0.67 0.32 2.32
proteins 0.88 0.41 0.43 0.16 1.75

Factor1 0.35 0.27 0.26 0.48 2.23

Factor2 0.40 0.21 0.24 0.55 2.34

In the next section we discuss more details about another development to our ap-

proach in order to improve space usage.

5.3 Variable Length Encoding

In addition to the shrunk skeleton, we currently have three integer arrays; for ex-

ample in treebank e.xml the in-memory representation is approximately equal to

16MB. As a result, the size of these arrays is a significant part of the overall space

usage. Therefore in this section we will consider Variable Length Encoding (VLE)

in our approach in order to reduce space usage.

Suppose that we encode the id ref values as follows: 1 byte for all idref values

which are less than or equal to 255, 2 bytes for all idref values which are greater

than 255 and so on. The average space usage is as shown in Table 5.4. We note that

using VLE, the benefit of reducing share nodes is clearer. We also note that VLE is

more effective on real than synthetic files.

87

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

In VLE we implement a representation to encode any sequence of n integer numbers,

and to access the ith number in an efficient way, support the operation below:

• access(i), where i is the positive integer number from1 to n

This representation contains five approaches of encoding: Naive, Threshold, Fixed

Bit Based, Byte Based and Bit Based. We note that in Section 5.2 we already

have thresholding in multi and Stsize. We will consider an input array of size 5

as follows: 2, 314, 117, 6, 410, and we will encode this array by our approaches

below. We note that the values of this array are idref values. The array ofidref

maybe contains -1 value; therefore we need to store it as 0’s.

We discuss the details of the five approaches of encoding as follows:

• Naive approach: represent any number as an integer by using an integer array;

support access(i) by accessing the index i of that array.

• Threshold: represent some of the numbers in a char array if less than the

threshold; for example in Section 5.2 we used 255 as a threshold for multi

array. Otherwise, store the numbers in an integer array as we show in the

Threshold access(i).

Threshold access(i)

IF idref[i] <= Threshold THEN

RETURN idref[i]

ELSE

FOR J=1 TO index.lenght

IF index[j]=i THEN

RETURN value[j]

88

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

From the above example which is the array of size 5 integers(2, 314, 117,

6, 410) we will consider three arrays: idref of type unsigned char, value of

type unsigned integer and index of type unsigned integer. Now, if we apply

the Threshold approach on the example with 255 as a Threshold, the above

arrays will be as follows:

– idref will contain: 2, 0, 117, 6, 0.

– value will contain: 314, 410.

– index will contain: 2, 5.

We note that node numbers start at 1, while array indices start at 0. If we

ask for Threshold access(2), the idref[2] is equal to 0, (which means the

value is greater than 255), then it will go through index array to find the index

of value 1, which is 0. The last step is to find the value[0] which is equal to

314.

• Fixed BitBased: represent any number based on how many bits it needs

for the maximum number in all sequences to be represented in binary. We

used the same data structures as in a bitbased approach but in a fixed way,

which means that all the numbers have the same length in the Bit-Vector as

Fixed access(i):

Fixed access(i)

IF i == 0 THEN

Set str=1

Set end= str + Fixed.length-1

ELSE

Set str= (i* Fixed.length)+1 //Fixed.length= length of index.

89

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Set end= str + Fixed.length

RETURN bitString.subString(str,end)-2

From the above example: the maximum number is 410, and will take 9 bits

to represent in binary, then the Bit-Vector will contain 8 0s followed by 1 for

each value from our input as follows:

000000001 000000001 000000001 000000001 000000001

By Fixed access(2) then:

str = 2*9(Fixed.length)+1= 19, end = 19+9(Fixed.length)-1 = 27

The result of bitString.subString(19,27)-2 = 117. Note: decrease the

value by 2, because we increased the input values by two in case we have a -1

value.

• Byte Based: represent each number in one byte. In this option we used a

bit vector data structure and used RANK and SELECT operations to support

access as shown in ByteBased access(i):

ByteBased access(i)

Set ref1= rsd.Select(i, 0) //start from 0 (x)

Set ref2= rsd.Select(i+1, 0) //start from 0 (x+1)

Set str= ref1-(i), Set len= (ref2-ref1)-1

//check if Select0(x+1)-Select0(x)==1 for normal node

IF ref2-ref1 == 1 THEN

RETURN Num=-1 //For Normal Node

ELSE

90

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

IF len >1 THEN //For Share with number >=256

Set i=(str+len)-1

RETURN Num tmp= NoB[i]//Array of Char Stored the REF Val-

ue//After Convert to Integer Value

ELSE //For Share with number<=256

RETURN Num = NoB[str]+1 // Array of Integers stored the REF

Value

From the example above, we need one byte for the first, third and forth values

and two bytes for second and fifth values. The Bit-Vector will contain:

01 011 01 01 011 (0 followed by 1 if we need 1 byte, 0 followed by two 1s if

we need two bytes, etc.). We have an array of unsigned char called NoB which

will contain: 2, 58, 1, 117, 6, 154, 1 (1 represents 255).

By ByteBased access(1) then: SELECT (1,0) = 5, SELECT(2,0) = 7. len

= 7-5=2 (greater than 1), then Num = 58+(1*255)+1= 314

• BitBased: represent any number based on how many bits is needed to represent

it in a binary. In this option we used Bit Vector data structure in addition to

Bit-String class [52]. See BitBased access(i):

BitBased access(i)

IF i == 0 THEN

Set str=0

Set end= rsd.Select(i, 1)

ELSE

91

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.5: Main Memory Usage for Stsize File After Applying the VLE (how
many bits per node for each data file)

Options Stsize
Swissprot Treebank proteins factor1 factor2

BitBased 5.92 7.62 8.69 6.84 7.09

FixedBased 31.81 31.81 35.47 30.58 31.81

ByteBased 10.41 10.41 10.42 10.41 10.41

Threshold 8.04 8.00 8.19 8.01 8.00

Naive 64.00 64.00 64.00 64.00 64.00

Set str=(rsd.Select(i-1, 1)+1)

Set end=rsd.Select(i, 1)

RETURN bitString.subString(str,end)-2

From the above example we need 2, 9, 7, 4, 9 bits respectively for our input values.

The Bit-Vector will contain number of 0s based on the number of bits minus one,

and followed by 1 for each value from our input as follows:

01 000000001 0000001 0001 000000001

By BitBased access(2) then: str = SELECT(1, 1)+1) = 11 end = SELECT(2,

1)= 17. The result of bitString.subString(11,17)-2 = 117

Tables 5.5, 5.6, and 5.7 show the space usage of our auxiliary files after applying the

above representation options. From Tables 5.5, 5.6, and 5.7, we notice that overall

the best option is to use a BitBased representation, but like ByteBased shows better

results id ref (most of the numbers are -1) . So, we can apply the proper option

based on the data files.

Tables 5.8, 5.9, and 5.10 show the running time for our auxiliary files after applying

the above representation options to perform VLE.

92

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.6: Main Memory Usage for id ref File After Applying the VLE (how
many bits per node for each data file)

Options id ref
SwissProt Treebank proteins factor1 factor2

BitBased 8.42 7.41 14.86 9.97 11.36

FixedBased 29.31 30.58 29.31 28.05 29.31

ByteBased 7.27 5.39 14.30 16.53 9.83

Threshold 85.43 118.24 87.49 116.64 117.81

Naive 64.00 64.00 64.00 64.00 64.00

Table 5.7: Main Memory Usage for Multi File After Applying the VLE (how
many bits per node for each data file)

Options Multi
SwissProt Treebank proteins factor1 factor2

BitBased 5.23 4.43 4.55 4.55 4.54

FixedBased 15.09 8.81 19.00 16.44 17.75

ByteBased 10.41 10.41 10.41 10.41 10.41

Threshold 8.00 8.00 8.01 8.00 8.00

Naive 64.00 64.00 64.00 64.00 64.00

Table 5.8: Running Time (seconds) for Stsize File After applying the VLE

Options Stsize
SwissProt Treebank proteins factor1 factor2

BitBased 0.17 0.33 0.25 0.14 0.15

FixedBased 0.45 0.76 0.57 0.34 0.33

ByteBased 0.2 0.36 0.25 0.15 0.16

Threshold 0.09 0.17 0.11 0.07 0.07

Naive 0.04 0.07 0.04 0.03 0.04

93

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.9: Running Time (seconds) for id ref File After Applying the VLE

Options id ref
SwissProt Treebank proteins factor1 factor2

BitBased 0.23 0.32 0.38 0.19 0.19

FixedBased 0.45 0.76 0.51 0.33 0.34

ByteBased 0.22 0.34 0.3 0.18 0.17

Threshold * * * * *

Naive 0.04 0.07 0.05 0.03 0.03

Table 5.10: Running Time (seconds) for Multi File After Applying the VLE

Options Multi
SwissProt Treebank proteins factor1 factor2

BitBased 0.17 0.26 0.17 0.11 0.12

FixedBased 0.31 0.35 0.38 0.24 0.25

ByteBased 0.21 0.32 0.21 0.14 0.14

Threshold 0.09 0.16 0.1 0.07 0.06

Naive 0.04 0.07 0.05 0.03 0.03

After we tested all the variable length encoding options separately with our auxil-

iary files, we integrated the best options of representation to DAGDOM. Next, we

evaluated the performance of in-memory representation running time; we called this

version DAGDOM C and in Section 5.4 we show the experiential evaluations.

5.4 Experimental Evaluation

In this section we draw comparisons of the space usage and running time between

Xerces, DAGDOM, and SiXDOM.

94

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

5.4.1 Basic Setup

The test machine was an Intel(R) Pentium(R) with 8GB RAM, 2.80GHzCPU and

a 3MB cache size, running Ubuntu 10.04.4 LTS. The compiler was g++.

• For RANK and SELECT we used rsdic library [53].

• In Xerces and SiXDOM, we take an XML file such as orders.xml file then

create a new file called VSorders.xml, considering the element node only and

ignoring the other components of the XML document (attribute, text node,

etc). This functionality was implemented using C++.

• In DAGDOM we take an XML file, such as orders.xml, by using MacMill

software create a compressed file called Morders.xml, considering the element

nodes only and ignoring the other components of the XML document (at-

tribute, text node, etc).

• We create XML files after modifying MacMill, and those files are called MacMill2.

• In the Auxiliary Removal Attribute phase we take an XML file, such as

orders.xml, and create a new shrunken XML file called Sorders2.xml (from

MacMill2). These files consider the element nodes only and ignore the other

components of the XML document (attribute, text node, etc). In addition,

we create three text files: id ref, Stsize and multi. This functionality was

implemented using C++.

• After that, using C++, we traverse the files and we find the main memory

usage (as shown in Table 5.11) and the running time navigation operations

(FirstChild, NextSibling and Parent) shown in Table 5.12.

95

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.11: Main Memory Usage of XML Representations in Xerces, DAGDOM,
DAGDOM C, and SiXDOM (MB)

Version Orders Swiss. dblp Treeb. prote. fact1 fact2 Fact34.8 fact67 fact96

Xerces 28.93 553.71 615.04 452.80 3920.80 310.95 621.22 11775.88 20542.48

DAGDOM 0.00 540.00 185.09 949.91 563.96 265.04 394.97 2253.48 3539.11 4794.40

DAGDOM C 2.62 10.29 6.33 16.11 13.00 6.57 9.53 40.44 78.09 77.25

SiXDOM 4.54 33.75 39.23 31.76 86.01 19.03 37.82 220 311.41 459.93

• We tested on orders.xml, SwissProt.XML, dblp.xml, treebank e.xml and

proteins.xml [9], and on some synthetic XML data files such as factor1.xml,

factor2.xml .etc from the xmark files [54].

5.4.2 Main Memory Usage

In Table 5.11 we draw comparisons of the main memory usage (MB) between Xerces,

DAGDOM (Using Xerces with MacMill File), DAGDOM C (DAGDOM using SiX-

DOM after Auxiliary Attribute Removal, Share Node Removal phase and VLE)

and SiXDOM. We notice that DAGDOM achieves significant space reductions over

Xerces (15 times space reduction at least), and as we can see factor96.xml (VS

size is 2.9 GB) in our tests was not able to be processed by our test machine; this is

because it exceeds the maximum virtual space. Compared to SiXDOM, as we show

in DAGDOM C, the main memory usage was reduced typically 2 to 5 times.

5.4.3 Running Time

In Table 5.12 we draw comparisons of the traversal time (wall-clock time in sec-

onds) between Xerces, DAGDOM (Using Xerces with MacMill File), DAGDOM C

(DAGDOM using SiXDOM after Auxiliary Attribute Removal, Share Node Removal

96

Chapter 5. In-Memory Representation of XML Document Using DAGDOM

Table 5.12: Running time (seconds) of XML representations in Xerces, DAG-
DOM, DAGDOM C and SiXDOM

Version Orders Swiss. dblp Treeb prote. fact1 fact2 Fact34.8 fact67 fact96

Xerces 0.01 0.11 0.12 0.11 0.83 0.07 0.14 360.00 936.54

DAGDOM 0.19 6.69 7.35 6.03 44.85 3.78 7.50 143.52 259.77 357.44

DAGDOM C 0.03 0.87 0.84 1.10 6.95 0.61 1.15 22.45 39.93 57.49

SiXDOM 0.01 0.21 0.20 0.28 1.97 0.14 0.29 5.70 9.86 13.91

phase and VLE) and SiXDOM. Our test used wall-clock time to measure the CPU

time.

Table 5.12, shows three times slower in CPU time for navigational operations in

DAGDOM C compared with SiXDOM, and we notice that are 4-5 times slower in

small data files in comparison with Xerces implementation, but DAGDOM C showed

extreme successes on the large files such as factor67.xml.

5.5 Summary

In this chapter we have presented an approach called DAGDOM to support naviga-

tion operations with space-efficient in-memory representation. Further optimisation

of the naive implementation of DAGDOM has been considered by careful applica-

tion of succinct data structures and variable length encoding. DAGDOM yields a

good result in comparison to Xerces and SiXDOM implementations particularly in

main memory usage, but slower in CPU time for navigational operations, but the

experimental results show that CPU time in DAGDOM is extremely successful on

large XML files but is slightly slower than SiXDOM.

97

Chapter 6

Representing Attributes and

Textual Data

In Chapter 5 we optimised DAGDOM to obtain significant space reductions over

an existing space-efficient Xerces DOM implementation [1] (typically 2 to 5 times

space reduction), with 4-5 times slower in CPU time for navigational operations.

However, DAGDOM was based on the MacMill compression method [2] and as

MacMill removes text and attributes, DAGDOM cannot represent these components

of an XML document.

In this chapter we will introduce a version of DAGDOMwith complete representation

of an XML document, particularly the attribute and text nodes, and we have called

this DAGDOM+. Furthermore, we will present a novel approach to representing

the textual data with a mapping strategy, which maps the text nodes in the structure

of the XML document to the textual data values in a space-efficient way.

This chapter is organised as follows. In Section 6.1 we discuss how we handle the

attribute and text nodes in DAGDOM and we perform an experimental evaluation

of the space usage and traversal time for DAGDOM+. Next, in Section 6.2 we will

98

Chapter 6. Representing Attributes and Textual Data

present the textual data representation, summarise some of the related work, and

we will point out the differences of text document order and text element order. In

Section 6.3 we will present the problem of storing textual data in XML documents

and we give an explanation of how to apply our approach which is called the Labelled

String Sequence Problem (LSSP). In Section 6.4 we will give the solution to LSSP

and will explain our LSSP mapping strategy.

6.1 Attribute and Text Nodes

In this section we discuss DAGDOM+. There are some potential obstacles to over-

come at this stage which are as follows:

• MacMill does not support attribute and text nodes as we saw in Chapter 4,

which means we need to develop MacMill to handle attribute and text nodes

in the skeleton.

• We need to ensure that compression performance is not affected by handling

text and attribute nodes.

• We need to distinguish between the different attribute and text nodes, and

for this we adapt the strategy introduced in Chapter 4 to distinguish between

nodes in the Virtual Skeleton (VS) while navigating the Compressed Skeleton

(CS).

We therefore addressed the above points by a sequence of steps that begins from the

original XML files as follows:

• Rewrite the XML files as follows: all text nodes are replaced by a single element

<T/>. Then we introduce the attribute nodes of an element node as additional

99

Chapter 6. Representing Attributes and Textual Data

Figure 6.1: Virtual Skeleton with Attribute and Text Nodes

children of the element, and apply MacMill to the rewritten XML files. On

the left part of Figure 6.1 we show part of the XML file and the new VS with

attribute and text nodes on the right.

• Adding these nodes can hurt compression; this is because the nodes may have

the same element name but different attribute name, and then MacMill will

not compress these elements together as before. In Figure 6.2 we show an

example of two sub-trees that are considered the same in original MacMill but

not when we have the text and attribute nodes. In order to see the compression

performance in our data files we create the CS using MacMill after rewriting

the XML file with attribute and text nodes, then apply all the pre-processing

phases we showed in Chapter 5; after that we measure some statistics on the

new data files as we show in Table 6.1.

In Table 6.1 we consider in our measures the original size including textual data,

CS without attributes and text (CS-Size), CS with attributes only (CS1-Size) and

100

Chapter 6. Representing Attributes and Textual Data

Figure 6.2: XML Document with two sub-trees that have the Same Element
Names But with Different Attribute and Text Nodes (Considered the same in

original MacMill but not once when we have text and attribute nodes)

Table 6.1: Sizes of XML Data Files: original, VS (elements only) and the
sizes after we handled the attribute and text nodes in the VS. CS-Size (com-
pressed skeleton without attribute and text),CS1-Size (compressed skeleton with
attribute only), CS2-Size (compressed skeleton with attribute and text nodes) and
No.Ele(number of elements in the XML file. All the CS Sizes after MacMill2)

File Name orders SwissP. Treeb. Prote. Fact1. Fact2.
Original-Size 5.1 MB 109.5 MB 82.1 MB 600.0 MB 116.5 MB 233.7 MB
CS-Size 272 Byte 30.5 MB 41.4 MB 34.8 MB 14.4 MB 21.7 MB
CS1-Size 272 Byte 39.2 MB 41.4 MB 38.8 MB 15.4 MB 23.1 MB
CS2-Size 964.7 KB 114.3 MB 97.6 MB 74.2 MB 32.9 MB 48.1 MB
No.Ele. 150001 2977031 2437666 21305818 1666315 3337649

101

Chapter 6. Representing Attributes and Textual Data

Table 6.2: Analysis The Raw data of Table 6.1,

File Name orders SwissP. Treeb. Prote. Fact1. Fact2.
No.attr:Ele 0% 74% 0% 5% 104% 23%
No.Text:Ele 100% 182% 200% 174% 181% 181%
No.Ele-CS 0% 26% 53% 4% 23% 17%
No.Share:

Ele.CS
0% 50% 25% 82% 35% 40%

No.Ele-CS1 0% 19% 53% 4% 12% 15%
No.Share:

Ele.CS1
0% 59% 25% 76% 40% 44%

No.Ele-CS2 10% 32% 42% 4% 16% 14%
No-Share:

Ele.CS2
50% 45% 27% 43% 97% 38%

CS with attributes and text nodes (CS2-Size); this size excludes textual data. In

addition, we show the percentage of normal and share node to the number of original

nodes in CS, CS1 and CS2.

We notice from Table 6.1 that when the number of attributes is low the compression

is unaffected. Therefore, adding attribute nodes is usually cheap since CS1 size is

rarely much bigger than CS. If we look at CS2 size, we notice in some XML file

that the size is similar to the original size and larger than CS and CS1 as well; for

example each element in order.xml has a text node and CS2 is much larger than

CS, even though CS2 does not include the values of text nodes, but there is a lot of

compression happening, as we show in Table 6.2.

Before discussing the results, we expect to see one of two cases as follows:

(a) Adding attribute and text nodes reduces the compression.

(b) Adding attribute and text nodes leaves compression unchanged.

102

Chapter 6. Representing Attributes and Textual Data

Table 6.2 shows: Number of attributes to the number of Elements (No.attr:Ele),

Number of text to the original number of elements (No.Text:Ele), Number of ele-

ments in CS to the number of original elements (No.Ele-CS:Ele), Number of share

nodes to the number of elements in CS (No.share:Ele.CS), Number of elements in

CS1 to the number of original elements plus number of attributes (No.Ele-CS1:Ele),

Number of share nodes to the number of elements in CS1 (No.share:Ele.CS1), Num-

ber of elements in CS2 to the number of original elements plus number of attributes

and text nodes, (No.Ele-CS2:Ele), Number of share nodes to the number of elements

in CS2 (No.share:Ele.CS2).

From Table 6.1 and Table 6.2 we now discuss an example are of our data files in

detail. If we look at SwissProt.xml, we can see the number of element nodes is equal

to 2,977,031 and 74% of the elements have an attribute, and most of the elements the

have more than one text node (182%: number of elements). When we compressed

SwissProt.xml by MacMill, the number of element nodes reduced to 26% (50%

of these nodes are a share nodes). Now, in the same example (SwissProt.xml)

we show our measurements for both cases, one with attributes and the other with

attribute and text nodes, as follows:

• If we consider the attribute nodes, then the number of nodes will increase by

the number of attribute nodes, and the number of nodes on the CS is 19%

of the number of element and attribute nodes together, which means we have

more chance to compress more nodes together. In addition, the percentages

of share nodes increased up to 10%.

• If we consider the attributes and text nodes, then the number of nodes will

increase by the number of attribute and text nodes, and the number of nodes

on the CS is 32% of the number of element, attribute and text nodes, and the

103

Chapter 6. Representing Attributes and Textual Data

percentages of share nodes decreased by 5%, which means the performance of

compression is approximately the same as without attribute and text nodes.

Based on the above observations, case (b) is the result in most data files (Adding at-

tribute and text nodes leaves compression unchanged); for example, in factor1.xml,

the number of nodes in the CS is 16% of the number of element, attribute and text

nodes, when we include the attribute and text nodes (104% attributes and 181% text

nodes), and the same in factor2.xml, treebank e.xml and proteins.xml; which

means the chance of compressing more nodes together is unaffected by including the

attribute and text nodes. In orders.xml the number of nodes in the CS is 10% of

the element, attribute and text nodes if we include the text nodes, and compared to

0% aproximately in CS, but not by too much.

On the other hand, by adding the attribute and text nodes to the skeleton, auxiliary

information is needed in order to perform the navigation.

Although in Chapter 4 we kept track of the document order number of the current

node in the VS while traversing the CS, we note that in fact doing so is unnecessary.

There is no need to differentiate between identical element nodes, since DOM can

only access their element name. However, attribute nodes with the same attribute

name can have different attribute values, and text nodes with identical enclosing

elements can have different values as well. Thus, when traversing the CS, it is

necessary to keep track of the different attribute and text nodes. We do so by

keeping track of the document order number of these nodes in the modified VS. To

do this, we replace the sub-tree size data by attribute and text node number data

to make the navigation.

For example, in the case of NextSibling; if we are at a particular element node and

looking to move to the next sibling, instead of using sub-tree size, we only need to

find how many attribute and text nodes are under this element node. Then adding

104

Chapter 6. Representing Attributes and Textual Data

Table 6.3: Main Memory Usage of XML Representations in Xerces, DAGDOM,
DAGDOM+ and SiXDOM

File Name Orders SwissProt treebank proteins factor1 factor2
VS-Size 5.2 129.1 69.8 715.5 64.9 129.9

Xerces 56.78 1956.89 1349.38 10929.88 943.22 1873.37

DAGDOM 18.46 2151.43 2105.25 1402.63 654.08 948.22

SiXDOM 5.30 76.50 38.86 163.31 60.66 54.40
DAGDOM+ 2.98 34.96 38.56 30.60 17.62 12.37

the number of attribute and text nodes to the element id number, will get the next

sibling id number. It is noted that, compared to keeping the sub-tree size for each

element in an integer array, the attribute and text node numbering did not take up

much more space.

Performance

We evaluate DAGDOM+ as we show in Table 6.3, against DAGDOM (from Chap-

ter 4), against Xerces, and against SiXDOM. The XML files were pre-processed to

replace all text nodes with <T/> and all attribute nodes were added as children of

the corresponding element node, as described above. The second row of Table 6.3

shows the VS size (with attribute and text nodes) for each file in MB

DAGDOM+ obtained significant space reductions over DAGDOM (the main mem-

ory usage was reduced on average 46 times) and SiXDOM (up to 5 times, such as

proteins.xml). DAGDOM+ preserved the same performance as without attribute

and text nodes and the results at this stage were very promising.

In Table 6.4 we draw comparisons of running time (wall clock time in seconds)

between Xerces, DAGDOM, DAGDOM+ and SiXDOM. Our test used wall clock

time to measure the CPU time.

105

Chapter 6. Representing Attributes and Textual Data

Table 6.4: Running time of XML Representations in Xerces, DAGDOM, DAG-
DOM+ and SiXDOM

File Name Orders SwissProt treebank proteins factor1 factor2
VS-Size 5.2 129.1 69.8 715.5 64.9 129.9

Xerces 0.01 0.40 0.27 360.65 0.19 0.37

DAGDOM 0.54 22.71 18.09 138.77 11.27 23.58

SiXDOM 0.02 0.77 0.75 5.18 0.43 0.87
DAGDOM+ 0.11 3.77 2.89 34.15 1.83 3.72

We notice from Table 6.4 that the CPU time for basic navigational operations

(FirstChild, LastChild, NextSibling, PreviousSibling and Parent) shows

DAGDOM+ is much faster than DAGDOM, but is slower than SiXDOM.

6.2 Representing Textual Data

In this section, we present strategies to efficiently store and access textual data

contained in XML documents. As we mentioned in Chapter 2, the basic API which

is called Node contains functionality common to all nodes, including the operations

to retrieve information associated with each node, such as the getNodeValue()

operation which returns the textual value of the node that has a value. In fact, we

note that some of our test files, such as treebank e.xml, have textual data that

occupied up to 80% of the document. Therefore, it is important to store text data

carefully.

106

Chapter 6. Representing Attributes and Textual Data

6.2.1 Compressing Textual Data

In Chapter 4 we saw how the MacMill [2] breaks down the XML document into

containers of data values and a CS that describes the structure. Some other pre-

vious work has achieved an excellent compression ratio for storing the strings in a

space-efficient manner; for example XMill [5] separates the structure and groups re-

lated textual data into a single container in order to apply an appropriate semantic

compressor for each container.

The main shortcoming in the above approaches is that they do not support random

access to the strings. Therefore, the aim of our approach is to store the strings in a

space-efficient manner so that we can support random access to the i-th string.

6.2.2 Random Access To Compressed Textual Data

Delpratt et al [7]. formalised the problem of storing textual data in an XML docu-

ment as the string sequence problem (SSP). Given n (non-empty) strings s1, s2, . . . , sn,

store this sequence of strings in data structure in order to support the access(i)

operation which returns the ith string.

As noted in Chapter 3, Delpratt et al.’s approach [1] allows the text nodes to be

numbered from 1..t in document order, where t is the number of text nodes. Their

approach is summarised as follows. In the pre-processing phase, create a sequence

of strings, which consist of the values of all text nodes in the document, numbered

in document order. Store this sequence in a data structure for the SSP problem.

When navigating the document, if we are at a text node, and the getNodeValue()

operation is called, we get the document order number of the text node and use the

access() operation of the SSP data structure to get the content of this text node.

We now look at two solutions to the SSP problem.

107

Chapter 6. Representing Attributes and Textual Data

6.2.2.1 Delpratt et al.’s Approach

In [52] the Prefix-Sum data structure was considered (more details have been given

in Chapter 2). SSP used the Prefix-Sums data structure to store the sequence of

strings in order to support the operation of returning the ith string; if we are given

n non-empty strings s1, s2, . . . , sn, then we concatenate s1, s2, . . . , sn into a single

character array, called T. Also the cumulative length of s1, s2, . . . , sn is stored as the

numbers x1, x2, . . . , xn in the Prefix-Sum data structure, where xi = |si|. Recall

that the Prefix-Sum data structure supports the operation SUM(x,i) which returns

x1 + . . .+ xi (thus the value returned by SUM(x,i) is the i-th offset).

Blocked BZip and Caching Technique

We now discuss using Blocked BZip to represent the sequence of strings in a com-

pressed manner. We let T denote the string which is a concatenation of t1,, tn

where ti is the compressed ith string. In order to access the ith string we need to

do the following:

• Compute j = SUM(x′, i), where x′

i = |ti|.

• Compute k = SUM(x′, i+ 1)

• Return substring(j, k − 1)

This representation, which supports the substring() operation using a blocked

BZip2 to divide the T into blocks of characters, uses BZip2 to compress each block

of characters. As a result, when the individual string ti needs to be retrieved, the

block(s) containing it are decompressed. After that, compute the subString(j,k)

which is required to copy the required characters from position j to k in order to

108

Chapter 6. Representing Attributes and Textual Data

retrieve ti, where j is the starting position of the ith required string and k is the

end position of the block(s).

Another development was achieved in [52], and is called the caching technique. The

caching idea is to store text from the last decompressed block into a block cache

of size K as an uncompressed block (using FIFO replacement mechanism when the

cache is full). On the other hand, the subsequent accesses to a cached block do not

require decompression so long as the block is not evicted from the text block cache.

The implementations used a block size of 8 or 16 KB at most.

The caching idea improved decompression time, particularly if we used a large

block(s) sizes of 8 KB or 16 KB and access text nodes consecutively. But if does not

support random access to strings.

We now briefly digress to discuss the choice of block size by Delpratt et al. They only

looked at block sizes of 8 KB and 16 KB. The experimental evaluation shows that the

compression ratio of using blocked BZip2 with block size of 16 KB is generally better

than using a block size of 8 KB, but with small differences. The result shows the

compression ratio is roughly similar when the textual data is arranged in path order

(the textual data with the same upward path from leaf node to root are arranged

together) or document order.

In [7] reports were similar for upward path order, and document order and with

smaller block size we can access individual data values faster because the decom-

pression time is less than with large blocks, but when we increase the block size by

more than 8 and 16 KB our results show the differences in a compression ratio; more

details will be provided in Section 6.2.3. Thus, we considered the choice of block

size in our approach.

109

Chapter 6. Representing Attributes and Textual Data

6.2.2.2 Wavelet Trie

In [55] the compressed indexed sequence of strings was introduced. This includes

the string sequence problem. In some applications such as website optimisation

for database storage of telephone calls, there are strings that require a suitable

compressed format. Therefore space-efficiency is highly desirable. Indexed sequences

are stored by representing the sequence explicitly and indexing it using auxiliary

data structures, for example B-Trees and Hash they gives a new data structure

called Wavelet Trie for storing a sequence of strings that supports not only random

access, but also supports searching, range and analytic operations.

The weakness of Wavelet Trie and Blocked BZip is that they do not get compression

benefits by considering the tag that contains the text node. We now discuss this

issue in greater detail.

6.2.3 Document Order Versus Element Order

In XML-specific compressors such as XMill [5], the importance of grouping text into

containers based upon their parent element and applying appropriate compressors

to each container was noted. The underlying compressor used was Gzip [56]. In

contrast, Delpratt [7] used Bzip2 as the compressor, and reported little difference

between compressing the text in upward path order (the textual data with the same

upward path from leaf node to root are arranged together) and document order.

Our first objective was to reproduce these findings. To do this, we compared com-

pressibility of textual data in element order (the textual data with the same element

name are arranged together) versus document order using both Bzip2 and Gzip as

compressors, and results are summarized in Table 6.5. We observe that using both

Bzip2 and Gzip, there was an improvement in compression in element order versus

110

Chapter 6. Representing Attributes and Textual Data

Table 6.5: Comparison between Gzip and BZip2 for Document and Element
Order

File
Uncompressed

text (KB) Doc-order
Element-
order

Doc-order
Element-
order

GZip BZip2

Orders 1634.586 430.5 KB 350.4 KB 266.7 KB 260.6 KB

SwistPros 41547.575 7.0 MB 4.6 MB 4.6 MB 3.4 MB
dblp 446278.506 113.7 MB 90.9 MB 78.8 MB 69.1 MB
Treebank e 63517.666 26.4 MB 25.1 MB 24.1 MB 23.3 MB

Proteins 366109.163 88.6 MB 65.8 MB 67.2 MB 60.8 MB

document order. However, the improvement was significantly more when using Gzip

versus Bzip. In all cases, though, Bzip with element order compressed the best.

The above test was performed using Bzip2 and Gzip on the entire concatenated text

(in document or element order). However, since we need to perform random access,

we need to look at using blocked Bzip2. Here, Delpratt reported that compression

ratios degraded (in document order) when block sizes of less than 8KB were used,

which justified their block size choice. Obviously, smaller block sizes are better for

random access to strings. In order to understand the trade-offs in our case, we now

study the compressibility of the textual data using blocked Bzip2 for a variety of

block sizes, both in document and element order.

6.2.3.1 Compression Ratio: Document order versus Element order

We compare document order versus element order (the textual data with the same

element name are arranged together) with Bzip2 as the underlying compressor and

we consider blocked Bzip in our experiments.

• We ran the test on different block sizes (512, 1024, 2048, 4096 and 8192 Bytes).

111

Chapter 6. Representing Attributes and Textual Data

Figure 6.3: Compression Ratio in Document Order VS Element Order

• We tested different kinds of real data files (Orders, SwissProt, dblp, treebank e

and Proteins).

• In addition, we ran used BZip2 without dividing into blocks.

• The experiments were run on text document order and text element order.

Figure 6.3 shows the compression ratio in document order versus element order. We

observe the following:

• The BZip2 with larger block sizes is generally better than smaller block sizes.

But the compression ratio for all chosen sizes it is less than Bzip2. However

for the file treebank e.xml the compression with block size 8192 Byte was

better than Bzip2 compression, but not by much. In both cases, document

order and element order, applications would benefit from a smaller block size

because decompression of a smaller block is faster.

112

Chapter 6. Representing Attributes and Textual Data

Figure 6.4: Decompression Time in Document Order VS Element Order

• Based upon the above figures, we notice differences in the BZip2 compression

of text arranged in text document order and text in element order. We observe

that the compression ratio of BZib2 in element order is better than in document

order for all files. BZib2 uses the BurrowsWheeler transform which organises

text into parts with similar contexts (details were provided in Section 2.5,

Chapter 2). In element order we will find most of the similar contexts together

and that is very useful because the text of approximately the same length will

be set together and may be in one block(s).

6.2.3.2 Decompression Time: Document order versus Element order

Regarding decompression time, Figure 6.4 shows the decompression time after we

ran our test with the same arrangement and data files as mentioned in Section

6.2.3.1. We observe the following:

113

Chapter 6. Representing Attributes and Textual Data

• BZip2 with smaller block size is generally better than larger block size.

• The decompression time when we used the libBZip2 with smaller block size

and in element order is generally better than with the larger block size in

document order.

• When using BZip2 with smaller block sizes we can access individual data values

quicker, because the small block size have less decompression time, especially

for a collection of textual values that are small in length and where the text

value begins far away from the start of the block. For such a case with larger

block size, we may have to read double the number of characters as we do for

smaller block size.

• The results show that decompression time in element order is less than in

document order.

Our work leads us to conclude that when using BZip2 as an underlying compressor

in a blocked compression scheme, storing data in element order is beneficial. At any

given block size, text compressed in element order compresses better and decom-

presses faster than text compressed in document order. This helps us to use smaller

block sizes in a blocked compression scheme, thus speeding up random access, with-

out losing too much in compression ratio. In addition, we can figure out the suitable

block(s) size in order to get a increase the compression ratio with faster access based

upon the actual data.

6.3 Labelled String Sequence Problem

In the previous section we observed that storing text in element order is better

even when using Bzip2 as a compressor. To model storing text in element order

114

Chapter 6. Representing Attributes and Textual Data

while preserving random access we now introduce the Labelled String Sequence Prob-

lem (LSSP). Given n (non-empty) strings s1, s2, . . . , sn and a label for each string

l1, l2, . . . , ln, store the strings in a data structure which supports the operation ac-

cess(i, l), where l is a positive integer and 1 ≤ i ≤ n. Access(i, l) returns si if l = li,

otherwise either an error is flagged or an arbitrary string is returned.

The main difference between SSP and LSSP is that labels are considered in the

access operation. Therefore, LSSP includes SSP on a special case, and any solution

to the SSP will be a solution to the LSSP, in addition to the better space efficiency

in LSSP.

Labelled String Sequence in XML DOM

We now describe how to apply LSSP to the storage of textual data in DOM and

why LSSP is an appropriate approach to take.

We have already shown in Section 6.2.2 that we can number the text nodes from

1..t in document order, where t is the number of text nodes. Thus, our approach

is summarised as follows. In the pre-processing phase, create a sequence of strings,

which consists of the values of all text nodes in the document, numbered in document

order, with label l for each string, where is the element id number (document

order) of the parent element. Store this sequence of strings and labels in a data

structure for LSSP. When navigating the document, if we are at a text node, and

the getNodeValue() operation is called, we get the document order number and the

label of the text node, where the label is the document order number of the parent

for this text node. Then we use the access() operation of the LSSP data structure

to get the content of this text node.

115

Chapter 6. Representing Attributes and Textual Data

Similarly to the above approaches, such as XMill, LSSP compresses the textual data

separately, but has a different way of grouping the textual data. Therefore, LSSP

groups (element order) the textual data which have a parent with the same element

name together and gives them the same label in order to maximise compression.

Generally, labels can be ignored in the labelled strings sequence, but using labels

generally gives a better space-time tradeoff.

6.4 Solution to the Labelled String Sequence Prob-

lem

In this section we will introduce the main technique which we used in our approach

in order to obtain a solution to the Labelled String Sequence Problem.

6.4.1 Minimal Perfect Hashing

Perfect hashing is a technique for mapping a set of key values to the hash table with

no collisions. In most general applications, we cannot know exactly what set of key

values will need to be hashed until the hash function and table have been designed

and put to use. However, when we know all the keys in advance, at this point there

is a possibility to build a table which contains one entry for each key and no empty

slot. Therefore the function is called minimal [57].

Minimal perfect hash functions are widely used for memory-efficient storage and

fast retrieval of items from static sets, such as words in natural languages, reserved

words in programming languages or interactive systems, universal resource locations

(URLs) in Web search engines, or item sets in data-mining techniques [57] [58] [59] [60].

116

Chapter 6. Representing Attributes and Textual Data

Figure 6.5: Perfect Hash Function

Figure 6.6: Minimal Perfect Hash Function

Let U be a universe of keys. Let S ⊆ U be a set of keys given by the user, and let

|S| = n. A minimal perfect hash function is a function f such that:

• f maps U to the range 1..n [f is minimal]

• For any two different keys x, y in S, f(x)!= f(y) [f is perfect]

Figure 6.5 illustrates a perfect hash function and Figure 6.6 illustrates a minimal

perfect hash function. In some hash functions, the range of f is slightly more than

n. Then, we say the function is perfect with load factor n/(size of range of f).

There are different implementations of MPH that we can find in the CMPH li-

brary [57]. The CMPH library has efficient and newest algorithms in an easy-to-use,

production-quality and fast API. The CMPH library works with huge entries and

it has been used for sets with more than 100 million keys (even if it cannot fit in

117

Chapter 6. Representing Attributes and Textual Data

the main memory) for constructing minimal perfect hash functions. There are many

algorithms supported in the CMPH library, but we used CHD and BDZ algorithms

in our approach. The following are some of the distinguishable features of those

algorithms:

• CHD Algorithm: it is considered the fastest algorithm for building PHFs and

MPHFs in linear time. It can generate MPHFs that can be stored in approx-

imately 2.07 bits per key, and for a load factor equal to the maximum one

that is achieved by the BDZ algorithm (81%), the resulting PHFs are stored

in approximately 1.40 bits per key [57].

• BDZ Algorithm: it is considered to be very simple and efficient and it con-

structs both PHFs and MPHFs in linear time like CHD. The maximum load

factor one can achieve for a PHF is 1/1.23. The resulting MPHFs can be

stored in approximately 2.6 bits per key [57].

Our approach will use the minimal perfect hash function in order to maintain the

mapping strategy between skeleton document order and textual element order num-

bering very space-efficiently. The next section will show the mapping strategy that

we used in our approach, which is supported by MPH [57].

6.4.2 The Labelled String Sequence Mapping Strategy

The first step of our approach is to create an MPH for each different element name,

which means that all textual data with the same element name in the XML document

have the same MPH file. The MPH file contains a unique key for each element in

order to maintain mapping between skeleton document order and textual element

order numbering very space-efficiently.

The input data for LSSP will be as follows:

118

Chapter 6. Representing Attributes and Textual Data

• Text file contains the extracted textual data value from the XML file by the

document order traversal and delimated by the symbol of greater than(” > ”).

• Labels auxiliary file which contains the label of each element in the XML file

by document order traversal as well. We used the short-code value (see Section

3.4.1 for more details about the short-code data structure) for each element

instead of using the element id number. The short-code value for elements

starts from 13, as we show in Figure 6.7.

We now discuss the of LSSP as follows:

• Read the textual data and labels files for XML file.

• Re-order the textual data based on the element name order.

• From the CMPH library we use the supported algorithms such as CHD or

BDZ in order to create an MPH on sets of skeleton document order numbers

for each element in the XML document (which is the same order of textual

data).

• For each element we re-order the text based on the MPH keys.

• Using the access operation we can read the ith string as skeleton, document

order with label, return the ith string as stored and re-ordered based on the

MPH keys.

Figure 6.7 shows the labelled string sequence mapping strategy for a small example.

119

Chapter 6. Representing Attributes and Textual Data

Figure 6.7: Labelled String Sequence Mapping Strategy

Performance

To show the evaluation of BDZ and CHD algorithms on one of our data files and

we will present the experiments on the labelled strings sequence by showing the

evaluation of memory usage and the running times on different implementations:

Naive, SSP and LSSP. The test machine was the same as we saw in Chapter 5, also

with the same data files.

Firstly, we extracted the textual data from the XML file in document order, in

addition to creating an auxiliary text file which contains the sequential textual node

numbers in document order as well. After that we used the MPH algorithms in

order to create the MPH files. Table 6.6 shows the result of proteins.xml. From

120

Chapter 6. Representing Attributes and Textual Data

Table 6.6: Comparisons Between BDZ and CHD Algorithms. Elapsed
Time:Sum is time for all elements.

Proteins BDZ Algo. CHD Algo.

Elapsed Time:Sum 431.449 SEC 447.003 SEC

Elapsed
Time:Average/Element

6.7 SEC 7.5 SEC

Original Size 313.7 MB 313.7 MB

Size of (mph-file) 12.5 MB 19.1 MB

Table 6.7: Main Memory Usage of LSSP Compared to Naive and SSP

XML File Naive SSP LSSP

Orders 2.06 0.06 0.03
SwissProt 31.24 0.90 0.40
Treebank e 21.24 0.83 0.27
Proteins 239.45 6.06 3.05
Factor1 10.25 0.33 0.13
Factor2 20.50 0.66 0.26

Table 6.6, we notice that the size of auxiliary files for all textual data is 313.7 MB,

and the MPH files reduced the size to 12.5 MB by BDZ algorithm and 19.1 MB by

CHD algorithm. The average elapsed time of creating MPH files also shows that the

BDZ is faster than the CHD.

In Table 6.7 we draw comparisons of the main memory usage (MB) between Naive,

SSP and LSSP implementations.

We notice from Table 6.7 that LSSP obtained a good space reduction over Naive and

SSP (typically 2 to 3 times) and improved the compression performance of storing

the textual data in an efficient way in order to associate these data to the text node

in the CS. In Table 6.8 we notice that LSSP is slower than Naive, but up to 2 times

slower than SSP, thus trading off time for space.

121

Chapter 6. Representing Attributes and Textual Data

Table 6.8: Running Time Performance of LSSP compared to Naive and SSP in
seconds

XML File Naive SSP LSSP

Orders 0.01 0.08 0.10
SwissProt 0.03 0.91 1.33
Treebank e 0.02 1.31 1.61
Proteins 0.27 1.64 2.97
Factor1 0.01 0.47 0.78
Factor2 0.02 0.91 1.45

6.4.3 Summary

We have shown that DAGDOM+ gives very promising results after we handled the

attribute and textual data into the VS. The experiments show that DAGDOM+

preserved the performance of DAGDOM without attribute and text nodes (DAG-

DOM C in Chapter 5), and typically reduced the space usage up to 5 times more

than SiXDOM.

We have shown our strategy to store and access textual data contained in XML

documents (Labelled String Sequence Problem), where we are using blocked BZip2

to store the textual data and using Minimal Perfect Hashing to maintain mapping

between skeleton document order and textual element order numbering.

The experiments show that LSSP obtained a good space reduction over Naive and

SSP (typically 2 to 3 times), but trading off time for space (slower). We are now able

to represent the textual data and support random access to these data efficiently.

122

Chapter 7

Conclusion

The main objective of this thesis was to represent XML documents in-memory in

a highly compressed format, while supporting operations of the kind supported by

DOM.

We achieved this by using a compression method; MacMill [2] was one of the first

to provide a compression on the XML tree structure, which represents an XML

document as a directed acyclic graph (DAG) by sharing common subtrees.

We add functionality to the basic approach of MacMill that allows us to navigate

the virtual skeleton, slightly modified to represent the virtual skeleton of MacMill

in a space-efficient manner, since the skeleton is sometimes (much) larger than the

virtual tree. In addition, we add attribute and textual data to the representation.

In our implementation, DAGDOM, we show that by careful application of succinct

data structures and variable length encoding, we are able to obtain significant space

reductions over existing space-efficient DOM implementations (typically 2 to 5 times

space reduction), with 4-5 times slower in a small data files in CPU time for navi-

gational operations.

123

Chapter 7. Conclusion

7.1 Technical Contributions

The technical contributions made by this thesis are summarised as follows:

In-Memory Representation Based upon MacMill

We examined the XML compression method MacMill in detail. We explained how we

support DOM-like navigation on the compressed skeleton such as for basic navigation

operations: (getFirstChild(), getLastChild(), getNextSibling(), getPreviousSibling()

and getParent()). We considered the main obstacles of using MacMill directly as

a basis for our work; thus we stored the sub-tree size under each node, in the

compressed skeleton to distinguish between normal and share nodes, and for each

share node to know how many representative nodes they represent in the virtual

skeleton. We used a stack for going up in the tree to find the parent. In addition,

we built a hash table so that for any node we can retrieve the corresponding subtree

size, and built a hash table for the macmill:id in order to find the representative

for the share node.

In-Memory Representation of XML Document Using DAG-

DOM

We developed a naive implementation of our approach by careful application of other

space-efficient DOM implementations (e.g., SiXDOM) [1], to handle the attribute

and text nodes in the skeleton, and we obtained significant space reductions over

existing space-efficient DOM implementations. We made significant changes for nav-

igation before using SiXDOM in our approach. A consequence of the numbering of

124

Chapter 7. Conclusion

SiXDOM nodes is that we can use arrays instead of hash tables, which led to op-

timise what is stored in the skeleton by stripping macmill:id and macmill:multi

attributes and create a new shrunken XML file, in addition to three auxiliary

text files:Id ref.txt, Stsize.txt and Multi.txt. Then we represented the new

shrunken skeleton by using a SiXDOM component, and making the navigation op-

erations navigation as in the previous version of our approach: (getFirstChild(),

getLastChild(), getNextSibling(), getPreviousChild(), getParent()). An-

other modification to the shrunk skeleton was done after making some statistics to

the behaviour of our XML files, which shows another improvement in our approach.

Further development was made regarding DAGDOM based on the different be-

haviour of real and synthetic data files. We implemented a new representation

to encode any sequence of integer numbers and to access numbers in an efficient way

and support the operation: access(i), where i is the positive integer number from

0 to n. Finally, implemented DAGDOM with complete XML representation (with

attribute and text nodes), and the results were extremely successful.

DAGDOM yields a good result with in comparison to DOM and SiXDOM imple-

mentations, particularly in space usage with 4-5 times slower than SiXDOM in CPU

time for navigational operations and the experimental results show that CPU time

in DAGDOM is better than DOM on large XML files.

Textual Data Representation

We presented new strategies to efficiently store and access textual data contained

in XML documents. The Labelled String Sequence Problem (LSSP) included the

strings sequence problem in addition to the label that was added to the user inquiry.

When we call the getNodeValue() the LSSP will use access(i,l) operation, where

i is the text node number in document order and l is the label for each text node.

125

Chapter 7. Conclusion

Our approach suggests grouping together the textual data that share the same parent

element and giving them the same label, and we use the minimal perfect hash

function in order to maintain the mapping strategy between skeleton document

order and textual element order numbering.

7.2 Future Work

There are a number of future tasks on which we still need to focus. The first

task is looking to optimise our code to improve the speed performance, because all

the optimisations in this thesis were to improve the performance of memory usage.

An additional focus of future work will be creating a comprehensive evaluation of

DAGDOM and to add more functionality. Furthermore, as opposed to keeping a

stack to perform navigation, we can use the advanced data structures presented.

Finaly, in addition to the tests that we have performed, it would be very interesting

to develop DAGDOM to support the more than DOM navigation operations, such

as updates made using DOM methods. In addition to investigate the performance

of DAGDOM in real applications in [61].

126

Appendix A

XML Data Files

Our choice of data files is taken from [9];the corpus of XML documents. Our choice

of files gives us a range of typical XML documents which are described in Table

3.1. We also used synthetic XML files that were created using the xmark data

generator [54]. Xmark generates a typically well-structured XML document.

127

Appendix A. XML Data Files

Table A.1: Description of XML files in our XML corpus taken from [9].

XML
Documents:

Description:

Elts.xml Describes chemical elements in the periodic table.

w3c1.xml W3C specification documentation

w3c2.xml W3C specification documentation

Mondial-

3.0.xml

World geographic database integrated from the CIA World
Factbook, the International Atlas, and the TERRA database
among other sources. From FLORID-Mondial case study

Partsupp.xml
Part/Supplier relationship. TPC-H Benchmark, 10 MB version, in
XML form. Converted to XML by Zack Ives. From Transaction
Processing Performance Council (TPC).

Orders.xml

Orders. TPC-H Benchmark, 10 MB version, in XML form.
Converted to XML by Zack Ives. From Transaction Processing
Performance Council (TPC).

xCRL.xml
XML files using the Extensible Customer Representation
Language format (xCRL) on customer relationship management

Votable2.xml
File created in the VOTABLE fML format defined Xor the
exchange of data.

Nasa.xml
Datasets converted from legacy flat-file format into XML and
made available to the public. From GSFC/NASA XML Project

Lineitem.xml

Line items. TPC-H Benchmark, 10 MB version, in XML form.
Converted to XML by Zack Ives. From Transaction Processing
Performance Council (TPC).

XPATH.xml

Is not in [73], but uses the LocusXML schema to represent
geospatial information in an XML format, it stores annotated
human genomic data.

Treebank e.xml

English sentences, tagged with parts of speech. The text nodes
have been partially encrypted because they are copyrighted text
from the Wall Street Journal. This document has a deep recursive
structure. University of Pennsylvania Treebank project.

SwissProt.xml

SWISS-PROT is a curated protein sequence database, which
strives to provide a high level of annotations (such as the
description of the function of a protein, its domains structure,
post-translational modifications, variants, etc.), a minimal level of
redundancy and high level of integration with other databases.
From ExPASy - SWISS-PROT and TrEMBL.

DBLP.xml

The DBLP server provides bibliographic information on major
computer science journals and proceedings. DBLP stands for
Digital Bibliography Library Project. From the DBLP Homepage

XCDNA.xml
A cDNA library of a collection of cloned fragments converted into
an XML form.

128

Appendix B

RSDic Library

We are using the C++ library in order to support RANK and SELECT efficiently, which

is called RSDic. We use the RSDic [53, 62] as follows:

• RSDic Builder to push back the 0 or 1 bits(Fill the Bit-Vector with 0 and 1,

based on the way of encode the numbers)

RSDicBuilder rsdb; RSDic rsd; rsdb.PushBack(0); // To Push

back 0 rsdb.PushBack(1); // To Push back 1 . . rsdb.Build(rsd);

// Build the Bit-Vector

• RSDic retrieval to return the result of RANK and SELECT operations

rsd.Select(n, 1) // return the position of (i+1)-th one ,

n >= 0 rsd.Select(n, 0) // return the position of (i+1)-th

zero, , n >= 0 rsd.Rank (n, 1) // return the number of 1s

between 0 and n rsd.Rank (n, 0) // return the number of 0s

between 0 and n

129

Appendix C

DOM methods supported by

DAGDOM

130

Appendix C. DOM methods supported by DAGDOM

Returns Method
DOM
Level

SiXDOM
component
supported

DAGDOM,
component
supported

Node
appendChild
(Node newChild)

1 X X

Node cloneNode(boolean deep) 1 X X
NamedNodeMap getAttributes() 1 ✓ ✓

NodeList getChildNodes() 1 ✓ ✓

Node getFirstChild() 1 ✓ ✓

Node getLastChild() 1 ✓ ✓

String getLocalName() 2 ✓ ✓

String getNamespaceURI() 2 ✓ ✓

Node getNextSibling() 1 ✓ ✓

String getNodeName() 1 ✓ ✓

Short getNodeType() 1 ✓ ✓

String getNodeValue() 1 ✓ *
Document getOwnerDocument() 1 ✓ ✓

Node getParentNode() 1 ✓ ✓

String getPrefix() 2 ✓ ✓

Node getPreviousSibling() 1 ✓ ✓

Boolean hasAttributes() 1 ✓ ✓

Boolean hasChildNodes() 1 ✓ ✓

Node
insertBefore(Node newChild, Node
refChild)

1 X X

Boolean
isSupported(String feature, String
version)

2 ✓ ✓

Void normalize() 2 X X
Node removeChild(Node oldChild) 1 X X

Node
replaceChild(Node newChild, Node
oldChild)

1 X X

Void setNodeValue(String nodeValue) 1 X X
Void setPrefix(String prefix) 2 X X
Short compareTreePosition(Node other) 3 ✓ ✓

String
getTextContent() - missing minority
nodes

3 ✓ X

Void isSameNode(Node other) 3 X X

String
lookupPrefix(String uri, bool
usedefault)

3 X X

131

Bibliography

[1] O’Neil Delpratt, Rajeev Raman, and Naila Rahman. Engineering succinct

DOM. In Proceedings of the 11th international conference on Extending

database technology: Advances in database technology, pages 49–60. ACM, 2008.

[2] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on com-

pressed XML. In Proceedings of the 29th international conference on Very large

data bases-Volume 29, pages 141–152. VLDB Endowment, 2003.

[3] DOM. URL http://www.w3schools.com/xml/xml_dom.asp.

[4] W3C DOM API documentation,2004. URL http://www.w3.org/TR/2004/

REC-DOM-Level-3-Core-20040407/.

[5] Hartmut Liefke and Dan Suciu. XMill: an efficient compressor for XML data.

In ACM SIGMOD Record, volume 29, pages 153–164. ACM, 2000.

[6] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S Muthukrishnan.

Compressing and searching XML data via two zips. In Proceedings of the 15th

international conference on World Wide Web, pages 751–760. ACM, 2006.

[7] O Delpratt. Space efficient in-memory representation of XML documents. PhD

thesis, 2009.

[8] Naila Rahman, Rajeev Raman, et al. Engineering the LOUDS succinct tree

representation. In Experimental Algorithms, pages 134–145. Springer, 2006.

132

http://www.w3schools.com/xml/xml_dom.asp
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/

Bibliography

[9] Repository.,U.X. URL http://www.cs.washington.edu/research/

xmldatasets/www/repository.html.

[10] W3c XML specification. URL http://www.w3.org/TR/REC-xml/.

[11] URL http://www.ibm.com/developerworks/xml/tutorials/xmlintro/

section2.html.

[12] URL http://pic.dhe.ibm.com/infocenter/iseries/v6r1m0/index.jsp?

topic=/rzamj/rzamjintrouses.htm.

[13] Web-Services Description Language. URL http://www.w3.org/TR/wsdl.

[14] Simple Object Access Protocol. URL http://en.wikipedia.org/wiki/SOAP.

[15] Universal Description Discovery and Integration. URL http://en.wikipedia.

org/wiki/Universal_Description_Discovery_and_Integration.

[16] Votable documentation. URL http://www.us-vo.org/.

[17] Medline. URL http://www.nlm.nih.gov/mesh/gcmdoc2004.html.

[18] SAX Parser. URL http://www.saxproject.org/.

[19] XSLT. URL http://www.w3.org/TR/xslt.

[20] XQuery. URL http://www.w3schools.com/xquery/default.asp.

[21] XPath. URL http://www.w3schools.com/xpath/.

[22] Zorba: The XQuery Proccessor. URL http://www.zorba-xquery.com/.

[23] Xerces C++ Parser. URL http://xerces.apache.org/xerces-c/.

[24] Document type definition. URL http://www.w3schools.com/dtd/dtd_

intro.asp.

133

http://www.cs.washington.edu/research/ xmldatasets/www/repository.html.
http://www.cs.washington.edu/research/ xmldatasets/www/repository.html.
http://www.w3.org/TR/REC-xml/
http://www.ibm.com/developerworks/xml/ tutorials/xmlintro/section2.html
http://www.ibm.com/developerworks/xml/ tutorials/xmlintro/section2.html
http://pic.dhe.ibm.com/infocenter/iseries/ v6r1m0/index.jsp?topic=/rzamj/rzamjintrouses.htm
http://pic.dhe.ibm.com/infocenter/iseries/ v6r1m0/index.jsp?topic=/rzamj/rzamjintrouses.htm
http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/ Universal_Description_Discovery_and_Integration
http://en.wikipedia.org/wiki/ Universal_Description_Discovery_and_Integration
http://www.us-vo.org/
http://www.nlm.nih.gov/mesh/gcmdoc2004.html
http://www.saxproject.org/
http://www.w3.org/TR/xslt
http://www.w3schools.com/xquery/default.asp
http://www.w3schools.com/xpath/
http://www.zorba-xquery.com/
http://xerces.apache.org/xerces-c/
http://www.w3schools.com/dtd/dtd_intro.asp
http://www.w3schools.com/dtd/dtd_intro.asp

Bibliography

[25] XML validator. URL http://www.w3schools.com/xml/xml_validator.asp.

[26] Fangju Wang, Jing Li, and Hooman Homayounfar. A space efficient XML DOM

parser. Data & Knowledge Engineering, 60(1):185–207, 2007.

[27] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan Rit-

tinger, and Jens Teubner. MonetDB/XQuery: a fast XQuery processor powered

by a relational engine. In Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pages 479–490. ACM, 2006.

[28] Michael Kay. Optimization in XSLT and XQuery. In a conference on XML,

page 29. Citeseer, 2006.

[29] Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory

representation of XML documents. In Database Programming Languages, pages

199–216. Springer, 2005.

[30] Treewalker. URL http://www.w3.org/TR/2000/

REC-DOM-Level-2-Traversal-Range-20001113/traversal.html#

TreeWalker.

[31] Richard F Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A

simple optimal representation for balanced parentheses. Theoretical Computer

Science, 368(3):231–246, 2006.

[32] Dong Kyue Kim, Joong Chae Na, Ji Eun Kim, and Kunsoo Park. Efficient

implementation of rank and select functions for succinct representation. In

Experimental and Efficient Algorithms, pages 315–327. Springer, 2005.

[33] Dinesh P Mehta. Handbook of data structures and applications. CRC Press,

2004.

[34] Charles E Leiserson, RL Rivest, and C Stein. Introduction to algorithms, 1990.

134

http://www.w3schools.com/xml/xml_validator.asp
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/traversal.html#TreeWalker
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/traversal.html#TreeWalker
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/traversal.html#TreeWalker

Bibliography

[35] Albrecht Schmidt, Martin Kersten, Menzo Windhouwer, and Florian Waas.

Efficient relational storage and retrieval of XML documents. In The World

Wide Web and Databases, pages 137–150. Springer, 2001.

[36] bzip2. URL http://www.bzip.org/.

[37] Michael Burrows and David J Wheeler. A block-sorting lossless data compres-

sion algorithm. 1994.

[38] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea Pugliese. XQueC:

A query-conscious compressed XML database. ACM Transactions on Internet

Technology (TOIT), 7(2):10, 2007.

[39] Peter Buneman, Byron Choi, Wenfei Fan, Robert Hutchison, Robert Mann,

and Stratis D Viglas. Vectorizing and querying large XML repositories. In Data

Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on,

pages 261–272. IEEE, 2005.

[40] James Cheney. Tradeoffs in XML database compression. In Data Compression

Conference, 2006. DCC 2006. Proceedings, pages 392–401. IEEE, 2006.

[41] Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on com-

pressed trees. In Logic in Computer Science, 2003. Proceedings. 18th Annual

IEEE Symposium on, pages 188–197. IEEE, 2003.

[42] Jun-Ki Min, Myung-Jae Park, and Chin-Wan Chung. A compressor for effective

archiving, retrieval, and updating of XML documents. ACM Transactions on

Internet Technology (TOIT), 6(3):223–258, 2006.

[43] Wilfred Ng, Wai-Yeung Lam, Peter T Wood, and Mark Levene. XCQ: A que-

riable XML compression system. Knowledge and Information Systems, 10(4):

421–452, 2006.

135

http://www.bzip.org/

Bibliography

[44] Pankaj M Tolani and Jayant R Haritsa. XGRIND: A query-friendly XML com-

pressor. In Data Engineering, 2002. Proceedings. 18th International Conference

on, pages 225–234. IEEE, 2002.

[45] Ning Zhang, Varun Kacholia, and M Tamer Ozsu. A succinct physical storage

scheme for efficient evaluation of path queries in XML. In Data Engineering,

2004. Proceedings. 20th International Conference on, pages 54–65. IEEE, 2004.

[46] Mathias Neumüller and John N Wilson. Improving XML processing using

adapted data structures. In Web, Web-Services, and Database Systems, pages

206–220. Springer, 2003.

[47] Crimson DOM implementation. URL http://xml.apache.org/crimson/.

[48] Peter Buneman, Byron Choi, Wenfei Fan, Robert Hutchison, Robert Mann,

and Stratis D Viglas. Vectorizing and querying large XML repositories. In Data

Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on,

pages 261–272. IEEE, 2005.

[49] Galax XQuery implementation. URL http://www.galaxquery.org/.

[50] Saxon. URL http://saxon.sourceforge.net/.

[51] Naila Rahman, Rajeev Raman, et al. Engineering the LOUDS succinct tree

representation. In Experimental Algorithms, pages 134–145. Springer, 2006.

[52] Naila Rahman, Rajeev Raman, et al. Compressed prefix sums. In SOFSEM

2007: Theory and Practice of Computer Science, pages 235–247. Springer, 2007.

[53] Rsdic-Compressed Rank Select Dictionary. URL https://code.google.com/

p/rsdic/.

[54] XMark- XML Benchmark Project. URL http://www.xml-benchmark.org/.

136

http://xml.apache.org/crimson/
http://www.galaxquery.org/
http://saxon.sourceforge.net/
https://code.google.com/p/rsdic/
https://code.google.com/p/rsdic/
http://www.xml-benchmark.org/

Bibliography

[55] Roberto Grossi and Giuseppe Ottaviano. The wavelet trie: Maintaining an

indexed sequence of strings in compressed space. In Proceedings of the 31st

symposium on Principles of Database Systems, pages 203–214. ACM, 2012.

[56] Gzip. URL http://www.gzip.org/.

[57] Minimal Perfect Hashing Library, . URL http://cmph.sourceforge.net/.

[58] Minimal Perfect Hashing, . URL http://stevehanov.ca/blog/index.php?

id=119.

[59] Richard J Cichelli. Minimal perfect hash functions made simple. Communica-

tions of the ACM, 23(1):17–19, 1980.

[60] Edward A Fox, Lenwood S Heath, Qi Fan Chen, and Amjad M Daoud. Practical

minimal perfect hash functions for large databases. Communications of the

ACM, 35(1):105–121, 1992.

[61] Philip Bille, Gad M Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao

Satti, and Oren Weimann. Random access to grammar-compressed strings. In

Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 373–389. SIAM, 2011.

[62] Gonzalo Navarro and Eliana Providel. Fast, small, simple rank/select on

bitmaps. In Experimental Algorithms, pages 295–306. Springer, 2012.

137

http://www.gzip.org/
http://cmph.sourceforge.net/
http://stevehanov.ca/blog/index.php?id=119
http://stevehanov.ca/blog/index.php?id=119

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 XML Processing
	1.2 XML Bloat
	1.3 XML Compression
	1.4 In-Memory Representation
	1.4.1 Our Approach

	1.5 Contributions and Organisation of Thesis

	2 Preliminaries
	2.1 XML
	2.1.1 Markup and Text
	2.1.2 Components of an XML Document
	2.1.3 Well-Formed and Valid XML Documents
	2.1.4 XML Tree

	2.2 DOM Architecture and Standards
	2.2.1 DOM Node Types

	2.3 Parsing and Traversing XML Documents.
	2.3.1 Parsing the XML Document
	2.3.2 Traversing an XML Document Using Node API
	2.3.3 Traversing an XML Document Using TreeWalker

	2.4 Succinct Data Structures
	2.4.1 Bit-Vector Data Structure
	2.4.2 Bit-String Access
	2.4.3 Succinct Prefix Sum

	2.5 Introduction to Libbzip2

	3 Previous Work
	3.1 XML Compression
	3.2 XML Compressors with DOM-like Support
	3.3 XML Compressors
	3.4 Query-friendly XML Compressors
	3.5 SiXDOM Implementations
	3.5.1 SiXDOM Architecture
	3.5.2 SiXDOM Interface

	3.6 Summary

	4 In-Memory Representation Based upon MacMill
	4.1 MacMill
	4.1.1 Overview
	4.1.2 MacMill Output Format

	4.2 DOM with MacMill
	4.3 Algorithms and Implementation
	4.4 Experimental Evaluation
	4.4.1 Basic Setup
	4.4.2 Main Memory Usage
	4.4.3 Running Time

	4.5 Summary

	5 In-Memory Representation of the XML Document Using DAGDOM
	5.1 Auxiliary Attribute Removal Phase
	5.2 Share Node Reduction Phase
	5.3 Variable Length Encoding
	5.4 Experimental Evaluation
	5.4.1 Basic Setup
	5.4.2 Main Memory Usage
	5.4.3 Running Time

	5.5 Summary

	6 Representing Attributes and Textual Data
	6.1 Attribute and Text Nodes
	6.2 Representing Textual Data
	6.2.1 Compressing Textual Data
	6.2.2 Random Access To Compressed Textual Data
	6.2.2.1 Delpratt et al.'s Approach
	6.2.2.2 Wavelet Trie

	6.2.3 Document Order Versus Element Order
	6.2.3.1 Compression Ratio: Document order versus Element order
	6.2.3.2 Decompression Time: Document order versus Element order

	6.3 Labelled String Sequence Problem
	6.4 Solution to the Labelled String Sequence Problem
	6.4.1 Minimal Perfect Hashing
	6.4.2 The Labelled String Sequence Mapping Strategy
	6.4.3 Summary

	7 Conclusion
	7.1 Technical Contributions
	7.2 Future Work

	A XML Data Files
	B RSDic Library
	C DOM methods supported by DAGDOM
	Bibliography

