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A B S T R A C T
Background: Network meta-analysis (NMA) is commonly used in
evidence synthesis; however, in situations in which there are a large
number of treatment options, which may be subdivided into classes,
and relatively few trials, NMAs produce considerable uncertainty in
the estimated treatment effects, and consequently, identification of
the most beneficial intervention remains inconclusive. Objective: To
develop and demonstrate the use of evidence synthesis methods to
evaluate extensive treatment networks with a limited number of
trials, making use of classes. Methods: Using Bayesian Markov chain
Monte Carlo methods, we build on the existing work of a random
effects NMA to develop a three-level hierarchical NMA model that
accounts for the exchangeability between treatments within the same
class as well as for the residual between-study heterogeneity. We
demonstrate the application of these methods to a continuous and
binary outcome, using a motivating example of overactive bladder.
We illustrate methods for incorporating ordering constraints in
increasing doses, model selection, and assessing inconsistency
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between the direct and indirect evidence. Results: The methods were
applied to a data set obtained from a systematic literature review of
trials for overactive bladder, evaluating the mean reduction in incon-
tinence episodes from baseline and the number of patients reporting
one or more adverse events. The data set involved 72 trials comparing
34 interventions that were categorized into nine classes of interven-
tions, including placebo. Conclusions: Bayesian three-level hierarch-
ical NMAs have the potential to increase the precision in the effect
estimates while maintaining the interpretability of the individual
interventions for decision making.
Keywords: network meta-analysis, statistical methods, mixed
treatment comparisons, overactive bladder.
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Introduction

Network meta-analyses (NMA) are widely used in an evidence
synthesis setting due to the attractive nature of utilizing all
relevant information from both direct and indirect evidence [1–4].
Nevertheless, in situations in which there are a large number of
interventions of interest and relatively few trials, there is a
potential issue with the sparsity of data in the treatment net-
works, which can lead to parameter uncertainty. Collapsing the
intervention arms into their respective treatment classes
increases the evidence base and precision in the effect estimates,
but with such a class-based approach, the direct interpretation of
individual intervention effects is lost, which makes deci-
sion making difficult. To overcome this issue, a three-level
hierarchical NMA can be applied [5–7]. This approach incorpo-
rates the exchangeability between interventions of the same
class to predict an effect estimate for each of the interventions
individually [8]. Thus, this approach allows strength to be
borrowed within the classes of interventions, strengthening
inferences and potentially reducing the uncertainty around the
individual intervention effects, and consequently increasing the
ability to rank these and inform decision-making frameworks. To
further increase the precision in the effect estimates, constraints
can be applied on increasing doses of the same intervention,
making the assumption that higher doses have an effect greater
or equal to that of lower doses [9,10].

To illustrate the use of the hierarchical framework, we applied
the proposed methods to a real clinical question in overactive
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bladder (OAB) syndrome. To manage the OAB syndrome, the
National Institute for Health and Care Excellence in the United
Kingdom [11] currently recommends a course of supervised
pelvic floor muscle training, behavioral therapy, anticholinergic
medication, sacral nerve stimulation, and more recently, botu-
linum toxin type A (BoNTA). Given the availability of numerous
interventions and emerging alternative treatments such as
BoNTA, there is an increasing need to identify the most beneficial
intervention. However, given the large number of interventions
and the limited evidence base, in terms of both the number of
trials and the number of direct comparisons between active
interventions, the estimated intervention effects from a standard
NMA will have a considerable level of uncertainty associated with
them. In situations in which there are a limited number of trials
in a meta-analysis, estimating the heterogeneity between trials
may also be problematic. One approach to overcome this issue,
and increase precision in the treatment effects, involves incor-
porating external information from similar studies relevant to
the treatment of interest [12]. In an NMA that includes all
available trials in a specific field, however, such external infor-
mation may be limited. The aim of this article was to develop and
apply hierarchical NMAs to evaluate the clinical effectiveness of
interventions for the OAB syndrome by borrowing strength
between interventions of the same class and applying ordering
constraints on increasing doses of BoNTA, thus increasing the
precision that we have in our effect estimates but maintaining
the interpretability of results at the individual intervention level.
For illustration purposes, we focus on two outcomes associated
with intervention effectiveness (mean change in incontinence
episodes from baseline) and treatment tolerability (number of
patients reporting one or more adverse events).

In this article, we demonstrate the individual treatment,
class-based, and three-level hierarchical random effects model
Fig. 1 – Network diagrams for urinary incontinence. (A) Individu
diagram. B50u, Botulinum toxin type A 50 units; B100u, Botulinu
units; B200u, Botulinum toxin type A 200 units; B300u, Botulinu
Med, Medroxyprogesterone; PFE, Pelvic floor exercises; Physio,
approaches, and where applicable we demonstrate the use of
extending hierarchical NMAs to incorporate ordering constraints.
We apply these models to a motivating clinical example in the
OAB syndrome. Furthermore, we demonstrate a comprehensive
technique to assess inconsistency between the direct and indi-
rect estimates of an extensive network using the method of node-
splitting [13] and assess model fit using residual deviance [14] and
the deviance information criterion (DIC) [15].
Methods

Illustrative Data Set

Almost all published articles reporting data on interventions for
the OAB syndrome compare the intervention against placebo,
which makes comparison across active interventions difficult
without using indirect comparisons or NMA. This is particularly
evident for trials evaluating anticholinergic drugs. Only three
meta-analyses have been undertaken in the field of the OAB
syndrome [16–18]. The interventions were assessed on a head-
to-head basis, where studies comparing the interventions directly
were pooled in a pairwise meta-analysis. Chapple et al. [16]
focused on the evaluation of the clinical effectiveness of anti-
cholinergic drugs compared with placebo, while Novara et al. [17]
compared the efficacy of increased doses of each anticholinergic
drug with that of their respective lower dose. Anger et al. [18]
evaluated the effect of BoNTA against that of a placebo interven-
tion. In the current literature, there is no coherent comparison
between all the available interventions, and consequently, there is
little information of a superior treatment for the OAB syndrome.

Figure 1A,B illustrates the network diagrams of direct com-
parisons for the individual intervention and classes of
al and hierarchical network diagram. (B) Classified network
m toxin type A 100 units; B150u, Botulinum toxin type A 150
m toxin type A 300 units; BT, Bladder training; Est, Estrogen;
Physiotherapy.



Fig. 2 – Network diagrams for adverse events. (A) Individual and hierarchical network diagram. (B) Class-based network
diagram. B50u, Botulinum toxin type A 50 units; B100u, Botulinum toxin type A 100 units; B150u, Botulinum toxin type A 150
units; B200u, Botulinum toxin type A 200 units; B300u, Botulinum toxin type A 300 units; BT, Bladder training; Est, Estrogen;
Med, Medroxyprogesterone; PFE, Pelvic floor exercises; Physio, Physiotherapy.
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interventions that evaluate the mean reduction in incontinence
episodes, respectively. Similarly, Figure 2A,B demonstrates the
network diagrams of the individual intervention and classes of
interventions that evaluate the number of patients reporting one
or more adverse events, respectively. The nodes represent
either the individual intervention or classes of interventions.
The interconnecting lines demonstrate a direct comparison, and
the corresponding values represent the number of trials that
directly compare those interventions. For interventions identified
in the systematic literature review but disconnected from the
network (i.e., fail to report outcome of interest), we were unable
to obtain effect estimates and thus these were excluded from the
analysis.

For analyses associated with the class of interventions, treat-
ments were grouped, according to clinical opinion (D.G.T.), into
anticholinergic drug therapy, botulinum toxin, neuromodulation,
behavior therapy, other drugs, anticholinergic drugs in combina-
tion with behavior therapy, anticholinergic drugs in combination
with other drugs, and a combination of other drugs. Figure 3
demonstrates the classification of each of the individual interven-
tions, where the central node represents the class of treatments
and the linked arms represent each of the individual interventions
within that class. In this example, anticholinergic drug therapy
consisted of all the members of the anticholinergic class of drugs.
The botulinum toxin group contained all BoNTA interventions
regardless of the site of administration or dose. The neuromodu-
lation classification included all interventions involved in nerve
stimulation or electrostimulation. Behavior therapy was defined as
interventions that focused on attaining change in behavioral
factors relevant to symptoms of the OAB syndrome, including
physiotherapy, bladder retraining, and biofeedback. Other drugs
were defined as all other pharmacotherapy interventions that
were not classified as anticholinergic or BoNTA therapies.
Individual Treatment and Class-Based NMA Models

Equations 1 and 2 illustrate the general model described by
Welton et al. [19] for the continuous and binary outcome case,
respectively. It is these models that form the foundation for both
the individual treatment and class-based NMAs.

For an intervention j, in study i, the continuous outcome can be
interpreted as the mean change in 3-day diary data for the number
of incontinence episodes from baseline yij and assumed to follow a
normal distribution with mean equal to the underlying intervention
effect θi,j and observed standard error SEi,j. Let mi represent the
baseline mean change in the number of incontinence episodes
corresponding to the bi intervention arm in the ith study, and let
δi,j represent the mean difference in change in the number of
incontinent episodes of intervention j relative to the bi. intervention
arm. δi,j is obtained from a normal distribution with the mean equal
to the mean differences ðdj�dbi Þ and between-study variance τ2,
where dj and dbi represent the effect estimate of intervention j and
study-specific baseline intervention bi, respectively. Notably, when
the between-study variance is zero, that is, τ2 ¼ 0, we obtain a fixed
effects model. Thus, the overall model is based on a linear
regression model on a natural additive scale:

yi,j�Normalðθi,j,SEi,j
2Þ

where

θi,j¼
μi Intervention bi

μiþδi,j Intervention j

(

and

δði,jÞ�Normalððdj-dbi Þ,τ2Þ ð1Þ

The number of reported adverse events is considered a binomial
count ri,j from a sample number at risk ni,j for an intervention j



Fig. 3 – Treatment classification. B50u, Botulinum toxin type A 50 units; B100u, Botulinum toxin type A 100 units; B150u,
Botulinum toxin type A 150 units; B200u, Botulinum toxin type A 200 units; B300u, Botulinum toxin type A 300 units; BT,
Bladder training; PFE, Pelvic floor exercises; Physio, Physiotherapy.
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within the ith study. This information allows estimation of the
probability pi,j, which is associated with the risk of adverse events.
We assume a logistic regression model for the binary outcome.
Thus, φi,j represents the log-odds of treatment j relative to a baseline
treatment bi with between-study variance τ2. In this case, dj and dbi
represent the estimated log-odds of intervention j and baseline
intervention bi, respectively. Therefore, the overall model is given by

ri,j�Binomialðpi,j,ni,jÞ

where

logitðpi,jÞ¼
μi Intervention bi

μiþδi,j Intervention j

(

and

φði,jÞ�Normalððdj-dbi Þ,τ2Þ ð2Þ

The baseline intervention means mi are assumed to have a normal
(0, 1000) prior distribution. Therefore, for the continuous case, the
mean reduction in incontinence episodes from baseline for the
reference intervention could plausibly be in the range of 0 � 62
incontinence episodes. For the binary case, the log-odds of an
adverse event could plausibly be in the range of 0 � 62. The
between-study standard deviation values of τ are assumed to have
a uniform (0, 5) prior distribution, suggesting that the between-study
SD can take any value between, but not including, 0 and 5, and small
values of τ are equally likely as large values [1]. A value of 5, for
example, would indicate that for a random pair of studies, the
difference in the mean reduction in incontinence episodes from
baseline could be as large as 5.5 while the ratio of odds ratios could
be as large as 232.8. Sensitivity analyses considering two other
variance-component priors were considered: 1) gamma (0.001, 0.001)
on the precision scale, that is, 1/variance, and 2) half-normal (0, 1) on
the SD scale [1].

Hierarchical NMA

A random effects model was used to estimate the effect of each
individual intervention for both continuous (Equation 3) and
binary (Equation 4) outcomes. To account for the exchangeability
between the treatments within each class, the treatments within
each class were assumed to follow a normal distribution with a
class-specific mean and variance (Equation 5).

yi,j�Normalðθi,j,SEi,j
2Þ

θi,j¼
μi Intervention bi

μiþδ�i,j,k Intervention j

(
ð3Þ

ri,j�Binomialðpi,j,ni,jÞ

logitðpi,jÞ¼
μi Intervention bi

μiþφ�
i,j,k Intervention j

(
ð4Þ

Following Dakin et al. [5] and Warren et al. [6], the effect estimate
for a specific intervention class combination dj,k is described as

dj,k�Normalðμk,σ2Þ ð5Þ

where μk denotes the pooled effect estimate for the kth class of
interventions, with a common between-intervention variance σ2.
Class-specific between-intervention variances, σ2k , were also con-
sidered in exploratory analyses and assessed through model fit
statistics.
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At the individual intervention level, the effect estimate com-
pared with that of a baseline treatment δ�i,j,k and φ�

i,j,k for the
continuous case and the binary case, respectively, is expressed in
terms of the effect estimate for a specific individual intervention
class dj,k, compared with a class-specific baseline treatment dbi,k ,
given by

δ�i,j,k�Normalððdj,k�dbi,k Þ,τ2Þ for the continuous case

and

φ�
i,j,k�Normalððdj,k�dbi,k Þ,τ2Þ for the binary case ð6Þ

where δ�i,j,k represents the estimated mean difference of treat-
ment j compared with a baseline treatment bi and φ�

i,j,k represents
the estimated log-odds of treatment j relative to a baseline
treatment bi. At level 3 in the hierarchical model, the between-
study variance τ2 was given a uniform (0, 5) prior distribution as
in the random effect NMA model (see Equations 1 and 2). The
pooled class-effect estimates mk were assumed to have a vague
normal (0, 1000) prior distribution, with a common between-
intervention variance σ2 assumed to follow a uniform (0, 5)
distribution on the SD scale. Thus, the pooled class-effect
estimates could plausibly take values in the range of 0 � 62
change in incontinent episodes from baseline for the continuous
case and 0 � 62 log-odds of an adverse event for the binary case.
The common between-intervention variance could plausibly take
values between, but not including, 0 and 5. Two other prior
distributions for the variance for σ2 were considered in the form
of a sensitivity analysis: 1) gamma (0.001, 0.001) on the precision
scale, and 2) half-normal (0, 1) on the SD scale [1].

For the continuous outcome, treatments were ranked on the
basis of posterior distributions of the relative effect estimate δ and
δ*, where treatments with the largest relative reduction in mean
incontinence episodes were ranked first for each Markov chain
Monte Carlo (MCMC) iteration from the individual treatment and
the hierarchical model, respectively. The estimated rankings over-
all were then calculated from a summary of these individual ranks
at each iteration. Therefore, a higher rank indicates a more
efficacious intervention overall. Similarly, for the binary outcome,
the treatments were individually ranked on their posterior sum-
maries φ and φ*, where treatments with the highest log-odds of an
adverse event were ranked in the first place for the individual
treatment and the hierarchical model, respectively, where a higher
rank indicates a larger prevalence. Thus, interventions ranked first
are regarded as the “worst” treatments associated with adverse
events. The corresponding probabilities were calculated by mon-
itoring the number of MCMC iterations for which each of the
treatments was ranked in the first place.

Incorporating Constraints on Increasing Doses

Ordering constraints were placed on multiple doses of BoNTA
interventions, with the assumption that larger doses would have
a greater or equal treatment effect compared with its respective
lower dose (e.g., d1rd2r⋯rdm). We applied these constraints
by assigning an indicator function γ, equal to 1, given by

γ¼∏m�1
l¼1 Iðdlþ1�dlÞ ð7Þ

where I(x) ¼ 1, if x Z 0, and I(x) ¼ 0, otherwise. This
forcesðdlþ1�dlÞZ0 and consequently imposes ordering con-
straints on the treatment effects of increasing doses
(i.e., dlrdlþ1) [7]. Ordering constraints can be placed in either
direction depending on the outcome of interest [6].

Assessment of Inconsistency

Consistencies between direct and indirect comparisons were
evaluated using the method of “node-splitting” [13]. This
approach allows the calculation of two posterior distributions,
one of which is derived from trials that directly compare the
interventions (e.g., interventions X and Y), dDirXY , whereas the other
is indirectly derived from the remaining trials dIndXY . The funda-
mental model described in Equations (1) and (2) remains the
same; however, for direct comparison, the effect estimates δiXY
obtained from splitting the (X, Y) node are selected from a normal
distribution with mean dDirXY and variance sd2, that is,

δiXY�NðdDirXY ,sd
2Þ ð8Þ

Simultaneously, indirect comparisons are obtained using the
consistency assumption, which states that for treatment effects
dXY, dXZ, and dYZ, relative to treatments X, Y, and Z,

dXY¼dYZ�dXZ
dYZ¼dXZ�dXY
dXZ¼dYZ�dXY

ð9Þ

To test for consistency between direct and indirect estimates, we
simply calculated the difference for each pair of interventions,
together with the probability that the direct estimate surpasses
that of the indirect estimate. Thus, a Bayesian P value can be
calculated using the derived test statistic and comparing it with a
standard normal distribution. This method, however, can only be
applied to interventions within a closed loop, meaning that there
is both direct and indirect evidence available for all pairs of
interventions under consideration [13].

Model Fit and Selection

The DIC [15] was used to compare models. It is a measure of the
deviance, estimated by the posterior mean of minus twice the
log-likelihood plus the effective number of parameters in the
model. Thus, it is considered as a Bayesian measure of goodness
of fit that can be used as a relative measure of model suitability
and easily applied to hierarchical modeling [20]. In parallel, the
total residual deviances for each of the models were also
compared with the respective number of data points. To illustrate
and assess the goodness of fit for each of the models, we plotted
the residual deviances for each of the included studies against
the respective number of data points for that study [14], that is, 2
for two arm studies, 3 for three arm studies, and so forth.

Model Estimation

All models were estimated using WinBUGS 1.4.3 [21]. The results
are based on 60,000 samples, where the first 10,000 samples were
discarded from the analyses as a “burn-in.” Three individual
chains with disparate starting values were analyzed and con-
vergence was assessed using Brooks-Gelman-Rubin plots [22].
Sensitivity analyses were also undertaken to assess the impact of
the choice of prior distributions especially for the variance
parameters [1,23]. Full codes for continuous and binary models
are given in Appendices A and B in Supplemental Materials found
at http://dx.doi.org/10.1016/j.jval.2014.10.006, respectively. Both
node-splitting analyses and network diagrams were imple-
mented in R [24] using the “R2WinBUGs” software package [25]
and the GeMTC package [26], respectively.
Results

Model Fit and Selection

Table 1 contains the goodness-of-fit statistics for each of the
models individually. Notably, analyses for class-based models
were calculated on different data sets—a consequence of the
treatment clustering into endonodal treatment classes [27],
which resulted in the omission of several studies that compared

http://dx.doi.org/10.1016/j.jval.2014.10.006


Table 1 – Goodness-of-fit statistics for fixed and random effects models.

Outcome
Model Between-study SD

(95% CrI)
Residual deviance (no. of

data points)
DIC

Number of incontinence episodes Individual FE – 158.1 (112) 51.68
RE 0.20 (0.12–0.31) 116.9 (112) 29.05

Class* FE – 118.3 (87) 1.89
RE 0.15 (0.06–0.25) 90.66 (87) –11.53

Hierarchical FE – 158.6 (112) 41.33
RE 0.20 (0.12–0.30) 114.9 (112) 17.02

Hierarchical with
constraints

FE – 158.8 (112) 41.37
RE 0.20 (0.12–0.30) 114.5 (112) 15.81

Number of patients reporting one or
more adverse events

Individual FE – 134.5 (79) 591.97
RE 0.32 (0.21–0.49) 74.42 (79) 547.74

Class* FE – 155.6 (68) 554.81
RE 0.36 (0.25–0.52) 65.74 (68) 484.85

Hierarchical FE – 135 (79) 592.66
RE 0.30 (0.20–0.46) 75.43 (79) 548.68

CrI, credible interval; DIC, deviance information criterion; FE, fixed effects; RE, random effects.
* Class-based analyses conducted on a different population and are not directly comparable.
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two or more interventions from the same class. Thus, model fit
statistics for class-based NMAs are solely presented for com-
pleteness and cannot be directly compared with the remaining
models. In relation to individual analyses, hierarchical models
appeared to have a slightly better fit to the data for both outcome
measures as illustrated through the reduced residual deviance for
continuous (Fig. 4A) and binary (Fig. 4B) outcomes. For the
continuous outcome, incorporating ordering constraints slightly
improved model fit further with respect to both the DIC and the
total residual deviance. The hierarchical random effects model
with ordering constraints had a lower DIC (15.81) than did the
individual random effects model (29.05). Similarly, for the hier-
archical random effects model with constraints, the total residual
deviance of 114.5 was closer to the number of data points (112)
Fig. 4 – Residual deviance plots. (A) Incontinence episodes. (B) N
meta-analysis. *Classified analyses conducted on a different po
compared with the individual random effects model, which had a
total residual deviance of 116.9. The random effects models were
of a better fit to the data in comparison to the fixed effects models
for all sets of analyses and thus, for illustration purposes, the
results presented are based on estimates derived from the
random effects NMAs.
Number of Incontinence Episodes

Table 2 illustrates the interventions ranked in order of their
estimated efficacy for reducing incontinence episodes. Effect
estimates derived from hierarchical models correspond with
estimates derived from the individual analysis; however, there
was a substantial increase in the precision surrounding effect
umber of patients reporting adverse events. NMA, network
pulation and are not directly comparable.



Table 2 – Treatments placed in ranked order of their relative difference compared with placebo (δ and δ*) and corresponding probabilities for the mean
reduction in incontinence episodes from baseline.

S.
no.

Individual NMA Hierarchical NMA Hierarchical NMA with constraints

Treatment Rank
(95%
CrI)

p
(best)
(%)

δ (95% CrI) Treatment Rank
(95% CrI)

p
(best)
(%)

δ* (95% CrI) Treatment Rank
(95%
CrI)

p
(best)
(%)

δ* (95% CrI)

1 Trospium and
physiotherapy

2 (1–10) 47.66 –1.89 (–2.97 to –0.82) BoNTA 200 U 3 (1–13) 20.58 –1.33 (–2.13 to –0.61) BoNTA 300 U 1 (1–7) 83.18 –1.44 (–2.09 to –0.78)

2 BoNTA 150 U 4 (1–22) 17.67 –1.45 (–2.73 to –0.17) BoNTA 150 U 3 (1–16) 19.32 –1.31 (–2.15 to –0.55) BoNTA 200 U 2 (2–10) 0 –1.38 (–2 to –0.73)
3 BoNTA 200 U 4 (1–12) 9.46 –1.46 (–2.28 to –0.65) BoNTA 50 U 4 (1–16) 14.97 –1.29 (–2.13 to –0.54) BoNTA 150 U 3 (3–12) 0 –1.32 (–1.94 to –0.68)
4 BoNTA 50 U 6 (1–23) 4.35 –1.17 (–2.26 to –0.09) BoNTA 300 U 4 (1–17) 12.66 –1.27 (–2.12 to –0.51) BoNTA 100 U 4 (4–14) 0 –1.26 (–1.89 to –0.61)
5 Physiotherapy 6 (2–19) 1.08 –1.15 (–1.93 to –0.38) BoNTA 100 U 4 (1–18) 11.75 –1.27 (–2.11 to –0.49) BoNTA 50 U 5 (5–18) 0 –1.19 (–1.84 to –0.51)
6 BoNTA 300 U 8 (2–25) 2.06 –0.97 (–2.10 to 0.17) BT and PFE 9 (1–25) 5.29 –0.80 (–1.59 to –0.05) BT and PFE 9 (1–24) 4.54 –0.82 (–1.53 to –0.14)
7 BT and PFE 9 (1–26) 11.16 –0.86 (–2.94 to 1.17) Trospium

and physio-
therapy

9 (1–22) 3.648 –0.84 (–1.36 to –0.38) Trospium
and physio-

therapy

9 (1–20) 2.88 –0.85 (–1.31 to –0.43)

8 Oxybutynin and
physiotherapy

10 (2–25) 1.22 –0.81 (–1.77 to 0.11) PFE 10 (1–25) 3.67 –0.77 (–1.55 to –0.03) PFE 10 (1–24) 2.85 –0.79 (–1.47 to –0.13)

9 BoNTA 100 U 10 (2–26) 1.17 –0.85 (–1.99 to 0.31) Oxybutynin
and physio-

therapy

10 (2–23) 1.748 –0.78 (–1.26 to –0.33) Tolterodine,
PFE, and BT

10 (2–21) 1.22 –0.79 (–1.19 to –0.39)

10 PFE 11 (1–26) 3.07 –0.72 (–2.61 to 1.15) Physio-
therapy

11 (2–24) 1.724 –0.75 (–1.46 to –0.08) Oxybutynin
and physio-

therapy

10 (3–22) 1.14 –0.78 (–1.2 to –0.37)

11 Tolterodine,
PFE, and BT

11 (3–24) 0.57 –0.78 (–1.55 to –0.02) Duloxetine 11 (2–23) 1.216 –0.76 (–1.21 to –0.33) Physio-
therapy

11 (2–24) 1.43 –0.77 (–1.37 to –0.16)

12 Tolterodine and
estrogen

11 (4–21) 0.1 –0.78 (–1.27 to –0.29) Tolterodine
and PFE

11 (2–23) 1.11 –0.75 (–1.21 to –0.30) Duloxetine 11 (3–22) 0.68 –0.76 (–1.15 to –0.37)

13 Solifenacin 11 (6–16) 0 –0.77 (–0.96 to –0.57) Bladder
training

13 (2–26) 0.994 –0.67 (–1.46 to 0.12) Tolterodine
and PFE

11 (3–22) 0.63 –0.75 (–1.14 to –0.34)

14 Duloxetine 14 (5–24) 0.04 –0.60 (–1.22 to 0.02) Tolterodine
and estrogen

13 (5–23) 0.426 –0.66 (–1.02 to –0.28) Bladder
training

13 (3–26) 0.75 –0.68 (–1.35 to 0.04)

15 Trospium 14 (7–22) 0 –0.61 (–0.97 to –0.27) Solifenacin 13 (6–21) 0.068 –0.66 (–0.86 to –0.46) Solifenacin 13 (6–21) 0.06 –0.66 (–0.86 to –0.48)
16 Cizolirtine 17 (5–26) 0.04 –0.49 (–1.15 to 0.19) Tolterodine,

PFE, and BT
14 (4–24) 0.536 –0.64 (–1.05 to –0.23) Tolterodine

and estrogen
15 (5–24) 0.36 –0.63 (–1.02 to –0.24)

17 Tolterodine and
PFE

17 (5–26) 0.03 –0.49 (–1.17 to 0.20) Pregabalin
and

tolterodine

16 (6–25) 0.144 –0.57 (–0.93 to –0.17) Pregabalin
and

tolterodine

17 (6–25) 0.15 –0.54 (–0.94 to –0.12)

18 Tolterodine 17 (12–21) 0 –0.48 (–0.62 to –0.35) Trospium 17 (9–23) 0.004 –0.54 (–0.75 to –0.33) Trospium 18 (10–24) 0 –0.54 (–0.75 to –0.33)
19 Oxybutynin 17 (11–22) 0 –0.48 (–0.69 to –0.28) Propiverine 18 (9–24) 0.004 –0.52 (–0.72 to –0.30) Propiverine 18 (10–24) 0 –0.52 (–0.72 to –0.3)
20 Propiverine 17 (9–23) 0 –0.49 (–0.82 to –0.16) Oxybutynin 18 (11–24) 0 –0.51(–0.66 to –0.33) Tolterodine 19 (13–23) 0 –0.5 (–0.63 to –0.38)
21 Fesoterodine 18 (11–23) 0 –0.46 (–0.70 to –0.23) Fesoterodine 18 (10–24) 0 –0.50 (–0.67 to –0.32) Oxybutynin 19 (11–24) 0 –0.51 (–0.67 to –0.34)
22 Bladder

training
21 (3–28) 0.14 –0.30 (–2.31 to 1.74) Tolterodine 19 (12–23) 0 –0.50 (–0.63 to –0.37) Fesoterodine 19 (11–24) 0 –0.5 (–0.67 to –0.32)

23 Pregabalin and
tolterodine

21 (9–26) 0 –0.28 (–0.80 to 0.24) Resinifer-
atoxin

24 (12–27) 0.032 –0.19 (–0.70 to 0.39) Cizolirtine 24 (12–27) 0.01 –0.24 (–0.71 to 0.22)

24 Estrogen and
medroxy-

progesterone

23 (9–27) 0 –0.10 (–0.83 to 0.63) Cizolirtine 24 (11–27) 0.014 –0.24 (–0.71 to 0.25) Resinifer-
atoxin

24 (13–27) 0.01 –0.19 (–0.7 to 0.36)

continued on next page
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estimates produced by hierarchical analyses. For example, in
comparison to placebo, BoNTA 150 U had a similar reduction of –
1.45 (95% credible interval [CrI] –2.73 to –0.17) and –1.31 (95% CrI –
2.15 to –0.55) leakage episodes per 24 hours for individual and
hierarchical NMAs, respectively, though the precision increased
by approximately 150% for the effect estimate derived from the
hierarchical analysis. Imposing ordering constraints on increas-
ing doses of BoNTA further increased the precision of the effect
estimates, given that the estimated mean reduction in incon-
tinence episodes for BoNTA 150 U became –1.32 (95% CrI –1.94 to
–0.68), with the corresponding precision increasing by approx-
imately 310% compared with the individual analysis. The reduc-
tion in posterior uncertainty is particularly apparent through the
narrower CrIs. The synthesis of all available data in a hierarch-
ical analysis suggested that BoNTA 200 U is the most efficacious
intervention for reducing incontinent episodes with a corre-
sponding probability of 20.58% of it being the “best” intervention
overall. Imposing additional ordering constraints identified
BoNTA 300 U as the most efficacious intervention with
an increased probability of 83.18% of being the best inter-
vention compared with an estimated 12.66% from the
unconstrained model.

In addition, the posterior summaries for the class effects
obtained from both class-based and hierarchical analyses also
agree with one another (Table 3). These suggest that botulinum
toxins, as a class of interventions, are the most efficacious at
reducing the number of incontinent episodes per 24 hours, with an
estimated mean reduction of –1.40 (95% CrI –2.14 to –0.66), –1.29
(95% CrI –2.12 to –0.56), and –1.32 (95% CrI –1.95 to –0.66) for class-
based, hierarchical, and hierarchical with constraints models,
respectively. Although categorizing the interventions into their
respective classes for the class-based NMA increased the precision
of the effect estimates compared with the individual NMA, it
restricts the interpretability of the result at an individual
intervention level.
Number of Patients Reporting Adverse Events

Table 4 presents the interventions ranked in order of the
estimated odds of a patient reporting an adverse event. The
estimated odds are comparable in both individual and hier-
archical models; however, precisions in estimates derived from
hierarchical analyses have substantially increased. In both sets
of analyses, pregabalin is identified as the “worst” intervention
for causing patients to report adverse events. The estimated
odds ratio relative to placebo is 3.25 (95% CrI 1.52–7.03) for the
individual NMA and 2.77 (95% CrI 1.55– 5.05) for the hierarchical
NMA. Although the effect estimates derived from both models
are broadly similar, there is a 67% increase in the posterior
precision of the estimate obtained from the hierarchical model.
This increase in precision is demonstrated through the consis-
tently narrower CrIs. There is still considerable uncertainty in
the estimated odds and consequently in the estimated ranks of
the interventions, which is further highlighted by the associ-
ated 95% CrIs. Although pregabalin is ranked “worst” overall, it
is ranked worst only 30% of the time in both individual and
hierarchical NMAs, and thus this result should be interpreted
cautiously [13].

The median of posterior distributions for class effects are
comparable in both class-based and hierarchical NMAs (Table 5).
In addition, both sets of analyses suggest that other drugs have
the highest prevalence of patients reporting one or more adverse
events, with 70.73% and 60.52% probability of these being the
highest ranking intervention for causing one or more adverse
events for class-based and hierarchical NMA, respectively.
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Sensitivity Analysis

Sensitivity analyses suggested that changing the prior distribu-
tions of the variance parameters had very little impact on the
estimated treatment effects for both the outcome measures (see
Appendices C and D in Supplemental Materials found at http://
dx.doi.org/10.1016/j.jval.2014.10.006). Sensitivity to both the prior
distribution for the between-study variance and the between-
intervention class-specific variances showed little evidence of an
impact on the overall treatment effect estimates and precision
for individual and hierarchical models, respectively, thus sug-
gesting that all sets of analyses are insensitive to the choice of
the prior distributions.
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Node-Splitting

There was little evidence of an inconsistency between direct and
indirect estimates obtained from hierarchical NMAs as assessed by
methods of node-splitting (see Appendices E and F in Supplemental
Materials found at http://dx.doi.org/10.1016/j.jval.2014.10.006). For
the individual and hierarchical analysis, tolterodine, oxybutynin,
BoNTA 100 U, solifenacin, and trospium demonstrate an incon-
sistent direct and indirect estimate for the mean reduction in
incontinent episodes from baseline, relative to placebo (see
Appendix E in Supplemental Materials found at http://dx.doi.org/
10.1016/j.jval.2014.10.006), although between the active interven-
tions, there was little evidence of an inconsistency. Further inves-
tigation of the individual classes of treatments (e.g., anticholinergic
drugs alone) showed little evidence of an inconsistency between
direct and indirect estimates when compared with placebo. This
would suggest that the potential pooling of the placebo interven-
tions between classes might not be an appropriate assumption
because placebo for one class of interventions could be very differ-
ent from that for another class of interventions. For the adverse
event outcome, however, there was very little evidence of any
inconsistency between direct and indirect estimates for any set of
pairwise interventions (see Appendix F in Supplemental Materials
found at http://dx.doi.org/10.1016/j.jval.2014.10.006).
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Discussion

In this article, we have described and demonstrated the use of
hierarchical modeling for mixed treatment NMAs–a useful meth-
odology that can be used in clinical areas in which the available
interventions are particularly extensive and the evidence base is
somewhat limited both in terms of the number of trials and the
number of direct comparisons [6]. With the development of
MCMC methods for fitting these models implemented in Win-
BUGS, hierarchical NMAs are not only computationally feasible
but also widely applicable to other clinical settings.

Characteristically, NMAs performed on large networks with a
relatively small evidence base frequently evaluate the interven-
tions using an individual treatment NMA, thereby presenting
extremely uncertain effect estimates. Alternatively, and in the
case of the OAB syndrome example, the NMAs will focus on
analyzing a specific set, or class of interventions. Both methodo-
logical approaches, however, can often make it difficult to infer
the most efficacious intervention, making health policy decision
making difficult. Conducting an individual treatment NMA, with
a limited evidence base, produces considerable uncertainty in the
effect estimates and thus any inferences regarding treatment
effectiveness will remain cautious. Reducing the network, by
collapsing arms to compare classes of interventions, will severely
hinder the ability to specifically identify the most efficacious
treatment overall. For example, the class-based NMA identified
botulinum toxin to be the most efficacious class of interventions

http://dx.doi.org/10.1016/j.jval.2014.10.006
http://dx.doi.org/10.1016/j.jval.2014.10.006
http://dx.doi.org/10.1016/j.jval.2014.10.006
http://dx.doi.org/10.1016/j.jval.2014.10.006
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Table 4 – Treatments placed in ranked order of their relative odds compared with placebo (exp(φ) and exp(φ*))
and corresponding probabilities for the number of patients reporting one or more adverse events.

Individual NMA Hierarchical NMA

Treatment Rank
worst
(95%
CrI)

p
(worst)
(%)

exp(φ) (95% CrI) Treatment Rank
worst
(95%
CrI)

p
(worst)
(%)

exp(φ*) (95% CrI)

1 Pregabalin 2 (1–9) 30.41 3.25 (1.52–7.03) Pregabalin 3 (1–9) 27.66 2.77 (1.55–5.05)
2 Duloxetine 3 (1–11) 26.06 3.03 (1.32–7.03) Duloxetine 3 (1–10) 23.27 2.66 (1.45–4.95)
3 Oxybutynin 3 (1–7) 14.09 3.06 (1.97–4.85) Oxybutynin 3 (1–8) 16.09 2.61 (1.77–3.94)
4 Propiverine 4 (1–9) 6.14 2.61 (1.62–4.22) Cizolirtine 4 (1–13) 14.29 2.36 (1.16–4.81)
5 Cizolirtine

5 (1–15) 15.88
2.39 (–0.81 to

7.17)
Propiverine 5 (1–10) 7.08 2.29 (1.54–3.53)

6 Darifenacin 5 (1–10) 5.21 2.41 (1.36–4.31) Darifenacin 6 (1–11) 4.19 2.12 (1.36–3.39)
7 Pregabalin and

tolterodine 7 (2–14) 1.08 1.86 (0.90–3.82) UK-369,003 7 (1–14) 3.51 1.92 (0.96–3.60)

8 Solifenacin
8 (4–11) 0.05 1.77 (1.26–2.53)

Pregabalin and
tolterodine

8 (1–15) 3.15 1.77 (0.9–3.49)

9 Imidafenacin 9 (4–14) 0.14 1.60 (0.93–2.75) Solifenacin 8 (4–12) 0.2 1.77 (1.31–2.44)
10 UK-369,003 11 (3–16) 0.83 1.34 (0.56–3.22) Imidafenacin 9 (4–14) 0.2 1.62 (1.06–2.48)
11 Fesoterodine 11 (5–15) 0.1 1.31 (0.69–2.46) Fesoterodine 10 (4–15) 0.2 1.49 (0.92–2.39)
12 Trospium 11 (7–15) 0.001 1.27 (0.88–1.82) Trospium 11 (7–14) 0.01 1.36 (0.99–1.88)
13 Tolterodine 12 (9–14) 0 1.17 (0.92–1.49) Tolterodine 13 (10–14) 0 1.21 (0.97–1.52)
14 Tolterodine

and BT 14 (7–16) 0.02 1.0 (0.52–2.03)
Tolterodine

and BT
14 (6–16) 0.15 1.04 (0.54–2.03)

15 Placebo 14 (12–15) 0 NA Placebo 14 (13–15) 0 NA
16 BoNTA 200 U 16 (12–16) 0.002 0.50 (0.21–1.19) BoNTA 200 U 16 (13–16) 0.004 0.50 (0.21–1.16)
17 BT 17 (17–17) 0 0.001 (0.00–0.1) BT 17 (17–17) 0 0.02 (0.00–0.21)

BT, bladder training; NMA, network meta-analysis.
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with a probability of 89.38%, though it is unclear which specific
BoNTA intervention, that is, dose, is the most efficacious overall.

In the current literature, use of the term “hierarchical NMA” is
intermittently used to describe what is commonly known as a
“random effects NMA” with variance components at two levels in
the model, one at the within-study level and one at the between-
study (within intervention) level. In this article, we demonstrate a
third level in the model, accounting for an additional variance
component between interventions within a class. Adding an
additional level to the model changes the assumption of exchan-
geability and, consequently, the degree of shrinkage [1]. For this
reason, there is a notable change in the estimated mean treat-
ment effects and precision of the hierarchical NMA compared
with that of the individual treatment NMA.

In comparison to the above methods, use of a hierarchical
model as described in this article has several advantages. Princi-
pally, there is a substantial increase in the precision surrounding
the effect estimates, and this was particularly apparent for the
interventions for which there are few trials and a limited number
of direct comparisons between other active interventions [6]. In
addition, the hierarchical model maintains the interpretability of
the effect estimates at an individual intervention level.

Nevertheless, the hierarchical models make a fundamental
assumption that the intervention effects, within treatment
classes, are exchangeable, and a judgment of appropriateness
of such an assumption has to be made [1]. If this assumption
does not hold for every class of interventions, use of a hierarch-
ical model will introduce inappropriate results; thus, it is impor-
tant for researchers to classify treatments into clinically plausible
classes. Of course, the treatments do not have to be classified if
there is no reason to do so. A further limitation of the hierarchical
model is the subjective classification of the interventions when
there is potential treatment overlap. For example, in the OAB
syndrome case, trospium and physiotherapy as a combination
intervention will overlap with both anticholinergic and behavior
therapy classes. Moreover, the combination of interventions
individually estimated in the NMA could be modeled as the
sum of individual components, with the potential to incorporate
a synergistic or subadditive interaction between the interven-
tions [19]. Furthermore, the number of interventions and trials
within each class can vary substantially. Therefore, in particular
classes in which there are few interventions and a small evidence
base, the estimates will remain fairly uncertain. In situations
such as these, the impact of the prior distributions on the
variance parameters could be substantial, and use of extensive
sensitivity analyses would be crucial [1,23].

Extending the hierarchical model to incorporate ordering
constraints [9,10] on the BoNTA interventions for the OAB
syndrome example resulted in the highest dose, BoNTA 300 U,
to consistently be the most effective dose and therefore all other
BoNTA interventions have a 0% probability of being the “best”
intervention overall. In other examples, including ordering con-
straints in this way, that is, allowing the treatment effects of
higher doses to be greater than or equal to those of lower doses,
allows lower doses of interventions to have an equal probability
of being the best intervention. Introducing these constraints for
the mean reduction in incontinence episodes resulted in an
estimate of –1.44 (95% CrI –2.09 to –0.78) for BoNTA 300 U
compared with an estimate of –1.27 (95% CrI –2.12 to –0.51) for
the unconstrained hierarchical model. Thus, assuming that
larger doses of an intervention have a greater or equal effect to
that of lower doses does not alter the effect estimates to any
noticeable extent. This approach does, however, reduce the
uncertainty in the effect estimates, the estimated ranking of
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the interventions, and the probability that each of the interven-
tions is the most effective, and consequently aids decision
making.

The hierarchical model can be further extended to fit a
multivariate hierarchical NMA [28] in which all outcomes are
measured simultaneously [29]. This method of analysis can help
ameliorate the potential effect of outcome reporting bias in trials
that fail to report all the outcome measures of interest. This
approach estimates a correlation between the outcomes to
predict a value for the missing data points conditional on the
outcome measures already reported and the model [30].

To further investigate the inconsistency detected between the
direct and indirect evidence for the continuous outcome, explor-
atory analyses could investigate the association of baseline risk
and treatment effect. Baseline risk represents the average
response of a patient under the control group (e.g., placebo). If
inconsistency is a result of pooling placebo interventions, incor-
porating baseline risk in to the model will explain some of the
heterogeneity between studies [31].

In summary, we have shown that the use of hierarchical
modeling, in NMAs, can increase the precision of intervention
estimates, without hindering the interpretability of individual treat-
ments. As demonstrated by the OAB syndrome example, borrowing
strength within the classes of treatments reduced the uncertainty
in individual estimates, yet estimated relative effects were still
comparable with results obtained from individual analyses.
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