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A B ST R A C T

The Shallow Crustal Structure o f the Chicxulub Im pact 
Crater from Surface Wave Dispersion Studies

G r a em e  D . M a ck en z ie

A surface wave dispersion  s tu d y  has been conducted  on high frequency (0 .5 -5  Hz) 
c ru s ta l Rayleigh waves p ro p ag a tin g  across th e  65 M a. C hicxulub  im pact s tru c tu re  in 
M exico. T hese were recorded on a  20 s ta tio n  seism ic a rray  deployed along 4 rad ia l a rm s 
across th e  region and o rig inated  from  nearby  q u arries  w ithin the  array . E ven ts o rig in a tin g  
from th e  sam e q u a rry  were stacked  prio r to  th e  app lica tion  of a m ultip le filter techn ique 
to  p roduce g roup  velocity d ispersion  curves. U sing a  genetic algorithm  several one d im en
sional sh ear wave v e lo c ity -d ep th  m odels have then  been ob ta ined  th rough  th e  o p tim iza tio n  
o f th e  fu n d am en ta l and  higher m ode d ispersion  curves.

T h e  m odels provide in fo rm ation  on th e  velocity  s tru c tu re  of th e  upper few k ilom etres 
of th e  c ru s t and suggest an infilling of th e  c ra te r  from  th e  c ra te r  rim inw ards. An inverted  
velocity g rad ien t is m odelled over th e  up p er few hundred  m etres across m ost o f th e  region 
w ith th e  exception  of a  cen tra l rad ia l a rea . T h is  inverted  velocity zone m ay be connected  
to  do lom itiza tion  du rin g  a  la te  M iocene regression. T h e  base of th e  T ertia ry  sequence is 
m odelled a t  c. 1-1 .5  km d ep th  and  show s increased velocities com pared  to  th e  overlying 
sed im ents. T h is velocity increase m ay im ply som e form  of hyd ro th erm al a lte ra tio n  o f th e  
sed im ents caused by a  th e rm a l b lanket effect c rea ted  by th e  underly ing c ra te r  breccia  and  
m elt. Im m ediately  below th e  T e rtia ry  sed im en ts a  c. 200 m thick low velocity zone is 
in te rp re ted  as a  layer of suevitic  im p act b reccia. M odels ob ta ined  a t  c. 3 5 -45  km rad iu s  
from  th e  c ra te r  cen tre  a re  consisten t w ith  th e  ex istence of a  peak ring as a  to p o g rap h ic  
high above th e  c ra te r  floor.

T he  resu lts from  th e  velocity m odels provide fresh inform ation  on th e  sed im en ta tio n  
o f th e  region and  som e c o n s tra in ts  on th e  c ra te r  m orphology.
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Chapter 1

The C hicxulub Im pact Structure

1.1 Introduction

T h e  C hicxulub  im pact s tru c tu re  is located  on th e  NW  edge o f th e  Y ucatan  pen insu la  in 

M exico (F igure 1 .1 ) lying p artly  offshore and  buried under app rox im ate ly  1 km o f p o s t

im p act sed im ents. It is now widely recognized as a  bolide im pact site  on th e  C re tac eo u s- 

T ertia ry  (K -T ) boundary  and has been linked to  th e  m ass ex tin c tio n s o f th a t  tim e. 

T h ro u g h  th e  use o f gravity , m agnetics, drill hole and  topograph ic  d a ta  previous researchers 

(e.g., H ildebrand e t al., 1991; S h a rp to n  e t al., 1993) have a tte m p te d  to  d e te rm in e  th e  size 

and  m orphology of th e  c ra te r  b u t these  rem ained  poorly constra ined , rang ing  from  180— 

300 km in d iam eter, still m aking  it one o f th e  largest c ra te rs  on th e  E a r th . T h e  im p act 

occurred  in a  shallow m arine env ironm en t and  subsequen t rapid  burial, com bined w ith  th e  

tec ton ic  s tab ility  of th e  region has resu lted  in one o f th e  best preserved im p ac t s tru c tu re s  

on E a r th .

T h rough  th e  use o f high frequency surface  wave dispersion, 1-D  sh ea r wave velocity 

m odels have been ob ta ined  across th e  region and  used to  infer th e  shallow  s tru c tu re  o f th e  

c ra te r , its  fo rm ation  and its  influence on th e  po st-im p ac t T ertia ry  sed im en ta tio n .

T h e  rem ainder of th is  ch a p te r will focus on th e  m echanics o f c ra te rin g  and  provide a  

review of previous exp lo ration  and  m odelling o f th e  C hicxulub s tru c tu re .

1.2 Impact cratering

Im pac t c ra te rin g  has been one o f th e  d o m in an t influences on p lan e ta ry  evolution  and 

yet its  im p o rtan ce  has only been realized over th e  last few decades. It is now being
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Figure 1.1: Location of th e  C hicxulub im pact s tru c tu re . This figure and a  num ber o f o th ers  
in th is  thesis have been produced w ith th e  G M T  package (Wessel and Sm ith , 1995).

recognized as a  fundam ental geological process; th e  form ation of the  m oon (Stevenson, 

1987), ou tgassing  of the  c ru st to  form th e  prim ordial a tm osphere (Lange and  A hrens, 

1982), developm ent and evolution of life (Alvarez e t al., 1980), m ajo r te c to n o /th e rm a l 

events (G likson, 1995) and form ation  o f econom ic deposits (e.g., Donofrio, 1981) all being 

suggested as results of large im pact events. W hilst m ajo r advances have been m ade in the  

understand ing  o f im pact processes and effects th e re  rem ain several unansw ered questions 

and poorly understood  areas. O ne of th e  m ajo r restric tions on th a t  research has been the  

lack of well preserved te rres tria l c ra te rs , th u s  requiring the  ex trapo lation  of in form ation 

from  deform ed and eroded s tru c tu re s  or from  lu n ar and Venusian im pact sites.

T he C hicxulub c ra te r  provides an ideal o p p o rtu n ity  to  study  one of th e  largest te r

restria l im pacts and develop an und erstan d in g  o f th e  processes occurring during  c ra te r  

form ation  and also th e  effects such an im p act will have.

1.2.1 Cratering mechanics

T he form ation of c ra te rs  from  im pacting  bodies form s a  rapid b u t ordered sequence of 

events. A lthough these are a  continuous series, in order to  understand  the  process b e tte r , 

they  can be divided into th ree  m ain stag es (G au lt e t al., 1968):
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•  co n tac t and  com pression

•  excavation

•  m odification

Each of these stag es  differs w ith respect to  th e  physical processes occurring  and  th e  tim e 

scale required for th e  process to  reach com pletion .

C ontact and com pression

T his s tage  is confined to  a  region th e  sam e size as th e  ta rg e t and  typically  lasts  from  10- 3 -  

1 second w ith th e  d u ra tio n  depend ing  on th e  p ro jec tile  size, com position  and velocity. T h e  

p ro jec tile ’s kinetic energy is tran sfe rred  in to  th e  ta rg e t v ia a  system  of shock waves w ith 

pressures reaching 1000 G P a  (e.g., G a u lt e t al., 1968; M elosh, 1989). As th e  fron t o f th e  

pro jectile  h its th e  ta rg e t, ta rg e t  m ateria l is com pressed and  accelerated  aw ay from  th e  

pro jectile  w hilst th e  ta rg e t ’s resistance to  p en e tra tio n  decelera tes th e  p ro jec tile  (M elosh, 

1989). In itially  a  sm all high p ressure region develops a t  th e  interface, encom passing  a 

shocked region of b o th  ta rg e t and  p ro jectile . B o th  p ro jec tile  and ta rg e t are  com pressed 

and  begin to  d is to r t. A to ru s  o f e x tra  high pressure is form ed by th e  oblique im p ac t of 

th e  curved sides o f th e  p ro jec tile  and  th e  in itially  fla t ta rg e t area . J e ts  of highly shocked, 

m olten or vapourized m ateria l a re  squ irted  o u t o f th is  region a t  high speeds several tim es 

fa s te r th an  th e  p ro jec tile  velocity. T h is je t t in g  las t only for a  very sh o rt tim e, finishing 

before th e  p ro jec tile  is fully com pressed and involves only a  sm all am o u n t o f m ateria l, 

b u t becom es m ore im p o rta n t for oblique im p acts  (e.g., Kieffer, 1977; M iller, 1998). T h e  

shock wave g enerated  a t  th e  in terface p ro p ag a tes  in to  b o th  ta rg e t and p ro jec tile  w ith 

th e  pro jectile  m ateria l being com pressed and decelera ted  w hilst th e  ta rg e t m ateria l is 

sim ilarly  com pressed and  accelera ted . Shock p ressures vastly  exceed m ateria l s tre n g th s  

and  th is  s tage  is hydrodynam ic . Once th e  shock wave reaches th e  back o f th e  p ro jec tile  

it is reflected as a  ra refaction  wave which trave ls  back th ro u g h  th e  com pressed m ate ria l 

a t  th e  speed o f sound, fu r th e r decelera ting  it and  unloading  it to  near zero pressure. T h e  

shock wave in th e  ta rg e t is now ap p ro x im ate ly  hem ispherical, cen tred  a  p ro jec tile  d iam e te r 

below th e  p re-im pact surface. T h is  in itial s tag e  is considered to  have ended w hen th e  

rarefaction  has unloaded th e  p ro jec tile  by which po in t th e  m ajo rity  of th e  p ro jec tile  has 

been vapourized and  a  detached  shock wave is developing in th e  ta rg e t (M elosh, 1989).
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F igure  1.2: Schem atic illu s tra tio n  of th e  excavation flow geom etry . D ashed lines ind icate  
th e  shock pressure co n to u rs  w ith solid lines th e  excavation flow stream lines. E jec ta  from  
n earest th e  im pact site  trave l a t  th e  h ighest speeds w hereas e jec ta  em erging fa r th e r  from  
th e  im pact po int travel slower (a fte r M elosh, 1989).

Excavation

T h e  excavation stage  is ch arac te rized  by tw o processes. T he  earliest o f these  is th e  ex p an 

sion of th e  hem ispherical shock wave in itia ted  du ring  th e  co n tac t and com pression stage . 

T h e  second of these processes is th e  excavation  flow which is responsible for th e  opening 

o f th e  c ra te r. T he  tw o processes, a lth o u g h  responsible for d ifferent physical effects, occur 

on overlapping  tim e scales, a re  closely re la ted  and governed by one com plex law m aking 

it im possible to  tru ly  se p a ra te  th em  (M elosh, 1989).

T he  shock wave in itia ted  by th e  com pression stag e  p ro p ag a tes  rad ia lly  o u tw ard s  dis

tr ib u tin g  th e  kinetic energy from  th e  p ro jectile . As it expands, th e  m ateria l behind th e  

shock wave is left w ith a  m otion  rad ia lly  aw ay from th e  im pact po in t. To fulfill th e  bound

ary  condition o f zero s tress  a t  th e  free surface a  series of ra refaction  waves are  in itia ted  

by th e  m ovem ent o f th e  shock wave along th e  face of th e  ta rg e t. P artic le  m otions near 

th e  surface are p redom inan tly  horizon ta l w ith th e  in te rac tion  o f th e  ra refac tions and  th e  

shock wave com pression e jec ting  th in  spall p lates a t  high speed. A t deeper d ep th s  th e  

rarefactions deflect th e  partic le  m o tions from  th e  ou tw ard  rad ia l m otion upw ards tow ards 

th e  surface estab lish ing  an upw ard  and  ou tw ard  excavation flow (G au lt e t al., 1968). T he  

geom etry  of th e  excavation flow is illu s tra ted  in F igure 1 .2 . S tream lines begin on th e  inner
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F igure 1.3: Regions of m ateria ls expelled from  the  c ra te r. M aterial a t  th e  point of im pact 
is vapourized and expands ou tw ards as a  vapour plume. N ear surface m ateria l is expelled 
as spall plates whilst rem aining m ateria l is e ither ejected or displaced dow nw ard by the  
excavation flow. He is the  final excavation dep th  and H* the  resu ltan t tran s ien t c ra te r 
dep th  (after M elosh, 1989).

surface of th e  c ra te r and progress o u tw ards along curved p a th s  cu ttin g  th rough  pressure 

con tours so th a t  m aterial following th e  p a th  of th e  stream lines contain a  range o f shock 

levels. W hen m aterial rises above th e  pre-im pact surface it is considered to  be ejected 

and begins to  follow ballistic tra jec to rie s . S tream lines orig inating  a t  th e  base o f th e  c ra te r 

ind icate th e  path  of displaced m ateria l th a t  is not ejected (F igure 1.3). T he excavation 

flow is responsible for th e  grow th of th e  c ra te r , opening the  hem ispherical cavity  initially 

created  during  the  con tac t and com pression stage  to  its final stage known as th e  tran sien t 

c ra te r  (F igure 1.4).

It should be noted th a t  th e  te rm  tran s ien t c ra te r  has been defined differently by various 

au th o rs , leading to  confusion and inaccuracies in scaling laws and energy estim ates. M elosh 

(1989) defines th e  tran sien t c ra te r  as th e  cavity  lined with breccia and m elts w hilst Dence 

e t al. (1977) define it as being th e  cav ity  th a t  is bounded by th e  in terface betw een the  

im pacted  rock and the breccias and m elt, larger th an  the  tran sien t cavity  of M elosh. 

H ildebrand e t al. (1998) d ifferentiated  betw een the  two by redefining th e  tran s ien t c ra te r 

of Dence e t al. as the d isruption  cavity  (F igure 1.4d). W hilst it is possible to  theoretically  

reconstruct the d isruption cavity  o f large c ra te rs  by moving slum p blocks back to  their 

original locations, the  tran sien t c ra te r  can only be reconstructed  w ith knowledge of the
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m elt and  breccia volum es, hence discussion o f th e  tran s ien t c ra te r  of m ost large c ra te rs  

(including C hicxulub) has in fact referred to  th e  d isrup tion  cavity  (e.g., H ildebrand  e t al., 

1991; M organ e t al., 1997).

M odification

T h e  tra n s ien t c ra te r  form ed du rin g  th e  excavation  s tag e  is unstab le  and im m ediately  begins 

to  collapse under gravity . For sm aller c ra te rs  th is  involves loose debris sliding down th e  

c ra te r  walls form ing th e  base of th e  c ra te r  while for larger c ra te rs  large slum p blocks form 

te rrace s  and th e  cen tre  of th e  c ra te r  reb o u n d s upw ards. T hese are  discussed fu r th e r  in 

Section 1 .2 .2 . T h e  tim e period over which these  m odifications occur is rem arkab ly  sh o rt, 

c. 10 seconds for sm aller c ra te rs  up to  c. 10 m inu tes for larger c ra te rs . T h e  re su ltan t 

c ra te r  has an in terio r th a t  is m ass deficient b u t w ith a  m ass excess around  th e  rim s. 

T rue g rav ita tio n a l s tab ility  only occurs once th e  in terio r rebounds and  th e  rim  subsides to  

produce a  plain. T h is occurs over a  m uch longer tim e period generally  th ro u g h  th e  long 

te rm  viscous flow of th e  su b s tra te  o r by erosion and  infilling.

1 .2 .2  C ra ter  m o rp h o lo g y

T h e  final m orphology of a  c ra te r  following th e  g rav ity  driven m odification s tag e  goes 

th ro u g h  a  series o f tran s itio n a l stages. As th e  c ra te r  increases in size th e  form  of th e  c ra te r  

g ra d u a te s  from  a  sim ple bowl sh ap e  to  a  series o f m ore com plex s tru c tu re s  (F igure  1.5). 

Being g rav ity  driven these m orphological tran s itio n s  occur a t  varying d iam eters  on th e  

d ifferent p lanets.

Sim ple craters

Sim ple c ra te rs  are  charac terized  by th e ir  bowl sh ap e  w ith overtu rned  rim s. T hey  resem ble 

th e  tra n s ie n t c ra te r  differing only in th a t  th e ir  floor is covered w ith breccia and  a  pool of 

m elt and  shocked debris. T h eir fo rm atio n  from  collapse of th e  tran s ien t c ra te r  and  sliding 

of breccia back in to  th e  c ra te r  is re la tively  well u nderstood  (F igure 1.6) (e.g., G rieve e t al., 

1977; M elosh, 1989).
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F igure 1.4: F o rm ation  o f th e  tran s ien t c ra te r . Its  sh ap e  a t  any one tim e is given by th e  
position reached by th e  innerm ost m ateria l w ith in  th e  excavation flow. T he  c ra te r  in itially  
is hem ispherical (a), expand ing  a t  a  ra te  m uch slower th a n  th e  im pact velocity. Its  ra te  
o f grow th in d ep th  slows and  ceases (b) p rio r to  th e  h a lt of its  radial g row th  (c). T he  
re su ltan t c ra te r  (d) is known as th e  tran s ien t c ra te r  o r cav ity  w ith a  d iam ete r D<. T he  
d isrup tion  cav ity  has d iam e te r D j. T h ro u g h o u t th e  fo rm ation  th e  sides and base are  lined 
w ith m elt and highly shocked rocks (a fte r M elosh, 1989).
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Figure 1.5: C ra te r  m orphology o f lunar im pacts (a) A lfrancus C, 10 km d iam eter sim ple 
c ra te r, (b) Tycho, 85 km d iam eter cen tral peak c ra te r, (c) Schrodinger, 320 km peak ring 
c ra te r and (d) O rien ta le , 900 km d iam eter m ulti ring im pact basin. Im ages reproduced 
permission of th e  Geological Survey of C an ad a , N a tu ra l Resources C anada .

U n sta b le

Figure 1.6: Form ation  of a  sim ple bowl c ra te r. T h e  unstab le sides of th e  tran s ien t cavity  
collapse to  form  th e  breccia infill. A buried m elt pool is trap p ed  a t  the  base, w hilst th e  
mixed partia l m elt and breccia th a t  lined th e  tran s ien t c ra te r walls is concen tra ted  near 
th e  top  (after M elosh, 1989).

Partial m elt

M elt pool
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F igure 1.7: Form ation  o f a  cen tra l peak c ra te r . G rav ita tio n a l rebound of th e  cen tre  o f th e  
c ra te r  begins alm ost im m ediately  and  no tru e  tran s ien t c ra te r  is form ed. Large slum ping  
o f th e  edges occurs to  form  te rrace s  (a fte r M elosh, 1989).

C om plex craters

T he fo rm ation  of com plex c ra te rs  is less well u n derstood  w ith d eb a te  over th e  n a tu re  and 

origin of m any of th e ir fea tu res  and  th e  validity  o f th e  tran s ien t c ra te r  concept (G rieve, 

1987). T he  tran sitio n  from  sim ple to  com plex form  is a b ru p t occurring  once th e  c ra te r  

exceeds a few kilom etres in d iam eter; th e  exac t d iam ete r depend ing  on th e  ta rg e t rock. 

G rav ity  driven m odifications resu lt in slum ping  of th e  c ra te r  sides to  form  terraced  walls. 

T h e  cen tra l floor o f th e  tra n s ie n t c ra te r  rebounds rapidly  upw ards to  form  a  peak in th e  

cen tre  of th e  c ra te r  (F igure 1.7) su rro u n d ed  by a  relatively flat c ra te r  floor (e.g., M elosh, 

1989). T he cen tral uplift is com posed o f th e  original s tra tig ra p h y  and  a lthough  frac tu red  

and  deform ed is no t a  breccia o r m elt. M otion of basem ent rocks in th e  c ra te r  cen tre  

is inw ards and upw ards w ith  th e  am o u n t o f uplift generally  10-15%  of th e  final c ra te r  

d iam ete r (Dence e t al., 1977). N earer th e  rim , m otion is inw ard and  dow nw ard.

A t around  25 km d iam ete r on th e  E a r th , a  tran s itio n  is seen from  a  cen tra l peak 

to  a  peak ring. T he  fo rm ation  o f a  peak ring c ra te r  is widely believed to  be a  n a tu ra l
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F igure  1.8: Form ation  of a  peak ring  c ra te r . T h e  cen tra l peak overshoo ts g rav ita tio n a l 
s tab ility  and collapses to  form  th e  peak  ring (a fte r M elosh, 1989).

progression from  a  cen tral peak as th e  c ra te r  size increases. T h e  peak ring is th o u g h t to  

form  when th e  cen tra l uplift overshoo ts g rav ita tio n a l s tab ility  and collapses in on itself 

(F igure  1.8), analogous to  th e  way in which a  liquid d rop le t will form  a  cen tra l je t  before 

collapsing and  creating  a  ripple a ro u n d  its  in itial location . In th e  case o f th e  d ro p le t th is 

ripple will expand  ou tw ards, however, in th e  c ra te r  s itu a tio n  th e  ripple ‘freezes’ to  form  

th e  peak ring.

T h e  m echanics of th e  fo rm atio n  o f com plex c ra te rs  con travene generally  held ideas 

concern ing  geological m ateria l s tre n g th s . C onventional rock and  debris s tre n g th  can n o t 

explain  th e  rim collapse to  form  te rraced  walls which instead  requires th e  rocks to  behave 

as perfectly  p lastic m ateria ls  (M elosh, 1977). T h e  fo rm ation  o f th e  cen tra l peak and peak 

ring requires th e  m ateria l to  behave as a  B ingham  fluid w ith hydrodynam ic behaviour 

th a t  ceases when th e  shear stresses d riv ing  th e  cen tra l je t  fall below its  cohesion s tren g th  

(M elosh, 1982). W hilst th e  phenom ology is un d ersto o d , th e  physics rem ain  d eb a tab le . 

Several ideas have been proposed including  a  m elt-solid slurry, fluidization by w a te r and 

acoustic  fluidization (M elosh, 1983, 1989).



1. The Chicxulub Impact Structure 11

T he largest c ra te rs  form  m ulti-ring  basins which differ from  peak ring c ra te rs  in th a t  

several asym m etric  ring scarps ex ist o u ts id e  th e  c ra te r  rim . Possibly due to  th e  lack of 

any unequivocal well preserved te rre s tr ia l exam ple , m ulti-ring basins rem ain  ex trem ely  

controversial w ith d eb a te  on w hether th e ir  fo rm atio n  is sim ply th e  next s tag e  in th e  size- 

m orphology progression or th e  resu lt o f a  com pletely  different process (M elosh, 1989). 

Several researchers have proposed th a t  th e  d iam ete r o f successive rings form  a  l:y/2  ra tio  

(P ike and Spudis, 1987) w hilst o th e rs  have d o u b ted  th e  existence of such a  ra tio  o r w he ther 

it has any significance.

1 .2 .3  C ra ter  id en tif ica tio n

W hilst c ra te rin g  on th e  m oon is easily visible, identification  of im pact sites on th e  E a r th  

has been m ore difficult. T he  high level o f geological ac tiv ity  on th e  E a r th  h inders th e  

recognition and  discovery o f te rre s tria l im p ac ts . A lthough th e  increase in u n d ers tan d in g  

of th e  processes o f c ra te rin g  and th e ir effect on source geology has led to  m ore discoveries 

th e  te rre s tria l im p act record is still heavily biased tow ards s tab le  c ra ton ic  a reas  and  w here 

active p rogram m es to  search for im p ac t s ites  ex ist e.g., N orth  A m erica and  A u stra lia  

(F igure 1.9).

To d a te , app rox im ate ly  156 im p act sites  have been identified on th e  E a r th  th ro u g h  

th e ir geological o r geophysical s ig n a tu res  (G rieve, 1998).

G eological

S edim ents can con ta in  evidence of im p ac t even ts  in th e  form  of shocked m inerals, im p act 

glass, soo t and  ash layers, im p act breccias and  im p act induced tsunam i d ep o sits  (C laeys,

1995). G eochem ical and m ineralogical s tu d ies  o f these  layers m ay prove th a t  th ey  have an 

im pact origin.

Som e of th e  s tro n g es t geological evidence for im pacts  are a  variety  o f shock fea tu res. 

On a  m egascopic scale, conical s tr ia te d  s tru c tu re s  known as s h a tte r  cones have been show n 

to  be im p act re la ted  (D ietz, 1968) w hilst on a  sm aller scale th e  high p ressures and  tem 

p era tu res  involved in im pact events resu lt in th e  shock m etam orph ism  of m ost m inerals 

(B unch, 1968). T he  m ost com m only cited  evidence of shock m etam orph ism  is p lan a r de

fo rm ation  fea tu res  in tec tosilica tes such as q u a r tz . Evidence o f all carbon  a llo tro p es can 

be found in im p act re la ted  deposits due to  th e  wide range of tem p e ra tu re  and  p ressure
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Figure 1.9: Terrestrial im pact sites (source of d a ta  Geological Society of C an ad a).

conditions (G ilm our, 1998). T hese include m icro-diam onds which under th e  P - T  condi

tions of te rrestria l volcanism  would have reverted back to  g rap h ite  or have been oxidized 

to  form  C 0 2. Geochem ical s tud ies o f im pact deposits show th a t  they  are enriched in rare 

ea rth  elem ents such as iridium  and osm ium  and  indicate chem ical re lations in m elt rocks 

and glass th a t  are incom patib le w ith  a  volcanic source. Spinels enriched in Mg, Al, Ni and 

C r have been reported  in im pact re la ted  sedim ents worldwide and from  m eteorite  fusion 

c ru sts  (Bohor, 1990). T hese spinels have no te rres tria l co u n te rp arts .

Small rounded silicate glass partic les, often aerodynam ically  shaped , known as tek- 

tite s  are formed from th e  m elting of te rrestria l sedim ents during  hyper velocity im pacts 

(G lass, 1990). Geochem ical and petrological evidence e.g., high Fe0 /F e 2 0 3  ra tios and th e  

existence of lechatelierite su p p o rt an im pact origin as opposed to  a volcanic one. T ek tites 

have been found over large regions o f th e  E a rth  in areas called “strew n fields” , several of 

which have been linked to  known im pact events.

Geophysical

A pproxim ately 35% of known im pact s tru c tu re s  on the  E a rth  are buried by post im pact 

sedim ents (Grieve, 1998) leaving geophysicically based investigative m ethods as th e  pri
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m ary  too l for th e ir investigation . T h e  m a jo rity  o f te rre s tria l c ra te rs  a re  in itially  identified 

th ro u g h  th e ir geophysical s ig n a tu res  prio r to  being confirm ed as im p ac t s tru c tu re s  by 

geological study.

T h e  m ost prom inent s ig n a tu re  is a  c ircu lar g rav ity  low, believed to  be th e  resu lt of 

density  co n tra s ts  from  frac tu rin g  and  brecciation w ith a m inor com ponen t from  infilling 

of th e  c ra te r  w ith low density  sed im en ts. In general th is anom aly  increases w ith c ra te r  

d iam e te r to  a  m axim um  of 2 0 -30  m G al for a  d iam ete r of c. 30 km. A bove th is  d iam ete r 

a  cen tra l g rav ity  high can be seen as a  resu lt o f uplift of denser m ateria l and  com pression 

in th e  cen tra l uplift a lthough th e  presence of a  cen tra l uplift does no t necessarily im ply a 

cen tra l g rav ity  high (P ilk ington  and  G rieve, 1992).

T h e  d o m in an t m agnetic s ig n a tu re  o f a  c ra te r  is a  m agnetic low. A gain larger c ra te rs  

(>  40 km d iam eter) show a  high am p litu d e  cen tra l anom aly. T he  m agnetic  anom aly  is 

generally  m ore com plex th an  th e  g rav ity  and  as w ith th e  g rav ity  s ig n a tu re  th e re  is not 

a  d irec t correlation  between th e  c h a ra c te r  o f th e  anom aly and c ra te r  m orphology. T h e  

m agnetic  anom aly  is believed to  be a  resu lt o f a  com bination  o f shock d em agne tiza tion  

and  rem agnetization , p roduction  o f m agnetic  m inerals th ro u g h  shock m etam o rp h ism  and 

th erm o rem an en t m agnetiza tion  o f im p ac t m elt rocks (P ilk ing ton  and  G rieve, 1992).

Im p ac t induced brecciation and  frac tu rin g  can resu lt in relatively  large changes in 

seism ic p roperties  and bo th  reflection an d  refraction  m ethods have been used to  provide 

deta iled  m odels of im pact s tru c tu re s  (e.g., G reen and  C h e tty , 1990; Wu e t al., 1995). Low 

velocities corresponding  to  th e  fra c tu re  zone ex tend  a t  least one c ra te r  d iam e te r beyond th e  

c ra te r  rim  w ith th e  velocity anom aly  decreasing  w ith  d istance  as frac tu re  density  decreases. 

T h e  low velocity zone co rre la tes w ith  a  low density  region and  th e  po ten tia l field anom alies. 

In th e  cen tre  of large c ra te rs , high velocities can be expected  from  uplifted  deep c ru sta l 

m ate ria l. C ra te r  featu res can be im aged by d isrup tion  of reflectors and  incoherency o f th e  

seism ic signal.

A lthough few exam ples exist o f electrical m ethods being utilized in c ra te r  study , 

changes in electrical p roperties  would occur ind irectly  from  frac tu rin g  and  brecciation 

resu lting  in changes in fluid volum e and  d is trib u tio n . R ecently  Pilon e t al. (1991) showed 

th a t  g round p en e tra tin g  ra d a r could be utilized to  provide detailed  shallow  (ten s o f m etres) 

subsurface inform ation  of sm all im p ac t c ra te rs .
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1 .2 .4  Im p a c t  e ffec ts  an d  r e la t io n  to  e x t in c t io n s

Several researchers have raised th e  possib ility  o f m ass ex tinction  events being re la ted  to  

im p acts  (e.g., D e Laubenfels, 1956; U rey, 1973), b u t it was not until th e  suggestion  by 

Alvarez e t al. (1980) th a t  th e  K -T  ex tin c tio n  w as th e  resu lt of a  bolide im p act, th a t  th e  

idea was accepted  by som e sections o f th e  science com m unity. Alvarez e t al. suggested  

th a t  such an im pact would resu lt in a  sh u t down of photosyn thesis from  d u s t in th e  

a tm o sp h ere  blocking o u t sun ligh t w ith a  su b seq u en t collapse of th e  food chain . T h e  effects 

and possible kill m echanism s o f im p ac ts  have since been exam ined by several researchers 

and are reviewed by Toon e t al. (1997). T hey  include:

D ust loading D u st would be ejected  by an im p ac t in to  th e  s tra to sp h e re  w ith re su ltan t 

effects on clim ate, pho tosyn thesis  and  visibility. A large enough im p act would blow 

e jec ta  o u t o f th e  a tm o sp h ere  allow ing global d is trib u tio n  in under an hour. A layer 

o f d u s t in th e  a tm o sp h ere  will s c a tte r  sun ligh t back in to  space reducing o r s to p p in g  

pho tosyn thesis  and  cause global cooling. An add itional c lim atic effect to  cooling 

could be a  reduction  in rainfall th ro u g h  changes in th e  th erm al s tru c tu re  o f th e  

a tm o sp h ere  reducing cloud fo rm ation .

Fires Several m eans exist o f ign iting  global w ildfires. Initially  rad ia tion  is em itted  from  

th e  bolide as it passes th ro u g h  th e  a tm o sp h ere  followed by a  fireball a t  th e  im p ac t 

site . Im p ac t debris will be hea ted  b o th  by th e  im pact and , for larger im p acts , a tm o 

spheric re-entry . Ivany and  Salaw itch  (1993) proposed th a t  as m uch as 25% of th e  

E a r th ’s b iom ass had to  be burned  a t  th e  K -T  boun d ary  to  account for th e  reversal 

o f th e  oceanic <513C g rad ien t. Soot released by fires is ex trem ely  effective a t  reducing 

sun ligh t reaching th e  E a r th ’s su rface th ro u g h  back -sca ttering  and  ab so rp tio n .

N itric acid rain S trong  shock waves in th e  a tm o sp h ere  will produce n itric  oxide from  

a tm ospheric  n itrogen and  oxygen. T h e  reaction  could occur du ring  th e  in itia l tra n s it  

of th e  bolide, th e  m ovem ent o f th e  e jec ta  plum e th rough  th e  a tm o sp h ere  o r th e  re

en try  o f e jec ta  in to  th e  a tm o sp h ere  (if th e  plum e is large enough to  punch th ro u g h  

it) . It is unlikely however th a t  enough n itric  acid would be produced to  have serious 

effects on th e  acid ity  o f th e  E a r th ’s ocean .
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O zone depletion  N itrous oxide, d u s t and  sm oke partic les and heating  of th e  a tm o sp h ere  

would all cause severe depletion  o f th e  E a r th ’s ozone level. T his could resu lt in a  

significant increase in u ltrav io le t rad ia tio n  reaching th e  E a r th ’s surface.

W ater injections For an oceanic im p act m assive am o u n ts  o f w ater vapour would be 

released in to  th e  a tm o sp h ere  resu lting  in an increased greenhouse effect and  higher 

surface tem p era tu res .

Sulphate aerosol form ation SO2 and  SO 3 can be generated  by an im p act in to  evap- 

orites. Once in th e  a tm o sp h ere  these  would reac t w ith a tm ospheric  w a te r o r w a te r 

vapour released by th e  im p act to  c rea te  su lphuric  acid resulting  in surface w a te r 

acidification (e.g., D ’H o n d t e t al., 1994). S u lphur opac ity  could also resu lt in long 

term  global cooling from  th e  presence of a  p e rs is ten t aerosol cloud.

Seism icity and volcanism  A 10 km d iam ete r im p ac to r would generate  a t  least 1024 J 

w ith ~ 0 .01%  of th is  being converted  in s tan tan eo u sly  in to  seismic energy. T h is com 

pares w ith a  yearly  release o f te rre s tr ia l seism ic energy of 1018 J and  th e  ra te  o f 

energy in p u t would be ~ 1 0 7 tim es th e  ra te  o f global h ea t flow (M elosh, 1989). T h is  

am oun t o f seism ic energy has been estim ated  to  be equivalent to  th a t  released by 

a  m agnitude 10-11 ea rth q u ak e  (M cK innon, 1982). It has been proposed th a t  th is  

energy could have induced volcanism  bo th  a t  th e  im p act site  (R am pino, 1987) and  

a t  th e  an tip o d e  due to  seism ic focussing (B oslough e t al., 1996), a lthough  th e  possi

bility of C hicxu lub  triggering  th e  D eccan tra p s  has been precluded due to  th e  tim in g  

and exact position  o f Ind ia  a t  th e  tim e (S u th erlan d , 1994).

T sunam i An im p act in to  an ocean would induce a  tsu n am i which whilst no t a  global kill 

m echanism  would p robab ly  resu lt in local ex tinc tions around  con tinen ta l m argins. 

T he exact size and effect of th e  tsu n am i would be variable depending  upon local 

conditions.

In terac tions betw een th e  various effects will affect th e ir “efficiency” e.g., a tm ospheric  sul

phur will reduce th e  affect o f ozone loss by back sca tte rin g  u ltrav io le t rad ia tio n . T h e  tim e 

scales can also vary depend ing  on these in terac tio n s and  th e  size of im pact.

S ubsequent to  th e  linking o f th e  K -T  ex tin c tio n s to  an im pact, several a t te m p ts  have 

been m ade to  re la te  im p acts  to  th e  rem ainder of th e  “Big F ive” ex tinctions (end O rdov i
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cian , la te  D evonian, end P erm ian , end Triassic and  end C re taceous), w here over 75% of 

species were lost (e.g., R am pino  e t al., 1997). T hese lack com pelling evidence and are often 

th e  resu lt o f an a tte m p t to  re la te  a  period ic ity  of a  single m echanism  to  all ex tinctions.

C hicxulub and the K -T  extin ction s

T h e  K -T  ex tinction  rem ains highly con troversial am ongst researchers w ith  d eb a tes  over 

m ost aspects  o f it. S tra tig rap h ic  sections have been in te rp re ted  as represen ting  bo th  

a  geologically in stan tan eo u s o r a  g rad u a l ex tinction  by various groups. Bolide im pact, 

volcanism , m arine regression, anox ia  o r clim atic  changes are  all advocated  as causes o f the  

ex tin c tio n . T h is d eb a te  is reviewed elsew here (e.g., H allam  and W ignall, 1997) and it is 

n o t th e  aim  of th is  thesis to  en te r  in to  it.

W h e th e r or no t it was linked to  m ass ex tinctions, th ere  can be little  d o u b t th a t  th e  

C hicxulub  im pact would have had  a  severe effect on th e  env ironm ent. T he  size of th e  im 

p ac t and th e  C retaceous s tra tig ra p h y  o f th e  Y ucatan  p latform  (a shallow  m arine ca rb o n a te  

p la tfo rm  w ith an an h y d rite  layer) a re  such th a t  probably  all of th e  previously m entioned 

effects would have played a  role.

1.3 G eology o f the Yucatan

T h e  Y ucatan  peninsula is a  large lim estone p latfo rm  th a t  ex ten d s in to  th e  G ulf o f M exico 

as th e  C am peche bank. T he  pen insu la  is bounded  by th e  S ierra  M adre  del Sur, th e  S ierra  

de C h iapas and th e  M aya m o u n ta in s  o f Belize to  th e  sou th . G eological knowledge o f th e  

p la tfo rm  is lim ited due to  th e  heavy veg e ta tio n , poor access, lim ited  o u tcro p s and low 

relief com bined w ith app rox im ate ly  horizon ta l s t r a ta .  M uch of th e  reliable in fo rm ation  is 

known only th rough  th e  wells th a t  have been drilled by th e  M exican s ta te  oil com pany, 

P E M E X  and m ore recently th e  U niversidad N acional A u to n o m a de M exico, UN A M . T his 

lack of d a ta  m ake in te rp re ta tio n s  o f th e  depositional env ironm ent and  tecton ics o f th e  

region difficult. In add ition  th e  m a jo rity  o f geological in te rp re ta tio n  w as prior to  th e  

co rrec t identification o f th e  C hicxu lub  c ra te r  m aking much of th e  u n d ers tan d in g  o f th e  

C enozoic for th e  northw est co rner o f th e  pen insu la suspect or incorrect. D a ta  and analysis 

since 1991 have been focused on th e  c ra te r  itself and provided little  fu r th e r inform ation  

on overlying geology.
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T h e  surficial geology of th e  p la tfo rm  is p rim arily  T ertia ry  to  Holocene c a rb o n a te s  and 

sed im ents which exhib it a  range o f physiographic featu res. T he peninsu la can be sp lit in to  

4 regions (W eidie, 1985): th e  n o rth ern  p itted  karst plain, th e  S ie rr i ta d e  T icul, th e  so u th ern  

hilly karst plain and th e  easte rn  block fau lt d is tr ic t (F igure 1.13). T h e  n o rth e rn  p a r t  is 

charac te rized  by low relief w ith a  gentle  increase in topo g rap h y  rising to  c. 45 m over its 

150 km inland ex ten t. T h e  S ie rrita  de T icul is a  narrow  region around  th e  T icul fau lt scarp  

rising 50-100  m above th e  n o rth ern  plain. E x ten d in g  sou thw ard  from  th e  S ie rrita  lies the  

th ird  province w ith m axim um  elevations o f c. 300 m and gently  u n d u la tin g  topography . 

T h e  easte rn  fau lt block along th e  C arib b ean  coast is charac terized  by N N E tren d in g  ridges 

and  depressions related  to  horst and  g rab en  fau lting .

T h ro u g h o u t th e  n o rthern  and  cen tra l Y ucatan  th e re  is effectively no surface d ra inage  

and  th e  a rea  is a  karstic surface. N um erous ceno tes (sinkholes) have been form ed in the  

lim estone surface by th e  in filtra tion  o f ra in w ater.

1 .3 .1  S tra tig ra p h y

T h e  s tra tig ra p h y  of th e  peninsula  is one o f slow, s tead y  deposition  and  sinking from  the  

C re taceo u s th ro u g h  to  th e  Pliocene w hen its  p resen t shape was a tta in e d . T h e  general 

s tra tig ra p h y  across th e  peninsu la is ind icated  in F igure  1.10. Only a  few wells have pene

tra te d  basem ent which generally consists o f palaeozoic sed im ents o r m etased im en ts. T here  

is no evidence o f precam brian  rocks. P recam b rian  rocks however are  docum en ted  in O ax

aca  and  p a r ts  of G u a tem a la  and H on d u ras and  it has been suggested th a t  th is  P recam b rian  

belt m ay ex tend  eastw ards below th e  pen insu la  and  scarcity  of d a ta  is th e  reason for its 

a p p a ren t absence (W eidie, 1985).

O verlying th e  palaeozoic rocks is an  unconform able red bed sequence, th e  T rodos 

S an tos fo rm ation , whose age has been placed from  Triassic to  C retaceous by various re

searchers b u t is m ost probably  early  Ju ra ss ic  (V iniegra, 1981). An ex tensive sequence 

o f lower C retaceous evaporites nam ed th e  Y ucatan  E vaporites by Lopez R am os (1975) 

overlies th is.

A m arine transgression  occurred  d u rin g  th e  Ju rassic  and th ro u g h o u t th e  early  C re

taceous shallow  m arine conditions ex tended  across th e  Y ucatan  p latfo rm  w ith  evaporite  

and  c a rb o n a te  deposition . Periodic in tense evaporation  producing m agnesium  ca rb o n a te  

co n cen tra tio n s  gave rise to  som e do lom itiza tion  (V iniegra, 1981). D uring  th e  la te  C re ta-
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ceous th e  east cen tra l p o rtion  o f th e  peninsu la underw ent su b s tan tia l uplift and deeper 

w a te r sed im entation  took  place tow ards th e  northw est (W eidie, 1985). Wells Y -6 , C - l  and 

S -l encountered  an andesitic  ty p e  rock which was in itially  in te rp re ted  as being of volcanic 

origin (Lopez R am os, 1975).

T h ro u g h o u t th e  T ertia ry  sequences thicken to  th e  no rthw estern  corner of th e  penin

su la  and sed im ents ap p e a r to  derive from  a  shallow w a te r depositional env ironm ent w ith 

th e  exception of th e  U pper O ligocene in th e  northw est co rner (W eidie, 1985). Lower T er

tia ry  rocks are p redom inan tly  in terb ed d ed  m arls and lim estones, w ith som e dolom ites and 

anhydrites. In th e  n o rth  and  no rth w est P alaeocene and  Lower Eocene rocks are  o f an 

evaporite-dolom ite  lithofacies g rad ing  in to  m arine lim estone and  shales. O ligocene sedi

m ents of a  bathyal fau n a  are  seen in wells Y -6 , C -l and  S -l co n tra s tin g  w ith th e  su b -litto ra l 

fau n a  of th e  ou tcro p s so u th  o f M erida . T h is  is ind icative o f a  deepening of a  basin to  th e  

n o rth . South of 20° 30’, O ligocene sed im ents have been p artia lly  removed due to  erosion 

and  th e  Carillo P u e rto  fo rm ation  (Neogene) lies unconform ably  on Eocene and O ligocene 

sed im ents (Lopez R am os, 1975).

Neogene rocks on th e  n o rth  and  easte rn  coasts  again thicken to  th e  no rthw est. T hese 

are prim arily  shallow w a te r c a rb o n a te s  which have been nam ed th e  M io-Pliocene C arillo  

P u e rto  fo rm ation . On th e  m arg ins o f th e  peninsu la Q u a te rn a ry  rocks o u tc ro p  consisting  

prim arily  of beach and  lagoon d ep o sits  (P ope e t al., 1993).

T he  surficial geology o f th e  no rth w est corner o f th e  Y ucatan  from  th e  1984 IN G E I 

(In s titu to  Nacional de E stad is tic a  G eografia e In fo rm atica) geology m aps is shown in 

F igure  1 . 1 1 . Pope e t al. (1996) used soil analysis to  infer relative ages of geom orphic 

surfaces w ithin th e  n o rth ern  Y ucatan  (F igure 1.12). T h is varies from  th e  surficial geology 

from  th e  IN G EI w ith th e  N eogene-E ocene boun d ary  m ore rad ia l and a  d istinc tion  o f th e  

M iocene and Pliocene surfaces w ith in  th e  Neogene. A com plex p a tte rn  o f em ergence from  

mid Eocene to  early  M iocene w as inferred w ith th e  o ldest surfaces being th e  first to  em erge. 

A tw o phase em ergence p a tte rn  d u rin g  th e  Neogene was im plied from  differences in la te  

T ertia ry  geom orphic surfaces. A long th e  coastline th e  fo rm ation  of a  2 -20  km wide calcite 

cem ent aq u ita rd  (known as tsekelin M ayan) is an ongoing process (P erry  e t al., 1989). T he  

cem ent is form ed by th e  p rec ip ita tio n  o f calcium  and c a rb o n a te  ions from  ground w a te r 

evaporation . T his zone con tinues offshore confining th e  aquifer and  possibly p roducing  a
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Figure 1 .1 2 : Geomorphological surfaces o f th e  NW  Y ucatan. Q l: Holocene, Q 2 : Late 
Pleistocene, T l :  P liocene-Pleistocene, T 2: L ate M iocene-Pliocene, T3: L ate M iocene, 
T4: L ate Eocene-Oligocene, T5: Eocene, dashed blue line indicates th e  cenote ring, (after 
Pope e t al, 1996).
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- S ierra of N orth  C en tra l A m erica (a fter W eidie, 1985).

zone of m ixing a t  th e  fresh -w a te r/sa lt-w ate r in terface below th e  confined section w here 

dolom itization occurs.

1.3.2 Structural geology

T he known tectonic featu res in th e  Y ucatan (F igure 1.13) are principally M esozoic and 

early Cenozoic in age. Pre-M esozoic inform ation  is vague due to  only tw o wells having 

been drilled in to  basem ent.

T he R eform a-C am peche fau lt zone is a  generally n o rth -so u th  trending  series o f s tep  

faults running from onshore Tabasco to  offshore C am peche (Viniegra, 1981). T h e  norm al 

fau lts are offset by som e left la teral northw est trend ing  faults. T he age o f fau lting  is 

uncertain b u t was probably associated w ith sa lt dom ing and diapirism  during  th e  L ate
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C retaceous. In th e  no rth w est o f th e  pen insu la th e  Ticul fau lt is visible as a  c. 160 km long 

sou thw est tren d in g  fau lt e scarp m en t. N orm al fau lting  down to  th e  n o rth ea s t occurred  

du ring  th e  L ate C re tac eo u s-E a rly  T ertiary .

T hree  m ain zones a re  seen in th e  eas t and  n o rth eas t o f th e  peninsula. T he  Rio H ondo 

fau lt zone is a  series of norm al fau lts  bound ing  ho rst and g raben  blocks tren d in g  approx i

m ately  n o rth ea s t, subparalle l to  th e  C arib b ean  coast from  Belize no rthw ard  for c. 350 km. 

In th e  n o rth ea s t corner o f th e  pen insu la  is th e  poorly defined Holbox frac tu re  zone. W eidie 

(1985) describes a  50 km long zone o f n o rth ern  tren d in g  frac tu res  visible on th e  surface 

as a  series of linear depressions. He also p o stu la ted  a  subsurface fau lt zone believed to  

an ted a te  th e  Holbox frac tu re  zone. Know n as th e  C h em ax -C a to ch e  fau lt zone th is  tren d s  

n o rth ea s t from a  Palaeozoic basem en t high known as th e  X -C an Arch across th e  C am peche 

bank and has been assoc ia ted  w ith  taph rogen ic  m ovem ent o f th e  X -C an A rch.

1.4 Studies o f the Chicxulub impact crater

T h e C hicxulub s tru c tu re  w as first identified from  its  c ircu lar g rav ity  and m agnetic an o m a

lies. T hese po ten tia l field anom alies were associa ted  w ith w h a t were initially  in te rp re ted  

as andesitic rocks o f a  volcanic origin (Lopez R am os, 1975).

Penfield and  C am arg o -Z an o g u era  (1981) first suggested  th a t  th e  M erida andesite  vol

canic field could, in fact, have an im p act origin, b u t th e  significance o f th is  was no t realized 

desp ite  th e  controversial th eo ry  o f A lvarez e t al. (1980) and  it was no t until a  decade la te r  

th a t  in terest in th e  c ra te r  re-arose.

H ildebrand e t al. (1991) on th e  basis of geophysical, petro logical, geochem ical and  

s tra tig rap h ica l evidence reproposed  a  c ra te r  origin and suggested  th a t  th e  c ra te r  w as on 

th e  K -T  boundary. Im p ac t shocked q u a r tz  was found w ithin  th e  andesitic rocks which 

were re in terp re ted  as im p ac t m elt and  breccias. A th ickening o f e jec ta  layers tow ards 

C hicxulub  and a  sim ilarity  in com position  o f m elt rocks and  K -T  boundary  tek tite s  m ade 

it a  s tro n g  can d id a te  as th e  K -T  im p act site . Since then  th e  c ra te r  has been extensively 

investigated .
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1 .4 .1  G e o c h e m is tr y  and  p e tr o lo g y

S h arp to n  e t al. (1992) conducted  geochem ical analysis of sam ples from  wells Y - 6  and  C -l 

finding evidence of p lanar defo rm ation  o f q u a r tz  and feldspar and  a  high iridium  con ten t 

in th e  m elt rocks. 40A r /39A r d a tin g  o f several sam ples of m elt rock from  Y - 6  gave an 

average age of 65.2 ±  0.4 M yr and  palaeom agnetic  analysis showed a  reversed rem anen t 

m agnetiza tion  believed to  be chron 29R, spann ing  th e  K -T  boundary . A K -T  age for th e  

m elts was also reported  by Sw isher e t al. (1992) who ob ta ined  a  40A r /39A r d a te  o f 64.98 

±  0.05 M yr from  m elt from  C - l .  T h is  agreed w ith ages they  ob ta in ed  from  te k tite  fields 

in Beloc, H aiti and NE M exico. T h e  com position  of th e  m elt was w ithin th e  sam e range 

as th a t  of th e  tek tite s .

P rem o  and Ize tt (1992) conducted  isotopic analysis of H aiti black te k tite s  concluding 

th a t  th e  isotopic s ignatu re  was co n sis ten t w ith th e  s tra tig ra p h y  of e ith e r th e  C hicxulub 

or M anson im pact sites. T h e  M anson  site  in Iowa was ruled o u t as being a  source o f K -T  

b oundary  e jec ta  following th e  ex am in a tio n  o f U -P b  isotope d a ta  in shocked zircons (K rogh 

e t al., 1993). Zircons from  th e  K -T  sections in H aiti and C olorado  provided a  p rim ary  

source age o f 545 M a. w ith varying degrees o f lead loss and isotopic re se ttin g  a t  th e  tim e 

o f im p act a t  65 M a. A 545 M a. p rim ary  age was also ob ta ined  from  a  sam ple from  well 

Y - 6  b u t is inconsisten t w ith th e  m id P ro terozo ic  age of th e  m ateria l ben ea th  th e  M anson 

im p act. O th er iso tope stud ies o f K -T  b o u n d ary  im pact glasses have also proved to  be 

ind istingu ishab le  from  sam ples from  C hicxu lub  cores (e.g., B lum e t al., 1993).

E levated iridium  co n cen tra tio n s and  a  low 1870 s / 1880 s  ra tio , incom patib le  w ith con

tin en ta l c ru st, have been o b ta in ed  th ro u g h  exam ination  o f th e  Re-O s iso tope s ig n a tu re  of 

m elt sam ples from C hicxulub cores (K oeberl e t al., 1994). T hese are consisten t w ith a 

m eteoritic  com ponent and partic les  o f a lm ost pure iridium  have also been been discovered 

(Schuraytz e t al., 1996) w ith possible im plications for th e  im p a c to r’s size, com position , 

velocity and th e  energy release involved.

Evidence of extensive h y d ro th erm a l a lte ra tio n  of m elt-rock including enriched sulphides 

was discovered from  whole rock m a jo r and  trac e  elem ent chem ical analysis. S churay tz e t al. 

(1994) suggested th a t  th e  s im ilarity  o f these  to  th e  Sudbury  com plex in C an ad a  raised th e  

possibility  of ore deposits a t  C hicxu lub  b u t no evidence of these  have yet been discovered.

As p a r t of a  drilling p rogram  by UNA M  tw o wells c. 700 m deep were cored to  th e  SE
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of th e  c ra te r  cen tre  a t  125 km and 150 km rad ius. T he  inner well, U-7 had a  tw o breccia 

sequence typ ical o f th e  su ev ite -b u n te  breccia sequence observed a t  o th e r c ra te rs  (e.g., 

Horz, 1982). M agnetic susceptib ility  m easu rem en ts showed d is tin c t c o n tra s ts  betw een th e  

T ertia ry  ca rb o n a tes  and th e  tw o breccia layers (U rru tia-F ucugauch i e t al., 1996a). T he  

upper suevitic breccia un it was no t observed a t  U-6 , its  absence in te rp re ted  as a  resu lt of 

erosion occurring  ou tside th e  c ra te r  rim .

T he opinion th a t  th e  s tra tig ra p h y  o f Y - 6  was consisten t w ith a  volcanic and  no t an 

im p act origin was re s ta ted  by M eyerhoff e t al. (1994). T hey  also rep o rted  M aastrich tian  

fau n a  above th e  m elt ind icating  a  pre K -T  age. W hilst th ere  is no continued  su p p o rt for a 

volcanic origin, a  pre K -T  age was also suggested  by W ard e t al. (1995) following exam ina

tion  of b io stra tig rap h ic  d a ta  and  lithology o f P E M E X  wells. However o th e r s tu d ies  of Y -6  

place a  T ertia ry  age to  lithologies im m edia te ly  above th e  breccia from  th e  identification  

of several species w ith a  lowest s tra tig ra p h ic  age in th e  lower D anian (S h arp to n  e t al.,

1996). A non-volcanic o r non-im pact source for th e  breccia layer was suggested  by F ried

m an (1996, 1997) who proposed th a t  rap id  d isso lu tion  and w ithdraw al o f su lfa tes form ed 

a  dissolution-collapse breccia b u t a d m itte d  to  n o t tak in g  in to  account th e  evidence for im 

p ac t shocked m inerals. T h e  com position  o f th e  breccia contain ing  frag m en ts  o f m elt rock, 

m etam orph ic  basem ent and u naltered  an h y d rite  clasts  is also incom patib le  w ith  solution 

collapse (W ard, 1996).

1 .4 .2  G r a v ity  and  m a g n e tic s

L arge am o u n ts  o f po ten tia l field d a ta  have been recorded across th e  c ra te r  and  used to  

p roduce several m odels of c ra te r  s tru c tu re . B oth  th e  g rav ity  anom aly and  ae rom agnetic  

d a ta  (F igure 1.14) show a  strik ing  c ircu lar s tru c tu re .

T h e  g rav ity  anom aly  shows a  c. 180 km d iam ete r low which is d isru p ted  to  th e  no rth  

form ing a  U shape . A cen tral high is su rro u n d ed  by several concentric m ax im a and  m inim a. 

A sou thw ard  tro u g h  is seen in th e  g rav ity  anom aly, believed to  be re la ted  to  c ru sta l 

th in n in g  and rifting  during  opening o f th e  G u lf o f M exico during  th e  Ju rass ic  (S h arp to n  

e t al., 1993).

T h e  ae rom agnetic  d a ta  is elongated  sligh tly  in a N N W -S SE  direction  and  has a  cen tra l 

single high am p litu d e  anom aly su rro u n d ed  by sh o rt w avelength high am p litu d e  anom alies. 

N either th e  d isrup tion  to  th e  no rth  o r th e  so u th  trend ing  trough  in th e  g rav ity  field are
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visible in th e  m agnetic  d a ta .

H ildebrand e t al. (1991) in itially  proposed a  180 km d iam eter c ra te r  w ith  th e  c ra te r  

rim correspond ing  to  th e  b o u n d ary  of a  negative g rav ity  anom aly. Tw o concentric  lows a t  

c. 25 km and c. 65 km were repo rted  w ith in  th is  negative anom aly. T he c ra te r  d iam e te r was 

revised dow nw ard to  170 km d iam ete r (H ildebrand  e t al., 1994) following 2 -D  g rav ity  and 

m agnetic m odelling (F igure 1.15a) and  c o n s tra in ts  from  borehole and cenote d is trib u tio n . 

A ssum ing a  90 km rad ius P ilk ington  e t al. (1994) es tim ated  a  m ass deficiency for th e  c ra te r  

of c. 1 .2 x l0 16 kg. T h e  m agnetic anom alies were in te rp re ted  in te rm s of th e  presence of a  

cen tra l m elt pool and th e  cen tra l uplift.

S h arp to n  e t al. (1993) re in te rp re ted  th e  g rav ity  d a ta  (F igure 1.15b), p roposing  a  

m ulti-ring basin o f c. 300 km d iam ete r on th e  basis o f th ree  concentric m ax im a w ithin  

th e  grav ity  anom aly  and claim s o f a  fo u rth  fragm en ted  ring corresponding  to  th e  c ra te r  

rim . A peak ring was inferred from  th e  inner g rav ity  m axim a a t  c. 52 km rad ius w ith 

th e  inner and o u te r lim it o f th e  tran s ien t c ra te r  re la ted  to  th e  second (c. 77 km rad ius) 

and th ird  (c. 99 km ) m axim a. T hey  argued  th a t  s teep  g rav ity  g rad ien ts  inside th e  th ird  

ring were inconsisten t w ith te rrace  and rim m orphology and m ore suited  to  th e  o u te r  lim it 

o f excavation and  deform ation . T he  d iam ete r o f th e  rings proposed by S h arp to n  e t al. 

also followed th e  y/2 re la tionsh ip  proposed by P ike and  Spudis (1987) for lunar m ulti-ring  

basins.

A 180 km d iam ete r c ra te r  was again ad v o cated  by H ildebrand e t al. (1995) using th e  

horizontal g rav ity  g rad ien t to  em phasize la te ra l density  changes and  to  suppress regional 

g rad ien ts. Six rad ia l g rad ien t m ax im a were rep o rted  w ith th e  o u te r four g rad ien t m ax im a 

(c. 55 km -90  km radii) in te rp re ted  as a  resu lt o f fau lting  in th e  c ra te r  slum p zone. T he  

o u te rm o st m axim um  also corresponded  to  th e  ring o f cenotes, suggesting th ey  were form ed 

by slum p fau lts  near th e  c ra te r  rim . T h e  inner m ax im a were in terp re ted  as th e  cen tra l 

uplift (c. 25 km radius) and  a  peak ring (c. 45 km rad ius). R adial featu res ex tend ing  over 

th e  cen tral 40 km were explained by s tru c tu ra l “puckering” on th e  cen tra l uplift.

On th e  basis of g rav ity  and m agnetic  2 .5 -D  m odelling, E spindola e t al. (1995) (F ig

ure 1.15c) proposed a  cen tra l s tru c tu ra l high su rrounded  by only one ring w ith its  d iam e te r 

constra ined  to  c. 200 km. C am pos-E nriquez e t al. (1998) also advocated  a  180-200 km 

d iam eter from  calcu lations of th e  m ass deficiency o f th e  c ra te r. Using G a u ss’s theo rem ,
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Figure 1.14: (a) B ouguer anom aly  m ap o f th e  Chicxulub im pact with locations o f seismic 
lines (figure courtesy  of J . M organ, IC London) and (b) aerom agnetic d a ta  across th e  
Chicxulub im pact s tru c tu re  (figure courtesy of M. P ilkington, NSC C anada).
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m ass deficiency values were o b ta in ed  which corresponded closely to  values ob ta ined  from  

th e  g rav ity  m odels of P ilk ing ton  e t al. (1994) and E spindola e t al. (1995). In c o n tra s t the  

m odel of S h arp to n  e t al. (1993) has a  m ass excess.

T he  asym m etries in th e  g rav ity  anom aly  have been explained by th e  poorer resolution 

o b ta ined  in m arine g rav ity  surveys com pared  to  land surveys and also to  an inferred 

n o rth ea s t-so u th w est lineam ent. Schultz and D ’H ondt (1996) advocated  th a t  th e  elongated 

cen tra l high encircled by th e  horseshoe shaped  grav ity  low was a  resu lt o f an oblique im pact 

angle from  th e  so u th east. An oblique im p act could explain th e  g re a te r m axim um  size of 

g ra ins and a  tw o layer sequence seen in im p ac t e jec ta  in N orth  A m erica. T h e  lower layer 

represen ts fall o u t of a  high velocity down range ballistic vapour cloud created  by je tt in g  

d u rin g  th e  early  stages o f p en e tra tio n  w ith th e  upper layer th e  fall o u t from  a  spherical 

vapour cloud created  du ring  th e  excavation  stage. L ab o ra to ry  experim en ts also revealed 

th a t  oblique im pacts  allow a  g re a te r  p robab ility  of survival o f p a r ts  o f th e  im p ac to r which 

would be consisten t w ith th e  recovery o f a  m eteorite  fragm en t from  D S D P  hole 576 (K yte, 

1998). However, it is m ore likely th a t  th e  g rav ity  high seen to  th e  n o rth  is a  resu lt o f a 

Palaeozoic basem ent high (J . M organ , pers. com m . 1997). An oblique im p act, th is  tim e 

from  th e  southw est, was also proposed by H ildebrand e t al. (1997) on th e  basis o f an 

off-centre location of th e  cen tra l uplift th a t  would be form ed by rebound  up and  tow ards 

th e  im pact d irection.

1 .4 .3  E le c tr ic a l an d  e le c tr o m a g n e t ic  m e th o d s

C am pos-E nriquez e t al. (1997) conducted  a  m agneto te llu ric  (M T ) s tu d y  along tw o radial 

arm s, one running  sou th  from  M erida (line M T-A  in F igure  1.16 and  th e  second running  

so u th eas t from  C hicxulub P ueb lo  (line M T -B  F igure 1.16). P re lim inary  1-D  resu lts suggest 

a  190 km d iam eter s tru c tu re  w ith  a  region o f high resistiv ity  a t  th e  so u th ern  end o f th e  

profiles to  a  rad ius of c. 100 km . T h is decreases sm ooth ly  n o rth w ard s to  a  zone o f co n stan t 

low resistiv ity  from c. 70 km to  c. 40 km rad ius before a  high resistiv ity  zone in th e  

cen tre . T his p a tte rn  has been in te rp re ted  as represen ting  th e  tran s itio n  from  unaltered  

rock (associated  w ith th e  resistiv ity  high) to  highly fractu red  rock w ith in  th e  im pact basin 

reaching down to  th e  lower c ru s t and  a  cen tra l s tru c tu ra l uplift again of relatively in tac t 

rock. No evidence was seen for a  regional M oho uplift, providing isosta tic  com pensa tion , 

which m any c ra te rin g  m odels suggest.
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(a) Gravity model by Pilkington et al, 1994. Density con
trasts are relative to surrounding rocks or Tertiary sediments 
(2550 kgm- 3 ): 1 - Melt sheet (-lOOkgm- 3 ), 2 - uplifted base
ment (40 kgm- 3 ), 3 - megabreccia (-90 kgm- 3 ), 4 - Cretaceous 
stratigraphy (90 kgm- 3 ), 5 - outer breccia (-220 kgm- 3 ), 6 - 
upper breccia (-320 kgm- 3 )
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(b) Gravity model by Sharpton et al, 1993. Density contrasts are 
relative to the Tertiary sediments (9, p=1800-2000 kgm- 3 ): 1 - 
melt sheet (370 kgm- 3 ), 2 - inner breccia (250 kgm- 3 ), 3 - frac
ture uplifted crystalline basement (310 kgm- 3 ), 4 - outer breccia 
(230 kgm- 3 ), 5 - Cretaceous sediments (180 kgm- 3 ), 6 - upper 
basement (400 kgm- 3 ), 7 - intermediate basement (600 kgm- 3 ), 8 
- uplifted deep basement (800 kgm- 3 )
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(c) Gravity model by Espindola et al, 1995. Density contrasts 
are relative to the Tertiary sediments (2700 kgm- 3 ): 1 - Base
ment (40 kgm- 3 ), 2 - Mesozoic sediments (20 kgm- 3 ), 3 - brec
cias (-100 kgm- 3 ), 4 - uplifted basement (40 kgm- 3 )

F igure 1.15: T hree  g rav ity  m odel cross sections o f th e  C hicxulub c ra te r . N ote th a t  th e  
d ep th  and  horizontal (d istance from  cen tre  o f c ra te r)  scales of all th ree  m odels a re  different.
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F igure 1.16: Location of previous geophysical surveys m entioned in te x t and drill wells 
w here seismic d a ta  has been gathered .

A resistivity  survey (Steinich and M arin , 1996) was conducted over th e  c ra te r  region 

to  s tu d y  th e  Y ucatan karst aquifer associated  w ith th e  cenote ring. V ariations in cenote 

density  were related to  changes in perm eability ; high cenote density  corresponding w ith 

low resistivities and high perm eability . E lectrical an isotropy calculations were used to  

determ ine th e  direction of aquifer discharge.

1.4.4 Topography and hydrogeology

Pope e t al. (1991) proposed th a t  th e  cenote ring visible a t  c. 80 km radius from  th e  c ra te r 

cen tre  was related to  post im pact subsidence of th e  c ra te r  rim . T his created  fractu ring  

o f th e  lim estone outw ith  th e  ring creating  a  boundary  between fractu red  and unfractu red  

rock w ith an increased flow of g ro u n d w ater along the  boundary  causing dissolution and 

collapse. T he ring also corresponds to  a  5 -10  m depression in topography  and fresh w ater 

springs where the  ring m eets th e  coast (Pope e t al., 1993). C onnors e t al. (1996) also 

advocated  faulting of th e  o u ter slum p zone as a  form ation mechanism  for th e  cenote ring 

a lthough an a lternative  origin from  Oligocene reactivation along an a rcu a te  shoreline o f a
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pre-existing  fau lt system  has also been proposed  (P erry  e t al., 1995). W hilst th ey  suggest 

th a t  th is  m ay ou tline  p a rt o f a  h y d ro th erm a l system  cooling th e  m elt shee t th ey  do  no t 

provide an origin for th e  initial fau lting .

P ope e t al. (1993) inferred a  240 km c ra te r  d iam ete r from th e  location  o f th e  C eno te 

ring and  frac tu rin g  outside th e  ring. T h is  was increased to  260 km a fte r exam ina tion  

o f th e  to p o g rap h y  of th e  region by ex tra c tio n  o f elevation d a ta  from P E M E X  g rav ity  

files (P ope e t al., 1996). T he m ost p ro m in en t topograph ic  featu re  was th e  sem i-circular 

depression corresponding  to  th e  ceno te ring b u t tw o troughs in terior to  th is  (a t c. 41 km 

and c. 62 km radius) and an o u te r ridge c rest (a t 129 km radius) were also observed. T hese 

were re la ted  to  s tru c tu ra l fea tu res o f th e  c ra te r  w ith a  peak ring between th e  location  of 

th e  tw o innerm ost tro u g h s and th e  ridge c rest rep resen ting  th e  c ra te r  rim .

1 .4 .5  P r e v io u s  se ism o lo g y

T he first seism ic d a ta  available for th e  a re a  was ob ta ined  by C ue (1953) w ho conducted  a 

shallow  refraction  survey ad jacen t to  well C - l  and  com pared  th e  resu lts w ith th e  geological 

profile ob ta ined  from  the  core. Velocities o f < 3  km s - 1  were ob ta ined  for th e  T e rtia ry  sec

tion  w ith higher velocities in w h a t was in te rp re ted  to  be th e  breccia layer. S lightly  higher 

velocities were also suggested for th e  P alaeocene sed im ents th an  for th e  la te r  T ertia ry .

In 1992 P E M E X  shot tw o offshore no rm al incidence reflection profiles along tw o chords 

across th e  n o rth ern  portion  of th e  c ra te r  (C am argo-Z anoguera  and Suarez-R eynoso, 1994) 

(F igure 1.16). T hey  in terp re ted  th ree  m ain  sequences o f reflectors. F irs tly  c. 1.25 km 

of T ertia ry  sed im ents w ith a relatively c o n s ta n t velocity of 2.5 km s- 1 . T w o to p o g rap h ic  

highs a t  c. 85 km radius were im aged a t  th e  base of th e  T ertia ry  and in te rp re ted  as a  peak 

ring. T h e  second sequence was in te rp re ted  as a  m elt sheet w ith a  velocity o f 5.5 km s- 1 . 

A s tro n g  reflector a t  1 .5 -1 .8  seconds tw o way trave l tim e (T W T T ) was in te rp re ted  as th e  

base o f th e  m elt shee t. O ffsets o f up to  2 seconds T W T T  were im aged in th e  C re taceous 

s tra tig ra p h y  (th e  th ird  sequence). T hese were in te rp re ted  as collapse slum ping  o f th e  

tran s ien t c ra te r  and used to  infer a  tra n s ie n t c ra te r  d iam eter of c. 170 km giving a  final 

c ra te r  d iam ete r o f c. 300 km using a p p ro p ria te  scaling laws.

Seismic velocities have also been m easured  from  sam ples g athered  from  well Y - 6  and 

UNAM  boreholes U-2, U-5, U- 6  and U-7 (U rru tia-F ucugauch i e t al., 1997). In U-7 a  tw o 

layered breccia sequence w ith a  h igher V p in th e  lower breccias is observed, consisten t w ith
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in te rp re ta tio n s  from  m agnetic  susceptib ilities m easurem ents. Well U-5 show s an inverted  

velocity sequence between th e  T ertia ry  ca rb o n a tes  and breccias; V p in th e  ca rb o n a tes  

range from  3 .5 -6 .3  km s - 1  and  in th e  breccias from  1 .5 -2 .8  km s- 1 .

A sum m ary  o f previous seismic m easu rem en ts a t  C hicxulub and seismic velocities of 

rocks sim ilar to  those  found in th e  region is show n in Table 1.1.

1 .4 .6  S u m m a r y  o f  p rev io u s  m o d e ls

P rio r to  th e  1996 C hicxulub  experim ent several m odels, m ostly  based on g rav ity  and 

m agnetic d a ta , had been proposed for th e  c ra te r . T h e  principal differences betw een them  

were th e  c ra te r  d iam ete r and m orphology. T h e  tw o m ain m odels, a  180 km d iam ete r peak 

ring (e.g., H ildebrand e t al., 1991; P ilk ing ton  e t al., 1994; H ildebrand e t al., 1995; K ring, 

1995; C onnors e t al., 1996) and  a  300 km m ulti-ring  (e.g., S h arp to n  e t al., 1993; C am argo- 

Z anoguera and  Suarez-R eynoso, 1994; S h arp to n  e t al., 1996; U rru tia -F ucugauch i e t al., 

1996b) are sum m arised  in Table 1.2 and F igu re  1.17.

1 .4 .7  1996 S e ism o lo g y  and  m o d e l

As p a r t of th is  p ro jec t norm al incidence offshore and  wide angle onshore and offshore 

refraction d a ta  was g a th ered . T he geom etry  o f th is  experim en t is outlined in C h a p te r  2 .

Tw o norm al incidence reflection profiles (M organ e t al., 1997) ind icate  a  m ulti-ring  

m orphology w ith a  peak ring a t  c. 40 km rad ius, an inner ring a t  c. 65 km and an o u te r  

ring a t  c. 97 km rad ius. An add itional ring a t  c. 120 km rad ius was also suggested  from  

d isrup tions in s tra tig ra p h y  and continued  deep defo rm ation . T his o u te rm o st ring was 

confirm ed and th e  d iam eters  of th e  inner rings slightly  ad ju sted  following analysis o f an 

add itional tw o profiles (M organ and  W arner, 1998). A low angle whole c ru s ta l fau lt was 

observed offsetting  th e  M oho, believed to  correspond  to  ring fo rm ation  and  analogous to  

pseudo tacho ly te  zones observed a t  S udbury  (Spray and  T hom pson, 1996). A sym m etries 

in th e  location o f th e  M oho offset would be consisten t w ith a  southw est oblique im pact 

proposed by H ildebrand e t al. (1997).

A nalysis o f refraction  d a ta  recorded on ocean b o tto m  seism om eters (C hristeson  e t al., 

1998) ind icates a  regional deepening of th e  M oho to  th e  east, opposite  to  th e  tren d  observed 

from  grav ity  d a ta . T his c o n tra s t betw een g rav ity  and  seism ics would im ply considerable 

topography  on th e  M oho, som e indication  o f which was observed near th e  cen tre  o f th e
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Rock Location V p (km s ) Vs (km s *)

L im estone (soft) 1 1.7-4 .2
L im estone (hard ) 1 2 .8 -6 .4
L im estone 2 G erm any 5.68 3.09
M arly lim estone 2 C O , USA 2.38
Well cem ented lim estone 2 P T T , USA 5.33
D olom itic lim estone 2 C O , USA 1 .8 6

D olom itized lim estone 2 6.58
D olom ite 2 6 .6 8 3.41
M arl 2 C O , USA 3.20
D olom itic m arl 2 C O , USA 1 .8 6

G ypsum  2 4.95
A nhydrite  2 6 .0 0

C alcite 2 6.53 3.36

Volcanic B reccia 2 C O , USA 4.22 2.49
L unar B reccia 2 2 .8 8 1.80
L unar B reccia 2 4.38 3.28

T ektites 2 5.92 3.63

G neiss 1 USA 6.71
M arble 1 3.75-6 .94 2 .02-3 .86
Schist 1 USA 4.89 3.27

(a)

Lithology Cue, 1953 C am argo-Z anoguera , U rru tia-F ucugauchi, 1997
(C -l) 1994 U-5 U-7

V p km s 1 V p km s - 1 V p km s - 1  Vs km s - 1 V p km s-

T ertia ry  2 .16-3 .64 2.5 3 .5 -6 .3 2.1-3 .4
B reccia 3.83 1 .5 -2 .8 1 .0 - 1 .8 2 .8 -4 .0  (U pper) 

4 .7 -5 .8  (Lower)
M elt sheet 5.5

(b)

T able 1 .1 : (a) E xam ples o f lab o ra to ry  m easured com pressional and shear velocities of 
rocks likely to  be found in th e  Y ucatan  (* P ress, 1966, 2 C arm ichael, 1982). (b) S um m ary  
o f velocities ob ta ined  from  previous seism ic stud ies o f th e  C hicxulub c ra te r.
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(a) Simplified geological cross section of a 180 km diameter peak 
ring Chicxulub crater (after Pilkington et al, 1994).
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(b) Geological model of the Chicxulub crater based on a 
300 km diameter multi ring morphology (after Sharpton et 
al, 1996).

Figure 1.17: T he two principal geological m odels prior to  th e  1996 C hicxulub experim ent.
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F eatu re S h arp to n  1996 H ildebrand 1994

C ra te r  size 295 km 180 km
C ra te r  m orphology M ulti-ring Peak ring
T ransien t c ra te r  d iam ete r 170 km 90 km
Peak ring com position B asem ent Breccia
M elt sheet Localized pods C oherent sheet
S lum p zone rad ius 85-105 km 45-90  km
S tru c tu ra l uplift c. 30 km c. 18 km
M oho uplift c. 20 km None
P roxim al e jec ta  th ickness 1.5 km 0.5 km

T able 1.2: S u m m ary  o f c ra te r  m odels

profile w here a  deepening of 4 km was observed . Low velocities co rrespond ing  to  th e  T er

tia ry  infilling of th e  c ra te r  showed evidence o f a  progressive m igration o f shelf facies from  

th e  flanks to  th e  cen tre  o f th e  basin. S lightly  higher velocities were im aged a t  th e  base 

o f th e  T ertia ry  w ith overlying younger unconsolidated  sed im ents show ing lower velocities. 

T h e  lowest T ertia ry  velocities were im aged in th e  cen tre  of th e  basin. B eneath  th e  T er

tia ry  section several large negative velocity  anom alies were in te rp re ted  as rep resen ting  a 

d iscontinuous m elt sheet. A com parison  o f observed and theore tica l trave l tim es to  on

shore s ta tio n s  using th e  velocity m odel from  th e  OBS d a ta  ind icated  higher velocities were 

required w ithin th e  c ra te r  cen tre , co rrespond ing  to  th e  region o f th e  cen tra l g rav ity  high.

B ritta n  e t al. (1998) rep o rt a  to p o g rap h ic  peak ring clearly visible a t  c. 80 km d iam eter, 

above th e  inner edge of th e  tran s ien t c ra te r . Significant la te ra l varia tions a re  seen in th e  

peak ring suggesting th a t  it consists o f a  d iscontinuous series of highs, several hundred  

m etres above th e  c ra te r  floor and co n sis ten t w ith observations a t  o th er large c ra te rs . T he  

m ateria l com posing it has com parab le  velocities w ith th e  lowest T ertia ry  sed im ents and 

th e  m ateria l im m ediately  b eneath  th e  im p ac t basin (B rittan  e t al., 1998) im plying th a t  

th e re  is no sim ple re la tionsh ip  betw een th e  g rav ity  anom aly  and peak ring as proposed by 

previous m odels. F orm ation  of th e  ring from  uplifted basem ent (S harp ton  e t al., 1993) is 

incom patib le  w ith its  location above slum ped blocks (M organ e t al., 1997) and  th e  lack 

o f density  co n tra s t between th e  ring and  su rro u n d in g  m ateria l. Sim ilarly, fo rm ation  from  

a  low density  breccia floating on a  m elt shee t (P ilk ing ton  e t al., 1994) is also excluded. 

Shallow inw ard dipping reflectors a re  observed from  below th e  peak ring to  th e  inner edge
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of th e  slum ped block. T hese are believed to  ind icate  th e  m eeting o f ou tw ard ly  m oving 

m ateria l from  th e  collapsing uplifted cen tra l je t  ac tin g  as a  B ingham  fluid and  inw ardly  

moving m ateria l from  th e  collapse o f th e  tran s ien t cavity. T he surface m an ifesta tion  of 

th is  m eeting  is th e  peak ring. T h is varia tion  in m ateria ls  is also believed to  be visible in 

th e  wide angle refraction  d a ta  as a  200-300 ms offset in first arrival tim es (J. M organ pers. 

com m . 1998).

T hree  independen t fo rm ation  m ethods for th e  c ra te r  rim , peak ring and o u te r  rings 

were proposed by M organ and W arner (1998). T h e  c ra te r  rim is th e  head sca rp  from  

th e  collapse o f th e  tran s ien t c ra te r  to  form  th e  te rrace  zone; th e  peak ring from  th e  

in teraction  outlined  above; and th e  o u te r rings by whole cru sta l collapse inw ards. T h e  

ex terio r rings a re  believed to  have been form ed by low angle th ru s t  fau lting  probab ly  caused 

during  th e  in itial com pression stage. D uring  collapse, th e  o u te r rings then  reac tiva ted  to  

accom m odate som e of th e  inw ard and dow nw ard m otion . T his would be consisten t w ith 

observations a t  S udbury  of th ick  pseudo tacho ly tes im plying large scale m otion , b u t w ith 

m inim al s tra tig ra p h ic  offset.

1.5 Thesis outline

T his C h ap te r has d ea lt w ith th e  m echanics of im p ac t c ra te rin g  w ith p articu la r reference to  

th e  C hicxulub im pact s tru c tu re . P revious m odels of th e  s tru c tu re  and th e ir failings have 

been discussed. T he  rem aining C h ap te rs  deal w ith  th e  seismic work conducted  du ring  

th e  spring o f 1996 and th e  analysis of surface waves in te rm s o f c ra te r s tru c tu re  and  post 

im pact sed im en tation  p a tte rn s .

•  C h ap te r 2  ou tlines th e  m ain period o f d a ta  aquisition  in Spring 1996 and  th e  con

trolled source experim ent conducted  in O c to b e r of th a t  year.

•  T he hypocen tral location of local even ts is described in C h ap te r 3.

•  C h ap te r  4 gives an in troduction  to  surface wave analysis and its developm ent. T he  

ch ap te r then  outlines th e  theo ry  and  m ethodology  used to  ob ta in  g roup  velocity 

dispersion curves and a tten u a tio n  coefficient (7 ) values prior to  inversion for E a rth  

s tru c tu re . Initial hypotheses of geology from  th e  n a tu re  of th e  surface wave dispersion 

are discussed.
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•  C h ap te r 5 explains th e  theo ry  o f genetic algo rithm s used to  invert for velocity and 

the  choice of p a ram ete rs  to  m axim ize th e  efficiency of th e  a lgorithm . T h e  th eo ry  

of singular value decom position  and its  application  to  inversion for th e  a tte n u a tio n  

quality  facto r, is also presented .

•  T he 1-D  velocity m odels ob ta in ed  from  inversion of g roup  velocity using a  genetic 

algorithm  are displayed in C h a p te r 6 . T hese are  com bined w ith a tten u a tio n  m odels 

ob tained  from  linear inversion o f 7  to  produce sy n th e tic  seism ogram s.

•  C h ap te r 7 presents th e  conclusions of th is  thesis. T h e  resu lts of th is s tu d y  are sum 

m arized and possible in te rp re ta tio n s  of th e  c ra te r  s tru c tu re  and overlying sed im ents 

are  discussed.



Chapter 2

The Chicxulub Seism ic 
Experim ent

T he field work associa ted  w ith th is  s tu d y  was conducted  in tw o stages du rin g  1996. Four 

m onths passive seismic recording of local, regional and  teleseism ic events from  F e b ru a ry -  

M ay 1996 (Section 2.2) was followed la te r  in S ep tem ber by a  controlled source onshore- 

offshore experim ent (Section 2.3).

These tw o p ro jec ts  produced a  num ber o f seism ic d a ta se ts  which were s tud ied  by 

four in s titu tio n s, U niversity  of Leicester, Im peria l College, London, U niversity  o f Texas 

In s titu te  o f G eophysics (U .T .I.G .), A ustin  and  th e  B ritish  In s titu te s  Reflection Profiling 

Syndicate (B .I.R .P .S .), C am bridge.

2.1 O bjectives

T he research aim s of th e  stud ies repo rted  in th is  thesis were to:

•  P roduce 1 -D  shallow cru sta l velocity and  a tte n u a tio n  m odels of th e  c ra te r  and over- 

lying sed im ents th ro u g h  th e  analysis o f c ru s ta l Rayleigh wave (Rg) d ispersion along 

solely onshore p a th s . T hese would com plem ent th e  controlled source onshore-offshore 

in te rp re ta tio n s  and help constra in  th e  shallow er s tru c tu re  including th e  breccia layer 

and any m elt sheet

•  Utilize these m odels to  infer c ra te r  s tru c tu re  especially across th e  c ra te r  cen tre  w here 

reflection d a ta  is not available. T h is is especially valuable for efforts to  m ap  th e  

ex ten t of any cen tral uplift
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•  Investigate  any influence th e  c ra te r  fo rm ation  has had over post-im p act sed im en ta

tion p a tte rn s  and s tu d y  changes in sed im ent d ep th  in relation  to  to p o g rap h y  of th e  

c ra te r  floor and  possible c ra te r  m orphology.

T hese were chosen in o rd er to  aid in th e  com bined ob jective o f all th e  in s titu tio n s  s tu d y 

ing th e  C hicxulub seism ic d a ta se ts  to  investigate  th e  c ru s ta l and upper m antle  s tru c tu re  

of th e  C hicxulub c ra te r. In p a r ticu la r th is  included:

•  th e  am oun t and  ex ten t of basem ent uplift

•  the  position and  size o f th e  m elt sheet

•  th e  position o f slum ped blocks and  m ega-terraces

•  th e  position and fo rm ation  m echanism  of any peak ring

•  th e  degree o f rad ia l asy m m etry  of c ra te r  featu res

•  th e  radial ex ten t o f th e  c ra te r

•  th e  classification and  m orphology o f th e  s tru c tu re .

2.2 The passive seism ic array

A tem p o ra ry  seismic a rray  was deployed across th e  im pact s tru c tu re  by th e  U niversity  of 

Leicester during  early  1996 (M aguire e t al., 1998). T he  a rray  geom etry  consisted o f 20 

sites w ith a  nom inal spacing o f 25 km , deployed along 4 rad ia l a rm s ex tend ing  from  th e  

cen tre  of th e  s tru c tu re , covering an a rea  of ap p rox im ate ly  100 x 200 km 2 (F igure 2 .1). 

All of th e  s ta tio n s  bar tw o were deployed w ithin a  rad ius of 90 km from  th e  ap p ro x im a te  

c ra te r  cen tre  and th u s w ith in  th e  sm aller es tim ate  o f th e  c ra te r  size (H ildebrand e t al., 

1991). T he rem aining tw o s ta tio n s  were only ju s t  ou tside th is  rad ius and so well w ith in  

th e  larger estim ate  o f 150 km (S h arp to n  e t al., 1993). In itially  it had been in tended  to  

place these s ta tio n s  well ou tside  th e  s tru c tu re  on “und istu rb ed  c ru s t” , however, budget 

and logistic co n stra in ts  necessita ted  th e ir being sited a t  a  closer d istance to  th e  field base 

a t  C hicxulub P u erto . A denser deploym ent of in s tru m en ts  was used over th e  c ra te r  cen tre  

as offshore reflection profiles would be unable to  im age th is  a rea  during  th e  contro lled  

source p ro jec t (Section 2.3).
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F igure 2.1: Recording geom etry  of th e  passive array . The inner dashed circle represen ts 
th e  sm aller c ra te r d iam eter of 180 km, th e  o u te r one the larger 300 km d iam eter.

T he equipm ent used consisted o f 15 x 3-com ponent Teledyne G eotech S13 sh o rt period 

(1  Hz) seism om eters, 5 x 3-com ponent G u ra lp  C M G -40T broadband seism om eters (on loan 

from  G eoForschung Z entrum , G .F .Z .) and 1 x 3  com ponent G ura lp  C M G -3T broadband  

seism om eter (on loan from th e  B ritish  A n ta rc tic  Survey). T he seism om eters recorded 

continuously to  Teledyne PD A S (P o rtab le  D igital Acquisition System ) recorders which 

w ro te to  540 M b external disks. These and th e  sh o rt period S13 seism om eters belonged 

to  th e  U niversity of Leicester o r were on loan from  the N atural E nvironm ent Research 

Council (N .E .R .C .). An ex ternal G P S  receiver connected to  each PDAS controlled tim ing 

and recorded s ta tio n  location every 2  hours.

T he broadband seism om eters were deployed along Line E  (F igure 2.1) w ith th e  short- 

period instrum en ts along Lines D and F . O ne sta tio n  (E07) recorded from bo th  broadband 

and  short-period  in strum ents allowing for signal com parison during  la ter processing.

T he initial period of th e  field work season was spen t gaining perm ission from local au 

th o ritie s  and landow ners to  deploy in stru m en ts  and in building th e  s tru c tu re s  and digging 

th e  p its to  locate the  in stru m en ts in.

T he seism om eters were buried in shallow brick lined pits where possible, b u t th e  lack 

of topsoil in m any locations m ade th is difficult and often they  had to  be deployed on
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F igure 2.2: 48 hour 3 channel b road b an d  record a) prior to  insu lation  show ing v aria tions 
due to  tem p e ra tu re  fluctua tions b) a fte r in su la tion , rem oving th e  fluc tua tions o u tside  th e  
recording band.

th e  surface enclosed in sm all brick h u ts  (c. 1 x 1 x 0.5 m 3). T h e  recording in s tru m en ts  

were located  in a  sim ilar s tru c tu re  c. 12 m from  th e  seism om eters. An in itial problem  

w ith th e  b roadband  in stru m en ts  was th e  record ing  o f th e  expansion and co n trac tio n  of 

th e  in stru m en t due to  daily tem p e ra tu re  flu c tu a tio n s  (F igure 2.2). T his was solved by 

insu lation  of th e  in stru m en ts , filling th e  p its  w ith  sand  and then  m ounding sand  and  

gravel across th e  top .

R ecording took  place from  th e  8 th  F eb ru a ry  (Ju lian  day 39) to  th e  18th M ay (day 

139). D uring  th is  tim e two sites were m oved due to  problem s w ith in s tru m en t security. 

Individual in s tru m en t recording schedules a re  given in A ppendix  A. T he sites were visited 

using an 8  day  ro ta tio n  cycle, w hereby ap p ro x im a te ly  4 to  5 sites were visited every second 

day. T his v isit was used to  replace th e  ex te rn a l disk and b a tte ry , th e  disks th en  being 

re tu rn ed  to  th e  base a t  C hicxulub P u e rto  for down loading to  com pu ter and  tap e . T he  

in tervening day  between site visits was used for th is  down loading, checking d a ta  quality , 

ca ta logu ing  o f events dependen t on signal to  noise ra tio  and revisiting any sites to  fix 

problem s th a t  had been noticed.

T he  m ost com m on problem s th a t  occurred  were:
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•  Interference, d is tu rb an ce  by an im als and people

•  Failure of th e  d ig ita l to  analogue conversion link w ith in  th e  PDAS

•  P roblem s w ith th e  link to  th e  G P S .

W here possible these were corrected  in th e  field b u t when necessary the  PD A S was replaced 

by a  spare recorder and b rough t back to  th e  base. In add ition  to  th e  above list one G u ra lp  

had a  m echanical problem  which resulted  in its  rep lacem ent by a set of S13’s and one of 

th e  P D A S ’s developed an electrical fau lt.

D a ta  recording was continuous as th e  ex terna l disk size and th e  ability  to  look a t  all th e  

d a ta  in the  field and ca ta logue events negated th e  need to  em ploy any form  of triggering  

on th e  P D A S ’s. T h is  m axim ized th e  recording tim e available as no tim e was sp en t te s tin g  

triggering  and it also m ean t th a t  no events were m issed.

D espite th e  m ajo rity  o f seism om eters being deployed above ground, signal to  noise was 

in general ex trem ely  good, w ith th e  w orst levels occu rring  along Line E which was close 

to  th e  m ain M erid a-C am p ech e  highway. However, d u rin g  periods of high w inds, signal to  

noise did d e te rio ra te  slightly  due to  th e  seism om eter siting .

In addition  to  runn ing  th e  a rray  th is  field season w as also used for p rep a ra to ry  w ork for 

th e  controlled source experim en t conducted  la te r  th a t  year. Perm issioning and  building 

o f th e  sites to  be used was com pleted  and as m any o f these  s ta tio n s  as possible had  a 

RefTek recorder and single com ponent vertical seism om eter deployed for a  few days to  

check th e ir su itab ility  for recording. T he  principal concerns were th e  am bient noise level 

and th e  possibility of siting  an in s tru m en t over a  ceno te  which would have caused severe 

d isto rtion  of th e  signal.

2.3 Controlled source experim ent

T he second stage  of th e  p ro jec t was conducted  in S ep tem ber and O ctober of 1996, prim arily  

by Im perial College, London, B .I.R .P .S . and U .T .I.G . (M organ e t al., 1997; C hristeson  

e t al., 1998).

T his experim ent consisted of c. 650 km of deep reflection norm al incidence profiles 

recorded by B .I.R .P .S . along 4 radial offshore lines, th e  closest being c. 26 km from  th e  

c ra te r  centre. T he c ra te r  cen tre  lies app rox im ate ly  on th e  coastline and th e  shallow offshore
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Figure 2.3: G eom etry of th e  controlled source experim ent showing location o f reflection 
profiles, land receivers and O B S’s. D ashed lines are as in F igure 2.1

conditions precluded th e  shooting  of a  m arine c ra te r  cen tre profile. W ide angle seismic 

refraction d a ta  was recorded sim ultaneously  on 34 Ocean B ottom  Seism om eters (O B S’s) 

along 3 of these lines (A, A l and B) w ith a s ta tio n  spacing of 10-20 km and 91 land 

receivers (F igure 2.3).

T he land in strum en ts were deployed along th e  4 radial arm s used for th e  passive array  

and consisted of 3 com ponent M ark geophones connected to  RefTek recorders on loan 

from  IRIS Passcal. T he geophones had a  s ta tio n  spacing of c. 5 km again w ith a  denser 

spacing over th e  c ra te r centre. C ontinuous operation  of th e  receivers during  th e  experim ent 

allowed th e  recording of several q u arry  b lasts from  local quarries, identified during th e  

passive experim ent. T hese quarries were also visited to  ob ta in  shooting  inform ation and 

G PS  locations.

D uring th is p ro ject a  concurren t m arine and onshore grav ity  survey was conducted by
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th e  Geological Survey of C an ad a . As p a r t  o f th is  survey several of th e  seism ic in s tru m en t 

sites were located using a  differential G P S  system , th u s  allowing a  com parison  o f site  

locations calcu lated  from th e  G P S  receivers connected to  th e  PD A S recorders du ring  th e  

passive experim ent and providing a  m eans o f es tim atin g  th e  single receiver location  erro rs 

(C h ap te r 3).



Chapter 3

Event Location

W hilst in M exico, th e  recorded d a ta  was dow nloaded from  disk to  ta p e  as disks were 

retrieved from th e  field. T h is  produced an archive w here one ta p e  contained  several days 

d a ta  from  th ree  or four sites. On re tu rn  to  Leicester, th is  resulted  in a  com plex and 

disorganized event retrieval system  so, prior to  any processing, th e  d a ta  was re-archived. 

Tapes were re-w ritten  on a  daily  basis w ith one ta p e  con tain ing  all d a ta  for one 24 hour 

period. A t th e  sam e tim e known events from  th e  ca ta logu ing  com pleted  in th e  field were 

copied to  sep a ra te  event tap es . T he  regional and teleseism ic d a ta  has since been converted  

to  SEED  fo rm at and archived on th e  IRIS D M C  cata logue.

Regional and  teleseism ic event locations were ob ta in ed  from  th e  cata logues issued by 

th e  USGS and N EIC  and are  listed in A ppendix  B. T h is ch ap te r describes th e  location 

and d istribu tion  of recorded local events.

3.1 Site location

All th e  sites were connected to  a  G P S  system  which recorded tim e and position every 

tw o hours. T his controlled d rift of th e  recorders in terna l clocks which never exceeded 

4 ms. Site locations were calcu lated  by a  sim ple averaging of th e  tw o hourly location 

m easurem ents (in general an average of over 1000 locations). T hese all occur w ith in  a  c. 

300 m rad ius of th e  average and  no ju m p s or d rifts  occurred  over th e  recording period, 

ind icating  th a t  th e  need for an y th in g  m ore com plex th an  a  sim ple average is n o t called 

for (F igure 3.1). D ifferential G P S  positions using dual frequency and carrier phase were 

recorded a t  m any of th e  sites in O ctober by m em bers o f UNAM  and th e  G SC  durin g  a  

grav ity  survey. In each o f these s itu a tio n s  th e  average and differential locations differ by
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Figure 3.1: D istribution of d istances of individual G PS locations from  th e  average location 
of site  D13. Positive d istances are  N orth  and E ast in the  respective plots. T he differential 
G P S  location of the  site ob ta ined  by th e  G SC  is m arked by th e  arrow .

not m ore th an  15 m.

3.2 Q ualitative d escrip tion s o f  seism ogram s

A typical local event is shown in F igure  3.2. It can be seen th a t  th ere  are variations in 

dispersion characteristics of th e  traces  and th e  arrival tim es of phases are p a th  dependent, 

suggesting there  is significant varia tion  in th e  geology across th e  region. All events were 

characterized by several d istinctive features:

•  High frequency (>  10 Hz) body wave sp ec tra  often exhibiting  spec tra l m odulations 

(F igure 3.3).

•  High am plitude, well dispersed fundam ental Rg phase w ith a  1-3 Hz sp ec tra  (Fig

ure 3.4).

•  C learly defined com plex Lg phase showing little  dispersion on th e  transverse  com 

ponent (Figure 3.4).

In addition several of th e  events show alm ost identical waveform and spectra l con ten t, 

im plying identical (or near identical) source functions (F igure 3.5).

T h e  large am plitude fundam ental Rg phase which can be seen to  p ropagate  across the  

netw ork to  over 55 km, is generally indicative of a shallow source (Sakia, 1992). Unusually, 

th e  fundam ental Rg mode on th e  m ajo rity  of seism ogram s exhib its reversed dispersion,
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Figure 3.2: Typical record section for one event recorded a t m ultiple s ta tio n s . N ote th a t  
th e  traces have been high pass filtered above 0.4 Hz to  remove low frequency noise and 
are individually norm alized.
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Figure 3.5: (a) W aveforms from two events recorded a t th e  sam e s ta tio n  and (b) their 
corresponding frequency spectra .
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Figure 3.6: Vertical records from  tw o s ta tio n s  for th e  sam e event and sim ilar p a th  lengths 
exhibiting very different Rg dispersion characteristics.

w ith th e  high frequency arriv ing  before th e  lower frequencies. T he m inority  show a much 

less dispersive phase th a t  is norm ally dispersed (F igure 3.6). P robab le  higher modes are 

also visible, m ore clearly identifiable a fte r filtering and th rough  partic le m otion analysis 

(F igure 3.7).

P-wave onsets can be picked to  a  d istance of a t  least 40 km from  th e  source and provide 

an apparen t velocity of c. 5 km s- 1 . M ost probably  th is orig inates from  brecciated m ateria l 

and m elt below the  T ertia ry  sedim ents. T his ap p aren t velocity can be seen to  increase to  

c. 6  km s- 1  for p a th s  closer to  th e  c ra te r  cen tre  (Figure 3.8).

3.3 H yp ocentra l loca tion

P and, where possible, S phase arrivals were picked using th e  seismic package SEISAN 

(Haskov, 1995) and events subsequently  located using the H Y PO IN V E R SE  program  (Klein, 

1990). T he accuracy of th e  final locations obtained from th is program  depend upon th e  

validity of the  various inpu t param eters  and assum ptions m ade. T hese are the  num ber 

and precision of picked arrival tim es, th e  accuracy of th e  tim ing, location of s ta tio n s , th e

D13 VERT
MAT II (132). 1996
14:0530.070

F05 VERT
MAT 11 (132), 1996
140530.070
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Figure 3.7: (a) Unfiltered vertical trace  recorded a t  s ta tio n  F05. (b) Vertical, radial and 
transverse com ponents for F05 band-passed filtered a t  1.5 Hz. F undam ental and higher 
mode Rg can clearly be seen on th e  vertical and radial com ponents w ith a  s tro n g  Lg on 
the  transverse (note different tim e window from (a)), (c) Particle m otions in th e  sag itta l 
plane for 2 second windows from 15-17 seconds and 26-28 seconds confirm ing a re trog rade 
m otion for th e  fundam ental m ode and show ing th e  higher m ode has prograde m otion.
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in p u t m odel and V p /V s  ra tio .

3 .3 .1  P h a se -p ick in g

P hases were picked and th e ir qu a lity  judged  on a  scale of 0 -3 , w here 0 is th e  best (clear 

pulse onset w ith no earlier pulse and  a lm ost zero error) and 3 th e  w orst (very poor onset 

w ith  possibility of large e rro r). T h e  S phase arrives in th e  P  wave co d a  and is also 

m ore affected by an iso tropy  and  a tte n u a tio n . T hese la tte r  effects can cause sp littin g  and 

shadow ing of th e  phase, increasing th e  u n ce rta in ty  o f th e  arrival tim e (T h u rb er, 1993). As 

a  resu lt an S phase pick was never judged  to  have a  quality  o f 0. T h is quality  assessm ent 

is then  used to  w eight th e  arrival tim es du rin g  th e  event location.

To evaluate  th e  erro rs associa ted  w ith th e  phase picking, several of th e  seism ogram s 

were picked m ore th an  once and  th e  tim es com pared . T he  m axim um  difference in arrival 

tim es for th e  different quality  picks were:

Q uality  0 ±  0.01 

Q uality  1 ±  0.07 

Q uality  2  ±  0.2 

Q uality  3 ±  0.4.

In general th e  difference w as ap p ro x im ate ly  75% less th an  th e  m axim um  differences 

listed here.

3 .3 .2  V e lo c ity  m o d e l

T h e  program  H Y P O IN V E R SE  requires a  1- D  hom ogeneous plane layered velocity m odel 

which represen ts an app rox im ation  o f a  velocity s tru c tu re  th a t  will in reality  show sig

nificant la te ra l varia tions. T h e  s ta r t in g  m odel chosen (F igure 3.9) is from  a  sum m ary  of 

shallow  seismic velocities by B ritta n  e t al. (1998) based on offshore reflection d a ta  (Ew ing 

e t al., 1970) and borehole d a ta  (C ue, 1953). D uring  th e  in itial location , V p /V s  was set 

to  an  a rb itra ry  value of 1.74. T h e  event locations using th is  in itial m odel are  shown in 

F igure  3.10. T he d istrib u tio n  of th e  events is discussed fu r th e r in Section 3.3.6.

Each event cluster was then  stud ied  independen tly  to  investigate  m odel suitability , 

event d ep th  (Section 3.3.4), s ta tio n  residuals (Section 3.3.3) and V p /V s  ra tio s  (Sec-
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Figure 3.9: V elocity-depth m odel used for initial event location.
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tion 3.3.5). T hey  were then  relocated  using th e  best values for these p aram ete rs  (T able 3.1) 

to  give th e  final locations shown in F igure 3.11 and  listed in A ppendix  C.

Vf / v ,
Depth

(a) (b) (c)

1.75
10m

1.77
5m

1.73
5m

Z(km) Vp (kms-1) Z(km) Vp (kms-1) Z(km) Vp (kms-1)

0.0 2.2 0.0 2.2 0.0 2.2

0.4 2.6 0.4 2.6 0.0 2.55

0.9 3.7 0.8 3.7 0.8 3.65

1.4 5.1 1.5 5.0 1.5 5.1

2.0 5.8 2.0 5.6 1.9 5.79

10.0 6.8 10.0 6.7

Table 3.1: P a ram e te rs  for final locations giving a  m inim um  RM S residual. Z is th e  d ep th  to  
th e  to p  of th e  layer. P a ram e te rs  (a) were used for th e  F lam boyanes and sou th  F lam boyanes 
c luster (<  25-30  km rad ius of th e  c ra te r  cen tre), (b) for events a t  D zitya and near site 
E12 (betw een 25 km and 45 km radius) and  (c) for th e  a irp o rt events ( >  45 km rad ius).

3 .3 .3  S ta t io n  co rr ec tio n s

S ta tion  corrections can be m ade to  correc t for b o th  surface to pography  and for any  local 

velocity anom aly beneath  th e  s ta tio n . In th is  s tu d y  no topograph ical co rrections were 

necessary due to  th e  fla t n a tu re  of th e  area.

T he average residuals a fte r th e  in itial location  for each event c luster are  show n in 

F igure 3.12. If a  local velocity anom aly ex ists ben eath  a  s ta tio n  then  th a t  s ta tio n  should 

have an abnorm ally  large travel tim e residual for all events. If on th e  o th er hand  a  velocity 

anom aly occurs along a  so u rce-s ta tio n  p a th  then  th e  residual would only be atyp ica l for 

th e  events from one p articu la r source region.
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It can be seen from F igure 3 .1 2  th a t  th e re  ap p ear to  be no obviously different residual 

values w ith th e  possible exceptions o f s ta tio n s  D33 and D38. C loser exam ination  o f th e  

d a ta  for these sites revealed th a t  th e  average was calculated  over a  sm all num ber of resid

uals, only one of which was very large. As th e  quality  of th e  picks a t  these  sites was very 

poor th e  residual is m ore p robab ly  a  resu lt of th is  th an  local geology. It was concluded 

th a t  there  was no evidence to  suggest any local velocity anom alies near s ta tio n s  or along 

p articu la r ev e n t-s ta tio n  p a th s . T h e  negative bias was removed following relocation a fte r 

som e m inor changes to  th e  velocity m odel, V p /V s  ra tio  and fixing of th e  event dep th s .

3 .3 .4  H y p o c e n tr a l d ep th

T h e  d ep th s  of th e  events following th e  in itial location are shown in F igu re  3.13. All are 

located  w ithin 2.5 km of th e  surface w ith th e  m ajo rity  w ithin 0.5 km and having a  vertical 

e rro r o f ±  0 .3 -2  km.

Based on th e  event d istrib u tio n  and  th e  shape of w aveform s (Section 3 .3 .6), it is be

lieved th a t  all th e  events a re  q u a rry  b lasts  o r som e form  of surface explosion. P rio r to  

relocation th e  d ep th  was fixed a t  5 m or, in th e  case of th e  n o rth e rn m o st c luster a t  F lam 

boyanes, 10 m. These d ep th s  were based on inform ation  ob ta ined  from  tw o of th e  quarries 

in th e  area. T his produced a  reduction  in th e  residual RM S values and  errors.

3 .3 .5  V p /V s  ra tio

In o rder to  m ake full use o f th e  S-wave arrival tim es in th e  hypocen tra l de term in a tio n  

a  V p /V s  ra tio  m ust be provided for th e  a rea  beneath  th e  array . T h e  V p /V s  ra tio  was 

initially  calculated  using th e  trad itio n a l W ad ati m ethod  (W adati, 1933) for 40 events which 

had 6  or m ore pairs of good quality  P  and  S arrival tim es. In th is  m ethod  th e  difference 

betw een th e  P  and  S-wave arrival tim es (t s — tp) is p lo tted  aga inst th e  P-w ave arrival tim e 

(tp). A ssum ing a  co n stan t P o isson ’s ra tio  along th e  travel p a th  and th a t  th e  P  and  S 

p a th s  are identical then  th e  g raph  will have a  slope of V p /V s  -1 (K isslinger and  E ngdahl, 

1973). T he ra tio  will be th e  average for th e  a rea  covered by th e  s ta tio n s  used in th e  plot. 

Following th e  initial location W adati p lo ts were m ade for selected events and although  

linear (F igure 3.14) gave a  large varia tion  in slope. Slopes were ca lcu lated  using a  least 

squares fit and varied from  1.54-1.97.

T h is variation in V p /V s is to  be expected  as it is known to  change over relatively sm all
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Figure 3.12: A verage s ta tio n  trave l tim e residuals for all events and event c lusters.
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Line E

©  CM -

E04 E07 E12 E18

Figure 3.13: 3 -D  view of hypocen tral d ep th s  for all events following initial location and  
th e  sam e d ep th s  collapsed on to  Line E. For c larity  th e  vertical erro rs have no t been show n.
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Airport event 21/02/96

10 -

Vp/Vs -  1.716 +/- 0.002

0 5 10 15
Tp (sec)

(a)

Flamboyanes event 28/02/96

10 -

Vp/Vs = 1 736 +/- 0.001

0 105 15
Tp (sec)

(b)

F igure  3.14: E xam ple W adati plots.
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areas (Young, 1989). Local inhom ogeneities, pore spaces and an iso tropy  have all been 

shown to  affect th e  ra tio  (e.g., W inkler and M urphy, 1995). A strom  (1998) also found 

large varia tions in V p /V s across th e  121 M a. Lake Mien im pact c ra te r in Sweden. T his 

was believed to  be a  result of th e  therm al effects of th e  im pact. T he energy release from  

a  th erm al b lanket was sufficient to  susta in  hydro therm al flow for a long period depositing  

q u a rtz  and thereby  lowering th e  V p /V s  ratio .

L ab o ra to ry  m easurem em ents of q u a rtz  give a  V p /V s ra tio  of 1.48 com pared  to  th e  

1 .7-2 .0  of ca rb o n ates  (C arm ichael, 1982) and so varying levels of q u artz  deposition  could 

explain th e  lower ra tios. However, increasing dolom itization also resu lts in a  reduction  of 

th e  V p /V s ra tio  w ith th e  reduction dependen t upon th e  degree of do lom itiza tion  (W inkler 

and M urphy, 1995). Lack of geological control prevents any definitive reason for the  

varia tion  to  be given and th e  effectiveness of any fu rth e r s tu d y  into th is  is lim ited due to  

th e  sm all num ber of events and their d istrib u tio n  and so was not a ttem p ted .

Due to  the  large d istribu tion  of ra tio s ob tained  by th is m ethod it was decided th a t  for 

th e  hypocentral analysis a  best fitting  V p /V s  ra tio  would be ob ta ined  for each c lu ste r by 

repeated ly  re locating  th e  subset of events and m odifying th e  ra tio  each tim e to  m inim ise 

th e  RMS residual (M arrow  and W alker, 1988). T he  resu lts of th is for th e  event c lusters 

a t  th e  quarries a t  F lam boyanes and near M erida a irp o rt are shown in F igure 3.15.

3 .3 .6  D is tr ib u tio n  o f  ev en ts  and id en tifica tio n  o f  quarry  b la sts

T he m ajo rity  of th e  events fall in to  several d istinc t spatia l clusters. F igure 3.16 shows 

th e  locations of suspected or known quarries w ithin th e  M erida area  based on site  visits 

or local com m unication  and it can be seen th a t  m ost of these correlate w ith th e  located  

events. Tw o of these, a t  F lam boyanes and D zitya, were visited and da tes  of b lasts  ob ta ined  

(a lthough un fo rtuna te ly  no tim es) and again these correlate  w ith the  recorded events in 

these regions.

T he rem aining events are also believed to  be related to  surface b lasts. T heir d is trib u 

tion around th e  o u tsk irts  of M erida m ost likely indicates e ither b lasting  associa ted  w ith 

construc tion  which was observed during  th e  fieldwork or sm all local quarry ing  th a t  we 

were inform ed did occur around th e  ou tsk irts . T he o ther option would be b lasting  asso

ciated  w ith farm ing practices, possibly in order to  sink wells, which again was observed 

dur ing the  fieldwork. T he single event by s ta tio n  D26 m ay be an exam ple of th e  la tte r  as
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Figure 3.15: M ean RM S ag a in st V p /V s  ra tio  for (a) F lam boyanes cluster and (b) a irp o r t 
c luster.



3. Event Location 62

270* 00‘ 270* 15* 270’ 30' 270’ 45'
21

21

21

20
270’ 00' 270" 15' 270*30' 270*45'

Figure 3.16: Location of known and suspected quarries and local tow ns in th e  M erida 
area. Suspected quarries are based on inform ation provided by locals.
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th is  is largely an ag ricu ltu ra l area.

T he tem pora l d istrib u tio n  of th e  events (F igure 3.17) agrees w ith th e  supposition  of 

m an-m ade as opposed to  n a tu ra l sources. No events occur on a  Sunday and  all th e  events 

fall between 14:00 and 00:30 G M T  (07:00am  - 17:30 local tim e). Each c luste r never has 

m ore th an  one event per day and  in general show a gap  of th ree  o r four days before th e  

n ex t event.

B u rk h ard t and Vees (1976) rep o rted  th a t  q u arry  b lasts can be regarded as app rox i

m ately  reproducible signal sources w ith p a th  and  secondary  effects in th e  vicinity  of the  

q u a rry  dom inating  the  shape o f th e  waveform . V arious researchers (e.g., Israelsson, 1990; 

R iviere-B arbier and G ra n t, 1993) have used th is  to  confirm  spa tia l locations of q u arry  

b lasts  and to  d istinguish events from  sep a ra te  quarries w ith in  close proxim ity  of each 

o th e r. Visual identification and  a  cross-correlation  m ethod sim ilar to  th a t  of Riviere- 

B arb ier and G ran t (1993) were used to  help confirm  th a t  th e  events w ith in  each cluster 

did o rig inate  from  one q u arry  and to  provide a  check th a t  s tack ing  o f events du ring  la te r 

processing to  reduce noise was valid.

For an initial quick check, visual classification based on th e  following c rite ria  was 

conducted :

•  shape of P  wave dur ing th e  first 3 seconds

•  shape of th e  surface phases, Lg and  Rg and  visible higher m odes

•  frequency con ten t.

C ross-correlation  of th e  d a ta  th en  provided a  fu r th e r check and  th e  tim e shifts necessary 

for stack ing  of th e  different events. C ross-correlation  of tw o sim ilar events should produce 

a  spike w ith th e  peak offset by th e  tim e sh ift (F igure 3.18). P rio r to  th e  correlation  th e  

d a ta  was high-passed filtered above 0.1 Hz to  rem ove low frequency noise. T he  correlation  

was then  carried o u t on a  60 second envelope o f th e  en tire  trace

Q uarries generally em ploy several sub-explosions staggered  in tim e in o rder to  enhance 

rock frac tu re  and reduce ground m otion in th e  vicinity of th e  b lasts  (ripple b lasting). Su

perposition  of th e  sub-events can resu lt in th e  m odulation  of th e  spec trum  of th e  overall 

sh o t, suppressing som e frequencies and reinforcing o th ers  to  form  tim e independen t fre

quency bands visible th rough  th e  seismic signal (Sm ith , 1989; Hedlin e t al., 1989). W hilst
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Figure 3.17: Tem poral d istribu tion  of events (a) Daily d istribu tion  and (b) Hourly d istri
bution.
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Figure 3.18: (a) T hree events recorded a t s ta tio n  D08. T he upper two are both  believed 
to  originate from D zitya, th e  th ird  from near s ta tio n  E12, 5 km to  the  south  east, (b) 
Cross-correlation functions w ith th e  first event. T he to p  trace  is the au to  correlation  of 
the  first event. T he second trace  shows a  clear spike w ith a  -0.04 second offset, confirm ing 
the  source is th e  sam e as th e  first w hilst th e  th ird  shows no correlation.
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in theo ry  th e  spacing of these b ands should allow calculation o f th e  delay tim e em ployed, 

in reality  th e  delay tim es can vary b o th  between and along rows of th e  sho t som etim e by 

as much as 34% from  th e  in tended  tim e (Hedlin e t al., 1989) in troducing  a  sc a tte r  th a t  

m ay d isrup t th e  organization  o f th e  bands.

High frequency m odulations in a  seism ic signal can be enhanced by calcu lating  a  spec

tro g ram  equal to  th e  difference betw een tw o sm oothed  versions of th e  sam e spec trog ram  

of th e  signal and displaying as a  function  o f tim e in a  frequency-tim e display o r sonogram  

(Hedlin e t al., 1989). Such analysis of several o f th e  events show tim e independen t banding  

(F igure 3.19). A lthough th is  m odulation  could also be a  resu lt of reverberations in a  low 

velocity horizon (Hedlin e t al., 1989) it is no t visible in th e  events th a t  are  no t believed to  

o rig inate  from a  q u arry  (and are  unlikely to  be ripple b lasts) confirm ing th a t  th e  banding  

is a  source ra th e r th an  p ropagation  effect.

3.4 Determ ination o f errors

T he errors given by th e  location p rogram  do no t account for e rro rs  w ithin th e  in p u t 

p a ram eters  and assum e th a t  these  are  correc t. Klein (1990) s ta te s  th a t  th e re  is a  95% 

probability  th a t  th e  tru e  event location  lies w ith in  an e rro r ellipsoid 2.4 tim es th a t  of th e  

s tan d a rd  erro r ellipsoid given by H Y PO IN V E R SE .

Possible sources of erro r in th e  in p u t p a ram ete rs  a re  (in no p articu la r o rder o f prefer

ence):

•  D eterm ination  of site  location

•  A ccuracy of tim ing

•  A ccuracy of phase picking

•  N um ber of s ta tio n s and  phases used

•  Selection of V p /V s ra tio

•  Choice of velocity m odel.

Site location erro rs were m entioned briefly in Section 3.1 and com pared  to  th e  o th e r erro rs 

are considered negligible. A location erro r o f 20 m for a  wave w ith an average velocity
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(b)

F igure 3.19: Sonogram  analysis of (a) an event from D zitya and (b) an event near site 
E12. The D zitya event is known to  be a  ripple b last and displays clear banding th roughou t 
th e  signal which is not visible in th e  la tte r  event. T he event near E12 is believed to  be 
related to  construction  work and is unlikely to  be rippled. T he proxim ity of th e  two paths 
suggests th a t  the  banding is a  source ra th e r  th an  propagation  effect.
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of 5 km s - 1  corresponds to  a  change in travel tim e of only 4 ms. T im ing erro rs  have also 

been ignored as th e  d rift on th e  in terna l PD A S clocks was, w ith only two exceptions, less 

th an  4 ms. T he  exceptions to  th is  were w here th e  G PS  cable was dam aged and  in b o th  

cases th is was noted and th e  d a ta  no t used in location work.

T he erro rs associa ted  w ith th e  phase picking are given in Section 3.3.1. A ny event th a t  

had phases picked a t  less th an  four s ta tio n s  was not located .

T he m ain sources of erro rs  are likely to  be in th e  V p /V s ra tio  and th e  velocity m odel.

T his is due to  th e  fact th a t  th e  m odel is only a  1-dim ensional rep resen ta tion  o f th e  tru e  

ea rth  and these in p u t p a ram eters  are  assum ed to  be uniform  across th e  area , which has 

been shown to  no t be th e  case.

To investigate th e  influence of th e  choice o f V p /V s  th e  c luster of 20 even ts near th e  

a irp o rt was re located w ith a  range o f ra tio s  from  1.65-1.85. T he effect o f th is  on th e

hypocen tral location is shown in F igure 3.20 and  can be seen to  be qu ite  sm all w ith  th e

m axim um  RM S variation in ep icen tral location  o f 0.83 km . T he effect on th e  origin tim es 

was a  m axim um  of ±  0.31 seconds. In general th e  effect of increasing th e  ra tio  is to  move 

these events to  th e  no rth  or east which is to w ard s th e  m ajo rity  of th e  recording s ta tio n s  

and to  m ake th e  origin tim e earlier.

To gain an un d erstan d in g  on th e  validity  o f th e  m odel th e  p aram eters  were changed by 

th e  m axim um  varia tions between th e  well logs and  seism ic lines for each layer. Table 3.2 

sum m arizes th e  effect of these changes on th e  hypocen tra l locations and trave l tim e resid

uals for th e  events near M erida a irp o rt. S im ilar effects were observed for v aria tions in th e  

p aram eters  for th e  D zitya and F lam boyanes events.

To investigate  th e  need for th e  six th  layer in th e  m odels, th e  changes in individual 

s ta tio n  residuals w ith and w ithou t th e  layer were exam ined. A ddition of th e  layer showed 

a  reduction in trave l tim e residuals for s ta tio n s  near th e  c ra te r  cen tre (e.g., E04, D 2 1 , F05 

and D26) or for s ta tio n s  w ith s ta tio n -ev en t p a th s  p redom inan tly  w ithin th e  c ra te r  cen tre , 

bu t an increase for th e  o u te r s ta tio n s  (F22, F25, E21 and  E25). An F -te s t (D avis, 1973) 

was conducted  to  confirm  th a t  th e  im provem ent in th e  RM S residuals was no t sim ply a 

result of overm odelling and th a t  th e  m odels were significantly different a t  a  5% significance 

level.

T he observed im provem ent would be consisten t w ith a  high velocity zone ben eath  th e
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F igure 3.20: Effect of varying V p /V s  on (a) th e  ep icentral location of events near th e  
a irp o rt and (b) th e  origin tim e of those events.



3. Event Location 70

c ra te r  centre. T he velocity m odel giving th e  m inim um  to ta l RM S residual will be th a t  

which best represents th e  a rea  sam pled . In th e  case of events near F lam boyanes and 

D zitya few of th e  picked phases used in th e  location are from  th e  o u te r sites com pared  to  

th e  central a rea  which is well sam pled . T he  best model for use in th e  location of these 

events therefore requires th e  six th  layer. By co n tra s t th e  events near th e  a irp o rt have a 

high proportion of phases picked a t  th e  o u te r sites and so th e  m odel m ust represent a 

1-dim ensional average o f a  larger a rea  which, in th is case, does no t require th e  six th  layer.

Given these varia tions and  th a t  th e  locations of th e  events a t  F lam boyanes and D zitya 

have an RM S variation of 1 .1  km from  th e  G P S  readings taken  a t  these quarries it is 

probable th a t  the  overall horizontal location erro r is of th e  o rder of ±  1.5 km w ith an 

origin tim e erro r of ±  0.2 seconds. A lthough considered, it was decided th a t  fixing th e  

hypocentre based on th e  G P S  readings a t  these two quarries to  im prove th e  origin tim e 

solution could not be justified . G iven th e  erro r in th e  G P S  m easurem ent (th e  G P S  reading 

was m ade w ith a  hand held G P S  and did no t use differential m ethods), th e  size o f th e  

quarries (c. 1 km) and th a t  up to  8  m onths had elapsed betw een th e  b lasts  in question and 

th e  G PS  m easurem ent during  which tim e b lasting  m ay have moved to  th e  opposite  region 

o f th e  q uarry  raises d o u b t as to  w he ther th is  would produce a  reliable im provem ent.

3.5 Conclusions

T he d istribu tion  of events is dom in ated  by five clusters which correspond to  th e  locations 

of known or suspected quarries  in th e  region. E vents a t  tw o o f these locations agree w ith 

d a tes  of b lasts provided by th e  quarries. T he  rem aining events are  believed to  be th e  resu lt 

of b lasting for ag ricu ltu ral o r co n stru c tio n  work.

T he properties of th e  seism ic signals recorded are consisten t w ith th e  conclusion th a t  

th e  northw estern  Y ucatan pen insu la is seism ically quiet and local seism icity is a  resu lt of 

m an-m ade explosive sources ra th e r  th a n  n a tu ra l ones. T he s tro n g  surface wave phases 

are  consistent w ith a shallow or surface source and waveform analysis suggest events from  

within each cluster are a  resu lt o f a  reproducible source function . Sonogram  analysis shows 

clearly defined tim e independen t frequency bands consisten t w ith ripple fired q u arry  b lasts.

Initial analysis of th e  signal w aveform s and phase arrival tim es suggests significant
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Velocity variation of Layer 1 by ±  0.04 kms-1 to 2.16 kms-1 and 2.24 kms-1 
RMS variation in epicentral location =  0.22 km 
RMS variation in origin time =  0.03s
Variation in residual RMS =  0

Velocity variation of Layer 2 by ±  0.1 kms-1 to 2.45 kms-1 and 2.65 kms-1 
RMS variation in epicentral location =  0.21 km 
RMS variation in origin time =  0.03s
Variation in residual RMS =  +  3.25 x 10”3

Velocity variation of Layer 3 by ±  0.18 kms-1 to 3.47 kms-1 and 3.83 kms-1 
RMS variation in epicentral location =  0.11 km 
RMS variation in origin time =  0.04s
Variation in residual RMS =  +  3.75 x 10-3

Velocity variation of Layer 4 by ±  0.2 kms-1 to 4.9 kms-1 and 5.3 kms-1 
RMS variation in epicentral location =  0.14 km 
RMS variation in origin time =  0.04s
Variation in residual RMS =  +  2.5 x 10-3

Velocity variation of Layer 5 by ±  0.2 kms-1 to 5.59 kms-1 and 5.99 kms-1 
RMS variation in epicentral location =  0.62 km 
RMS variation in origin time =  0.03s
Variation in residual RMS =  +  2.175 x 10-2

Depth variation to top of Layer 2 by ±  0.1 km to 0.3 km and 0.5 km 
RMS variation in epicentral location =  0.15 km 
RMS variation in origin time =  0.19s
Variation in residual RMS =  +  3.5 x 10-3

Depth variation to top of Layer 3 by ±  0.15 km to 0.65 km and 0.95 km 
RMS variation in epicentral location =  0.21 km
RMS variation in origin time =  0.03s
Variation in residual RMS =  +  4 x 10-3

Depth variation to top of Layer 4 by ±  0.2 km to 1.3 km and 1.7 km 
RMS variation in epicentral location =  0.24 km
RMS variation in origin time =  0.06s
Variation in residual RMS =  +  3.25 x 10-3

Depth variation to top of Layer 5 by ±  0.25 km to 1.65 km and 2.15 km 
RMS variation in epicentral location =  0.22 km
RMS variation in origin time =  0.06s
Variation in residual RMS =  +  3.75 x 10-3

Adding Layer 6, v =  6.8 kms- 1 , Z =  10 km
R M S  variation in epicentral location =  0.29 km
R M S  variation in origin time =  0.09s
Variation in residual R M S  =  +  9.5 x 10-3

Depth freed (tried depth =  5 km)
R M S  variation in epicentral location =  1.12 km
R M S  variation in origin time =  0.37s
Variation in residual R M S  =  +  3.6 x 10-2

Table 3.2: Effect of varying m odel p a ram ete rs  on hypocentral locations of events near 
M erida a irp o rt.
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3-dim ensionality  of th e  seismic s tru c tu re  of th e  area.

W adati p lo ts show th a t  th e  V p /V s  ra tio  varies across th e  a rea  from 1 .54-1 .97 (corre

sponding to  a  change in Poisson ra tion  o f 0 .14-0 .325). T his m ay be due to  th e  th e rm a l 

effects of th e  im pact, varying degrees o f do lom itization  in th e  ca rb o n a tes  o r sim ply th e  

com plex geology o f th e  s tru c tu re  b u t lack o f su itab le  d a ta  prevents any fu r th e r  analysis of 

th is  change.

E xam ination  of schem atic m odels o f th e  c ra te r  (P ilk ington e t al., 1994; S h arp to n , 

1997) can give an indication of th e  likely s tra tig ra p h y  represented  by th e  velocity m odels 

used in th e  location of th e  local events. T hese suggest a  relatively hom ogeneous layer 

of approx im ately  1 km thick T ertia ry  sed im ents w ith a  velocity of 2 .2 -2 .6  km s- 1 . T hese 

values are consisten t w ith sonic d a ta  ob ta in ed  from  well logs (U rru tia-F ucugauch i e t al., 

1997) and previous seismic work in th e  region (C ue, 1953). B eneath  th is  a  500-700 m 

layer w ith a  3.7 km s - 1  velocity which is likely to  represen t a  com bination  o f m elts and 

upper breccias. T he 5.1 km s - 1  underly ing layer is p robab ly  a  resu lt of e jec ta  and  m ega 

breccias w ith th e  pre-existing C retaceous s tra tig ra p h y  producing a  velocity o f 5.8 km s - 1  

below 2 km d ep th . An increase in ap p a ren t P-w ave velocity can be seen to w ard s th e  cen tre  

of th e  s tru c tu re  and a  layer of 6 .8  km s - 1  is required  a t  d ep th  for p a th s  m ainly  w ith in  th e  

c ra te r  centre. T h is high velocity m ateria l m ay be uplifted basem ent which is consisten t 

w ith th e  in te rp re ta tio n  of th e  g rav ity  and m agnetic  anom alies observed w ith in  a  20-25  km 

rad ius of th e  c ra te r  cen tre  (P ilk ington e t al., 1994).



Chapter 4

Surface Wave Analysis

4.1 Introduction

For seism icity excited by shallow ea rth q u ak es and  explosions, surface waves are  th e  longest 

and strongest portion  o f th e  record. O ver th e ir p a th  they  absorb  inform ation  on th e  

elastic and anelastic p roperties  of th e  E a r th  dep en d en t on th e ir frequency co n ten t, which 

is reflected in th e ir dispersion and  a tten u a tio n  charac te ristic s . As a  resu lt th ey  have 

become im p o rtan t in th e  m odelling of c ru sta l s tru c tu re .

Following th e  theo re tica l work o f Rayleigh (1885), Lam b (1903) and Love (1911) surface 

waves were observed and used for stud ies of th e  E a r th ’s s tru c tu re  th ro u g h o u t th e  first 

half of th e  20th cen tu ry  (e.g., Jeffreys, 1925; S toneley, 1931; Bullen, 1939). E arly  research 

focused on th e  d e term in a tio n  o f c ru sta l th ickness and  th e  m odelling of two o r th ree  layered 

crusta l s tru c tu re . Differences in oceanic and co n tin en ta l c ru s t were inferred th ro u g h  th e  

variation of dispersion curves.

From  1950 onw ards, rap id  progression w as m ade as im provem ents were m ade in seis- 

mological in s tru m en ta tio n  and  analysis m ethods were developed. T he m easu rem en t of 

longer periods (20-500 s) becam e possible allowing d e term in a tio n  of 1-D  m an tle  s tru c tu re  

(e.g., Ewing and Press, 1954). D ispersion stu d ies displayed th e  la tera l heterogeneity  o f th e  

upper m antle and allowed th e  delineation of m a jo r tec ton ic  regions w ithin th e  c ru s t (e.g., 

B rune and D orm an, 1963; B rune, 1969). H igher m odes were identified (Oliver and  Ew ing, 

1957) which sam ple different d ep th  ex ten ts  th an  th e  fundam en tal m ode (F igure 4 .1). T he  

velocity s tru c tu re  influences different portions o f each m ode independently  th u s  providing 

additional in form ation which could be used to  gain m ore reliable and accu ra te  m odels. 

B ette r definition of crusta l s tru c tu re  was also ob ta ined  th rough  the  m easurem ent o f dis-
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Figure 4.1: Schem atic illu stra tion  of th e  d ep th  dependence of th e  vertical d isp lacem ent 
eigenfunction of th e  fundam en ta l, first and second higher m odes a t  a  fixed frequency. T he 
num ber of zero crossings determ ines th e  m ode num ber w ith th e  relative exc ita tion  of each 
m ode dependent on w avelength, source dep th  and  s tru c tu re  (a fter Ew ing e t al. (1957).

persion a t  higher frequencies (e.g., B ache e t al., 1978).

As the  observation of surface waves increased so to  did th e  analysis and  processing 

m ethods. Dziewonski e t al. (1969) developed th e  m ultiple filter technique of ca lcu lating  

g roup  velocities; th e  seism ogram  being filtered and windowed in th e  frequency dom ain then  

transfo rm ed  back to  th e  tim e dom ain to  determ ine th e  velocity from  th e  m axim um  energy 

con ten t. H errm ann (1973) and  D enny and  Chin (1976) developed th e  m ethod fu rth e r and 

investigated  th e  effects o f using different filters de term in ing  th a t  a  G aussian  filter has th e  

sm allest, if any, side lobes th a t  could be m isidentified as higher m odes and was therefore 

preferred for th e  technique. H errin and  G oforth  (1977) in troduced  a  m ethod o f iso lating  

m odes from higher m odes and  m u lti-p a th  effects to  im prove group  velocity m easurem ents.

T he im portance of th e  0 .5 -5  Hz frequency range in u pper c ru sta l s tud ies was recog

nized by M cEvilly and S tau d er (1965). T heir analysis of s tripm ine  b lasts highlighted th e  

sensitiv ity  of th is  frequency o f Rayleigh wave to  sed im entary  s tru c tu re . M arked differences 

in group velocities for several p ropagation  p a th s  across th e  Illinois basin were modelled 

in te rm s of sed im entary  sequences w ith in  th e  basin. T he com bination  of stripm ines and 

single s ta tio n s  produced an inexpensive and sim ple technique, a  fact highlighted again by 

H errm ann (1969). U tilizing sources from  stripm ines, q uarries and highway construc tion  

sites, th e  sedim ent cover o f th e  C incinnati Arch was m odelled to  a  d ep th  of 2  km, includ
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ing identification of a  low velocity zone th a t  would be difficult to  resolve in a  refraction  

study. In large scale refraction stud ies, surface wave dispersion has been used to  m odel 

th e  shallow cru sta l s tru c tu re  and identify  low velocity zones th a t  th e  body wave d a ta  pro

vides little  inform ation on (e.g., B erry  and  Fuchs, 1973). Q uarry  b lasts  a re  now widely 

recognized as providing an excellent d a ta  base for high frequency Rg stud ies which have 

been used to  m odel crusta l s tru c tu re  to  m axim um  dep th s of 10 km (e.g., K afka and  Dollin, 

1985; Sakia e t al., 1990; H utchenson, 1994).

W hilst velocity dispersion provides in form ation  on th e  elastic p roperties  of th e  E a rth , 

anelastic  s tru c tu re  can be ob ta ined  by investigation of th e  am plitude a tte n u a tio n  of the  

surface wave. Surface wave m easurem ents are m ore reliable th an  body wave m easurem ents 

(Knopoff, 1964) and th e  analysis of th e  surface wave a tten u a tio n  facto r, Q/?, has developed 

in s tep  w ith th a t  of velocity d ispersion. F irs tly  long period m easurem ents were m ade 

from  single s ta tio n s  as th e  wave p ro p ag ated  several tim es around  th e  E a r th  (e.g., Toksoz 

and B en-M enahem , 1963) and then  sh o rte r periods using several s ta tio n s  (e.g., B u rto n , 

1974). Expressions relating  surface m easurem ents to  th e  anelastic p a ram ete rs  o f th e  E a rth  

were developed by A nderson e t al. (1965) and refined by M itchell (1975). Single s ta tio n  

m ethods for sh o rt p a th s  were developed and used to  determ ine c ru sta l Q/j across Scotland 

by M acbeth  (1983). D etailed knowledge of near surface a tten u a tio n  values was recognized 

as being im p o rtan t for ground m otion stud ies and in p articu la r seismic risk assessm ent 

(Jongm ans and D em anet, 1993). As w ith  velocity stud ies, q u arry  b lasts have often  been 

used as a  high frequency source to  o b ta in  m easurem ents of shallow c ru s ta l a tten u a tio n  

often via waveform  m odelling techniques (e.g., Sakia e t al., 1990).

4 .1 .1  Surface w ave o b serv a tio n s  in  M ex ico

Surface wave stud ies in M exico have co n cen tra ted  prim arily  on surface waves excited by 

ea rthquakes along th e  subduction  zones o f th e  C en tra l A m erican Trench. F ix  (1975) in

verted  group  velocity dispersion curves for an  average crusta l and upper m an tle  s tru c tu re  

o f no rth  and sou th  M exico. G o m b e rg e t al. (1988) inverted fundam en tal m ode long period 

Rayleigh and Love phase velocities to  m odel th e  c ru st and m antle  of N orth  M exico. Using 

sy n th e tic  waveform modelling G om berg  and M asters  (1988) found significant differences 

in lithospheric s tru c tu re  between n o rth ern  and  sou thern  M exico. A very low shear wave 

velocity zone was im aged a t  th e  base of th e  lithosphere in th e  region of th e  trans-M exico
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volcanic belt (TM V B ) and no evidence of a  400 km m antle  d iscontinuity  was found , in te r

pre ted  as a  resu lt of high hea t flow and  p artia l m elting, consisten t w ith active volcanism . 

T his low velocity zone was also seen by A lsina e t al. (1996) using phase velocity to m o g ra 

phy of long period Rayleigh waves. T hey  also im aged a  high velocity m an tle  anom aly  to  

a d ep th  of >  300 km under th e  Y ucatan  and  no rthw ard  th rough  th e  G ulf of M exico in to  

F lo rida  believed to  be a  resu lt of subduction .

U pper c ru sta l stud ies have focused on th e  region of th e  M exico Valley (e.g., Sanchez- 

Sesm a et al., 1993; Singh e t al., 1995) to  u n d erstan d  the  large am plification of seismic 

waves th a t  occurs there . T his was a ttr ib u te d  to  th e  resonance of trap p e d  waves in soft 

clays and a  com plex low velocity s tru c tu re  in th e  upper layers of th e  volcanic rocks. To aid 

in the  seismic risk evaluation for M exico C ity, shallow crusta l velocity and Q^ es tim ates  

from high frequency Rayleigh waves excited du ring  shallow refraction  experim en ts over 

th e  lake bed zone NE of M exico C ity  (R am os-M artinez e t al., 1997) have been com bined 

w ith deeper s tru c tu re  from  longer period ea rth q u ak e  d a ta  (e.g., C havez-G arcia  e t al., 1995; 

Shapiro  e t al., 1997).

4.2 Processing

All d a ta  used in th is  surface wave s tu d y  underw ent several stages of processing. F irs tly  

th e  locations o f local events were determ ined  (C h ap te r 3) and several quarries identified. 

Individual waveform s were selected for th e  surface wave analysis and processed using th e  

Seismic A nalysis C ode (SAC) developed a t  Law rence Liverm ore N ational L ab o ra to ry  and 

C om pute r P ro g ram s in Seismology (H errm ann , 1987) developed by S t. Louis U niversity. 

These processing steps included: removal o f dc-offsets, removal of in stru m en t effects (Ap

pendix D ), stack ing  of events from  th e  sam e source, cu ttin g  to  80 second leng th , decim ation  

to  2048 points (bringing th e  sam ple ra te  to  25 Hz) and conversion to  th e  E X S P E C  fo rm a t 

(H errm ann, 1987). All bar th e  last o f these  in itial processing steps were com pleted  using 

SAC.

T he stacking  of signals was based on th e  analysis conducted during  q u arry  identification 

(C h ap te r 3). T im e shifts for each stack  were determ ined  by cross-correlation w ith  a  m aste r 

signal. T he  choice of th e  m aster signal was a rb itra ry  as no one signal had a  significantly 

b e tte r  location th an  th e  o thers. T he w aveform s were then  shifted w ith respect to  th e  m ean
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F igure 4.2: Frequency sp e c tra  o f a  typical q u a rry  b last. T h e  fundam ental Rg phase has a  
m axim um  am plitude occurring  around  2 Hz.

tim e shift ob tained to  produce a  signal w ith an averaged travel tim e and d istance.

T he decim ation to  2048 poin ts was com pleted  using an F IR  anti-a lias filter and was felt 

to  have no adverse effects for th e  purpose o f th is  study . A lthough th e  body wave sp ec tra  

includes energy of >  10 Hz th e  sp ec tra  o f th e  Rg phase lies predom inan tly  betw een 1-3  Hz 

(F igure 4.2).

Following th e  conversion to  th e  E X S P E C  fo rm a t, th e  processing sequence was as listed 

below. These steps were im plem ented using th e  co m p u te r code developed a t  S t. Louis 

University occasionally w ith  som e slight m odifications.

•  O btain  g roup  velocity values using th e  m ultip le filter technique (M F T ).

•  In tersta tio n  calcu lation  of fundam en tal phase d ispersion curves.

•  Isolation of fundam en ta l m ode dispersion curves using phase-m atched  filtering (P M F )

•  M ultiple s ta tio n  calcu lation  of th e  a tten u a tio n  coefficient, 7 .

T he basic theory  of these techniques and  th e  m ethods used are  sum m arised  in th e  following 

sections.

4.3 M ultiple filter technique

Initial estim ates of g roup  velocity were ob ta ined  using a  m ultiple filter technique (M F T ) 

originally developed by Dziewonski e t al. (1969) and la te r refined by o th ers (e.g., H er
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rm ann , 1973; D enny and C hin , 1976).

A ssum ing a  laterally  hom ogeneous m edia, Aki and R ichards (1980) give th e  com plete 

norm al m ode solution in th e  tim e dom ain  for a  p ropagating  dispersed surface wave w ith 

M  m odes a t  tim e t and d is tan ce  r  as

i r o o  M

=  O e ,M - Mw)r)du, (4.1)
00 j = 0

w here u  is the  angu lar frequency, kj is th e  w avenum ber of th e  j th m ode and Aj  is th e  

com plex am plitude of th e  j th m ode which is dependen t upon th e  in stru m en t response, 

source spectrum , p a th  response, a tten u a tio n  and geom etric spreading.

F iltering  the  signal w ith a  sym m etric  G aussian  band-pass filter, H(u>), centered a t  

u) =  uj0 and cutoffs a t  u; =  uj0 ±  u c w here H(u>) is defined by

{ o M  >  ujc

I 1 ^  (4 -2>
ex p ( , ^ T “)  M  -

gives th e  resu ltan t filtered signal

M
4 a  \  U0j

(4.3)
I  /VZ

g (t,r) = ^ V ^ E Aj ( W9’ r )e ' (Wo<"*# ,r)ex P
3=0

w here U0j is the  group  velocity of th e  j th m ode a t  u> = u>0. T he  m odulus of equation  4.3 

gives th e  envelope of th e  signal and individual m axim a of th e  envelope correspond to  th e  

arrival of th e  group velocities of each m ode.

T he d u ra tion  of th e  G aussian  envelope is defined in te rm s o f th e  filter p a ram ete r a  

and filter cen tre frequency To as (H errm ann , 1973),

U =  T0^  (4.4)

For accura te  de term ina tion  of g roup  velocities o f each m ode th e  m axim a of th e  envelope 

m ust be well separa ted  o r in terference betw een th e  m odes will occur.

W hen th e  m odal m axim a are sep a ra ted  by less th an  21 ,̂ m odal in terference will oc

cur, and the  m axim a of th e  envelope will be a  result o f th e  sum m ation  of two o r m ore 

overlapping envelopes and no t represen t th e  ac tua l m axim a of th e  individual m odes. For 

m axim a separated  by m ore th an  2 t hen th e  two m odes will no t interfere. For th is  s tu d y  

a  =  167T was chosen, giving 2td = 4 sec for a  filter cen tre  frequency of 2  Hz. T hus for
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F igure 4.3: (a) FTA N  plot o f fundam en ta l g roup  velocity from M F T  analysis o f sy n th e tic  
seism ogram  and th e  theore tical g roup  velocities, (b) E rro r betw een th e  M F T  analysis and 
theore tical group  velocities.

typical velocities in th is s tu d y  of 0.7 km s - 1  and  0.85 km s - 1  for th e  fu n d am en ta l and  first 

higher m ode a  m inim um  s ta tio n  d istance  o f 16 km is required. W hilst narrow ing  th e  filter 

w idth  would reduce con tam ination  from  higher m ode energy th is  resu lts in an  increase 

in inaccuracies in group  arrival tim es (B ache e t al., 1978) and 167T has been used w ith 

success by previous researchers for sim ilar d istances and  velocities to  those  in th is  s tu d y  

(e.g., H utchenson, 1994).

O th er inaccuracies arise from th e  hypocen tra l location  and in trinsically  w ith in  the  

M F T  process. H ypocentral location erro rs  a re  discussed in C h ap te r  3. To constra in  

th e  intrinsic erro rs w ithin th e  M F T  process a  sy n th e tic  seism ogram  was ca lcu lated  and 

analyzed. F igure 4.3 shows th e  difference betw een th e  theore tica l and  ca lcu la ted  group 

velocities. For th e  0 .5 -5  Hz frequency range th e  M F T  in general u n d erestim ates  th e  group 

velocity w ith th e  an average erro r o f -0.015 seconds. T he  largest erro rs a re  p redom inan tly  

around  th e  m axim a in th e  dispersion curve and  arise from  th e  first o rder expansion of 

k(u)  to  ob ta in  equation  4.3 w ith th e  assum ption  th a t  higher order te rm s can be neglected 

(H errm ann, 1973). Below 0.5 Hz th e  e rro rs  increase. However th e  m ajo rity  o f observations 

are  w ithin th e  0 .5 -5  Hz range, and are  no t seriously co n tam in ated  by th is  p ro p e rty  of th e  

technique.

A logarithm ic range of filter cen tra l frequencies was chosen betw een 0 .2 -5  Hz. D ue to
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th e  frequency range of in terest, cen tral frequencies chosen w ith a  co n stan t A f o r A T  (in 

th e  tim e dom ain) are  e ither biased tow ards th e  high frequency range or th e  low frequency 

range respectively (F igure 4.4). For frequencies below 0.2 Hz, noise m akes any dispersion 

indistinguishable and above 5 Hz th e  signal is principally body wave energy.

T he am plitude m axim a for each given frequency are recorded and con toured  on an 

FTA N  (Frequency-tim e analysis) m ap (F igure 4.5) w ith th e  four largest sp ec tra l peaks 

shown. T he original waveform  is shown a t  th e  far right of th e  plot w ith a  co n s tan t 

sam pling interval and to  th e  left of th a t  th e  waveform  is scaled to  th e  g roup  velocities 

of the  con tour plot. T his enables an easier correlation  between group velocity m axim a 

and tim e series peaks. T he fundam ental Rg m ode is th e  m ost dom inan t con to u r show ing 

an increase in g roup velocity w ith frequency betw een 0.5 Hz and 1.8 Hz before slightly  

decreasing. T he dom inance of th is m ode m akes identification of higher m odes difficult.

F igure 4.6 shows th e  FTA N  plot for th e  stacked record for th e  sam e source s ta tio n  

pa th  as F igure 4.5. It can be seen th a t  th e  stack ing  has reduced som e of th e  low frequency 

noise con ten t of th e  signal and im proved th e  identification of possible higher m odes.

By using a  phase-m atched  filter (Section 4.5) it is possible to  isolate and  rem ove th e  

fundam ental m ode before perform ing th e  M F T  on th e  residual waveform . T his allows 

b e tte r  definition of th e  higher m odes as they  are  no longer hidden by th e  high am p litu d e  

con tours of th e  fundam en tal m ode. T his is show n in F igure 4.7, w here now tw o higher 

m odes can be seen between 0 .4 -4  Hz and 0 .6 -2 .5  Hz w ith group  velocities decreasing from  

1 .1- 0 .8  km s - 1  and 1 .5-1.1 km s- 1 .

T hree m ain source regions were used du rin g  th e  M F T  analysis: th e  quarries a t  F lam - 

boyanes, D zitya and  near M erida a irp o rt. In add ition  a  single event near s ta tio n  D 26 was 

used to  help constra in  th e  easte rn  region (F igure 4.8). T he FTA N  plots for all th e  selected 

p a th s  are shown in A ppendix  E.

4.4 Interstation calculation o f phase velocity

In ters ta tio n  phase velocity are  ca lculated  via th e  correlation of Rayleigh wave crests  be

tween s ta tio n s  (Bloch and Hales, 1968). In o rder for th is  to  be achieved w ith o u t e rro rs  

arising from  az im uthal varia tions in in itial phase (K nopoff and Schwab, 1968) and  la te ra l 

refraction (E vernden, 1953, 1954) it is necessary th a t  th e  source lies w ithin a  sm all az-
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F igure 4.4: FTAN plots for th e  sam e event b u t w ith different choices of filter cen tral 
frequencies, (a) F iltering  w ith a co n stan t A T  provides clearly seen low frequency d a ta  
including higher mode inform ation, (b) F iltering  a t a  co n stan t Af, im proves resolution of 
high frequency inform ation b u t w ith decreased resolution a t low frequencies, (c) L ogarith
mic sam pling of central frequencies allows both high and low frequency inform ation to  be 
seen.
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Figure 4.5: Typical FTAN m ap from an unstacked record of a quarry  b last a t  F lam boyanes 
quarry, 2 8 /0 2 /9 6  recorded a t  S ta tion  D21 (p a th  length is 21 km ). T he fundam en tal Rg 
mode can be seen between 0.5 and 0.8 km s - 1  w ith a  higher m ode responsible for th e  m odal 
interference seen around 2 Hz. Sym bols ind icate  size of the  spectral peaks (□  - largest, o 
- second largest, A  - th ird  and +  - fourth  largest). T he original waveform is shown a t  the  
far right of the  plot with a constan t sam pling interval and to  the  left of th a t  th e  waveform 
is scaled to  the  group velocities of the  con tou r plot.
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Figure 4.6: FTA N  m ap for a  stacked record of b lasts from  Flam boyanes q u arry  recorded 
a t S ta tion  D21. Lower frequencies show decreased noise and higher m odes are now m ore 
distinct th an  in th e  unstacked plot. T he second higher m ode is the  decreasing velocity trail 
in th e  centre of th e  plot w ith th e  first higher m ode responsible for the  m odal interference.
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Figure 4.7: FTAN m ap of residual waveform from  Figure 4.6 afte r application of a  phase- 
m atched filter. F irs t and second higher m odes can now be clearly identified between 
0 .4-4  Hz and 0 .6-2 .5  Hz w ith group velocities decreasing from  1 .1 -0 .8  km s - 1  and 1 .5- 
1.1 km s- 1 . Note a rem nan t of th e  fundam ental m ode energy is still visible between 1-3 Hz.
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Figure 4.8: S ta tio n -ev en t p a th s  used for M F T  analysis.

im uthal range of th e  in tersta tion  p a th . T h is re s tric ts  th e  d a ta  to  only a  handful of events 

(Figure 4.9). Assum ing th a t  th e  source phase sh ift is co n stan t and two s ta tio n s are a t  th e  

sam e azim uth from  th e  source then th e  phase velocity between th e  s ta tio n s  is defined as 

(S tu a rt e t al., 1976)

x _  u    u f a  -  r i ) ________ . .
fc(u>) 0 2 -  fa -  0 , 2 +  fax +  2 no

where r 2 -  r i  is th e  in tersta tio n  d istance, fax and  0 t2 are th e  instrum en t phase corrections 

and fa — <f>x is th e  in te rs ta tio n  phase difference.

T he phase difference can be obtained  by th e  cross-m ultiplication of tw o single frequency 

w avetrains (Bloch and Hales, 1968)

Ax co su t .A 2 co su t  =  -  (cos(2u?£ +  &4) +  cos <50) (4.6)

where

6<f>=fa- fa (4.7)

T his cross p roduct represents a  w avetrain w ith twice the  original frequency and a DC 

shift proportional to  cos <50. W hen th e  DC sh ift is a t a  m axim um  th e  two w avetrains are 

in phase. O th er m axim a will occur a t each additional 2 n phase shift and so th e  correct n 

m ust be identified.
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Figure 4.9: M ap showing p a th s  used for in te rs ta tio n  phase velocity calculation.

T he technique sim ilar to  th a t  developed by S tu a r t  e t al. (1976) was used to  calcu late 

th e  in tersta tion  phase velocities for th e  chosen p a th s. T he seism ogram s were windowed 

around the  group  arrival tim e of th e  period of in te re st calculated from  th e  group  velocity, 

and then narrow  band-pass filtered w ith a  G aussian  filter to  produce the  single frequency 

w avetrains. T hese were then cross correlated  to  produce a  signal w ith a  m axim um  am pli

tu d e  a t  a  tim e shift when th e  phase difference is zero.

T he in tersta tion  distance is then  divided by th e  tim e shift to  produce th e  phase veloc

ities. T he resu ltan t phase velocity curves were then  used as a  constra in t during  th e  phase 

m atched filter stage.

4.5 P hase-m atch ed  filtering

T he group velocity dispersion curves derived from  th e  M F T  technique can be fu rth e r 

refined to  isolate th e  fundam ental (or higher) m ode using a  phase-m atched filter (Herrin 

and G oforth, 1977). T he phase-m atch filter (P M F ) is one whose Fourier phase is the  

sam e as th a t  of th e  com ponent of in terest of th e  signal. T he cross correlation of th e  tw o 

produces a  tim e series in which the  energy of th e  signal is com pressed. T he m ode of in terest

5 km
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is concen tra ted  ab o u t zero lag, and , assum ing th e  arrival tim es betw een th e  fundam en tal 

and  higher m odes is sufficiently large, can then  be windowed and  isolated from  th e  rest of 

th e  spec trum  (F igure 4.10).

T he cross correlation  o f a  signal s(t) and  a  tim e function  f ( t ) can be represented as

s ( t ) 0 f ( t )  -> |5 (u ;)||F (a;)|exp*[< 7 (a;) -  0(w)] (4.8)

T h e  phase m atched filter is defined as a  linear o p e ra to r f p(t) such th a t  a{u ) =  <f>(u>) (H errin 

and  G oforth , 1977). T he  o u tp u t  of th e  cross-correlation  will then  have Fourier transfo rm

|5(u>)||F (u ;)| and will be equal to  th e  Fourier tran sfo rm  of th e  convolution of th e  signal and

th e  tim e reversed function  f p(—t). T his o u tp u t is known as th e  pseudo-au tocorrelation  

function (PA F) and can be defined as (H utchenson, 1994)

1 f ° °  - 3
[e’k’^ r] Y l A m(u>,r)ei^ ‘- km^ < L ;  (4.9)

n  J m =  0

w here e1*:Au')r is th e  P M F  and  kj{u>) is an e s tim a te  of th e  w avenum ber dispersion of th e  

j th m ode.

T his can be re -w ritten  as
1 roo

TPj(t, r) = —  Aj{cj, r)e'(k̂ - k̂ re - lujtdu  
2?r J _ 0o

1 f°°
+ —  4 ro(« ,

J  — oo _ L  ■

(4.10)

oo   1 ■mpj

w here th e  first in tegra l is th e  m ode to  be isolated . T he  PA F in equation  4.10 will be 

approx im ate ly  zero-phase if kj(oj) ^  kj(u>) and  co n cen tra ted  ab o u t zero-lag. W indow ing 

th e  isolated m ode by a  sym m etric , zero-phase window, rem oves higher m odes and  noise 

to  give

1 f°°
<fi{r , t)w(t)&w(t)-~ A A u i ^ y ^ ^ e - ' ^ d u  (4.11)^  J  — oo

where 8kjr  is th e  e s tim a te  o f phase difference and w(t) is th e  real p a r t o f u>(t). T he  

am plitude  sp ec tra  of th e  isolated  m ode of in te re st is then  ob ta in ed  by tak ing  th e  Fourier 

tran sfo rm .

In p ractice th e  P M F  is derived from  th e  signal and  an in itia l estim ate  o f th e  group  

velocity (th e  o u tp u t from  th e  M F T ) using an ite ra tiv e  techn ique to  identify the  correct 

phase of th e  signal.
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F igure 4.10: T he phase-m atched filter technique (a) Original waveform, (b) Cross cor
re lation w ith m ode of in terest concen tra ted  ab o u t zero-lag, th e  lower plot is the  cross
correlation  windowed around th e  m ode of in terest (vertical bars indicate window), (c) 
F undam en tal Rg waveform, and (d) Residual waveform  afte r removal of the  fundam ental 
m ode. N ote th e  difference in m axim um  am plitudes (shown on th e  right) of th e  w avetrains.
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T he final am plitude spec trum  will have erro rs  due to  window biasing and  th e  correc t 

identification of th e  27rn m ultiple of th e  phase curve. T he  derived phase velocity is also in

correct in th a t  it con ta ins source in form ation . T h e  phase velocity curves ob ta in ed  th ro u g h  

th e  in te rs ta tio n  m ethod were used to  aid identification of th e  correct phase curve. W indow  

effects are  assum ed to  be sm all as th e  m odal in form ation  is of a  much larger am plitude 

th an  th e  rippling effects due to  th e  window edges (H utchenson, 1994).

T he use of th e  P M F  to  e x tra c t o r sm oo th  velocity d a ta  has been used successfully in 

several previous stud ies (e.g., H utchenson, 1994; Koch and S tum p, 1996), however its  use 

for refining am plitude es tim ates  for a tte n u a tio n  calcu lations is m ore controversial (Der, 

1986; Stevens, 1986). It has been suggested  th a t  its use can result in a  d is to rtio n  o f th e  

tru e  spec trum  and a  biasing of th e  am plitudes.

In th is  s tu d y  th e  P M F  technique is being utilized to  enhance higher m odes th ro u g h  

th e  elim ination of a  clearly defined fu n d am en ta l m ode, as opposed to  th e  identification  of 

th e  fundam ental m ode from  a  noisy signal, and  its  use is believed to  be justified  for th is 

purpose. As can be seen in F igure 4.11a, th is  resu lts in little  change to  th e  fundam en ta l 

dispersion curve confirm ing th a t  th e  e rro rs  m entioned earlier are negligible. F igure  4.11b 

shows th a t  for th is  waveform  th ere  is also little  change to  th e  am p litu d e  sp e c tra  of th e  

fundam ental m ode a fte r its  removal using th e  P M F . However, whilst th e  use of th e  P M F  

had little  effect on fundam en tal g roup  velocities in all cases, it was seen in F igure  4.7 th a t  

som e portion  of th e  fundam en tal m ode energy  rem ained in th e  residual signal suggesting 

th a t  th e  use of th e  P M F  in th a t  s itu a tio n  had  biased th e  am plitude sp ec tra  o f th e  isolated 

signal. It was therefore decided th a t  th e  original M F T  am plitude values would be used 

for th e  m ultiple s ta tio n  calcu lations o f th e  a tte n u a tio n  coefficient 7 .

4.6 M ultiple station calculation o f 7 .

T he  spec trum  of th e  Rayleigh wave is influenced by source, p a th  and in s tru m en t effects. 

A general expression for th e  am plitude  of a  Rayleigh wave is (B urton , 1974)

A ( f , r ) = C  1( f )  S ( f ) G ( r ) D ( r )  (4.12)

w here

C = co n stan t,



4. Surface Wave Analysis 90

Original signal Isolated fundamental

3 .0  -i

2 .5  -

2  2.0 -

>
2U

0 . 5  -

0.1 1 10

3 . 0  -i

2 .5  -

2.0 -

0 . 5  -

10.1 10
F req u en cy  (Hz) F req u en cy  (Hz)

(a)

Original Signal Isolated fundamental

1 e + 0 6  i

1 e + 0 5  -

Q.
1 e + 0 4  -

0.1 1 10

1 e + 0 6

1 e + 0 5  -

1 e + 0 4  -

1 e + 0 3
0.1 1 10

F req u en cy  (Hz) F req u en cy  (Hz)

(b)

F igure 4.11: C om parison  o f (a) dispersion and (b) am p litu d e  sp ec tra  before and  a f te r  th e  
application o f th e  P M F .
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/ ( / )  =  in stru m en t effect,

S( f )  = source tim e function ,

G (r)  =  geom etrical sp read ing  correction ,

D(r) = abso rp tion  term

and it is assum ed th a t  A ( / ,  r)  is independen t o f az im uth  and  th a t  la te ra l varia tions in 

th e  source m edium  do n o t in troduce  a  non-circular rad ia tio n  p a tte rn . T he geom etrical 

spreading  is entirely  a  function  o f d istance  and is independen t of frequency (B urton , 1974).

Rem oving th e  in s tru m en t effect and  com bining th e  source am plitude te rm  w ith th e  

co n stan t gives th e  varia tion  o f am p litu d e  w ith d istance  a t  a  p a rticu la r frequency /  as

A ( / ,  r)  =  A 'i r - 1 / 2  exp (4.13)

B urton  (1974) showed th a t  a  linear am p litu d e-d istan ce  dependence o f th e  form  y =  Q ^ l x +  b 

can be ob tained  by tak in g  th e  logarithm  of equation  4.13 to  give:

ln (A v 'r)  =  +  I<2 (4.14)

T he  relationsh ip  betw een th e  a tte n u a tio n  coefficient, 7 ( / ) ,  and th e  specific dissipation 

facto r, Q ^ i f )  is

y U)

By su b stitu tio n  in to  equation  4.14 th e  re lation

In (Ay/r)  =  —7  r  +  K 2

is ob ta ined .

T he  m ultiple filter techn ique described in section 4.3 calcu lates th e  sp ec tra l am plitudes 

for th e  dispersed wave tra in . T h is  rou tine  co rrec ts  for geom etrical spreading  so th e  y/r 

te rm  in equation  4.16 can be d ropped .

A lthough a  tw o-sta tion  calcu lation  of 7  is possible, H errm ann  and M itchell (1975) 

showed th a t  for th is  calcu lation  very long sp reads are  required  to  m inim ise th e  inheren t 

erro rs  arising from  random  noise and p ropagation  effects. Evans (1981) suggested th a t  for
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F igure 4.12: A m plitude reduction w ith  d istan ce  for an event o rig inating  a t  th e  a irp o rt and 
p ropagating  southw ards.

sm aller sp reads a  m inim um  of four s ta tio n s  is required using a  linear regression technique 

to  calcu late 7 .

D ue to  th e  sm all num ber of s ta tio n s  and  th e ir d istrib u tio n  in th is  s tu d y  it was not 

possible to  ob ta in  four s ta tio n s  for th e  m ultip le s ta tio n  m ethod . It was therefo re de

cided to  use a  lesser num ber o f s ta tio n s  to  o b ta in  7  curves and ca lcu la te  an es tim ate  

of anelastic s tru c tu re  which would th en  be refined using a  tria l and e rro r m ethod  d u r

ing waveform m odelling (e.g., M o k h ta r e t al., 1988; M alagnini e t al., 1995)(C h ap te r 6 ). 

P rio r to  calcu lating  7 , am p litu d e  sp e c tra  ob ta ined  from  th e  M F T  process were checked 

to  confirm  a  reduction in am p litu d e  w ith  d is tan ce  (F igure 4.12) as often on sh o rt p a th s  

local site  effects, sca tte rin g  and  la te ra l lithological changes can resu lt in a  breakdow n of 

th e  assum ption  m ade in equation  4.12 o f a  circu lar p ropagating  w avefront (Evans, 1981). 

D ifferences arising from  different in s tru m en t sensitiv ities and p re-am p gain se ttin g s were 

also corrected  for. P rio r to  th e  correc tions th e  am plitude sp ec tra  of d a ta  recorded on the  

S13 seism om eters were 1 / 30th o f those  recorded on th e  G ura lp  40T  in stru m en ts .
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Figure 4.13: C alcu lation  o f 7  by linear regression.

4.7 Description and implications o f dispersion and 7  curves

4 .7 .1  G roup  v e lo c it ie s

In m ost case tw o m odes could be clearly seen following M F T  analysis. T he  do m in an t 

higher m ode is believed to  be th e  second higher m ode which agrees w ith observations of 

surface waves from  q u arry  b lasts  from previous stud ies (e.g., H utchenson, 1994).

P lo ttin g  o f all th e  fundam en ta l m odes from  a  source a t  F lam boyanes (F igure 4.14) 

shows a  d istinc t b im odal dispersion p a tte rn  w ith  a  change occurring above 1 .5-2  Hz. 

G roup 1 curves show a  g radual con tinuation  in th e  increase o f g roup velocity w ith  fre

quency, w hilst G ro u p  2  curves show a  slight reduction  in th e  group velocities. T h e  s ta tio n - 

event p a th s  for these  g roups would suggest th a t  th e  change occurs for p a th s  travelling  

ou tw ith  a  cen tra l a rea  o f th e  c ra te r.

To fu rth e r investigate  th is  change, and  to  constra in  th is  cen tra l a rea  th e  dispersion 

curves were calcu lated  for a  q u arry  b last from  F lam boyanes recorded during  th e  con

trolled source experim ent on 92 in stru m en ts  across th e  whole s tru c tu re . F igure 4.15 shows 

histogram s of th e  group  velocities o f these a t  1.0 Hz and 2.36 Hz and th e ir corresponding  

paths. Again th e  clear bim odal d istribu tion  a t  th e  higher frequencies is visible w ith  those
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Figure 4.14: F undam ental m ode dispersion curves recorded a t  nine sites for a  source a t 
F lam boyanes. G roup 1 is th e  dispersion to  sites D5b, D08, D13, E18 and E12. G roup  2 
th e  dispersion to  F05, F10, D26 and E04.

showing a lower group velocity (G roup 2) related  to  p a th s  lim ited to  th e  c ra te r  cen tre  

(w ithin a  c. 30 km rad ius of th e  c ra te r cen tre). These tw o types o f dispersion can also be 

seen in the  records from  o th er events and it is possible to  approxim ately  dem arca te  the  

region of th e  change (F igure 4.16). It can be seen th a t  th is  change, a lthough unconstrained 

in the  east, is very probably  elliptical, w ith  a  rad ius betw een 20-30 km from  th e  c ra te r 

centre. W hilst th is does no t correspond to  any visible change in the  surficial geology it 

is sim ilar in shape to  th e  change in Neogene geom orphic surfaces reported  by Pope e t al. 

(1996). T he high frequency m akes it extrem ely  unlikely th a t  it is a  result of c ra te r geol

ogy bu t is probably  due to  a  change w ithin the  to p  few hundred m etres of th e  infilling 

sedim ents. If th is is th e  case th en  its  radial n a tu re  suggests th a t  the  c ra te r has influenced 

sedim entation  p a tte rn s  th ro u g h o u t th e  Tertiary.

A t the lower frequencies (<  1.0 Hz) th e  G roup 2 curves are  relatively tigh tly  gathered  

com pared to  those in G roup  1 suggesting a  fairly hom ogeneous geology a t  th e  base of the  

T ertia ry  or upper c ra te r  w ithin th e  c ra te r centre. T he sc a tte r  of the  G roup  1 curves a t 

these frequencies is to  be expected as these p a th s  are likely to  be crossing a  variety of 

lithologies.

Simple half space calculations can be m ade assum ing a Poisson solid using (Ewing
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F igure 4.15: (a) H istogram s of group  velocity values a t  1.0 Hz and 2.36 Hz for a  q uarry  
b last a t  F lam boyanes recorded during  th e  controlled source experim ent, (b) S ta tion-event 
p a th s  for th e  sam e q u arry  b last. T ype o f line indicates w hether th e  dispersion a t  2.36 Hz 
is of G roup 1 or 2 .
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Figure 4.16: T he region w here th e  fundam ental dispersion changes from being G roup  2 to  
G roup 1 type. R adius are from  th e  c ra te r cen tre  m arked by th e  -|- sym bol.

e t al., 1957)

c =  0.9194/3 a  = (4.18)

w here c is th e  phase velocity. For a  Rayleigh wave p ropagating  in a  half space th is  is 

equal to  th e  group velocity and th e  Rayleigh wave can be assum ed to  p en e tra te  to  a  dep th  

of approxim ately one wavelength (Evans, 1981). A t a  frequency of 3.5 Hz, shear wave 

velocities of 0.87 km s- 1  are  ob tained  for G roup  1 curves and 0.77 km s- 1  for G roup  2  w ith 

penetra tion  d ep th s  of c. 240 m and 200 m respectively. A t 1 Hz all curves are sam pling a 

c. 700 m deep region w ith an average shear wave velocity of 0.8 km s- 1 . T his implies th a t  

th e  G roup 1 curves are sam pling a  region w ith an inverted velocity stru c tu re .

T he curves from  th e  a irp o rt events show higher group velocities for waves travelling 

southw ard away from th e  c ra te r  cen tre  th an  those tow ards it (F igure 4.17). Again using 

equation 4.18 gives shear wave velocities o f 1.12 km s- 1  p ropagating  southw ards w ith a  

p enetration  dep th  of c. 300 m, and northw ards a  shear wave velocity of 0.94 km s- 1  w ith 

a  penetra tion  dep th  of c. 250 m, a t 3.5 Hz.

Both first and second higher m odes are visible (F igure 4.18) b u t in m ost cases the 

second higher m ode is dom inant. T he first higher m ode is often visible on th e  residual 

FTAN plots as several regions of energy between th e  fundam ental and second higher
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Figure 4.17: F undam ental m ode curves for an event a t  th e  a irp o rt.

m ode, bu t only in a  few situ a tio n s  is it  clear enough to  be confidently identified. W hen 

identifiable, th e  first higher m ode is consisten t w ith norm al dispersion w ith a  decrease in 

velocity from c. 1 .2-0.8 km s - 1  for 0 .5 -1 .5  Hz before fla tten ing  off above 1.5 Hz. T here 

are several possible exp lanations for th e  first higher m ode being easily visible on certain  

p aths. In th e  situ a tio n s  w here it can be positively identified the  source is F lam boyanes 

and the  p a th  lies across th e  cen tra l a rea . T his a rea  is also highlighted by th e  change in 

higher frequency fundam en tal m ode curves. O ne possibility is th a t  th e  larger sho t size 

and g reater shot d ep th s  involved in F lam boyanes b lasts are m ore efficient a t  exciting the  

first higher m ode th an  the  o th e r sources. T his is unlikely as it fails to  explain p a th s  from 

Flam boyanes to  o th er s ta tio n s  e.g., D13, w here the  first higher m ode can only be seen 

as several d istinc t areas of d ispersed energy between th e  fundam en tal and second higher 

m ode. A second possibility is th a t  th e  reduced fundam ental m ode velocities across the 

cen tral area  allow th e  M F T  to  correctly  distinguish between th e  fundam ental and first 

higher modes, whilst th e  inverted velocity s tru c tu re  ou tside th e  cen tral a rea  reduces the  

tim e difference between th e  m odes. F inally  a  change in anelastic  p aram eters  could result 

in g rea ter a tten u a tio n  of th e  first higher m ode outside th e  cen tra l area, resulting in the 

dom inance of the  second higher m ode.
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T he second higher m odes also show norm al dispersion w ith velocities decreasing from  

c. 1 .7-1.0 km s- 1 . Several m inim a in th e  d ispersion curves are  visible. In m ost cases m odal 

interference above 3 .5 -4  Hz m akes reliable identification o f m odes difficult.

H igher m ode group  velocities to  sites E18 and E21 from  th e  a irp o rt are g re a te r th an  

for o th er p a th s  and due to  th e  increased fundam en tal m ode velocities to  these  sites it is 

difficult to  say w hether it is th e  first or second higher m ode th a t  is seen in these  cases.

4 .7 .2  P h a se  v e lo c it ie s

In te rs ta tio n  phase dispersion curves for th e  six selected p a th s  are  shown in F igu re  4.19. 

T hese reflect th e  change th a t  is seen in th e  group  dispersion betw een cen tra l and  non 

cen tra l paths. T he in te rs ta tio n  p a th s  from  D 21-F 10 , F 05-D 26  and  E 7 b -E 0 4  all show 

norm al dispersion w ith a  decrease in phase velocity w ith increasing frequency. T h e  p a th s  

fa rth e r from  th e  c ra te r  cen tre  show th e  opposite  p a tte rn , although  th e  frequency range for 

E18-E 21 is very lim ited and th e  erro rs  could p erm it e ither norm al or reversed dispersion.

Higher phase velocities are  seen betw een E 18-E 21  and E 18-E 25 . T h is a rea  also showed 

higher group velocities from  events from  th e  a irp o rt.

A modified form of equation  4.18 can be used to  app rox im ate  sim ple tw o layer m odels 

o f intrinsic shear wave velocity (Evans, 1981). T he  equations are  ob ta ined  by assum ing 

th a t  a t  th e  lowest frequency th e  wave is averaging over a  region one w avelength deep. T his 

average includes a  to p  layer whose p a ram ete rs  are  calculated  from  th e  highest frequency 

g roup  velocity which is allowed for in ca lcu la ting  th e  second layer velocity and  thickness.

a — c(^m)
“  0.9194

,  c ( / m )

1 =  ~ T ~Jm

g  _  1 fmC(fm)2 ~ M f l ) 2

P2 0 .9194 ' c ( / , ) / m - c ( / m) / j
i   C\ Cm

2 ~ h ~ U .

where

(3\ =  shear wave velocity in up p er layer, 

d\ = th ickness of upper layer, 

f m = m axim um  frequency, 

c ( /m) =  phase velocity a t  m axim um  frequency,

(4.19)
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D 21-F 10 F 0 5 - D26 E 7 b - E04

Layer fi (km s-1 ) d (km ) fi (km s- 1 ) d (km ) (3 (km s- 1 ) d (km)

1 0.765 0.157 0.822 0.163 0.78 0.168
2 1.004 0.417 0.908 0.557 0 .8 6 8 0.562

D 08-D 5b E 18- E21 E 18- E25

Layer fi (km s-1 ) d (km ) fi (km s- 1 ) d (km) fi (km s- 1 ) d (km)

1 0.972 0.209 1.096 0.387 1.448 0.512
2 0.636 0.40 1.06 1.027 1.270 1.264

T able 4.1: Simple tw o layer m odels calcu lated  from  th e  in te rs ta tio n  phase curves using 
th e  modified half space eq u a tio n s  (equation  4.19).

0 2  = shear wave velocity in second layer,

^2  =  thickness of second layer,

f i  = m inim um  frequency,

c(fi) = phase velocity a t  m inim um  frequency

T he four m odels derived using th is  m ethod  are shown in Table 4.1. T he  m odels confirm  

an inverted velocity s tru c tu re  in th e  up p er 400 m betw een sites D 08-D 5b  b u t no t over 

th e  central sites. T he  u pper layer velocities in th e  cen tra l a rea  are lower th an  those 

outside. Significantly higher velocities a re  calcu lated  for th e  p a th s  E 18-E 21 and E 18-E 25 

w ith those to  E25 th e  h ighest, possibly corresponding  to  th e  change to  Eocene sedim ents. 

T hese resu lts agree in general w ith  th e  ha lf space values ob ta ined  from  th e  g roup velocities.

4 .7 .3  A m p litu d e  sp e c tr a  an d  7  cu rv es

A tten u atio n  coefficient, 7  curves have been calcu lated  for th ree  areas and are shown in F ig

ure 4.20. D espite being poorly  co n stra in ed  som e fea tu res can be identified. 7  increases w ith 

frequency for th e  ou tw ard  p ro p ag a tin g  p a th  (E 18-E 25) and w ith in  th e  cen tra l c ra te r  a rea  

(E 04-D 26). T he p rim ary  difference betw een these two p a th s  a re  in th e  higher (>  1.5 Hz) 

frequencies w ith lower frequencies exhib iting  sim ilar values and  a  slight m inim um  a t  1 Hz. 

T he  p a th  ou tside the  cen tra l a rea  (D 13-D 5b) shows higher 7  values decreasing to  a  mini

m um  a t  c. 2 Hz and then  increasing to  values sim ilar to  those  o f th e  o th er paths.
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T he increase in 7  w ith  frequency re la tes to  h igher a tte n u a tio n  a t  shallow d ep th s , which 

would be expected  for poorly consolidated  surface sed im ents. T he con tinuation  o f th e  

high a tten u a tio n  to  lower frequencies for p a th  E 1 8 -E 2 5  m ay re la te  to  th e  cenote ring and 

corresponding increased frac tu re  density. T he  p a th  D 13 -D 5 b  shows high a tten u a tio n  a t 

m ost frequencies b u t also has th e  largest erro rs . T h is  s c a tte r  could be a  resu lt o f la te ra l 

velocity changes, m aking th e  m ulti-s ta tion  m ethod  invalid. T h is  is probable as th is  p a th  

m ay cross th e  region including th e  c ra te r ’s peak ring.

4.8 Conclusions

Rayleigh wave fu n d am en ta l g roup  and phase velocity dispersion curves have been success

fully calculated  th ro u g h  th e  application  of m ultip le filter and  in te rs ta tio n  techniques from  

stacked records o f q u a rry  b lasts. T his in fo rm ation  has been com bined to  fu r th e r iso late th e  

fundam ental g roup  curve and  highlight th e  higher m odes using phase-m atched  filtering. 

In m ost case th e  second higher m ode has g re a te r am plitude  th an  th e  first h igher m ode, 

possibly due to  p a th  effects resu lting  in an inability  of th e  M F T  to  d istinguish  betw een 

th e  fundam en tal and  first higher m ode.

F undam en ta l g roup  velocities show a  clear varia tion  above 2 Hz which ap p ea r to  re la te  

to  a  radial fe a tu re  app rox im ate ly  20-40  km rad ius from  th e  c ra te r  cen tre, a lthough  lack 

of d a ta  gives poor co n stra in t on th e  easte rn  side of th e  array . T he frequency o f th e  change 

ind icates th a t  it is a  resu lt o f a  varia tion  w ith in  th e  to p  200-300 m of the  sedim ents. T his 

could be explained by a  sed im en tation  p a tte rn  du ring  th e  T ertia ry  influenced by th e  c ra te r  

w ith an infilling o f th e  c ra te r  basin from  th e  edges tow ards th e  centre and possibly a  depo- 

sitional change o r chem ical change occurring  du ring  th e  la te  T ertiary . In te rs ta tio n  phase 

velocities reflect th is  change w ith cen tra l p a th s  show ing a  decrease in phase velocity w ith 

frequency. E lsew here th e  phase velocities a re  clearly  reversed w ith an increase in velocity 

w ith frequency. S im ple half space m odels of sh ea r wave velocity have been calcu lated  from  

th e  group and  phase velocities which confirm  th is  velocity inversion. Increasing velocities 

are  modelled progressing ou tw ard  from  th e  c ra te r  cen tre , corresponding firstly  w ith th e  

change to  an inverted  velocity g rad ien t and  th en  p robab ly  older T ertia ry  sed im ents. T he 

change to  Eocene geology m ay also be im aged by increased velocities.

A t lower frequencies th e  group velocities ap p ea r to  be consisten t across th e  c ra te r
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centre bu t ou tside show som e differences. T hese re la te  to  geological varia tions a t  d ep th , 

m ost likely w ithin th e  upper sections of th e  c ra te r. T he  first higher m odes also show little  

variation across th e  cen tra l area . H igher m ode curves to  sites E18 and E 2 1  are  significantly 

different from those closer to  th e  c ra te r  cen tre.

Curves o f th e  a tten u a tio n  coefficient, 7 , have been calcu lated  using a m ultiple s ta tio n  

technique, a lthough these  are  no t well resolved. High a tten u a tio n  is seen a t  high fre

quencies which would be expected for near surface sedim ents. For tw o p a th s , E 18-D 25 

and E 04-D 26, th e  a tten u a tio n  decreases w ith d ep th , a lthough  th is  decrease takes place a t  

deeper dep ths for E 18-E 25 , possibly corresponding to  th e  increased frac tu re  density  re

lated  to  the cenote ring. T h e  rem aining p a th  D 13-D 5b  shows an initial decrease followed 

by increasing a tten u a tio n . W hilst th is m ay reflect th e  tru e  anelastic s tru c tu re  th e  very 

high errors could ind icate  th a t  la te ra l velocity boundaries are  resu lting  in a  breakdow n of 

th e  assum ptions used in th e  m ultip le s ta tio n  m ethod .



Chapter 5

Surface Wave Inversion: Theory & 
M ethod

Following th e  initial processing described in C h ap te r  4 to  ob ta in  velocity d ispersion curves 

and 7  values these resu lts were inverted  to  p roduce shallow cru sta l velocity and  a tten u a tio n  

{Qpl ) models.

A genetic algorithm  was used to  invert d ispersion curves for 1 -D  velocity m odels whilst 

Q p l was ob tained  using a  linear singu lar value decom position (SVD) m ethod  based on 

a rou tine of M eju (1994a). In reality  th e  g roup  velocity has a  causal re la tionsh ip  w ith 

Q p 1 (O ’Neill and Hill, 1979) and ideally th ey  should be inverted sim ultaneously. However 

previous stud ies have suggested th a t  sim u ltaneous inversion whilst increasing th e  accuracy 

of th e  Qpl determ ina tion  can resu lt in a  decreased accuracy in the  de term in a tio n  o f shear 

wave velocity (Lee and  Solom on, 1978). For th is  reason and also due to  th e  large erro rs 

involved in th e  m easurem ent of 7  it was decided to  keep th e  inversions independen t.

5.1 Inversion using a genetic algorithm

O ptim ization  m ethods can be classed w ith in  tw o broad groups. T he first g roup  is w here 

th e  model p aram ete rs  are linear w ith respect to  th e  d a ta  and  use linear a lgebra to  solve 

for a  model, or w here th e  d a ta  is quasi-linear and  an ite ra tiv e  m ethod , relying on local 

g rad ien t in form ation to  u p d a te  th e  m odel, is used. In th is  s itu a tio n  it is assum ed th a t  

th e  m inim um  m isfit can be found by several linear approx im ations a t  each ite ra tio n  and 

derivatives ca lculated  a t  each ite ra tio n  are  used to  u p d a te  th e  model. O ne d isadvan tage 

w ith th is ty p e  of inversion is th a t  it produces a  single solution which can be heavily biased
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A

Figure 5.1: An ob jective function  for a  non-linear problem  is irregu lar and can con tain  
several local m inim a. Using an ite ra tive  m ethod  such as s teep est descent only s ta r tin g  
m odel 1 will converge to  th e  global m inim um  (A ), w hilst m odel 2 will converge to  th e  
local m inim a (B) (ad ap ted  from  Sen and Stoffa, 1995).

by the  s ta rtin g  m odel (e.g., M enke, 1984; Sandvol e t al., 1998). M ost geophysical problem s 

are non-linear and as a  resu lt have irregular ob jective (m isfit) functions w ith several local 

m inim a. T he effectiveness o f th e  inversion is therefo re  very dependen t upon th e  s ta r tin g  

m odel w ith th e  m ethod  only finding th e  m in im a closest to  it (F igure 5.1). T his can 

especially be a  problem  for inversion of sh o rt period surface waves (Y am anaka and Ishida, 

1996) which are affected g rea tly  by near-surface layers which can be very variable both  

laterally  and vertically, th u s  m aking it difficult to  have a  good initial m odel. W here a 

priori inform ation is available th is  can be used to  help define th e  s ta rtin g  m odel b u t w here 

it is not available often th e  op tim iza tion  will find a  local ra th e r  th an  th e  global m inim um . 

By only producing a  single solu tion , these m ethods also provide little  in form ation on th e  

model space.

The second g roup use a  random  m ethod  to  search th e  m odel space to  find acceptab le 

solutions e.g., th e  M onte C arlo  m ethod . Using a  m ethod  such as the  M onte C arlo  can 

be com putationally  expensive as it involves searching large areas of th e  m odel space th a t  

have no relevance to  th e  problem . D uring  th e  las t tw o decades advances have been m ade 

in guided random  m ethods e.g., genetic a lgorithm s (GA ) and  sim ulated  annealing (SA). 

These m ethods are  still random  bu t are  ite ra tive , o p era tin g  on populations of possible 

solutions and using them  to  constra in  th e  sam ple a rea  of th e  m odel space. T he sc a tte r
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of acceptable solutions gives an indication  of th e  resolution and non-uniqueness of th e  

m odel. Sen and Stoffa (1995) provide a  review of these m ethods and th e ir application  to  

geophysical problem s.

G enetic algorithm s are based on evolution and th e  principle of n a tu ra l selection and 

genetics (Holland, 1992; F o rrest, 1993). By em ulating  th e  processes of selection, m ating  

and m utation , genetic a lgorithm s search a  m odel space for accep tab le solutions, and evolve 

to  focus the  search on th e  m ost prom ising areas of th e  m odel space. T hey  have th e  ability 

to  be tailored for a  variety  o f different problem s giving them  app lications across a  wide 

range of disciplines.

It is only w ithin th e  last decade th a t  in terest in th e  app lica tions of th e  G A  has been 

generated  w ithin ea rth  sciences. Since then  it has been successfully utilized in m any a r

eas especially seismology. S h ib u tan i e t al. (1996) used th e  m ethod  for receiver function 

inversion; it has been used in bo th  hypocen tral location (e.g., Sam bridge and  G allagher, 

1993; Xie e t al., 1996) and  d e te rm in a tio n  of source p a ram eters  (e.g., H artzell and Liu, 

1995; Sileny, 1998); S toffa and  Sen (1991) fitted  syn thetic  w aveform s to  o b ta in  1-D  dep th  

dependen t seismic profiles and  D rijkoningen and W hite  (1995) applied a  G A  to  th e  in

version of m arine refraction d a ta . T he  m ethod  has also been successfully applied to  infer 

th e rm a l histories from  a p a tite  fission tra ils  (G allagher, 1995), 2 -D  m agneto tellu ric  inver

sion (E verett and Schultz, 1993; Schultz e t al., 1993) and m an tle  dynam ics (King, 1995; 

K ido e t al., 1998).

Lom ax and Snieder (1994, 1995) investigated  a  G A ’s ab ility  to  find se ts of acceptab le 

solutions and their applicab ility  to  Rayleigh wave dispersion. T hey  then  used th e  m ethod  

to  investigate differences in up p er m an tle  shear wave velocities beneath  th e  s tab le  E ast 

E uropean  platform  and tecton ica lly  active regions of central and  w estern  Europe. U tilizing 

a  modified GA, Y am anaka and  Ish ida (1996) produced a  shear-w ave profile o f sedim en

ta ry  layers w ithin th e  to p  4 km of th e  c ru s t across Sagam i Bay, Ja p a n  from  sh o rt and 

m edium  period Lg dispersion curves. Shapiro  e t al. (1997) confirm ed th e  existence of an 

anom alously low velocity layer associa ted  w ith active volcanism  in th e  sou thern  section 

of th e  M exican Volcanic B elt by inverting  fundam ental Rg dispersion curves using a  two 

s tep  inversion m ethod. T hey  firstly  ob ta ined  a  model using a  g rad ien t inversion m ethod 

and then  explored th e  m odel space and ob tained  a range o f accep tab le  m ethods th rough
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a guided random  m ethod.

These stud ies have shown th a t  th e  genetic algorithm  is an effective m ethod  o f op tim iz

ing surface wave d a ta  to  ob ta in  c ru sta l and  m an tle  shear wave velocity m odels.

5.2 Theory

In n a tu re  organism s evolve th rough  tw o processes, selection and reproduction . Selection 

determ ines which survive by m eans of som e form  of tes t; failing th e  te s t resu lts  in d ea th . 

R eproduction allows evolution of th e  organism  th rough  th e  mixing and recom bination  of 

genes. Evolution is m ore rap id  if th e  offspring contain  a  m ixture of th e ir p a re n ts ’ genes 

th an  if they  sim ply contained a  copy o f a  single p a re n t’s genes (H olland, 1992).

G enetic algorithm s are a  form  of search m ethods based on these processes. T hey 

encode a  random  population  of po ten tia l so lu tions to  chrom osom e ty p e  s tru c tu re s , evaluate 

them  and then  create  a  new popu lation , w ith  th e  sam e size as th e  original, th ro u g h  th e  

application of recom bination o p era to rs  such th a t  th e  chrom osom es represen ting  a  b e tte r  

solution have an increased chance o f survival over those w ith poorer so lu tions.

T he principal differences betw een genetic a lgorithm s and o th er m ore trad itio n a l o p ti

m ization m ethods are (G oldberg, 1989)

•  GAs o p era te  on som e form  of encoded p a ram ete rs  ra th e r th an  th e  p a ram ete rs  th em 

selves

•  GAs begin th e ir search from  a  popu lation  of random  s ta rtin g  poin ts across th e  m odel 

space ra th e r th an  one single po in t

•  G A s do not require derivative in fo rm ation  o r assum e any linearization (and hence 

do not o p era te  using a  de term in istic  tran sitio n ) b u t work solely on th e  ob jective 

function inform ation.

T he basic GA is com posed of four stages

•  coding

•  reproduction

•  crossover
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•  m u tation .

T he first stage codes th e  m odel p a ram eters  in to  an  analog  of a  chrom osom e which th e  next 

th ree  stages o p era te  on. T he  com bination o f th e  la tte r  th ree  stages resu lts in tak in g  an 

inpu t population  ( “p a ren t” ) and producing an o u tp u t population  ( “offspring” ). T h e  aim  

of the  th ree  steps is to  allow th e  m ore successful ch arac te ristic s  of the  p aren t to  be passed 

down to  the  offspring, w hilst “killing off” th e  less desirable com ponents. T hese step s  are 

repeated  w ith each ite ra tio n  (or generation) th u s  optim izing th e  initial problem .

5 .2 .1  C od in g

T he initial stage of using a  G A  is th e  d iscre tization  o f th e  m odel pa ram ete rs  in to  a  bit- 

s tring  (or chrom osom e). T h e  m ost com m on m ethod  of th is  is b inary  encoding a lthough  

o th er m ethods do exist using higher order and  real values (e.g., Davis, 1996).

In simple b inary  (regular) encoding, each b it corresponds to  a  gene which can tak e  

th e  value of 0  or 1 and each m odel p a ram ete r is represen ted  by several genes, which are 

then  concatenated  to  form  an individual b it s trin g  o r chrom osom e representing th e  m odel. 

T he coding scheme for each m odel p a ram ete r can be individually  defined th u s  lim iting th e  

search space and resolution o f each p a ram ete r independently . In a  geophysical s itu a tio n  th e  

m odel param eters  would be th e  physical p roperties  of th e  E a rth  controlling th e  m easured 

response. These would be encoded by defining an  up p er and lower lim it for each p a ram ete r 

and the  desired resolution o r num ber of in tervening  values. Each possible value would then  

be represented by a  b inary  code (F igure 5.2).

5 .2 .2  R ep ro d u c tio n

From  the random ly selected in itial popu lation  (w ith size Q ) a  new population  is selected 

w ith the  probability  of selection being determ ined  by som e m easure of th e  ob jective (m isfit) 

functions, </>(i), i = 1 ,Q.  T h e  tw o m ost com m on form s of determ ining  th e  probab ility  are 

linear (equation 5.1) and  exponentia l (equation  5.2).

Pr(mk) =  a -b(f>k 

Pr {mk) = Aexp(-B(f>k)

(5.1)

(5.2)
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v = 1 .0  km/s

v = 1 .1  km/s

0 0 1 0 v = 1 .2  km/s

1 1 1 1 v = 2.5 km/s

F igure 5.2: An exam ple of b inary  coding for shear-w ave velocity model p aram eters  If 
th e  velocity is allowed to  vary between 1-2.5 km s - 1  w ith  a  resolution of 0.1 km s- 1  then  
th ere  are 16 possible velocity values which can each be represented by four bits. W hen all 
four bits are off (i.e., 0 ) then  th e  velocity is 1 km s- 1 ; when all four b its are on (1 ) then 
th e  velocity is 2.5 km s- 1 . If th e  shear wave velocity was th e  only model param eter then 
each four bit code would form  one chrom osom e, if an o th er param eter existed then  the  
chromosom es would be form ed by joining them  one afte r th e  o ther. T he o th er p aram eters  
need not be represented by four b its b u t could be m ore o r less, depending on th e  resolution 
required.
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where Pr (m,k) is th e  probability  o f s trin g  rrik being selected and co n stan ts  a, 6 , A  and B  

are determ ined  by th e  m isfit d is trib u tio n  (equation  5.3) (Sam bridge and  G allagher, 1993)

b = Q (tfomax 4*avg) ® =  b(f)max (5*3)
Q

A = l / ] T e x p  (-B<f>j) B  =  4

j = i

w here <j>max, 4>avg an(J 4>a are  th e  m axim um , m ean and s tan d a rd  dev iation  of th e  misfit 

values. To select a  new popu lation  th e  in terval (0,1) is divided in to  Q segm ents w ith 

lengths equal to  Pr . If a  random ly  generated  num ber falls w ithin a  segm ent then  th a t  

s trin g  is chosen to  be reproduced .

An a lte rn a tiv e  m ethod  to  reproduction  is to u rn am en t selection (e.g., Sam bridge and 

G allagher, 1993; Riolo, 1992). In to u rn am en t selection th e  new popu la tion  is generated  

by selecting a  pair of m odels a t  random . A random  num ber, r , betw een 0 and  1 is then  

generated  and com pared w ith a  specified co n stan t P s , (0.5 <  Ps < 1). If r < Ps then  th e  

m odel w ith th e  lower m isfit is passed on to  th e  next stage. If r  >  Ps th en  th e  m odel w ith 

th e  higher misfit is copied. T h is is repeated  until a  new population  con tain ing  Q m odels 

is generated . T he advan tage of to u rn am e n t selection over th e  rep roduction  m ethods de

scribed above is th a t  it relies solely upon th e  rank  of th e  m isfit and  is unaffected by the  

range o f m isfit values. It also p reven ts early  loss of diversity  reducing th e  chance of pre

m a tu re  convergence, however B ooker (1987) argues th a t  using a  rank  based reproduction  

m ethod  and ignoring th e  rela tive fitness v io lates th e  theories of G As.

5 .2 .3  C rossover

T h e  new population  generated  a fte r th e  reproduction  stage consists solely o f m odels th a t  

existed in th e  original popu lation . T h e  crossover stage  modifies th e  population  by changing 

individual strings. P a irs  o f s trin g s  a re  selected a t  random  to  produce Q /2  couples. Again 

a  random  num ber, r  (0 <  r  <  1), is generated  and com pared to  a  co n stan t Pc. If r < Pc 

then  a  position is chosen a t  random  on th e  b it-strings and tw o new strin g s are  created  

by cu ttin g  and transposing  th e  segm ents (F igure 5.3). If r > Pc th en  th e  pair are  passed 

th ro u g h  to  th e  next stage unchanged. T his is repeated  for each pair to  produce a  new 

population  of Q models.
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1 0 1 0 1 1 0 0

(a)

1 1 0 1 0 1 1 0

1 1 0 0

0 1 1 0

1 0 1 0 0 1 1 0

(C)

1 1 0 1 1 1 0 0

Figure 5.3: An exam ple of crossover between tw o strings. T he couple (a) are cu t a t  a 
random ly chosen point (b) and the segm ents transposed  to  create  two new strings(c).

5.2 .4  M utation

T he final stage of th e  G A  is th e  m u ta tion  of random ly  chosen bits. This in general affects 

only a  tiny proportion  o f th e  bits, e ither flipping th e  parity  from 0  to  1 (or vice versa) or 

replacing the  b it w ith a  random ly generated  a  new b it. In the  second case, m u ta tio n  will 

only change th e  b it value 50% of the  tim e. T h e  probability  of m utation  of individual b its 

is determ ined by a  co n stan t P m, which is typically  chosen to  be <  1 % (W hitley , 1994). 

T he aim of th is stage is to  prevent th e  developm ent of a  uniform population th a t  can 

not evolve fu rth e r (p rem atu re  convergence if a  sa tisfac to ry  solution has no t been found) 

and thus retain  som e degree of diversity. In general it does no t advance th e  search for a  

solution. By increasing th e  value of Pm the  GA will resem ble a  M onte C arlo m ethod . W ith  

a  constan t value of Pm, m utation  affects all b its equally. T hus a  m utation  of a  low order



5. Surface Wave Inversion: Theory &; M ethod 113

bit, causing a  relatively sm all change, is ju s t  as p robab le as th e  m u ta tio n  of a  high o rder 

b it, resulting in a  large change. Some G A s use a  variable P m to  bias m u ta tio n  tow ards 

lower order b its (Sam bridge and G allagher, 1993).

5 .2 .5  S ch em a  th e o r e m

Holland (1975) in troduced  th e  idea of sch em ata  as a  theo re tical way to  explain how a 

genetic algorithm  searches th e  m odel space, associa ting  com binations of m odel a ttr ib u te s  

w ith im proving perform ance. S chem ata  are  p a tte rn s  used to  describe subsets of b it s trings 

defined by th e  a lp h ab e t used in th e  encoding of th e  s trin g s plus th e  * sym bol. T hus for 

b inary  coded strings sch em ata  are  generated  using th e  te rn a ry  a lp h ab e t (0 ,1 ,*), w here 0  

and 1 define a bit value and  * ind icates e ither d ig it is allowed (a wild ca rd ). For exam ple, 

th e  schem a (i* * * * i) describes every s tring  of length  6  w ith  a  1 in th e  first and las t b it 

positions. Each schem a, / f , defines a  hyperp lane in th e  search space w ith th e  o rder of th e  

hyperplane o(H),  defined by th e  num ber of set b its  in th e  schem a and th e  defining length , 

8H,  th e  distance betw een th e  first and last specific s trin g  position.

T his can be illu stra ted  by considering a  4-dim ensional search space represented  by tw o 

3-dim ensional cubes, one inside th e  o th er (F igure 5 .4). Each corner is labelled w ith a  4 

bit s tring , where th e  first b it defines th e  inner o r o u te r cube and th e  next th ree  b its define 

th e  face; fro n t/b ack , to p /b o tto m  and le ft/r ig h t. T he  schem a (0***), w ith defining length  

8H = 0, defines th e  o rder- 1 hyperp lane corresponding  to  th e  o u te r cube and schem a ( 1 *1 *), 

8H = 2, defines th e  order-2  hyperp lane corresponding  to  th e  to p  of th e  inner cube. Every 

b it o f a  chrom osom e of leng th , L, is a  m em ber o f 2L-l  hyperplanes and th e  en tire  search 

space contains 3L-1 hyperp lanes (th e  s trin g  contain ing  only wild cards is no t considered 

a  portion  of th e  space). T herefore each tim e th e  G A  evaluates a  s tring  it also evaluates 

num erous hyperplanes, suggesting  th a t  a  G A  exhib its im plicit parallelism  (H olland, 1975).

T h e  schem a theorem  is th e  fun d am en ta l theorem  of genetic algorithm s. T hrough  vari

ous o p era to rs  th e  num ber o f sch em ata  in th e  popu lation  will increase or decrease depend

ing on th e  fitness of th e  s trin g s  represen ting  th a t  schem ata . T his occurs for every schem a 

w ithin a  population in parallel.

It is possible to  track  th e  sam pling ra te  of a  hyperp lane and ind icate w hether its 

rep resen ta tion  in a  popu lation  will increase or decrease over a  generation . Let P(H ,t )  

be th e  proportion  of s trin g s sam pling a  hyperplane, H , a t  th e  cu rren t generation , t. Let
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Figure 5.4: A 4-dim ensional space represented by two cubes, one w ithin th e  o ther. C orners 
are  labelled by 4 b its representing which cube and which th ree  faces in tersect a t  th e  corner. 
T he schem a (10**) defines th e  hyperplane representing th e  fron t face of th e  inner cube 
(after W hitley, 1994).

th e  generation after reproduction  b u t before crossover and m u ta tio n  be represented by the  

index (£ + intermediate), and th e  next generation  afte r crossover and  m u ta tio n  represented 

by (t +  1 ). T he change in represen ta tion  according to  fitness associated w ith strings after 

reproduction  is expressed as

P(H, t +  intermediate) =  P ( H , t ) ^  (5*4)

where / ( # ,  t) is the  objective function of each string  and /  is th e  average misfit o f all the 

strings in the population.

To calculate the p roportion  o f s trings sam pling th e  hyperplane a t  th e  next generation, 

th e  effects of crossover m ust be considered. Crossover is applied probabilistically  to  a 

portion of the population. T he  rep resen ta tion  due to  reproduction of th e  portion  th a t  does 

no t undergo crossover rem ains as in equation  5.4. W here crossover does occur, then  its  

d isruptive effects m ust be taken  in to  consideration. D isruption  of th e  hyperplane depends 

on th ree  events; (1 ) th a t  crossover occurs, (2 ) th a t  it will fall w ithin th e  defining length 

of th e  hyperplane and (3) th a t  th e  m ate  of the  paren t is no t also a  m em ber of the  sam e 

hyperplane. As these events are  independent, th e  probability  of d isruption  is th e  product
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of th e  probab ility  of each event

P(disruption) = Pc . • (1 — (5.5)

so th e  p roportion  of s trings sam pling th e  hyperp lane afte r crossover is

P{H , t  + 1) >
l -  1

(5.6)

w here we have assum ed th a t  crossover w ith in  th e  defining length  is alw ays d isrup tive .

T he final o p e ra to r to  consider is m u ta tio n . T he  survival probability  o f each individual 

bit in th e  s trin g  is (1 — F m ). In o rder for th e  schem a H  to  survive, each o f th e  o(H ) 

specified positions w ithin th e  schem a m ust survive. Therefore, th e  p robab ility  of th e  

schem a surviving m u ta tio n  is (1—Pm)°(H\  For sm all values o f Pm th is  can be app rox im ated  

by Pm(l — o(H)).  Including th is  term  in equation  5.6 gives th e  expression for th e  p roportion  

of strings sam pling a  p articu la r schem a in th e  nex t generation  as;

P (H , t  + 1) >  P ( H ,
f

A lthough th e  schem a theorem  does show how sh o rt, low-order, above average sch em ata  

receive increasing tria ls  in th e  nex t popu lation , it does not prove th a t  these  will com bine to  

build optim al so lu tions or th a t  convergence will occur. However, G oldberg  (1987) showed 

th a t  even for deceptive problem s (w here sh o rt, low-order blocks can build sub-optim al 

longer blocks), surprisingly th e  G A  usually  converges on th e  global op tim um .

5.3 Selection o f genetic algorithm parameters

Previous research (e.g., G allagher and  Sam bridge, 1994) has suggested th a t  a lthough  it is 

relatively easy to  im plem ent a  genetic a lgo rithm , its  efficiency is dependen t upon several 

param eters

•  encoding m ethod

•  population  size, Q

•  reproduction  m ethod

•  crossover probability , P c
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•  m u tation  probability , P m

Poor choice of these p aram ete rs  will resu lt in to o  slow convergence and a  failure to  find 

th e  global m inim um , or to o  rapid  convergence resu lting  in th e  algorithm  sticking in a 

local m inim um . In add ition , several changes can be m ade to  th e  basic GA  to  im prove 

optim ization e.g., elite selection (e.g., Y am anaka and  Ishida, 1996) and hybrid ization (e.g., 

Sen and Stoffa, 1992; C hu n d u ru  e t al., 1997). In o rd er to  m axim ize th e  efficiency of th e  G A , 

it is best to  experim ent w ith  several p a ram ete rs  and  choose th e  m ost effective. In o rder 

to  achieve this, sy n th e tic  dispersion curves were calcu lated  using the  forw ard m odelling 

m ethod described in Section 5.4 and then  inverted  several tim es, varying th e  p aram ete rs  

each tim e. T he exception  to  th is  was th e  encoding m ethod  which was left as binary, 

a lthough some exp lo ra tion  of regular and  m ag n itu d e  based b inary  encoding was m ade 

(section 5.3.1). T he  in itial G A  used for th e  velocity inversion is th a t  of Sam bridge and 

Drijkoningen (1992).

An rm s misfit (equation  5.8) was used in o rder to  determ ine th e  misfit betw een th e  

observed and theo re tica l values

^  = \ l m  (5-8)

w here N D  is th e  num ber o f d a ta  and \ 2 1S defined by

N D

X2(0  =  X  [Sfca/cM “  yobs(i)T/W(i)2 (5.9)
1 = 1

W(i)  is a  weighting function  determ ined  by th e  observational errors, £(i)

W(i)  = (5 J 0 )
Hobs(®)

In a  m atrix  m ethod  such as SVD, a  stopp ing  crite rion  is generally given, e ither w hen th e  

misfit goes below an accep tab le  value, when th e  convergence slows (i.e. th e  change in m isfit 

between tw o ite ra tio n s  d rops below an accep tab le  value) or a fte r a set num ber of ite ra tio n s. 

W hilst it is possible to  in troduce  these crite ria  to  th e  GA it was decided to  use only th e  

num ber of ite ra tio n s as a  s topp ing  criteria . W hilst th is  resu lts in a  com putationally  longer 

process it provides th e  highest probability  o f finding th e  best m odel and also allows a  m ore 

thorough investigation of th e  m odel space. T he use o f a  convergence c rite ria  is advised
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Figure 5.5: C onvergence o f a  G A  and M onte C arlo  m ethod show ing a lte rn a tio n  between 
rapid  and slow convergence

against, as it can be seen, b o th  in th is  s tu d y  (F igure 5.5) and  o th ers (e.g., Sam bridge and 

D rijkoningen, 1992) th a t  th e  convergence of a  G A  occurs in s tep s  varying betw een rapid  

convergence and relatively slow convergence. T his change has been explained in tw o ways. 

E ither all available in fo rm ation  from  th e  population  has been gained and  th e  algorithm  

needs a  new injection o f in fo rm ation  from  a  random  m odel to  proceed; or th e  algorithm  

sw itches from conducting  a  local search to  a  global search, allowing it to  ju m p  o u t of a 

local m inim a in th e  m isfit surface. T herefore, using a  convergence s topp ing  c rite ria  could 

result in the  failure of th e  global op tim iza tion  of th e  GA.

5 .3 .1  G A  e n co d in g

As m entioned above, genetic a lgo rithm s o p e ra te  on a  b it-s trin g  represen ta tion  of th e  model 

param eters  and several d ifferent techniques, known as encoding, are  available to  m ap 

between the  b its and decim al num bers. T he trad itio n a l m ethod  is th e  use of b inary  

encoding. T he advan tages o f using a  b inary  bit s trin g  are  th a t  they  m axim ize th e  num ber 

of schem ata per b it o f in fo rm ation  giving m ore chance o f m atch ing  sim ilarities am ong 

strings w ith a high fitness value.

An a lte rna tive  to  regu lar b inary  encoding is m agnitude b inary  encoding. In m agnitude 

binary  encoding th e  b its a re  organized by binary  m agnitude, th u s  th e  first n b its would 

be determ ined by th e  2X d ig its of th e  b inary  values, th e  second set of n b its by the  

2X_1  d igits and so on. For exam ple, coding th e  decim al p a ram ete rs  (24,10) to  b inary  gives 

(11000, 01010) producing th e  b it s trin g  (1100001010) using regular b inary  encoding. Using
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F igure 5.6: Two exam ples of b inary  coding of th e  decim al param eters  (24,10) and (14,25).
(a) Regular binary coding creating  tw o binary strings of length 10 (grey blocks represent 1 

and w hite 0) w ith the  first 5 b its  th e  b inary  code of th e  first decim al value and  th e  second 
5 b its the  binary code for th e  second decim al value, (b) T he sam e tw o se ts  of decim al 
param eters  now encoded by binary  m agnitude, again creating  two strings of length 1 0  

b u t where the  first two b its represen t w hether th e  two decim al values are of order 2 4, the  
second two bits, order 2 3 and so on.

m agnitude based encoding th e  first two b its are determ ined by th e  2 4 values ( 1 ,0 ), th e  

th ird  and fourth  b its by th e  2 3 values (1 ,1 ) e tc ., th u s  producing th e  s trin g  ( 1 0 1 1 0 0 0 1 0 0 ) 

(F igure 5.6).

T he differences in these tw o m ethods of encoding only affect th e  crossover stage, since 

th e  reproduction is determ ined  by th e  ob jective functions and m utation  is a  random  pro

cess.

Testing by th is au th o r of these  tw o m ethods showed th a t  for a  velocity -dep th  optim iza

tion norm al binary encoding gave im proved perform ance over m agnitude based encoding.

5 .3 .2  P op u la tio n  s ize

T h e initial population size can be extrem ely  im p o rtan t. W hereas in a  M onte C arlo  m ethod 

increasing the  population generally resu lts in an im proved m isfit, th e  sam e is no t necessar

ily tru e  for the  GA. Too large a  popu lation  can degrade the  usefulness of th e  crossover and 

m uta tion  stages by in troducing  to o  m any poor model param eters  and slowing down the  

convergence (Sam bridge and D rijkoningen, 1992; G allagher and Sam bridge, 1994). Too



5. Surface Wave Inversion: Theory k. M ethod 119

0.20 n

0=250

0=50

0=10

£ 0.15-

|  o.io

0.05 -

2000 4000 6000 8000 100000
N o. o f m o d e ls

Figure 5.7: T he perform ance of a  basic GA w ith varying population sizes (Q ). It should 
be rem em bered th a t  th e  Q = 1 0  curve con tains 2 2  tim es th e  num ber of ite ra tio n s th an  the  
Q =250 curve.

small a population will resu lt in th ere  being too  little  inform ation on the  m odel space and 

cause only a  local optim ization  of th e  d a ta .

Several runs of th e  GA were conducted  s ta rtin g  w ith the  sam e in itial m odel space 

bu t varying the  population size, Q. F igure 5.7 shows how th e  m inim um  m isfit reduces 

against increasing num ber of m odels sam pled for each choice of Q. It can be seen th a t  

th e  sm allest population (Q = 1 0 ) has a  rapid  reduction  in misfit over the  first 500 models 

before slowing down and stalling  th rough  a  lack of inform ation. Increasing th e  population 

to  50 gives a  b e tte r  m inim um  misfit b u t a  slower reduction as the  model space is explored 

more. F u rth er increasing th e  population  to  250 causes th e  GA to  slow down fu rth e r and 

does not reach the  m inim um  misfit of th e  lower population .

5.3.3 S election  of rep rod uction , crossover and m utation  param eters

Once the size of the  initial population  had been chosen th e  m ethod of reproduction  and 

values for crossover and m u ta tio n  probability  were selected in a  sim ilar ad hoc m anner. 

T here were however som e general guidelines th a t  were followed (Sam bridge and G allagher, 

1993). Pc was kept high (0.6-1 .0) to  ensure m ixing whilst Pm kept low, equivalent to  ab o u t 

one parity  flip per s trin g  (~  1 /L  or 1 /2L ). To evaluate th e  effectiveness of th e  GA  two 

m easures were m onitored , th e  off-line and on-line perform ance (D eJong, 1975). Off-line 

(equation 5.11) is an indication of the  convergence of the  GA whilst on-line (equation  5.12)
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is an indication of its  ongoing perform ance.

1 T
=  (5-11)

1 T
*(») =  j ; £ / W  (5-12)

1

where f ( t )  is th e  m isfit function  on tria l t and /*(£) is th e  m inim um  misfit function for 

each itera tion , hence off-line is a  running  average o f th e  best m isfits w hilst on-line is an 

average of all m isfits.

Both linear and exponen tia l rep roduction  were tes ted  as was to u rn am en t selection w ith 

varying values for PTS. F ig u re  5.8 shows th e  perform ance of these and various crossover 

values. An exponential rep roduction  selection and  crossover value of 0.85 are seen to  give 

th e  best perform ance.

Having chosen PTS and  Pc th e  m u ta tio n  probability , P m , was varied from  0.001-0 .1  and 

a  linear and exponential ram ped  probability  was te s ted . F igure 5.9 shows th e  change in 

online and offline perfo rm ance aga inst num ber o f m odels sam pled for a  range of co n stan t 

Pms and a ram ped P m . T h e  high value of P m (0.1) shows little  im provem ent for e ither, 

suggesting a  fairly random  process. Sm aller values o f P m show much b e tte r  perform ance.

F igure 5.10 shows th e  m odel resu lts  of a  high and low m u ta tio n  ra te . It can be seen th a t

th e  high m utation  ra te  provides a  much w ider search of th e  model space th an  th e  low 

m utation  ra te .

By using a co n s tan t P m th e  probability  of m u ta tin g  high order b its (causing global 

changes) is the  sam e as for low order b its  (responsible for local changes). By varying 

th e  m utation  depending  on b it o rder it is possible to  allow a  higher m u ta tio n  on th e  low 

order bits providing m ore local sam pling and a  lower m u ta tio n  on high order b its helping to  

prevent too  m any global ju m p s  which are no t beneficial to  th e  algorithm . F igure 5.9 shows 

th a t  the in troduction  o f an  exponentia lly  ram ped  m u ta tio n  probability  gives increased 

perform ance. Testing by th is  a u th o r  showed th a t  using an exponential ram p gave superio r 

on-line and off-line perfo rm ance th an  a  linearly varying m uta tion .

5 .3 .4  F u rth er r e fin e m e n ts  o f  th e  g e n e t ic  a lg o r ith m

Several add itional refinem ents to  th e  basic GA , consisting  of selection, crossover and m u

ta tio n , to  im prove efficiency have been proposed by various au th o rs  and several o f these
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F igure 5.8: On-line and off-line perform ance for (a) different m ethods of reproduction and 
varying values of PTS and (b) various Pc
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Figure 5.9: On-line and off-line perform ance for varying m utation  probability. N ote th a t  
w hilst Pm=0.001 gives best convergence (off-line) th e  on-line perform ance indicates th a t  
th is convergence is prem ature .
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F igure 5.10: M odel resu lts from  tes tin g  of th e  G A  by th is au th o r for tw o values of mu
ta tio n  probability, (a) P m= 0 .1 , (b) P m=0.001 . T he grey area  indicates th e  model space 
searched w ith th e  d ark  grey being th e  best 5% of m odels. T he darkness is logarithm ically  
proportional to  th e  num ber of m odels. D ashed line is the  tru e  model, w hite th e  average 
of the  best 5% and black th e  best m odel from  th e  GA (after S hibutani e t al, 1996)
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were tested . O n-line and  off-line perform ance of th e  G A  w ith  these refinem ents are  shown 

in F igure 5.11.

Elitism  ensures th a t  th e  best fit m odel from  each popu lation  will always survive to  

th e  next ite ra tio n  a lthough  Lom ax and Snieder (1995) suggested th a t  th is  could produce 

p rem atu re  convergence. T ests by th is  au th o r showed th a t  whilst th is was a  problem  using 

exponential rep roduction , it could be avoided by em ploying to u rn am en t selection. T his 

resulted in bo th  th e  on-line and  off-line perform ance show ing im provem ent, m ost m arkedly 

on the  on-line.

D eJong (1975) suggested  th a t  a 2-point crossover, w here two points on th e  pair of 

strings are chosen a t  random  and  th e  in term ed ia te  b its  exchanged (F igure 5.12), should 

enhance perform ance o f th e  G A . A lthough D eJong  (1975) did no t see th e  expected  im 

provem ent w ith th is  m eth o d , B ooker (1987) found th a t  2-point crossover significantly 

enhanced th e  efficiency o f th e  G A  as sch em ata  w ith  large defining lengths were less likely 

to  be d isru p ted . T ests again  showed th a t  th is  w as an im provem ent over th e  basic G A .

It is also possible to  re s tr ic t crossover to  p a ram ete r boundaries. Obviously th is  re

stric tion  can only be applied  to  norm al b inary  encoded problem s utilizing single poin t 

crossover. T his will aid local search perform ance as crossover only changes velocity-depth  

relations, b u t it m ay resu lt in p rem a tu re  convergence as th e  GA  m ust rely solely on m u

ta tio n  to  change velocity o r d ep th  values from  those  of th e  in itial population . In th e  te s ts  

restric ted  crossover showed an  im provem ent over th e  basic GA bu t not as much as elite 

selection.

T esting by th is  a u th o r  o f com binations of these  refinem ents showed perform ance was 

always g rea te r th a n  th e  basic G A  b u t could no t im prove over th e  perform ance of ju s t  one 

refinem ent alone.

T he final p a ram ete rs  chosen for th e  G A  were exponentia l reproduction , single po in t 

crossover w ith Pc = 0.8, exponentia lly  ram ped  m u ta tio n  (0.001 ^  Pm ^  0 . 1 ) and elite 

selection. T he resu lts o f th is  a re  shown in F igure  5.13.

It should be noted  th a t  desp ite  th e  excellent co rrelation  between th e  te s t and modelled 

dispersion curves th e  G A  fails to  m odel th e  to p  100 m correctly  or th e  th in  low velocity 

layer a t  2 km d ep th . T he  la tte r  is due to  th e  fact th a t  th e  dispersion is not sensitive to  

such a  th in  layer a t  th a t  d ep th . C loser exam ination  o f th e  dispersion curves shows th a t  a t
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Figure 5.11: Off-line and on-line perform ance for a  variety of refinem ents to  th e  basic GA
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Figure 5.12: An exam ple of tw o point crossover between tw o strings. T he pair (a) are 
cu t a t  two random ly chosen poin ts (b) and th e  segm ents between each point exchanged to  
c rea te  two new strings(c).
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F igure 5.13: T est resu lts of th e  GA chosen for surface wave inversion, (a) Velocity m odel 
results, (b) syn thetic  (circles) and modelled (diam onds) Rg dispersion curves for funda
m ental and second higher m ode (including syn thetic  errors used for weighting).
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th e  higher frequencies, co rrespond ing  to  th e  shallow est s tru c tu re , th e  m odelled curve does 

no t show th e  slight decrease th e  sy n th e tic  curve has, explain ing th e  misfit in the  velocity 

of th e  to p  100 m. T h e  reso lu tion  is investigated  fu r th e r in C h ap te r 6 .

5.4 Forward m odelling o f synthetic dispersion curves

Synthetic dispersion curves were ob ta ined  using th e  rou tines of H errm ann (1987). These 

use a p ro p ag ato r m a trix  m ethod  (e.g., Haskell, 1953; D unkin , 1965; G ilbert and Backus, 

1966) and energy in teg ra ls  (Jeffreys, 1961; H arkrider and A nderson, 1966) to  calculate 

phase and g roup  velocities.

T he Thom son-H askell (1953) m a trix  m ethod  is one of th e  m ost com m on m ethods of 

calculating surface wave d ispersion  curves. T he  m ethod evaluates a  dispersion function , 

th e  zeroes of which correspond  to  th e  phase velocities of th e  fun d am en ta l and higher m odes. 

T he function is built up  from  a  series of layer m atrices re la ting  m otion and stresses on 

both  sides of a  boundary . T h e  p ro d u c t o f these m atrices then  re la tes these m otion and 

stresses a t  th e  deepest in terface  to  those  a t  th e  surface.

T he differential eq u a tio n s  o f th e  m o tion-stress vector for Rayleigh waves is given by 

(Aki and R ichards, 1980)

d_
dz

( r x\
r2
r3

w

(  0  k fi~ l (z) 0  ^
—k \ (z ) [ \ ( z )  + 2p(z)]~1 0  0  [\(z) + 2p,{z)]~l

k2C(z) -  uj2p(z)  0  0  fcA(2:)[A(2:) +  2p(z)]~1
\  0  —co2p(z) —k 0  )

AA
r2 
r3

w
(5.13)

w here £(z) =  4p(z )[ \( z)  -f f i ( z ) ] / [ \ ( z )  +  2 p{z)] and r ^ r 2 are  th e  d isplacem ents in th e  

horizontal and vertical d irec tio n s and  r 3 , r 4 are  th e  shear and  norm al stresses.

T he boundary  cond itions require  th a t

r x, r 2 —> 0 , as z —> oo,
(5.14)

r 3 =  r 4 =  0  a t  th e  free surface.

Nonvanishing so lu tions o f equa tion  5.13 under these conditions exist only for certain  

k = kn(u>) for a  given uj. T h e  phase velocity is given by uj/kn{u) and th e  vertical depen

dence of th e  m ode is given by th e  solution  of equation  5.13.

T he problem  is of th e  form

=  A ( z ) f ( z )  (5.15)
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T h e  p ro p ag a to r m atrix  P  generates th e  m otion  stress vector a t  a  d ep th  2  by opera tin g  on 

th e  vector a t d ep th  2 0

f ( z )  = P ( z , z 0 ) f { z 0) (5.16)

P roblem s w ith loss o f precision are  solved using th e  m ethod  of D unkin (1965) which 

utilizes a  d e lta  m atrix  (Pestel and  Leckie, 1963) to  form  th e  p ro p ag ato r.

T he group velocity is th en  ca lcu la ted  using a  varia tional technique suggested  by Jeffreys 

(1961). By equating  the  k inetic and  s tra in  energies th e  equation

oS*I\ =  I 2 T  kl$ +  I 4 (5.17)

is ob ta ined , where

roo
h  =  /  p(r\ + r\)dz  

Jo
roo

h =  [{\ + 2 p)r\  + p r22]dz
Jo

' • ' 2 i  ( A r ,S r - “ r‘ T ; ) dz  1 5 1 , 1

- r b  « (& )'-(£ )>
T he rj and r 2 th a t  satisfy  these  cond itions are th e  eigenvalues of th e  Rayleigh waves. 

P e rtu rb a tio n  of k and u;, such th a t  k = kQ + 5k and u  = uj0 +  5u, and su b s titu tin g  into 

equation  5.17 gives, to  th e  first o rder

r 7 312 H 7 ”

U = ------------------------------------------------------------ (5.19)
cl 1

P a rtia l derivatives of phase velocity w ith  respect to  th e  m odel p aram ete rs  can also be 

calcu lated  in th is way.

D ensities required in equa tion  5.13 were calcu lated  from  th e  shear wave velocities using 

th e  velocity to  density  conversion (Zelt and  Sm ith , 1992)

p =  - 0 .6 9 9 7 +  2 .2302a -  0 .5 9 8 a2 +  0 .07036a3 -  0 .0028311a4 (5.20)

w here

a = —p   ---------------  v  =  0.25 (5.21)
l-2.<)/(2-2*))
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5.5 Inversion for Q^ 1

T he a tten u a tio n  of seismic waves can be described in te rm s o f a  quality  fac to r, Q. A nderson 

e t al. (1965) developed equations for th e  quality  fac to r of bo th  Love waves, Q ^, and 

Rayleigh waves, Q # , in te rm s o f th e  Q fac to r of body waves. For Rayleigh waves th is  is

N r n -i N r
Q r  -  X]

/=i

on dc
c dai

Pi dc 
c dPi_ Q

pkat

- 1
(31

(5.22)
pk(3 i = i

w here th e  subscrip t / is th e  layer num ber and th e  subscrip ts  p, ft and a  refer to  the  

q u an titie s , density, w avenum ber, shear and  com pressional wave velocity which are held 

co n stan t w hilst ob ta in ing  th e  p artia l derivatives.

For an isotropic m ateria l and assum ing th e re  are  no losses due to  com pression th e  

com pressional wave facto r, Q a , can be re la ted  to  th e  shear wave facto r, Q p, by (A nderson 

e t al., 1965)

2

=  IU Q - 1
(3 (5.23)

T he  quality  fac to r (Q) was re la ted  to  th e  a tte n u a tio n  coefficient, 7  by M itchell (1975) as

7r
7  = UTQ

(5.24)

w here U and T  are th e  group  velocity and  period. E quation  5.22 can then  be re-expressed 

(M itchell, 1975) as

N /  *  '  NE t ai oc
'  c2 dai

7T
7 =

N /  
Q j  + X! (

/=i v

Pi d c \  
c2 d P i ) i Qpl (5.25)

_/=1 * '  wp(3 1 — 1  - i - i / u p a

w here subscrip ts  again ind icate  fixed p a ram ete rs  during  calculation of th e  p a rtia l deriva

tives. It should be noted  th a t  th e  a tte n u a tio n  coefficient, 7 , and phase velocity, c, in 

equation  5.25 re la te  solely to  th e  Rayleigh wave (sim ilar relations exist for Love waves bu t 

for sim plicity have not been shown here). S u b stitu tin g  equation 5.23 in to  equation  5.25 

rem oves th e  com pressional quality  fac to r, Q a to  give

7r
7 =  T

N

( Ql ^
L̂ \ ° 2 da,  J 3 \ a .U - )  Qm

7T
+  j

N / Pi dc \  
f e w  d/3, J Q

- 1
(31iupa

T his can then  be expressed in vector m a trix  form  as

t M  =  a q  p i

(5.26)

(5.27)
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w here 7  is now linear in Q ^.

T his can now be inverted  using a  linear s ingu lar value decom position (SVD) m ethod  

described in Section 5.6.

5.6 SVD theory

T his section is n o t in tended  to  be a  com prehensive review of th e  theory  of SVD; th e re  are 

num erous tex ts  and  pap ers for those wishing to  delve fu rth e r in to  the  su b jec t (e.g., B ackus 

and G ilbert, 1967; W iggins, 1972; Jackson , 1972; Tw om ey, 1977; Lines and  Treitel, 1984; 

P arker, 1994; M eju, 1994b).

M any geophysical processes can be described m athem atica lly  in th e  form  of a  F redholm  

integral (Tw om ey, 1977)

y, =  f  Ki(r)x{r)dr,  i =  1 , 2 , . . .  , ra (5.28)
Jo

where y; is th e  observed or m easured response o f th e  system  (e.g. g roup  velocity) w ith  n 

th e  to ta l num ber o f observations, x(r)  is th e  desired physical p ro p erty  or m odel p a ram ete r 

(e.g. shear-w ave velocity) as a  function of d ep th  and  K{ is th e  d a ta  kernel re la ting  th e  

d a ta  to  th e  m odel p a ram ete rs .

E quation  5.28 can be app rox im ated  by
771

yi = ^ 2  K ux i (5-29)
1=1

w here it has been assum ed th a t  th e  s tru c tu re  is la te ra lly  hom ogeneous and varies vertically  

over m  finite layers and x  is a  co n stan t w ith in  each layer. T his can now be expressed in 

vector m atrix  form  as

y  =  G m  (5.30)

w here G  is th e  design m a trix  w ith dim ension n x p  and p is th e  num ber of m odel p a ram eters . 

T he solution for m odel p a ram ete rs  m , for perfect d a ta , is given by

m  =  G ~ ly  (5.31)

However, in th e  general case, th ere  is a  m ism atch  betw een th e  idealized m odel and  th e  

ac tua l ea rth  due to  observational erro rs or noise in th e  d a ta , such th a t

y  =  G m  +  e  (5.32)
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and th e  best way to  o b ta in  a  solution is to  m inim ize th e  sum  of squares o f th e  residuals, 

e,. T he m inim ization function  is given by

q = e Te = Y ^  Gijnij  j  (5.33)

M inim ization is achieved by differen tiating  q w ith respect to  th e  m odel p a ram ete rs , m  

and equating  th e  resu lt to  zero. T he resulting  equations are  then  solved for m  to  o b ta in  

a  least squares solution for th e  p aram ete r estim ates, t o  given by

m  = [GTG ] - l G Ty  (5.34)

One of th e  m ost efficient m eth o d s of solving th is  is by use o f singular value decom position 

(SV D)(Law son and H anson, 1974). T his m ethod  is popu lar due to  its  m ath em atica l ro

bustness and s tab ility  and  allows d e term in a tio n  of m odel resolution and p a ram ete r bounds. 

Lanzcos (1961) facto red  an  a rb itra ry  m atrix  in to  a  p ro d u c t of th ree  o th e r m atrices

G = U A V t  (5.35)

where for n d a ta  and p p a ram ete rs , th e  o rthogonal m atrices U (nXp) and V (pxp) are  th e  

d a ta  and p a ram ete r space eigenvectors and  A  is a  p x p d iagonal m atrix  contain ing  th e  

non-zero eigenvalues o f G . T h e  diagonal en tries, Ay, are  known as th e  singular values of 

G .

E quation  5.34 can be expressed in te rm s of th e  SVD of G  as

g t g  = v a u t  u a v t
2 T (5.36)

=  V A 2V t

and th e  least squares generalized inverse is then

(GTG )~ l G T = V A ~ 2V t . V A U t
. T (5-37)

=  V  A  U

so th a t  the  unconstra ined  least squares solution is given by

to  =  (GTG )~ 1G Ty
, T (5.38)

=  V A ~ l U Ty

If one or m ore of th e  singu lar values Ay, are  sm all th e  m a trix  G  is said to  be ill-conditioned 

and instabilities m ay resu lt in a  m agnification o f th e  so lu tion . O ne m ethod  to  bypass
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po ten tia l problem s w ith th e  sm all singu lar values is by using a  dam ped  least squares 

m ethod , or th e  M arquard t-L evenberg  techn ique (M arq u ard t, 1963; Levenberg, 1944). This 

approach  dam ps th e  abso lu te  values o f th e  p a ram ete r estim ates  by adding  a  bias f3 to  the  

eigenvalues. T hus th e  d iagonal m a trix  A-1 is replaced by

=  ( d w  ( 5 ' 3 9 )

giving th e  M arq u ard t fo rm ula

m D = (GTG  + (3I)-1G Ty

= V A  ~l U Ty
(5.40)

As in th e  GA th e  d a ta  w as w eighted w ith  th e  observational e rro rs  by m ultiplying th e  d a ta  

vector y  and design m a trix  G  by th e  w eighting m atrix , W  defined in equation  5.10.

5 .6 .1  E rror a n a ly s is

T he quality  of th e  m odel can be assessed by exam ining th e  p a ram ete r resolution m atrix  

(Jackson, 1972). For th e  u n co n stra in ed  least squares solution (equation  5.38) th is  is defined 

by

R =  (G t G )~ 1G

= [V A ~ 1U t ][U A V t ] (5.41)

=  V V T = I

For th e  dam ped least squares so lu tion  given by equation  5.40, R  is given by (e.g., M eju, 

1994b)

R =  (Gt G  + {3I)~1G

(5.42)=  [ V A ~ 2U t ][UA2V t ]

V A 2V t  

A*

T he resolution m atrix  R  is generally  u nderstood  to  give an indication  of how well resolved 

th e  final m odel is w ith th e  dev ia tion  o f R  from  th e  iden tity  m atrix  being a  m easure of 

th e  resolution (or lack of it) . However, M eju (1994b) shows th a t  a  perfect resolution is 

no t necessarily indicative o f an ac cu ra te  or reliable m odel and th a t  R  will always be an 

iden tity  m atrix  for unconstra ined  linear inversion o r linear inversion w ith a priori d a ta .
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T he d e te rm in a tio n  of th e  p a ram ete r s ta n d a rd  dev iations from  th e  covariance m atrix  

C  provides a  sim ple m ethod of m odel e rro r estim atio n . T he  covariance m a trix  is a  p X p 

m atrix  defined as

C  = a 2(Gt G )~ 1 (5.43)

for th e  undam ped  case and

C  = a 2{Gt G  +  (3I)~1G t G ( G t G  +  (5I)~l (5.44)

for th e  dam ped  s itu a tio n  assum ing th e  d a ta  are  uncorrelated  and of equal variance a 2.

T he off-diagonal elem ents o f C  ind ica te  th e  correlation  between m odel p aram eters . 

Large off-diagonal elem ents C tJ ind ica te  th a t  th e  ith and j th model p a ram ete rs  are  highly 

co rrelated . T he  square  ro o t o f th e  d iagonal elem ents are referred to  as th e  s tan d a rd  

deviations and  give an estim atio n  of th e  bounds o f th e  m odel p aram ete rs  (M eju, 1994a).

5.7 Summary

T hrough a  series of te s ts  a  genetic a lgo rithm  has been shown to  be successful in th e  o p ti

m ization of surface wave dispersion for 1 -D  velo c ity -d ep th  models. T h e  best p a ram eters  

for th e  algorithm  o p e ra to rs  have been chosen to  enhance its  perform ance. T his final al

gorithm  has then  been applied to  th e  observed dispersion d a ta  to  produce th e  shear wave 

velocity m odels presen ted  in th e  subsequen t ch ap te r.

Using a  linear SVD m ethod , 7  curves can be inverted  to  produce a tte n u a tio n -d e p th  

m odels which will be presen ted  in th e  subsequen t chap te r.



Chapter 6

Velocity Inversion and M odelling  
R esults

Fundam ental and  higher m ode curves ob ta ined  using th e  m ethods described in C h ap te r  4 

have been inverted  using th e  G A  to  o b ta in  1-D  shear wave velocity m odels. A tten u a tio n  

models have been ob ta in ed  from  a  linear inversion o f 7  values. T his elastic and  anelastic  

inform ation has then  used in an  a t te m p t to  m odel th e  waveform s.

6.1 Inversion using fundam ental mode

T he model space used for inverting  th e  fu n d am en ta l m ode is shown in Table 6.1. For each 

model p a ram ete r an up p er and  lower lim it and N  possible values are specified. E xam ples 

of th e  1-D  velocity m odels ob ta ined  from  th e  fu n d am en ta l m ode op tim iza tion  o f bo th  

G roup 1 and G ro u p  2 curves are  presented  in th e  following sections. All th e  m odels are 

displayed in A ppendix  F .

6 .1 .1  G roup  1 cu rv es

Two exam ples o f th e  m odels from  th e  G ro u p  1 curves (F -E 0 4  and D -D 21) are  show n in 

F igure 6.1. T he  m odel space is ind icated  by th e  light stipp ling  and th e  to p  5% m odels 

are shown in th e  grey shades w ith th e  best m odel in black. V ariation betw een th e  to p  

5% m odels gives an ind ication  of th e  resolution (S h ibu tan i e t al., 1996) which is discussed 

fu rther in Section 6.1.3. T he  velocity m odels are  show n on th e  left w ith th e  observed and 

modelled dispersion curves on th e  right.

T he dom in an t fea tu re  of these m odels is an a b ru p t increase in velocities a t  c. 0.7 km 

dep th . T his boun d ary  shows a  velocity change from  c. 1 km s-1 -  c. 2 .6 -3  km s- 1 . T h e  high
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Figure 6.1: 1-D  shear wave models for G roup 1 fundam ental dispersion curves. P a th s  are 
from F lam boyanes to  s ta tio n  E04 and D zitya to  D21. S tippled area  is th e  model space 
w ith the  top  5% m odels in grey.
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Layer Min
P (k

M ax
ms

N
T) " ....

A Min
T hickness (km) 
M ax N  A

1 0.5 1.5 16 0.066667 0.05 0.15 8 0.014286
2 0.5 2 .0 32 0.048387 0.05 0 .2 0 8 0.021429
3 0.5 2 .0 32 0.048387 0.05 0 .2 0 8 0.021429
4 0.5 2.5 32 0.064516 0 .1 0 0.25 8 0.021429
5 0.5 3.0 32 0.080645 0 .1 0 0.25 8 0.021429
6 0.5 3.5 32 0.096774 0 .1 0 0.4 16 0 .0 2 0 0 0 0

7 0.5 4.0 32 0.112903 0 .1 0 0.50 16 0.026667
8 1.5 5.0 32 0.112903 0 .0 0 0 .0 0 1 0 .0 0 0 0 0 0

Table 6 .1 : M odel space used in th e  G A  for op tim iza tion  of th e  fundam en tal m ode. N  
possible values w ithin th e  lim its a re  allowed providing an increm ental value o f A .

velocity layer has a  th ickness o f c. 150-250 m and is underlain by a  low velocity layer w ith 

a  velocity of c. 1 km s- 1 . T h is  low velocity layer has a  thickness o f c. 200 m although  the  

bo tto m  of th e  layer is poorly  co n stra in ed  and so could be th icker. Sim ilarly th e  velocity 

increase in th e  b o tto m  layer is un co n stra in ed  and m ay be an a r tifa c t o f th e  op tim ization  

process.

Over th e  upper 700 m velocities show very little  variation from  surface values of 

c. 0.8 km s- 1 . In m odel F -E 0 4  th e  velocities show a  g radual increase w hereas D -D 21 

shows a  little  m ore varia tion  w ith  2  lower velocity layers afte r a  norm al velocity grad ien t 

over th e  to p  300 m. T his p a tte rn  is consisten t w ith th e  o ther m odels ob ta ined  from  G roup 

1 curves.

6 .1 .2  G roup  2 cu rv es

M odels ob ta ined  from  th e  G ro u p  2 curves a re  shown in F igure 6.2. As w ith th e  G roup  1 

curves, these show a  higher velocity  zone w ith  an inverted velocity b oundary  im m ediately  

below it a t  c. 0 .5 -0 .7  km d ep th . A gain th e  th ickness of th e  high velocity layer is c. 150- 

250 m w ith a  slightly  larger range o f velocities from  1 .6 -3 .6  km s- 1 . Velocities below are 

sim ilar to  those  from  th e  G ro u p  1 curves. T he low velocity layer is c. 200 m thick for 

m odel F -D 1 3 , which is consisten t w ith m ost of th e  o th er m odels, however in m odel D -E 18  

it is clearly m uch th icker (>  500 m) a lthough  resolution is poorer in th is  model.

Surficial shear wave velocities are  slightly  higher th an  in th e  G roup  1 curves (0 .9 - 

1 km s- 1 ) and show a  decrease to  c. 0.7 km s - 1  over th e  to p  250-400 m.
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Figure 6.2: 1-D  shear wave m odels from G roup 2 fundam ental dispersion curves. P a th s  
are from F lam boyanes to  D13 and D zitya to  E18.
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As was suggested by th e  half space m odelling, events p ro p ag a tin g  sou thw ard  from  the  

a irp o rt show a  higher surficial velocity o f c. 1 .2  km s - 1  th a n  those  p ropagating  northw ard  

(F igure 6.3) o r from  o th e r s ta tio n s . D eeper s tru c tu re  is consisten t w ith th a t  of th e  o th er 

m odels.

6 .1 .3  R e so lu tio n

As can be seen from  th e  m odelled dispersion curves th e  fit w ith  th e  observed d a ta  is ex

trem ely  good b u t to  assess th e  qu ality  o f th e  so lu tion , th e  m odel and  p a ram eter resolution 

need to  be considered.

T he velocity m odels presen ted  show th e  5% best fitting  m odels w ith th e  variation 

between these providing an im m ed ia te  ind ication  of the  m odel resolution and uniqueness. 

From  th is  variation  it is clear th a t  th e  m odels are  not resolved below c. 1-1 .2  km dep th . 

In m ost cases th is  co rresponds to  th e  base of th e  low velocity zone and  even w here it does 

no t (e.g., F -D 1 3 ) resolution o f th e  layer im m ediately  below th is  rem ains poor.

T he num ber of accep tab le  m odels w as chosen by th e  num ber of m odels whose misfit 

was less th an  the  m isfit from  th e  observed d a ta  errors. T hus th e  range of acceptab le 

dispersion curves falls w ith in  th e  lim its  placed by th e  observed erro rs (F igure 6.4). In the  

m ajo rity  of m odels th e  num ber o f accep tab le  solutions was c. 5% of th e  to ta l num ber of 

so lu tions so for sim plicity 5% w as tak en  as s tan d a rd .

T he variation  betw een th e  m odels also gives som e indication of th e  individual p aram 

e te r  resolution bu t to  fu r th e r  check th e  sensitiv ity  of th e  dispersion curves to  th e  layer 

param eters , tw o m odels (F -E 0 4  an d  D -E 1 8 ) were chosen on which to  conduct a  m ore 

precise resolution analysis. F or th ese  m odels a  block search was conducted  ab o u t th e  pa

ram eters  for each layer in th e  m odel w hilst holding th e  o th er layers’ p aram ete rs  fixed. T he 

log norm alized misfit surface for each layer was then  p lo tted , poorly resolved layers show

ing flat misfit surfaces w hilst well resolved p aram ete rs  showing a  well defined m inim um  in 

th e  misfit surface.

F igure 6.5 shows th e  layer reso lu tion  for an event a t  F lam boyanes recorded a t  s ta tio n  

E04. As would be expected  th e  u p p er layers are  ex trem ely  well constra ined  in both  

thickness and velocity w ith a  g rad u al d eg rad atio n  of resolution w ith d ep th . In all cases, 

b a r layer 5, th e  shear-w ave velocity is b e tte r  resolved th an  layer thickness. T he resolution 

o f th e  high velocity layer (layer 5) is q u ite  poor b u t is good enough to  be able to  confirm
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Figure 6.3: 1-D  shear wave models from  th e  A irpo rt to  s ta tio n s (a) E18 and (b) D13. T he 
southw ard p ropagating  pa th  shows an increased surficial shear wave velocity of 1 .2  km s- 1  

com pared to  1 km s - 1  for the  northw ard p a th . N ote th e  group velocity dispersion curves 
have a  slightly different scale.
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Figure 6.4: Range of dispersion curves generated  by the  to p  5% models for F-D 13. W ith  
the  exception of a  sm all region above c. 4 Hz th e  modelled curves fall w ithin th e  lim it of 
the  observed errors.

th a t  the  velocity is higher th an  th e  o th er layers. Resolution of the  velocity of th e  low 

velocity zone is extrem ely good b u t there  is no thickness resolution, partly  due to  th e  lack 

of resolution of the  layer below it.

A sim ilar s ituation  is observed w ith th e  misfit surfaces of model D -E 18  (F igure 6 .6 ). 

T he upper 600 m are well constra ined  in bo th  velocity and thickness w ith th e  velocity 

resolution slightly g rea ter. From  layer 5 dow nw ards the  resolution is poor w ith very little  

dep th  control and poorer velocity resolution.

By com paring the  resu lts of th is  analysis w ith the  original models (F igures 6 .1 a and 

6 .2 b) it can be seen th a t  in bo th  cases the  m ain features of the  resolution analysis are 

reflected by th e  variance w ith in  th e  best 5% of models. On this basis it was concluded 

th a t  it was not necessary to  conduct a  full resolution analysis on every model b u t it was 

sufficient to  judge resolution on th e  basis of the  variation indicated by th e  to p  5%.

6.1 .4  A veraging effects

An im p o rtan t point to  rem em ber when exam ining the  models is th a t  they represent a 

1-D  average of th e  ac tua l s tru c tu re  sam pled over the  sta tio n -ev en t path . Given th a t  the  

paths are predom inantly  along radial lines com pared to  th e  expected c ra te r s tru c tu re  and 

assum ing a  radial sym m etry  for the  c ra te r then the  ac tua l s tru c tu re  is m ost likely to  be



6. Velocity Inversion and Modelling Results 142

Layer 3 

9-,

Layer 5

Layer 7

Figure 6.5: Layer misfit surfaces for the  fundam ental g roup dispersion curve recorded a t 
E04 and corresponding to  model F -E 04 .
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F igure 6 .6 : Layer misfit surfaces for the  fundam ental group dispersion curve recorded a t 
E18 and corresponding to  model D -E 18.
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two ra th e r th an  th ree  dim ensional. W here it is relatively hom ogeneous then  th e  average 

should app rox im ate  th e  tru e  s tru c tu re  b u t w here th ere  are significant la te ra l varia tions 

then  th e  m odels show featu res th a t  do no t represent tru e  stru c tu re .

An exam ple of th is is m odel D -E 1 8  whose p a th  is across a region th a t  is also sam pled 

by the  th ree  p a th s  D -E 1 2 , A -E 12  and A -E 18 . T he m odels for these p a th s  are shown in 

F igure 6.7. It can be seen th a t  th e  m odel A-E12 has a  qu ite  different s tru c tu re  from  the  

o th er two w ith no high velocity layer underlain by a  low velocity. Also in A -E 18  these 

high and low velocity layers are slightly deeper th an  in D -E 12 . T he result of th is  over th e  

longer pa th  is the  ap p a ren t thickening of th e  low velocity layer.

W hilst th e  sedim ents are likely to  be fairly hom ogeneous over th e  p a th  lengths being 

investigated , any c ra te r  s tru c tu re  will probably  include large varia tions over relatively 

sh o rt d istances and so th is  effect will be im p o rtan t during the  in te rp re ta tio n , especially 

for longer p a th  lengths.

6 .1 .5  S u m m a ry  o f  fu n d a m en ta l m o d e  m o d e ls

T he 1-D  shear wave velocity m odels ob ta ined  from  optim ization  of fundam en ta l group  

velocity are well resolved to  d ep th s  of c. 0 .7-1  km. Velocities for th e  upper few hundred 

m etres are sim ilar to  those ob ta ined  using th e  half space approx im ations from  in te rs ta 

tion phase curves and confirm  th e  presence of an inverted velocity s tru c tu re  across m ost 

of th e  region. T his negative velocity g rad ien t is no t modelled across th e  cen tra l area. 

Forw ard m odelling (F igure 6 .8 ) shows th a t  it is th is  change th a t  resu lts in th e  bi-m odal 

charac teris tic  of the  fu n d am en ta l g roup  velocity dispersion curves observed above 2.5 Hz.

A high velocity layer of c. 200 m thickness and of shear wave velocity of 1 .6-3  km s - 1  is 

modelled varying between d ep th s  0.5 km and 0.7 km . T his is underlain by a low velocity 

layer whose thickness is poorly resolved b u t is likely to  be around 200 m. Surficial velocities 

are slightly higher to  th e  sou th  of th e  array. T he lowest surficial velocities are m odelled 

on p a th s  across th e  cen tra l a rea  w here th e  observed dispersion is of G roup  1 type.

6.2 Inversion of higher modes

Following th e  inversion using only th e  fundam ental m odes, higher m ode dispersion curves, 

where m easured, were included in the  inversion to  constra in  the  deeper s tru c tu re . T he
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Figure 6.7: Illustration  o f th e  averaging effect in th e  1-D  model caused by lateral variations 
in velocity s tru c tu re . T he first th ree  m odels (a -c) toge ther cross approxim ately  th e  sam e 
path  as th e  final model (d). It can now be seen th a t  th e  apparen t thick low velocity zone 
from 0 .6 - 1 .2 km d ep th  in D -E18 is in fact m ost likely an artifac t caused by significant 
velocity variations along th e  p a th .
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F igure 6 .8 : Synthetic fu n d am en ta l m ode group dispersion curves for two velocity m odels, 
(a) N orm al velocity g rad ien t and  (b) inverted velocity g rad ien t over th e  to p  300 m. B ar 
the  variation in velocities over th e  top  300 m th e  model param eters are identical in both  
situations.
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Layer Min
/3 (k 

M ax
ms

N
*)

A M in
Thickness (km) 
M ax N A

1 Constrained using fundamental
2 mode model
3 0.5 2.3 16 0.109375 0 .1 0 0 .2 0 8 0.014286
4 0.5 3.0 32 0.080645 0 .1 0 0.50 16 0.026667
5 0.5 3.5 32 0.096774 0 .1 0 0.50 16 0.026667
6 1 .0 3.5 32 0.080645 0 .1 0 0.50 16 0.026667
7 1.5 4.0 32 0.080645 0 .1 0 1 .0 32 0.060000
8 1.5 4.0 32 0.080645 0 .2 0 1 .0 32 0.025806
9 2 .0 4.5 64 0.039683 0 .2 0 2.50 32 0.074194
10 2 .0 5.0 64 0.047619 0 .0 0 .0 1 0 .0 0 0 0 0 0

Table 6.2: M odel space used in th e  G A  for optim ization  including higher m odes.

m odel space used is shown in Table 6.2

As the  higher m odes are unlikely to  be very sensitive to  shallow s tru c tu re  th e  to p  

two layers were constra ined  using th e  m odels ob ta ined  from  th e  fundam en tal m odes w ith 

the  velocities and th ickness of these layers being allowed to  vary by ± 1 0 % around  those 

ob tained  from  the  op tim iza tion  of th e  fundam en ta l modes.

Several exam ples of th e  higher m ode m odels are presented in the  following section by 

source region w ith th e  rem ain ing  m odels displayed in A ppendix F .

6 .2 .1  F la m b o y a n es b la sts

Tw o exam ples of m odels ob ta ined  from  dispersion curves from a  source a t  F lam boyanes 

are shown in F igure 6.9. As before th e  best 5% m odels are shown.

M odel F -F 0 5  is along a  p a th  across th e  central a rea  and shows an increasing velocity 

s tru c tu re  from 0.8 km s - 1  to  1.7 km s - 1  over th e  top  1.2 km. A c. 200m thick  high velocity 

layer of 3 .5  km s - 1  is then  m odelled although from  the  variation of th e  best m odels th is 

appears to  be poorly constra ined . T his is underlain by a lower velocity layer of c. 2.1 km s - 1  

down to  c. 1.9 km d ep th  before th e  velocity increases to  c. 3.2 km s- 1 . A fu r th e r velocity 

increase is then  modelled a t  3  km d ep th  although th is shows large variations from  th e  best 

m odels and resolution m ost p robably  only ex tends to  2 .5-3  km dep th .

M odel F -D 1 3  has a  slightly  higher surface velocity of 0.9 km s - 1  which decreases over 

th e  upper 450 m to  0.75 km s- 1 . A th in  (100 m) high velocity layer of c. 2.1 km s - 1
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Figure 6.9: 1-D  shear wave velocity models and modelled dispersion curves for jo in t 
inversion of fundam ental and higher mode d a ta  for p a th s  from Flam boyanes to  sta tio n s  
F05 and D13.



6. Velocity Inversion and Modelling Results 149

is observed a t  0.95 km d ep th  and underlain  by a  c. 200m  thick low velocity layer of 

c. 1 km s- 1 . Below th is  velocities increase again to  c. 2 km s - 1  where they  rem ain to  the  

resolution lim it of c. 3 km d ep th . A slight increase in velocities is seen betw een 1.6-2.1 km 

a lthough th e  resolution on th is  m akes it ind istinguishable from  th e  velocity above and 

below.

T hese m odels are  q u ite  sim ilar to  those o b ta ined  from  th e  fundam en tal m odels w ith 

the  p rim ary  differences being th e  increased s tru c tu re  seen over th e  upper 1 km and a 

deepening of the  th e  high and low velocity zones.

6 .2 .2  D z ity a  b la sts

F igure 6.10 shows tw o of th e  m odels from  a  source a t  D zitya one p ropagating  inw ards to  

th e  c ra te r cen tre  and th e  o th e r ou tw ards.

M odel D -E 7 b is for th e  inw ards p a th  and is very sim ilar to  F -F 0 5  over th e  c ra te r 

centre. A slowly increasing velocity s tru c tu re  is modelled over th e  upper 1.5 km before an 

ab ru p t increase in shear wave velocity from  2.2 km s - 1  to  c. 3.4 km s- 1 . As w ith  F -F 0 5  

th is th in  high velocity layer is qu ite  poorly  constra ined  and underlain by a  c. 300 m th ick  

lower velocity zone of c. 2.3 km s- 1 . T he  velocity then  increases to  c. 3.2 km s - 1  w ith  a 

second increase modelled b u t unconstra ined .

T he high velocity underla in  by a  low velocity zone is again modelled in th e  ou tw ards 

p a th  m odel (D -E 12) b u t b o th  th e  deeper and  shallow s tru c tu re  differ from  th a t  in D -E 7 b . 

T he upper 300 m shows an inverted  velocity g rad ien t, consistent w ith th e  fundam en tal 

m ode being of G roup 2 , before a  g rad u al increase down to  1 km dep th . T he high to  low 

velocity tran sitio n  a t  1 .2  km is no t as pronounced as in previous m odels and th e  lower 

velocity zone is m uch th icker. Below th is  th e  velocities are poorly constra ined  b u t show 

an increase in velocity from  2 .3 -3 .4  km s - 1  a t 2.2 km dep th  before decreasing back to

2.5 km s - 1  a t  3 km.

6 .2 .3  A irp o rt b la sts

Sim ilar upper c ru sta l s tru c tu re  is modelled from  the  a irp o rt b lasts (F igure 6.11) w ith  an 

initial inverted velocity g rad ien t followed by a g radual increase. However th e  high velocity 

layer is no t as d is tin c t as in th e  previous models. A -E 12  has two large velocity increases 

a t  800 m and 1.3 km d ep th , bo th  of which are underlain  by lower velocity zones, although
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Figure 6.10: 1-D  shear wave velocity models and modelled dispersion curves for jo in t 
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th e  first of these is very poorly constra ined . A -E 18  also shows two large velocity increases 

a t 1 km and 1.4 km d ep th  w ith  a lower velocity zone a t  1.6 km dep th . Below th is  a t  2 km 

dep th  velocities increase to  4.5 km s- 1  before decreasing to  <  2.8 km s- 1  below 3 km dep th . 

In co n tra st velocities below 2 km in E -12  rem ain co n stan t a t  2.7 km s - 1  to  below 4 km 

where the  model becom es unresolved.

6 .2 .4  M o d e  id en t if ica t io n

As s ta ted  in C h ap te r 4, w here only one higher m ode is visible it is believed to  be the  

second higher mode. M ode identification was confirm ed during  th e  inversion process by 

optim izing several of th e  curves as bo th  th e  first and second higher m ode. In th e  m ajo rity  

of s itua tions m odels w ith an accep tab le fit could no t be found for th e  curve as th e  first 

higher m ode (Figure 6.12). T h e  exceptions to  th is  were for th e  cases of waves p ropagating  

southw ard  from  th e  A irp o rt w here inversion using th e  first higher m ode was required  to  

fit the curves.

6 .2 .5  R eso lu t io n

As w ith th e  fundam en tal m odes, th e  to p  5% solutions were taken  as having th e  ability  

to  generate  an acceptab le range of dispersion curves (F igure 6.13). A gain p a ram ete r 

resolution was fu rth e r investigated  by varying layer p aram eters  and g raph ing  th e  misfit 

surfaces for one of th e  m odels. As th e  upper tw o layers were partia lly  constra ined  from  

th e  fundam ental m ode m odels these layers were no t considered in th is analysis.

F igure 6.14 shows th e  m isfit surfaces ob ta ined  from  varying th e  param eters  of m odel 

F -F 0 5 . Resolution is good down to  layer 6  (a t 1 .2  km dep th ) w ith velocity resolution b e tte r  

th an  thickness resolution. Layer 7 is poorly resolved w ith a  trad e  off occurring betw een 

the  velocity and thickness. Below th is  layer th e  velocity rem ains fairly well resolved b u t 

thickness resolution is poor and layer 9 has no thickness resolution o th er th an  suggesting 

a lower lim it of c. 600 m.

T his corresponds to  th e  resolution suggested by th e  variance in th e  best 5% m odels, 

confirm ing th a t ,  as w ith th e  fundam ental mode, using th e  variance w ithin th e  best 5% 

m odels is sufficient to  judge m odel resolution.
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Figure 6.11: 1 -D  shear wave velocity models and modelled dispersion curves for jo in t 
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6 .2 .6  M o d e  s e n s i t iv i ty

T he resolution analysis provides a  m eans of exam ining th e  resolution of layer p a ram ete rs  

bu t gives no inform ation on which m ode is constra in ing  which regions of th e  m odel. As 

m entioned briefly in C h ap te r 4 the  d ep th  dependence of th e  various m odes a t  a  fixed fre

quency are different, w ith certa in  areas of th e  m odel influencing the  m odes independently . 

E xam ination  of eigenvalues and  velocity p artia l derivatives shows how sensitive th e  m odes 

are a t  varying dep ths. F igure  6.15 show th e  d ep th  variation of th e  vertical displacem ent 

eigenvalues and phase velocity p artia l derivatives w ith respect to  shear velocity for the  

fundam ental and first tw o higher m odes for m odel F -F 0 5  a t  th e  lowest and highest fre

quencies observed. W here layers independen tly  influence p a r t of each m ode then  th e  jo in t 

inversion of the  fundam ental and higher m odes will provide a  m ore reliable d e term in a tio n  

of model param eters.

It can be seen th a t  th e  to p  tw o layers are  prim arily  constra ined  by th e  higher frequencies 

of the  fundam ental m ode ju stify ing  th e  co n s tra in t placed on the  m odel space during  the  

higher m ode optim ization. Betw een c. 0.2 km and  1.5 km all th ree  m odes are influenced by 

th e  layer velocities allowing increased reso lu tion  over th is  region th an  in th e  fundam en tal 

m ode inversion. Below th is  th e  second higher m ode is providing th e  m ajo rity  of th e  m odel 

co n stra in t thus increasing th e  non-uniqueness of th e  m odel a t  these dep ths.

6 .2 .7  S u m m a ry  o f  h igh er  m o d e  m o d e ls

M odelling of the higher m odes has increased  resolution to  approxim ately  2.5 km dep th  

and confirmed the identification of th e  m a jo rity  of th e  higher m odes as th e  second higher 

m ode. T he principal differences seen betw een these m odels and th e  fun d am en ta l m ode 

m odels are w ithin the  upper kilom etre, w here m ore s tru c tu re  has now been m odelled, and 

the  variation in dep th  to  th e  large increase in velocity. These result from  th e  overlap 

of m ode sensitivity  w ithin th e  1.5 km which has increased th e  co n stra in ts  on th e  m odel 

param eters.

A sum m ary  of m odels ob ta ined  by collapsing them  radially onto  Line E  is shown in 

F igure 6.16. T he models ob ta ined  are very sim ilar to  those obtained  from  th e  fundam en tal 

modes. P ractically  all th e  m odels exh ib it a  low -high-low  velocity tran sitio n  betw een 1 -

1.5 km dep th  which can easily be identified o u t to  a radial d istance of c. 30-40 km from
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th e  c ra te r centre. Beyond th is  d istance its identification is m ore am biguous. T he high 

velocity zone shows a  varia tion  in dep th  across th e  region and th e  low velocity zone below 

it appears to  thicken betw een 30-40 km radial d istance  w ith velocities rem aining low until 

<4 .0  km dep th  a t  40 km.

A norm al velocity g rad ien t is observed in th e  upper 300 m to  c. 20-30  km radial 

d istance where an inverted  g rad ien t is observed. In general surficial velocities decrease 

inward to  the  c ra te r cen tre.

6.3 Phase velocities

F undam ental phase velocity dispersion curves were calculated  from  th e  velocity m odels 

and com pared to  th e  in te rs ta tio n  phase velocity m easurem ents (Sections 4.4 and  4.7.2). 

These are shown in F igure 6.17. T hese show a  reasonable fit and it should be rem em bered 

th a t  th e  observed curves are from  an in te rs ta tio n  analysis whilst th e  m odelled curves are 

from  a velocity model averaging over a  p a th  length m uch longer th an  th e  in te rs ta tio n  

distance.

6.4 Q p  inversion results

T h e a tten u a tio n  coefficient curves were inverted  using th e  linear SVD m ethod  outlined  in 

C h ap te r 5 w ith a range of values for th e  M arq u ard t dam ping  factor. A four layer m odel 

using th e  depths and velocities ob ta ined  from  th e  velocity m odels was found to  be sufficient 

to  m odel the curves. T he resu lts of th e  inversions are shown in F igure 6.18.

It can be seen th a t  th e  s tru c tu re  is poorly resolved w ith large s ta n d a rd  dev iations 

and dam ping required to  allow only positive values. Increasing th e  dam ping  also has 

the  effect of pulling the  Q ^ 1 values tow ards zero w ith th e  corresponding 7  values being 

underestim ated . Lower dam ping  resu lts in larger oscillations of th e  Q^ 1 values b u t ap p ears  

to  have little  effect on th e  7  values. T he poor resolution of the  m odels is an ind ication  

of the  difficulties inherent in th e  estim ation  of Q in sedim ents which have been reported  

by several o ther researchers (e.g., S a rra te  e t al., 1993; M alagnini, 1996). Som e of these 

problem s arise from assum ptions m ade during  the  m easurem ent of 7  (C h ap te r 4). A 

ripple b last from a  quarry  will no t produce a circular rad ia tion  p a tte rn  b u t will resu lt 

in am plitudes being higher in line w ith the  ripple direction . If all th e  s ta tio n s  used were
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directly  in line w ith each o th er th is would no t be a  problem , however, th e  s ta tio n s  are 

only app rox im ate ly  in line and  th u s a  non-circular rad ia tion  p a tte rn  will resu lt in e ither 

an increased or dim inished am plitude value from  w h a t would norm ally be expected  a t  

one or m ore o f th e  s ta tio n s . T his would result in an incorrect calculation of 7  during  th e  

linear regression calculation and  w ithou t a fo u rth  s ta tio n  it is im possible to  say w hether 

or no t th is  has occurred  or w hether it has resu lted  in an over or under estim ation  of 

7 . L atera l varia tions in geology or d iscontinuities such as are likely across th e  c ra te r  

will have a  sim ilar effect w ith sca tte rin g  resu lting  in focussing and defocussing effects 

(M alagnini e t al., 1995). A gain w ithou t a  fou rth  s ta tio n  it is no t possible to  s ta te  w hether 

or no t th is  is occuring. E lastic  sca tte rin g  from  sm all scale inhom ogeneities is especially a 

problem  w ith high frequency coda such as used in th is  s tu d y  and can also resu lt in th e  

m easured a tten u a tio n  being a  com bination of th e  in trinsic a tten u a tio n  and  th e  sca tte rin g  

a tten u a tio n  (M enke and D ubendorff, 1985). T here  is also evidence for b o th  a  frequency 

dependen t (M alagnini, 1996) or independent Q (G ibbs e t al., 1994). For these  reasons 

any q u an tita tiv e  discussion of th e  a tten u a tio n  resu lts is precluded although  a  te n ta tiv e  

qu alita tiv e  com parison betw een th e  m odels is a ttem p ted .

D espite th e  difference below 2 Hz in th e  7  curves between F -D 2 6  and D -D 5 b  th e  Q ^ 1 

s tru c tu re  for bo th  these p a th s  is very sim ilar w ith  a  low a tten u a tio n  zone a t  1 0 0 - 2 0 0  m 

d ep th . In co n tra s t the  th ird  m odel (A -E 25) has a  highly a tten u a tin g  zone a t  th is  dep th . 

T h is  is alm ost certain ly  responsible for th e  high frequency differences observed in th e  7  

curves. O ne would expect th e  differences in th e  low frequency 7  values betw een D -D 5b 

and  th e  o th er m odels to  show a  corresponding  difference in th e  Q ^ 1 m odels w ith a  deeper 

high a tten u a tio n  zone for D -D 5 b . T his is possibly suggested by th e  slight decrease of Q ^ 1 

in th e  b o tto m  layer of th is  m odel com pared  to  th e  o thers

6.5 Waveform modelling

Using th e  modelled velocities and Q ^ 1 values syn thetic  seism ogram s were calcu lated  for 

several of th e  ev e n t-s ta tio n  paths. T he Q ^ 1 m odels were then  refined using forw ard 

modelling to  im prove th e  fit betw een th e  observed and syn thetic  waveforms.

Various source tim e functions have been used to  generate  syn thetic  seism ogram s from  

surface explosions. M o k h tar e t al. (1988) found th a t  th a t  a  d e lta  function was necessary to
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M odel 1 

Thickness (km) Qp
M odel 2 

T hickness (km) Qp

0.05 60 0 . 0 2 2.5
0 . 1 0 2 0 0 0.05 60

300 250

Table 6.3: Qp m odels used to  g enerate  syn thetic  waveform s in F igures 6.20 and 6.21.

g enerate  sufficient high frequency com ponent b u t H utchenson (1994) found a  step  function 

sufficient. Using th e  velocity m odel F -D 1 3  and  no a tten u a tio n  s tru c tu re , syn thetics were 

calcu lated  for b o th  an im pulse and  s tep  source tim e function (Figure 6.19). T he step  

function ap p ears  to  be sufficient and so was used. In reality  the  type  of source function 

will p robab ly  vary depend ing  on th e  o rien ta tio n  of the  “ripple” of th e  b last in relation  to  

th e  s ta tio n  az im uth .

T he  final Qp m odels a re  shown in Table 6.5 w ith th e  syn thetic  w aveform s in F ig

ures 6.20 and  6.21. It was found th a t  a lm ost all of the  waveform s could be m odelled w ith 

one Qp s tru c tu re , th e  exception  being for p a th  A -E 21 . It can be seen th a t  in m ost cases 

the  fu n d am en ta l m ode has been well m odelled w ith a  reasonable fit ob ta ined  for bo th  

am plitude and  velocity. G iven th e  lack of knowledge of th e  phase of th e  source and d a ta , 

the  poor phase m atch  in som e of th e  m odels is no t particu larly  surprising. M odelling of 

th e  higher m odes however, has no t been as successful. T he inability to  m odel th e  higher 

m ode am plitudes suggests th a t  th e  Qp s tru c tu re  needs to  be extended deeper. A no ther 

problem  w ith  th e  h igher m odes is th e  in terac tion  of all higher m odes in th e  ac tu a l d a ta  

w hilst th e  sy n th e tics  are  m odelled w ith  only th ree  higher m odes as th is  was all th a t  were 

successfully identified from  th e  real d a ta . T his m ay also partia lly  explain why m any of 

th e  sy n th e tic  h igher m odes have a  slight delay in their arrival com pared to  th e  observed 

d a ta . A lternatively , th is  delay could also ind icate  differences between th e  modelled and 

ac tua l velocities.

T he  values o b ta in ed  from  th e  waveform  modelling are sim ilar to  those ob ta ined  in o th er 

s tud ies of sed im en tary  basins e.g., H utchenson (1994) ob ta ined  surficial ranging from  

20-70  increasing  to  200-300  a t  400 m d ep th  and Jongm ans and D em anet (1993) values of 

1 0 - 2 0 0  over th e  to p  few hundred  m etres.
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(a)

(b)

8040 60200

(c)

F igure 6.19: S yn the tic  seism ogram s using velocity model F-D13 w ith no a tten u a tio n  and 
two different source tim e functions, (a) D elta  function (b) step  function (c) ac tua l wave
form.
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F-D21 (18.7 km)

A-E18 (13.7 km)

D-E7b (12.3 km)

F-E04 (10.7 km)

T

0 10 20 30 40 50 60

Time (sec)

F igure 6.20: S yn the tic  (green) and observed (red) waveform s using Q/j model 1.
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A-E21 (25.0 km)

F-D26 (33.7 km)

F-F05 (20.1 km)

30 40 50 600 10 20

Time (sec)

Figure 6 .2 1 : S yn the tic  (green) and observed (red) waveforms. T he lower two (F-F05 and 
F-D 26) are  m odelled w ith  Q/j m odel 1 th e  to p  waveform (A-E21) w ith model 2.
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values show an increase w ith d ep th  w ith very low values for the  top  layer required 

to  m odel A -E 2 1 . It is in tere stin g  to  note th a t  very low values of around 2 were suggested 

by th e  inversion of th e  7  curve for th is  p a th  a lthough a t  a m uch lower dep th . However, th is 

m odel could n o t g en e ra te  a  sy n th e tic  for A -E 18  which was included in th e  calculation of 

th is  7  curve. T h is  suggests th a t ,  as was suspected , th e  use of am plitude decay to  m easure

in th is  s itu a tio n  is unreliable.

T h e  Q 0  values should  be tre a te d  w ith cau tion  as waveform s for very sh o rt p a th s  have 

been shown to  be re la tively  insensitive to  changes in a tten u a tio n  s tru c tu re  and th e  prim ary  

contro l is th e  velocity s tru c tu re  (Sakia e t al., 1990). T his is possibly indicated  by th e  fact 

th a t  th e  w aveform s w hose h igher m odes are best modelled are those shown in F igure 6.21 

w ith longer p a th  leng ths. T h e  lack of sensitiv ity  of th e  m odels to  changes in a tten u a tio n  is 

highlighted in F igu re  6.22 which shows th e  change in waveform for 50% changes of Qp in 

each layer. Even for such a  large change th e  effect on th e  syn thetic  waveform  is negligible. 

Given th e  effect seen in F ig u re  6.19 th a t  th e  different source types have on th e  waveform s 

it is qu ite  p robab le  th a t  source effects d o m in ate  over a tten u a tio n  in controlling waveform 

shape a t  such sh o rt d istances.

6.6 Summary

O ne dim ensional velocity  and  Q ^ 1 m odels have been produced th rough  a  com bination  of 

inversion techn iques and  fo rw ard  m odelling of th e  waveforms.

Velocity m odels have been o b ta in ed  from  b o th  inversion of th e  fundam en ta l m ode 

and jo in t inversion o f th is  and  higher m odes. M ode identification has been verified in 

th e  process of th e  inversion. T h e  success of th e  velocity modelling is confirm ed by th e  

m atch  ob ta in ed  betw een th e  recorded signals and syn thetic  waveform s generated  using 

these m odels.

A tte m p ts  to  m odel a tte n u a tio n  have proved to  be extrem ely difficult. Inversion for 

Q p 1 from  th e  m easu rem en t of am plitude decay proved to  be unreliable w ith large devi

a tio n s  in th e  final m odels. W aveform  modelling using a  sim ple tria l and erro r approach 

produced  values of Qp equivalen t to  values m easured elsewhere. However these results 

rem ain  am biguous as th e  w aveform s are very insensitive to  a tten u a tio n  over such sho rt 

p a th  leng ths and  m ay be d om inated  by source effects. W hilst much m ore inform ation is
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required  to  confidently  discuss th e  a tten u a tio n  of th e  area, a  high a tten u a tio n  zone appears 

to  co rre la te  w ith  th e  so u th ern  m ost region of th e  array. Elsewhere one m odel of decreasing 

a tten u a tio n  w ith  d ep th  is sufficient to  generate  th e  synthetics.

A discussion of th e  geological in te rp re ta tio n  of these 1-D  m odels and th e ir im plication 

for previous hypo theses o f th e  c ra te r  s tru c tu re  is presented in the  next chap ter.
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Figure 6.22: Effect on th e  sy n th e tic  waveform (green) of changing th e  Q/j values for each 
layer in M odel 1 by ±  50%. Also shown is th e  syn thetic  waveform generated  w ith no 
a tten u a tio n  m odel. T h e  observed (red) seism ogram  is for p a th  F-D 21.



Chapter 7

D iscussion and Conclusions

T he 1 -D  velocity m odels p roduced  in C h a p te r  6  ind icate  th a t  th e re  are  varia tions in the 

Cenozoic sed im en ta tio n  p a t te rn  across th e  region which are  discussed in Section 7.1. For 

reasons th a t  will be explained  in th a t  section  th e  base o f th e  sedim ent sequence is in ter

p re ted  as being th e  base o f th e  high velocity  layer a t  c. 1-1 .5  km . A d irec t in te rp re ta tio n  of 

c ra te r  s tru c tu re  from  th e  1 -D  velocity  m odels is ex trem ely  difficult due to  th e  significant 

la te ra l inhom ogeneities. In stead  Section 7.2 focuses on th e  co n stra in ts  th a t  th e  velocity 

m odels can place on c ra te r  s tru c tu re , th e  re la tion  of th e  velocity m odels to  o th er geophys

ical d a ta  and  com m ents on th e  v iab ility  o f previous in te rp re ta tio n s  o f c ra te r  m orphology 

(see C h ap te r  1 ).

7.1 Cenozoic sedim entation

T he Cenozoic sed im ents ex h ib it th ree  p rim ary  fea tu res  in th e  velocity m odels which need 

to  be discussed:

•  A general reduction  o f surficial velocities tow ards th e  c ra te r  cen tre.

•  An inverted  velocity g rad ien t across th e  to p  few hundred  m etres o u tw ith  a  central 

area .

•  A th in  high velocity  layer a t  c. 1-1 .5  km dep th .

T h e  reduction  in surficial velocities tow ards th e  cen tre  o f th e  c ra te r  m ay be indicative of 

an infilling of th e  c ra te r  from  th e  rim  possibly w ith th e  youngest sed im ents a t  th e  centre. 

W hilst th e re  is no d irec t evidence for th is, it would seem th e  m ost likely scenario and
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Figure 7.1: Well logs o f wells C - l ,  S - l ,  Y - 6  and T - l  arranged  in radial d istance from  the  
c ra te r  cen tre  (m odified from  S h arp to n  e t al, 1996).

would agree w ith  th e  offshore OBS and  norm al incidence d a ta  which show a  progression 

of younger facies in to  th e  cen tra l a rea  (C hristeson  e t al., 1998).

O nshore, Pope e t al. (1996) have advocated  older M iocene sedim ents across th e  cen

tre  su rrounded  by a  m o at of younger (Pliocene) sedim ents on the  basis o f soil analysis. 

However it is unclear how th ey  co rre la te  soil differences to  age and th e  observed surficial 

velocity changes do no t m atch  th e  com plex soil p a tte rn s .

T he  observed velocity change m ay be a  resu lt o f differences in w eathering  or surface 

cem en tation . T he  diagenesis o f c a rb o n a tes  varies depending on the  clim ate, environm ent 

and which m ineralogical form  of C a C (>3 has been deposited (Tucker and W right, 1990), 

th u s w ith o u t sam ples of surface rocks it is difficult to  produce any well defined conclusions.

T he  inverted  velocity g rad ien t th a t  is modelled beyond 30-40 km radius over the 

to p  few hundred  m etres  coincides w ith  th e  existence of a  dolom ite layer a t  c. 2 0 0  m 

d ep th  in well Y - 6  t h a t  is ab sen t in wells S -1  and C -l over th e  central a rea  (F igure 7.1) 

(W ard e t al., 1995; S h a rp to n  e t al., 1996). T he effect of dolom itization on th e  physical 

p roperties  o f rocks is variable and com parisons w ith o th er dolom ites is im practical due to  

th e ir highly ind iv idual n a tu re . T he replacem ent of calcium  by m agnesium  should result 

in an increase in porosity , w ith  a 32% replacem ent capable of producing a  12% increase
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in porosity  (C h ilin g a r e t  al., 1985). However in reality  dolom itization  is in fact capable 

of resu lting  in a  d ecrease  in porosity , an  increase in porosity, a red istribu tion  of pre

ex isting  pore sp aces o r a  co m bination  of all th ree  w ith in  th e  sam e dolom itized body (P urser 

e t al., 1994). P o ro s ity  increases are  m ore likely in younger dolom ites w ith subsequent 

porosity  decreases o ccu rrin g  in o lder do lom ites due to  burial and consequent com paction 

and  g en e ra tio n  o f d o lo m itiza tio n  cem en ts by pressure dissolution (P urser e t al., 1994). 

Given th e  re la tive ly  shallow  d e p th  o f th e  low velocity layer then  th e  assum ption  of increased 

porosity  is p ro b ab ly  valid. A ssum ing  th a t ,  in th is  s itu a tio n , th e  pores have rem ained 

open th en  th is  increased  p o ro sity  would be expected  to  produce a  decrease in shear wave 

velocities.

T he  reason for th e  absence of th e  do lom ite  over th e  cen tre  is unclear. T he dolom ite 

is a lm ost ce rta in ly  rep lacem en t ra th e r  th a n  p rim ary  dolom ite as th e  la t te r  is extrem ely 

ra re  (Tucker an d  W rig h t, 1990) and  unlikely to  produce th e  c. 100 m th ick  layer seen in 

well Y - 6  (J . H udson  pers. com m . 1999). R ep lacem ent dolom itization  requires a  source of 

M g2+ ions an d  a  p rocess to  d rive  th e  d o lom itiza tion  fluid th ro u g h  th e  sedim ents. Seaw ater 

being M g2+ rich is an  obvious source and  should  easily allow C aC O s to  be dolom itized. 

However k inetic  o b stac le s  re la ted  to  th e  salin ity , ionic ra tio s and tem p era tu res  (Tucker 

and  W right, 1990) p rev en t th is  and  m ost m odels require som e chemical m odification to  

th e  seaw ater. T h e  p rincipa l d o lom itiza tion  m odel categories are evaporative, seepage- 

reflux, m ixing zone, b u ria l an d  sea  w a te r (F igu re  7 .2). Each involve a  different fluid, m ode 

o f flow and  geological s e ttin g  b u t several can  occur to g e th er and w ithou t knowledge o f th e  

dolom ite  geochem istry , p e tro g rap h y , d is tr ib u tio n  and  palaeogeography it is no t possible 

to  d istingu ish  w hich m odel should  be applied  (Tucker and W right, 1990). Sim ilarly to  

explain th e  absence o f th e  do lom ite  over th e  cen tre  would require knowledge o f th e  m ethod  

of d o lo m itiza tio n . C h an g es in ocean chem istry , c lim ate, absence of a  driv ing process or 

change in sed im en ta tio n  a re  all possibilities.

Using th e  various m odels it  is how ever possible to  com m ent on several scenarios th a t  

could explain  th e  d o lo m ite  fo rm a tio n  and  absence in th e  cen tra l area. A burial m echanism  

is unlikely as it  is d e b a ta b le  th a t  sufficient com paction  would occur to  overcom e th e  kinetic 

obstacles to  d o lo m itiza tio n  an d  th e  tw o m ost likely m odels are  those of seepage-reflux or 

a  m ixing zone.
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F igure  7.2: M odels o f d o lo m itiza tio n . (a) E vaporative m odel w here sto rm  recharge fol
lowed by evapora tion  induces an  upw ard  flow of M g rich g roundw ater. C hanges in pore 
w a te r chem istry  occu r du e  to  th e  evaporation  and m ixing o f tida l and fresh w ater. T he 
seepage-reflux (b) and  ev ap o ra tiv e  draw dow n (c) m odels are  an extension of th is  w ith 
dolom itizing fluids g en e ra ted  th ro u g h  evaporation  of lagoonal w aters and then  descending 
th ro u g h  th e  underly ing  ca rb o n a tes . M ixing zone do lom itiza tion  (d & e) is based on the  
principle th a t  do lom ite  is p rec ip ita ted  m ore easily from  a  d ilu te  solution e.g., a  mix of fresh 
w ate r and sea w ate r. T h e  sea  w ate r provides th e  M g2+ w hilst th e  g roundw ater pum ps 
th e  solu tion  th ro u g h  th e  ca rb o n a tes . B urial do lom itization  (f) relies on th e  com pactional 
dew atering  of basinal m udrocks and th e  expulsion o f M g rich fluids in to  ad jacen t carbon
ates. F inally  seaw ater do lom itiza tion  (g) relies purely on an  efficient pum ping m echanism  
to  drive seaw ater th a t  is chem ically unchanged th ro u g h  th e  ca rb o n a te  (after Tucker and 
W righ t, 1990).
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A seepage-refiux  m echanism  could be possible th ro u g h  th e  fo rm ation  of coastal lagoons 

d u rin g  a  m arin e  regression. E vap o ra tio n  of th e  brine rich lagoonal w aters and descent of 

th e  fluids in to  th e  c a rb o n a te s  could resu lt in th e  dolom itization . T he  dolom itized zone 

would m ig ra te  seaw ard  as th e  coastline and lagoonal areas regressed. Being deeper the 

cen tra l a re a  m ay  have rem ained  a  shallow  m arine environm ent th ro u g h o u t th e  regression 

and  so d o lo m itiza tio n  did n o t occu r in th is  region. However th is  m odel would generally be 

expected  to  hav e  an ev ap o rite  layer above th e  dolom ite which is no t repo rted  in th e  well 

logs.

T h e  lack o f an  ev ap o rite  layer would m ake a  m ixing zone m echanism  m ore probable and 

has been w idely used to  explain  do lom itiza tion  in th e  C aribbean  and B aham as region (e.g., 

V ahrenkam p an d  S w art, 1994). T h e  absence of dolom ites near th e  cen tre  can be explained 

using th is  m odel an d  th e  fo rm a tio n  o f evaporites above th e  dolom ite is no t required. As 

w ith th e  seepage-reflux  scenario , do lom itiza tion  would have occurred during  a  regression. 

M ixing zone d o lo m ites can  be exp ected  to  develop extensively during  m a jo r regressions 

as th e  seaw ard  m ig ra tio n  o f th e  shoreline is accom panied by a  p ro g rad atio n  of th e  mixing 

zone (T ucker an d  W righ t, 1990). Since th is  m odel depends on th e  effective m ovem ent of 

fluids, th e  d o lo m ites  should  be loca ted  in th e  landw ard  p a r ts  o f th e  ca rb o n a te  p latform . 

T hey  m ay  also  re la te  to  a  m ore po ro u s facies th ro u g h  which g rou n d w ater can flow, thus 

any fu r th e r  p o ro s ity  increase w ould ce rta in ly  explain th e  low shear wave velocities. Again, 

a  h a lt in th e  d o lo m itiza tio n  m ay be explained by a basin rem aining over th e  cen tral area 

th ro u g h o u t th e  regression . A lte rn a tiv e ly  a  c lim ate change m ay have reduced groundw ater 

c ircu la tion  rem oving  th e  d riv ing  force for th e  dolom itizing solution.

If th e  d o lo m itiza tio n  did occu r du rin g  a  m arine regression th en  an approx im ate  age 

for th is  low velocity  layer can be suggested  by exam ination  of global sea level changes 

(F igure 7 .3 ). T w o  m a jo r regressions occurred  during  th e  T ertiary , du ring  th e  Oligocene 

and  th e  la te  M io cen e /ea rly  P le istocene. T he  relatively shallow d ep th s  of th e  layer would 

su p p o rt a  fo rm a tio n  d u rin g  th e  la te  M iocene w ith a  m uch th icker overlying sedim ent layer 

expected  for fo rm a tio n  d u rin g  th e  earlier Oligocene regression.

A lth o u g h  th e  inverted  velocity  does coincide w ith th e  app earan ce  o f dolom ite th is 

could be  co in c id en ta l and  an o th e r effect m ay be responsible for th e  reduced velocities. 

O ne possib ility  is th a t  som e form  of subsurface dissolution and  collapse has occurred with
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F igure  7.3: E u s ta tic  sea  level changes du rin g  th e  T e rtia ry  (modified from  K en n e tt, 1982).

th e  reduced velocities resu lting  from  th e  increased frac tu rin g . T here are  a  num ber cenotes 

w ithin th is  a rea  which could be co n sis ten t w ith  th is. Sim ilarly, th e  inverted  zone th a t  is 

visible in m odel A -E 2 1  m ay be connected  to  th e  o u te r ceno te  ring and th e  corresponding 

increase in fra c tu re  density .

T he  fo rm a tio n  o f th e  cen tra l ceno tes m ay be a  re su lt of slum ping around  th e  a rea  of 

cen tral up lift s im ilar to  th e  fo rm a tio n  o f th e  cenote ring  a t  c. 80 km rad ius. However, 

th is m echanism  for fo rm a tio n  would be expected  to  form  a  ring fea tu re  constra ined  to  

a  narrow  rad ia l region analogous to  th e  o u te r  ceno te zone. T he cen tral cenotes do not 

ap p ear to  show  any  form  o f rad ia l sy m m etry  and  so th is  hypothesis m ay be in ad eq u a te  to  

explain th e ir  fo rm a tio n . An a lte rn a tiv e  is th a t  th ey  are  re la ted  to  a  change in subsurface 

geology. I t  is possible th a t  th e  increased  porosity  of a  do lom ite  layer is allowing increased 

g ro u n d w ate r flow and  d isso lu tion  in th is  region. If so th en  th e  velocity decrease could be a 

resu lt o f th e  ex istence o f th ese  ceno tes, th e  m echanism  o f th e ir fo rm ation  or a  com bination 

of bo th .

T he  final sequence o f th e  T e rtia ry  sed im en ts  is in te rp re ted  as th e  high velocity layer 

a t  c. 1 -1 .5  km  d ep th . T h is  d ep th  is sim ilar to  th e  d ep th s  to  th e  base o f th e  T ertia ry  

ob ta ined  from  well log d a ta  and  th e  layer a lm ost ce rta in ly  corresponds to  a  s tro n g  reflec

to r  th a t  is im aged by th e  offshore no rm al incidence d a ta  im m ediately  above th e  breccia 

sequence. T hese  sed im en ts  a re  D an ian  in age and  th e ir fossil assem blages suggest a  deep 

w a te r (c. 200 m) neritic  depositional env ironm ent (S h arp to n  e t al., 1996). T here  is also 

a  possibility  th a t  th ey  m ay be dolom itic (V. S h arp to n , pers. com m .). T he  high velocity 

associa ted  w ith  these  sed im en ts m ay be lim ited to  an a rea  o f <  60 km rad ius as it does 

no t a p p e a r to  be p resen t in m odel A -E 21  and also seem s to  pinch o u t on th e  reflection 

d a ta  (see M organ  e t al. (1997) F igure 2).
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T he difference betw een these  earliest T ertia ry  and  la te r  sedim ents is perhaps n o t su r

prising. Som e o f th e  p rim ary  con tro ls on sed im en ta tion  are clim ate, sea level and oceanic 

chem istry  all o f w hich w ould have been affected by th e  im pact creating  a  unique depo- 

sitional en v iro n m en t. Som e p o rtio n  o f th is  layer m ay also be related to  a  backw ash of 

m ateria l in to  th e  c ra te r  im m edia te ly  a fte r im pact and  its  form ation . W h a t th e  effect of 

these cond itions would have on th e  physical p roperties  of these sedim ents is unclear b u t 

it could help explain  som e p o rtion  o f th e  observed velocity increase. A velocity increase 

due to  com paction  is also to  be expected  as these  a re  th e  oldest and deepest sedim ents 

although  it is unlikely th a t  com paction  alone can explain th e  increase.

A n o th er effect th a t  should  be considered is th a t  resulting  from  th e  underly ing m elt 

sheet and breccia. T h e  9 km d iam e te r Lake M ien im pact is believed to  have form ed a 

therm al b lan k et th a t  d rove h y d ro th e rm a l c ircu lation  for several thousand  years (A strom , 

1998) and  a  s im ilar effect p ro b ab ly  occurred  a t  C hicxulub. P a r t  of th e  effect o f such 

a b lanket m ay have been a  do lom itiza tion  of th e  D anian  sedim ents th ro u g h  an increase 

in te m p e ra tu re  e ith e r d im in ish ing  th e  kinetic obstacles to  do lom itization, o r ac ting  as a 

driving force for seaw ate r , as in th e  K ohou t convection m odel (F igure 7.2g). Subsequent 

com paction  o r pore cem en ta tio n  closing th e  pore spaces and  reducing th e  porosity  would 

explain th e  increased  velocities in th is  do lom ite  com pared to  th e  shallower and younger 

dolom ite layer. T h is  m ay also explain  w hy th e  high velocities ap p ear lim ited to  a  region 

of c. 60 km rad iu s  w hich w ould be th e  ap p ro x im a te  lim it of th e  therm al b lanket. However, 

th e  increased su lp h a te  levels from  th e  vaporization  o f th e  anhydrite  layer in th e  ta rg e t 

rock would be expected  to  h inder do lom itiza tion . It should also be stressed th a t  it is no t 

known w h e th e r th ese  sed im en ts  a re  definitely dolom itized. However, it is still possible 

th a t  a  th e rm a l a lte ra tio n  m ay have affected these  sedim ents as th e  higher tem p era tu res  

could have resu lted  in th e  fo rm a tio n  o f a rag o n ite  ra th e r  th an  calcite which could explain 

th e  higher velocities.

7.2 Crater structure and models

7 .2 .1  I m p a c t  b r e c c ia

In alm ost all th e  m odels th e  high velocity Palaeocene sed im ents are underlain by a  much 

lower velocity layer. T h is  is in te rp re ted  as th e  im p act breccia and th e  inverted velocity
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betw een it and  th e  overlying sed im ents is in agreem ent w ith  sonic m easurem ents m ade 

on well sam ples (U rru tia -F u cu g au ch i e t al., 1997). Sam ples of th e  suevitic im pact breccia 

provided sh ea r wave velocities o f between 1 .0 - 1 .8  k m s - 1  which com pare well w ith those 

o b ta ined  in th e  1 -D  velocity  m odels. T he  suevitic breccia layer varies betw een 1 .1 -1 .6  km 

d ep th  and  100-600 m in th ickness. T h is varia tion  is also identified from  norm al inci

dence reflection d a ta  and  p ro b ab ly  represen ts to p o g rap h y  of th e  c ra te r  floor which can be 

explained in te rm s o f th e  c ra te r  m orphology e.g., th e  peak ring.

7 .2 .2  C en tra l  u p lif t

For an im p act th e  size o f C h icxu lub  a  cen tra l uplift o f basem ent m ate ria l is to  be expected. 

D ue to  th e  problem s o f m odelling  p o ten tia l field d a ta  th is  has been th e  sub jec t o f various 

m odelling efforts (F igu re  7 .4 ). T h e  norm al incidence reflection d a ta  is to o  far offshore 

to  constra in  th e  d ep th  an d  rad iu s  o f th e  to p  of th e  uplift and  so these  have rem ained 

am biguous. S h a rp to n  e t  al. (1996) suggest th a t  th e  to p  o f th e  up lift is between 1 .5 - 

2 km d ep th  w ith  a  rad iu s  a t  its  to p  o f c. 50 km . T his is overlain by a  m elt and breccia 

m atrix  a t  th e  cen tre  (F ig u re  7 .4a). H ildebrand  e t al. (1998) suggest a sm aller, deeper 

s tru c tu re , overlain by a  m elt sh ee t (F igure 7.4b) and  offset from  th e  cen tre  of th e  c ra te r 

to  th e  sou thw est due to  an  oblique im p ac t. B o th  these m odels would be expected to  show 

a  velocity increase betw een th e  im p ac t breccia and  m elt followed by a second increase 

betw een th e  m elt and  b asem en t.

F igure 7.5 su m m arizes th e  1 -D  velocity m odels ob ta ined  across th e  central area. 

Between 1.5-3  km d ep th  th e  m odels show shear wave velocities o f 2 -3 .2  km s- 1 , consisten t 

w ith com pressional velocity  m easu rem en ts  from  sam ples o f th e  m elt m atrix  in Y - 6  (V. 

S h arp to n , pers. com m .) b u t  less th a n  would be expected for th e  cen tra l basem ent uplift. 

A poorly co n stra in ed  increase  to  c. 4 km s - 1  velocity is m odelled a t  3 .1-4 .1  km dep th . T he 

resolution of th is  layer is such th a t  it is unclear w hether th e  m odelled increase represents 

tru e  s tru c tu re  or is a  m odelling a r tifa c t. However, if it does rep resen t an ac tua l increase 

then  it would be co n sis ten t w ith  th e  to p  of th e  uplift proposed by H ildebrand e t al. (1998).

T his increase in velocity  a t  >  3 km  d ep th  is no t seen in m odel F -D 1 3  and th e  variation 

betw een th e  to p  5 % m odels suggests  th a t  its absence is n o t sim ply a  problem  w ith th e  

m odel reso lu tion . W h ils t a  sim ple 20 km radius uplift would explain th is  absence several 

problem s ex ist w ith  th is  so lu tio n . A ssum ing radial sy m m etry  in th e  c ra te r  s tru c tu re  model
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F igure 7.5: 1 -D  velocity m odels collapsed radially  on to  a  tran sec t parallel to  th e  coast 
across th e  cen tra l c ra te r  area . Location of m odel p a th s  are  shown in F igure 7.6.
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Figure 7.6: L ocation of cen tra l m odel p a th s  shown in F igure 7.5 and th e  p a th s  across the  
peak ring shown in F igu re  7.8.

D -E 7 b  covers an identical region and yet ind icates an increase in velocity a t  3.2 km dep th , 

sim ilar to  th a t  of th e  o th e r cen tra l 1-D  m odels. Secondly th e  grav ity  anom aly associated 

w ith th e  uplift suggests th a t  it is offset to  th e  sou thw est. T h is would require th e  uplift to  

have a  rad ius of <  10 km  to  be absen t in F -D 1 3 , much sm aller th an  would be expected 

from a  s tru c tu re  th e  size of C hicxulub. T h is sm aller uplift also still does no t explain the 

difference w ith m odel D -E 7 b .

Closer exam ination  o f th e  g rav ity  anom aly  suggests an explanation  for th e  absence of a 

velocity increase. T h e  g rav ity  high associa ted  w ith  th e  cen tra l uplift has a  tw in peak w ith 

a  southw est bearing  tro u g h  betw een th e  tw o m axim a (F igure 7.7). T he p a th  averaged by 

F -D 1 3  is a lm ost d irectly  along th e  axis of th is  tro u g h  and suggests th a t  th e  cen tra l uplift 

is not sim ply a  rad ia l fea tu re  b u t has m ore of a  bu tte rfly  shape. T he form ation  m echanism  

of such of fea tu re  is unclear b u t is m ost likely re la ted  to  th e  oblique im pact scenario.

7 .2 .3  P ea k  ring

One o f th e  principal c ra te r  unknow ns is th e  location, s tru c tu re  and form ation of th e  peak 

ring. P ilk ington  e t al. (1994) originally suggested a  35 km radius ring consisting of low 

density  m ateria l detached  from  an underlying m elt shee t and correlating  to  a  gravity  

low. S h arp to n  e t al. (1996) propose th a t  th e  peak ring is th e  surficial expression of the
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Figure 7.7: G rav ity  anom aly  over th e  cen tra l a rea  of th e  c ra te r. T he grav ity  high associated 
w ith th e  cen tra l up lift is sp lit in to  tw o  m ax im a w ith a  southw est trend ing  trough  between. 
Location o f p a th  averaged by m odel F -D 1 3  is shown.

basem ent uplift and  co rresponds to  a  g rav ity  high a t  50 km radius (F igure 7.4). From  

offshore reflection d a ta  M organ  e t al. (1997) place th e  peak ring varying between a  radius 

o f 35-45 km . T hey  suggest th a t  th e  ring does no t correspond to  any velocity (and hence 

density) co n tra s t and  is form ed by th e  in te rac tion  between th e  collapsing cen tral je t  and 

tran sien t cavity.

M odel A -E 1 8  (F igu re  7.8) is an  average o f th e  velocity s tru c tu re  from  43-58 km radius 

and should cross over th e  peak ring  o f S h arp to n  e t al. (1996). A high velocity layer of 

c. 4 km s - 1  which w ould be co n sis ten t w ith  th is  m odel does occur however th e  d ep th  of 

th is  layer and  th e  overlying breccia m ake i t  incom patib le w ith th e  idea o f a  peak ring. T he 

peak ring should be a  clear to p o g rap h ic  fea tu re  several hundred m etres above th e  c ra te r 

floor w hilst th e  high velocity layer in m odel A -E 18  is deeper th an  in th e  velocity m odels 

to  th e  in terio r and  ex te rio r o f th is  rad ius.

A 35 km  peak  ring w ould be trav e rsed  by m odel D -E 12 . T h e  in terp re ted  sed im en t- 

breccia tran s itio n  is a t  a  higher level in th is  m odel, occurring a t  c. 1 .2  km d ep th  and 

th e  low velocity breccia layer is th icker th an  in th e  o th e r velocity models. A velocity 

increase below th e  breccia a t  2 .2  km  d ep th  could im ply th e  existence of a  m elt sheet. 

These observations would be co n sis ten t w ith a  detached  peak ring com posed of breccia 

above a  m elt shee t, sim ilar to  th a t  o f P ilk ington e t al. (1994).

T h is ty p e  of peak ring however, fails to  explain th e  velocities modelled for p a th  A -E 12.
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T h e  ex trem ely  th in  b reccia  layer in A -E 1 2  would no t be expected  and if th e  peak ring is 

below D -E 1 2  th en  th e  d e p th  to  th e  breccia layer would be expected  to  increase outw ards 

from  th e  ring. T h e  velocity  s tru c tu re  below 3 km d ep th  is also no t easily explained, 

a lthough  th e  decrease in velocity  could p erh ap s be th e  resu lt o f m ega-breccia below the  

m elt shee t. D esp ite  th ese  p rob lem s however, th e  m odels a re  no t well enough constrained 

to  be able to  ru le o u t th is  form  of a  peak  ring.

F igure 7.9 show s a  p o rtio n  o f th e  offshore reflection d a ta  across th e  peak ring and a 

schem atic  illu stra tio n  of th e  fo rm a tio n  m echanism  suggested  by B ritta n  e t al. (1998). The 

d ipping in terface caused by th e  tra n s itio n  betw een th e  high and  low velocity zones will 

resu lt in m ost p a th s  across th e  region sam pling  b o th  high and  low velocities a t  th e  sam e 

dep th  m aking in te rp re ta tio n  o f 1 -D  m odels difficult.

Possible velocity m odels th a t  such a  s tru c tu re  m ay be expected  to  produce are shown in 

F igure 7.10. A p a th  p ro p ag a tin g  inw ards from  o u tw ith  th e  peak ring will sam ple th e  high 

velocity sed im ents, low velocity  b reccia  an d  low velocity m ateria l b en ea th  th e  breccia. As 

it p ro p ag ates  fu r th e r across th e  peak  ring, sligh tly  h igher velocities should s ta r t  to  become 

a p p a ren t ben ea th  th e  breccia. S im ilarly  any  p a th  p ro p ag a tin g  o u tw ard s  will sam ple the  

sed im ent and breccia and a  high velocity  layer. A s it p ro p ag a tes  across th e  ring th e  lower 

velocities should begin to  ap p e a r  below  th e  high velocity.

T hese expected velocity m odels m atch  th e  observed ones q u ite  well w ith  m odel A -E 12 

represen ting  th e  p a th  p ro p a g a tin g  from  o u ts id e  th e  peak  ring  inw ards and  D -E 1 2  a  pa th  

p ro p ag atin g  o u tw ards. A th in n in g  o f th e  breccia  layer m ay be expected  across th e  top  

of th e  peak ring, which is observed  in A -E 1 2  w hilst th e  thickened layer in D -E 1 2  m ay 

represen t a  th ickening  o f th e  sam e layer in terio r o f th e  ring. If th is  m odel is correct it 

would place th e  peak  ring a t  c. 40 km  (m id-w ay betw een th e  a irp o rt and  s ta tio n  E12).

T he sim ilarity  betw een m odels M D -D 2 1  and  D -E 1 2  (F igure 7.11) would suggest th a t  

these a re  sam pling  ap p ro x im a te ly  th e  sam e region, desp ite  being a t  different radii from  the  

c ra te r  cen tre . T h is  could im ply  th a t  th e  peak ring  m ay be closer to  th e  c ra te r  cen tre  on 

th e  easte rn  side, possibly a ro u n d  2 5 -3 0  km rad ius. T his asy m m etry  would be consistent 

w ith an oblique im p ac t from  th e  so u th w est (F igure 7.12).

Several o f th e  cen tra l m odels also suggest a  high velocity layer a t  c. 1 .5-2 .5  km dep th  

b u t from  F ig u re  7.10 any  increase would be expected  d irectly  below th e  breccia. These
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Figure 7.9: Line d raw ing  o f th e  offshore norm al incidence reflection d a ta  across the  peak 
ring w ith a  possible ex p lan a tio n  for its  fo rm ation . T he outw ard  collapsing cen tral je t 
in te rac ts  w ith  th e  inw ard collapsing tran s ien t cav ity  to  produce an inward dipping low 
angle tran s itio n  zone. In terio r velocities are higher th an  those outside the  transition  zone 
(after M organ and  W arner, 1998).
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Figure 7.10: E x p ec ted  1 -D  velocity m odels arising from  th e  s tru c tu re  proposed by B rittan  
e t al, 1998. T h e  d ipp ing  high-low  velocity in terface will produce a  transition  in models 
from those w ith  high velocities to  those w ith lower velocities below the  breccia layer.
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Figure 7.11: C om parison  of m odels D -E 1 2  and  M D -D ‘21. M D -D 21 is centred  a t  c. 25 km 
from  the  c ra te r  cen tre  w hilst D -E 1 2  is c. 35 km suggesting asym m etries in th e  location of 
the  peak ring, possibly consisten t w ith an oblique im pact from th e  southw est.
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Figure 7.12: F o rm ation  of an off-centre peak ring from an oblique im pact. T he central 
je t  rebounds up and  tow ards th e  im pact direction before collapsing to  form  th e  peak ring. 
T he re su ltan t c ra te r  has a  peak ring centred  a t  Rc, offset uprange from  th e  overall c ra te r 
centre, Cc.
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slightly  lower velocities betw een th e  breccia and th is  d ep th  m ay suggest th a t  some form  

of a  m elt and  breccia m a tr ix  exists, overlying th e  collapsed cen tral je t. T he variation in 

d ep th  and d isco n tin u ity  o f th is  layer m ay be an ind ication  th a t  th is does no t exist as a 

continuous shee t b u t r a th e r  as sm all pods as has been suggested  by S harp ton  e t al. (1996).

7.2.4 O utside th e peak ring

Only tw o m odels have been o b ta in ed  for th e  region beyond th e  peak ring, A -E 18  and 

A -E 21 providing in fo rm atio n  o u t to  c. 70 km radial d istance.

T he  p rim ary  problem  w ith  m odel A -E 21  (F igure 7.8) is th e  identification of th e  base 

of the  T ertia ry  sed im en ts . T h e  low velocity layer a t  2.5 km d ep th  is unlikely to  be th e  

breccia layer as th is  w ould requ ire  a  deepening of th e  layer w ith d istance from  th e  c ra te r  

cen tre  well below th a t  exp ected  from  sim ply passing over a  peak ring. T his deepening is 

also unlikely as th e re  is no evidence from  any of th e  offshore d a ta  for th e  T ertia ry  sequence 

to  be so th ick . If an y th in g  a  th in n in g  o f th e  sed im ents tow ards th e  c ra te r  rim would be 

expected. A possible ex p lan a tio n  is a  pinching o u t o f th e  suevitic im pact breccia tow ards 

th e  c ra te r rim  (F ig u re  7 .4 b ). B reccia recovered from  well T - l  a t  c. 90 km rad ius is of 

bun te ra th e r th a n  suev itic  ty p e . T h is  is com posed p redom inan tly  of only lightly shocked 

or unshocked ta rg e t  m a te r ia l and  is m ore ca rb o n a te  rich th an  th e  suevitic breccia which 

consists of shock m elted  m a te ria l. U rru tia -F ucugauch i e t al. (1997) repo rted  th a t  sim ilar 

breccia in well U - 6  had  a  h igher velocity th a n  th e  suevitic breccia. Given th is  fact then  

it is likely th a t  th e  velocity  c o n tra s t a t  1.4 km d ep th  in m odel A -E 21 represen ts th e  

T ertia ry -b recc ia  horizon . If th is  is in te rp re ted  as th e  base of th e  T ertia ry  then  th e  oldest 

T ertia ry  sed im ents have a  sh ea r wave velocity o f c. 2.3 km s - 1  which is lower th a n  th a t  

modelled closer to  th e  c ra te r  cen tre . T h is  would be consisten t w ith th e  earlier hypothesis 

of a therm al b lan k et a lte rin g  th e  Palaeocene sed im ents w ith  resulting  higher velocities for 

th is  layer near th e  cen tre .

It is unclear w h a t th e  low velocity below th is  layer is and  th e  m odel resolution is poor. 

It is noted th a t  a  low velocity  layer is also modelled in A -E 1 8  a t  3.5 km d ep th  (the first low 

velocity layer a t  1.5 km  begin in te rp re ted  as th e  suevitic breccia). W hilst any correlation  

is tenuous, th is  deepen ing  could be a  resu lt of possible slum ping during  collapse of th e  

tran s ien t cavity. M organ  e t al. (1997) and H ildebrand e t al. (1998) m odel a  slum p zone 

from  >  45 km rad iu s  so th is  exp lanation  could be possible.
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7.3 Conclusions

High frequency c ru s ta l R ayleigh wave velocity dispersion across th e  C hicxulub im pact 

c ra te r  has been stud ied  to  investiga te  th e  sed im entary  infill and th e  near surface s tru c tu re  

of th e  c ra te r . T h e  m ain conclusions are:

•  F u n d am en ta l g ro u p  velocity  d ispersion curves from  0 .2 -5  Hz were successfully ob

ta ined  from  q u arry  b la s ts  using a  m ultip le filter technique. These were refined and 

isolated  from  th e  w aveform  allowing identification of higher m odes using a  phase 

m atched  filter a lth o u g h  am p litu d e  sp ec tra  were d is to rted  during  th e  application of 

th is filter. In te rs ta tio n  p hase  velocity curves were used to  identify th e  correct 2k 

m ultip le o f th e  curves. S im ple h a lf space m odelling of th e  curves allowed a  num ber 

of s ta te m e n ts  to  be m ade on th e  n a tu re  of th e  velocity s tru c tu re  o f the  upper few 

hundred  m etres.

•  A genetic a lgo rithm  w as applied  to  p roduce 1-D  shear wave velocity m odels resolving 

th e  u pper k ilom etre o f th e  c ru s t using only th e  fundam en tal m ode Rayleigh waves. 

T he app lication  o f a  G A  overcam e th e  bias associa ted  w ith th e  use a  s ta r tin g  m odel in 

o th er m ethods o f o p tim iza tio n  e.g ., SVD and provided a  full exp lo ra tion  of th e  model 

space. V aria tions w ith in  a  b est percen tage of m odels were show n to  be sufficient 

to  give an im m ed ia te  d e te rm in a tio n  o f m odel resolution. Inclusion of higher m ode 

dispersion curves im proved  th e  d ep th  range of th e  m odels and  increased th e  accuracy 

and reliability  of th e  m odel in th e  up p er regions. P rio r to  its  use, th e  GA was tested  

to  find th e  o p tim al p a ra m e te rs  to  m axim ize its  perform ance.

•  S ed im entary  fea tu res  have been re latively  well resolved by th e  1-D  velocity models, 

however th e  deeper s tru c tu re  re la tin g  to  c ra te r  m orphology is poorly  modelled and 

fea tu res  can n o t be unequivocally  identified. M oreover th e  wide s ta tio n  spacing and 

th e  restric tio n s  o f 1 -D  m odelling lim it th e  la tera l resolution and th e  uniqueness of 

th e  m odelled fea tu res . T h ese  restric tio n s have a  g rea te r effect on in te rp re ta tio n s  of 

c ra te r  s tru c tu re  w here large  la te ra l velocity inhom ogeneities are  presen t, th an  on 

in te rp re ta tio n s  o f th e  sed im ents.

•  T he  m odels highlight a  rad ia l infilling of th e  C hicxulub c ra te r  which has occurred 

du rin g  th e  T ertiary . T h e  youngest sedim ents possibly correspond to  th e  lower veloc-
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ities seen n ea r th e  cen tre  of th e  c ra te r  a lthough  th is  canno t be confirm ed w ithou t 

b e t te r  geological con tro l.

•  A n in v erted  velocity g rad ien t is m odelled w ith in  th e  upper 300 m of th e  T ertia ry  sed

im en ts  over m ost o f th e  region. T he  exception to  th is  is a  cen tral region c. 30-40 km 

in rad iu s  w here th e  velocity g rad ien t is norm al. T he inverted g rad ien t zone corre

sp o n d s to  w here a  dolom itic layer is seen to  occur from  borehole d a ta . T his layer is 

no t p resen t in wells drilled over th e  cen tra l area . T he dolom itization  m ay explain the  

inverted  velocities as a  resu lt o f increased porosity. A mixing zone fo rm ation  during  

a  la te  M iocene regression would best explain th e  dolom ite fo rm ation . A lternatively  

th e  velocity  s tru c tu re  m ay be a  resu lt o f increased ca rb o n a te  dissolution beyond a 

rad iu s  o f 40 km from  th e  c ra te r  cen tre .

•  An a b ru p t  increase in velocity is m odelled for th e  Palaeocene sedim ents. T he in

creased  velocities a re  no t obvious a t  rad ii of >60 km suggesting th a t  th e  high veloci

ties  m ay be re s tr ic ted  to  th e  a rea  w ith in  th e  tran s ien t cavity. O ne exp lanation  of th is 

re s tr ic tio n  m ay be th e  effect o f a  th e rm a l b lanket consisting of th e  m elt sheet and 

breccia w ith in  th e  tra n s ie n t cavity . T h is  m ay have driven hydro therm al a lte ra tio n , 

including possible do lom itiza tion  o r th e  preferential form ation of a rag o n ite  ra th e r 

th a n  calc ite . C om bined  w ith  subsequen t com paction  th is could p roduce th e  higher 

velocities.

•  T h e  b o u n d ary  betw een th e  base o f th e  T ertia ry  sedim ents and suevitic im p act breccia 

is clearly  visible a t  c. 1 -1 .5  km d ep th  as a  c. 30% decrease in shear wave velocities. 

Velocities in th e  P alaeocene sed im en ts range from  2.2-3 .2  km s - 1  w ith  th e  suevitic 

b reccia  velocities betw een 0 .9 -2 .4  k m s- 1 . T he  suevitic breccia also ap p ears  to  be 

lim ited  to  w ith in  a  60 km rad ius. B eyond th is  rad ius a  higher velocity is im aged 

b en ea th  th e  suspec ted  base o f th e  sed im ents. T his is m ost likely a  resu lt o f a  pinching 

o u t o f th e  suevitic  breccia and th e  in tro d u ctio n  of a  less shocked b u n te  breccia w ith 

a  g re a te r  com position  of unalte red  ca rb o n a te  clasts from  th e  ta rg e t rock.

•  A decrease  in d ep th  to  th e  breccia layer from  1.5 to  1 .1  km d ep th  is modelled 

betw een c. 30-40 km radius. T h is is in te rp re ted  as th e  resu lt o f th e  existence of a 

peak  ring occurring  as a  topograph ic  high above th e  c ra te r  floor. T he  velocity m odels
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are  explained  b est by th is  being form ed by th e  in teraction  between th e  outw ardly  

collapsing cen tra l j e t  and  and inw ardly collapsing tran s ien t cavity. However, a  low 

velocity ring com posed  o f im pact breccia overlying a  m elt sheet canno t be disproved. 

A peak ring com posed  of basem ent m ateria l a t  c. 50 km d iam eter fails to  m atch  th e  

m odels and  is considered unlikely. T he  rad ius to  th e  peak ring m ay be less on th e  

so u th eas t side o f th e  c ra te r  th a n  on th e  sou thw est, consisten t w ith a  central je t 

rebounding  u p ran g e  following an oblique im pact from  th e  southw est.

•  Any cen tra l up lift o f basem en t m ateria l can n o t have an upper surface shallower th an  

3 km d ep th . T h e  cen tra l uplift also ap p ears  to  be sp lit in to  two sections along 

a  so u th w est tren d in g  axis w ith  each side associated  w ith a  m axim a in th e  grav ity  

anom aly.

7.4 Further work

T h e  m odels p roduced  have helped identify  and  constra in  several featu res b u t still leave 

m any areas open  to  fu r th e r  research . F u tu re  stud ies can be divided in to  tw o sections: 

fu r th e r  field in v estig a tio n s an d  th e  ex tension of stud ies of existing d a ta .

•  A dditional su rface  wave m easu rem en ts could be m ade using an a rray  specifically 

designed for such a  s tudy . T h is would include sm aller recorder spacings and s ta tio n s  

in line w ith  sources th u s  allow ing in te rs ta tio n  phase and  7  m easurem ents to  be m ade. 

A record ing  s ite  s i tu a te d  a t  th e  q u a rry  would also rem ove all origin tim e erro r. Such 

a  s tu d y  could in co rp o ra te  a  re frac tion /re flec tion  study.

•  In s itu  m easu rem en ts  o f Qp from  th e  existing boreholes would enable causal effects 

to  be considered  an d  also allow investigations in to  th e  frequency dependence of Qp.

•  A p ro p e r w aveform  inversion for Qp s tru c tu re  could be a ttem p ted ; however it is 

d eb a tab le  w h e th e r th e  w aveform s are sensitive enough to  a tten u a tio n  to  m ake th is 

w orthw hile. A ny such s tu d y  would need to  include an investigation  in to  th e  effect 

th e  source func tion  has on waveform  shape over sh o rt p a th  lengths.

•  An ex am in a tio n  o f th e  dispersion from  regional events m ay allow th e  deeper s tru c 

tu re  across th e  a rray  to  be m odelled. Tow ards th e  end of th is p ro jec t a very brief
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ex am in a tio n  w as m ade o f an event occurring  b en eath  th e  C am peche bank. W hilst 

th is  ap p eared  to  be ex trem ely  com plex including higher m ode interference and little  

fu n d am en ta l m ode energy, th e  use o f different filter w id ths could possibly im prove 

th e  signal. Also o th e r  regional events would no t con tain  any possible effects resu lt

ing from  th e  o cean ic -co n tin en ta l tran s itio n  which occurs on th is  p a th  and so m ay 

be b e tte r  su ited  for any  such study .

•  S hear wave m odelling an d  an exam ina tion  o f th e  V p /V s  ra tio  could be m ade from th e  

onshore record ings o f th e  w ide angle d a ta . T his could help constra in  th e  1-D  shear 

wave m odels o b ta in ed  from  th e  d ispersion curves and should also provide evidence to  

su p p o rt or d isprove any  th e rm a l b lanket effect w ithin th e  cen tra l a rea  of th e  c ra te r.

•  N um erical m odelling o f c ra te r  fo rm ation  would allow tes tin g  o f several of th e  m odels 

o f peak ring fo rm a tio n . T h is  m odelling should also include th e  effects of an oblique 

im p act, especially in re la tio n  to  th e  fo rm ation  of a  cen tra l up lift to  help u n d erstan d  

th e  reason for th e  in te rp re ted  asym m etries.
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T able A .2: Recording schedule Ju lian  D ays 91-140.
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S ta tio n D ays Problem s Down T im e
deployed D ays (%) D ays (%)

D 05 17 7 (41.2)
D 5b 64 2 1 (32.8)
D 08 8 6

D 13 96 4 (4.2)
D 21 1 0 0

D 26 93 1 (1 .1 )
D 33 1 0 0 8 (8 )
D 38 96 2 (2 .1 )
E04 98 8 (8 .2 )
E 07 17
E 7 b 70 8 (11.4) 5 (7.1)
E12 74 18 (24.3)
E 13 7
E18 G 47 42 (89.4) 5 ( 1 0 .6 )
E18 S 57
E21 74 1 0 (13.5)
E25 89
F 0 5 93 18 (19.4)
F10 97 5 (5.2)
F 13 91 7 (7.7)
F 19 8 6

F22 91
F 25 97 1 0 (10.3)

T O T A L 1724 1 0 1 (5.9) 70 (4.1)

T ab le  A .3: S u m m ary  of s ta tio n  recording sta tis tic s .
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Teleseism ic and Regional Events

Regional and  teleseism ic even ts recorded  by th e  C hicxulub a rray  are  listed in th e  follow

ing pages an d  show n in F ig u re  B .l .  H ypocen tra l details  were ob ta ined  from  earthquake  

in fo rm ation  lists  p roduced  by th e  USG S.



B. Teleseismic and Regional Events 195

Date Tim e Location Depth Mag. Region

10-Feb-96 07:48:27 15.2N 92.6W 33 MB=3.8 MEXICO-GUATEMALA BORDER
12-Feb-96 09:08:12 11.0S 118.9E 33 MS=5.7 S OF SUMBAWA, INDONESIA
14-Feb-96 21:26:56 29.2N 140.4E 139 MB=5.9 SOUTH OF HONSHU, JAPAN
16-Feb-96 15:22:58 37.5N 142.4E 33 MB=6.2 OFF E CST OF HONSHU, JAPAN
16-Feb-96 16:53:33 15.6N 93.6W 33 MB=4.5 NEAR COAST OF CHIAPAS, MEX
17-Feb-96 05:59:30 1.0S 136.9E 33 MS=8.0 IRIAN JAYA REG, INDONESIA
17-Feb-96 10:23:42 14.ON 91.2W 33 MB=5.2 NEAR COAST OF GUATEMALA
21-Feb-96 12:51:04 9.7S 79.7W 33 MS=6.7 OFF COAST OF NORTHERN PERU
21-Feb-96 13:47:20 9.5S 80.2W 33 MB=5.6 OFF COAST OF NORTHERN PERU
22-Feb-96 08:38:36 8 .6 N 83.2W 33 MB=5.0 COSTA RICA
22-Feb-96 13:40:53 33.6S 71.3W 44 MB=5.9 NEAR COAST OF CEN CHILE
25-Feb-96 03:08:16 16.ON 97.9W 33 M S=6 .8 NEAR COAST OF OAXACA, MEX
25-Feb-96 04:00:08 16.ON 97.9W 33 MB=4.0 OAXACA, MEXICO
25-Feb-96 04:17:09 15.9N 97.9W 33 MB=5.3 NEAR COAST OF OAXACA, MEX
25-Feb-96 04:49:13 16.ON 97.8W 33 MB=3.8 OAXACA, MEXICO
25-Feb-96 05:07:08 15.5N 98.0W 33 MB=4.4 NEAR COAST OF OAXACA, MEX
25-Feb-96 05:34:28 15.9N 97.8W 33 MB=4.9 NEAR COAST OF OAXACA, MEX
25-Feb-96 05:40:29 16.IN  97.6W 33 MB=4.8 OAXACA, MEXICO
25-Feb-96 05:53:12 16.4N 97.8W 33 MB=4.1 OAXACA, MEXICO
25-Feb-96 06:10:25 16.ON 97.8W 33 NO MAG OAXACA, MEXICO
25-Feb-96 06:24:35 15.9N 98.OW 33 MB=4.4 NEAR COAST OF OAXACA, MEX
25-Feb-96 06:31:07 15.9N 97.4W 33 MB=4.2 NEAR COAST OF OAXACA, MEX
25-Feb-96 07:50:50 15.7N 97.7W 33 MB=4.3 NEAR COAST OF OAXACA, MEX
25-Feb-96 08:44:50 16.6N 97.6W 33 MB=4.6 OAXACA, MEXICO
25-Feb-96 09:07:26 16.3N 97.8W 33 M B=4.4 OAXACA, MEXICO
25-Feb-96 09:17:59 16.IN  97.9W 33 MB=5.7 OAXACA, MEXICO
25-Feb-96 10:20:57 15.7N 97.7W 33 MB=4.4 NEAR COAST OF OAXACA, MEX
25-Feb-96 12:18:39 16.2N 97.8W 33 MB=4.2 OAXACA, MEXICO
25-Feb-96 14:17:20 12.9N 91.OW 33 MB=5.5 OFF COAST OF CEN AMERICA
25-Feb-96 14:27:30 16.IN  97.7W 33 MB=5.3 OAXACA, MEXICO
25-Feb-96 14:44:12 16.IN  97.7W 33 MB=4.8 OAXACA, MEXICO
25-Feb-96 14:46:59 16.ON 97.6W 33 MB=4.5 OAXACA, MEXICO
25-Feb-96 14:47:54 16.IN  97.7W 33 MB=4.6 OAXACA, MEXICO
25-Feb-96 14:51:57 15.8N 97.8W 33 MB=5.2 NEAR COAST OF OAXACA, MEX
25-Feb-96 14:54:12 16.IN 97.8W 33 MB=5.0 OAXACA, MEXICO
25-Feb-96 15:02:32 16.IN 97.7W 33 MB=4.6 OAXACA, MEXICO
25-Feb-96 15:04:13 15.9N 97.9W 33 MB=4.9 NEAR COAST OF OAXACA, MEX
25-Feb-96 15:08:37 16.ON 97.7W 33 MB=4.7 OAXACA, MEXICO
25-Feb-96 15:09:20 15.9N 97.7W 33 MB=4.5 NEAR COAST OF OAXACA, MEX
25-Feb-96 15:48:14 16.5N 97.8W 33 MB=4.5 OAXACA, MEXICO
26-Feb-96 01:37:33 15.8N 97.7W 33 MB=5.1 NEAR COAST OF OAXACA, MEX
26-Feb-96 02:32:15 16.ON 97.8W 33 MB=4.0 OAXACA, MEXICO
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26-Feb-96 07:33:38 15.7N 97.6W 33 MB=5.0 NEAR COAST OF OAXACA, MEX
26-Feb-96 12:00:28 15.9N 97.7W 33 MB=4.5 NEAR COAST OF OAXACA, MEX
26-Feb-96 12:56:59 16.2N 97.7W 33 MB=4.4 OAXACA, MEXICO
26-Feb-96 22:01:23 16.3N 97.9W 33 MB=4.7 OAXACA, MEXICO
26-Feb-96 22:02:30 15.8N 98.1W 33 MB=4.9 OFF COAST OF GUERRERO, MEX
28-Feb-96 04:38:51 11.8 N 87.5W 33 MB=4.6 NEAR COAST OF NICARAGUA
28-Feb-96 19:41:37 15.9N 97.9W 33 MB=4.6 NEAR COAST OF OAXACA, MEX
29-Feb-96 16:58:40 4.2N 83.9W 10 MB=4.9 OFF COAST OF CEN AMERICA
03-Mar-96 14:55:06 10.9N 86.7W 33 MS=6.4 OFF COAST OF COSTA RICA
03-Mar-96 14:58:53 11.IN  8 6 .8 W 33 MB=5.5 NEAR COAST OF NICARAGUA
03-Mar-96 16:37:26 11.IN  8 6 .7W 33 M S=6 .6 NEAR COAST OF NICARAGUA
04-Mar-96 12:39:40 13.7N 93.OW 33 MB=4.7 OFF COAST OF CHIAPAS, MEX
05-Mar-96 19:48:23 11.2N 86.9W 33 MB=5.2 NEAR COAST OF NICARAGUA
07-Mar-96 04:27:50 10.8N 8 6 .1W 33 MB=4.9 OFF COAST OF COSTA RICA
07-Mar-96 05:29:10 11.4N 87.1W 33 MB=4.4 NEAR COAST OF NICARAGUA
10-Mar-96 06:19:59 16.4N 98.2W 33 MB=4.4 NR COAST OF GUERRERO, MEX
10-Mar-96 10:03:39 17.6N 94.4W 33 MB=4.4 CHIAPAS, MEXICO
12-Mar-96 05:24:19 16.ON 97.6W 33 MB=4.7 OAXACA, MEXICO
13-Mar-96 21:04:19 16.8N 98.8W 33 MB=5.2 NR COAST OF GUERRERO, MEX
14-Mar-96 09:12:11 19.3N 91.9W 33 MB=4.4 BAY OF CAMPECHE
15-Mar-96 23:33:55 16.7N 98.1W 33 MB=4.3 NR COAST OF GUERRERO, MEX
16-Mar-96 22:04:06 29.ON 138.9E 476 M W =6 .6 SOUTH OF HONSHU, JAPAN
17-Mar-96 14:48:56 14.7S 167.2E 164 M S=6 .0 VANUATU ISLANDS
19-Mar-96 15:31:36 24.9N 109.4W 10 MB=4.9 GULF OF CALIFORNIA
19-Mar-96 17:12:42 15.8N 97.2W 33 MB=5.8 NEAR COAST OF OAXACA, MEX
20-Mar-96 04:44:50 16.4N 97.1W 33 MB=4.3 OAXACA, MEXICO
20-Mar-96 04:53:26 15.8N 97.2W 33 MB=5.4 NEAR COAST OF OAXACA, MEX
20-Mar-96 18:08:41 15.8N 97.2W 33 MB=5.3 NEAR COAST OF OAXACA, MEX
22-Mar-96 03:24:21 51.3N 178.6E 33 MS=6.7 RAT ISL, ALEUTIAN ISLANDS
22-Mar-96 10:30:26 16.IN  97.9W 33 MB=4.8 OAXACA, MEXICO
23-Mar-96 03:05:53 8.3N 72.7W 199 MB=4.9 VENEZUELA
27-Mar-96 12:34:49 16.4N 98.OW 33 MB=5.5 OAXACA, MEXICO
27-Mar-96 20:52:06 11.7N 8 8 .OW 33 MB=5.6 NEAR COAST OF NICARAGUA
28-Mar-96 23:03:49 1.1S 78.6W 33 MB=5.7 ECUADOR
30-Mar-96 13:05:17 52.4N 168.8W 33 MS=6.2 FOX ISL, ALEUTIAN ISLANDS
01-Apr-96 03:43:02 16.6N 95.7W 58 MB=5.1 OAXACA, MEXICO
01-Apr-96 05:06:09 14.6N 93.5W 33 MB=5.2 NEAR COAST OF CHIAPAS, MEX
01-Apr-96 06:10:52 14.5N 93.4W 33 MB=5.3 NEAR COAST OF CHIAPAS, MEX
03-Apr-96 23:00:48 14.7N 93.4W 33 MB=5.1 NEAR COAST OF CHIAPAS, MEX
09-Apr-96 01:29:23 16.4N 98.8W 33 MB=4.7 NR COAST OF GUERRERO, MEX
09-Apr-96 03:00:13 16.2N 98.6W 33 MB=4.7 NR COAST OF GUERRERO, MEX
10-Apr-96 04:05:29 16.3N 98.OW 33 NO MAG OAXACA, MEXICO
10-Apr-96 23:24:13 13.OS 76.OW 70 MB=5.0 NEAR COAST OF PERU
10-Apr-96 23:51:31 10.ON 70.1W 33 MB=4.9 VENEZUELA
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11-Apr-96 21:57:46 13.6N 90.9W 33 MB=4.5 NEAR COAST OF GUATEMALA
12-Apr-96 18:45:50 6 .OS 154.5E 33 MS=5.9 SOLOMON ISLANDS
13-Apr-96 19:49:41 16.4N 98.9W 26 MB=4.3 NR COAST OF GUERRERO, MEX
16-Apr-96 00:30:54 24.IS 177.2W 110 M S=6 .8 SOUTH OF FIJI ISLANDS
19-Apr-96 00:19:31 23.8S 70.OW 49 MS=6.1 NORTHERN CHILE
23-Apr-96 06:53:35 17.3N 101.3W 33 MB=5.3 NR COAST OF GUERRERO, MEX
24-Apr-96 17:06:36 8 .IS 74.3W 150 MB=5.6 PERU-BRAZIL BORDER REGION
24-Apr-96 18:56:22 18.8N 70.4W 80 MB=5.2 DOMINICAN REPUBLIC REGION
27-Apr-96 08:40:46 3.ON 79.3W 10 MS=5.9 SOUTH OF PANAMA
29-Apr-96 14:40:41 6.5S 154.9E 44 MS=7.5 SOLOMON ISLANDS
29-Apr-96 22:31:15 8 .IN 39.OW 10 MB=5.0 CENTRAL MID-ATLANTIC RIDGE
02-May-96 02:32:35 6.4S 154.6E 33 MS=6.0 SOLOMON ISLANDS
03-May-96 04:04:22 47.8N 121.9W 5 MB=5.4 WASHINGTON
07-May-96 08:44:36 1.6N 126.6E 33 MS=5.9 NORTHERN MOLUCCA SEA
07-May-96 18:25:59 16.2N 97.4W 33 MB=4.5 OAXACA, MEXICO
07-May-96 21:43:41 14.9S 69.7W 242 MB=5.1 PERU-BOLIVIA BORDER REGION
07-May-96 23:20:00 43.7N 147.6E 49 MB=6.2 KURIL ISLANDS
08-May-96 01:24:40 16.5N 100.0W 33 MB=4.3 NR COAST OF GUERRERO, MEX
09-May-96 21:54:13 18.8N 104.3W 33 MB=4.9 NEAR COAST OF JALISCO, MEX
10-May-96 00:33:01 14.IN  91.9W 33 MB=4.2 GUATEMALA
10-May-96 10:19:38 13.9S 74.3W 101 MB=5.3 CENTRAL PERU
ll-M ay-96 13:43:45 6.5S 154.8E 33 MS=6.4 SOLOMON ISLANDS
13-May-96 04:53:47 7.2N 76.9W 27 MB=5.1 NORTHERN COLOMBIA
15-May-96 14:07:54 13.6N 91.OW 33 MB=4.4 NEAR COAST OF GUATEMALA
16-May-96 10:24:14 14.8N 93.1W 33 MB=4.0 NEAR COAST OF CHIAPAS, MEX
17-May-96 05:54:07 15.8N 91.8W 224 MB=4.5 MEXICO-GUATEMALA BDR REG
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F ig u re  B .l :  L ocations of teleseism ic and regional events.
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Local Event Locations

T h e  following tab le  lists  local even ts  located  using th e  H Y P O IN V E R SE  program  (Klein, 

1990). T he  fo rm a t is as follows:

D a te  - Y ear, m o n th  an d  d ay  o f event

T im e - H our m in u te  an d  decim al second of calcu lated  origin tim e 

L at - L a titu d e , degrees an d  decim al m inu tes N orth  

Lon - L ong itude, degrees an d  decim al m inu tes W est 

D ep - D ep th  in m etre s  (fixed d u rin g  final location)

RM S - RM S trav e l tim e  residual

ERH  - H orizon ta l e rro r, km . T h is  is defined as th e  largest p ro jec tion  o f th e  th ree  principal 

erro rs  o n to  th e  h o rizo n ta l p lane and  is app rox im ates th e  m ajo r axis of th e  erro r elipse.

Q - Identified as o rig in a tin g  from  q u arry : 1 - F lam boyanes, 2 - D zitya, 3 - N ear air

p o rt. Iden tifica tion  based  on corre la tion  of G P S  location  and d a tes  of b lasts for 

F lam b o y an es an d  D z ity a  an d  corre la tion  o f belived location  for a irp o rt.
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Date Tim e Lat (N) Lon (W) Depth (m) RMS ERH Q

96- 2-12 2034 53.64 21 4.95 89 40.66 5 0.31 1.06 2
96- 2-13 2037 36.29 21 6.81 89 47.38 5 1 .2 0 6 .0 0
96- 2-15 1613 29.07 21 2.50 89 30.18 5 0 .1 2 1.48
96- 2-16 1806 25.05 21 14.10 89 40.55 10 0 .1 1 0.85 1
96- 2-16 2320 59.80 2 0 56.45 89 39.79 5 0 .1 1 0.56 3
96- 2-17 1811 44.79 21 2.38 89 39.56 10 0 .1 2 0.45
96- 2-17 1903 46.78 21 1 0 .0 2 89 38.14 5 0.14 1 .1 2
96- 2-17 2013 50.33 21 5.00 89 40.93 5 0.09 0.60 2
96- 2-21 1735 44.77 2 0 56.04 89 39.98 5 0.13 0.39 3
96- 2-21 1813 40.78 21 1 0 .2 1 89 38.63 5 0 .1 2 0.51
96- 2-21 2345 6.25 21 6.80 89 41.28 5 0 .2 0 0.81 2
96- 2-22 1818 54.99 21 2.54 89 44.41 10 0.15 0.39
96- 2-23 1656 34.33 21 3.24 89 30.79 5 0.24 0.64
96- 2-23 1905 45.38 2 0 56.31 89 40.37 5 0.14 0.37 3
96- 2-24 1710 18.09 21 13.36 89 39.96 10 0.14 0.76 1
96- 2-26 1804 37.75 21 4.02 89 41.09 5 0.13 0.89 2
96- 2-26 1904 46.21 2 0 57.22 89 39.79 5 0.14 0.44 3
96- 2-28 2045 18.73 21 5.08 89 41.56 5 0.25 0.99 2
96- 2-28 2323 48.81 21 12.41 89 40.01 10 0.13 0.57 1
96- 2-29 1913 35.63 21 3.56 89 31.09 5 0.19 0.63
96- 3-06 0008 4.52 21 4.60 89 41.04 5 0 .1 0 0.40 2

96- 3-06 1700 47.42 2 0 57.31 89 40.96 5 0.14 0.36 3
96- 3-07 1649 5.00 2 0 56.91 89 40.67 5 0.09 0.48 3
96- 3-09 1728 12.37 2 0 56.85 89 40.25 5 0 .2 0 0.51 3
96- 3-09 2041 29.64 21 4.94 89 40.95 5 0.14 0.99 2

96- 3-12 2142 40.34 21 4.98 89 41.66 5 0.24 1.18 2

96- 3-13 1916 44.76 21 4.21 89 31.85 5 0.29 0 .8 6
96- 3-13 2343 33.34 21 13.71 89 40.17 10 0 .1 0 0.51 1
96- 3-14 2116 15.77 21 11.46 89 19.69 5 0 .1 0 0.32
96- 3-15 1642 53.69 2 0 56.93 89 40.17 5 0 .2 0 0.51 3
96- 3-16 1825 59.74 21 13.76 89 39.88 10 0 .1 0 0.57 1

96- 3-16 1912 37.79 21 1.84 89 39.58 10 0 .1 2 0.35
96- 3-19 2007 14.34 21 1 0 .0 0 89 38.07 5 0 .1 2 0.81
96- 3-21 1931 58.99 21 13.74 89 40.00 10 0.15 0.61 1
96- 3-22 2331 51.88 21 4.50 89 40.95 5 0.13 0.83 2

96- 3-26 0023 7.64 21 4.63 89 31.59 5 0.16 0.72
96- 3-26 1724 11.14 21 4.89 89 41.13 5 0.08 0.49 2

96- 3-27 1924 58.04 2 0 56.25 89 40.47 5 0 .1 2 0.48 3
96- 3-27 2024 2.60 21 8.46 89 45.60 10 0.23 0.70
96- 3-28 1738 39.19 2 0 56.37 89 40.23 5 0 .2 2 0.52 3
96- 3-28 1825 34.08 21 13.88 89 40.45 10 0.08 0.48 1
96- 3-28 2216 1.43 2 0 56.26 89 40.16 5 0 .1 2 0.39 3
96- 3-28 2301 22.47 21 5.05 89 40.87 5 0 .1 0 0.61 2

96- 3-30 1751 42.04 2 0 56.09 89 40.48 5 0.17 0.43 3
96- 3-30 2332 36.14 21 5.43 89 41.05 5 0.27 0.61 2

96- 4-04 1617 35.53 21 3.43 89 41.85 5 0.08 0.49
96- 4-09 1609 32.53 21 4.02 89 41.36 5 0.14 0.56 2

96- 4-09 1928 23.50 21 4.99 89 41.14 5 0.13 0.44
96- 4-10 1830 35.57 2 0 57.62 89 40.53 5 0.16 0.46 3
96- 4-10 2109 59.76 21 4.45 89 41.08 5 0 .1 2 0.51 2
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A p p e n d ix  D

In stru m en t D etails

T h e eq u ip m en t used  in M exico consisted of PD A S recorders and th ree  types of seism om e

ters . T he d e ta i l s  o f th ese , th e ir  responses and associated  intrinsic problem s are given 

w ith in  th is  A p p e n d ix .

D .l  S e ism o m e te r s

T hree ty p e  o f  se ism o m ete rs , th e  Teledyne G eotech S13, G ura lp  C M G -40T and G ura lp  

C M G -3T  w ere  u sed . T h e  S13 is a  sh o rt period in stru m en t w ith a n a tu ra l frequency of 1 Hz 

and  a  velocity  re sp o n se  w hich is fla t above th is  frequency (F igure D .l) .  B oth G uralps are 

b roadband  in s t ru m e n ts ,  th e  C M G -3T  w ith a  frequency band  of 0 .01-50 Hz and th e  CM G- 

40T  from  30 se c o n d s -5 0  Hz. W ith in  these ranges th e  in stru m en ts have a  flat response 

(F igure D .2 ).

T h e  se ism o g ram s o b ta in ed  are  a  convolution of th e  ac tua l ground response and  th e

150 —

F ig u re  D . l :  A m p litu d e  and phase response for th e  Teledyne Geotech S13.
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dB

CM G-40TAM P-15
180

Deg

-180
125mHz 0.05 100Hz

Figure D.2: A m plitude  an d  phase  response for th e  G u ra lp  C M G -40T . T he response of the  
C M G -3T  is sim ilar b u t w ith  a  fla t response over a  w ider frequency range.

Seism om eter P re -am p  gain E x te rn a l gain Full scale reading Sensitivity

S13 1 High ±  1 V 629 V /m /s
G ura lp 1 Low ±  20 V 800 V /m /s  (40T)

1400 V /m /s  (3T)

Table D .l:  G ain  se ttin g s  for th e  seism om eters used and th e ir associated  m axim um  reading.

sensor responses (in th e  tim e  d o m ain ). P rio r to  th e  surface wave analysis th e  traces had 

to  be corrected  for th e  in s tru m e n t responses. T hese were removed using SAC and the  

pole-zero values of th e  in s tru m e n ts  (in th e  case of th e  S l3 s  th e  theoretical values for a  

dam ping  co n s tan t o f 0.7 and  for th e  G u ra lp s  th e  m anufac tu rers  values).

Differences in th e  in s tru m e n t sensitiv ities were corrected  for a t  th e  sam e tim e as the  

corrections for th e  reco rder gain  se ttin g s  (Table D .l ) .

D .2  T h e P D A S  record er

T h e PD A S recorders were p ro g ram m ed  to  record w ith a  sam pling ra te  of 100 s /sec  in 32 

b it gain ranged fo rm a t. G ain  se ttin g s  are show n in Table D .l .  P rio r to  the  calculation of 

7 , th e  re la tive am p litu d e  differences resu lting  from  th e  different gain settings had to  be 

accounted for.

T he high perfo rm ance o f th e  PD A S recorder (and m ost m odern digital recorders) 

resu lts from  oversam pling  and  decim ation  techniques which require very steep  anti-alias 

filters. T h is  is achieved by th e  use of zero phase F IR  filters which cause no phase d istortion  

b u t can resu lt in a  false p recu rso ry  signal of im pulsive phase arrivals (Figure D .3). T his is 

a  resu lt o f th e  steepness o f th e  filter which causes a  “ringing” of th e  filter response (G ibb’s



D. Instrum ent D etails 204

FIR filter effect

x>
Q.
E<

Time

F igure  D .3: O bserved  an d  tru e  P  arrival show ing precursor generated  by th e  in ternal F IR  
filter (a fte r S cherbaum , 1996).

phenom enon) (S cherbaum , 1996; S cherbaum  and Bouin, 1997; Scherbaum , 1997).

It is advised to  rem ove th is  effect p rio r to  any analysis requiring onset tim e or polarity  

by replacing th e  m ax im um  ph ase  p o rtio n  of th e  filter by a  m inim um  phase equivalent 

(S cherbaum , 1996). H owever in o rd e r to  do  th is  th e  F IR  filter coefficients m ust be known 

and  for th e  P D A S  in s tru m e n t th ese  a re  unavailab le from  th e  m anufac tu rers  (F . Scherbaum , 

pers. com m .). It is generally  believed th a t  these  precursors can be recognized by the  

m onochrom atic  n a tu re  how ever it  has been show n th a t  they  can in fac t be com plex m aking 

them  im possible to  d is tin g u ish  unless com pared  to  a  corrected  signal (Scherbaum  and 

B ouin, 1997). It is th e re fo re  unknow n w h e th e r or no t th is  problem  exists w ith  th is  d a ta  

se t how ever it is unlikely as th e  only  tim e  th is  has been observed to  be a  problem  w ith the  

PD A S recorder w as d u rin g  th e  record ing  o f contro lled  source d a ta  a t  very sh o rt (<  1 km) 

p a th  leng ths (P. D en to n , pers. com m .).
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F . l  F u n d am en ta l m o d e m od els
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