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C h ris to p h e r  Ju lia n  S u tto n  

In co m p le te  d a ta  in even t h is to ry  analysis 

A b s tra c t

Incomplete data present a serions problem in the modelling of event histories. 
Two particular forms of incompleteness are in evidence for data of this form. 
The first is due to recording of event times in interval-censored form. For single 
non-repeatable events this can be accommodated by using methods for modelling 
grouped survival times, such as those of Prentice and Gloeckler (1978) and Finkel- 
stein (1986). The other, more serious, problem relates to incomplete recording 
of follow-up measurements which would typically be included as time-dependent 
covariates in survival models. A number of methods exist for handling incomplete 
data. These include multiple imputation for variables subject to incompleteness 
and the application of iterative algorithms such as EM and the data augmentation 
algorithm.

In this thesis, a method for handling both these types of incompleteness is de­
rived based on multiple imputation combined with an adaptation of Finkelstein’s 
method to handle time-varying covariates. This method is then investigated via 
Monte Garlo simulation and applied to data arising from the annual screening 
of those aged 75 years and over in the town of Melton Mowbray, as performed 
through the local general practice. Its performance is compared with th a t of more 
traditional approaches to modelling data collected in studies of this type. It is 
shown th a t parameter estimates can be considerably affected by the choice of ap­
proach to modelling. Whilst there are some problems with the implementation of 
this technique, particularly with reference to the model for the multiple im puta­
tion of the repeated risk factor values, it shows promise for application to studies 
of this form, particularly if combined with improved models for multiple impu­
tations. The data from the annual screenings are assumed missing at random, 
but the techniques used could be extended to cover non-ignorable missing data 
mechanisms of known form.
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C h a p ter  1 

In tro d u c tio n

Incomplete data in event history analysis is a topic which has aspects of repeated 

measurements, due to the accumulation of covariate information from an indi­

vidual's ‘history’, survival data, due to the interest in one or more ‘events’, and 

missing data, because the information on both the covariate history and, some­

times, the survival times is incomplete. Whilst there is extensive literature on 

each of the topics of repeated measures data, survival data and missing data indi­

vidually, tha t dealing with their intersection is considerably more limited. This 

thesis covers these three subject areas.

Sections 1.1-1.3 briefly review the extensive literature on the three areas. The 

remainder of the thesis aims to draw together these three areas with particular 

emphasis of the analysis of event history data subject to various forms of in­

completeness. The practical rationale for the coverage of this theoretical area is 

information accruing from health checks, regular screenings or long-term follow- 

ups. Examples of relevant types of study include the annual screening of the 

elderly by General Practitioners and the Framingham heart study.

Particular emphasis is placed on the analysis of data resulting from the General 

Practitioners’ screening of the elderly in the United Kingdom. The offer of such



screening is now compulsory under the revision of the G Ps’ contracts in 1990. 

The screening is offered triennially to patients between the ages of 65 and 74 and 

annually from the age of 75.

In assessing the effect of various health measures on survival or other changes 

of state, it is desirable to include any relevant information on changing values 

of risk factors. Many procedures currently widely applied to event history data 

fail to make any use of the changing risk factors whilst few attem pt to make full 

and appropriate use of these. A variety of methods presently applied to event 

history data with repeated risk factor measurements will be reviewed in Ghapter 

2 . Some of those applied in growth curve analysis and survival analysis will then 

be investigated in detail in Chapters 3, 4 and 5 with a view to their application 

to event history data with incomplete recording of risk factors and event times.

1.1 R e p e a ted  M easu res D a ta

Repeated measures is a general term  for data consisting of two or more measure­

ments of one or more characteristics on the same experimental unit. Many designs 

of experiments and studies result in the collection of such data, ranging from a 

simple paired design (analysed using a paired t-test in the case of normally dis­

tributed data) to designs where there are several measurements of a number of 

‘response’ variables of a variety of types (eg. categorical, continuous). Longitudi­

nal studies monitoring the time to death may be viewed as a special form of the 

latter.

The resulting data are usually in the form of a three-dimensional array, consist­

ing of T  ‘measurements’ of p  characteristics on n  experimental or observational



units. In many, but not all designs, either T = l o r p  =  l. I f T  =  l  the data are 

not ‘repeated measures’ and if p =  1 , the data are not ‘m ultivariate’ in the usual 

sense. These data are usually viewed as responses and therefore yijk will be used 

to denote the repeated measurement of the characteristic on the unit.

Much of the data and resulting methodology arising from longitudinal studies 

can be classified as q u a n tita tiv e  re p e a te d  m easures . Methods of analysis 

range from simple univariate and graphical methods to mathematically sophisti­

cated techniques. A number of books and review papers have been published in 

recent years. Most of these have concentrated largely or entirely on quantitative 

data under the assumption of normality. More recently, these methods have been 

extended to cover other members of the exponential family of distributions. For a 

comprehensive coverage the reader is directed to the books by Crowder and Hand 

(1990), Lindsey (1993) and Diggle, Liang and Zeger (1994).

1.1.1 B asic  m e th o d s

As with all data analysis, the first step should be to use some appropriate dia­

grammatic representation. This will help the analyst visualise the structure of the 

data and, unless suggested by some previously known theory, lead to the proposal 

of one or more models. The standard technique used is to plot the individuals’ 

profiles against time. Plots of response, corrected for time trends, against poten­

tially im portant explanatory variables are often useful for identifying the form, if 

any, of the relationship. Another useful form of plot is tha t of the individuals’ 

residual profiles following removal of the mean profile. Such a plot can be useful 

in highlighting various features of individuals such as consistently high or low pro­

files, a feature known as track in g . Non-parametric curve fitting methods such 

as kernel estimation, splines and lowess may be used to highlight the underlying



pattern  of the mean over time. This has the advantage over individual profiles 

th a t the diagram is less cluttered.

Although, on occasions, repeated t-tests or other basic statistical methods are 

applied at each time point, these tests are not independent and therefore the usu­

al forms of drawing inferences are invalid. An improvement to repeated t-tests 

is the use of resp o n se  fe a tu re  analysis. This technique involves summarising 

a small number of im portant features of an individual’s profile and performing 

a univariate analysis on each. Response feature analysis has the advantage tha t 

the experimenter must consider which is the most important feature of a profile 

or, on occasions, the two or three most important features. The most commonly 

used response feature is the a re a  u n d e r  th e  cu rve (AUC). Other frequently 

used features are the maximum (or minimum) value, the time to maximum (or 

minimum) response, the regression coefficient, the final value, the increase (or 

decrease) or percentage change between first and last value and time to reach a 

particular value. The choice of feature should always depend on the question, or 

questions, of interest to the investigator. Important additional advantages of the 

use of response features analysis are tha t they result in the use of statistically 

valid techniques and, to a certain degree, can accommodate irregular or missing 

observations (Matthews, 1993).

1.1.2 A nalysis o f V ariance M eth o d s

Standard analysis of variance techniques, incorporating both fixed and random 

effects, can be applied to repeated measures data in certain circumstances. How­

ever, the F-tests used are only valid if certain conditions hold. These conditions 

are the usual condition of normality of the response variable together with that 

of sp h e ric ity  of the covariance matrix of p — 1 orthogonal contrasts between the



p  repeated measurements. One way of specifiying this condition is that, for two 

measurements X j  and Xk, Var(Xj — Xk) is constant for all j  and k (Crowder and 

Hand, 1990). A sufficient condition, however, is that the covariance matrix of 

the repeated measures has com pound sym m etry. A covariance m atrix E for a 

vector of repeated measures %  is said to have compound symmetry if:

Var(D) =  Vj

C o v (} j , } k )  =  VA& S.t. j f k .

Various correction factors for the univariate F-tests have been widely employed. 

These adjust the degrees of freedom of both numerator and denominator by the 

same correction prior to computation of the p-value for each test. An alternative 

approach, which has the main advantage tha t no assumption is made about the 

form of the covariance matrix, is tha t of multivariate analysis.

In situations where a t-test (either one-sample or two-sample) would be used if 

the data consisted of a single measurement. H otellin g’s is usually applied. 

In the single group case, the test statistic for testing Ho : ^  =  has the form

where n is the sample size, ÿ  is the sample mean and S  is the sample covariance 

matrix.

In the two group case the form when testing Ho : ^  ^  is

=  (nr^ -F Tig ^)(^^ -  -  & )

where Mi and Mg are the samples sizes for the two groups, and are the

respective sample mean vectors and S  is the pooled covariance matrix. In cases 

where ANOVA would be used in the univariate case, the extension to multivariate



analysis of variance (MANOVA) is appropriate. Various test criteria have been 

developed based on the eigenvalues of the appropriate sums of squares and prod­

ucts matrices. These include Wilk’s lambda, Roy’s largest root and the Lawley- 

Hotelling trace.

1.1.3 G eneral Linear M odelling

As in the case of a univariate response, the traditional ANOVA and regression 

methods can be unified under a linear modelling framework. The model is known 

as the general linear m odel where the observed vector of responses y  has mean 

vector and covariance matrix E ,  where X  is a matrix of explanatory

variables (potentially including indicator variables) and ^  is a fixed but unknown 

vector of parameters. The simplest situation, corresponding to the MANOVA 

mentioned in Section 1.1.2, has an unstructured form for S .  The methods of 

generalised least squares and m axim um  likelihood both lead to the estima­

tor

where E  is assumed to be known. In practice, E  is unknown and replaced by 

an appropriate estimator. This model can be extended to cover missing values in 

the V ; and estimated using maximum likelihood, although it is necessary to use 

an iterative procedure to estimate ^  and E.

The general linear model can be extended to cover structured covariance m atri­

ces. If there are p repeated measurements on n  individuals, rather than estimating 

\p{p  -F 1 ) covariance parameters which leads to inefficient estimation unless n  is



large compared with p, an appropriate structure may be assumed for E .

Both the independence model, with E  = a ‘̂ 1, and the compound symmetry 

model with E  = a ^ I  + apJ  and previously discussed in Section 1.1.2, are simple 

forms of a general linear model with structured covariance matrix. Other possi­

ble forms include the equicorrelated model, where E  = S[{1 — p) I  + p j]  S  with 

S  = diag((Ji,. . . ,  (Tp), autoregressive models, for example the first-order autore­

gressive process with E  = (cTÿ) where and a random effects model

where E  =  Z D Z '^  + a ^ I  where Z  is a known matrix of explanatory variables and 

D  is the covariance matrix of the subject-specific random effects. This random 

effects model has been widely applied over recent years. Laird and Ware (1982) 

discussed a general family of such models, using a combination of empirical Bayes 

and maximum likelihood estimation via the EM algorithm (see Section 1.3.2). It 

is commonly used in growth curve modelling where each individual is assumed 

to have its own, often linear, growth curve over time and where each individual’s 

parameter vector is assumed to be a random vector from a distribution, usually 

multivariate normal, with unknown but fixed mean vector and covariance matrix. 

O ther similar random effects models can be specified using multilevel modelling 

techniques (Goldstein, 1995). In growth curve modelling, models of the family de­

fined by Laird and Ware (1982) are usually known as the ra n d o m  coefficients 

m o d e l or a tw o -stag e  random -effec ts  m odel.

Jennrich and Schluchter (1985) considered the computation of maximum like­

lihood estimates under a model for which the expected responses are described 

as ‘arbitrary functions of unknown regression parameters’ and the within-subject 

covariances are modelled as ‘arbitrary functions of a set of unknown covariance 

param eters’. This, in fact, is a very general form of covariance structure, incor­

porating all the specific structures described in the preceding paragraph. Three 

algorithms were proposed for computing the estimates: Newton-Raphson, Fisher 

scoring and a generalised expectation maximisation (EM) algorithm (see Section

7



1.3.2) combined with scoring. The last of these is used only with incomplete data 

and is particularly useful if there is a large number of parameters. Jennrich and 

Schluchter (1985) suggested that the use of the inverse of the empirical information 

matrix may be preferable to the use of the Fisher (expected) information m atrix 

with some forms of missingness. It is stated (Jennrich and Schluchter, 1985) that, 

despite their methods not explicitly considering the missing data mechanism, they 

are valid providing the mechanism is ignorable.

An interesting application of a two-stage random effects model was given by 

Hughes and Pocock (1992). They modelled diastolic blood pressure X t at time t 

for individuals amongst men free, a t the start of the study, of diagnosed cardiovas­

cular disease and living in one of the cities of Edinburgh, Budapest and Prague. 

For their modelling they selected those 11299 men randomised into the study who 

attended for four consecutive blood pressure screens during the eight year period 

of the study. They were interested in assessing the variability in annual measure­

ments within an indivdual and the resultant accuracy of categorisation into the 

traditional categories of ‘mild’, ‘moderate’ and ‘severe’ hypertension, correspond­

ing to diastolic pressure ranges of 90-105, 105-120 and >120 mmHg respectively. 

The model they fitted had;

Xf rx, JV'( t̂,(T (̂/i))

where =  and (riy(/z) 4--y (// — /!)]

for the within-subject effects and

/I ^  and ^  A/"(;8*,(T̂ ) .

Here, p  is the underlying mean pressure for an individual during the four year 

period of the study, (3 is the rate of change per year in the blood pressure for the



same individual. It can be seen tha t the within-individual variance is dependent 

on their underlying mean level, individuals with higher mean levels also having 

higher within-subject variance (as the parameter 7  is positive). They also found 

th a t this model, fitted using maximum likelihood methodology, fitted their data 

well. They found within-individual standard deviations of magnitude compara­

ble with previous studies. The estimate of cr\v was 6.5 mm Hg in Edinburgh,

7.4 mm Hg in Budapest and 7.1 mm Hg in Prague. The authors attributed much 

of the estimated differences to the recording of blood pressures to different degrees 

of accuracy in the different cities.

Modelling growth curve data subject to individuals dropping out prior to com­

pletion of the study or experiment involves repeated measures analysis in the 

presence of missing data and will be covered briefly in Section 1.3.2 and then in 

more detail in Chapter 3. Moreover, such a data structure has much in common 

with certain aspects of the analysis of interval-censored survival times (see Chap­

ter 4) and, as such, has potential for modelling data arising from screening studies.

1.1.4 G enera lised  lin ear m odelling

As with linear models, generalised linear models can be extended to handle re­

peated measures data. The main difference with models with a non-linear link 

function is th a t mis-specification of the covariance structure is a far more serious 

problem because the parameter estimates for the linear predictor have different 

interpretations under different assumptions about this structure. Diggle, Liang 

and Zeger (1994) provide a detailed discussion of three different extensions of gen­

eralised linear models to handle repeated measures data. This subsection will give 

a relatively brief explanation of these three approaches, explaining the differences 

in their interpretations.



The first type of model is known as a m a rg in a l m odel. This is because the 

marginal expectation of the response is modelled separately from the covariance 

structure. Such models should be used when interest is concentrated on popu­

lation mean effects rather than effects relating to individuals. They correspond 

directly to the extension of the general linear model for normally distributed re­

sponses to cover responses from the exponential family of distributions.

The second form of model is a ra n d o m  effects m odel. This is simply an 

extension of the random effects model, introduced in the preceding section, to 

responses from the exponential family. In these models it is assumed th a t the 

correlation between repeated measurements on an individual is due entirely to 

their own ‘random effect’ or, equivalently, tha t the repeated measurements are 

conditionally independent, given their particular effect. Random effects models 

are of particular use when the aim is to make inferences at an individual rather 

than population level (Diggle, Liang and Zeger, 1994).

The final type of model is a t r a n s i t io n  (or M arkov) model. A transition model 

is specified in terms of the distribution of the present response conditional on the 

preceding responses. Therefore, previous responses enter the generalised linear 

model as additional predictors.

In general linear modelling using either random effects or transition models, the 

regression parameters ^  may also be interpreted marginally as the use of the 

identity link function leads to the expected response equating to the linear pre­

dictor in both cases. However, when the models are subject to a non-linear link 

function, this convenience does not apply. Relationships between the parameters 

of marginal models and those of random effects models can be established, but 

those between marginal model parameters and transition model parameters only 

exist in certain circumstances (Diggle, Liang and Zeger, 1994). Hence, it is vital 

to correctly specify the form of model when considering repeated realisations of

10



dichotomous, categorical or count responses.

For random effects models, traditional maximum likelihood methods can be used 

for parameter estimation. However, as the likelihood function involves integration 

over the unknown random effects, numerical methods are often needed in order 

to evaluate the likelihood. Maximum likelihood estimation is somewhat problem­

atical for transition models as the marginal distribution of the first response yn 

is not always determinable without additional assumptions. For this reason, a 

conditional approach is often taken, the conditioning being on the problematical 

yn. However, with the marginal model, problems with the likelihood function are 

even greater as only the first two moments are specified and, for some non-normal 

distributions, this is not sufficient to fully specify the likelihood.

A quasi-likelihood approach is, therefore, often taken for parameter estimation 

in the marginal model. This involves use of a version of the quasi-score function

m )

(where S i  = Var(Hj) ) for the estimation of the regression coefficients, and in 

which the parameters specifying S  are replaced by appropriate estimates. These 

equations are known as generalised estim ating  equations (G EE s) and may 

also be used for fitting transition models (Diggle, Liang and Zeger, 1994).

The theory behind the development of GEEs is given in Liang and Zeger (1986). 

W ith regards to missing data values, it is stated tha t if the between-individual 

correlation structure is mis-specified, the data must be m issing com p letely  at 

random  (see Section 1.3) for the parameter estimation to be consistent but that 

certain forms of m issing at random  data (see Section 1.3) will lead to con­

sistent estimates for normal or dichotomous responses. Zeger and Liang (1986) 

illustrated the use of GEEs in fitting a marginal model to data from a study of

11



the association between mothers’ stress and children’s mortality, showing that 

the qualitative conclusions were the same for three different forms of correlation 

matrix, with little difference in the parameter estimates. The model was applied 

under the assumption th a t the logit of the probability tha t a child was ill on day t  

was a linear function of the m other’s stress on the previous three days and certain 

time independent covariates. It was also shown, by grossly mis-specifying the cor­

relation structure, that, overall, the inferences were not very sensitive to correct 

specification of the correlation matrices. In fact, the only parameter estimates 

th a t appeared even moderately sensitive to the mis-specification were the time 

dependent m other’s stress covariates and the authors believed th a t this was due 

to the limited number of women in the study. Also noted was th a t the sensitivity 

of inferences about ^  to mis-specification of R  is likely also to depend on ‘the 

degree and pattern of incomplete da ta’, although that was not a problem in this 

application.

Zhao and Prentice (1990) developed a variant on GEEs in which, rather than es­

tim ating S  and ^  separately they are estimated jointly. Liang, Zeger and Qaqish 

(1992) compared the original GEE approach, which they termed G EEl, with Zhao 

and Prentice’s variant, which they termed GEE2. They concluded tha t GEEl, 

but not GEE2, is consistent if S  is mis-specified. However, GEE2 was found 

to be the more efficient if the correct specification is used for S .  Moreover, if 

interest is centred on S ,  it is stated th a t GEE2 should be used in conjunction 

with sensitivity analysis to check how inference on ^  is affected by changes in the 

specification of S .

Under any of these three modelling strategies, logistic models for dichotomous 

responses and log-linear models for count data can be fitted. A particularly useful 

transition model for ordered categorical data, based on the p ro p o rtio n a l o d d s  

m o d e l (McGullagh, 1980) may be developed. In the case where there are C  or­

dered categories, the model takes the form:

12



Oj — 0 , . . .  C  — 1 , b — 0 , . . .  ,C  — 2 ,

where is the covariate vector for the individual at the measurement 

time, 9ab is a transition-specific parameter and ^  is a parameter vector which 

allows the covariate effects to vary depending on the state at the previous mea-

surement, U j- i .

This model can be fitted using conditional maximum likelihood or, almost fully 

efficiently, using GEEs to simultaneously fit logistic models to dummy variables 

where

if >  /û

(Diggle, Liang and Zeger, 1994).

1.2 Survival D a ta

Survival data  are characterised by the observation of the times to occurrence of 

one (or more) events. In some cases, these events are potentially repeatable (eg. 

heart attacks, replacement of artificial hip joints). In others, there may be several 

events of interest, each corresponding to a separate change of state. This thesis 

will largely concentrate on the observation of times to a single, non-repeatable 

change of state or event.

13



Censoring is a general term  covering cases in which the exact time to the oc­

curence of the event is not observed. Right-cenoring is where the occurrence 

(possibly hypothetical) is after the time recorded, left-censoring is where the oc­

currence is before the time recorded and interval-censoring is where the occurrence 

is between two recorded times. By far the commonest of these is right-censoring. 

This is usually caused by the termination of a study (or experiment) or the loss of 

individual units due to some known or unknown cause. Censored survival times 

are a special form of missing data and, as such, will be covered further in Sec­

tion 1.3.

To attem pt to distiguish between the precise times of an event of interest and 

simply the recorded time (or interval of time), the former will be referred to as 

the fa ilu re  tim e  and the latter as the su rv iva l tim e. As outlined below, time 

measurements will always be rounded to a certain degree, so it may be argued 

th a t survival data always consist of survival times, recorded as intervals, rather 

than  failure times.

In survival studies subject to right-censoring, survival times are usually denot­

ed by an ordered pair (ti, di) where U is the recorded survival time and di is a 

variable indicating whether the time represents the observation of the event of 

interest {di =  1 ) or right-censoring {di =  0 ).

Interval-censored survival times are frequent occurrences in longitudinal studies 

and experiments in which the units are only followed-up periodically to assess 

their survival status. In many such studies, it is likely tha t other characteristics 

will be measured or assessed at these follow-up times. There is therefore a need 

to  incorporate any information on repeated assessment of potential risk factors 

in an appropriate manner when modelling survival data. A general definition of 

an in te rv a l-cen so red  survival time is one where the failure is known only to 

have occurred within an interval of time (Lj, Ri]. Left- and right-censored data
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are, in fact, special cases of interval-censoring, in which the intervals are (0 , Ri] 

and (Li, oo) respectively. Another special case of interval censoring is where the

failure times are grouped. In practice, failure times are grouped in all survival 

studies as there is always a certain degree of rounding. In most cases, however, 

the rounding is not sufficiently coarse to cause a substantial number of ties and 

therefore standard survival models are employed. If the rounding is coarse, there 

are likely to be many multiple ties and methods derived specifically for analysing 

grouped or interval-censored survival data are necessary. It should be noted that 

the intervals may themselves be random in cases where they are not defined at 

the sta rt of the study. W ith grouped data, however, the accuracy with which the 

failure times are recorded will be decided at the design stage and the intervals are 

therefore fixed.

There are two functions of particular interest when describing or modelling sur­

vival data. These are the survivor function S{t) and the hazard function  

A(t) and are defined as follows:

g (t) =  P ( r  >  ()

m  =  -  1  S{t)\ = Urn

The survivor function is the probability of surviving to time t and the hazard 

function is the rate of death at time t conditional upon survival to th a t point in 

time.

There are three main approaches to the analysis of survival data, namely the use 

of non-param etric m ethods, param etric m ethods and sem i-param etric  

m ethods. The remainder of this section will provide a brief overview of the most 

im portant aspects of and methodologies for these approaches.
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1.2.1 N on-param etric m ethods

Methods for estimating or comparing hazard or survivor functions for groups of 

individuals tha t do not rely upon specification of the form of the distribution 

are termed non-parametric. Many of these methods evolved during the first part 

of this century, prior to widespread use of computers. However, non-parametric 

methods are still applied in instances when it is preferred not to make specific 

and potentially invalid assumptions about the underlying distribution of survival 

times.

Most non-parametric methods were derived to estimate or compare survivor 

functions, although similar approaches can be used to estimate hazard functions. 

The most widely applied non-parametric estimation method in medical studies 

is the K ap la n -M eie r (or product-limit) e s tim a te  (Kaplan and Meier, 1958) as 

it allows right-censored observations. Supposing there are n  individuals in the 

study at the sta rt and that, having ordered their death and censoring times, 

there are k distinct death times, t(i) , . . . ,  t(&). Then, supposing th a t there are ny) 

individuals at risk of death at time ty) (including any indivduals censored at that 

precise time) and d(j) individuals who actually die at that time, the Kaplan-Meier 

estimate is defined as;

jj / ̂ (i) (̂i)-  n  ^  I kr

where t(k+iy = oo. The usual estimate of the variance of the Kaplan-Meier esti­

mate is given by Greenwood’s formula
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Var(^(t)) [^(()] ^U)IT -
j=l IT-(j) (j^U) ~  ^ 0 '))

for ((r) < ( <  ((r+1)

which can be used, if desired, to give symmetric confidence limits for the survivor 

function or, alternatively, may be used in conjunction with a transformation and 

the usual first order Taylor’s series approximation for a variance of a function of 

a random variable to give asymmetric confidence limits of a desired form.

1.2.2 Param etric m ethods

Parametric methods for survival analysis involve full specification of the survivor 

or hazard function. The two most widely applied parametric methods are based 

around the exponentia l d istribution  and the W eibull d istribution . The ex­

ponential distribution has

X(t) = A

S{t) = Aexp(-At)

and the Weibull distribution has

S(t) = exp(—At''') 

where 7  is a shape parameter and A is a scale parameter.

Because of the assumption tha t the hazard is constant, the exponential distri­

bution is rarely applicable in its basic form. For this reason, only the p iecew ise
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e x p o n e n tia l distribution, where the hazard is only assumed constant within dis­

tinct intervals of time, and the Weibull distribution, where the hazard is changing 

with time in a well-defined way, are frequently used in practice. These distribu­

tions may be fitted to data using maximum likelihood methods. Covariates may 

be adjusted for using either method, usually incorporating an exponential rela­

tionship between hazard and covariates.

It should be noted tha t the exponential, Weibull and piecewise exponential dis­

tributions satisfy the p ro p o rtio n a l h az a rd s  property, in th a t the ratio of the 

hazards of two individuals is independent of time, providing any covariates in­

cluded in the model specification are time independent.

A useful informal method of checking the appropriateness of the assumption of 

a Weibull model is to estimate the survivor function, usually using Kaplan-Meier, 

and plotting log(— log S{t)) against log t. If the Weibull model is appropriate, 

the plot should approximate a straight line. Moreover, if the slope of the line is 

about 1 , the exponential distribution will provide a simpler model for the data.

However, as the distributions specified in this section are very limited, other 

more flexible distributions have been applied. However, in most medical studies, 

the precise form of the relationship between time and survival is not of paramount 

interest, the main interest being the relationship between survival and particular 

covariates. For this reason, parametric methods are not often applied due to the 

greater flexibility of the semi-parametric Cox model, as described in Section 1.2.3

1.2.3 Sem i-param etric m e th o d s

In arguably the most important journal publication in the last 25 years, Cox (1972) 

led to the application of a proportional hazards model under a semi-parametric
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specification. In particular, the model for the hazard function is of the form;

A(t) =

where -0 (^) is a parametric model, where, usually, '0 (^) =  exp(æ^^) for covari- 

ate vector x  for the relationship between the covariates and the hazard and \o{t) 

is the hazard for an individual with covariate vector 0 , known as the base lin e  

h az a rd , and is not subject to parametric specification.

Cox (1972) proposed a. partial likelihood which is, assuming distinct failure times, 

a product of the conditional probabilities of each observed death given exactly one 

death amongst those at risk at the time of death. Due to  the fact these are con­

ditional probabilities at particular points in time, the baseline hazard is the same 

for all individuals and will therefore cancel. It is known as a partial likelihood be­

cause it is n o t the probability of any particular event due to the changing nature 

of the risk set over time, but is merely part of the likelihood.

Cox’s original model has been developed to allow for time dependent covari­

ates, thus allowing the hazards to be non-proportional in certain specified ways, 

to  allow for different baseline hazards for different stra ta  and for grouped or 

interval-censored survival times. Extensions to interval-censored survival times 

with time-dependent covariates will be considered in Chapter 4.

1.3 M issin g  D a ta

Following Rubin (1976), it is useful to categorise the missing-data mechanism in 

the following way, by considering a simple case where there are two characteris­

tics X  and Y , each to be observed on n  units. These categories extend to cover
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more complex data structures. However, as considered in Section 3.1, w ith more 

complex data structures the complexity necessitates the sub-division of some of 

these basic categories.

Suppose the variable X  is truly observed on all n  units but th a t Y  is observed 

on m  < n  units and is missing on the remaining n  — m  units. Then if the 

probability of non-response is dependent on neither X  nor Y  then the data are 

called m issing  co m p le te ly  a t  ra n d o m  (M C A R ). If the probability of non­

response is dependent on X  but not Y  then the data are called m issing  a t  

ra n d o m  (M A R ). Data which are either MCAR or MAR are subject to non­

response mechanisms which may be ignored , subject to the additional condition 

of d is t in c t p a ra m e te rs  (D P ) (described later in this section), when making 

likelihood-based inferences. Data for which the probability of non-response is 

dependent on Y  (and possibly also on X )  and are therefore neither MCAR nor 

MAR are subject to an in fo rm ativ e  missing data mechanism. The implication of 

such a mechanism is that, in order to obtain valid inferences for either likelihood- 

based or non-likelihood-based inferences, the non-response mechanism must be 

considered. Such a non-response mechanism is, therefore, often referred to as a 

n o n -ig n o rab le  mechanism. Concentrating on likelihood-based inferences, there 

are clear problems in tha t inferences will be dependent on the form of the non­

response model, but the appropriateness of such a non-response model cannot 

be tested due to the fact th a t the values of Y  subject to non-response almost 

always remain unobserved. Only if a random sample of the Y  is obtained at a 

later stage can the appropriateness of the non-response model be tested. An ex­

ample of such is in a survey subject to item non-response. If a random sample of 

the item non-respondents is contacted and the relevant item obtained, then the 

non-response model can be tested. However, by specifying a variety of plausible 

models for the non-response mechanism, the sensitivity of inferences to the model 

specification can be assessed. This is known as se n s itiv ity  ana ly sis  and is an 

im portant technique in analysing data subject to potentially non-ignorable miss­
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ing data mechanisms.

Extending these definitions to situations involving repeated measurements of a 

response variable, including at least some missing-values, we may form a T  x 1 

vector of response variables Y_ consisting of T  equally spaced observations for 

each of n  individuals. Suppose further that, for each individual, there is a design 

matrix X  (which may include individual covariates, the design on time and 

possibly ‘earlier’ values of the response variable), a vector of unknown risk factor 

parameters a vector of unknown parameters of the non-response process a  

and a matrix Z of unknown additional covariates for the non-response process. 

Moreover, in order to consider the non-response process, a T  x 1 vector of 

indicator variables R  is introduced where:

Ri = 1 if is observed

Ri =  0 if is missing

The parameter vectors a  and ^  are assumed to be distinct. This allows the 

response to depend on ^  but not a  and the non-response process to depend on ot 

but not If the parameters are not distinct, the following does not hold and the 

non-response process is informative. The papers by Wu and Carroll (1988) and 

Wu and Bailey (1988, 1989), discussed in detail in Chapter 3 consider cases where 

the data satisfy the MAR but not the distinct param eter (DP) requirement. 

The importance of the DP condition is emphasised by Shih (1992) who suggests 

th a t ‘it may be possible th a t in certain situations when MAR holds without DP, 

ignoring the missing data process still leads to consistent but inefficient estim ates’.

Given R , the vector Y_ can be partitioned into two components Y_ „ and Y_ m 

where „ contains the observed part of the vector %  ( R  =  1 ) and Y_ m 

{R i =  0) the missing part. The respective lengths of the vectors ü o  and Y
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will vary with the different experimental units. It then follows th a t the density of 

the observed data is given by:

/ ( X o . B  1 X, z . â s )  =  / / ( x  ! x , 3 ) / ( a  I y ,  X. z , a ) d i : ™  (i . i )

where the integration is over the sample space of ü m  ■

If the data are M C A R  then the density of the missing data indicator Jg is of 

the form:

f ( R  I Y ,  X, z , a) =  f { R  I X, z , a ) .

This simply means tha t the non-response mechanism does not depend on the vec­

tor of responses Y  . From an analysis point of view the only difficulty is how to 

implement a standard analysis with missing data. Some analysis methods employ 

casewise deletion for all cases with any missing observations (i.e. use Y_i if and 

only if iCoi =  others take account of any observed data values (i.e. uses 

Y_oi)- The former approach is usually termed com plete case analysis (C C A ) 

and the latter termed available case analysis (A C A ). Both types of analysis 

will yield valid inferences if any missing data are M C A R .

If the non-response mechanism is ignorable its density is of the form

/ ( ^ B I Z ,  Z , x , a )  =  / ( a i Z o ,  Z , x , a ) ,

which means that the data are MAR (or possibly even MCAR). In this case the

non-response mechanism may depend on the observed part of the response vector 

but not on the missing part. By definition,
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/ ( Z  I X, ^  = /(Zm  I Zo, X ,^ )  / ( Z .  I X, ^

and so (1.1) becomes;

/ ( Z . ,  a  IX, z, A  a )

= ;  /(Zm  I z., X, ^) /(Z o  IX, ^) / ( g  I Zo, X, z, a )

or, equivalently,

/ ( Z . ,  .S  I X, Z, a )

= / ( Z .  IX, / ( g  I Zo, X, Z, a ) ;  / (Z r . I Zo, X, ^) dZm .

This shows tha t the contribution to the likelihood from the observed data (Zo) 
can be factorized into two components, one of which depends on ^  and the other 

on a .  If inferences are required solely about ^  then the term f { R  | Z o ,  X, Z, a )  

can be ignored. However, the non-response mechanism cannot be ignored when 

it comes to determining the asymptotic variance-covariance matrix of ^ .

If the non-response mechanism is informative, that is if:

/ ( g  I Z , Z, X, a) f  / ( a  I Zo, z, X, a)

it means tha t the non-response mechanism depends on the unobserved part of 

the response vector (Zm ) and possibly also on the observed part (Zo )

In the case of informative non-response, valid likelihood-based inferences can 

only be made on specification of a n o n -re sp o n se  d is tr ib u tio n

/ ( ^  IZ , Z, X, a ) .
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Although modelling can be performed upon specifying a non-response distribu­

tion, assessing the goodness-of-ht of the model will not be possible due to its 

dependence on the unobservable missing data, although sensitivity analysis can 

be used to assess the dependency of the inferences on the non-response model 

specified.

C en so rin g  in survival studies results in m issing fa ilu re  tim es. For exam­

ple, if the failure times are r ig h t-ce n so re d  (see Section 1.2), the precise times 

are not recorded and may therefore be viewed as m issing. There is, however, 

some recorded information relating to the failure times, namely th a t they exceed 

a particular value. This value is then recorded as the survival time, together with 

a value of 0 for the censoring indicator. Moreover, the right-censoring process 

is almost always informative under the usual definition of the term  because the 

probability of being right-censored depends on the true failure time and, as such, 

tends to increase as the true failure time increases. In this situation, conditioning 

on survival to time t, the usual approach in survival analysis, removes this prob­

lem, effectively making the right-censoring process non-informative and therefore 

ignorable under likelihood-based inferences. The problem persists, however, if the 

censoring process is dependent upon any variable, either fully, partially or not 

observed. Traditionally the censoring is referred to as in fo rm ativ e  in this latter 

situation only. In event history analysis, problems are potentially more serious as 

missing data processes can affect both the recording of the failure time and the 

repeated covariate measurements.

The terminology d ro p o u t rather than rig h t-cen so rin g  is used when the in­

terest is in one or more repeatedly-measured characteristics rather than survival 

time. This is because all forms of ‘dropout’ are treated the same, rather than one, 

caused by a particular event (or events), being of interest and all other causes 

of ‘dropout’ being of nuisance value. The terminology in fo rm ativ e  d ro p o u t is
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used if the dropout process is not random, depending on the values tha t would 

have been observed if the dropout had not occurred.

Prior to consideration of a variety of general analysis methods, it is appropriate 

to note tha t many such methods are only appropriate or easily implementable if 

the missing-data patterns are of monotone form. This can be explained in the 

following way. Suppose there are two variables, & and subject to missingness. 

Then the missing data are of m onotone form if

Xi is missing =» y* is missing 

or is missing => Zi is missing.

In other words, Xi is observed at least in the cases when y« is observed or vice- 

versa (but not both). In repeated measures data, the common situation where 

individuals drop out of a study or experiment prior to completion, the missing 

data will be of a monotone form. However, intermittent missing data will not 

generally be of this form and must either be subject to deletion of all responses 

following an intermediate missing response or must be analysed using methods 

not reliant upon a monotone missing data structure.

The remainder of this section will consider three particularly important ap- 

proaches to the Einalysis of data subject to missing data mechanisms. These ap- 

proaches are im putation  of the missing data, the exp ectation -m axim isation  

(EM ) algorithm  and the data augm entation  algorithm .

1.3.1 Im putation m ethods

Im putation methods are a class of methods used for explicitly filling-in missing 

data to enable standard data analysis methods to be used. They have largely, but

25



not exclusively, been used to form databases resulting from large-scale surveys 

to  enable secondary data analysts to access and analyse the completed data. In 

many models, it is assumed th a t the missing-data mechanism is non-informative 

although some imputation methods have been applied under specific informative 

models for the non-response process.

A number of simple imputation techniques can be applied in practice, the most 

commonly applied being:

a) Mean imputation

Missing-values in a particular variable are replaced by the sample mean from 

the responding units.

b) Hot-deck imputation

This covers a relatively broad class of methods. They involve the random 

choice of a value from an estimated distribution for each missing value. In 

many applications, the distribution is not modelled formally but is estimated 

empirically from the observed data. The missing-values are thus filled-in by 

randomly selecting from amongst responding individuals with similar values 

of other appropriate variables. A great variety of s im ila rity  m e asu res  is 

potentially available.

c) Cold-deck imputation

Unlike hot-deck imputation, cold deck imputation does not use information 

from the present survey. For each missing-value, a constant value from an 

external source is imputed. Often, this external source is a previous survey. 

This method will have poor statistical properties as it takes no account of 

potential variability nor of any other consequences of the imputation, nor 

has much evaluation been made of the seriousness of these problems.

d) Regression imputation

Missing-values are replaced by the conditional mean estimated by regression
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methods.

e) Stochastic regression imputation

This is an extension of regression imputation to allow for uncertainty in the 

imputed values. For continuous responses, where linear modelling is tradi­

tionally used, a residual is added to the estimated conditional mean. This 

residual may be a random element from a normal distribution with zero 

mean and constant variance estimated by the mean square error from the 

fitted model or, using hot-deck imputation ideas, a randomly selected value 

from amongst the residuals from the fitted model. For binary responses, 

where logistic models are usually employed, the probability of a positive 

response is estimated for the missing-value and then, by randomly selecting 

a value from the uniform distribution, a positive response is imputed if this 

value is less than the estimated probability and a negative value imputed 

otherwise.

Appropriate imputations may lead to relatively unbiased parameter estimates 

if the imputation technique closely mirrors the model generating the data and 

takes account of the missing-data mechanism. Any bias introduced via model 

mis-specification will increase as the proportion of data missing increases. The 

methods described above implicitly asssume tha t the data are non-informative. 

Certain methods, such as stochastic regression imputation, may be adapted to 

incorporate informative missing-data mechanisms. These methods will not, how­

ever, automatically lead to unbiased estimates of the variance of the resulting 

estimates, tending to underestimate the variance due to the treatm ent of the 

missing-values as ‘known’ and, except in b) and e), fixed for a given set of covari­

ates. W hilst theoretical adjustments for this bias have been developed for some 

methods, a scheme known as m u ltip le  im p u ta tio n  may be applied in general.
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M u ltip le im putation

W ith m ultip le im putation , rather than imputing a single value for each missing- 

data item to create a single complete data set, /  complete data sets are created

by drawing I  values for each missing-data item from its estimated predictive  

distribution . The first draw is used to aid in the completion of the first data 

set, the second draw in the completion of the second data set, and so on.

Now, inference would usually use either likelihood-based or Bayesian methodol­

ogy. In either case, if the data are MCAR, it would be based on a function of the 

form / ( ^  I Z o , X )  where / ( ^ )  represents the likelihood function  or the p os­

terior d en sity  for ^  as appropriate. This function will, in general, be difficult 

to  obtain due to the lack of standard analytical techniques in the absence of the 

missing data Y_m- However, by considering the joint distribution or likelihood of 

^  and Y_m> this problem can be overcome.

As multiple imputation is more naturally viewed in a Bayesian context, this 

subsection will refer to ^  from a Bayesian viewpoint.

Now,

/ ( Z r n ,  ^  I Z o ,  % )  =  / ( ^  I Z o ,  Z _ ,  X ) / ( Z m  I Z , ,  % )  -

Integrating over Y m  gives,

; / ( Z m , A  I z ,  I z , Z n , x ) / ( z _  i z « ,

So,
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/ ( ^  I Z , x )  =  I z , Z , , x ) / ( Z m  I Z , x ) d z _ .  (1.2)

This means tha t the required density may be obtained by averaging the density 

fi§_ I Z ,  Zm, X ) over the predictive density /(Zm I Z , X ).

However, this predictive density is also unknown as

/ ( z .  I z ,  X )  =  ; / ( Z n  I A  z ,  x ) / ( ^  I z , ,  % ) d ^  (1.3)

but can itself be obtained by averaging /(Zm I Z , X ) over f { ^  | Z o , X ) .

This, however, requires, f{§_ | Z o, X )  for use in the averaging, and so leads 

to a procedure of the following form:

i) s tart with the initial approximation for / ( ^  | Zo, X )  ;

ii) using the approximation to / ( ^  | Z o , X )  in conjunction with the ‘model’

/(Zm I Z , X )  to approximate the predictive density

/(Zm I Z ,  X ) (as per 1.3);

iii) estimate the posterior density  / ( ^  | Z o, X ) by averaging the condition­

al density  / ( ^  | Z^, Zm, X ) over the approximation of the predictive 

density /(Zm I Z ,  X ) (as per 1.2).

In practice, this procedure takes the following form:

i) (a) assume a distributional form, often multivariate normal, for

m  I X , .  ^ )  ;
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(b) estimate the mean and variance (or alternative parameters) of the above 

conditional density of This is usually performed using either a complete- 

case or available-case analysis method in a standard software package;

ii) using the density estimated in i), take I  random draws of ̂  and, in conjunction

with the model f (Y m  1 Z ,  X ) , make predictions of Z im , ■ • • Z / m  ;

iii) using a standard procedure for complete-cases, assuming the choice of a like­

lihood approach, obtain estimates of E [^  and Var(^) from each of the 

data sets (Z ,,  Zim> X ) , . . . ,  ( Z ,  Z /m , X ) .

The estimates obtained in iii) are then combined by averaging the individual 

components of the estimates of E[^] over J, i.e. E ^  =  (E[jdi],. . . ,  E[^p]) 

where

and

E[ftl = ^

This is effected using the relationship

E(g 1 X,, V) = E [e (3 1 X . X .  v )]

which follows from Equation 1.2 upon taking expectations. 

The analogous result for variances is
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V ar(^  I Z , X )  =  V a r[E (g  | Z , Z m , X ) ]  + E [V a r ( g  | Z , Z m , X ) ]

and the diagonal terms of this variance-covariance matrix may be found as:

Var I Z , %) =  Var [E(/3, | Z ,  Zm, %)] + E[Var | Z ,  Zm, %)]

and the off-diagonal terms can be found using the corresponding result for covari-

The first of the terms in the equation for Var(^j ) is obtained from the variability 

in the estimates of between the I  imputed data sets, this variability simply 

being estimated as

„ ^  (Eifti* -  m i ) '
% = E -  TZTi -k=\

and the second term is obtained from averaging the estimates of the variance of 

namely

W', =
k=l ^

However, as the number of imputations, / ,  is finite, a minor adjustment is nec­

essary to eliminate bias in using B i  to estimate Var [E{(3j | Z ,  Zm, X )] and 

so the total variance for & is estimated as
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The reference distribution for j3j is, approximately, the t-distribution on u de­

grees of freedom, where

( / - I )

although multivariate analogues are preferable if p >  1 (Little and Rubin, 1987).

Afifi and Elashoff (1969a, 1969b), considered several methods of estimation in 

the simple linear regression setting with missing data on both the Xs and the ys. 

The asymptotic distribution of the resulting estimators was derived and, when 

necessary, bias-corrected estimators were provided. Under MCAR mechanisms 

for X  and y, ordinary least-squares estimation was compared with both two-stage 

and three-stage (first-order) methods. In the two-stage method, the first stage 

involved imputing conditional means for the xs based on regression on the ys and 

the second simply applied ordinary least squares estimation to the non-missing ys. 
The three-stage method used ordinary least-squares estimation on the- ys based 

on the complete cases, then imputing the conditional mean for the missing ys to 

complete the first stage. The second stage involved completing the observations 

missing on the xs. Ordinary least squares estimation was used on the complete 

and completed cases and then the conditional mean was imputed. At the third 

stage ordinary least-squares was applied to the ys using the now fully completed 

data  set. Additionally, asymptotically bias-corrected forms of the two- and three- 

stage estimators were derived (1969a) and compared (1969a,b).

It was concluded that the performance of the least squares estimator is generally 

worse than its competitors in terms of both asymptotic and finite sample efficien­

cies. The relative merits of the first-order and two-stage methods depended on
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the relative proportions of data missing in the x  and y  and the correlation be­

tween the X and y.  In general, the two-stage estimator was found to be better 

than the first-order method in the estimation of iJiy\x- W hilst the performance 

was slightly worse than maximum likelihood, providing there were only moderate 

amounts (<30%) of missing data the asymptotic relative efficiency was always at 

least 94.5%, although this declined for large amounts of missing data. Moreover, 

the estimators with good asymptotic efficiencies generally had small bias, even 

with sample sizes of 20 and 40% of Xs and ys missing and their ranking in terms 

of small sample efficiency generally concurred with tha t based on asymptotic ef­

ficiency (1969b).

Little (1992a) presented a review of regression methods used with missing values 

in the predictor variables. It was suggested that most methods can be classified 

into one of three ‘direct’ methods: complete case (CC) analysis; available case 

(AC) analysis and least squares (LS) on imputed data or one of three model-based 

methods: maximum likelihood (ML), Bayesian methods and multiple imputation. 

Complete case and available case analyses were discussed briefly at the sta rt of 

this section and are considered in Chapter 5 with reference to interval-censored 

survival data. Maximum likelihood methods are based on the assumption of bi- 

variate normality and the estimates are found by appropriate iterative search 

techniques. Least squares methods impute the missing values and then use ordi­

nary least squares or weighted least squares, downweighting the incomplete cases, 

for parameter estimation. Three imputation methods are considered. The first 

is unconditional mean imputation, where missing values in a predictor variable 

are replaced by the unconditional mean for tha t predictor variable. W hilst bias 

is introduced into the regression parameter estimates and the covariance matrix 

estimate for all types of missing data mechanisms, this can be adjusted for if the 

data are MCAR. Adjustment of the variance-covariance m atrix results in equiva­

lence to the AC method.
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W hilst unconditional mean imputation leads to bias and overstated precision, an 

improvement is provided by conditioning on either the observed predictor values 

for tha t case or, if the partial correlation of the missing predictor and the response 

given the remaining predictors is high, by conditioning on both the observed pre­

dictor values and the response value for tha t case. In the former, weighted least 

squares is recommended. Various weights based on the value of the partial cor­

relation of the missing predictor and response given the observed predictors have 

been proposed. When conditioning is on the response as well as the predictors, 

biased parameter estimates result although these can be corrected for bias as dis­

cussed by Afifi and Elashoff (1969a, 1969b) in the case of a single predictor or 

using Buck’s method (Buck, 1960). Using these methods, the downward bias in 

the standard errors is less marked than when unconditional means are imputed, 

but this is still a problem. Although corrections can be derived for certain miss­

ing data patterns, more general derivations present more difficult problems. It is 

therefore suggested (Little, 1992a) th a t it is more sensible to adjust for the bias in 

standard error estimation by using appropriate multiple im putation methods than 

by using a variety of theoretically complex bias corrections for different situations.

Maximum likelihood has certain attractive features such as the potential for ex­

tension to non-ignorable missing data mechanisms. However, it still suffers from 

the necessity to consider the missing data pattern and, moreover, the use of itera­

tive methods, such as the EM algorithm (discussed further in Section 1.3.2), may 

be difficult to implement. The bias in the estimation of the standard errors is less 

than  th a t when using CC, AC or simple imputation but is still considerable in 

some situations. Moreover the usual problem that maximum likelihood does not 

perform well in small samples persists. Little (1992a) also suggested a Bayesian 

extension in which a prior is added to the likelihood and inference is then based on 

the resulting posterior. For complex missing-data situations the use of the data 

augmentation algorithm, Gibbs sampling and importance sampling were recom­

mended in order to simulate values from the posterior distribution.
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Wang, Sedransk and Jinn (1992) considered informative missing data mecha­

nisms where the model under consideration was the simple linear regression mod­

el and missing values were restricted to the responses. Seven imputation meth­

ods, plus a standard complete case (N) method were considered. The im puta­

tion methods were: mean imputation overall (MO) where the unconditional mean 

response was imputed for all missing responses; random imputation overall (R) 

where for each missing response a value was randomly imputed from the observed 

responses; simple regression imputation (RG) where the missing responses were 

imputed as their conditional expectations which were estimated using the ordi­

nary least squares estimates provided by the complete cases; random regression 

imputation (RRN) where random residuals were added to the RG imputation; 

another random regression imputation (RSS) where the residuals, rather than  be­

ing simulated from a normal distribution with zero mean and variance estimated 

as the mean square error from OLS on the complete cases were randomly chosen 

from the observed residuals; random imputation within adjustment cells (RG) 

where method R was applied within an appropriate class interval of the predictor 

variable; multiple imputation (MI) where an appropriate model for the missing 

d ata mechanism was introduced to estimate the predictive distribution for the 

missing data.

In terms of bias, the MO and R methods were found to be highly unsatisfactory 

with RG and RRN being notably better. In terms of confidence interval coverage, 

MO and R  were again unacceptable, and whilst RG and RRN were a slight im­

provement, they were still considerably worse than the N method. MI provided 

coverage probabilities close to their nominal levels, with no real overall difference 

in performance across the simulations between two, five or twenty-five im puta­

tions. The authors suggest tha t using only the observed values may be satisfac­

tory for certain objectives (e.g. inferences about (3q and f3i) but unsatisfactory 

for others (e.g. inferences about the overall mean). Likelihood methodology is to
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be preferred although it is very difficult to implement in some circumstances. In 

cases where likelihood methods are deemed impractical, the use of multiple impu­

tation based around some correctly specified non-response model is advised. If, 

however, the data are MAR or nearly so, it was suggested th a t standard software 

be used when available.

A number of practical applications of multiple imputation have been presented in 

the literature. Many of these relate to the analysis of large scale surveys although 

a number of examples have occurred in recent years in relation to clinical trials 

and health-related applications, two of which will now be discussed in some detail.

Reilly (1993) presented an application of hot deck multiple imputation. This 

method has the advantage over parametric multiple imputation th a t it does not 

rely on correct specification of the model for the missing data mechanism pro­

viding this is non-informative. The application cited related to the occurrence of 

acute graft-versus-host disease in 97 female patients who received bone marrow 

transplants from female sibling donors. Logistic regression methods were used 

to model the occurrence of the disease. Complete covariates considered were age 

and prophylactic regime. All these covariates were considered as categorical. A 

single incomplete covariate, donor pregnancy status was present. The results of 

the analysis showed tha t, whilst logistic regression of 66 complete cases failed to 

show strong evidence of any of the covariates being true risk factors, the hot deck 

multiple imputation showed strong evidence of both donor pregnancy and pro­

phylactic regime being associated with disease occurrence, despite an increase in 

standard error for the donor pregnancy parameter estimate. The paper presents 

results for 3, 10 and 100 imputations. There was very good agreement between 

the estimates and standard errors when there were 10 and 100 imputations and 

the agreement was still ‘remarkably good’ with only three imputations.

Dorey, Little and Schenker (1993) considered multiple imputation methods ap­

36



plied to threshold-crossing times. The aim was to use repeated measures in screen­

ing studies to improve inference whilst not resorting to specialist modelling. It is 

im portant to note tha t the response is a threshold-crossing time of a continuous 

variable and the value of this continuous variable is measured routinely at each 

screen. Moreover, inclusion of this continuous variable as a model covariate was 

considered, the authors stating tha t this is ‘a problem which is not addressed in 

the current literature on interval-censoring’. The analysis presented was under 

the assumption tha t the interval-censoring process was non-informative.

Dorey et al. (1993) considered two problems. The first was a hip-replacement 

problem where radiographs were used to detect radiolucent lines between the 

prosthesis (artificial hip insertion) and cement interface. The threshold-crossing 

was defined as when the radiolucent lines covered 100% of the prosthesis with a 

maximum width of at least 2mm. Five imputation methods were considered in 

conjunction with this problem. Three methods were deterministic. These involved 

imputation of the right interval end-point, imputation of the interval mid-point 

and linear-interpolation imputation. Two imputation methods were random and 

ten multiple imputations were used. These were both based on the ‘crossing frac­

tion’, namely the proportion of the interval during which the crossing was known 

to have occurred prior to the imputed crossing time. The first involved imputing a 

random value from the uniform distribution on (0,1) for the crossing fraction. The 

second used the beta distribution on (0,1) for the crossing fraction. As this beta 

distribution has two parameters, p  and k, it was necessary to estimate these prior 

to the imputation. The parameter p  was simply estimated as the linear interpo­

lation imputation value, as described above, whereas k was estimated using this 

estimate of p  together with the data for the 22 complete cases plus the knowledge 

th a t the variance of the beta distribution is K//(l — ji). Moreover, for multiple 

imputation, it is necessary to simulate draws of k from its posterior distribution. 

The draws were made using bootstrap estimates of re, having repeatedly sampled 

with replacement 22 complete cases from the 22 complete cases. It is noted in the
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paper th a t this will only result in an approximate draw from the predictive distri­

bution of the missing data (given the observed data) due to using only a bootstrap 

estimate for re rather than incorporating all potentially important covariate infor­

mation. The survival methodologies employed were Kaplan-Meier for the survivor 

function and Cox modelling for the hazard function. The survival time for the 

Kaplan-Meier analysis was defined as the time from the threshold-crossing (radio- 

graphic loosening) to revision surgery. In the Kaplan-Meier analysis, right-point 

imputation resulted in considerably lower estimated probabilities of survival to 

three and five years. Mid-point and linear interpolation methods yielded similar 

point estimates at three and five years, as did the two multiple imputation meth­

ods. The multiple imputation methods gave noticeably higher point estimates 

than  the mid-point and linear interpolation methods at both three and five years. 

The suggestion was made tha t this is due to the Kaplan-Meier estimate not being 

linear in the crossing-times. The Cox regression analysis used the time from initial 

surgery to revision surgery as the survival time. The occurrence of radiographic 

loosening was included as a time-dependent binary covariate and was imputed 

using each of the five methods described earlier. W ith right-point imputation a 

substantially larger estimate of the risk of revision surgery due to radiographic 

loosening was obtained than with the other four methods, all of which provided 

similar estimates. All five methods yielded similar standard error estimates.

The second problem considered involved prostate cancer and the use of radioim­

munoassay, the prostate specific antigen (PSA) assay, to detect cancer recurrence. 

The aim of the analysis was to model the time taken until clinically detected can­

cer recurrence following a positive PSA result. The definition of a positive PSA 

result was based on the crossing of a threshold. The imputation methods under 

consideration again included right-point and mid-point imputation and uniform 

multiple imputation. Linear interpolation imputation was, however, inappropri­

ate for this analysis due to the non-linear form of the PSA assay response curve 

over time. It was believed tha t the growth curve could be adequately modelled as
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a linear calibration problem relating the log of PSA assay value to time, allowing 

the intercept and gradient to vary between individuals.

Two imputation methods resulted from this approach. These were a deterministic- 

calibration method, imputing a single assay threshold-crossing time via a relatively 

complex calibration method and a random-calibration method, multiply imputing 

threshold-crossing times by randomly drawing a slope from the set of slope esti­

mates for all cases plus a random error whose variance was also drawn (once for 

each data set). Appropriate corrections were introduced to ensure the imputed 

value lay inside the interval during which the censoring occurred. Kaplan-Meier 

estimation was again performed with estimates of survival to two and four years 

being presented. Right-point imputation again resulted in much lower survival 

probability estimates, the other four methods giving similar estimates in most 

cases.

The authors made the suggestion tha t the previously more commonly applied 

right-point method is considerably biased and, whilst multiple imputation may 

seem unnecessary in some cases, it does provide appropriate standard error es­

tim ates and, also, information on the fractional increase in variance due to the 

missing data. It was noted tha t the actual fraction of missing information tends 

to be lower than the proportion of missing data for a variable if there is auxiliary 

information available which can be used in the imputation process.

An alternative and theoretically preferable alternative to explicitly imputing the 

missing observations is to implicitly impute them via the EM algorithm. This 

involves imputation of expected values of sufficient statistics rather than imputa­

tion of the values for the missing data and will be covered in more detail in the 

next section.
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1.3.2 The expectation-m axim isation  (EM ) algorithm

The EM algorithm, first described under this name by Dempster, Laird and Ru­

bin (1977) as a generalisation of an algorithm proposed by Orchard and Wood­

bury (1972), is a general purpose iterative procedure for computing maximum- 

likelihood estimates in a wide variety of incomplete data settings. Amongst these 

settings are not only many cases of traditional missing data in both ignorable 

and non-ignorable situations, but also less obvious applications including interval- 

censored survival data. Various applications will be described following a broad 

description of the algorithm.

When using the EM algorithm, rather than using the observed data  to draw

inferences based on / ( ^  | Z ,  X )  using the observed data  likelihood which is

of the form

L{0  I X ,  J f)  =  I  / ( X .  X  I  g , X ) d Y „

if the data are MCAR or MAR, and of the form

a  I & Z , ^) = /  /(Z , Z . I A %)/(a I Z , Z ,  «)(<Z

if the data are not MAR but the DP condition holds, the com plete d ata  likeli­

hood L{§_ I Y ,  X )  (or L (^ ,  a  | R ,  Z ,  X ))  is used.

This likelihood function may be decomposed as

I Z  %) = I z ,  Z ,  A:)
= L(/3 I z ,  A:)/(Z. I Z ,Z /3 )
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if the missing data mechanism is ignorable, or as

i ( g ,  a  I  X  X .  a )  =  i { g  I  X .  X , M) L (a  I  X .  X „ .  X ,  R )

=  i ( g  I X ,  X „ ,  X )  L ( a  I  X ,  X „ .  X ,  R )

=  m  1  X ,  X )  f ( Y „  I X ,  X ,  g )

X  i ( a  I  X ,  X ™ .  X ,  f i )

if the data are subject to a non-ignorable missing-data mechanism. In the latter 

case, as the likelihood for a  depends on Zm , it will be necessary to propose a 

non-response distribution for R  which depends on the missing-data vector Zm-

The algorithm involves maximisation of the complete-data log-likelihood and, 

ideally, writing the resulting estimates of ^  (or and a )  in closed-form as func­

tions of sufficient statistics. The exp ecta tion  (E) step  then consists of tak­

ing expectations of these sufficient statistics, conditional upon the data and the 

present approximations to the parameter estimates. The m axim isation  (M ) 

step  then requires solution for the roots of the score equations, treating the ex­

pectations of the sufficient statistics as their observed values. Iteration through 

these two steps continues until stability of the solutions is achieved. In cases where 

the maximum likelihood estimates cannot be written in closed-form as functions 

of sufficient statistics, it may still be possible to use EM  but its implementation 

will be considerably more difficult (Laird, 1988). EM  has the desirable property 

th a t it has reliable convergence properties in that the log-likelihood is guaranteed 

to  increase with each successive iteration. The downside is tha t its convergence is 

generally slow and can become painfully so in the presence of moderate amounts 

of missing data.

Laird, Lange and Stram (1987) considered the application of the EM algor­
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ithm  to the general linear mixed model for repeated measures of Laird and Ware 

(1982). The model is of the form

Y-i =  XiQL +  ZiUi +  Cj

where Y_i is an n* x 1 vector of observations on the unit, X i  and Z j are 

known rii x p  and rii x  q design matrices, a  is a vector of fixed effects to be 

estimated and 6, and e, are independent vectors of random variables with multi­

variate normal distributions with zero mean vector. Moreover, 6, has covariance 

m atrix D  with parameters to  be estimated and V ar(eJ =  <t^J. Detailed dis­

cussion of various forms for D  may be found in Schluchter (1988), in the general 

linear model setting. Laird, Lange and Stram (1987) described the computational 

formulae for implementing the EM algorithm to find maximum likelihood (ML) 

or restricted maximum likelihood (REML) estimates using equations derived in 

Laird and Ware (1982). Special cases of the general linear mixed model were 

covered, including the growth curve formulation, the choice of starting values and 

techniques to accelerate convergence.

Vacek, Mickey and Bell (1989) compared maximum likelihood estimates obtained 

using this procedure with those obtained using two alternative estimation proce­

dures. These were empirical Bayes and a non-iterative two-step approach with 

ordinary least squares at the first step and generalised least squares at the second. 

The application used for illustration was the modelling of longitudinal pulmonary 

function data from sarcoidosis patients. The repeated response ‘measurements’ 

were of the patients’ forced vital capacity, expressed as a percentage of a predicted 

value for a person of th a t age, sex and height. This response variable was referred 

to as F V C % . At the first stage FV C %  was modelled as a linear function of 

time for each individual and, at the second stage, the individual’s intercept and 

‘growth ra te’ parameter were modelled as functions of particular patient charac­
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teristics. The parameter estimates obtained using these three methods were very- 

similar but the estimates of the variability of the various random effects differed 

by a moderate extent, potentially leading to different inferences. If these latter 

estimates are of interest, it was suggested tha t empirical Bayes may be preferable 

to maximum likelihood as the maximum likelihood estimates are known to be 

biased downwards.

Schluchter and Jackson (1989) contrasted the use of the EM algorithm with 

Newton-Raphson in computing maximum likelihood estimates in a log-linear mod­

el for hazard including only categorical covariates. These covariates may, however, 

be grouped continuous variables, thus extending the applicability of this model. 

The covariates may also be only partially observed providing any censoring is non- 

inf or mative, the process causing the missingness in the covariates is ignorable and 

the random censoring variable does not depend on any covariate th a t is missing.

Schluchter (1992) considered the analysis of informatively censored longitudinal 

data where the primary outcome was the rate of change of a continuous variable. 

Various previously developed methods for the analysis of such data were compared 

and an extension to the linear random effects model was proposed in which it was 

assumed th a t the true intercept, slope and log-survival time follow a trivariate 

normal distribution. The resulting estimation is performed using maximum likeli­

hood via the EM algorithm. Advantages of this model, as described by the author 

are:

o it allows arbitrary unbalanced data and takes account of staggered patient 

entry;

o asymptotically efficient estimates are obtained using all the data, including 

patients with only a single measurement;

o likelihood ratio tests, including tests of informative censoring, can be con­

structed.
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The disadvantages are complications in programming and the requirement of large 

amounts of data to obtain stable parameter estimates and to avoid potential con­

vergence problems.

Little and Schluchter (1985) applied the EM algorithm to a complete data model 

for the joint distribution of continuous variables {X )  and categorical variables 

(W ) in terms of the conditional distribution of X  given W  and the marginal 

distribution of W . The following were suggested as applications:

o im putation of missing values;

o logistic regression and discriminant analysis with missing predictors and 

unclassified observations;

o linear regression with missing continuous and categorical predictors;

o parametric cluster analysis with incomplete data.

Tu, Meng and Pagano (1993) reported on estimating survival after AIDS di­

agnosis, using US surveillance data. The application considered related to the 

problems associated with the delay in reporting deaths to the surveillance sys­

tem. Separate estimation of the delay and survival distributions was discussed. 

The survival distribution was modelled as a discrete-time proportional hazards 

model using the EM algorithm in conjunction with the complementary-log-log 

approach which can be applied using standard generalised linear model software 

(e.g. GLIM, SAS PROC LOGISTIC) and is discussed further in Section 4.1. In 

order to implement this on the data subject to reporting delays, unreported deaths 

were multiply imputed using independent draws from the predictive distribution, 

following modelling of the delay distribution. The delay distribution itself was al­

so modelled via this discrete-time proportional hazards model using information 

available on the delay in reporting the more recent deaths.
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Another form of the EM algorithm in the analysis of grouped survival data  was 

used by Sinha, Tanner and Hall (1994). In this case, rather than the discrete-time 

proportional hazards model being used, Peto’s marginal likelihood (Peto, 1972) 

based on the incomplete ranks of the failure times was used. Whilst this likeli­

hood is inherently very difficult to maximise in normal circumstances, the authors 

showed how the Monte Carlo EM algorithm can be used to obtain the maximum 

likelihood estimates of the model parameters. The Monte Carlo EM algorithm is 

where Monte Carlo integration (or summation), rather than direct integration or 

a numerical technique, is used in the E-step.

Lindsey and Ryan (1993) used a non-homogeneous Markov three-state illness- 

death model, with the states of ‘tumour-free’, ‘tum our’ and ‘death’, to model 

rodent tumorigenicity experiments. A multiplicative relationship between death 

rates with and without tumour was assumed together with a piecewise expo­

nential model for the baseline transition rates. State information was obtained 

from death times or sacrifice. Although the state transition times were interval- 

censored, continuous rather than discrete-time hazard models were used. As the 

tumour onset times were not observed, the observed data log-likelihood was dif­

ficult to work with directly. However, as the likelihood can be shown to take a 

simple form when the data are complete, the EM algorithm provided an appro­

priate numerical method for maximising the likelihood. Moreover, it was shown 

th a t this approach could be extended to incorporate covariate information in the 

model for the transition rates.

Kuk and Chen (1994) presented quite a different view of survival data, but 

again employing the EM algorithm. The view was that some individuals would 

n ev e r experience the event of interest. A logistic model was used to  model the 

probability tha t an individual would ever suffer the event. A Weibull model was 

then used for the hazard function, conditional upon membership of the group 

who would eventually experience the event. A marginal likelihood approach was
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used for this hazard model to eliminate the necessity to model the baseline hazard 

at this stage. However, due to right-censoring, it is not feasible to compute the 

marginal likelihood in practice. This is because it would require summation of 

relatively complex likelihood terms over all the different possible combinations for 

group membership of the censored individuals. To overcome this problem, Monte 

Carlo methods were used to approximate the marginal likelihood function and 

the corresponding logarithm of the averaged likelihood was then maximised using 

existing software. Finally, the EM algorithm was used to estimate the conditional 

baseline survivor function.

W hilst this review of applications has concentrated on areas directly relevant 

to this thesis, it should be emphasised tha t the EM algorithm has been applied 

in a wide variety of alternative incomplete data situations to facilitate maximum 

likelihood estimation.

An alternative to EM, which can be viewed as combining the more desirable fea­

tures of multiple imputation and the EM algorithm, is the d a ta  a u g m e n ta tio n  

a lg o rith m . This is essentially an algorithm for estimating posterior densities 

which uses both multiple imputation and iteration to optimise the estimation and 

is covered further in Section 1.3.3.

1.3.3 T h e  d a ta  au g m e n ta tio n  a lg o rith m

This is an algorithm, proposed by Tanner and Wong (1987a), to calculate poste­

rior distributions in incomplete data situations. It is a fully Bayesian approach to 

such problems, unlike multiple imputation which applies Bayesian methodology 

to create the multiple completed data sets but then allows ‘standard analysis tech­

niques’, often likelihood-based, in making inferences. Moreover, unlike multiple
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imputation, it necessarily involves repeated drawing from successive approxima­

tions to  the predictive density. The algorithm has two steps, which are repeated 

in turn  until the posterior density / ( ^  | Y ^ ,  X )  stabilises.

These steps are:

a) The Im putation (I) Step

• draw a value of ^  from the current estimate of / ( ^  | Y ^ ,  X ) ;

• generate m  draws of from f ( Y ^  | Y ^ ,  X )  to approximate

the predictive density f(Y_m I Ho> X ) .

b) The Posterior (P) Step

Update the current approximation of / ( ^  | Y ^,  X )  by mixing the condi­

tional densities of over the missing-data patterns generated in a ).

The P-step involves Monte Carlo approximation of the integral

to give the new approximation to / ( ^  | Y„, X ) .

The I-step is merely an application of multiple imputation whilst the P-step 

maintains the Bayesian approach, rather than potentially returning to frequentist 

or likelihood-based inference as chosen by the secondary data analyst. Although 

convergence to / ( ^  | Y^, X )  is guaranteed, the implementation of either step 

may be difficult. Tanner and Wong (1987a) note tha t this mirrors the potential 

problems in applying the EM algorithm where either the E-step or the M-step 

may be difficult to implement in particular incomplete data situations.
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Tanner and Wong (1987b) showed how the algorithm may be extended to  the 

non-parametric estimation of the hazard function in the presence of interval- 

censored survival times. The algorithm works by using a starting estimate of 

the failure hazard to generate m  multiple imputations of the failure times. This 

is the I-step. This improves in two distinct ways on the estimation when the 

conditional mean failure time is imputed. It produces a smoother non-parametric 

estimator and a better approximation to its variance. The P-step involves estimat­

ing the hazard function using kernel smoothing methods on the empirical hazard, 

as proposed in an earlier paper (Tanner and Wong, 1984), for each of the m  data 

sets generated in the I-step. The algorithm then involves iterating between the 

I-step and the P-step until the estimated hazard curve stabilises. In a simulation 

study, they showed th a t the performance of the estimator is reasonable, in terms 

of the bias of both the estimate and its standard error, providing the sample size 

(n) and the number of imputations (m) are not both small. There was, however, 

clear skew in the estimate of the hazard function with n  =  25 and m — 5, al­

though this improved sufficiently to be deemed ‘reasonable’ in terms of bias upon 

increasing either the sample size three-fold or the number of imputations four-fold.

1.3.4 O verview  o f th e  th re e  approaches

The three categories of methods for handling missing data are similar in th a t they 

aim to ‘fill-in’ values for the missing-data, based around a model for the missing- 

data. They differ, however, in tha t whilst the imputation methods and data 

augmentation algorithm explicitly fill-in the data values (to allow standard data 

analysis methods to be used), the EM algorithm implicitly fills-in by ‘imputing’ 

the expected values of sufficient statistics. Moreover, whilst the EM algorithm and 

data augmentation algorithm iterate by repeatedly imputing data and estimating 

parameters, imputation methods simply pass through the appropriate algorithm



The EM algorithm is used in likelihood estimation whereas the data augmenta­

tion algorithm is used in posterior density estimation. Multiple imputation, the 

most useful of the imputation methods, is itself based on Bayesian ideas. Howev­

er, the multiple imputation algorithm simply leads to the creation of several data 

sets which can then be analysed using standard frequentist, likelihood or Bayesian 

approaches.

This chapter briefly reviewed the literature on the three areas of repeated mea­

sures data, survival data and missing data.

Random coefficients models (see Section 1.1.3) used for growth curve modelling 

will be investigated is Chapter 3 and the transition models of Section 1.1.4 will be 

used in implementations of multiple imputation (see Section 1.3.1) in Chapters 4 

and 5.

Survival modelling is restricted to semi-parametric modelling and concetrates 

largely on interval-censored data  (see Section 1.2.3). Extensive coverage of tech­

niques for analysing interval-censored survival data can be found in Chapter 4 and 

the application of these methods can be found in both Chapter 4 and Chapter 5.

W hilst the only type of technique for analysing incomplete data considered in 

the practical implementations of Chapters 4 and 5 is imputation, with particular 

emphasis on multiple im putation (see Section 1.3.1), the use of iterative tech-

49



niques of the form of the data augmentation algorithm is appealing with a view 

to improving inferences, particularly in the presence of non-monotone missing da­

ta  patterns. Of the imputation techniques applied in the multiple imputation, 

model-based methods corresponding to stochastic regression imputation are used 

extensively, as is a special form of cold-deck imputation in which measurements 

from earlier realisations of the same survey are used for imputation.

Other techniques have been included in this introduction for completeness and 

also to  provide a basis for extension or improvement of the techniques proposed 

in the later chapters.
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C h a p ter  2 

E ven t h isto ry  an a lysis  and  

screen in g  stu d ies

The main aim of this thesis is to explore the analysis of forms of longitudinal 

studies in which the occurrence or non-occurrence of one or more events of pri­

mary interest are recorded and investigated. This is referred to as event history 

analysis. In investigating these events, it is usually desirable to collect infor­

mation on potential risk factors, preferably at frequent and regular time points. 

W ithin the class of event history studies may be found screening studies in which 

individuals in a cohort are invited to attend regular ‘check-ups’ in which certain 

measurements and assessments are made. Many, but not necessarily all, of the 

d ata collected will relate to health. Other aspects of screens may be sociological 

or psychological. Because screening studies are longitudinal and usually relate 

to moderately large cohorts, they are frequently subject to moderate amounts 

of missing data. Moreover, in many cases, individuals missing a screen will not 

usually be subjected to repeated reminders and therefore detection of informa­

tive missing-data mechanisms is made unfeasible without additional untestable 

assumptions about the nature of the informativeness. In such cases it is advis­

able to consider various plausible forms of the missing-data process and perform 

sensitivity analysis. In addition to this, in some screening studies the subset of
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measurements collected at the follow-up times varies, as in the Framingham Heart 

Study. This leads to additional missing data, although missing data caused in this 

way will be less problematical due to to their MCAR nature. The remainder of 

this thesis will be directed towards the analysis of event history data, with specific 

emphasis on screening studies. In the Department of Epidemiology and Public 

Health at the University of Leicester there is a particular interest in screening the 

elderly for various state changes. Application in the context of screening studies 

of the elderly will therefore be considered in detail, especially in Chapter 5.

The main aim of screens is usually to detect a change of state although some 

more complex programmes may incorporate screening for a number of multi-state 

outcomes. Moreover, although invitation to screens will sometimes be of the same 

regularity and form for all cohort members, this will not always be the case. If 

screening is of an irregular nature, it will require the data analyst to carefully 

consider its likely effect on the form of the missing-data mechansism. In screen­

ing studies, changes of state will generally only be detectable at the screens and 

will therefore lead to recording of the corresponding transition times in interval- 

censored form. This will be referred to as sc re en -d ep e n d en t ev en t co llec tion  

in the remainder of this thesis. If changes of state are detected by some process in­

dependent of the screens, this will be termed sc re en -in d ep e n d en t even t collec­

tio n . Screen-independent event collection may lead to either interval-censored or 

right-censored event times, depending on the nature of the event collection mech­

anism. The impact of a missed screen will be different under screen-dependent 

and screen-independent event collection. In the former, both covariate informa­

tion and change-of-state information will be missing whereas in the latter only 

the covariate information will go unrecorded due to the missed screen. Both 

screen-dependent and screen-independent event collection will be considered in 

more detail in Chapters 4 and 5.

The next section will consider various forms of changes of state and forms of ex-
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amination schemes for their detection. As risk factors will tend to vary with time 

it is im portant to account for the way in which the accumulation of a patient’s risk 

factor history interacts with any change-of-state process and an understanding of 

this interaction should assist in the planning of preventive medicine. In particular, 

knowledge of which individuals will benefit most from preventive measures and at 

what stage such intervention should be made may be gleaned from this interaction.

It is clear, therefore, tha t in order to consider modelling based on data aris­

ing from screening studies, it is necessary to explore methods which make use of 

the repeated measures nature of any covariate information in modelling changes 

of state whilst also being sufficiently flexible to allow for incomplete information 

on both covariate information and times to change of state. The final section 

of this chapter will review modelling techniques applied or applicable to event 

history analysis with a view to suggesting which approaches hold most promise 

for application to screening studies. Some of the more promising approaches will 

be considered in more detail in Chapters 3 and 4 and then, where appropriate, 

applied to data collected from the annual screening of the elderly in Melton Mow­

bray in Chapter 5.

3.1 D e te c t io n  o f  changes o f  s ta te  in  screen in g  

stu d ies

2.1.1 Form s o f change o f s ta te

There are many possible forms of change of state which might be collected in 

screening studies. Moreover, in some cases, several assessments are made as part
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of the same programme. For example, an annual screening of the elderly might 

incorporate assessment of:

(i) residential status, with states:

o own/family home;

o hospitalization and/or residential home/ permanent nursing care; 

o dead;

(ii) physical ability status, with states:

o not disabled; 

o disabled; 

o dead;

(ill) mental status, with states:

o no dementia; 

o possible dementia; 

o dementia;

whereas in a study of animal tumorigenicity or patient survival following surgical

removal of a tumour a single outcome might be of interest, where the states may

be:

o alive and tumour free; 

o alive and tumour present; 

o dead.
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Hsieh, Crowley and Tormey (1983) discuss the application of Cox’s proportion­

al hazards model in semi-Markov models for the transition rates between states, 

showing tha t the partial likelihood may be factorised into components correspond­

ing to the individual states. It follows, therefore, tha t each transition may be 

analysed separately whilst treating the other types of transition as a form of cen­

soring. This thesis concentrates on the modelling of two-state processes.

In many screening studies, a state transition may only be observed to occur 

between two screening times, resulting in an interval-censored observation (see 

Section 1.2). For the second set of states in the annual screening of elderly people 

introduced earlier, transitions into the state ''dead ’ will generally be known ‘exact­

ly’, whereas transitions between 'not disabled ’ and 'disabled ’ states will generally 

only be known to have taken place between successive screens. An added compli­

cation is tha t the ex a c t date of transitions may be known for some individuals 

and the use of such information would be desirable as this would allow the form 

of the baseline hazard (or survivor) function to be investigated in more detail 

and may also increase the precision of the estimation of the model parameters. 

Moreover, it is possible for two transitions to have occurred between consecutive 

screening times, further complicating the modelling process. W hilst one or more 

of these forms of state transitions will be encountered in many screening studies, 

only interval-censored event times will be considered in detail in this thesis.

2.1,2 Types of ex am in a tio n  schem e

W ith interval-censored data from screening studies, it is im portant to consid­

er the examination scheme process which underlies the interval-censoring. As 

with right-censoring or dropout processes, the usual likelihood-based methods re­

quire the examination scheme to be non -in fo rm ative . This means th a t the full
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likelihood of survival statuses at the respective screening times and the number 

and times of examinations is proportional to the likelihood based simply on the, 

potentially multi-state, survival statuses at the screening times. By a suitable fac­

torization of the full likelihood, Gruger, Kay and Schumacher (1991) showed that 

the examination times which satisfy the following criterion are non-informative:

o The choice of the next examination time may only be based on the en­

tire patient history: namely the times of examinations and any covariates 

measured and statuses observed at these times.

This criterion may not be satisfied in all screening studies. To illustrate this, 

Grüger et al. (1991) considered four simple models to describe how examination 

schemes may be categorised:

(i) examination at regular intervals;

(ii) random sampling;

(iii) ‘doctor’s care’;

(iv) patient self-selection.

Using the criterion given above, the first three models satisfy non-informativeness 

of examination scheme. Model (iii) satisfies this providing the doctor chooses the 

time of next examination based on information available at the present exam­

ination time rather than on any subsequent patient information. The patient 

self-selection process is, however, an informative scheme as the examination times 

are decided by the patients. These will usually depend on the present disease 

state and/or covariates, rather than their past history, thus failing to satisfy non­

informativeness. If the analysis is to be performed on multi-state ‘survival’ data 

collected from the annual screenings of the elderly, the main model for the ex­

amination will be (i). It may be, however, tha t the healthiest patients are the 

least likely to attend regular screenings by personal choice, thus forcing the type 

(iv) model to apply and requiring any likelihood-based analyses to take account
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of the missing-data mechanism. In all cases it is useful, whenever possible, to 

collect the information on the patient’s survival state at their missed screening 

time, thus avoiding any problems associated specifically with screen-dependent 

event collection whilst providing more information and hence more precision for 

the modelling. As the covariate information for missed screening times will be un­

available, if likelihood-based methods are to be used it is im portant to consider the 

missing data mechanism corresponding to the examination scheme. Moreover, if 

the examination or screening process is potentially informative, the specification 

of appropriate models for this process will be necessary if unbiased likelihood- 

based inferences are to be made. This will entail either the collection of covariate 

values for a random sample of those missing their scheduled screen, knowledge of 

the form of the model for the missing data mechanism or the use of sensitivity 

analysis for a number of plausible such models. Grüger et al. (1991) illustrated 

th a t bias could be a serious problem in the case of patient self-selection via a 

simulation study.

2 .3  M od ellin g  In screen in g  stu d ies

Several distinct approaches to modelling data arising from screening studies ex­

ist. Widely recommended by a number of authors in the literature (e.g. Thomas 

(1992), Manton (1993), Dwyer (1992)) is the application of what have been termed 

‘s tro n g  m o d e ls’ (Thomas, 1992) as they exploit biological knowledge about the 

relationship between measurements, usually of a physiological nature, and state 

transition processes. These models are usually expressed in continuous-time and 

use either deterministic or stochastic differential equations, often termed diffu­

sion equations. However, there is considerably wider application of the alternative 

‘w eak  m o d e ls ’ which are based on discrete-time and can be viewed as integrated
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equations. These methods are criticised by the proponents of the ‘strong models’ 

in th a t they fail to take into account any knowledge of the underlying biological 

processes in the modelling of state transitions. In this thesis, whilst concentrating 

mainly on the ‘weak models’ widely applied in survival analysis, there will be some 

further discussion of diffusion models both later in this section and in Chapter 3.

In terms of ‘weak models’ there are two distinct classes of techniques tha t have 

been developed for handling data with a similar structure to th a t typically arising 

from screening studies. One class corresponds to growth curve models in which, 

using screening study terminology, the primary interest is in modelling the profile 

of the variable or variables measured at each screen and their effect on change of 

state is of secondary interest. These and associated methods will be discussed in 

Chapter 3.

The alternative is where the primary interest is in the effect of the risk factors 

on change of state and uses methodology developed for modelling grouped or 

interval-censored survival data. For efficient modelling, however, some account 

should be taken of the development of risk factors over time. Most methods tha t 

have been developed are for data which are essentially the exact failure times, 

albeit subject to some degree of rounding. These methods are also applicable 

when the times are interval-censored, providing the potential censoring interval 

boundaries and risk factor measurement times coincide and do not vary between 

individuals. Data of this form will be referred to as co inc iden t in te rv a l data 

and correspond, in terms of screening studies, to screen-dependent event collec­

tion with no missing screens. Methods for modelling interval-censored survival 

data with repeated risk factor measurement are therefore required. Such meth­

ods are not widely available. A particular problem occurs when the data  are not 

coincident interval. In survival analysis it is usual to condition on the covariates, 

but this is not trivial when their values are time-dependent, especially if the data 

are not coincident interval. Methods for the analysis of interval-censored survival
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data of both coincident interval and non-coincident interval forms will be consid­

ered in detail in Chapter 4.

If there are repeated assessments of risk factors and a number of states, including 

an absorbing state such as death, several authors (e.g. Lindsey (1993), Andersen 

(1992), Hsieh, Crowley and Tormey (1983)) suggest the use of Markov and semi- 

Markov models, using in particular the Cox regression model (1972, 1975) with 

time-dependent strata. However, these models have a restrictive structure and 

are limited to ‘few time-dependent covariates’ (Andersen, 1992) which again em­

phasises the lack of available methods for the analysis of event history data with 

incomplete repeated assessment of states together with discrete and continuous 

risk factors.

A number of ‘strong models’ have been described in the literature, although much 

of their application has been in the field of mathematical biology rather than  epi­

demiology. This may well be due to the widespread availability of survival and, to 

a certain extent, growth curve software for the implementation of ‘weak models’ 

compared with the more specialist software required for the ‘strong models’ which, 

due to their direct link with biological theory, are necessarily application-specific. 

Manton (1993) described three estimation strategies for modelling multi-state pro­

cesses, placing particular emphasis on the interaction between human ageing and 

mortality. Two of these, one based on multivariate diffusion processes and the 

other based on fuzzy state spaces, have been used for modelling event history data 

(Manton, Stallard and Liu, 1993). The former, discussed in an extensive series 

of papers by Manton and various colleagues (e.g. Woodbury and Manton (1977), 

Woodbury, Manton and Stallard (1979), Manton, Stallard and Woodbury (1986), 

Yashin, Manton and Stallard (1986), Manton, Woodbury and Stallard (1988), 

Manton, Dowd and Stallard (1993), Manton, Stallard and Liu (1993)) is appro­

priate when there are several continuous physiological measurements made at each 

follow-up point. Fuzzy state models have been suggested as ‘a new approach to
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multi-state modelling’ (Manton, 1993) and were illustrated in an application to 

active life expectancy (ALE) with a classification of people into six fuzzy states 

based on 27 measures of their physical functioning (Manton, Stallard and Liu, 

1993). Following the classification of individuals at various time points, these 

states can be related to mortality and to risk factors through ancillary equations 

(Manton, Stallard and Liu, 1993).

These, and other ‘strong models’, are useful additions to the literature on event 

history analysis, although they are relatively complex mathematically. They have 

the advantage over many other approaches in tha t they are biologically and med­

ically plausible as they can model the interaction of risk factors, multiple state 

transitions (such as levels of disability) and mortality. However, these methods 

do not readily incorporate missing covariate values of the form frequently en­

countered in screening studies. In fact, Manton, Woodbury and Stallard (1988) 

imputed missing risk factor measurements into the Framingham data set by sim­

ple between-wave interpolation prior to the use of a multivariate diffusion model. 

If the values were MCAR, the standard errors would be underestimated, and in 

other cases there is also the potential for the estimation to be biased. More­

over, in many screening studies, a number of the risk factors will be categorical 

and therefore will not lend themselves to interpolation-based imputation. Fur­

ther discussion of the stochastic diffusion modelling of the type first proposed by 

Woodbury and Manton (1977) is included in Chapter 3 as this is one of the few 

‘strong’ approaches which seems to  have permeated the statistical literature.
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C h a p ter  3 

A n a ly sin g  rep ea ted  

m ea su rem en ts  su b jec t to  

d ro p o u ts

As outlined in Chapter 2 , within the class of ‘weak models’ there are two dist­

inct views of repeated measures of one or more characteristics when units are lost 

to  follow-up prior to completion of a study or experiment. The first, which is 

considered in this chapter, considers the modelling of the repeated measurements 

as of primary interest with the process leading to loss of units, called d ro p o u t, 

being largely of nuisance value. This is the view taken in the literature on repeated 

measures subject to dropouts and, in particular, tha t on growth curves. In these 

cases the parameters of major interest are those of the repeated measures mean 

profile or the growth curve rather than those of the dropout process.

The alternative approach is to view the process describing loss of units due to 

one particular event as of paramount interest and the use or modelling of the 

repeated measurements can be used to improve inferences relating to this process. 

In addition, there is frequently loss of units due to other reasons which is referred
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to as right-censoring (rather than dropout). This approach is taken in survival 

analysis and will be considered in the remainder of the thesis.

There are two other major differences between the approaches generally used in 

growth curve analysis and survival analysis. Only a single continuous variable plus 

the measurement (and dropout) times are generally recorded and used in growth 

curve analysis whereas a number of both continuous and categorical potential risk 

factors are usually assessed in survival analysis. Additionally, in survival or ev­

ent history analysis, the risk factors are generally introduced into the survival or 

change of state model as covariates or, if the risk factor distribution is modelled, 

its coefficients are usually assumed to be fixed effects. In growth curve modelling, 

conversely, these are usually treated as random effects.

3.1  R e p e a ted  m easu res, grow th  curves and d rop ou t  

p rocesses

A number of papers appearing in journals during the last dozen years extend the 

methodology applicable to repeated measures to include data subject to dropout.

Little (1995) discusses ‘methods which simultaneously model the data and the 

dropout process within a unified model-based framework’. It was suggested tha t 

models can be classified in two ways. One type of classification is into models 

where the dropout process depends directly on the repeated measures and those 

in which it depends on them indirectly though random coefficients. It is this latter 

class which is generally used in the growth curve literature. The other classifica­

tion which can be made is into se lec tion  m odels and p a t te rn -m ix tu re  m o d ­

els. In selection models, which are the more common, detailed specification of the 

non-response mechanism (i.e. the distribution or density of the vector of indicator
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variables R^) is required as this is used to explain how the data are selected from 

the complete data model f { Y i  I X i, ^ .)  to be missing. For mixture models the 

distribution of the Y i  is viewed as a mixture over the different patterns of miss­

ing data, having stratified over these by considering f{Yi  | X i, R j)  rather 

than the complete data model given above.

It is clear tha t the terminology used to refer to the dropout process is extremely 

inconsistent in usage and frequently depends on an author’s preference and the 

specific situation under consideration. In addition to completely random dropout 

which corresponds directly to MCAR data. Little (1995) introduces the terminolo­

gy covariate dependent dropout if dropout is dependent on a set of fixed covariates 

but not on the repeated measures of the response nor, in the case of random co­

efficient models, on the random coefficients. When the units are subjected to this 

form of dropout, complete case analysis (CCA) is inefficient but not biased. An­

other distinct form of dropout is the standard missing at random (M AR) dropout 

in which dependence is on the observed values of the response but not on those 

unobserved. Little (1995) also sub-divided the class of non-ignorable dropout into 

non-ignorable outcome-based dropout and non-ignorable random-coefficient-based 

dropout. The distinction between these final two categories is that, in the former,

f { &  I Xi, Y ^ , a) =  /{ &  I x „  X,,

whereas, in the latter,

/ ( &  I A:,, 1 :^ , ^ )  =  / ( &  I ^ ) .

In the former case, the non-response mechanism is non-ignorable in the traditional 

sense, due to the unobservable Y ^ ,, whereas in the latter it is due to its failure 

to satisfy the distinct parameter (DP) requirement (Shih, 1992). Prior to the 

contribution from Shih (1992), many authors had failed to make the important
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distinction between these situations although the distinction has since been ad­

dressed (e.g. Diggle and Kenward (1994)).

Whilst modern sofware, in particular SAS PROC MIXED (SAS, 1996) and 

BMDP5V (BMDP, 1990), handle arbitrary missing data, it is under the assump­

tion th a t the non-response mechanism is ignorable. If this is not the true mech­

anism, bias will be introduced into the estimation. It is widely and sensibly 

recommended (e.g. Little (1995)) that any model fitted should take into account 

any available knowledge of the form of the missing data process as well as the 

model for the mean and covariance structure. Many of the recent approaches to 

the analysis of repeated measures data subject to dropout and irregularly spaced 

measurements times follow this recommendation and will be discussed in the re­

mainder of this section.

Vonesh and Carter (1987) used non-iterative estimation and comparison of lo­

cation parameters as an alternative to the computationally expensive maximum 

likelihood (ML) or restricted maximum likelihood (REML) estimation. This ap­

proach uses estimated generalised least squares (EGLS) and is shown to be both 

consistent and asymptotically efficient. Vonesh and Carter (1987) contrasted their 

approach with the likelihood-based techniques of Laird and Ware (1982) and Jen- 

nrich and Schluchter (1986) which were briefly described in Section 1.3.2. Carter, 

Resnick, Ariet and Shieh (1992) illustrated the use of this EGLS estimator on a 

model relating a measure of pre-school cognitive development to age in four race- 

by-sex groups of low birthweight infants, also demonstrating some techniques for 

validation of model assumptions. The study group comprised 375 infants observed 

at a minimum of three ages and had no missing risk factors. The model was used 

under the assumption tha t any dropout was ignorable and it was recognised that 

the EGLS estimator would be biased if this were not the case. Other than this 

untestable assumption, the model assumptions appeared to be valid.
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Crépeau, Koziol, Reid and Yuh (1985) used a score test for comparison of re­

peated measures data subject to ignorable dropout and under the assumption of 

multivariate normality of the responses. Diggle (1988) improved on this approach 

in terms of efficiency, illustrating this by re-analysing data from an experiment to 

determine the effect of halothane at different doses on the blood pressure of rats. 

He concluded tha t there was a marginally significant effect of treatm ent a t the 

5% level in contrast to the conclusion of Crépeau et al. (1985) th a t there was no 

significant effect of treatm ent (p=0.28) although they showed tha t a linear trend 

in dose was only marginally non-significant at the 5% level (p=0.06). Crépeau et 

al. (1985) based their score test on maximum likelihood estimates from a model 

with unstructured covariance matrix whereas Diggle (1988) reduced the number of 

parameters in the modelling of the same data set from 45 to firstly four and then, 

following simplification of the covariance structure to tha t of a uniform correlation 

model, to two. This was achieved using a model-fitting process comprising the 

following three steps;

(i) formulation of a provisional, possibly over-parametrised, model for the mean

structure;

(ii) formulation of a model for the covariance structure using the residuals from

an ordinary least squares fit of the model for the means;

(iii) use of a generalised likelihood-ratio test for the model parameters, treating 

the parameters for the mean and covariances structures separately.

W hilst Diggle’s general model, with four parameters for the covariance structure, 

is somewhat specialised, it is still reasonably widely applicable due to the sensible 

choice of parametrisation corresponding to typical designs for experiments of this 

type.

Further work by Diggle (1989) led to a class of tests for randomness of dropouts 

for repeated measures data. This can be particularly useful as there is a wide range 

of techniques available if dropouts are random whereas the range of techniques is
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far more limited if dropouts are non-random. The terminology ‘non-random’ here 

was used to  correspond to dependence on previous measurements of the response 

and, potentially, missing values of the response, thus corresponding to missing 

at random or informative dropout, between which it would not be possible to 

distinguish. As non-random dropouts imply the possibility of the dropout being 

informative, this requires the adoption of more complex techniques to limit bias. 

W hen testing for random dropout, Diggle (1989) proposed the choice of a test 

statistic as a suitable function of the observed responses and then to perform a 

test of the hypothesis that, of those with Complete observations up to and in­

cluding tha t at a particular time-point, those with no further observations are 

a random sample. This is repeated for each time-point and then the p-values 

thus obtained are tested to see whether they represent a random sample from a 

uniform distribution on (0, 1). The results of tests on the data analysed earlier 

by Crépeau et al. (1985) and Diggle (1988) supported these authors’ treatm ent 

of the dropout as random in all but the highest dose group which, in each case, 

had been removed from the data set prior to analysis.

Diggle and Kenward (1994) extended the model from Diggle (1988) to cover 

situations where the dropout mechanism may be informative. A logistic model 

was proposed for dropout at time t  in which the linear predictor could depend 

on the prior history, the observation at time t, neither or both. Likelihood es­

tim ation was then used under the assumption that the distinct parameter (DP) 

condition (Shih, 1992) held. Simulation studies showed tha t biases in models and 

estimation strategies tha t fail to account for informative dropout are eliminated 

by this approach. The authors suggested that, whilst inferences could be based 

on the information matrix, alternative strategies using likelihood-ratio tests and 

likelihood-based confidence intervals are preferable.

More central to the growth curve literature covering situations where units are 

subject to dropout is a series of papers by Wu and her collaborators. Wu and
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Carroll (1988) proposed a random coefficient selection model in which parameters 

of the repeated measures growth curve model and those of the dropout model 

are jointly estimated via maximisation of a marginal likelihood function. They 

termed their method pseudo-maximum likelihood estimation (PMLE) although, 

as only application of a probit model for dropout was considered by Wu and 

Carroll (1988), it will be referred to in the remainder of this thesis as p ro b it  

pseudo-m ctx im ium  like lihood  e s tim a tio n  (P P M L E ). Even in the case of 

a probit dropout model, the use of this form of model requires substantial pro­

gramming and the use of iterative methods. For other dropout models, numerical 

integration would also be required for evaluation of the likelihood or its logarithm. 

However, this form of model would appear to show some potential for extending 

its use to  event history or survival modelling due to the natural appeal of selecting 

for death based on individual’s parameters from a repeated measures risk factor 

model. It will, however, only be applicable when risk is related directly to the 

parameters of the repeated measures model.

Wu and Bailey (1989) used a random coefficient pattern-mixture model, which 

they called a conditional linear model, for data of the form previously considered 

by Wu and Carroll (1988). It related the conditional expectation of the slope 

for the repeated measures of the response for an individual, given the dropout 

time, as a linear function of dropout time, thus leading to different expectations 

for the different ‘patterns’ of dropout. The individual slopes were estimated via 

ordinary least squares, following which two different methods were used for esti­

mation of the population slope coefficient. The first used weighted least squares to 

obtain the lin ea r m in im u m  v arian ce  u n b iased  (L M V U B ) estimator which 

is a linear combination of the parameters of the linear model for dropout time. 

The other approach was designed to  minimise the mean square error under the 

conditional linear model by suitable choice of weights in forming a weighted av­

erage of the individual ordinary least squares slopes for the response. This was 

termed the lin e a r  m in im u m  m e an  sq u a re  e rro r  (L M M SE ) estimator. Wu
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and Bailey (1988, 1989) provided comparisons of PPMLE, the LMVUB estimator 

and the LLMSE estimator with the more traditional u n w eig h ted  le as t sq u a res  

e s tim a to r  (U W L E ) and w eig h ted  le a s t sq u a res  e s tim a to r  (W L S E ). They 

concluded tha t the former trio of techniques were preferable to the WLSE in terms 

of bias and to the UWLE in terms of mean square error and, potentially, bias if 

there was informative dropout. In terms of dropout, it was concluded th a t at 

least one of the LMVUB and LMMSE estimators was comparable with or better 

than  PPMLE, the preference between the LMVUB and LMMSE estimators being 

dependent on the form of dropout process. As LMVUB and LMMSE are simple 

non-iterative techniques, providing the form of dropout is known, the use of the 

one with the superior performance with tha t form of dropout can avoid the ne­

cessity to use highly complex iterative techniques such as PPM LE if the aim is to 

estimate population slope coefficients.

Wu and Lan (1992) used results of simulations from Wu and Carroll (1988) 

and Wu and Bailey (1988) to propose techniques for sequential monitoring in the 

comparison of changes between two groups based on the generalised least squares 

estimator (GLSE) and the UWLE, based on areas under expected response curves 

and using the spending function approach of Lan and DeMets (1983). They con­

sidered a specific situation in which dropout was non-informative (by design) al­

though they also derived the technique under a more general approach for which 

estimates of the population mean for the individual slopes for each group could 

be made using alternatives such as the LMMSE estimator, the LMVUB estimator 

or PPMLE.

As described in Section 1.3.2, Schluchter (1992) investigated the same data struc­

ture as Wu and Carroll (1988) and Wu and Bailey (1988, 1989) using a random 

coefficient selection model, based on a trivariate normal model for the coefficients. 

This avoided the usual problem with random coefficient models of the evaluation of 

a potentially analytically intractable integral for a marginal likelihood. Schluchter



(1992) performed no investigation into the sensitivity to the model specification. 

However the discussion recommended further investigation of the use of models 

such as this trivariate model, Wu and Carroll’s probit dropout model and Wu and 

Bailey’s approaches based on a conditional linear model with a view to the adop­

tion of the most appropriate of these or, alternatively, one of the simpler UWLE, 

GLSE or WLSE, depending on the sensititivity to plausible dropout proceses. As 

always, knowledge of the type of dropout process would enable the most appro­

priate of the techniques to be used in a particular application although the typical 

case is, of course, ignorance of the true nature of the dropout process although in 

most cases an educated proposal will usually provide an adequate approximation.

In the remainder of this chapter, a more detailed investigation of Wu and Car­

roll’s model is performed, with specific emphasis on its performance in different 

circumstances, difficulty in implementation and achieving convergence plus its 

potential for extension to include more than a single repeated ‘measurement’ of 

various distributional forms and application to event history analysis. The reason 

for choice of this method was it is believed to have been the first model proposed 

th a t jointly modelled growth curve data subject to dropout in a manner with 

some potential for application to survival or event history analysis with repeated 

assessment of risk factors, although Schluchter (1992) has since proposed an al­

ternative with similar properties.

3.2  W u emd Ceirroirs m od el

Wu and Carroll (1988) developed a relatively complex random coefficient selection 

model for comparing the rates of change between two groups in the presence of in­

formative dropout using probit pseudo-maximum likelihood estimation (PPM LE). 

The potential this model may have for wider application is th a t it can combine in­

69



ferences about the informativeness of a dropout process, albeit under an assumed 

and untestable model structure, with those for the parameters of the growth pro­

cess.

Wu and Carroll (1988) assumed that the participants in a longitudinal study are 

randomly divided into two treatm ent groups although their approach would be 

generally applicable in other cases. The sample sizes in the two groups are denoted 

by nk { k  =  1 , 2 ) and the notation i e k  is used to denote group membership for 

the individual. In the derivations and simulations in the remainder of this 

section, it is assumed tha t there is no staggered entry, although the theoretical 

development by Wu and Carroll (1988) demonstrated tha t the method could be 

extended to allow for this. The restriction employed in this thesis is merely to 

simplify the development and resulting simulation. It is also assumed in this 

section, as in Wu and Carroll (1988), tha t there are J  identical follow-up time 

points to determine mortality and withdrawal status {ti, . . . ,  t j )  and T  times at 

which a single response is measured. It should be noted tha t this latter assumption 

implies tha t the follow-up times may differ from the measurement times, although 

the last follow-up and measurement time coincide. Hence, letting u, (< T)  denote 

the total number of observations recorded for the individual and and 

denote, respectively, the response and corresponding measurement time where 

til = 0 , the following notation may be adopted:

Z{i , j )  =  1 and < t j  if death or withdrawal occurred in the

interval i.e. between time tj and tj+i ;

=  0  otherwise,

with tivi =  t j  if the individual was still in the study 

at termination.

The individual therefore has T  — Vi measurements missing due to dropout.

The assumed model for the response variable is that the repeated measurements
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follow a linear function of time for each individual where:

A, =

represents the unobservable vector of the individual’s intercept and slope, i.e. 

that:

Y i  =  with e.i ~  A7(0, cr^I), for i e k  and A: =  1 , 2 ,

with X j  =
1 . . 1

, S fj =
^il • tivi ""A .

It is assumed tha t the process generating dropouts has a distribution function 

of the form M {o ^ p ., aoj) where the aoj, j  = 2 , J  are dropout time pa­

rameters for the different intervals and oc^ = («i, « 2 ). The dropout process is 

therefore directly related to each individual’s intercept and slope.

Now for each the following are sufficient statistics:

( i ) â  =  and

(ii) the dropout time.

Hence, viewing ^  as a nuisance parameter, estimation of the remaining param­

eters can be made from the marginal likelihood function, which is given by

QLj 0 0̂ 2 ) • • • ) ^ 0j)  Tj

where
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n  [ ( ^  «Oj) -  ^  a o j - i ) )

and where

M  (oc^^., aoi^ =  0 by definition, and

C u  =

and the notation (f>2 {Y., X )  represents the bivariate normal probability density 

function with mean vector ^  and covariance matrix S .  In the above marginal 

likelihood, the first two terms under the integral sign represent the conditional 

density of an individual’s estimated random effect (given their true random effect) 

and the density of their true random effect, respectively. The next J  — 1 terms 

under the integral sign represent the probability of death in each of the J  — 1 

intervals and the final term  represents the probability of an individual being in 

the study at termination, each of these J  terms being raised to an appropriate 

power to indicate the interval of death or tha t an individual survived the whole 

study. In addition, D  is constant with respect to the parameters to be estimated. 

Note that it is assumed here that and are known whereas in reality they 

are unknown and replaced by unbiased estimates.

If the form of the dropout distribution is assumed to be probit, i.e. of the form 

given by

M  ooj) =  $  +  Ooj) ,

where $  Ê.i +  “ oj) is the cumulative distribution function of the standard
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normal distribution, then the marginal likelihood function is given by

X n  [ (^  ( a %  +  « 0 ; )  -  $  ( « %  +

X ( 1  -  $  +  a o .

The integration can be performed analytically, as shown below. If the dropout 

distribution proposed were other than probit, numerical integration would be nec­

essary. In practice, the maximisation of the log-likelihood is difficult but feasible 

under the assumption of a probit dropout distribution, this being the main reason 

why Wu and Carroll (1988) used a probit model.

For i e k  and A: =  1, 2 an individual’s contribution to the marginal likelihood is 

given by

D
(27T)2 I C u  I 17^ 1 /2 / [“5 (â - ‘ (à - gj

j = 2

X ( i  -  $  ( a %  +  « 0  j ) )

It can be shown (see Appendix A) tha t this can be written as
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Dexp

27T I Cgi 1̂ /̂

H  +  Aoj) ( l  +  QpCsiOt^

-  $ {dii^CuQL +  cioj-i) ( l  +  Q^C^iO^
n  -i z (u -i)

| l  — $  {d.ik^CziQL +  ÛQj) ( l  +  oJC siO ^  ̂ I
(!-%] Z(ij))

and taking logs this gives

+

logTi =  log D  +  log |̂ 2̂7T I Cgi 1̂ /̂ )

-  i ( â - a . r c 2 r ' ( â - & )

~  1) log (diipCaiOc +  Qfoj) ( l  +  Q^CaiOç  ̂

$  (difpCsiOt, + o o j- i)  ( l  +  Q^CaiQç^

j

X log ^1 — $  ( d i f p C a i a  +  Q!oj) ( l  +  Q ^ C z iQ ^   ̂ |

where

Cgi

Cai

dik

C iî +  S p ,

(Cii-^ +  17^ -')-', and 

C i i - y .  +  .
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Hence

logLi =  logD  +  log A  -  ^  (Ai - & ) + ? ; ,

where

Ai =  (27T I Cgi 1̂ /^)

and

T. =  E { Z ( : ,  J -  1) log [$([;.,) -  
2 - 2

where U,j =  {i,JC u Ç t +  Q02) ( l  +  SÜ'CsiÇtj

It should be noted tha t C u , and hence Cgi and C^i, differ between individu­

als unless all have the same number of measurements at the same time points. 

Even in the simplest situation of only two dropout follow-up times, there is joint 

estimation of seven parameters - the number of parameters increasing by one for 

each additional follow-up time point. This is likely to lead to a variety of practical 

problems in the numerical maximisation of the log-likelihood. It may, however, be 

possible to introduce appropriate constraints on the «oj- For example, if a linear 

function of time is deemed appropriate, this will limit the number of dropout time
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parameters to two and, hence, the total number of parameters to eight.

Wu and Carroll (1988) maximised the log-likelihood function using a Newton- 

Raphson procedure requiring first and second partial derivatives of this function. 

However, although it is presumed tha t these were correctly derived and used by 

the authors in their analyses and simulations, there were many errors when they 

were included as the Appendix to the paper. It should be noted tha t many, but 

not all, of these errors are simple and obviously typographical. In order to carry 

out simulations to assess Wu and Carroll’s method employing a quasi-Newton- 

Raphson algorithm, as described in Section 3.2.2, it was therefore necessary to 

derive both first and second order partial derivatives, with the following results.

Using the notation

Coi =
0 2̂:12 (Tnvn

d i k  — i d i k l i d i k 2 ) i  P i  — C T 2il2/(<5 '2il<^2i2))

4*ij ~  ^ ij ~  ^ i^ i j ) i  J — 2, . . . , J

and =  0  ,

Uii can be written in the form

U i j  —  (a=Oj +  O L \d ik \< y % \ +  0 ’3 i l 2 { o c i d i k 2  +  O t 2 d i k l ) +  O i2 d ik 2 ( ^ ^ i2 ) /

for j  =  2 , . . . ,  J  ,

where D  =  ( 1  - I -  - I -  2 ( 7 3 ( 1 2 0 : 1  a g  +  ( ^ 3 i 2 ° : D  -
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The vector of parameters to be estimated is

^  — (^1 , ■ ■ • ) ^ J + s )  — ( B i i ,  S i 2 ,  B 21, B 22, O l)  « 2 )  « 0 2 , • • • , O o j )  )

and the partial derivatives of the log-likelihood with respect to these parameters 

are as follows:

^  log(Z'i)

^  for icA;- 
( 1 -p H  ^  lor

k = 1, 2; / =  1,2; m =  3

otherwise :

^  log(T()

<̂ 2ü0̂ 2ip(l ~  P ) (dBkpoBk2p
for iek] 

ki = k2 = k]

Z =  1 , 2 ; p =  1 , 2 ;

otherwise ;
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W hen there is no staggered entry,

§  I

3=2 ( 1  -  $ u )

É { ;
j= 2  I

-U,

dUjj-1

I, 90z90m

* 90m

1 - ^ Z ( 2 , ; - 1 )
3=2

[(1

90, j  (,90m j  l90 ,90m j j  90, j  (,90+
2 /9U ( A  /9 [ /u

/  (1 -  ,
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with

+  0 2 (7 3 ,1 2 ) 4- ^ ^ ( o i ( 7 3 ( i 2  4- 020"3(2) 

for i e t ;  Z =  1 ,2 ;

otherwise;

9CAi;/9a!( =  [D^^^((Z(M(73(( 4- (Z(t(3 -,)(T3( i2 ) -  [ / ) ; C , ] / D  for 2 e t ;  Z =  1, 2

9U(j/9o!o,

9Bjw9cK,

D  for Z =  j;

0  otherwise;

nl/2 I ^dikm _2 , 9(Z(t(3-m) ''

 --------------------Z)-----------

for 2 e t ;  Z =  1 ,2 ; and m  =  1, 2;

otherwise;

daidart
=  D (D  (diklCr̂ ii + dik{3-l)CT3ii2  ̂ — ——“C', — UijQim

2 (dikicrlii 4- dik{3~i)(^3H2) — CiUijj C ^ j  /  D^;

1 , 2 ; m  =  1 , 2 ;

9o!;9ckluaoj for Z =  1, 2 ;
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9aoji9aoja

for Z =  1, 2 ; m =  1, 2 ; i e k \  j i  = 2 , . . . ,  J  ■.

j 2 “  ■ • • Î *7 j and J — 2 , ;

where Cy =  (T̂ ŷÔy +  (73(1 2 0 3 - 1  for q =  1, 2;

and O/ifYi
(7§̂  for Z =  m;

(73(12 for Z m.

3.2.1 Testing th e significance o f param eters

There will be little or no interest in the aojs, so significance testing will be restrict­

ed to the Mk ( t = l ,  2) and a .  In all practical situations, the dropout process will 

be non-informative with respect to  JB^ providing tha t 0 :1  =  0 2  =  0. Otherwise, 

this process will be informative with respect to Of particular interest in most 

applications is the informativeness with respect to Bk2 , that is whether 0 2  =  0.

To test for informativeness of the dropout process, likelihood-ratio tests can be 

performed. The following four hypotheses may be constructed:
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JB[Q . — 0 , Og — 0

H i  : « 1  7  ̂ 0 , 0 2  =  0

H 2 : « 1  =  0 , « 2  7  ̂ 0

H 3 : o i 7  ̂ 0 , « 2  f  0

In simulations perfomed by Wu and Carroll, and those performed by the author 

and discussed later in this chapter, the testing is of hypothesis H q  against H i  

and of H o  against J Î 2 - If H q  is true, the dropout process will be non-informative, 

otherwise it will be informative with respect to Moreover, if H q  is true, the 

term  Tj does not depend on the B ^and  so maximising L reduces, in terms of 

to solving the equation:

91ogZ,

iek iek

0  , for a maximum.

So

This is the weighted or generalized least squares estimator (GLSE) of B_k and 

will be referred to using the notation M g l , k , as used by Wu and Carroll. If all
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individuals have the same number of measurements, the above expression reduces 

to  simply

&  =

which is the unweighted least squares estimator (UWLE) of and will be denot­

ed by Mjjw,k- Their respective covariance matrices can be shown to be given by

C r E C . , -
.iek

and C E C .
.iek

In carrying out tests of equality of initial values in the two groups {Bn  =  B 2 1) 

and equality of rates of change in the two groups {B12 =  B 2 2) the test statistic is

AT(0 , 1 ),

Bi, B 2 1 J

under the null hypothesis

of no difference .
(3.1)

In practice, the variances and may be replaced by their large sample 

estimates. Adopting the notation MpM,k for the probit pseudo-maximum likeli­

hood estimates, JB^ can be any one of B_PM,k, &oL,k and  ̂in the above. In 

the case of MpM,k^ the estimates of {I = 1 , 2 ) are obtained from the inverse 

of the sample information matrix.
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3.2.3 C o m p arin g  W u a n d  C arro lP s m odel w ith  s ta n d a rd  

e s tim a tio n  m e th o d s

In order to gain an appreciation of the feasibility and usefulness of Wu and Car­

roll’s method for extending to modelling event history data, it was decided to use 

Monte Carlo simulation to  carry out a comparison of their method with unweight­

ed least squares and generalised least squares estimation in a similar way to tha t 

used in the original paper. As no standard software was available for implement­

ing Wu and Carroll’s method, it was necessary to write a program to perform the 

simulations. This was done in Fortran 77 using double-precision arithmetic. The 

data simulated were intended to correspond roughly to repeated measurements of 

diastolic blood pressures for two treatm ent groups, each group consisting of 1 0 0  

individuals. NAG subroutines and functions were employed as follows:

G 05C B F  & G 05D D F  to simulate standard normal random variables;

G 0 5 C A F  to simulate uniform random variables on [0, 1] ;

S 15A B F  to calculate cumulative normal probabilities;

G 02C A F  to calculate the least squares regression

coefficients for the individuals’ growth curves;

F 0 2 A B F  to calculate the eigenvalues and eigenvectors of

the sample variance-covariance matrix for the 

individual’s intercept and slope and then used 

to check tha t the matrix is positive-definite;

E 04L A F  a quasi-Newton-Raphson minimisation algorithm

used to minimise the negative of the log 

marginal likelihood function using both first 

and second partial derivatives;
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F O IA A F  an approximate m atrix inversion procedure to calculate 

the sample variance-covariance matrix by inversion of 

the observed information matrix.

Five hundred such simulations were performed within each program. There were 

three basic sets of random effects’ mean parameters. The first was where the first 

group had blood pressures such tha t = (75, 1.5) and the second group had 

B J  =  (75, 1.0), the units being millimetres of mercury (mm Hg). This set was 

intended to represent a two treatm ent randomised controlled designed experiment 

where the two groups had equal expected initial blood pressures but were subject 

to  different expected treatm ent effects.

The second set was where the first group had blood pressures such that 

B ^  =  (75, 1.5) and the second group had B ^  =  (100, 1.0). The inten­

tion here was to allow for a more general case where a study was being performed 

to investigate differences between two populations, as will frequently be the case 

with survival data (eg. differences between the sexes).

The third set was where B ^  =  (75, 1.0) and B ^  =  (75, 1.0), covering the 

situation where there was no real difference between the groups under comparison.

In each case there were six equally spaced time-points at which blood pressure 

measurements were simulated (T =  6 ). The variance-covariance matrix for the 

individual’s intercept and slope equalled:

B n  =
100 -3 .5

-3 .5  0.49

The within-individual measurement error standard deviation, cTg , was assumed 

to  be 1 mm Hg.

84



The follow-up times were chosen as identical to the measurement times for the 

purpose of simulation but, for estimation purposes, the second dropout follow-up 

point was chosen to be the third measurement time, thus making the first follow- 

up interval twice the width of the other three. This was due to the necessary 

elimination of any individual with only one measurement as the least squares 

estimation of such an individual’s slope was unfeasible in these circumstances. 

Appropriate values of the interval-specific dropout process parameters, the aoj, 

were chosen to ensure sufficient individuals dropped out during each of the time 

intervals to provide reasonable power for the testing for informativeness of the 

probit dropout process. The values chosen for were (0.02, 0.5) and (0.015, 

0.75) which, in conjunction with the aoj gave expected percentages of individ­

uals dropping out during each of the four follow-up time periods as given in Table 

3.1.

For each set of parameter values, the simulated power for testing for the signifi­

cance of each of a \ and CKg was estimated by calculating the observed proportion 

of significant results for each of the chosen values of a .  The simulated signifi­

cance level was estimated by setting the value of the parameter of interest to zero 

and calculating the proportion of likelihood-ratio test statistics exceeding the 5% 

value from the %^-distribution on one degree of freedom. The results are given 

in Table 3.2 and show th a t the simulated significance level is in the region of the 

desired true value of 0.05 in each case. The 95% confidence intervals for the signif­

icance level are consistent with the true level being 5%. It should be noted that, 

as a repeatable random number generator was used, the six confidence intervals 

presented in Table 3.2 are not independent.

Estim ated power curves together with approximate 95% confidence intervals for 

cci are given in Figures 3.1 and 3.2 for the cases where and were different. 

The curves were approximated using cubic splines. The power reaches 90% for a
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N on-inform ative d ro p o u t 
oil = «2 = 0

14.92
29.91
25.37
19.78
10.03

In fo rm ative d ro p o u t 

(0.02, 0.5) (0.015, 0.75)

(75, 1.5)

(75, 1.0)

(100, 1.0)

11.76 11.76
41.36 41.36
29.73 29.73
13.72 13.72
3.42 3.42

8.21 6.73
35.80 32.73
32.17 32.86
18.14 20.47
5.68 7.21

16.07 11.76
45.78 41.36
26.25 29.73
9.92 13.72
1.98 3.42

Table 3.1: Expected percentages dropping out in follow-up periods 1, 2,

3 and 4 followed by those completing the study for different values of &  

under a non-informative or informative probit dropout mechanism, where 

CKo2 =  —3.20, « 0 3  =  —2.10, « 0 4  =  —1.26 and « 0 5  =  —0.40.
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value of « 1  around 0.017 if B n  =  75 and B 21 = 100 whereas a value of around 

0.025 will be required to  achieve 90% power if B n  — B 21 — 75. The power curves 

for « 2 , again just considering the two cases where and B^ were different, 

are more similar (Figures 3.3 and 3.4). For power of 90% a value of « 2  of around 

0.42 would be necessary when B 21 =  1.5 and B 22 =  1.0 whereas, to achieve the 

same power when B21 =  B 22 = 1.0, a value of « 2  of around 0.45 would be required.

The estimates and mean squared errors for « 1  and « 2  are given in Table 3.3 

for the three basic sets of random effects’ parameters. In the presence of in­

formative dropout, the magnitude of the observed percentage bias in estimating 

« 1  ranged from approximately 0.5% to 10.0% and tha t in estimating « 2  from 

around 0.9% to 4.0%, demonstrating that, although the estimation of a  is rel­

atively unbiased in many cases, the bias could sometimes be moderately large, 

especially when the random effects’ mean parameters were lower and particu­

larly for « 1 . The bias in the estimation of each of « 1  and « 2  was negative when 

B ^  =  (75, 1.5) and B f  =  (100, 1.0). When B f  =  (75, 1.5) and 

B ^  =  (75, 1.0), « 2  was slightly underestimated but « 1  was slightly overesti­

mated. The bias was, however, positive for the estimation of both « i and « 2  

when B ^  =  B f  =  (75, 1.0).
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Significance level

HivHo; (fe ra i) Hg vHo; (for 0 2 )

Estimate 95% C.I. Estimate 95% C.I.

=  (75, 1.5) 

=  (75, 1.0)
0.052 (0.033, 0.071) 0.046 (0.028, 0.064)

=  (75, 1.5) 

^  =  (100, 1.0)
0.046 (0.028, 0.064) 0.052 (0.033, 0.071)

=  (75, 1.0) 

=  (75, 1.0)
0.064 (0.043, 0.085) 0.038 (0.021, 0.055)

Table 3.2: Simulated significance levels (including 95% confidence intervals) for 

testing hypotheses relating to dropout parameters « 1  and « 2  for three sets of 

random effects’ mean parameters using PPMLE.



N on-inform ative d ro p o u t

a i  =  «2 =  0

61 M SB 0% M SB

. g f  =  (75,1.5) 

^  =  (75,1.0)
-3.55x10-'* 9 .2 9 x 1 0 -: -9 .87x10 -: 2 .6 8 x 1 0 -:

=  (75,1.5)

g l  =  (100, 1.0 )
-2 .0 0 x 1 0 -: 3 .9 5 x 1 0 -: -7 .99x10 -: 3 .2 1 x 1 0 -:

g f  =  (75 ,1.0) 

=  (75,1.0)
-3 .9 6 x 1 0 -4 1.02x10--* -1 .07x10 -: 3 .5 5 x 1 0 -:

In fo rm ative d ro p o u t

a i  =  0.02 02 =  0.5 «1 =  0.015 0 2  =  0.75

M SB 02 M SB MSB 03 M SB

g ^  =  (75,1.5) 

g ^  =  (75,1.0)
0.0199 1.01 X10-4 0,492 3 .5 0 x 1 0 -: 0.0152 8 .6 8 x 1 0 -: 0.726 3 .6 4 x 1 0 -:

g ^  =  (75,1.5) 

^  =  (100,1.0)
0.0194 7 .0 3 x 1 0 -: 0.492 6 .7 1 x 1 0 -: 0.0147 5 .6 2 x 1 0 -: 0.734 5 .3 6 x 1 0 -:

g ^  =  (75,1.0) 

^  =  (75,1.0)
0.0211 1.18x10-4 0.520 5 .0 5 x 1 0 -: 0.0165 1.23x10-4 0.757 5 .3 9 x 1 0 -:

Table 3.3: Results of PPMLE of =  («i, « 2 ) for simulations for various com­

binations of a  and (3.
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Figure 3.1: Power estimates via PPMLE (•) and corresponding 95% confidence 

limits (□) for chosen values of « i from simulations with =  (75, 1.5) and 

Bg — (1 0 0 , 1 .0 ): power curve fitted to estimates using a cubic spline.
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Figure 3.2: Power estimates via PPM LE (•) and corresponding 95% confidence 

limits (□) for chosen values of a i  from simulations with =  (75, 1.5) and 

(75, 1.0): power curve fitted to estimates using a cubic spline.
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The three different methods used for the estimation of {k — 1,2)  were 

PPMLE, the GLSE and the UWLE. The estimates, averaged over the five hun­

dred simulations performed for each, and their mean square errors are given in 

Table 3.4 for equal true group intercepts of 75 mm Hg and true group slopes of 1.5 

and 1.0 mm Hg for Groups 1 and 2 respectively. The estimates and MSEs of the 

between-group differences are also given. Table 3.5 contains the corresponding 

values for the second set of group mean intercepts and slopes. Results from the 

third set of simulations are not included as these were similar to the results from 

the second group of the second set. This is because both groups in the th ird  set 

had the same parameter values as this group. W ith regard to the estimation of 

the intercept, negligible differences between the performance of the techniques nor 

any bias are observed in the case of non-informative dropout. In the presence of 

informative dropout, the bias in the estimation of the intercept is closely linked 

to th a t in the estimation of the slope as the estimators are negatively correlated. 

Prom the first set of group mean intercepts and slopes, the percentage bias in es­

tim ating the slope is low for each of PPM LE (0.02%), the GLSE (0.05%) and the 

UWLE (0.04%) when there is non-informative dropout. As the individuals who 

are censored early will tend to have larger slopes but lower weights in the GLSE, 

it is clear th a t the GLSE will be biased downwards when the dropout is informa­

tive. This downward bias can be observed to be of magnitude 0.0769 (5.1%) when 

« 2  =  0.5, Bk2 — 1.5, magnitude 0.0733 (7.3%) when « 2  =  0.5, Bk2 = 10, mag­

nitude 0.1212 (8.1%) when « 2  =  0.75, B ^2  =  1.5 and magnitude 0.1070 (10.7%) 

when ol2 =  0.75, B \~2 = 1.0. In comparing the UWLE and PPMLE, the bias is 

of similar magnitude when there is informative dropout, the bias being slightly 

smaller in magnitude for the UWLE than PPMLE. This is offset, however, by 

the lower mean square error under PPMLE. The performance is generally slightly 

worse in the second set of simulations, where the second group intercept was 1 0 0  

rather than 75, due to a higher level of dropout in the early follow-up periods.
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In terms of the power for each of the estimation approaches in detecting differ­

ences between B u  and B 12 of given magnitudes, there appears to be a very slight 

decline in power for increasing values of « i, as shown in Figures 3.5-3.8  but little 

or no differences in power between the UWLE, the GLSE and PPMLE. In the es­

tim ation of differences between R 21 and B 22 the power appears to decline slightly 

with increasing the value of 0=2 for PPM LE and the GLSE, as shown in Figures 

3.9-3.12, although use of the UWLE led to a loss of power of up to around 10%. 

When CKi =  « 2  =  0 the power was 80% for detecting differences between B 12 

and B ii  of approximately 3.3 and 90% for detecting corresponding differences of 

around 3.8 (Figure 3.5). For the same value of a ,  the power was 80% for detecting 

differences between B 21 and B 22 of approximately 0.31 and the power was 90% 

for detecting corresponding differences of approximately 0.38 (Figure 3.9).

In many applications, the primary interest will be in making inferences regard­

ing between-group differences. In making such inferences, much of the bias in 

the individual estimates cancels, so the main disadvantage of the GLSE all but 

vanishes. In fact, although the GLSE still results in larger bias in estimating 

between-slope differences, the mean square error is consistently lower than tha t 

of either the UWLE or PPMLE. Whilst Wu and Garroll (1988) observed PPM LE 

to lead to lower MSEs than the GLSE in their simulations, there was little rela­

tive difference between them, as seen here also, so there would appear to be little 

advantage in using PPM LE if the sole or main aim is to make inferences about 

between-group differences. Likewise, in making inferences about the individual 

intercepts and slopes, the UWLE provides estimates comparable, in terms of both 

bias and mean square error, with PPMLE. Thus the sole realistic advantage of 

PPM LE is the knowledge gained regarding the informativeness of the dropout 

process. If this is not of interest, then there would appear to be little gain in 

the computationally complex and expensive PPMLE over the GLSE. However, 

as the information obtained about the dropout process is dependent upon the 

correctness of the assumed model and this can never be fully validated due to the
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missing measurements following dropout, it would appear tha t there is little to be 

gained by using PPMLE for growth curve analysis. However, it should be recalled 

at this stage th a t the rationale for this investigation was to consider the poten­

tial for application of PPM LE to event history modelling. For this purpose, the 

UWLE and the GLSE would be inappropriate as they do not attem pt to consider 

or model the dropout process.

The method for checking the goodness-of-fit of the model proposed by Wu and 

Garroll (1988) is to simply compare the modelled survival distribution with the 

empirical survival distribution. In the simulations with a probit dropout process, 

the model fitted the data well.
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N o n -in fo rm a tiv e  d ro p o u t 
ori =  c%2 =  0

In te rc e p t S lope

B f  =  (75 , 1 .5)

0 .9192 9 .9 1 2 x l0 ~ ®
7 .0 3 6 x 1 0 “ ®

P P M L E 1.4897 7 .4 1 9 x 1 0 “ ®

=  (75, 1.0)

1 0 .1 6 1 x 1 0 “ ®
7 .8 7 6 x 1 0 “ ®

P P M L E 1.0120 8 .2 9 5 X 1 0 “ ®

(Æ l -  =  (0 . 0-5)

0.4969
P P M L E 4).03T 0.4977 0.1503

In fo rm a tiv e  d ro p o u t

a j  =  0 .02  Q2 — a =  0 .015  CX2 =

In te rc e p t S lope In te rc e p t M SB S lope

S f  =  (75, 1.5)

10.696X10“ ® 75.150 0,9461 1 0 .8 9 2 x 1 0 “ ^
1 4 .0 9 8 x 1 0 “ ® 2 2 .4 7 1 x 1 0 “ ^

P P M L E 74.949 8 .9 9 9 x 1 0 “ ® 10.075 X lO “ 3

b J  =  (75 , 1 .0)

U W L E 74.945 9.704x10“ ® 0.9802 0.9690 8 .4 2 2 x 1 0 “ ^
74.981 13.618x10“ ® 0.9959 0.8930 18.092 X l0 “ 3

P P M L E 9.818X10“ ® 0.8804 0.9669 8 .2 6 8 x 1 0 -3

( B j  -  B g ) ^  =  (0 , 0.6)

0.4900 0.2443
0.4964

P P M L E 0.003 3.0293 0.4986 0.038 0.4908

Table 3.4: Results of simulations with different estimation procedures under a lin­

ear random effects model with non-informative or probit informative dropout with 

various dropout parameter values and with R f  =  (75, 1.5) and =  (75, 1.0).
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N o n -in fo rm a tiv e  d ro p o u t 

=  CK2 =  0

In te rc e p t S lope M SE

s f  =  (75, 1 .5)

U W L E 9 .9 1 2 x 1 0 “ ®
7 .0 3 6 x 1 0 “ ®

P P M L E 1.4997 7 .4 1 9 X 1 0 “ ®

=  (100 , 1.0)

99.993 1.0047 1 0 .1 6 1 x 1 0 “ ®
7 .8 7 6 x 1 0 “ ®

P P M L E 99.994 1.0029 8 .5 2 0 x 1 0 “ ®

C S l -  =  ( - 2 5 ,  0 .5 )

U W L E 0.2058
G L S E 0.4969
P P M L E 0.4966 0.1501

In fo rm a tiv e  d ro p o u t

Q:ĵ  =  0 .02  acÿ = a j =  0 .015  0 2  =

In te rc e p t S lope M SB In te rc e p t S lope M SB

=  (75 , 1 .5)

U W L E 1 1 .0 7 x 1 0 “ ® 11.71X10“ ®
G L S E 1 4 .5 4 x 1 0 “ ® 1.0414 25.04X10“ ®
P P M L E 0.9879 9 .6 9 X 1 0 “ ® 1.0210 11.04x10“ ®

b J  =  (100 , 1 .0)

U W L E 99.946 0.9656 1 3 .00X 10“ ® 0.9622 0 .9568 1 1 .1 8 x 1 0 “ ®
G L S E 0.9069 1 7 .7 2 X 1 0 “ ® 22.31X10“ ®
P P M L E 0.9678 1 0 .9 3 x 1 0 “ ® 0.9643 9.72x10“ ®

(M l  -  B g ) ^  =  ( - 2 5 ,  0 .5)

-25 .016 0.1918
-25 .014

P P M L E .25.014 0.4910

Table 3.5: Results of simulations with different estimation procedures under a lin­

ear random effects model with non-informative or probit informative dropout with

various dropout parameter values and with (75, 1.5) and -  (100, 1.0).
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Figure 3.3: Power estimates via PPMLE (•) and corresponding 95% confidence 

limits (□) for chosen values of « 2  from simulations with R f  =  (75, 1.5) and 

R 2 =  (1 0 0 , 1 .0 ): power curve fitted to estimates using a cubic spline.
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Figure 3.4: Power estimates (•) via PPM LE and corresponding 95% confidence 

limits (□) for chosen values of « 2  from simulations with R f  =  (75, 1.0) and 

Rg =  (75, 1.0): power curve fitted to estimates using a cubic spline.
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Figure 3.5: Power estimates for PPM LE (•) and corresponding 95% confidence 

limits (□) for chosen values of B u  -  B u  = B l  from simulations with =  (0, 0): 

power curve fitted to estimates using a cubic spline.
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Figure 3.6: Power curve estimates for B n  — B u  = B l  for the UWLE, the GLSE 

and PPMLE from simulations with oF = (0.02, 0.5): power curve fitted to esti­

mates using a cubic spline.
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Figure 3.7: Power curve estimates for B n  — B u  = B l  for the UWLE, the GLSE 

and PPM LE from simulations with ^  = (0.015, 0.75): power curve fitted to 

estimates using a cubic spline.
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Figure 3.8: Power curve estimates for B n  -  B u  = B l  for the UWLE, the GLSE 

and PPM LE from simulations with =  (0.025, 0.25): power curve fitted to 

estimates using a cubic spline.
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Figure 3.9: Power estimates for PPM LE (•) and corresponding 95% confidence 

limits (O) for chosen values of Rgi — Bgg =  R2 from simulations with =  (0, 0):

power curve fitted to estimates using a cubic spline.

103



I
Û_

00
d

CO
d

d

CM
d

o
d

o: ' P

□ UWLE 
o GLSE 
A PPMLE

0.0 0.1 0.2 0.3

B2

0.4 0.5 0.6

Figure 3.10: Power curve estimates for B 21 — R 22 =  B2  for the UWLE, the 

GLSE and PPMLE from simulations with =  (0.02, 0.5): power curve fitted to 

estimates using a cubic spline.
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Figure 3.11: Power curve estimates for Rgi — R 22 =  B2 for the UWLE, the GLSE 

and PPM LE from simulations with =  (0.015, 0.75): power curve fitted to 

estimates using a cubic spline.
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Figure 3.12: Power curve estimates for Rgi — R22 =  B2  for the UWLE, the GLSE 

and PPM LE from simulations with =  (0.025, 0.25): power curve fitted to 

estimates using a cubic spline.
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To test the sensitivity of the estimates of the population intercept and slope 

parameters to the validity of the probit assumption for the dropout process, the 

simulations were repeated using a Cox dropout process of form:

using oF  = (0.005, 0.125) and (0.00375, 0.1875). The percentages dropping out 

in each of the follow-up periods, together with those surviving to the end of the 

study, are given in Table 3.6.

The probit dropout model was then fitted to the simulated data. Whilst the 

fit was a little worse than when the dropout process was truly probit, it was 

still generally acceptable. The relative sizes of the bias in the estimation of the 

group intercept and slope for the UWLE and PPMLE were both similar under 

the Cox dropout process when compared with those observed under the earli­

er probit dropout process (Tables 3.7 and 3.8 compared with Tables 3.4 and 

3.5). This would appear to indicate th a t any worsening of the performance of 

PPM LE in the presence of a Cox rather than a probit dropout process will be 

slight. This observation is consistent with tha t made in Wu and Bailey (1988). 

They do, however, observe tha t the performance of PPMLE is adversely affected 

by the presence of truncated rather than shifted treatm ent effects.

The quasi-Newton-Raphson algorithm implemented via the NAG subroutine 

E04LAF showed various convergence problems during the maximisation process, 

despite the choice of starting values equal to the true parameter values. The 

problems were of a reasonably consistent form across the simulations. By suitable 

scaling of the log-likelihood function and parameters, the problems were limited 

to its returning the value 5 for the IFAIL parameter in, typically, 1-2% of the 

simulations. An IFAIL value of 5, which has a common interpretation in the vari­

ous NAG quasi-Newton-Raphson minimisation procedures, indicates th a t there is
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some doubt about whether the point found is a minimum because not all not all 

necesary conditions have been met. However it is deemed ‘probable tha t the value 

returned gives a good estimate of the position of a minimum’ (NAG, 1991). More­

over, on comparison of parameter estimates obtained when the IFAIL parameter 

was returned with the value 5 with those from the fully successful minimisations 

of the negative of the log-likelihood (with IFAIL returned as 0), there were no 

obvious differences. For these reasons, combined with a desire to  retain compa­

rability through consistent usage of random numbers across different simulations, 

those simulations for which IFAIL values of 5 had been obtained were retained.
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(0.005, 0.125) (0.00375, 0.1875)

(75, 1.5) 18.14 18.14
21.83 21.83
23.48 23.48
21.43 21.43
15.12 15.12

(75, 1.0) 16.25 15.34
21.42 21.19
23.94 24.15
22.38 22.85
16.01 16.48

(100, 1.0) 20.12 18.14
22.13 21.83
22.97 23.48
20.51 21.43
14.27 15.12

Table 3.6: Expected percentages dropping out in follow-up periods 1, 2, 3 and 

4 followed by those completing the study for different values of under a Cox 

informative dropout mechanism.
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a 1 — 0 .005  ctg =  
(w h e re  ckqi — 0,

0.125  II

0=02 =  0.05 , « 0 3  =  0 .2 , « 0 4
=  0 .00375  « 2  “  0 .1875 
=  0 .45 , a o 5  — 0 .75)

In te rc e p t M SE S lope In te rc e p t S lope M SB

B f  =  (75, 1 .6)

U W L E 75.010 0.8823 1.5055 1 0 .0 3 2 x 1 0 “ ® 75.049 0.9506 1 0 .1 2 6 x 1 0 “ ®
75.018 0.8840 1.4889 7 .6 3 6 x 1 0 “ ® 75.061 8 .0 5 2 X 1 0 “ ®

P P M L E 75.011 0.8832 1.5019 8 .2 1 1 X 1 0 “ ® 0.9511 8 .1 0 0 X 1 0 “ ®

A z  =  (75, 1 .0)

U W L E 75.030 0.9481 9 .4 0 6 x 1 0 “ ® 0.9394 1 0 .0 9 6 x 1 0 “ ®
75.038 0.9499 7 .6 5 1 X 1 0 “ ® 8 .2 0 6 x 1 0 “ ®

P P M L E 0.8483 0.9929 7 .9 4 1 X 1 0 “ ® 0.8384 0.9944 8 .2 8 0 X 1 0 “ ®

( M l  -  =  (0 . 0 .5 )

1.8954 0.6079 19 .457X 10“ ® 0.4930 2 0 .5 1 2 x 1 0 “ ®
1 4 .7 7 2 x 1 0 “ ® 1 4 .8 9 3 x 1 0 “ ®

P P M L E 0.5090 1 4 .8 9 8 x 1 0 “ ® 0.4961 1 4 .9 8 1 x 1 0 “ ®

Table 3.7: Results of simulations with different estimation procedures under a 

linear random effects model with Cox informative dropout with various dropout 

parameter values and with R f  =  (75, 1.5) and R^ =  (75, 1.0).
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— 0.005  OÙ2 =  
(w h e re  q q I  =  0,

0 .125  1 « 1  

“ 02 =  0-05. “ 03 =  0 .2 , « 0 4

=  0 .00375 0 2  =  0 .1875  
=  0 .45 , CKQg =  0 .75)

In te rc e p t M SE S lope M SE In te rc e p t M SE S lope M SB

B f  =  (75, 1 .5)

75 .084 0.9075 1.4947 9 .3 6 2 x 1 0 “ ® 74.968 0.9391 1.5040 1 0 .7 9 4 x 1 0 “ ®
7 .3 7 4 X 1 0 “ ® 8 .6 2 7 X 1 0 “ ®

P P M L E 76.085 0.9081 1.4916 7 .7 2 9 X 1 0 “ ® 74.971 8 .9 6 0 X 1 0 “ ®

=  (100 , 1 .0)

U W L E 99.930 0.9646 1.0085 1 1 .7 6 0 x 1 0 “ ® 100.02 1 0 .0 8 7 x 1 0 “ ®
0.9648 0.9902 7 .9 5 5 x 1 0 “ ® 7 .7 8 1 x 1 0 “ ®

P P M L E 99.832 0.9646 8 .7 7 5 X 1 0 “ ® 100.02 0 .9713 0.9918 8 .4 6 3 x 1 0 “ ®

(B ^  -  B ^ ) ^  =  ( - 2 5 ,  0 .5)

U W L E -24 .846 2 1 .5 2 9 x 1 0 "® -25.05 2 .0512 0.5034 1 8 .7 1 5 x 1 0 “ ®
14 .9 2 2 x 1 0 "® -25.05 2 .0478 0.5042 1 4 .0 0 9 x 1 0 "®

P P M L E -24.847 0.4878 1 5 .1 5 3 x 1 0 "® -25.05 2.0474 0.6041 1 3 .9 4 3 x 1 0 “ ®

Table 3.8: Results of simulations with different estimation procedures under a 

linear random effects model with Cox informative dropout with various dropout 

parameter values and with R f  =  (75, 1.5) and Rg =  (100, 1.0).
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3.3  SunmiEiry

The aim of this chapter was to  gain insight into the workings of random coeffic­

ient models and into their potential for extension to situations where the ‘dropout’ 

process is of primary (rather than secondary) interest and the profile of repeated 

measurements of secondary importance, namely event history or survival analysis. 

The method introduced by Wu and Carroll (1988) was chosen as it was a selection 

model and thus jointly modelled the repeated measures profile and dropout pro­

cess. In its present form, however, it only includes a single repeatedly measured 

variable and, despite this, it was both inherently complex to implement, even un­

der the requirement th a t the dropout process be of probit form for an analystically 

tractable integration of the marginal likelihood, and subject to a certain degree 

of convergence problems, even when the starting values were chosen to coincide 

with the true parameter values.

The results of the simulations in Section 3.2 showed tha t the performance of 

PPM LE is comparable with the UWLE in terms of bias if the dropout process 

is probit and non-ignorable although PPM LE is considerably more efficient. The 

generalised least squares estimator (CLSE), however, is biased if the dropout 

process is informative (i.e. non-ignorable random-coefficient-based). However, 

if interest is solely in between-group differences, the bias in the CLSE for each 

group was found to be of very similar magnitude in all cases and led to similar 

levels of bias and similar MSEs to PPMLE. When the dropout process was of Cox 

(or proportional hazards) form, PPM LE appeared to be affected little in terms 

of bias compared with the UWLE which is not dropout model specific. W ith 

non-informative dropout all three methods were unbiased in their estimation of 

the growth curve parameters although both the CLSE and PPM LE were more 

efficient than the UWLE, with the CLSE tending to lead to a slightly lower mean 

square error than PPMLE.
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As indicated by Little (1995), the use of random coefficient selection models 

such as th a t proposed by Wu and Carroll (1988), can be viewed as preferable 

to random coefficient pattern-mixture models as they are conceptually more in 

line with the expected interaction between the repeated measures process and 

the dropout or survival process. Selection models of this type can be viewed as 

somewhat ‘stronger’ models than the traditional survival models considered in 

the next Chapter whilst not fully exploiting biological knowledge in the manner 

of the stochastic diffusion models described in Chapter 2 . The performance of 

random coefficient selection models in estimating the growth curve parameters 

can be matched or exceeded by pattern-mixture models, especially when the form 

of non-ignorability of the dropout process is known or correctly specified. If the 

form of dropout process is subject to uncertainty, sensitivity analysis is recom­

mended (Little, 1995).

In considering the potential for extension of random coefficient selection models 

to event history analysis a number of problems were perceived. In general, and 

with the data collected for analysis in Chapter 5 in particular, there will be a 

moderate number of variables of various types repeatedly measured rather than 

the single continuous variable considered by Wu and Carroll (1988). Additionally, 

the interpretation of the ai parameters in the selection model of Wu and Carroll 

(1988) is not in terms of risks or hazards. For these reasons, together with the 

problems in implementation of even this restrictive case of a random coefficient 

selection model, it was decided th a t the scope for extension to handle event his­

tory data was limited.

It was therefore decided to concentrate on extending existing survival models 

to cover event history data, paying particular attention to the specific problems 

inherent in screening studies. Research into and extensions to existing models will 

be performed in Chapter 4. Resulting methods will then be applied to  recently-
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collected data from a screening study of the health of an elderly population in 

Chapter 5.
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C h a p ter  4  

A n a ly sin g  in terva l-cen sored  

su rv iva l d a ta  in  th e  p resen ce  o f  a  

risk  factor  h isto ry

An alternative approach to analysing repeated measurements subject to dropouts 

applies survival analysis methodology in conjunction with appropriate use of the 

repeated measurements as covariates. This may involve formal modelling of the 

process generating the covariates as well as that of the survival process although, 

as explained in Chapter 2, any modelling should ideally consider these processes 

jointly. However, although ‘strong models’ such as the stochastic diffusion mod­

els described in Chapters 2 and 3 may be desirable in some contexts, they are 

highly complex and, moreover, do not consider problems caused by missing data. 

Therefore, the use of more traditional survival analysis methods with extensions 

to handle missing risk factor values will be relatively simple and yet may lead to 

inferences with acceptable properties. However, in such studies, it is common for 

the ‘survival’ status to be recorded only at the measurement or screening times, 

thus leading to incomplete information in the form of interval-censored survival 

times. There have been a number of methods developed over the past twenty-five 

years to allow for such incomplete information. Many of these methods have been
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derived or adapted specifically to allow for grouped or interval-censored survival 

times, some of which allow for updating covariate information as it accumulates.

In Section 4.1, several of these methods are presented and then, in the remaining 

sections of this chapter, two of these methods are combined and the perfomance 

of the resulting method is assessed under various forms of missing covariate in­

formation using Monte Carlo simulation. In addition, the common approach of 

simply using baseline covariate values is compared with the use of updated co­

variate values which, in most situations, will be preferable.

4 .1  R ev iew  o f  m eth o d s for an a lysin g  interval- 

cen sored  su rviva l d a ta

One method suitable for modelling interval-censored survival data, providing it 

is of the co in c id en t in te rv a l form (defined in Section 2.2), is th a t proposed by 

Prentice and Cloeckler (1978) in which an extension of the grouped-data version 

of the proportional hazards model (Kalbfleisch and Prentice, 1973) is proposed. 

As usual, it must be assumed tha t any right-censoring mechanism is independent 

of the mechanism causing the failures. This can be a problem with screening stud­

ies, as described in Section 2 .1 .2 . The extension involves allowing the covariate 

vector to vary between intervals but to be fixed within intervals, th a t is, to be of 

step-functional form:

This allows the accumulating risk factor history to be used in the analysis, al­

though only the previous values of each covariate can be used in this manner as
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the total number of covaxiates must be fixed.

Prentice and Gloeckler’s likelihood function is:

L -  n  
: = 1

3
; = 1

where the survival data on the individual is recorded as a pair (/,fc, 5,) 

and lik =  (tfc, ifc+i] represents the interval during which the individual 

failed or was censored,

I 1 if the individual failed during lik ;

0  if the individual was right-censored during lik ,

and CKj =  exp  ̂ Ao(ii) du j  =  exp  ̂ Ao(u) du j

is the conditional probability tha t an individual with Xi{tj) = 0  survives the 

interval {tj, tj+i].

Prentice and Gloeckler (1978), although developing theory applicable where 

time-dependent covariates of this step-functional form exist, illustrated their meth­

od using a data set without any repeatedly measured covariates. Thompson (1981) 

described how a generalized linear model with binomial error structure and com­

plementary-log-log link function can be used to fit Prentice and Gloeckler’s mod­

el, albeit using a different parametrisation as shown later in this section. This 

method can be applied using GLIM upon construction of individual binary re­

sponse units for each member of the risk set at the sta rt of each interval and is 

covered further in W hitehead (1989) and Collett (1994).

Wu and Ware (1979) showed how the requirement that a regression model has a 

fixed number of covariates could be overcome when there is an accumulating risk 

factor history by suitable construction of an augmented covariate vector. This al­

lows more flexibility in the use of risk factor measurements as covariates, removing
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the restrictiveness of using the first or the last measurement. Although a logistic 

rather than a complementary-log-log model was used, this method of covariate 

vector construction can equally well be applied when Prentice and Gloeckler’s 

method is used to fit a proportional hazards model. The augmented covariate 

vector has the relevant data in the appropriate position and zeros elsewhere for 

each individual in each period. Depending on the form of the parameter vector, 

some covariates in the augmented data vector may be defined as linear combina­

tions of the values of the repeated measurements of a covariate from the individual 

histories. This method will allow the fitting of various models of a fully or semi- 

parametric form to see how the accumulating risk factor history can be used to 

best model survival.

Guppies, D’Agostino, Anderson and Kannel (1988) described how the methods 

proposed by Wu and Ware (1979) and by Prentice and Gloeckler (1978) are equiv­

alent to an extension of their PRO (Pooling of Repeated Observations) method. 

In the standard PRO method, a proportional hazards model is used to  model 

the risk of an event during a standard length observation period, pooling these 

observation periods in a way th a t an individual can contribute several ‘indepen­

dent’ periods to the pooled information. This standard method also assumes that 

the underlying risk does not change over time, but an extension by including ad­

ditional parameters to allow this risk to vary with time reverts to Prentice and 

Gloeckler’s model or a particular parsimonious form of Wu and W are’s model, 

depending on the formulation.

Finkelstein (1986) derived maximum likelihood estimates of the parameters of 

a proportional hazards model when the data are not necessarily co in c id en t in ­

te rv a l. This method allows for censoring into overlapping and non-disjoint in­

tervals but does not allow directly for time-dependent covariates as the survivor 

function is not factored as survival probabilités conditional upon survival to the 

s ta rt of each interval. Finkelstein’s likelihood is expressed in terms of proba­
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bilities of failure during the individual elements of an interval Ai which com­

prises a set of intervals, where each element of this set of the form {tj, tj+i], 

j  =  1, . . . ,  m  -t- 1, where ti = 0 and tm+i = oo. This leads to a contribution 

from the observation to the likelihood of;

I & ) -  % + i  I &

where 6 ij =  1 if {tj, tj+i] is a subset of Ai and 0  otherwise

and S{tj I x )  = P {T  >  t | X  =  æ) is the survivor function for an individual

with covariate vector æ.

If proportionality of hazards is assumed, tha t is

\{ t)  = Xo{t) e x p { ^ ^ )

then

I 3̂ ) -  I&) = exp(-ff(tj)) -  exp(-Lf(tj+i))

where H{t) represents the 

integrated hazard function

exp j^- ' Xo{u) exp du

-  exp [ -  ^  ' Ao(i/) exp

exp ' Ao(i/)

Ao(-  exp u) du
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exp

exp

-  exp +  log [ ' Ao(w) dïf

-  exp ^  +  log ' Ao(?i) dtf

Then, letting Q =  log Ao(«) dwj j  = 1, . . . , m  — 1 , Finkelstein obtains 

maximum-likelihood estimates for ^  and Ç.

It should be noted that the traditional right-censored observations are allowed 

for by the inclusion of tm+i = oo and so S{tm+i | æ) =  0 , Væ.

Assuming coincident interval data  and no dependency of covariates, individ­

uals with 6 ik = 1 (and hence Sij = 0 ,V j ^  k) simply contribute a term:

exp -  exp (as.^0  +  log Ao(w) du 

■ exp + log ^ Ao(w) dwj

=  exp [ -  exp +  ( t - i ) ]  -  exp [ -  exp +  ( t) ]  (4.1)

- e x p

to the likelihood, if failure is during the k^^ interval. Similar contributions are 

made by individuals lost from the study due to right-censoring, except th a t the 

second term  will then represent the zero survival probability at time infinity.

A contribution from such an individual could be parametrised somewhat differ­

ently by splitting the integrated baseline hazard function into separate compo­

nents for each period, so equation 4.1 can be written:
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exp

exp

exp j^-exp(®j^^) Xo{u)du +  ̂ Xo{u) du

e x p ( x A ^  /  Ao(w)dM

exp(Zi^^)j^  ̂ AoWdiij1 -  exp

exp
t - i  /  ft

- e x p (& ^ ^ )  E !  f /  '^ W '
j=i V b

- e x p ( g * ^ ^ ) j ^   ̂ A oM d iij1 — exp

Now, letting 'yj =  log Ao(t) =  log ( -  log (a^)) from Prentice and

Gloeckler’s original parametrisation, the likelihood contribution can be written:

exp

exp

e x p ( 2 f ^ ) ^  exp(i^j)
3=1

[l -  exp ( -  exp(2^^^ exp(n/k))]

^  exp +  7;) [l -  exp ( -  exp +  7*,))]
j=i

Hence, for coincident interval data with no time-dependency of covariates, Finkel­

stein’s method is equivalent to Thompson’s implementation of Prentice and Gloeck­

ler’s but with a different parametrisation for the interval-specific parameters Q and 

7 j j  — 1 , . . . ,  m -  1 , where:

exp(O) = ^  exp(-y()
1=1
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It is possible to modify Finkelstein’s method to allow for time-dependent co­

variates of the type suggested by Prentice and Gloeckler. This will require the 

imputation of ‘missing’ covariate values if the measurement times vary between 

individuals. It will also be necessary to use Prentice and Gloeckler’s parametri­

sation.

An alternative approach, introduced briefly in Chapter 2 , was firstly proposed 

by Woodbury and Manton (1977) and applied in various papers from within their 

research group. They developed a model for the interaction of risk factor devel­

opment and survival status. This incorporates two linked processes. The first 

describes the evolution of potential risk factors and is based on an autoregressive 

process. In their applications, this is a first-order process. The second process 

describes the form of the hazard function. This is specified as a quadratic function 

of an individual’s present covariate values, where these may be estimated from the 

first process. A quadratic function is necessary to preserve multivariate normality 

of the full process (Woodbury and Manton, 1977) but also has the advantage of 

proposing a potential optimum level of each covariate, corresponding to the min­

imum of its particular quadratic, subject to its existence.

The general form of the likelihood function proposed may be factorised in the 

following way:

z, = n /o(auo) n
i€So i= 0

n /t+i (&t+i I Gxp [-/it (&i
i€St+i

X p  { l-exp[/it(&t)]}
i€St+i
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where St denotes the set of individuals alive at time t and St+i denotes the set 

of individuals whose time of death is in the interval {t, t  +  1 ] ; and where

I X)

is the conditional multivariate normal density function given survival to time t; 

and

I aZif) =  /(& ( (  +  1 ) I & ((), t  +  1 )

is the multivariate normal density function at time t +  1 , conditional on the co­

variate history. This expression may easily be factorised into three independent 

components, one involving /ofeo)) one involving ft+i{Xit+i I and the third 

involving the hazard function yit{xn). Estimation of the corresponding param­

eters may then be performed separately for each component. For the first two 

components the estimation is using standard regression techniques, subject to 

appropriate assumptions. The parameters of the mortality component are then 

estimated via maximum likelihood. This third component may be specified in 

various ways, to allow for single or competing risks. It can also allow for ex­

act death times as well as the more usual interval-censored data. This stochastic 

diffusion model for suvival has not been widely employed in epidemiology. Its 

sole users appear to have been the research team at Duke University who first 

proposed it. This limited level of adoption may be due to the general complexity 

of the modelling and the lack of availability of software together with the wide 

use of proportional hazard models for survival data.

4.2  Su m m ary o f  m eth o d s and prop osa ls

A general principle in statistical modelling is to use a model tha t is as simple as 

possible but which provides a satisfactory description of the processes relating the
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variables involved. Considering the methods discussed in Section 4.1, whilst the 

stochastic diffusion models of Manton et al. may both provide an adequate sum­

mary of the data and take into account the likely relationship between underlying 

biological processes and mortality, they cannot be viewed as ‘simple’. Therefore, 

if alternative strategies can satisfactorily explain the structure of data subject 

to interval-censoring and repeated risk factor assessment, they can be preferable, 

especially if they can handle certain forms of missing data processes without the 

necessity for highly complex derivations for standard errors of model parameter 

estimates. To this effect, it was decided to investigate further the methods of 

Prentice and Gloeckler and Finkelstein, paying particular attention to combining 

these two methods via the alternative parametrisation of Finkelstein’s method 

which allows time dependent covariates of the step-functional form used by Pren­

tice and Gloeckler to be incorporated into the modelling. This combination of 

methods will hereafter be referred to as ‘adapted Finkelstein’.

In the following sections, simulation is used to investigate the performance of 

Prentice and Gloeckler’s method when the interval-censored survival times are 

of coincident-interval form and th a t of ‘adapted Finkelstein’ otherwise, in each 

case subjecting the repeated risk factor measurement process to various types of 

missing data processes.

Section 4.3 will compare two common situations in longitudinal studies using 

Prentice and Gloeckler’s method. The first is where, rather than collecting re­

peated covariate measurements and using either the most recently recorded or, 

potentially, all measurements in an individual’s history (Wu and Ware, 1979) as 

covariates, only the baseline covariates are included in the model. The other is 

where repeated covariate measurements are available at each follow-up point and 

treated as time-dependent covariates updated at each point. In this section there 

are repeated measurements of a single continuous variable and it is assumed there 

are no missing measurements. In Section 4.4, data sets with repeated covariate
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measurements as created in Section 4.3 will then be subjected to various types of 

missingness in the repeated measurements. In this section, adaptated Finkelstein 

and Prentice and Gloeckler’s method will each be used as, in some study des­

igns, missing covariate measurements will coincide with missing information on 

the event of interest, thus rendering Prentice and Gloeckler’s method unfeasible. 

A comparison will be made between the performance of this method under three 

different methods of imputation: imputation of the most recently recorded value; 

imputation of an interpolated value where possible - otherwise imputing the most 

recently recorded value; multiple imputation based on a simple linear regression 

model. Finally, in Section 4.5 similar comparisons will be made in the presence of 

repeated ‘measurements’ of one continuous and one ordinal variable, each subject 

to incomplete observation. In Section 4.5, however, the imputation of an interpo­

lated value is not investigated.

4 .3  A  sin g le  rep ea ted ly  m easured  con tin u ou s  

variab le w ith o u t m issin g  values

The aim of this section is to compare the performance of Prentice and Gloeckler’s 

model in the presence of repeated measurements of a single continuous variable, 

using as covariate:

(I ) a single covariate, measured at the baseline screen only;

(I I ) a single covariate, measured at the last screen;

via simulations performed in GLIM. Eleven annual repeated measurements of di­

astolic blood pressure were simulated using the following autoregressive process 

of order one:
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Xij — 1.02(x,j_x — 40) +  40 +  Eij j  =  1, . . .  10 

where gi; W(0,(T^) and aiio ^  W(80, cr )̂.

A two-parameter Weibull process was used for the baseline mortality process. 

This had a hazard function of the form:

Ao(t) =  ^

where 7  is a shape parameter and A is a scale parameter. The full mortality 

process then has hazard function of the form:

A(t) =  Ao(t) exp(;gzij)

where Xij is the value of the individual’s diastolic blood pressure at their 

last screen, that is, at the sta rt of the j  + 1*̂  year. It should be noted tha t 

the ‘correct model’ is therefore (ii) above and that the values of j  are equal to 

the time in years (t) since entry to the study. The values of the parameters 

0, 7  and CTw/^B were varied and those of the parameter A was chosen to bal­

ance the effect of 0  on the initial death rates. A standard program was used 

in which 0  = 0.07, 7  =  1.5 (baseline hazard increasing with the square root of 

time) and cr^ /c r| =  0.25 (with aw  =  4 and (Tg =  8 ). These parameters gave 

an increasing hazard with time, with a relative risk of 2 . 0 1  for an increase in 1 0  

mm Hg in diastolic blood pressure. The effect of the choice of baseline mortality 

process parameters was tha t an individual following the expected diastolic blood 

pressure profile had an interval-specific conditional probability of death increasing 

with time and which ranged from 0.0273 in the first interval to 0.2181 in the last.
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For comparison of estimation properties, 0  took alternative values 0.035 (relative 

risk 1.42 for a 10 mm Hg increase), 0.14 (relative risk 4.06 for a 10 mm Hg in­

crease) and 0.21 (relative risk 8.17 for a 10 mm Hg increase); 7  took alternative 

values 1 . 0  (constant baseline hazard), 2 . 0  (baseline hazard increasing linearly with 

time) and 2.5 (hazard increasing with tim ei); and took alternative values

0.0625, 1 and 4. Only a single parameter was altered for each program, except 

th a t A was changed in accordance with 0. One hundred simulations were per­

formed for each set of parameter values. It should be noted that, although there 

was a single parameter 7  in the baseline hazard function, separate estimates of a 

function of this parameter were made for each of the ten intervals between screens. 

The functional relationship between these parameters, the 7 ^3, and the Weibull 

shape parameter 7  is;

I j  =  log(A) +  log(j^ -  {j -  1 )^) j  =  1 , . . . ,  1 0  .

The results from the standard program may be found in Table 4.1 on page 130. 

There was little or no bias if the last measurement is used, as would be hoped. 

W ith the exception of the parameter 7 1 , all the 95% confidence intervals con­

structed for the true bias include the value zero. If the baseline measurement is 

used as the covariate, the parameter 0  is underestimated and the baseline hazard 

function parameters, the 7 ^3, are resultantly over-estimated, this over-estimation 

increasing through the intervals. Similarly, the mean squared error (MSB) of the 

estimates is considerably lower when the last measurement is used as the covari­

ate. On varying the ratio of within-patient variance to between-patient variance, 

the performance of the model using the last covariate measurement remained rel­

atively consistent whereas th a t of the model using the first covariate measurement 

deteriorated in terms of both bias and mean square error as the variance ratio 

increases (Tables 4.2 - 4.4). When the Weibull shape parameter was varied, al­
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though the direction of bias changed, there was little effect on the estimation. It 

did appear, however, th a t the performance was somewhat worse when 7  =  1 . 0  

(Table 4.5) than when it took values 1.5, 2.0 or 2.5 (Tables 4.1, 4.6 and 4.7). 

Finally, on varying the regression parameter /3, the performance of the model us­

ing the last covariate measurement showed a slight deterioration as 0  increased 

(Tables 4.1 and 4.8 - 4.10). The performance of the model using the first covari­

ate measurement showed a considerable worsening as 0  increased, to the extent 

th a t a relative bias in the range 30-35% was observed for all the parameters with 

jg =  0 .2 1 .

In the vast majority of survival studies, only baseline measurements are ever 

made. These simulations support the hypothesis tha t the magnitude of the eff­

ects of risk factors will then tend to be under-estimated. This under- estimation 

may be considerable in the presence of strong covariate effects. If the hazard 

depends only upon the present value of an individual’s risk factor, this should be 

included as a covariate. However, it may be tha t the hazard depends upon the 

covariate in some more complex way, for example its value some time in the past 

or the length of time it has exceeded some critical value. In such cases it will be 

vital to investigate and model the true nature of the type of effect of this risk 

factor, having collected as much of the risk factor history as is practical.

As noted by Altman and de Stavola (1994), there are two im portant differences 

between, using terminology introduced in this review, time-fixed and updated co­

variate models. The first is in the interpretation of the parameters. When using 

the time-fixed model, a parameter 0j represents the difference in relative risk on 

unit difference in a covariate Zj at time t  = 0. However, if the updated covariates 

model is applied, a parameter 0j  represents the difference in relative risk on unit 

increase in a covariate Zj at any time. The other difference is th a t the cumulative 

survival probability can be estimated directly from the estimated cumulative sur­

vival probability at time t, given knowledge of the covariate value at time t  — 0 ,
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for the time-fixed model. For the survival probability estimates for the updated 

covariate model, account must be taken of all values of Zj prior to time t, which 

will generally be unknown or, at best, be known only approximately or at certain 

time points.
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P a ram e te r T rue Bias

BASBLINB

95% C.I.
for b ias

Bias

LA ST

95% C.I.
for bias

0 0.07 -2.938x10-= (-3.976x10-=, -1.899x10-=) 0.242x10-= (-0.485 X10-=, 0.969 x 10-=)
71 -9.2000 0.1496 (0.0587, 0.2405) -0.1181 (-0.1898, -0.0465)
72 -8.5965 0.3173 (0.2287, 0.4059) -0.0521 (-0.1164, 0.0123)
73 -8.3381 0.4327 (0.3435, 0.5219) -0.0237 (-0.0915, 0.0442)
74 -8.1690 0.5012 (0.4128, 0.5897) -0.0319 (-0.0985, 0.0347)
73 -8.0430 0.5822 (0.4943, 0.6700) -0.0071 (-0.0752, 0.0609)
76 -7.9425 0.6057 (0.5203, 0.6911) -0.0201 (-0.0851, 0.0449)
77 -7.8589 0.6141 (0.5272, 0.7009) -0.0319 (-0.1004, 0.0366)
78 -7.7873 0.6399 (0.5552, 0.7247) -0.0126 (-0.0817, 0.0566)
79 -7.7247 0.6264 (0.5395, 0.7133) -0.0239 (-0.0936, 0.0459)
710 -7.6690 0.5998 (0.5117, 0.6878) -0.0332 (-0.1064, 0.0401)

P a ram e te r TYue

BA SE LIN E

M SE S ta n d ard  E rro r 
of M SE

MSE

LA ST

S ta n d ard  E rro r 
of MSB

0 0.07 3.64x10-= 4.38x10-= 1.37x10-= 2.13x10-=
71 -9.2000 0.2352 0.0287 0.1462 0.0194
72 -8.5965 0.3029 0.0366 0.1093 0.0157
73 -8.3381 0.3922 0.0422 0.1191 0.0199
74 -8.1690 0.4530 0.0470 0.1153 0.0175
75 -8.0430 0.5378 0.0539 0.1193 0.0191
76 -7.9425 0.5548 0.0622 0.1093 0.0167
77 -7.8589 0.5714 0.0575 0.1220 0.0198
78 -7.7873 0.5946 0.0565 0.1233 0.0188
78 -7.7247 0.5869 0.0582 0.1259 0.0180

710 -7.6690 0.5596 0.0575 0.1392 0.0217

Table 4.1: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 1.5 and =  0.25 using Prentice and Gloeck-

ler’s method with baseline versus last covariate measurement with /3=0.07.
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P a ra m e te r  T rue Bias

BASELINE

95% C.I.
for bias

Bias

L A ST

95% C.I.
for b ias

0  0.07 -1.805x10-= (-3.842x10-=, 0.232x10-=) 0.559x10-= (-0.250x10-=, 1.367x10-=)
"Yi -9.2000 0.0778 (-0.0896, 0.2451) -0.1133 (-0.1841, -0.0424)
72 -8.5965 0.2067 (0.0408, 0.3726) -0.0817 (-0.1556, -0.0078)
73 -8.3381 0.3406 (0.1777, 0.5033) -0.0375 (-0.1060, 0.0310)
74 -8.1900 0.4233 (0.2605, 0.5860) -0.0367 (-0.1064, 0.0330)
7B -8.0430 0.4869 (0.3204, 0.6535) -0.0368 (-0.1110, 0.0374)
78 -7.9425 0.4956 (0.3316, 0.6597) -0.0749 (-0.1467, -0.0031)
77 -7.8589 0.5371 (0.3676, 0.7065) -0.0600 (-0.1360, 0.0160)
78 -7.7873 0.5604 (0.3977, 0.7231) -0.0460 (-0.1218, 0.0298)
78 -7.7247 0.5547 (0.3902, 0.7191) -0.0447 (-0.1232, 0.0338)
710 -7.6690 0.5136 (0.3449, 0.6823) -0.0636 (-0.1421, 0.0148)

P a ram e te r T rue
Value

BA SE LIN E

M SE S ta n d a rd  E rro r 
of MSE

M SE

LAST

S ta n d a rd  E rro r 
of MSE

0 0.07 1.10x10-4 1.48x10-= 0.17x10-4 0.23x10-=
71 -9.2000 0.7277 0.0959 0.1420 0.0177
72 -8.5965 0.7517 0.0997 0.1475 0.0184
73 -8.3381 0.7988 0.1034 0.1224 0.0177
74 -8.1690 0.8617 0.1041 0.1265 0.0167
75 -8.0430 0.9518 0.1117 0.1433 0.0185
76 -7.9425 0.9392 0.1088 0.1384 0.0187
77 -7.8589 1.0282 0.1196 0.1525 0.0230
78 -7.7873 1.0391 0.1208 0.1502 0.0199
79 -7.7247 1.0043 0.1155 0.1610 0.0226
710 -7.6690 0.9973 0.1219 0.1626 0.0204

Table 4.2: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 1.5 and O w ja \  =  1 . 0  using Prentice and Gloeckler’s 

method with baseline versus last covariate measurement with 0=0.07.
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P a ram e te r "D-ue
Value

Bias

B A SELIN E

95% C.I.
for b ias

Bias

LAST

95% C.I.
for b ias

0 0.07 -0.0175 (-0.0193, -0.0157) 6.02x10-4 (0 .40x10-4 , 11.65x10-4)
71 -9.2000 1.3478 (l.%)33, 1.4922) -0.1157 (-0.1805, -0.0510)
73 -8.5965 1.5896 (1.4439, 1.7352) -0.0830 (-0.1373, -0.0287)
73 -8.3381 1.7716 (1.6212, 1.9220) -0.0638 (-0.1218, -0.0057)
74 -8.1900 1.8775 (1.7310, 2.0240) -0.0575 (-0.1124, -0.0027)
75 -8.0430 1.8993 (1.7544, 2.0441) -0.0619 (-0.1197, -0.0041)
76 -7.9425 1.8782 (1.7306, 2.0257) -0.0450 (-0.1049, 0.0149)
77 -7.8589 1.7728 (1.6236, 1.9219) -0.0698 (-0.1273, -0.0122)
73 -7.7873 1.7095 (1.5612, 1.8678) -0.0278 (-0.0831, 0.0274)
79 -7.7247 1.5799 (1.4314, 1.7283) -0.0405 (-0.1001, 0.0192)

710 -7.6690 1.4489 (1.3010, 1.5968) -0.0569 (-0.1182, 0.0044)

BASBLINB LAST

P a ram e te r lYue M SE S ta n d ard  E rro r MSB S ta n d a rd  E rro r
Value of M SE of MSE

0 0.07 3.902x10-4 3.266x10-= 0.085x10-4 0.123x10-=
71 -9.2000 2.3538 0.2036 0.1214 0.0177
72 -8.5965 3.0736 0.2309 0.0829 0.0116
73 -8.3381 3.7218 0.2739 0.0908 0.0153
74 -8.1690 4.0783 0.2794 0.0809 0.0120
75 -8.0430 4.1478 0.2813 0.0899 0.0129
76 -7.9425 4.0888 0.2827 0.0945 0.0131
77 -7.8589 3.7159 0.2755 0.0902 0.0125
78 -7.7873 3.4893 0.2553 0.0796 0.0110
79 -7.7247 3.0641 0.2399 0.0932 0.0141
710 -7.6690 2.6633 0.2203 0.1001 0.0133

Table 4.3: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 1.5 and =  2.0 using Prentice and Gloeckler’s

method with baseline versus last covariate measurement with /3=0.07.
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P a ram e te r TVtie Bias

BASELINE

95% C.I.
for b ias

Bias

LAST

95% C.I.
for b ias

0 0.07 3.864x10-= (2.805x10-=, 4.923x10-=) 0.281x10-= (-0.611x10-=, 1.172x10-=)
71 -9.2000 -0.3682 (-0.4573, -0.2790) -0.0651 (-0.1416, 0.0113)
72 -8.5965 -0.2931 (-0.3846, -0.2016) -0.0638 (-0.1422, 0.0147)
73 -8.3381 -0.1835 (-0.2724, -0.0946) -0.0248 (-0.1025, 0.0530)
74 -8.1690 -0.1269 (-0.2149, -0.0389) -0.0372 (-0.1151, 0.0406)
75 -8.0430 -0.0323 (-0.1208, 0.0563) -0.0059 (-0.0835, 0.0717)
78 -7.9425 -0.0031 (-0.0904, 0.0843) -0.0350 (-0.1146, 0.0445)
77 -7.8589 0.0421 (-0.0480, 0.1323) -0.0424 (-0.1242, 0.0395)
78 -7.7873 0.0938 (0.0037, 0.1839) -0.0373 (-0.1207, 0.0461)
79 -7.7247 0.1562 (0.0615, 0.2509) -0.0170 (-0.1051, 0.0711)

710 -7.6690 0.1874 (0.0963, 0.2785) -0.0217 (-0.1058, 0.0624)

P a ram e te r T rue
Value

BA SE LIN E

M SE S ta n d ard  E rro r 
of MSE

MSE

L A ST

S ta n d a rd  E rro r 
of M SE

0 0.07 4.38x10-= 5.77x10-= 2.06x10-= 2.72x10-=
71 -9.2000 0.3401 0.0430 0.1548 0.0196
73 -8.5965 0.3017 0.0426 0.1626 0.0237
73 -8.3381 0.2375 0.0338 0.1565 0.0210
74 -8.1690 0.2155 0.0307 0.1576 0.0217
7B -8.0430 0.2030 0.0270 0.1552 0.0198
76 -7.9425 0.1966 0.0285 0.1643 0.0238
77 -7.8589 0.2110 0.0287 0.1744 0.0234
78 -7.7873 0.2180 0.0306 0.1806 0.0234
79 -7.7247 0.2556 0.0368 0.2002 0.0299
710 -7.6690 0.2491 0.0345 0.1829 0.0258

Table 4.4: Comparison of bias and MSE from simulations of a Weibull mortal- 

ity process with shape parameter 1.5 and =  0.0625 using Prentice eind

Gloeckler’s method with baseline versus last covariate measurement with 0=0.07.
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P a ram e te r TVue Bias

BA SE LIN E

95% C.I.
for b ias

Bias

LAST

95% C.I.
for b ias

0 0.07 2.407x10-= (1.009x10-=, 3.804x10-=) 0.983x10-= (0.004x10-= , 1 .923x10-=)
71 -9.2000 -0.2307 (-0.3551, -0.1064) -0.1098 (-0.2026, -0.0171)
72 -9.2000 -0.1094 (-0.2350, 0.0162) -0.0909 (-0.1786, -0.0031)
73 -9.2000 -0.0049 (-0.1261, 0.1153) -0.0858 (-0.1696, -0.0020)
74 -9.2000 -0.0309 (-0.0882, 0.1500) -0.1467 (-0.2355, -0.0580)
78 -9.2000 0.2052 (0.0820, 0.3283) -0.0647 (-0.1555, 0.0262)
78 -9.2000 0.2376 (0.1148, 0.3604) -0.1163 (-0.2074, -0.0251)
77 -9.2000 0.3227 (0.1988, 0.4466) -0.1113 (-0.2055, -0.0171)
78 -9.2000 0.3680 (0.2435, 0.4925) -0.1396 (-0.2349, -0.0444)
79 -9.2000 0.4624 (0.3462, 0.5786) -0.1090 (-0.2043, -0.0136)

710 -9.2000 0.5420 (0.4235, 0.6605) -0.0836 (-0.1797, 0.0124)

P a ram e te r TVue
Value

BA SE LIN E

M SE S ta n d ard  E rro r 
o f  M SE

MSB

LAST

S ta n d a rd  E rro r 
of MSE

0 0.07 5.61x10-= 8.65x10-= 2.37x10-= 3.37x10-=
71 -9.2000 0.4518 0.0647 0.2337 0.0303
7a -9.2000 0.4186 0.0605 0.2066 0.0266
73 -9.2000 0.3722 0.0524 0.1883 0.0259
74 -9.2000 0.3667 0.0505 0.2245 0.0316
75 -9.2000 0.4329 0.0536 0.2169 0.0308
76 -9.2000 0.4450 0.0593 0.2276 0.0303
77 -9.2000 0.4999 0.0664 0.2411 0.0347
78 -9.2000 0.5348 0.0658 0.2533 0.0336
78 -9.2000 0.5618 0.0704 0.2462 0.0364
710 -9.2000 0.6555 0.0736 0.2447 0.0341

Table 4.5: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 1.0 and Owl^lb =  0.25 using Prentice and Gloeck­

ler’s method with baseline versus last covariate measurement with /3=0.07.
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P a ram e te r Bias

BA SE LIN E

95% C.I.
for bias

Bias

LAST

95% C.I.
for b ias

0 0.07 -5.814x10-= (-6.751x10-=, -4.878x10-=) 0.683x10-= (0.007x10-=, 1.358x10-=)
71 -9.2000 0.4943 (0.4080, 0.5806) -0.0527 (-0.1182, 0.0128)
72 -8.1014 0.5619 (0.4812, 0.6426) -0.0815 (-0.1434, -0.0196)
73 -7.590G 0.6519 (0.5706, 0.7331) -0.0627 (-0.1247, -0.0008)
74 -7.2541 0.6910 (0.6124, 0.7696) -0.0632 (-0.1245, -0.0018)
76 -7.0028 0.6711 (0.5948, 0.7474) -0.0851 (-0.1437, -0.0266)
78 -6.8021 0.6574 (0.5814, 0.7335) -0.0662 (-0.1257, -0.0067)
77 -6.6351 0.6056 (0.5291, 0.6820) -0.0591 (-0.1191, 0.0009)
7» -6.4920 0.5200 (0.4386, 0.6013) -0.0659 (-0.1262, -0.0056)
78 -6.3668 0.4536 (0.3811, 0.5260) -0.0387 (-0.0978, 0.0204)
710 -6.2556 0.3410 (0.2615, 0.4204) -0.0540 (-0.1140, 0.006)

P a ram e te r TVue

BASELINE

M SE S ta n d ard  E rro r 
of MSE

MSE

LAST

S ta n d ard  E rro r 
o f MSB

0 0.07 5.64x10-= 6.75x10-= 1.22x10-= 1.63x10-=
71 -9.2000 0.4362 0.0532 0.1133 0.0169
72 -8.1014 0.4834 0.0554 0.1054 0.0144
73 -7.5906 0.5950 0.0612 0.1029 0.0136
74 -7.2541 0.6367 0.0647 0.1010 0.0121
75 -7.0028 0.6004 0.0581 0.0956 0.0119
76 -6.8021 0.5813 0.0584 0.0957 0.0116
77 -6.6351 0.5173 0.0550 0.0963 0.0122
78 -6.4920 0.4408 0.0500 0.0981 0.0128
79 -6.3668 0.3411 0.0359 0.0915 0.0116

710 -6.2556 0.2788 0.0386 0.0957 0.0133

Table 4.6: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 2.0 and cfw/^Ib ~  0.25 using Prentice and Gloeck­

ler’s method with baseline versus last covariate measurement with /?=0.07.
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P a ram e te r T rue
Value

Bias

B A SELIN E

95% C.I.
for b ias

B ias

LA ST

95% C.I.
for b ias

0 0.07 -5.619x10-= (-6.590x10-=, -4.648x10-=) 0.612x10-= (-0.156x10-=, 1.380x10-=)
71 -9.2000 0.4628 (0.3681, 0.5574) -0.0621 (-0.1448, 0.0205)
72 -7.6617 0.5543 (0.4742, 0.6343) -0.0625 (-0.1285, 0.0035)
73 -6.9043 0.5979 (0.5163, 0.6795) -0.0672 (-0.1348, 0.0005)
74 -6.4020 0.6014 (0.5224, 0.6805) -0.0509 (-0.1179, 0.0161)
75 -6.0261 0.5263 (0.4525, 0.6000) -0.0535 (-0.1144, 0.0073)
76 -5.7256 0.4226 (0.3476, 0.4976) -0.0383 (-0.0992, 0.0227)
77 -5.4753 0.2659 (0.1859, 0.3458) -0.0472 (-0.1154, 0.0210)
78 -5.2608 0.0718 (-0.0100, 0.1536) -0.0822 (-0.1495, -0.0149)
70 -5.0732 -0.0736 (-0.1622, 0.0149) -0.0545 (-0.1303, 0.0214)

710 -4.9064 -0.2408 (-0.3449, -0.1368) -0.0396 (-0.1346, 0.0554)

P a ram e te r TYue

BASELINE

M SE S ta n d ard  E rro r 
of MSE

MSE

LAST

S ta n d ard  E rro r 
of MSE

0 0.07 5.59x10-= 6.20x10-= 1.56x10-= 2.30x10-=
71 -9.2000 0.4449 0.0523 0.1798 0.0262
72 -7.6617 0.4724 0.0476 0.1162 0.0178
73 -6.9043 0.5290 0.0536 0.1225 0.0191
74 -6.4020 0.5229 0.0506 0.1183 0.0177
75 -6.0261 0.4172 0.0419 0.0983 0.0149
76 -5.7556 0.3237 0.0364 0.0972 0.0131
77 -5.4753 0.2354 0.0329 0.1220 0.0168
78 -5.2608 0.1775 0.0244 0.1234 0.0143
79 -5.0732 0.2076 0.0290 0.1512 0.0201
710 -4.9064 0.3372 0.0458 0.2343 0.0366

Table 4.7: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 2.5 and cr^ /c r| = 0 .25  using Prentice and Gloeck­

ler’s method with baseline versus last covariate measurement with /3=0.07.
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P a ram e te r T rue
Value

Bias

B A SELIN E

95% C.I.
for b ias

Bias

LAST

95% C.I.
for b ias

0 0.035 0.0026 (0.0016, 0.0035) -0.0001 (-0.0007, 0.0005)
71 -6.4000 -0.2652 (-0.3593, -0.1712) -0.0492 (-0.1150, 0.0166)
72 -5.7965 -0.2000 (-0.2789, -0.1211) -0.0243 (-0.0751, 0.0265)
73 -5.5381 -0.1199 (-0.2047, -0.0351) 0.0169 (-0.0381, 0.0718)
74 -5.3690 -0.0849 (-0.1661, -0.0036) 0.0145 (-0.0405, 0.0694)
78 -5.2430 -0.0562 (-0.1393, 0.0269) 0.0093 (-0.0484, 0.0670)
78 -5.1425 -0.0462 (-0.1267, 0.0343) -0.0114 (-0.0694, 0.0465)
77 -5.0589 -0.0181 (-0.1046, 0.0684) -0.0120 (-0.0740, 0.0500)
78 -4.9873 0.0080 (-0.0732, 0.0893) -0.0094 (-0.0682, 0.0493)
78 -4.9247 0.0355 (-0.0472, 0.1182) -0.0002 (-0.0582, 0.0578)
710 -4.8690 0.0522 (-0.0243, 0.1288) 0.0044 (-0.0491, 0.0580)

P a ram e te r T rue
Value

BASELINE

M SE S ta n d ard  Error 
of MSE

MSE

LAST

S ta n d a rd  E rro r 
of MSE

0 0.035 3.07x10-= 4.05x10-= 0.93x10-= 1.26x10-=
71 -6.4000 0.2983 0.0405 0.1140 0.0176
72 -5.7965 0.2005 0.0276 0.0671 0.0099
73 -5.5381 0.1999 0.0245 0.0780 0.0086
74 -5.3690 0.1773 0.0249 0.0779 0.0119
75 -5.2430 0.1810 0.0243 0.0858 0.0106
78 -5.1425 0.1691 0.0222 0.0867 0.0119
77 -5.0589 0.1932 0.0295 0.0993 0.0129
78 -4.9873 0.1702 0.0247 0.0891 0.0127
7» -4.9247 0.1776 0.0253 0.0867 0.0125
710 -4.8690 0.1537 0.0228 0.0739 0.0101

Table 4.8: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 1.5 and (T^/(Tg =  0.25 using Prentice and Gloeck-

ler’s method with baseline versus last covariate measurement with /?=0.035.
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B A SELIN E LAST

P a ram e te r T rue Bias 95% C.I. 95% C.I.
for bias for b ias

0 0.14 -0.0314 (-0.0324, -0.0303) 0.0018 (0.0008, 0.0028)
71 -14.8000 2.6861 (2.5930, 2.7793) -0.2131 (-0.3029, -0.1233)
72 -14.1965 2.9286 (2.8381, 3.0190) -0.1751 (-0.2630, -0.0872)
73 -13.9381 3.0461 (2.9517, 3.1405) -0.1744 (-0.2641, -0.0848)
74 -13.7690 3.1124 (3.0241, 3.2007) -0.1652 (-0.2543, -0.0761)
75 -13.6430 3.1283 (3.0444, 3.2122) -0.1632 (-0.2500, -0.0765)
76 -13.5425 3.1019 (3.0115, 3.1922) -0.1652 (-0.2502, -0.0803)
77 -13.4589 3.0403 (2.9516, 3.1291) -0.1794 (-0.2695, -0.0893)
78 -13.3873 2.9974 (2.9061, 3.0887) -0.1748 (-0.2647, -0.0849)
79 -13.3246 2.9527 (2.8643, 3.0410) -0.1574 (-0.2450, -0.0699)
710 -13.2690 2.8641 (2.7757, 2.9526) -0.1859 (-0.2734, -0.0984)

BASELINE LAST

P a ram e te r TVue MSB S ta n d ard  E rro r MSE S ta n d ard  E rro r
of MSE of MSE

0 0.14 1.013x10-= 3.452x10-= 0.027x10-= 0.330x10-=
71 -14.8000 7.4389 0.2631 0.2533 0.0308
72 -14.1965 8.7872 0.2732 0.2297 0.0291
7a -13.9381 9.5082 0.2955 0.2374 0.0287
74 -13.7690 9.8878 0.2833 0.2320 0.0289
75 -13.6430 9.9676 0.2700 0.2207 0.0281
78 -13.5425 9.8319 0.2890 0.2133 0.0249
77 -13.4589 9.4465 0.2767 0.2413 0.0285
78 -13.3873 9.1991 0.2860 0.2389 0.0282
75 -13.3247 8.9194 0.2713 0.2223 0.0286
710 -13.2690 8.4050 0.2567 0.2319 0.0314

Table 4.9: Comparison of bias and MSE from simulations of a Weibull mortality 

process with shape parameter 1.5 and Owla% =  0.25 using Prentice and Gloeck­

ler’s method with baseline versus last covariate measurement with /3=0.14.
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P a ram e te r T rue Bias

B A SELIN E

95% C.I.
for bias

Bias

LAST

95% C.I.
for b ias

0 0.21 -0.0731 (-0.0744, -0.0718) 0.0011 (-0.0002, 0.0025)
71 -20.4000 6.4660 (6.3530, 6.5790) -0.1071 (-0.2361, 0.0219)
72 -19.7965 6.6251 (6.5155, 6.7347) -0.1206 (-0.2456, 0.0044)
73 -19.5381 6.6928 (6.5897, 6.7959) -0.0924 (-0.2135, 0.0286)
74 -19.3690 6.6670 (6.5599, 6.7740) -0.1013 (-0.2209, 0.0183)
75 -19.2430 6.6050 (6.4993, 6.7108) -0.1159 (-0.2419, 0.0101)
76 -19.1425 6.5502 (6.4440, 6.6564) -0.0934 (-0.2160, 0.0293)
77 -19.0589 6.4523 (6.3440, 6.5606) -0.1100 (-0.2289, 0.0089)
78 -18.9873 6.3801 (6.2722, 6.4881) -0.1007 (-0.2283, 0.0269)
79 -18.9247 6.2811 (6.1739, 6.3882) -0.1026 (-0.2240, 0.0188)
710 -18.8690 6.2055 (6.1007, 6.3103) -0.0961 (-0.2212, 0.0290)

B A SELIN E LAST

P a ram e te r TYue MSE S ta n d ard  E rro r MSE S ta n d ard  E rro r
Value of MSE of MSE

0 0.21 5.384x10-= 9.514x10-= 0.050x10-= 0.698x10-=
71 -20.4000 42.1379 0.7358 0.4403 0.0617
72 -19.7965 44.2014 0.7296 0.4175 0.0595
73 -19.5381 45.0679 0.6907 0.3861 0.0528
74 -19.3690 44.7436 0.7123 0.3790 0.0500
75 -19.2430 43.9147 0.7061 0.4225 0.0607
76 -19.1425 43.1955 0.6980 0.3964 0.0581
77 -19.0589 41.9339 0.7003 0.3764 0.0499
78 -18.9873 41.0067 0.6887 0.4296 0.0613
79 -18.9247 39.7479 0.6814 0.3904 0.0550
710 -18.8690 38.7909 0.6478 0.4124 0.0596

Table 4.10: Comparison of bias and MSE from simulations of a Weibull mor­

tality  process with shape parameter 1.5 and cr^ /cr| =  0.25 using Prentice and 

Gloeckler’s method with baseline versus last covariate measurement with /?=0 .2 1 .
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4 .4  Im p u ta tio n  for in com p lete  rep ea ted  m ea­

su rem en ts o f  a continu ous risk factor

The form of data set with a single continuous repeatedly measured variable intro­

duced in Section 4.3 is again used in this section, but here is subjected to various 

types of missing-data mechanisms. A Weibull model is again used in the simula­

tion of the survival process. The relevant parameters are 7  =  1.15, log A =  —9.2, 

0  =  0.07, aw  =  1.5 and erg =  8.0. The effects on the performance of the im puta­

tion methods on increasing the within patient variability, aw-, will be investigated.

Observations are deleted using various missing data mechanisms, with nominal 

percentages of observations missing of 5%, 10%, 20% and 50%. The three methods 

used for imputation are:

a) im putation of last recorded measurement;

b) linear interpolation between recorded measurements combined with extrapo­

lation from last pair of recorded measurements if no further measurements 

were available and imputation of last recorded measurement if only a single 

measurement was recorded;

c) multiple imputation using a ordinary linear regression model for

The ideas of multiple imputation can be applied to repeated measurements of 

the form discussed in this chapter in the following way. Firstly, it is assumed tha t 

the parameters of the survival model 7  are distinct from those of the repeated 

measures model Then ‘adapted Finkelstein’ can be repeatedly fitted to the im­

puted data sets, to average the distribution of interval-censored survival times over 

the predictive distribution of the missing data, f{Xmo, ■ ■ ■, Xmio | Xoo, ■ ■ •, ^oio)- 

It should be noted tha t the imputation of x^. 10 is optional as this observation is
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not used in ‘adaptated Finkelstein’ because there is no further follow-up. Also, 

if Xoo is defined as the observation at the first attended screen, then there are no 

data missing at the ‘first’ screen, although this approach will require both the 

screening process to be non-informative and the absence of period effects.

Suppressing the indexing for the individual, the predictive distribution may 

be written:

f { X m l ,  . . . , X m W  I ®o) =  [ / / ( « m l  | A  ®o) / ( ^  I ^o) X

' 9

J__| /  / ( « m i l —J I « m l ; • ■ ■ ) « m  10—j ; 5^o) /  ( ^  I « m l)  ■ ■ ■ i «m lO —j)  ^ o )  d /3  
;= i

where æ j =  {xoq, . . . ,  «oio) -

The model for Xi mj  is,

« I m j  —  / 5 q  T  / 5 l « i ' j — 1  d "  J  —  1 )  • • • ) 1 0

where ~  W(0, ande^- is independent of V (z, j )  ^  (/c, Z), and 

is æioj-i or , as appropriate.

Although in the simulations th a t follow diagnostics will not be performed, it 

should be noted that, unless the data used in the model has a m onotone p at­

tern, diagnostics will be difficult to perform and in some cases will be inap­

propriate. Moreover, if the non-response mechanism is non-ignorable, the esti­

mation of f { 0 _  I is likely to be biased. Hence, in estimating f { 0  | 

or  f ( 0  I X m l ,  • ■ ■, « m i o - i ,  ®o)> o^ly complete data pairs { x i . j ,  X i . j ^ i )  will be 

used. Moreover, rather than using f { 0  | Xmi, ■ ■ - , « m io - j )  *o) in this scheme, 

f { 0  I is used in its place. An improvement to this scheme might be achieved
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by using the multiply imputed values of earlier measurement times, tha t is using 

estimates of f{P  \ Xmi, • • •, Xmio-jt 3S.o) for each j  and, moreover, using iteration 

as per the data augmentation algorithm to improve the imputations, in line with 

the suggestion made by Rubin (1987).

As the performance of multiple imputation is known to be adequate even for 

moderate multiples and the simulation programs took up considerable amounts 

of CPU time, it was decided to use five imputations for each missing covariate 

value. This led to the construction of five separate completed data sets for each 

of the simulations performed in each program run.

As described in Chapter 2, there are, additionally, two possible forms for the 

information relating to the interval containing the event of interest. If a missing 

value in the covariate has no effect on the recording of the information relating to 

the interval there is screen-independent event collection and may occur for events 

such as hospitalisation, removal into institutional care or death. Alternatively, 

if change of state is only to be recorded at the next attended screen there is 

screen-dependent event collection. An example of this is in assessing the onset of 

dementia, disability or general disease.

Screen-independent event collection will result in coincident interval data and 

hence Thompson’s GLIM implementation of Prentice and Gloeckler’s method 

could be used. W ith screen-dependent event collection, however, Prentice and 

Gloeckler’s method is not applicable and therefore ‘adapted Finkelstein’ is re­

quired. As it was desirable to use both the same parametrisation and the same 

basic program for all simulations, a purpose-written double-precision Fortran 77 

program was used to carry out all the simulations.

Five hundred simulations were performed for each combination of missing-data 

percentage, imputation method and screen independent/dependent event collec­
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tion. In all cases, a small percentage of simulations, typically 0.5-2% led to con­

vergence problems in the NAG quasi-Newton-Raphson algorithm E04JAF used 

in the maximisation process. In all such cases, the IFAIL parameter returned by 

the subroutine took the value 5, meaning that, although not all conditions for a 

maximum had been met, the parameter estimates returned should be good ap­

proximations to the maximum likelihood estimates.

4.4.1 D a ta  M C A R

Initially, a MCAR mechanism was used to create the missing data. For this form 

of missing data mechanism, the nominal missing data percentage was equal to 

the expected missing data percentage, any discrepancies observed in the data  sets 

being purely due to random variation.

The results from these simulations are summarised in Tables 4.13 and 4.14 (pages 

155 and 156). More detailed tables which include the perfomance in estimating 

the nuisance parameters 7 1 - 7 1 0  are included in Appendix B as Tables B.1-B.13 

and in which the mean observed bias, a 95% confidence interval for the bias, the 

estimated mean square error (MSE) and its estimated standard error are given 

for each of the eleven parameters estimated.

Table B .l shows that, in the absence of missing covariate data, there is no signif­

icant bias in the estimation of either the parameter of interest {(3) or the nuisance 

parameters (q^s).
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Im pu tation  o f last m easurem ent

The main results from these simulations are summarised in Tables 4.13 and 4.14. 

More detailed exposition, including reference to the nuisance parameters, may be 

found in Appendix B as Tables B.2-B.5. These tables show tha t, if event col­

lection is screen-independent and is always non-missing, imputation of the last 

measurement performs well, both in terms of bias and mean square error, even in 

the presence of moderate amounts of missing-data (20%). W ith 50% missing, its 

performance is reasonably good, with no significant bias in the estimation of (3 

and little bias in the estimation of the parameters. The estimated mean square 

error for ^  increased from 3.149 x 10'® with no missing data to  3.193 x 10'^ with 

50% missing, an increase of 1.38%. The corresponding estimated mean square 

error increased by a lesser percentage for all ten q ŝ.

However, if event collection is screen-dependent, the performance of this sim­

ple imputation worsens steadily as the proportion of missing data  increases. The 

percentage bias observed in the estimation of the parameter (3 is of the order of 

an eighth of the percentage of missing data, ranging from a non-significant 0.67% 

with 5% missing to a very highly significant 6.48% with 50% missing. The esti­

mated mean square error and its estimated standard error also increased steadily 

with the percentage of data missing. The increase in estimated mean square error 

for P relative to tha t when there were no data missing ranged from 0.14% with 

5% missing to 73.42% when there were 50% missing, with a relative increase in its 

standard error of similar magnitude. The effect of increased amounts of missing 

data was not quite as detrimental on the estimation of the q^s, with the relative 

increase in estimated mean square error ranging from 7.01% to 43.36%, the great­

est increases being observed during the middle periods.

The observed bias in the estimation of P was positive in seven of the eight 

combinations of percentages of missing data and forms of event collection. The
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exception was with 50% missing when the event collection was screen-dependent, 

although the bias observed here was not significantly negative. The estimator of 

P will be negatively correlated with each of the estimators for the q^s because, 

for a given amount of information on mortality, an increase in the estimate of the 

contribution of an individual’s diastolic blood pressure will result in a decrease in 

the estimate of the corresponding contribution from the baseline mortality pro­

cess. This resulted in consistently negative bias being observed in the estimates of 

qi to qio when there were 5%, 10% and 20% data missing, for both forms of event 

collection. When there were 50% data missing, the expected pattern was gener­

ally observed, with positive estimates of the bias in q,- with the negative estimate 

of the bias in p  when there was screen-independent event collection and negative 

estimates of the bias in the estimation of q, with the positive estimate of th a t in 

the estimation of P when there was screen-dependent event collection. The only 

departure from this expected pattern was in the estimation of qi when, in both sit­

uations, the estimate was biased in the opposite direction to tha t expected, albeit 

only by a small amount. This bias was significant in the case of screen-dependent 

event collection but non-significant for screen-independent event collection. It is 

worth remarking here th a t q% is affected in a different way to the other nuisance 

parameters as all individuals have a first screen. The effect of screen-dependent 

event collection is to transfer the possible intervals during which a death occurs 

back through the time periods, thus increasing the apparent risk of death in the 

first period and slightly decreasing the apparent risk of death in the later periods, 

thus causing the effect observed.

Im putation  by in terpolation

The main results from these simulations are summarised in Tables 4.13 and 4.14. 

Tables B.6-B.9 may be found in Appendix B and also include the results for the 

qj parameters.
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Overall, the performance of imputation by interpolation was better than  tha t 

when imputing the last observed value, notably so when there was screen-dependent 

event collection. However, the simulations indicate tha t the performance of impu­

tation by interpolation is slightly worse than last measurement imputation when 

the data were 50% missing in conjunction with screen-independent event collec­

tion, both in terms of bias and mean square error. This can be attributed to 

a far greater degree of bias (4.36%) observed using the interpolation method, 

than th a t observed under last measurement imputation (0.18%). This may well 

simply be a chance observation, especially as the observed bias was lower with 

screen-independent event collection than for screen-dependent event collection. 

When the event collection was screen-independent, the estimated mean square 

error was of comparable magnitude to tha t for last measurement imputation but 

when there was screen-dependent event collection, the use of interpolated values 

produced estimates with considerably better properties than the use of the last 

observed measurement. In fact, the estimated mean square errors for P were of 

similar magnitude for the two forms of event collection, although those for the q^s 

showed some relative deterioration with increasing amounts of missing data.

M u ltip le Im putation

The results from these simulations are summarised in Tables 4.13 and 4.14, with 

details for the nuisance parameters included in Tables B.10-B.13. When multi­

ple imputation was compared with imputation by linear interpolation, the per­

formance was similarly good with regards to bias, with possibly a slightly less­

er deterioration in performance as the amount of missing data increased. This 

slightly better performance was consistent across the estimation of P and the q^s 

under both screen-independent and screen-dependent event collection. Likewise, 

in terms of the mean square error, the deterioration of multiple imputation was
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less marked than linear interpolation imputation as the percentage of missing data 

increased.

One unusual effect of using multiple imputation was to lead to a lower mean 

square error than with complete data, except when 50% of the covariate data 

were missing. Moreover, the mean square error was lower when the event collec­

tion was screen-dependent than when it was screen-independent. This effect was 

observed, although to a far lesser degree, when imputation was by linear inter­

polation. It is believed th a t this is caused by the increased variability leading to 

reduction of the MSE in a similar way to tha t observed later in this section on 

‘increasing the within-patient variability’.

A  com parison o f th e im putation  m ethods

W hilst imputation of the last observed covariate value had good estimation prop­

erties when there was little missing data, its performance deteriorated as the 

amount of missing data increased, especially when the event collection was screen- 

dependent. Linear interpolation imputation (or imputation of the last measure­

ment where this was not possible) performed better overall, the relative improve­

ment being more marked as the degree of incompleteness increased, including tha t 

relating to the event of interest. Multiple imputation performed marginally better 

than linear interpolation imputation across the various missing data percentages 

and event collection strategies, although not sufficiently so to merit its use on these 

grounds alone. As described earlier, the real advantage of multiple imputation is 

th a t it will allow standard error estimates to be constructed from the information 

matrices obtained from the multiple data sets by including adjustments estimated 

from their between imputation variability. This was not pursued a t this stage as 

the standard errors could be estimated from the variability in parameter estimates 

between simulations.
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The main disadvantage of multiple imputation is the increase in processing time, 

the relative increase being approximately equal to the number of imputations 

made. W ith 5% missing data, these simulations, this led to an increase from a 

little over 30 minutes CPU time for both last measurement imputation and linear 

interpolation imputation, to around 2 |  hours for the regression-based multiple 

imputation. These processing times were around 20% higher when there were 

50% of the data missing. The machine specification was:

12 150 MHz IP19 Processors

CPU: MIPS R4400 Processor Chip Revision: 5.0

FPU: MIPS R4010 Floating Point Chip Revision: 0.0

D ata cache size: 16 Kbytes

Instruction cache size: 16 Kbytes

Secondary unified instruction size: 1 Mbyte

Main memory size: 512 Mbytes, 2-way interleaved.

Increasing th e w ith in -patient variability

The estimation using the three imputation methods was then repeated using data 

simulated under the same models and using a MCAR mechanism except th a t the 

within-patient standard deviation, aw, was increased from 1.5 to 4.0, the value of 

ug remaining at 8.0. A similar pattern in the bias and MSEs in the estimates of 

both P and the q^s was observed as with the lower within-patient standard devia­

tion. However, the magnitude of the estimated bias was greater and significantly 

non-zero for all eleven parameters. Moreover, the MSE decreases significantly 

when the within-patient standard deviation is increased, the estimated relative 

decrease being 44% for P and ranging from 32% to 40% for the q^s.
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For P , the results of the simulations with a nominal 5%-50% of covariate values 

MCAR can be found in Tables 4.15 and 4.16. As the parameter P was the only 

parameter of major interest, the bias and MSE for the qj parameter estimates are 

not included.

W hen compared with the results from the simulations with lower within-patient 

variability, there was an increased magnitude of bias in most combinations of 

imputation method, missing data percentage and event collection strategy but 

especially in the cases where there had been significant bias with the lower value 

0 Î  ( J w -

Both the estimate and estimated standard error of the MSE were lower for simu­

lations except when there were 50% of covariate values missing and interpolation 

or multiple imputation was used with screen-independent event collection. W ith 

screen-dependent event collection, there was a large and relatively consistent de­

crease in the observed standard error of the MSE but the estimated MSE still 

decreased except when there was 50% of missing covariate values. In this case, a 

decrease in estimated MSE was still observed when imputation was via interpola­

tion but an increase was observed when each of the other two imputation methods 

were used. W ith screen-independent event collection, the increase in the mean 

square error under the regression-based multiple imputation was considerable due 

to the larger magnitude of the bias. The increase with the screen-dependent event 

collection was less marked. In the former case there was a moderate increase in 

the standard error of the MSE whereas in the latter, in common with all other 

cases, a decrease was observed.

This general decrease in both the MSE and its standard error upon increasing 

the within-individual variability is caused by the reduction in standard error of 

the bias estimate which, in turn, is due to the more precise nature of the infor­

mation about the effect of the covariate on the event and, hence, also about the
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interval-specific nuisance parameters.

4.4.2 D ata  M A R

The estimation of survival parameters was then repeated on data sets constructed

using a MAR mechanism. A logistic function was used for the probability of a 

missing covariate measurement. This took the form:

1 -I-

where

% =  log +  0.075(zij_i -84 .25 )

where the value of tt corresponds to the nominal proportion of missing values (0.05, 

0.1, 0.2 or 0.5). The value 84.25 was chosen as baseline because it is the mean value 

over the eleven repeated measurements for an individual following the expected 

profile. The value 0.075 was chosen to give a moderate increase in the probability 

of missingness upon a moderate increase in covariate value. For example, the 

probability of missingness increases from the nominal 0.05 to 0.100 upon increasing 

the previous covariate value from 84.25 to 94.25. As individuals with higher 

covariate values had increased susceptibility to the event of interest, the nominal 

percentage of missing values was always higher than the true percentage missing. 

For example, in the first of the five hundred data sets constructed, the percentages 

missing were as given in Table 4.11.
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W ith regards to /3, the results of these simulations can be found in Tables 4.17 

and 4.18 (on pages 159 and 160). The results for the nuisance parameters are 

not included. The results for /3 show th a t both linear interpolation imputation 

and regression-based multiple imputation are preferable to im putation of the last 

recorded measurement in terms of both bias and mean square error for both 

forms of event collection. There was little to choose between imputation by linear 

interpolation and multiple imputation in terms of bias and MSE, although the 

observed performance of multiple imputation tended to be marginally (but not 

significantly) better. The performance of all three methods of imputation was rel­

atively poor with screen-dependent event collection in the presence of a nominal 

50% missing at screens.

4.4.3 In fo rm a tiv e  m issing d a ta

Finally, the simulations were repeated on data sets subject to informative missing- 

data mechanisms. Two such mechanisms were adopted. The first was where the 

probability of a covariate value being missing was directly related, via a logistic 

function, to the value th a t would be observed. This will be termed a v a lu e-b ased  

m issing  d a ta  m echan ism . The second was where their probability was related, 

again via a logistic function, to the difference between the value tha t would be 

observed and the value at the previous screen. This will be termed a d ifference- 

b a se d  m issing  d a ta  m echan ism . These choices were made because they were 

reasonably simple to interpret and correspond to the risk of a missing measure­

ment increasing as an individual’s blood pressure on the day of a potential screen 

increases and the risk increasing as the change in blood pressure between scr­

eens changes, potentially indicating those whose physical condition was worsen­

ing most rapidly. In both cases, however, it is important to note th a t the risk of an 

individual missing a screen is related to their health at tha t time and corresponds
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to posent geZ/-aeZec(*on in terms of the types of examination schemes discussed in

Chapter 2.

For the value-based mechanism, the function used was as for the MAR mechanis- 

m but replacing the previous measurement by the ‘present’ measurement

{Xij ) .

For the difference-based mechanism, the function %  was replaced by:

% =  log 2  4- 0.4(zij -  -0 .885 ).

The value 0.885 was the expected increase for an individual following the mean 

profile. The value 0.4 was chosen to give a moderate increase in the probability

of missingness for a moderately large increase in covariate value between screens. 

For example, with a nominal 5% missing, an increase in 1 standard deviation (1.5 

mm Hg) more than that expected between screens would lead to a probability of 

0.0875 of the value at the latter screen being missing. In both cases, the nominal 

missing data percentages were greater than those observed due to patients with 

higher or rapidly increasing blood pressures being more Ukely to be subject to the 

event of interest. The percentages observed to be missing in the first of the 500 

simulated data sets were as shown in Table 4.12.

W ith regards to the parameter of interest, /?, the results of these simulations are 

given in Tables 4.19 and 4.20 for the value-based missing data mechanism and in 

Tables 4.21 and 4.22 for the difference-based missing data mechanism. Results

for the nuisance parameters are not included.

Inspection of these tables shows a similar pattern to tha t seen under the MAR
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mechanism, with both linear interpolation imputation and regression-based multi­

ple imputation proving superior to imputation of the last recorded measurement. 

Likewise, the performance of all three imputation methods was relatively poor 

w ith 50% missing attendance at screens with screen-dependent event collection 

when the missingness was dependent on the value tha t would have been observed. 

However, although the performance of last measurement imputation showed a 

moderate deterioration in these circumstances when the difference-based missing 

data mechanism was applied, no serious deterioration was observed in the perfor­

mance of either linear interpolation imputation or the regression-based multiple 

imputation. .

153



Nominal (%) Actual (%)

5 4.30

1 0 8.56

2 0 17.32

50 40.38

Table 4.11: Comparison of actual and nominal percentages of data missing under 

a MAR mechanism.

Nominal (%) Actual (%) 

(value-based)

Actual (%) 

(difference-based)

5 4.62 4.22

1 0 9.24 8.65

2 0 18.46 18.11

50 42.39 44.65

Table 4.12: Comparison of actual and nominal percentages of data missing under 

the chosen informative missing data mechanisms.
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P ercen t Im p u ta tio n BIAS (u n its  1 0 -3 ) M SE

m issing m eth o d E s tim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -3 ) (u n its  1 0 -3 )

0 N /A 0.148 (-0.344,0.640) 3.149 1.96

LA ST 0.155 (-0.338,0.647) 3.150 1.96

5 IN T E R P O L A T IO N 0.079 (-0.413,0.572) 3.151 1.96

M U L T IP L E 0.255 (-0.232,0.742) 3.084 1.78

LA ST 0.144 (-0.346,0.635) 3.129 1.93

10 IN T E R P O L A T IO N -0.009 (-0.500,0.483) 3.138 1.93

M U L T IP L E 0.053 (-0.541,0.436) 3.099 1.93

L A ST 0.170 (-0.322,0.663) 3.157 1.94

20 IN T E R P O L A T IO N -0.277 (-0.766,0.213) 3.119 1.92

M U L T IP L E -0.492 (-0.944,-0.039) 2.684 1.64

L A ST -0.126 (-0.622,0.369) 3.193 1.97

50 IN T E R P O L A T IO N -3.053 (-3.545,-2.562) 4.065 2.44

M U L T IP L E -1.665 (-2.149,-1.180) 3.326 2.12

Table 4.13: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw  =  1.5 

and (Tg =  8 . 0  under screen-independent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

MCAR mechanism.

155



P ercen t Im p u ta tio n BIAS (u n its  10 3) M SE

m issing m eth o d E s tim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -3 ) (u n its  1 0 -3 )

0 N /A 0.148 (-0.344,0.640) 3.149 1.96

L A ST 0.471 (-0.023,0.965) 3.192 2.00

5 IN T E R P O L A T IO N 0.139 (-0.354,0.633) 3.163 1.97

M U L T IP L E 0.133 (-0.335,0.602) 2.850 1.66

L A ST 0.808 (0.314,1.302) 3.231 2.01

10 IN T E R P O L A T IO N 0.123 (-0.370,0.616) 3.153 1.94

M U L T IP L E 0.350 (-0.113,0.814) 2.803 1.78

L A ST 1.612 (1.113,2.112) 3.500 2.18

20 IN T E R P O L A T IO N 0.066 (-0.429,0.561) 3.178 1.94

M U L T IP L E 0.149 (-0.357,0.656) 3.336 1.88

L A ST 4.536 (4.023,5.047) 5.461 3.24

50 IN T E R P O L A T IO N -1.146 (-1.648,-0.644) 3.405 2.03

M U L T IP L E -0.882 (-1.367,-0.397) 3.132 1.91

Table 4.14: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and uw  =  1.5 

and erg =  8 . 0  under screen-dependent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

MCAR mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  1 0 -3 ) M SE

m issing m eth o d E stim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -5 ) (u n its  1 0 -3 )

0 N /A 0.707 (0.342,1.071) 1.775 1.11

LA ST 0.653 (0.286,1.020) 1.796 1.10

5 IN T E R P O L A T IO N 0.646 (0.278,1.015) 1.805 1.11

M U L T IPL E -0.139 (-0.513,0.234) 1.816 1.20

L A ST 0.588 (0.222,0.953) 1.773 1.07

10 IN T E R P O L A T IO N 0.545 (0.175,0.915) 1.807 1.09

M U L T IPL E -0.591 (-0.951,-0.232) 1.710 1.17

LA ST 0.429 (0.060,0.798) 1.789 1.09

20 IN T E R P O L A T IO N 0.146 (-0.228,0.520) 1.817 1.08

M U L T IPL E -1.990 (-2.363,-1.617) 2.204 1.42

LA ST -0.717 (-1.082,-0.352) 1.781 1.10

50 IN T E R P O L A T IO N -6.069 (-6.466,-5.673) 5.725 2.83

M U L T IP L E -7.658 (-7.981,-7.334) 7.224 2.55

Table 4.15: Performance of three im putation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw == 4.0 

and a s = 8 . 0  under screen-independent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

MCAR mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  10 3) M SE

m issing m eth o d E stim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -5 ) (u n its  1 0 -3 )

0 N /A 0.707 (0.342,1.071) 1.775 1.11

L A ST 0.995 (0.627,1.362) 1.853 1.14

5 IN T E R P O L A T IO N 0.798 (0.431,1.166) 1.820 1.13

M U L T IP L E 0.132 (-0.244,0.507) 1.833 1.23

L A ST 1.292 (0.922,1.662) 1.946 1.19

10 IN T E R P O L A T IO N 0.872 (0.501,1.244) 1.867 1.14

M U L T IP L E -0.017 (-0.380,0.347) 1.714 1.21

L A ST 1.985 (1.609,2.362) 2.239 1.42

20 IN T E R P O L A T IO N 1.015 (0.639,1.391) 1.942 1.23

M U L T IPL E -0.862 (-1.246,-0.479) 1.987 1.34

LA ST 4.249 (3.846,4.652) 3.915 2.16

50 IN T E R P O L A T IO N -0.128 (-0.527,0.271) 2.066 1.24

M U L T IPL E -4.327 (-4.679,-3.975) 3.481 1.75

Table 4.16: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw  =  4.0 

and CTg =  8 . 0  under screen-dependent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

MCAR mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  10 3) M SE

m issing m eth o d E s tim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -5 ) (u n its  1 0 -5 )

0 N /A 0.148 (-0.344,0.640) 3.149 1.96

LA ST 0.512 (0.017,1.007) 3.204 1.98

5 IN T E R P O L A T IO N 0.143 (-0.351,0.636) 3.166 1.97

M U L T IP L E -0.103 (-0.579,0.372) 2.941 1.76

LA ST 0.852 (0.351,1.352) 3.328 2.07

10 IN T E R P O L A T IO N 0.082 (-0.411,0.575) 3.159 1.95

M U L T IP L E 0.087 (-0.387,0.561) 2.916 1.88

LA ST 1.437 (0.935,1.940) 3.482 2.21

20 IN T E R P O L A T IO N -0.310 (-0.802,0.182) 3.149 1.93

M U L T IP L E -0.598 (-1.073,-0.123) 2.965 1.88

LA ST 2.801 (2.284,3.318) 4.255 2.65

50 IN T E R P O L A T IO N -3.580 (-4.065, -3.095) 4.334 2.54

M U L T IP L E -2.046 (-2.524,-1.567) 3.389 1.95

Table 4.17: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw  =  1.5 

and CTg =  8 . 0  under screen-independent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

MAR mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  1 0 -5 ) M SE

m issing m eth o d E stim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -5 ) (u n its  10- 6)

0 N /A 0.148 (-0.344,0.640) 3.149 1.96

LA ST 2.215 (1.716,2.715) 3.735 2.34

5 IN T E R P O L A T IO N 1.362 (0.866,1.858) 3.380 2.12

M U L T IPL E 1.172 (0.693,1.651) 3.117 1.95

LA ST 4.212 (3.704,4.721) 5.132 3.10

10 IN T E R P O L A T IO N 2.499 (2.000, 2.998) 3.859 2.43

M U L T IPL E 2.551 (2.070,3.032) 3.655 2.35

LA ST 8.212 (7.693,8.732) 10.254 5.06

20 IN T E R P O L A T IO N 4.672 (4.169,5.175) 5.473 3.29

M U L T IP L E 4.272 (3.782,4.763) 4.952 2.90

LA ST 20.890 (20.325, 21.454) 47.78 12.6

50 IN T E R P O L A T IO N 10.336 (9.813,10.859) 14.232 6.14

M U L T IP L E 9.881 (9.353,10.409) 13.383 6.10

Table 4.18: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw  =  15 

and (Tg =  8 . 0  under screen-dependent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

MAR mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  10 5) M SE

m issing m eth o d E stim a te 95% C.I. E s tim a te S.E.

(u n its  10“ 5) (u n its  10- 6)

0 N /A 0.148 (-0.344,0.640) 3.149 1.96

LA ST 0.593 (0.096,1.090) 3.240 2.01

5 IN T E R P O L A T IO N 0.096 (-0.398,0.591) 3.176 1.98

M U L T IP L E 0.465 (-0.001,0.931) 2.842 1.86

L A ST 1.029 (0.529,1.530) 3.358 2.11

10 IN T E R P O L A T IO N -0.030 (-0.523, 0.462) 3.148 1.94

M U L T IP L E -0.136 (-0.593,0.320) 2.709 1.67

L A ST 1.749 (1.245,2.253) 3.602 2.26

20 IN T E R P O L A T IO N -0.624 (-1.117, -0.130) 3.206 1.96

M U L T IP L E -0.179 (-0.628,0.270) 2.625 1.74

LA ST 3.187 (2.665,3.708) 4.545 2.81

50 IN T E R P O L A T IO N -4.633 (-5.123,-4.143) 5.265 2.95

M U L T IP L E -1.564 (-2.040,-1.087) 3.195 2.00

Table 4.19: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw = 1.5 

and a s  = 8 . 0  under screen-independent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

value-based non-ignorable mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  10 5) M SE

m issing m eth o d E stim a te 95% C.I. E s tim a te S.E.

(u n its  10- 5) (u n its  10- 6)

0 N /A 0.148 (-0.344,0.640) 3.149 1.96

LA ST 2.542 (2.040, 3.043) 3.912 2.45

5 IN T E R P O L A T IO N 1.517 (1.020,2.014) 3.441 2.17

M U L T IP L E 1.927 (1.455,2.399) 3.265 2.07

L A ST 4.927 (4.416,5.438) 5.819 3.45

10 IN T E R P O L A T IO N 2.858 (2.357,3.359) 4.074 2.59

M U L T IP L E 2.758 (2.297,3.219) 3.522 2.23

LA ST 9.693 (9.171,10.216) 12.941 5.78

20 IN T E R P O L A T IO N 5.486 (4.982,5.991) 6.317 3.62

M U L T IP L E 5.726 (5.258,6.193) 6.118 3.53

LA ST 24.327 (23.765,24.889) 63.29 14.5

50 IN T E R P O L A T IO N 12.866 (12.340,13.392) 20.145 7.45

M U L T IP L E 13.994 (13.470,14.517) 23.146 7.92

Table 4.20: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw — 1.5 

and erg =  8 . 0  under screen-dependent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

value-based non-ignorable mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  1 0 -3 ) M SB

m issing m eth o d E stim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -5 ) (u n its  10- 6)

0 N /A 0.148 (-0.344,0.640) 3.149 1.96

LA ST 0.153 (-0.339,0.645) 3.148 1.96

5 IN T E R P O L A T IO N 0.040 (-0.453,0.533) 3.158 1.96

M U L T IP L E 0.465 (-0.001,-0.931) 2.842 1.86

LA ST 0.144 (-0.347,0.635) 3.135 1.96

10 IN T E R P O L A T IO N -0.120 (-0.613,0.372) 3.154 1.95

M U L T IP L E 0.234 (-0 .220, 0 .688) 2.682 1.60

LA ST 0.115 (-0.377,0.608) 3.156 1.98

20 IN T E R P O L A T IO N -0.541 (-1.034,-0.049) 3.177 1.97

M U L T IP L E -0.101 (-0.603,0.402) 3.283 1.95

LA ST -0.244 (-0.741,0.253) 3.212 2.03

50 IN T E R P O L A T IO N -3.757 (-4.243,-3.270) 4.484 2.59

M U L T IPL E -1.674 (-2.145,-1.202) 3.168 1.95

Table 4.21: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw  =  1.5 

and cTg =  8 . 0  under screen-independent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

difference-based non-ignorable mechanism.
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P ercen t Im p u ta tio n BIAS (u n its  10 6) M SE

m issing m eth o d E stim a te 95% C.I. E s tim a te S.E.

(u n its  1 0 -5 ) (u n its  1 0 -5 )

0 N/A 0.148 (-0.344,0.640) 3.149 1.96

LA ST 0.496 (0.003,0.989) 3.181 2.00

5 IN T E R P O L A T IO N 0.119 (-0.374,0.612) 3.156 1.97

M U L T IP L E 0.175 (-0.285,0.636) 2.757 1.58

LA ST 0.861 (0.369,1.353) 3.220 2.04

10 IN T E R P O L A T IO N 0.063 (-0.429,0.555) 3.142 1.96

M U L T IP L E 0.424 (-0.029,0.878) 2.691 1.61

LA ST 1.685 (1.187,2.183) 3.504 2.25

20 IN T E R P O L A T IO N -0.073 (-0.568,0.421) 3.178 1.99

M U L T IP L E 0.313 (-0.193,0.819) 3.336 1.94

LA ST 4.792 (4.281,5.304) 5.696 3.40

50 IN T E R P O L A T IO N -1.427 (-1.925,-0.929) 3.424 2.16

M U L T IPL E -0.371 (-0.861,0.119) 3.134 1.99

Table 4.22: Performance of three imputation methods for ‘adapted Finkelstein’ 

under a Weibull mortality process with shape parameter 1.15 and aw = 15  

and (Tg =  8 . 0  under screen-dependent event collection with a single continuous 

repeated measurement and various percentages of missing data generated via a 

difference-based non-ignorable mechanism.
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4c5 Im p u ta tio n  for in com p lete  rep ea ted  m ea­

su rem en ts o f  con tinu ous and ord inal covari- 

ates

In modelling data arising from the annual screening of the elderly or similar screen­

ing studies, there will typically be a number of time-varying covariates of both 

ordinal and continuous nature. Therefore, to make progress towards both mod­

elling such data and gaining further understanding of the likely effects of missing 

data on the usefulness of the modelling methods considered in Section 4.4, it was 

decided to extend the previous model to one where the hazard depended on two 

covariates, one ordinal and one continuous. The continuous variable was sim­

ulated in the same manner as in Section 4.4. The ordinal variable, which has 

four levels, was simulated using a transition proportional odds model (McCullagh 

(1980), Diggle, Liang and Zeger (1994)). The variable simulated was designed to 

represent a disability scale, in which the first level represented ‘no disability’ and 

the fourth level represented ‘severe disability’. As there were four levels, and none 

of the sixteen possible transitions was deemed impossible, there were twelve model 

parameters. Initially the continuous and ordinal variables were simulated inde­

pendently. The probabilities of membership of each level at the first time-point 

were:

1 : 0.25 2 : 0.40 3 : 0.20 4 : 0.15

and the transition probability m atrix used to generate the values at the ten later 

time-points was:

165



0.60 0.25 0.09 0.06 ^

0 . 2 0 0.50 0.18 0 . 1 2

0.04 0 . 1 1 0.60 0.25

0 . 0 1 0.03 0.08 0.88 y

In addition, simulations were performed subjecting the initial value of the or­

dinal variable to rank correlations of approximately 0.3 and 0.6 with the initial 

value of the continuous variable. This was done using a logistic model. The 

values of each of the variables at the later time points were then generated inde­

pendently from their initial value in an identical manner to when the initial values 

were uncorrelated. A Weibull model was once more used to simulate the survival 

probabilities. The values of the parameters common to both this model and tha t 

used in Section 4.4 were the same except for log A which was reduced from —9.2 

to —9.7. The additional parameters corresponding to the ordinal variable were 

cci — 0.5, 0=2 =  1-0, Cl's =  2.0 and where the linear predictor for the hazard 

function (excluding the contribution from the baseline hazard) was of the form:

P^ij T  Oi\Zij2 T  T   ̂ — 1, • • • j 1000, J — 0, . . . , 9 ,

where Zijk is the dummy variable indicating membership of the level of the 

ordinal variable for the individual at the start of the j  + 1^  ̂year. The reduction 

of log A by 0.5 corresponds to level 2 of the ordinal variable having the survival 

probabilities considered in Section 4.4 (for given Xij). Missing values were simu­

lated in a similar way to tha t used in Section 4.4. In this case a logistic function 

was again used for the probabilities of the observations being missing but the 

linear predictor was chosen to be:
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% =  log ^  4- 0.05(Tij_i -  84.25) -  0.75zi;_n -  0.25zij_i2

+  0.25zi j - i  3  +  0.75z;j - 1 4  i =  1 , . . . ,  1000, j  =  1 , . . .  10 ,

for the MAR mechanism,

Vij — "h 0.05 (zi j — 84.25) — 0.75z% j % — 0.25zij2

4-0.25zij3 +  0.75zij4 z =  l,.. . ,1 0 0 0 , j  =  l , . . .1 0 ,

for the value-based non-ignorable mechanism, and

Vij — 0.3 (a;ÿ — — 0.885) +  0.5 (z«^2 — j-ig )

+  1.0 {zij3 — Zij - is )  4- 1.5 {zi ji  — Zij^ii) i =  1 , . . . , 1000, j  =  1 , . . . 10,

the digerence-baaed non-ignorable mechanism.

Only cases where the two variables were jointly missing were considered. The 

two imputation methods considered were last measurement imputation and mul­

tiple imputation. Im putation by interpolation was not used for several reasons. 

Firstly, ordinal variables do not typically satisfy the general requirement of being
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interval data and, additionally, would require either some degree of rounding or 

allocation to a level based on a suitable random process. Secondly, the variability 

in levels would tend to be less and any dramatic fluctuations in a value of this 

ordinal variable would be lost in the imputation process. This will always be a par­

ticular problem when the non-ignorable difference-based missing-data mechanism 

is applied. Finally, when the single continuous risk factor was investigated, little 

difference was observed between the performance of im putation by interpolation 

and th a t of regression-based multiple imputation. The standard errors obtained 

directly from the inverse of either the observed or expected information matrix 

would, however, be too low if imputation by interpolation were used because the 

imputed data would be treated as known.

For the multiple imputation process, the continuous variable and ordinal vari­

able were modelled and imputed separately, both when they were uncorrelated 

and when they were correlated. Both imputation procedures would have allowed 

the flexibility for any of the earlier realisations of the other covariate to have been 

used. For the continuous variable, the multiple imputation process was the same 

as in Section 4.4 whereas tha t for the ordinal variable was based on a transition 

ordinal proportional odds regression model (Diggle, Liang and Zeger, 1994). The 

model used was of the form:

log
P { Z j j  <  k  I Z j j - i  =  Z j j - i )

P  i Ẑij Z> k I Zij—\ — Zjj'_i) —

% = ! , . . . ,  1000, j  =  1, . . .  ; 10, A; =  1, 2, 3

where z*
1 if Z ij-i < I 

0  if Zij_i >  I
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The parameter vector

=  ( ^ 1 )  ^ 2 1 T i l ,  T i2 ,  T i3 , T2 1 , T2 2 , T2 3 , T3 1 , T3 2 , T3 3 )

was estimated using the maximum likelihood and Var(Ô) was estimated using the 

inverse of the Fisher (expected) information matrix. The estimation was per­

formed using the quasi-Newton-Raphson NAG subroutine E04KAF which uses 

the first partial derivatives of the log-likelihood function. The equations given 

in the Appendix of McCullagh (1980) were used in an appropriate manner (see 

Appendix C). Fisher’s information matrix was also obtained by applying the ap­

propriate equations given in McCullagh (1980) (see Appendix C). This matrix 

was inverted using the NAG Subroutine FOIABF. Approximate multivariate nor­

mality of the vector of parameter estimates was then assumed and five values of 

0 were simulated using the point estimate of 0  as mean and the inverse of the 

Fisher’s information matrix evaluated at 0_ as covariance matrix. These values of 

0 were then used to complete for the ordinal variable in the creation of the five 

multiples of the data set. Likewise, five separate data values were simulated for 

the missing values of the continuous variable in the manner described in Section 

4.4 to complete the five data sets. The parameters of the survival model were then 

estimated using ‘adapted Finkelstein’ for each of the five completed data sets and 

the resulting estimates and their estimated variances were combined to give es­

tim ates and standard errors corrected for the degree of missingness, as described 

earlier.
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4.5.1 R esu lts  an d  C onclusions

As previously, the results presented concentrate on the parameters of interest, 

namely /5, cti, 0=2 and 0 :3 . Whilst the nuisance parameters are not discussed here, 

the patterns of bias and MSE tend to reflect those of the estimates of the param­

eters of interest. Tables 4.23-4.30 illustrate the performance of last measurement 

imputation and the model-based multiple imputation, previously described in the 

estimation of /?, over different missing data percentages for a limited selection 

of combinations of missing data mechanisms and initial value rank correlations. 

Although the results for the estimation of the 7  ̂ are not shown, they again tend 

to reflect the negative correlation between ^  and each of the 7 .̂

Last m easurem ent im putation

Considering firstly the estimation of f3, the patterns in terms of bias and mean 

square error were consistent over the different initial value correlations consid­

ered. For screen-dependent event collection and for all missing data mechanisms 

considered, the bias was always significantly positive and became larger as the 

amount of data missing increased. The bias became particularly large with the 

missing at random and value-based non-ignorable mechanisms. The largest bias 

was with the MAR data for which it reached 0.0153 with 95% confidence inter­

val (0.0148,0.0157) with 50% missing, an over-estimation of around 22%. For 

screen-independent event collection, the bias was generally slightly, but not al­

ways significantly, positive when there were 5% of the data missing and decreased 

as the percentage of data missing increased, becoming significantly negative with 

50% missing. The exception to this was when the missing at random mechanism 

was applied. In this case, the bias started positive and became slightly larger in 

magnitude as the percentage of missing data increased, but still led to a relative
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bias of only 1.5% when there were 50% of data missing. The pattern in MSE 

reflected the size of the bias as the efiiect on the variance of parameter estimates 

is simply tha t of an increase with increasing amounts of data missing.

For the situations where the two variables were uncorrelated there was also a 

consistent pattern in the bias in the estimation of the ordinal variable param­

eters when the data were MCAR or subjected to a non-ignorable missing data 

mechanism. The bias was significantly negative (at the 5% level) for all three 

parameters for both screen-dependent and screen-independent event collection, 

except tha t a i and sometimes « 2  were not significantly difiierent from zero when 

there was a low percentage (5% or 10%) of data missing. The degree of bias 

was usually a little less, and sometimes significantly so, when the event collec­

tion was screen-dependent rather than screen-independent. As expected, the size 

of the bias increased as the amount of missing data increased and was also larg­

er when the within-patient variability was increased under the MCAR mechanism.

W ith the MAR data, although the parameter « 3  remained significantly negative 

over the range of percentages of missing-data under screen-independent event col­

lection, the pattern of bias was less clear cut. W ith 5% missing data, the biases 

in a \ and 0:2 were not significantly different from zero under either form of event 

collection, nor was it for 0:3 under the screen-dependent event collection. Under 

the screen-independent event collection, the bias in a i remained non-significant 

as the percentage of missing data  increased. This was also observed for the bias 

in CKg until there were 50% data missing. For the larger percentages of missing 

data with the screen-dependent event collection, however, there was significantly 

positive bias in the estimation of cki, « 2  and 0 :3 , except in the case of « 3  with 50% 

missing when the bias was non-significant at the 5% level.

On increasing the rank correlation between the initial values of the two pre­

dictor variables from 0 to approximately 0.3 and then to approximately 0.6, the
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relative deterioration in the estimation of the ordinal variable parameters as the 

percentage of data missing increased became less marked except when the missing 

a t random mechanism was applied in which case no specific trends could be de­

tected. However, when there were no data missing, the performance of ‘adapted 

Finkelstein’ deteriorated consistently by a small amount as the rank correlation 

increased. This trend was reversed with the highest percentage missing data, 

again with the exception of the missing at random mechanism where no general 

pattern  was observable.

M u ltip le im putation

The application of the multiple imputation technique described earlier in this sec­

tion is more problematical when there is an ordinal variable. Firstly, transition 

models such as the proportional odds model are susceptible to convergence prob­

lems due to observed zeros for certain transitions if the respective probabilities are 

small and insufficient data are collected or simulated. To avoid this problem, all 

twelve transition probabilities were chosen to be at least 0.01. This will, in turn, 

lead to imputations which will tend to be inconsistent with the next observed 

value of the ordinal variable as this value is not taken into account in the impu­

tation model. It is therefore plausible, in certain situations, th a t the performance 

of this multiple imputation method may be worse than th a t of last measure­

ment imputation. It should be noted, however, that the relative ease of obtaining 

appropriate standard errors may outweigh a slight deterioration in performance. 

In the analysis of real data, a more appropriate multiple im putation model and, 

ideally, sensitivity analysis should be used.

The performance of multiple imputation was generally disappointing, tending to 

result in under-estimation of the parameters of interest. The only exceptions to
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this were the over-estimation of (3 for the MAR and non-ignorable mechanisms 

and also for a\ and « 2  for the MAR mechanism. The degree of bias consistently 

increased as the missing data percentage was increased for all situations investi­

gated. W ith 50% data missing, the relative bias in the estimation of the as varied 

from 17-54% of the true parameter value, with typical under-estimation of around 

30%, with the exception of screen-dependent event collection with either a miss­

ing at random mechanism or value-based missing data mechanism in which cases 

the performance was considerably better. When the estimation of (3 resulted in 

negative bias, this was between 5% and 10% of the true value of 0.07.

C om parison o f th e im putation  m ethods

The parameter estimates obtained following multiple imputation were consistent­

ly lower than those from last measurement imputation, indicating a weakening 

of the effects detected. This is to be expected, particularly in cases where a rel­

atively naive multiple imputation process is applied to processes which are not 

truly missing completely at random and, in fact, is less worrying than an over­

estimation of the effects. However the degree of the under-estimation is far larger 

than would be hoped. The situations where the multiple imputation performed 

well in comparison with last measurement imputation were those where last mea­

surement imputation led to large positive bias, as in the estimation of (3 with 

screen-dependent event collection and data either missing at random or subjected 

to a value-based non-ignorable missing data mechanism. Tables 4.23-4.30 show 

the performance of the two imputation methods under both screen-independent 

and screen-dependent event collection for both correlated and uncorrelated MCAR 

data and for uncorrelated MAR data and value-based non-ignorable missing data.

One possible explanation for the disappointing performance of the multiple im­
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putation method in this instance is the moderately sized probabilities in the strict 

lower triangle of the transition m atrix leading to imputations which deviate from 

the true pattern of the repeated ordinal observations by a large extent for a mod­

erate proportion of individuals. It was therefore decided to investigate the relative 

performances of the two imputation methods with an alternative transition matrix 

for the repeated observations of the ordinal variable in which extreme or unex­

pected changes of the ordinal variable were made less likely. This will be reported 

in Section 4.5.2.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  {P-. u n its  1 0 -3 ) M S E  {P-. u n i ts  10-®)
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.202 (-0.193, 0.596) 20 .23 1.29
a i 0 .0120 (-0.0051, 0.0291) 0.0381 0.0025

0.0002 (-0.0149,0.0152) 0 .0295 0.0020
03 0 .0083 (-0.0056,0.0221) 0 .0250 0.0016

5 L A S T P 0.094 (-0.304,0.491) 20.53 1.33
a x -0 .0005 (-0.0172, 0.0161) 0 .0360 0.0024
«2 -0 .0187 (-0.0337, -0.0037) 0 .0297 0.0020
03 -0 .0301 (-0.0438, -0.0165) 0 .0251 0.0015

M U L T IP L E p -0 .409 (-0.814, -0.004) 21.42 1.30
ax -0 .0109 (-0.0269,0.0051) 0 .0334 0.0021
02 -0 .0291 (-0.0437, -0.0144) 0 .0286 0.0019
«3 -0 .0473 (-0.0610, -0.0336) 0.0266 0.0016

10 L A S T p -0 .038 (-0.434,0.357) 20.36 1.30
a x -0 .0125 (-0.0290,0.0040) 0 .0354 0.0024
02 -0 .0392 (-0.0540,-0.0244) 0 .0299 0.0019
03 -0 .0695 (-0.0829, -0.0560) 0 .0284 0.0017

M U L T IP L E p -0 .269 (-0.657, 0.120) 19.66 1.26
a x -0 .0353 (-0.0505, -0.0201) 0 .0313 0.0019
03 -0 .0608 (-0.0756, -0.0461) 0 .0319 0.0020
03 -0 .1051 (-0.1185,-0.0918) 0.0341 0.0019

20 L A S T P -0 .433 (-0.827, -0.040) 20.30 1.29
ax -0 .0402 (-0.0558, -0.0246) 0 .0332 0.0022
02 -0 .0839 (-0.0981,-0.0696) 0 .0334 0.0021
03 -0 .1594 (-0.1723,-0.1466) 0 .0470 0.0024

M U L T IP L E P -1 .885 (-2.284,-1.487) 24.17 1.44
a x -0 .0889 (-0.1033, -0.0745) 0 .0348 0.0020
02 -0 .1297 (-0.1435, -0.1159) 0 .0416 0.0022
03 -0 .2331 (-0.2458, -0.2205) 0.0751 0.0031

50 L A S T P -2 .595 (-2.990,-2.199) 27 .07 1.59
O l -0 .1371 (-0.1504, -0.1238) 0 .0418 0.0022
0 2 -0 .2581 (-0.2711, -0.2450) 0 .0887 0.0036
0 3 -0 .4909 (-0.5030, -0.4788) 0 .2600 0.0059

M U L T IP L E P -5 .516 (-5.892,-5.140) 48 .80 2.50
Ol -0 .2265 (-0.2393, -0.2137) 0 .0726 0.0032
0 2 -0 .3356 (-0.3478, -0.3233) 0 .1321 0.0043
03 -0 .6451 (-0.6562, -0.6339) 0 .4322 0.0071

Table 4.23: Performance of two imputation methods under ‘adapted Finkelstein’ with 
a Weibull mortality process with shape parameter 1.15 and screen-independent  
event collection with two uncorrelated repeated measurements (one continuous with 
(Tw = 1.5 and erg =  8.0 and one ordinal with the original transition matrix) and 
various percentages of jointly missing data generated via a M C A R  mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  {P-. u n its  1 0 -3 ) M S E  {P% u n its  10 ®)
m issin g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.202 (-0.193, 0.596) 20.23 1.29
«1 0.0120 (-0.0051, 0.0291) 0.0381 0.0025
02 0.0002 (-0.0149, 0.0152) 0 .0295 0.0020
0 3 0.0083 (-0.0056, 0.0221) 0 .0250 0.0016

5 L A S T P 0.465 (0.064,0.866) 21.09 1.38
O l -0 .0013 (-0.0180, 0.0154) 0 .0363 0.0024
02 -0 .0151 (-0.0302, 0.0000) 0 .0298 0.0020
0 3 -0 .0229 (-0.0366, -0.0091) 0 .0249 0.0015

M U L T IP L E P -0 .313 (-0.720, 0.095) 21.66 1.33
Ol 0.0011 (-0.0151, 0.0173) 0 .0342 0.0022
02 -0 .0193 (-0.0343, -0.0044) 0 .0295 0.0020
0 3 -0 .0398 (-0.0537, -0.0258) 0 .0270 0.0016

10 L A S T P 0.741 (0.337,1.144) 21.65 1.40
Ol -0 .0143 (-0.0309, 0.0023) 0 .0359 0.0024
0 2 -0 .0322 (-0.0471,-0.0173) 0 .0299 0.00:%
0 3 -0 .0543 (-0.0678, -0,0407) 0.0268 0.0016

M U L T IP L E P -0 .051 (-0.445,0.344) 20.22 1.30
O l -0 .0137 (-0.0300,0.0027) 0 .0349 0.0021
0 2 -0 .0436 (-0.0591, -0.0282) 0 .0329 0.0021
0 3 -0 .0925 (-0.1064, -0.0785) 0 .0340 0.0019

20 L A S T P 1.191 (0.783,1.599) 23.00 1.47
O l -0 .0444 (-0.0602, -0.0286) 0 .0343 0.0022
0 2 -0 .0686 (-0.0830, -0.0542) 0 .0317 0.0020
0 3 -0 .1269 (-0.1399, -0.1138) 0 .0382 0.0021

M U L T IP L E P -1 .555 (-1.964, -1.147) 24 .13 1.46
Ol -0 .0443 (-0.0602, -0.0285) 0 .0346 0.0019
0 2 -0 .0968 (-0.1121,-0.0815) 0 .0398 0.0021
0 3 -0 .2132 (-0.2269,-0.1994) 0 .0699 0.0031

50 L A S T P 2.024 (1.600, 2.448) 27 .45 1.74
O l -0 .1555 (-0.1695,-0.1415) 0 .0497 0.0026
0 2 -0 .2161 (-0.2297,-0.2024) 0 .0708 0.0032
0 3 -0 .3970 (-0.4094, -0.3845) 0 .1778 0.0050

M U L T IP L E P -5 .294 (-5.688, -4.900) 48 .23 2.56
O l -0 .1070 (-0.1252-0.0887) 0 .0547 0.0032
0 2 -0 .3065 (-0.3230, -0.2900) 0.1291 0.0054
0 3 -0 .6777 (-0.6917, -0.6638) 0 .4846 0.0096

Table 4.24: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection and two uncorrelated repeated measurements (one continuous with 
(Tw =  1.5 and erg =  8.0 and one ordinal with the original transition matrix) and 
various percentages of jointly missing data generated via a M C A R  mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  {px u n its  10-= ) M S E  {Px u n its  10 -= )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.456 (0.045,0.867) 22.12 1.48
Ol 0 .0113 (-0.0061,0.0288) 0 .0397 0.0025
02 0.0101 (-0.0061 0.0262) 0 .0340 0.0022
03 0 .0090 (-0.0054,0.0233) 0 .0269 0.0017

5 L A S T P 0.381 (-0.030,0.792) 22.06 1.47
Ol 0 .0019 (-0.0148,0.0186) 0 .0363 0.0023
0 2 -0 .0083 (-0.0240,0.0073) 0 .0319 0.0021
0 3 -0 .0290 (-0.0430, -0.0150) 0 .0262 0.0016

M U L T IP L E P 0.214 (-0.197,0.625) 22.02 1.38
O l -0 .0164 (-0.0327, -0.0002) 0 .0347 0.0023
02 -0 .0271 (-0.0420-0.0123) 0 .0294 0.0019
03 -0 .0502 (-0.0643, -0.0361) 0 .0283 0.0017

10 L A S T P 0.282 (-0.130,0.693) 22 .07 1.46
Ol -0 .0107 (-0.0269,0.0056) 0 .0343 0.0022
0 3 -0 .0300 (-0.0454, -0.0146) 0 .0317 0.0021
03 -0 .0683 (-0.0818, -0.0548) 0 .0283 0.0017

M U L T IP L E P -0 .005 (-0.435, 0.426) 24 .06 1.44
Ol -0 .0340 (-0.0497, -0.0183) 0 .0333 0.0019
0 3 -0 .0538 (-0.0685, -0.0392) 0 .0308 0.0020
0 3 -0 .0971 (-0.1104,-0.0838) 0 .0324 0.0019

20 L A S T P -0 .045 (-0.457, 0.367) 22.03 1.43
Ol -0 .0390 (-0.0544, -0.0236) 0 .0323 0.0020
02 -0 .0768 (-0.0917, -0.0619) 0 .0348 0.0021
0 3 -0 .1574 (-0.1704, -0.1444) 0 .0468 0.0023

M U L T IP L E P -0 .646 (-1.073, -0.220) 24 .05 1.59
Ol -0 .0764 (-0.0912, -0.0617) 0 .0342 0.0020
02 -0 .1104 (-0.1248, -0.0960) 0 .0390 0.0022
03 -0 .2164 (-0.2291, -0.2037) 0 .0678 0.0028

50 L A S T P -1 .763 (-2.182,-1.343) 25 .95 1.57
O l -0 .1379 (-0.1509,-0.1250) 0 .0410 0.0022
02 -0 .2457 (-0.2588, -0.2326) 0 .0826 0.0033
03 -0 .4783 (-0.4897, -0.4669) 0 .2457 0.0056

M U L T IP L E P -3 .168 (-3.576, -2.760) 31.65 1.70
Ol -0 .2251 (-0.2384, -0.2119) 0 .0735 0.0034
0 3 -0 .3273 (-0.3395, -0.3151) 0 .1264 0.0041
03 -0 .6291 (-0.6403, -0.6178) 0 .4122 0.0071

Table 4.25: Performance of two imputation methods under ‘adapted Finkelstein’ with 
a Weibull mortality process with shape parameter 1.15 and screen-independent 
event collection with two correlated repeated measurements with inital value rank 
correlation 0.3 (one continuous with aw  =  1.5 and £Tg =  8.0 and one ordinal 
with the original transition matrix) and various percentages of jointly missing data 
generated via a M C A R  mechanism.
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P e rc e n t Im p u ta t io n P a r a m e te r B IA S  { p x  u n its  10-= ) M S E  (Px u n i ts  10-= )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0 .456 (0.045,0.867) 22.12 1.48
OCX 0 .0113 (-0.0061,0.0288) 0 .0397 0.0025
02 0.0101 (-0.0061,0.0262) 0 .0340 0.0022
«3 0 .0090 (-0.0054,0.0233) 0 .0269 0.0017

5 L A S T P 0 .658 (0.244,1.071) 22.64 1.51
Ol 0 .0007 (-0.0161,0.0174) 0 .0366 0.0023
02 -0 .0062 (-0.0220,0.0095) 0.0321 0.0021
03 -0 .0238 (-0.0379, -0.0098) 0 .0262 0.0017

M U L T IP L E P 0 .226 (-0.188,0.639) 22.25 1.41
Ol -0 .0034 (-0.0197,0.0129) 0 .0346 0.0023
02 -0 .0150 (-0.0301 0.0002) 0.0301 0.0020
03 -0 .0407 (-0.0550, -0.0264) 0 .0282 0.0017

10 L A S T P 0.868 (0.452,1.284) 23.22 1.55
Ol -0 .0130 (-0.0294,0.0033) 0 .0349 0.0022
02 -0 .0259 (-0.0414, -0.0104) 0 .0318 0.0021
03 -0 .0570 (-0.0706, -0.0434) 0 .0273 0.0017

M U L T IP L E P 0 .065 (-0.366, 0.497) 24.20 1.46
Ol -0 .0098 (-0.0263, 0.0068) 0 .0357 0.0021
02 -0 .0320 (-0.0473, -0.0167) 0 .0314 0.0021
03 -0 .0808 (-0.0945, -0.0670) 0.0311 0.0019

20 L A S T P 1.204 (0.784,1.625) 24.43 1.63
Ol -0 .0443 (-0.0599, -0.0288) 0 .0335 0.0021
02 -0 .0677 (-0.0828, -0.0526) 0 .0343 0.0021
03 -0 .1334 (-0.1466, -0.1203) 0 .0403 0.0021

M U L T IP L E P -0 .556 (-0.988, -0.125) 24 .46 1.64
Ol -0 .0292 (-0.0455, -0.0129) 0 .0355 0.0022

02 -0 .0731 (-0.0883, -0.0578) 0 .0356 0.0022
03 -0 .1910 (-0.2045, -0.1774) 0 .0602 0.0028

50 L A S T P 1.527 (1.080,1.973) 28.26 1.85
Ol -0 .1609 (-0.1746, -0.1472) 0 .0503 0.0026
02 -0 .2226 (-0.2362, -0.2090) 0 .0735 0.0032
03 -0 .4136 (-0.4256, -0.4017) 0 .1896 0.0050

M U L T IP L E P -3 .401 (-3.819, -2.984) 34.23 1.88
Ol -0 .0883 (-0.1081,-0.0686) 0 .0583 0.0033
02 -0 .2733 (-0.2889, -0.2578) 0 .1061 0.0045
03 -0 .6409 (-0.6545, -0.6274) 0 .4347 0.0089

Table 4.26: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection with two correlated repeated measurements with inital value rank 
correlation ~  0.3 (one continuous with aw = 1.5 and erg =  8.0 and one ordinal 
with the original transition matrix) and various percentages of jointly missing data 
generated via a M C A R  mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  (0x u n its  1 0 -3 ) M S E  (P-. u n i ts  10-®)
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.202 (-0.193, 0.596) 20 .23 1.29
0.0120 (-0.0051, 0.0291) 0.0381 0.0025

«2 0.0002 (-0.0149, 0.0152) 0 .0295 0.0020
03 0.0083 (-0.0056,0.0221) 0 .0250 0.0016

5 L A S T P 0.460 (0.062,0.857) 20.77 1.34
O il 0 .0104 (-0.0063,0.0271) 0 .0362 0.0024
02 0 .0017 (-0.0134,0.0168) 0 .0296 0.0020
03 -0 .0176 (-0.0314, -0.0039) 0 .0248 0.0015

M U L T IP L E -0.468 (-0.853, -0.084) 19.41 1.22
-0 .0116 (-0.0279,0.0048) 0 .0348 0.0021

«2 -0 .0188 (-0.0340,0.0036) 0 .0304 0.0019
«3 -0 .0567 (-0.0705, -0.0429) 0.0280 0.0016

10 L A S T 0.668 (0.270,1.066) 21.02 1.35
0.0128 (-0.0038, 0.0293) 0 .0357 0.0024

«2 0.0071 (-0.0080,0.0223) 0 .0298 0.0020
OC3 -0 .0402 (-0.0540, -0.0264) 0 .0263 0.0016

M U L T IP L E -1 .094 (-1.480, -0.708) 20.55 1.20
-0 .0233 (-0.0383, -0.0083) 0 .0298 0.0019

«2 -0 .0440 (-0.0583, -0.0298) 0 .0283 0.0017
«3 -0 .1174 (-0.1304, -0.1044) 0 .0357 0.0019

20 L A S T 0 0.985 (0.580,1.390) 22.29 1.44
a i 0.0152 (-0.0010,0.0314) 0 .0342 0.0024
«2 0.0078 (-0.0069, 0.0224) 0 .0279 0.0020
«3 -0 .0930 (-0.1065,-0.0796) 0.0321 0.0019

M U L T IP L E 0 -2 .565 (-2.979,-2.151) 28.84 1.70
a i -0 .0711 (-0.0856, -0.0567) 0 .0322 0.0019
«2 -0 .0892 (-0.1032, -0.0753) 0 .0333 0.0018
«3 -0 .2418 (-0.2548, -0.2289) 0 .0802 0.0032

50 L A S T 0 1.043 (0.625,1.461) 23.81 1.49
O il -0 .0057 (-0.0200,0.0085) 0 .0265 0.0017
«2 -0 .0526 (-0.0668, -0.0384) 0 .0290 0.0019
«3 -0 .3203 (-0.3337, -0.3070) 0 .1257 0.0045

M U L T IP L E 0 -7 .050 (-7.430, -6.670) 68 .47 3.12
«1 -0 .1803 (-0.1943,-0.1663) 0 .0579 0.0031
«2 -0 .2562 (-0.2687, -0.2438) 0 .0859 0.0035
«3 -0 .6196 (-0.6316, -0.6075) 0 .4027 0.0075

Table 4.27: Performance of two imputation methods under 'adapted Finkelstein' with
a Weibull mortality process with shape parameter 1.15 and screen-independent 
event collection with two uncorrelated repeated measurements (one continuous with 
uw =  1.5 and =  8.0 and one ordinal with the original transition matrix) and 
various percentages of jointly missing data generated via a M A R  mechanism.
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P e rc e n t Im p u ta t io n P a r a m e te r B IA S  {0x u n its  1 0 -3 ) M S E  {P-. u n i ts  10 -= )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.202 (-0.193, 0.596) 20.23 1.29
a i 0 .0120 (-0.0051, 0.0291) 0.0381 0.0025
«2 0.0002 (-0.0149,0.0152) 0 .0295 0.0020
«3 0.0083 (-0.0056, 0.0221) 0 .0250 0.0016

5 L A S T P 2.108 (1.702, 2.514) 25 .88 1.67
Ol 0 .0123 (-0.0044, 0.0290) 0 .0365 0.0024
«3 0.0143 (-0.0009, 0.0294) 0.0301 0.0021
03 0 .0108 (-0.0030, 0.0246) 0 .0249 0.0016

M U L T IP L E P 0.781 (0.390,1.171) 20.45 1.31
Ol 0.0171 (0.0003,0.0339) 0 .0368 0.0023
02 0 .0236 (0.0079,0.0394) 0 .0329 0.0020
03 -0 .0033 (-0.0176, 0.0110) 0 .0267 0.0017

10 L A S T P 3 .864 (3.448,4.279) 37.32 2.22
Ol 0 .0170 (0.0003,0.0336) 0 .0363 0.0024
02 0 .0330 (0.0178,0.0483) 0 .0313 0.0022
03 0 .0169 (0.0031,0.0308) 0 .0252 0.0017

M U L T IP L E P 1.201 (0.802,1.601) 22.16 1.47
Ol 0 .0299 (0.0137,0.0460) 0 .0347 0.0023
02 0.0387 (0.0237, 0.0537) 0 .0307 0.0020
03 -0 .0181 (-0.0318, -0.0045) 0 .0246 0.0016

20 L A S T P 7.133 (6.704, 7.562) 74.75 3.54
Ol 0.0246 (0.0082,0.0410) 0 .0355 0.0025
02 0.0630 (0.0481,0.0778) 0 .0325 0.0024
03 0.0238 (0.0102,0.0374) 0 .0246 0.0018

M U L T IP L E 0 1.444 (1.008,1.881) 26.85 1.68
a i 0.0462 (0.0299,0.0625) 0 .0367 0.0023
tt2 0.0763 (0.0603, 0.0922) 0 .0388 0.0023
«3 -0 .0541 (-0.0687, -0.0394) 0 .0307 0.0017

50 L A S T 0 15.283 (14.827,15.739) 260.59 7.49
O il 0.0301 (0.0152,0.0450) 0 .0297 0.0020
OC2 0.1169 (0.1020,0.1318) 0 .0425 0.0026
«3 0.0079 (-0.0060,0.0217) 0 .0250 0.0017

M U L T IP L E 0 0 .937 (0.529,1.345) 22.53 1.55
a i 0.1328 (0.1145,0.1511) 0 .0610 0.0039
«2 0.1275 (0.1117,0.1433) 0 .0486 0.0028
«3 -0 .2475 (-0.2625, -0.2326) 0 .0901 0.0051

Table 4.28: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection with two uncorrelated repeated measurements (one continuous with 
aw  =  1.5 and erg =  8.0 and one ordinal with the original transition matrix) and 
various percentages of jointly missing data generated via a M A R  mechanism.
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P e rc e n t Im p u ta t io n P a r a m e te r B IA S  (P-. u n its  10-= ) M S E  {P-. u n its  10-®)
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.202 (-0.193, 0.596) 20 .23 1.29
a i 0 .0120 (-0.0051,0.0291) 0.0381 0.0025
02 0.0002 (-0.0149, 0.0152) 0 .0295 0.0020
03 0 .0083 (-0.0056, 0.0221) 0 .0250 0.0016

5 L A S T P 0.811 (0.414,1.208) 21.12 1.39
Ol 0.0021 (-0.0142, 0.0184) 0 .0346 0.0023
02 -0 .0217 (-0.0363, -0.0071) 0.0281 0.0018
03 -0 .0585 (-0.0720, -0.0451) 0 .0268 0.0016

M U L T IP L E P -0 .121 (-0.486, 0.244) 17.30 1.07
Ol -0 .0248 (-0.0401,-0.0094) 0 .0312 0.0019
aa -0 .0405 (-0.0546-0.0265) 0 .0272 0.0016
03 -0 .0916 (-0.1044, -0.0788) 0 .0296 0.0016

10 L A S T P 1.116 (0.721,1.511) 21.50 1.38
Ol -0 .0087 (-0.0246, 0.0071) 0 .0327 0.0022
02 -0 .0447 (-0.0588, -0.0306) 0 .0278 0.0018
03 -0 .1260 (-0.1389, -0.1130) 0 .0376 0.0020

M U L T IP L E P -0 .302 (-0.700,0.097) 20.72 1.31
Ol -0 .0464 (-0.0603, -0.0324) 0 .0273 0.0017
02 -0 .0827 (-0.0957, -0.0698) 0 .0286 0.0017
03 -0 .1880 (-0.2001,-0.1759) 0 .0545 0.0025

20 L A S T P 1.327 (0.927,1.727) 22.58 1.43
Ol -0 .0310 (-0.0457, -0.0163) 0 .0290 0.0020
oa -0 .0955 (-0.1093, -0.0817) 0 .0340 0.0020
03 -0 .2494 (-0.2621, -0.2367) 0.0831 0.0033

M U L T IP L E P -1 .625 (-2.015, -1.235) 22 .39 1.39
Ol -0 .1216 (-0.1347, -0.1085) 0.0371 0.0021
03 -0 .1822 (-0.1944, -0.1700) 0 .0526 0.0024
03 -0 .3761 (-0.3873, -0.3648) 0 .1578 0.0043

50 L A S T P -0 .992 (-1.410, -0.573) 23.71 1.40
Ol -0 .1139 (-0.1248, -0.1030) 0 .0284 0.0015
02 -0 .2658 (-0.2770, -0.2547) 0 .0869 0.0032
03 -0 .6171 (-0.6277, -0.6064) 0 .3954 0.0066

M U L T IP L E P -6 .304 (-6.684, -5.923) 58.55 2.69
Ol -0 .2688 (-0.2811, -0.2565) 0 .0919 0.0035
oa -0 .4172 (-0.4285, -0.4059) 0 .1907 0.0048
03 -0 .8213 (-0.8316, -0.8111) 0 .6883 0.0085

Table 4.29: Performance of two imputation methods under ‘adapted Finkelstein’ with 
a Weibull mortality process with shape parameter 1.15 and screen-independent  
event collection with two uncorrelated repeated measurements (one continuous with 
aw = 1.5 and erg =  8.0 and one ordinal with the original transition matrix) and var­
ious percentages of jointly missing data generated via a value-based non-ignorable  
missing data mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  (P-. u n its  10-= ) M S E  (P-. u n its  10-®)
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.202 (-0.193, 0.696) 20.23 1.29
a i 0.0120 (-0.0051,0.0291) 0.0381 0.0025
0 3 0.0002 (-0.0149, 0.0152) 0 .0295 0.0020
0 3 0.0083 (-0.0056, 0.0221) 0 .0250 0.0016

5 L A S T P 2.672 (2.265,3.079) 28.66 1.83
O l 0.0034 (-0.0130, 0.0199) 0 .0350 0.0023
0 3 -0 .0087 (-0.0234, 0.0060) 0.0281 0.0019
0 3 -0 .0317 (-0.0453, -0.0182) 0 .0248 0.0015

M U L T IP L E P 1.209 (0.837,1.581) 19.42 1.24
O l 0.0066 (-0.0095, 0.0227) 0 .0337 0.0022
0 3 -0 .0010 (-0.0159, 0.0138) 0 .0286 0.0017
0 3 -0 .0497 (-0.0632, -0.0363) 0 .0259 0.0015

10 L A S T P 4.670 (4.258,5.083) 43.94 2.47
O l -0 .0059 (-0.0220, 0.0102) 0 .0336 0.0023
0 3 -0 .0188 (-0.0331, -0.0045) 0 .0270 0.0018
0 3 -0 .0737 (-0.0868, -0.0607) 0 .0276 0.0016

M U L T IP L E P 2.292 (1.877, 2.707) 27.66 1.65
O l 0.0140 (-0.0010,0.0291) 0 .0296 0.0020
0 2 -0 .0064 (-0.0204, 0.0076) 0 .0255 0.0017
0 3 -0 .1066 (-0.1197, -OJ0936) 0 .0335 0.0018

20 L A S T P 7.967 (7.546,8.389) 86.57 3.86
O l -0 .0261 (-0.0412,-0.0111) 0.0301 0.0021
0 3 -0 .0445 (-0.0586, -0.0304) 0 .0279 0.0018
0 3 -0 .1495 (-0.1625,-0.1366) 0 .0442 0.0023

M U L T IP L E P 2.901 (2.487, 3.315) 30.69 1.91
O l -0 .0105 (-0.0252,0.0042) 0 .0282 0.0018
0 2 -0 .0469 (-0.0607, -0.0330) 0.0271 0.0016
0 3 -0 .2339 (-0.2464, -0.2214) 0 .0750 0.0032

50 L A S T P 13.220 (12.767,13.673) 201 .47 6.50
O l -0 .1117 (-0.1234, -0.1000) 0 .0303 0.0017
0 2 -0 .1573 (-0.1690, -0.1455) 0 .0426 0.0021
0 3 -0 .4015 (-0.4127, -0.3902) 0 .1777 0.0046

M U L T IP L E P 3.004 (2.576,3.431) 32.76 1.94
O l -0 .0406 (-0.0560, -0.0251) 0 .0327 0.0019
0 3 -0 .1601 (-0.1735,-0.1467) 0 .0490 0.0025
0 3 -0 .5782 (-0.5916, -0.5648) 0 .3576 0.0097

Table 4.30: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection with two uncorrelated repeated measurements (one continuous with 
aw  =  1.5 and erg =  8.0 and one ordinal with the original transition matrix) and var­
ious percentages of jointly missing data generated via a value-based non-ignorable  
missing data mechanism.
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4.5.2 T h e  effect o f am en d in g  th e  tra n s it io n  m a tr ix

It was decided to use a banded transition matrix to generate the alternative data 

set which would then be subjected to the same forms of missing data processes 

as for the previous transition matrix. Moreover, most of the probabilities in the 

strict lower triangle were reduced to lower the chance of an improvement in dis­

ability condition. Minor changes were made to the major diagonal of the m atrix 

and the probabilities on the diagonal representing a worsening of disability by 

one category between consecutive screens were increased. Corresponding minor 

amendments were also made to the other entries in the matrix but the probabili­

ties of membership of each level at the first time point were left unchanged. The 

actual transition matrix used was

/  o  KK o  Qo n  i n  n  AK \0.55 0.30 0.10 0.05

0.07 0.53 0.30 0.10

0.03 0.07 0.60 0.30

0.01 0.03 0.07 0.89

C om parison o f the im putation  m ethods

On altering the transition matrix, little general change in the patterns of either 

bias or mean square error of any of the non-nuisance parameters was observed. Ta­

bles 4.31-4.38 illustrate the relative performance of the two imputation techniques 

over different percentages of missing data under selected missing data mechan­

isms. Over the two imputation methods, the tendency was for little consistent 

effect on the estimation of /5 in terms of either bias or mean square error. W ith 

the as, there was a tendency for both the biases and mean square errors to be 

larger than  previously, especially when the performance was only fair or poor in
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the simulations under the previous transition matrix. This led to the performance 

of multiple imputation deteriorating a little further in relation to th a t of the last 

measurement imputation.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  (P-. u n its  10-= ) M S E  (P-. u n its  10 -= )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.222 (-0.180, 0.024) 21.04 1.36
O il 0 .0043 (-0.0170,0.0255) 0 .0586 0.0038
02 -0 .0034 (-0.0231,0.0163) 0 .0506 0.0034
«3 0 .0030 (-0.0155,0.0216) 0 .0447 0.0029

5 L A S T P 0.095 (-0.310,0.500) 21.34 1.39
a \ -0 .0059 (-0.0267,0.0149) 0.0561 0.0037
02 -0 .0231 (-0.0423, -0.0039) 0 .0486 0.0032
« 3 -0 .0395 (-0.0577, -0.0213) 0 .0447 0.0028

M U L T IP L E P -0 .133 (-0.542,0.276) 21.74 1.34
-0 .0063 (-0.0266,0.0139) 0 .0533 0.0036

02 -0 .0190 (-0.0386,0.0005) 0.0501 0.0033
0 3 -0 .0416 (-0.0595, -0.0237) 0 .0433 0.0029

10 L A S T P -0 .056 (-0.459, 0.348) 21 .15 1.40
Ol -0 .0130 (-0.0334,0.0075) 0 .0546 0.0035
02 -0 .0389 (-0.0577, -0.0200) 0 .0475 0.0030
03 -0 .0803 (-0.0980, -0.0626) 0 .0470 0.0028

M U L T IP L E P -0 .729 (-1.121,-0.338) 20 .43 1.25
Ol -0 .0389 (-0.0574, -0.0203) 0 .0463 0.0031
02 -0 .0637 (-0.0811, -0.0463) 0.0435 0.0028
0 3 -0 .1171 (-0.1336, -0.1006) 0.0491 0.0026

20 L A S T P -0 .457 (-0.860, -0.054) 21 .27 1.44
Ol -0 .0410 (-0.0602, -0.0218) 0 .0498 0.0031
0 2 -0 .0880 (-0.1057, -0.0704) 0 .0483 0.0028
0 3 -0 .1831 (-0.2000, -0.1662) 0 .0707 0.0036

M U L T IP L E P -1 .536 (-1.941,-1.130) 23 .75 1.51
Ol -0 .0696 (-0.0881, -0.0511) 0 .0493 0.0031
02 -0 .1178 (-0.1353,-0.1004) 0 .0535 0.0029
0 3 -0 .2207 (-0.2372, -0.2042) 0.0841 0.0040

50 L A S T P -2 .660 (-3.065, -2.255) 28.36 1.87
O l -0 .1500 (-0.1650, -0.1349) 0 .0519 0.0029
0 2 -0 .2948 (-0.3099, -0.2798) 0 .1165 0.0046
0 3 -0 .5703 (-0.5843, -0.5564) 0 .3506 0.0080

M U L T IP L E P -5 .087 (-5.474,-4.701) 45 .25 2.34
O l -0 .2066 (-0.2217, -0.1915) 0 .0724 0.0037
0 2 -0 .3264 (-0.3398, -0.3130) 0 .1299 0.0045
0 3 -0 .6505 (-0.6634, -0.6375) 0 .4448 0.0084

Table 4.31: Performance of two imputation methods under ‘adapted Finkelstein’ with 
a Weibull mortality process with shape parameter 1.15 and screen-independent  
event collection with two uncorrelated repeated measurements (one continuous with 
aw =  1.5 and erg =  8.0 and one ordinal with the revised transition matrix) and 
various percentages of jointly missing data generated via a M C A R  mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  ( p i  u n its  10-= ) M S E  (P-. u n i ts  10 -= )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.222 (-0.180, 0.624) 21 .04 1.36
O l 0 .0043 (-0.0170,0.0255) 0 .0586 0.0038
02 -0 .0034 (-0.0231,0.0163) 0 .0506 0.0034
013 0 .0030 (-0.0155,0.0216) 0 .0447 0.0029

5 L A S T P 0.468 (0.062,0.875) 21.67 1.40
Ol -0 .0038 (-0.0246,0.0170) 0 .0562 0.0037
02 -0 .0151 (-0.0343,0.0042) 0 .0484 0.0032
03 -0 .0273 (-0.0455, -0.0090) 0.0440 0.0028

M U L T IP L E P -0 .062 (-0.472,0.349) 21.86 1.34
O l 0.0051 (-0.0155,0.0258) 0 .0552 0.0035
02 -0 .0101 (-0.0300,0.0098) 0 .0516 0.0033
0 3 -0 .0371 (-0.0552, -0.0190) 0 .0439 0.0029

10 L A S T P 0.720 (0.313,1.128) 22.10 1.44
Ol -0 .0091 (-0.0296,0.0115) 0 .0550 0.0035
0 3 -0 .0224 (-0.0413, -0.0035) 0 .0468 0.0030
0 3 -0 .0552 (-0.0729, -0.0374) 0 .0439 0.0027

M U L T IP L E P -0 .547 (-0.942, -0.153) 20.52 1.25
Ol -0 .0190 (-0.0384,0.0005) 0 .0496 0.0032
0 3 -0 .0483 (-0.0666, -0.0301) 0 .0456 0.0029
0 3 -0 .1108 (-0.1279, -0.0936) 0 .0505 0.0026

20 L A S T P 1.173 (0.763,1.583) 23.18 1.47
O l -0 .0333 (-0.0527, -0.0139) 0.0501 0.0031
0 3 -0 .0539 (-0.0718, -0.0361) 0 .0443 0.0027
0 3 -0 .1302 (-0.1472, -0.1131) 0.0548 0.0031

M U L T IP L E P -1 .237 (-1.649, -0.8% ) 23.53 1.49
O l -0 .0455 (-0.0646, -0.0263) 0.0498 0.0031
0 3 -0 .1083 (-0.1262, -0.0904) 0 .0535 0.0030
03 -0 .2315 (-0.2486, -0.2144) 0 .0915 0.0043

50 L A S T P 1.894 (1.469, 2.319) 27.06 1.69
Ol -0 .1270 (-0.1429,-0.1112) 0 .0487 0.0028
02 -0 .1912 (-0.2070, -0.1754) 0 .0689 0.0034
0 3 -0 .4111 (-0.4259, -0.3964) 0 .1972 0.0062

M U L T IP L E P -4 .917 (-5.322,-4.512) 45.48 2.45
O l -0 .1206 (-0.1382,-0.1030) 0 .0548 0.0033
02 -0 .3509 (-0.3664, -0.3354) 0 .1543 0.0059
0 3 -0 .7590 (-0.7753, -0.7427) 0 .6107 0.0146

Table 4.32: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection with two uncorrelated repeated measurements (one continuous with 
aw =  1.5 and erg =  8.0 and one ordinal with the revised transition matrix) and 
various percentages of jointly missing data generated via a M C A R  mechanism.
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P e rc e n t I m p u ta t io n P a r a m e te r B IA S  {P-. u n its  1 0 -3 ) M S E  {P-. u n its  10-®)
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.295 (-0.102,0.692) 20.54 1.43
Ql 0 .0069 (-0.0144,0.0282) 0 .0588 0.0036
02 0 .0027 (4)0173,0.0226) 0 .0517 0.0034
a s 0 .0079 (-0.0112,0.0269) 0 .0474 0.0032

5 L A S T P 0.215 (-0.181,0.612) 20.49 1.43
«1 -0 .0012 (-0.0224,0.0199) 0.0581 0.0035

-0 .0145 (-0.0342,0.0052) 0 .0508 0.0032
«3 -0 .0329 (-0.0518, -0.0140) 0 .0475 0.0029

M U L T IP L E P 0.325 (-0.106,0.756) 24.22 1.74
«1 0 .0004 (4)0212,0.0220) 0 .0606 0.0042
«2 -0 .0137 (-0.0331, 0.0057) 0.0491 0.0032
«3 -0 .0369 (-0.0557,4)0180) 0 .0474 0.0033

10 L A S T P 0.111 (-0.285, 0.508) 20.45 y l.4 3
a i -0 .0063 (4).0272, 0.0146) 0 .0570 0.0033
«3 -0 .0286 (-0.0482,4).0089) 0 .0509 0.0030
03 -0 .0723 (-0.0910,4)0535) 0 .0511 0.0029

M U L T IP L E P 0.353 (-0.058,0.764) 22.06 1.58
«1 -0 .0404 (-0.0595, -0.0213) 0 .0490 0.0029
02 -0 .0651 (4)0831 -0.0471) 0 .0465 0.0028
0 3 -0 .1133 (-0.1303,4)0964) 0.0501 0.0030

20 L A S T P -0 .156 (-0.553, 0.240) 20 .43 1.41
O l -0 .0333 (4)0533, -0.0132) 0 .0534 0.0033
02 -0 .0766 (-0.0958, -0.0574) 0 .0538 0.0030
0 3 -0 .1717 (-0.1899, -0.1535) 0 .0723 0.0037

M U L T IP L E P -0 .148 (-0.559, 0.263) 21.97 1.70
O l -0 .0844 (-0.1038, -0.0650) 0 .0560 0.0033
0 2 -0 .1218 (-0.1401,-0.1034) 0 .0587 0.0032
0 3 -0 .2290 (-0.2464, -0.2115) 0 .0919 0.0041

50 L A S T P -1 .834 (-2.232, -1.436) 23.92 1.55
Ol -0 .1371 (-0.1528,4).1215) 0 .0508 0.0029
0 3 -0 .2741 (-0.2893, -0.2589) 0 .1052 0.0044
0 3 -0 .5447 (-0.5593,4)5301) 0 .3245 0.0080

M U L T IP L E P -2 .764 (-3.150, -2.377) 27.02 1.58
O l -0 .1968 (-0.2119,4)1817) 0 .0683 0.0036
0 3 -0 .3182 (4) 3322, 4) 3041) 0 .1267 0.0048
03 -0 .6277 (-0.6419, -0.6135) 0 .4202 0.0091

Table 4.33: Performance of two imputation methods under 'adapted Finkelstein’ with 
a Weibull mortality process with shape parameter 1.15 and screen-independent 
event collection with two correlated repeated measurements with inital value rank 
correlation ~  0.3 (one continuous with < tw  =  15 and erg  =  8.0 and one ordinal 
with the revised transition matrix) and various percentages of jointly missing data 
generated via a M C A R  mechanism.
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P e rc e n t I m p u ta t io n P a ra m e te r B IA S  (f3: u n its  10"=) M S E  (/3: u n its  IQ-®)
m iss in g m e th o d E s tim a te 95%  C .I. E s tim a te S .E .

0 N /A P 0.295 (-0.102, 0.692) 20.54 1.43
a i 0 .0069 (-0.0144, 0.0282) 0 .0588 0.0036
02 0 .0027 (-0.0173, 0.0226) 0 .0517 0.0034
03 0 .0079 (-0.0112, 0.0269) 0 .0474 0.0032

5 L A S T P 0.483 (0.084,0.882) 20.90 1.45
Ol 0 .0004 (-0.0208, 0.0216) 0 .0583 0.0035
02 -0 .0081 (-0.0278, 0.0117) 0 .0509 0.0032
03 -0 .0230 (-0.0419, -0.0040) 0 .0472 0.0029

M U L T IP L E P 0.346 (-0.087, 0.778) 24.43 1.75
Ol 0 .0127 (-0.0091, 0.0346) 0 .0623 0.0043
0 3 -0 .0029 (-0.0225,0.0167) 0 .0499 0.0033
« 3 -0 .0311 (-0.0502, -0.0120) 0 .0484 0.0033

10 L A S T P 0.676 (0.276,1.077) 21.28 1.47
O l -0 .0034 (-0.0244,0.0177) 0 .0575 0.0034
02 -0 .0155 (-0.0352,0.0043) 0 .0509 0.0031
0 3 -0 .0520 (-0.0708, -0.0331) 0 .0489 0.0028

M U L T IP L E P 0.387 (-0.025, 0.800) 22.29 1.60
O l -0 .0169 (-0.0366,0.0029) 0 .0509 0.0029
0 3 -0 .0462 (-0.0649, -0.0274) 0 .0477 0.0028
0 3 -0 .1058 (-0.1232, -0.0883) 0 .0507 0.0030

20 L A S T P 1.012 (0.605,1.420) 22.55 1.55
O l -0 .0277 (-0.0480, -0.0075) 0 .0540 0.0034
0 2 -0 .0496 (-0.0690, -0.0301) 0 .0515 0.0030
0 3 -0 .1293 (-0.1476, -0.1110) 0 .0602 0.0032

M U L T IP L E P -0 .019 (-0.438,0.399) 22.73 1.80
O l -0 .0391 (-0.0595, -0.0188) 0 .0553 0.0032
0 3 -0 .0964 (-0.1158, -0.0770) 0.0581 0.0032
0 3 -0 .2235 (-0.2419, -0.2052) 0 .0938 0.0044

50 L A S T P 1.197 (0.775,1.619) 24.57 1.67
O l -0 .1212 (-0.1374, -0.1049) 0 .0489 0.0028
0 3 -0 .1902 (-0.2058, -0.1746) 0 .0679 0.0034
0 3 -0 .4171 (-0.4321,-0.4020) 0 .2033 0.0064

M U L T IP L E P -2 .801 (-3.204, -2.397) 28 .97 1.64
O l -0 .1308 (-0.1503,-0.1113) 0 .0665 0.0039
0 3 -0 .3496 (-0.3670, -0.3323) 0 .1614 0.0068
0 3 -0 .7426 (-0.7590, -0.7261) 0 .5866 0.0125

Table 4.34: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection with two correlated repeated measurements with inital value rank 
correlation ~  0.3 (one continuous with a w  = 1.5 and erg =  8.0 and one ordinal 
with the revised transition matrix) and various percentages of jointly missing data 
generated via a M C A R  mechanism.
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P e rc e n t I m p u ta t io n P a r a m e te r B IA S  {P-. u n its  10-= ) M S E  (P-. u n its  10 -= )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.222 (-0.180,0.624) 21.04 1.36
a x 0 .0043 (-0.0170,0.0255) 0 .0586 0.0038
« 2 -0 .0034 (-0.0231,0.0163) 0 .0506 0.0034
0 3 0 .0030 (-0.0155,0.0216) 0 .0447 0.0029

5 L A S T P 0.522 (0.115,0.929) 21.76 1.39
O l 0.0121 (-0.0091, 0.0333) 0.0587 0.0039
0 2 0 .0063 (-0.0134,0.0260) 0 .0503 0.0034
0 3 -0 .0207 (-0.0393, -0.0020) 0 .0455 0.0029

M U L T IP L E P -0 .291 (-0.685,0.103) 20.23 1.28
Ol 0.0061 (-0.0137,0.0260) 0 .0511 0.0035
0 2 -0 .0096 (-0.0284,0.0092) 0 .0460 0.0033
0 3 -0 .0475 (-0.0653, -0.0298) 0 .0433 0.0028

10 L A S T P 0.749 (0.341,1.158) 22.24 1.44
Ol 0.0132 (-0.0077, 0.0341) 0 .0570 0.0037
0 2 0.0103 (-0.0090,0.0297) 0 .0488 0.0033
0 3 -0 .0496 (-0.0679, -0.0312) 0 .0463 0.0029

M U L T IP L E P -1 .034 (-1.429, -0.638) 21.35 1.45
O l -0 .0203 (-0.0400, -0.0005) 0.0509 0.0032
0 2 -0 .0337 (-0.0513, -0.0160) 0 .0414 0.0026
0 3 -0 .1174 (-0.1349, -0.0999) 0 .0536 0.0029

20 L A S T P 1.068 (0.658,1.477) 22.93 1.51
Ol 0.0191 (-0.0011,0.0394) 0 .0537 0.0035
0 2 0 .0159 (-0.0028,0.0347) 0 .0460 0.0030
0 3 -0 .1085 (-0.1264, -0.0907) 0.0531 0.0032

M U L T IP L E P -2 .751 (-3.144, -2.358) 27.65 1.90
O l -0 .0587 (-0.0771, -0.0404) 0 .0473 0.0030
0 2 -0 .0920 (-0.1087, -0.0753) 0 .0447 0.0028
0 3 -0 .2532 (-0.2693,-0.2370) 0.0981 0.0045

50 L A S T P 1.127 (0.708,1.545) 24.06 1.51
O l -0 .0018 (-0.0190,0.0155) 0 .0386 0.0028
02 -0 .0598 (-0.0763, -0.0433) 0 .0390 0.0024
03 -0 .3729 (-0.3890, -0.3568) 0 .1727 0.0061

M U L T IP L E P -6 .370 (-6.743, -5.996) 58 .70 2.80
Ol -0 .1790 (-0.1957, -0.1622) 0 .0685 0.0035
0 2 -0 .2723 (-0.2874, -0.2571) 0 .1040 0.0042
0 3 -0 .6402 (-0.6549, -0.6256) 0 .4379 0.0091

Table 4.35: Performance of two imputation methods under ‘adapted Finkelstein’ with 
a Weibull mortality process with shape parameter 1.15 and screen-independent 
event collection with two uncorrelated repeated measurements (one continuous with 
aw  =  1.5 and erg =  8.0 and one ordinal with the revised transition matrix) and 
various percentages of jointly missing data generated via a M A R  mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  (P-. u n its  10-= ) M S E  (P-. u n its  10 -= )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.222 (-0.180,0.624) 21.04 1.36
O l 0 .0043 (-0.0170,0.0255) 0 .0586 0.0038
02 -0 .0034 (-0.0231,0.0163) 0 .0506 0.0034
03 0 .0030 (-0.0155,0.0216) 0 .0447 0.0029

5 L A S T P 2.235 (1.824, 2.645) 26 .89 1.64
Ol 0 .0166 (-0.0046,0.0379) 0 .0590 0.0040
02 0.0234 (0.0037,0.0431) 0.0511 0.0035
0 3 0.0131 (-0.0056,0.0318) 0 .0456 0.0030

M U L T IP L E P 0.986 (0.591,1.380) 21.18 1.33
Ol 0.0423 (0.0220,0.0626) 0.0555 0.0037
02 0.0455 (0.0261,0.0649) 0 .0508 0.0037
03 0 .0129 (-0.0054,0.0313) 0 .0438 0.0030

10 L A S T P 4.054 (3.635, 4.472) 39 .20 2.18
Ol 0.0225 (0.0015,0.0435) 0 .0578 0.0038
0 2 0 .0450 (0.0256,0.0645) 0 .0513 0.0035
0 3 0.0182 (-0.0003,0.0367) 0 .0448 0.0030

M U L T IP L E P 1.313 (0.910,1.717) 22.89 1.54
O l 0 .0426 (0.0216,0.0636) 0 .0592 0.0039
0 2 0 .0676 (0.0490, 0.0863) 0 .0498 0.0036
0 3 -0 .0095 (-0.0281,0.0091) 0.0451 0.0027

20 L A S T P 7.413 (6.984, 7.842) 78.82 3.47
Ol 0.0393 (0.0189, 0.0597) 0 .0556 0.0037
0 2 0 .0900 (0.0709,0.1090) 0 .0552 0.0037
0 3 0 .0304 (0.0123,0.0485) 0 .0434 0.0029

M U L T IP L E P 1.398 (0.989,1.807) 23.64 1.48
O l 0.0691 (0.0486,0.0896) 0 .0592 0.0042
02 0 .0977 (0.0788,0.1165) 0 .0558 0.0038
0 3 -0 .0554 (-0.0735, -0.0373) 0 .0457 0.0029

50 L A S T P 15.868 (15.395,16.341) 280.83 7.76
Ol 0.0718 (0.0538,0.0897) 0 .0468 0.0034
0 2 0.1716 (0.1543,0.1889) 0 .0683 0.0043
0 3 0 .0219 (0.0051,0.0387) 0 .0371 0.0028

M U L T IP L E P 1.558 (1.149,1.968) 24.21 1.44
O l 0 .1396 (0.1204,0.1589) 0 .0675 0.0042
02 0.1109 (0.0938,0.1281) 0 .0504 0.0031
03 -0 .3081 (-0.3284, -0.2877) 0 .1486 0.0109

Table 4.36: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection with two uncorrelated repeated measurements (one continuous with 
aw = 15  and erg =  8 . 0  and one ordinal with the revised transition matrix) and 
various percentages of jointly missing data generated via a M A R  mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  (P: u n its  10-= ) M S E  (/3: u n its  10 “ ®)
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A P 0.222 (-0.180,0.624) 21.04 1.36
OCX 0 .0043 (-0.0170,0.0255) 0 .0586 0.0038
aa -0 .0034 (-0.0231,0.0163) 0 .0506 0.0034
« 3 0 .0030 (-0.0155, 0.0216) 0 .0447 0.0029

5 L A S T p 0.820 (0.416,1.224) 21.84 1.40
a x -0 .0017 (-0.0219,0.0185) 0 .0528 0.0034
«2 -0 .0192 (-0.0379, -0.0004) 0.0461 0.0029
« 3 -0 .0675 (-0.0852, -0.0498) 0 .0453 0.0028

M U L T IP L E P 0.002 (-0.389,0.393) 19.84 1.22
Ol -0 .0044 (-0.0244,0.0157) 0.0521 0.0047
0 2 -0 .0310 (-0.0496-0.0123) 0 .0460 0.0036
0 3 -0 .0817 (-0.0995, -0.0639) 0 .0477 0.0033

10 L A S T P 1.171 (0.766,1.575) 22.65 1.47
a x -0 .0153 (-0.0345,0.0039) 0.0481 0.0033
«2 -0 .0448 (-0.0625, -0.0271) 0 .0426 0.0027
0 3 -0 .1428 (-0.1596, -0.1261) 0 .0567 0.0034

M U L T IP L E P -0 .388 (-0.775,0.000) 19.62 1.16
Ol -0 .0529 (-0.0709, -0.0349) 0 .0448 0.0026
0 2 -0 .0901 (-0.1068, -0.0734) 0 .0443 0.0025
0 3 -0 .1945 (-0.2101, -0.1789) 0 .0694 0.0034

20 L A S T P 1.448 (1.037,1.858) 23.96 1.53
Ol -0 .0375 (-0.0548, -0.0202) 0 .0403 0.0027
02 -0 .1006 (-0.1172, -0.0840) 0 .0459 0.0027
0 3 -0 .2838 (-0.2996, -0.2679) 0.1131 0.0048

M U L T IP L E P -1 .747 (-2.142,-1.351) 23.38 1.50
Ol -0 .1231 (-0.1392, -0.1071) 0 .0488 0.0027
02 -0 .1928 (-0.2074,-0.1782) 0 .0649 0.0031
0 3 -0 .4000 (-0.4145, -0.3855) 0 .1873 0.0059

50 L A S T P -0 .605 (-1.011,-0.198) 21 .87 1.38
Ol -0 .1364 (-0.1491,-0.1236) 0 .0396 0.0021
02 -0 .3170 (-0.3301, -0.3040) 0 .1225 0.0043
0 3 -0 .7159 (-0.7285, -0.7033) 0 .5330 0.0092

M U L T IP L E P -5 .882 (-6.248, -5.516) 51 .97 2.59
Ol -0 .2576 (-0.2715, -0.2437) 0 .0915 0.0039
02 -0 .4367 (-0.4494, -0.4240) 0 .2117 0.0056
0 3 -0 .8682 (-0.8801, -0.8564) 0 .7722 0.0104

Table 4.37; Performance of two imputation methods under ‘adapted Finkelstein’ with 
a Weibull mortality process with shape parameter 1.15 and screen-independent 
event collection with two uncorrelated repeated measurements (one continuous with 
(Twr =  1.5 and (Tg =  8.0 and one ordinal with the revised transition matrix) and vari-
ous percentages of jointly missing data generated via a value-based non-ignorable 
missing data mechanism.
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P e rc e n t Im p u ta t io n P a ra m e te r B IA S  {P: u n its  10-= ) M S E  {P-. u n its  lO r* )
m iss in g m e th o d E s tim a te 95%  C .I. E s t im a te S .E .

0 N /A a 0.222 (-0.180,0.624) 21.04 1.36
0 .0043 (-0.0170,0.0255) 0 .0586 oœ%

aa -0 .0034 (-0.0231,0.0163) 0 .0506 0.0034
0 3 0 .0030 (-0.0155,0.0216) 0 .0447 oœ%

5 L A S T P 3 .748 (2.337,3.158) 29.44 1.75
Ol 0 .0037 (-0.0165,0.0239) 0 .0530 O W M
0 2 0.0009 (-0.0179,0.0197) 0 .0460 0.0030
0 3 -0 .0334 (-0.0512, -0.0156) 0.0422 oœ%

M U L T IP L E P 1.383 (0.988,1.778) 22.18 1.39
Ol 0.0292 (0.0085,0.0500) 0 .0569 0.0051
02 0 .0167 (-0.0027, 0.0360) 0 .0489 0.0040
0 3 -0 .0392 (-0.0575, -0.0208) 0 .0453 oœ%

10 L A S T P 4.876 (4.460,5.291) 46.18 2.46
Ol -0 .0040 (-0.0233, 0.0154) 0 .0487 0.0033
0 2 -0 .0043 (-0.0222,0.0135) 0 .0414 0.0026
0 3 -0 .0755 (-0.0924, -0.0587) 0 .0427 0.0027

M U L T IP L E P 2.212 (1.814,2.611) 25.55 1.53
Ol 0.0138 (-0.0058,0.0335) 0 .0504 0.0031
0 2 -0 .0036 (-0.0218,0.0146) 0 .0430 0.0027
03 -0 .1163 (-0.1331,-0.0995) 0 .0503 0.0027

20 L A S T P 8.436 (8.005,8.868) 95.40 3 ^9
Ol -0 .0124 (-0.0300,0.0053) 0 .0407 0.0028
0 2 -0 .0202 (-0.0372, -0.0031) 0 .0382 0.0024
0 3 -0 .1537 (-0.1699, -0.1374) 0 .0579 0.0031

M U L T IP L E P 2.966 (2.556,3.376) 30.65 1.95
Ol -0 .0017 (-0.0196,0.0161) 0 .0414 oœ%
0 2 -0 .0451 (-0.0610, -0.0292) 0 .0349 0.0021
0 3 -0 .2674 (-0.2831,-0.2516) 0 .1036 0.0044

50 L A S T P 14.522 (14.067,14.977) 237.80 6 ^#
Ol -0 .0753 (-0.0888, -0.0618) 0 .0294 0.0017
0 2 -0 .1299 (-0.1438, -0.1160) 0.0421 oœM
0 3 -0 .4265 (-0.4400, -0.4131) 0 .2054 0.0060

M U L T IP L E P 3.659 (3.248,4.069) 35.28 2.11
O l -0 .0318 (-0.0483, -0.0152) 0 .0366 oœ^
0 2 -0 .2198 (-0.2349, -0.2048) 0 .0778 0.0036
0 3 -0 .6832 (-0.6967, -0.6697) 0 .4904 0.0093

Table 4.38: Performance of two imputation methods under ‘adapted Finkelstein’ 
with a Weibull mortality process with shape parameter 1.15 and screen-dependent 
event collection with two uncorrelated repeated measurements (one continuous with 
cTw = 1.5 and ctb = 8.0 and one ordinal with the revised transition matrix) and vari­
ous percentages of jointly missing data generated via a value-based non-ignorable  
missing data mechanism.
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4 .6  SuHiniary

In the analysis of interval-censored survival data in the presence of a risk factor 

history, a variety of methods is available. The method chosen will depend on the 

aims of a particular investigation, the likely means by which the risk factor is 

related to the event of interest and whether there are missing risk factor values. 

If there are some missing values, two other aspects of the missing data should be 

considered. Firstly, the percentage of the data missing will affect the choice of 

technique. If a low percentage of the data is missing, say 10%, then alternative 

techniques will tend to lead to very similar conclusions, as illustrated in Sections

4.4 and 4.5. However, as also shown in Sections 4.4 and 4.5, if a larger percentage 

of data  is missing, different imputation techniques are likely to lead to substan­

tially different conclusions and the validity of each technique will depend on the 

type and form of missing data mechanism.

When designing a study, it is important to consider the likely mechanism by 

which potential risk factors will affect the occurrence of the event of interest. If it 

is the present or a recent risk factor value which is of major importance, updated 

values of this risk factor should be part of the longitudinal design of the study (Alt­

man and De Stavola (1994), Guppies et al. (1988)). This will allow investigation 

of the relationship between the risk factor profile and survival. In situations when 

‘survival’ is related solely to a recent value of a risk factor, the use of the baseline 

risk factor measurement alone tends to lead to under-estimation of the magni­

tude of the true effect of the risk factor, as illustrated in Section 4.3 for Prentice 

and Gloeckler’s model and also in Altman and De Stavola (1994), although this 

picture may be reversed in certain circumstances. This was observed when the 

within-individual variability was low compared with the between-individual vari­

ability. In this case, the unknown value could be so well-approximated by a linear 

function of the baseline covariate value th a t the parameter was over-estimated as
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the last measurement tends to be relatively close to a multiple, greater than  one, 

of the baseline value.

As described in detail in earlier chapters, when risk factor values are missing it is 

im portant to determine the mechanism which has caused their missingness. If the 

data are not missing completely at random or, more particularly, if it is believed 

th a t the examination scheme might be informative, it is desirable to determine 

the form of the mechanism causing the missingness and to use any relevant infor­

mation when modelling the survival process (e.g. Grüger et al., 1991). If however, 

as is often the case, little is known or suspected about the form of the missing 

data process, sensitivity analysis should be used to investigate whether the con­

clusions would differ under a range of plausible forms for this process (Rubin, 

1987). The results of the Monte Garlo simulations presented in Sections 4.4 and

4.5 indicate th a t this will be particularly important when a moderate percentage, 

from between 1 0 % and 2 0 % upwards, of the data is missing.

One general strategy, applicable when modelling data subject to a missing data 

mechanism, is tha t of imputation of missing risk factor values. The main advan­

tage of imputation is tha t standard modelling techniques can be applied once the 

data set has been completed. One disadvantage is tha t imputed data are then 

treated as observed and can thus lead to under-estimation of standard errors. 

This particular disadvantage can be overcome by applying multiple imputations 

via an appropriate imputation strategy. In this chapter, two imputation strategies 

have been investigated, one applicable for continuous risk factors and the other 

applicable for ordinal risk factors. In each case a relatively simple approach has 

been used, imputing based on the previous value of tha t particular risk factor 

rather than on the profile of tha t and, potentially, other risk factors. This is a 

simple method and it was seen that, whilst it performed satisfactorily when there 

was a single continous risk factor as in Section 4.4, its performance for most miss­

ing data situations with moderate or large proportions missing was poor both in
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terms of bias and mean square error when there was a single ordinal risk factor in 

addition to a single continuous one in the simulations performed in Section 4.5. 

This is thought to be due largely to the complexity of the ordinal response model 

in terms of the number of model parameters which leads to relatively imprecise 

estimation and hence quite a degree of variability between the imputations. This 

will, in turn, lead to some imputed values which would be deemed highly unlikely 

if the later risk factor values for tha t individual were considered. Moreover, the 

problems in estimating the parameters relating to the effect (s) of the ordinal risk 

factor(s) (the as in Section 4.5) will have a knock-on effect in the parameter esti­

mation relating to the continuous risk factor {/3 in Section 4.5).

It is therefore recommended that, unless the percentage of data missing is low 

(under around 1 0 %) a more sophisticated imputation stategy should be applied. 

Various approaches are possible, including application of a strategy which takes 

into account the true longitudinal nature of the data. A simple approach would 

be to delete observations following any missing ones in order to obtain a monotone 

missing data structure prior to imputing for any missing or deleted observations 

(Rubin, 1987). Whilst this approach might lead to a reduction in the degree of 

bias, it will certainly lead to a decrease in precision. If there is a low number of 

scheduled screens and a low proportion of data missing, such an approach might 

lead to an improved estimation. However, in other circumstances, any poten­

tial gain in respect of lowering the bias will be outweighed by the consequential 

increase in standard errors leading to an overall increase in mean square error.
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C h a p ter  5 

M o d ellin g  d a ta  arisin g  from  th e  

an n u al screen in g  o f  th e  e ld er ly  o f  

M e lto n  M ow b ray

In modelling mortality and other changes of state arising from screening studies or 

in the more general topic of event history modelling, a number of problems are typ­

ically encountered. The two main problems surround the irregular and incomplete 

assessment of risk factor history with unknown form(s) of missing data mechanism 

and the recording of survival or change of state times in interval-censored form. 

Whilst it is recognised tha t determination of the risk factor profile and its inter­

action with the change of state process remains the ideal, the complexity of the 

data  structure will often require the analyst to compromise his approach to enable 

a realistically implementable estimation procedure to be used. Methods such as 

those of Wu and Carroll (1988) covered in Chapter 3 and those of Manton and 

his collaborators discussed in Chapters 2  and 4 are themselves relatively complex 

without even considering their extension to allow their application to screening 

studies with missing risk factor values prior to censoring or the occurrence of the 

event of interest.

Other alternatives, including the methods of Prentice and Cloeckler (1978) and
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Finkelstein (1986), are less complex and, whilst not involving direct modelling of 

the risk factor distribution, afford more natural extensions to account for missing 

values during the accumulation of an individual’s risk factor history. As was shown 

in Chapter 4, Finkelstein’s method can be adapted to include time-dependent co- 

variates (providing they are viewed as fixed within each interval between succes­

sive measurements and follow-up) and missing values of the form described above.

In this chapter, this approach which combines the broadening properties of both 

methods (termed ‘adapted Finkelstein’) will be applied to screen and mortali­

ty  data arising from the first three waves of a health screening of the elderly 

population of the Leicestershire market town of Melton Mowbray. Results from 

imputing missing values from these screens using the last recorded measurement 

will be constrasted with those obtained using a model-based multiple imputation 

approach under both the natural screen-independent recording of deaths, under 

which ‘adapted Finkelstein’ is identical to Prentice and Gloeckler’s method, and 

also by viewing the recording as screen-dependent. This latter approach, whilst 

both artificial and problematical given the design of the study and nature of ev­

ent under consideration, is included to illustrate ‘adapted Finkelstein’ in a case 

in which it differs from Prentice and Gloeckler’s method. Additionally, the ef­

fects of using the more traditional approaches to the analysis of survival data of 

complete case (CC) and available case (AC) methods and those of using base­

line as opposed to updated risk factor values will be investigated. Finally, the 

use of interval-censored survival times will be contrasted with the more common 

form in which the times are sufficiently accurately recorded to be viewed as ‘exact’.
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Sol S tu d ies o f  th e  e ld er ly  p op u la tion  o f  M elto n  

M ow bray

Over the last fifteen years, a series of population studies of the elderly has been 

carried out by the Latham House general practice in Melton Mowbray in conjunc­

tion with the Department of Epidemiology and Public Health at the University of 

Leciester. The Latham House general practice is the sole provider of primary care 

services in Melton Mowbray and presently has 13 full-time and 3 part-tim e doctors 

together with a list size of some 33000, around 1900 of whom are over the age of 75. 

A very advantageous design property for population health studies holds here as a 

single practice covers a fairly well-defined population of a moderately large size. 

Cohorts of those over 75 years of age at the start of each of the years 1981 and 

1988 were defined from the age-sex register at Latham House and various aspects 

of the health, mortality and social contacts of the elderly were studied and have 

been reported elsewhere (Clarke, Clarke, Odell and dagger (1984), dagger, Clarke 

and Davies (1986), dagger and Clarke (1988), dagger, Clarke and Cook (1989), 

dagger, Clarke and Clarke (1991), dagger and Sutton (1991), dagger. Spiers and 

Clarke (1993)). In 1985 a study of the elderly living alone in the town together 

with a separate follow-up of those from the 1981 cohort not living alone provided 

longitudinal data on the 1981 cohort. This enabled some limited investigation of 

the changing health profile of this cohort and its resultant effect on survival to 

be performed (dagger and Clarke (1988), dagger, Clarke and Cook (1989)). The 

1988 cohort provided further longitudinal data for the 1981 cohort and enabled 

further investigations to be performed (dagger, Clarke and Clarke, 1991). On the 

introduction of the revised GP contract in April 1990, the requirement to offer an 

annual health screen presented an opportunity for a natural extension to the scope 

of the previous studies, enabling more regular and routine collection of informa­

tion on the profile of risk factors which could then be used in the modelling of 

resultant state changes. This thesis, and this chapter in particular, concentrates
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on these health screens and the modelling of survival data based on the set of 

potential risk factors collected at these screens.

The Latham House practice decided tha t the annual health screen should be car­

ried out at the elderly person’s residence. A double-sided A4 card was designed, 

following a pilot, to record the information collected at each screen and a single 

card was to be sufficient for five screens. The region covered by the practice was 

divided into twelve areas, the aim being to screen one area during each month of 

the year. Letters were then sent to all people on the practice’s age-sex register 

who were aged over 75 years and recorded as being resident in th a t area, giving 

them  details of the screen offered and informing them tha t a nurse would be in 

their neighbourhood in the near future to carry out screens. A tear-off slip and 

pre-paid envelope were provided for those who wished to formally refuse the offer 

of a screen. The date of posting this letter was recorded, is termed the post date 

and will be used in the analysis when appropriate. A minor problem with this 

strategy is th a t a small number of people will be missed at each wave of screens 

due to moving residence from an area of Melton in which screening has not yet 

been offered to an area in which screening has been completed. Although the aim 

was to have annual screens, practical considerations led to the first three screens 

covering a total period of ffve-and-a-half years. The first wave of screens com­

menced on August 1990, the second wave commenced on February 10*'̂  1992 

and third wave began on November 18*̂  1993. Screening of those in the third 

wave continued until February 19*’'̂  1996.
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The base data set comprised 72 data fields and 2203 observations, covering the 

individuals screened in at least one out of the first three screens. In terms of 

modelling the survival of the elderly, 33 of the 72 fields comprised assessment of 

11 potential risk factors at each of the three screens. Further information on these 

11 variables can be found in Table 5.1 (page 202) and Table 5.2 (page 209). The 

discrete ‘score’ variables TOTADLn and lOSCOREn (n =  1, 2, 3) were recoded 

as ordinal variables as follows. Those with 0 or 1 ADLs carried out independently 

were classified as being ‘highly dependent’ (and coded as ‘4’), those with 2, 3 or 

4 independent ADLs were classified as being ‘moderately dependent’ (and coded 

as ‘3’), those with 5 or 6 independent ADLs were classified as being ‘moderately 

independent’ (and coded as ‘2’) and those with 7 independent ADLs were classi­

fied as being ‘fully independent’ (and coded as ‘1’). The ordinal ADL variables 

thus created will be called ADLn (n =  1, 2, 3). In previous community-based 

studies (Clarke, dagger, Anderson, Battcock, Kelly and Stern, 1991) it has been 

found th a t a score of 8 or less on the Information-Orientation subtest score of 

the CAPE assessment (Pattie and Gilleard, 1979) has the greatest sensitivity and 

specificity to detect moderate or severe dementia and so the lOSGOREn variables 

were recoded according to this criterion. The dementia indicator thus created will 

be called lO n (n =  1, 2, 3).

The remaining 39 fields related to dates of posting (10), dates of screening (9), 

date of death (3), ages at posting (3), various indicators used in merging sub­

sidiary data sets (10), the individual’s age-sex number at the practice (1) and 

screening indicators (3). The screening indicators showed whether an individual 

was screened (1), actively or passively refused (2), had died (3) or was missing 

(.). All these variables, with the exception of the age-sex number and the indica­

tors used in merging, are used in the modelling in the later sections of this chapter.
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A number of problems were apparent on inspecting the data. Most of these were 

easily rectified and are not relevant to this thesis. Four individuals screened in 

the first wave and one individual each for the second and third waves did not have 

their screen dates recorded. For the vast majority of subjects the screen date was 

very close to the post date. For those screened but whose screen date was not 

recorded, their screen date was imputed as the post date plus the median number 

of days between the post and screen dates for those screened in the appropriate 

wave. The median number of days between these dates were 26, 15 and 14 days 

respectively for the three waves.

C hoice of tim e scale and definition o f survival tim e

For the interval-censored approach to modelling survival (and similar changes of 

state) the obvious approach was to choose ‘time in study’ as the time scale. The 

only problem then remaining was to consider how ‘entry into study’ should be 

defined. The two possibilités were the first offered screen and the first completed 

screen. Due to the repeated measures nature of the covariate information and the 

corresponding methods discussed and investigated in Chapter 4, it was deemed 

appropriate to use the first completed screen as entry into the study. This ap­

proach can be viewed as shifting the problem of missing risk factor measurements 

due to left-truncation to a problem of missing risk factor measurements due to 

right-censoring. Whilst the precise nature and form of the corresponding missing 

data  mechanism is not known, it may not be ignorable for the reasons described 

later in this section. The same form of time scale was chosen for the ‘exact’ sur­

vival times. In this case, survival time was defined to be the time between first 

completed screen and death, post date of the next missed screen or, for removers 

or those screened in wave 3, their final screen date.

201



Variable
Name

Description Units (continuous) or 
Range (discrete scores) or 
Codes & categories (ordinal)

AGESCM Age at screening Years (truncated)

DIASn Diastolic blood pressure millimetres Hg

DSPANn Demi-span centimetres

HHCOMPn Household composition 1 not alone;
2 alone;
3 institution.

lOSCOREn Information/Orientation 
subtest score

0-12

SEXM Sex 1 male;
2 female.

SHn Perceived health status 1 good;
2 fair;
3 poor.

SMOKINGn Smoking status 1 never;
2 ex;
3 current.

SYSM Systolic blood pressure millimetres Hg

TOTADLn Total number of activities 
of daily living independent 
and without difficulty

0-7

W Tn Weight pounds

Table 5.1: List and description of potential risk factors for survival recorded at 
each screen (n =  1, 2, 3).
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One additional problem persisted in the definition of survival time for some 

individuals. Those who were only offered one screen or only attended the last 

screen offered to them  were censored having contributed no information relating 

to survival as they were not followed-up after they were entered into the study. 

These individuals were deleted from the data set prior to the commencement of 

modelling. There were 490 such individuals leaving 1713 others to make some 

potential contribution to the relevant likelihoods.

A m ount and forms o f m issing data

The data  from the Melton Mowbray study are subject to both item and unit 

screen non-response. True unit screen non-response is due to the failure to take 

up the offer of a screen, dagger, Clarke, O’Shea and Cannon (1996) reported on 

the characteristics of those who failed to take up this offer in the first wave. It was 

concluded tha t those who missed being screened and yet had been included in the 

1988 cohort were similar with regard to sex, age and their continence, disability, 

vision and hearing in 1988 to those who were screened. There were, however, 

significant differences between those screened and those not screened in terms 

of use of services, perceived health status and level of morale. In terms of unit 

screen non-response, it would appear tha t the type of missing data is, in terms of 

its severity, at least weakly missing at random. It is, however, possible th a t the 

active mechanism is non-ignorable although the detection of such a mechanism is 

either impractical, impossible or would require additional assumptions regarding 

the form of the mechanism. One such assumption would be to assume th a t those 

screened ‘late’ had similar characteristics to those not screened. A suitable mea­

sure of ‘lateness’ would be the difference between the date of screen and the date 

of posting (corresponding to the date when the letter informing the individual of
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their pending visit was generated). A brief investigation of the link between re­

fusal and an individual’s ADL score, perceived health status and dementia status 

was carried out for those screened at one wave and refusing at the next. This was 

done separately for the first pair and second pair of waves. There was no evidence 

of an association between refusal and ADL dependence, perceived health status 

or dementia status for either the first or second pair of screens. There appeared 

to be no strong link between an individual’s screen values and their likelihood 

of being screened in the next wave. This concurs with Jagger et al. (1996) to a 

reasonable degree except for the lack of an association between perceived health 

status in this study and acceptance of the later screens.

A further complication arises from the 377 people who were offered one or more 

screens but were never screened. As none of the potential risk factors collected 

during the screen will be available, these individuals were excluded from the base 

data set. However, with the definition of survival time given earlier, these indi­

viduals never actually entered the study nor became members of the population 

at risk. These individuals would, however, be important if the population under 

consideration were the more general ‘over 75s’ rather than the subset who had 

been screened. These 377 elderly Melton Mowbray residents eligible for screening 

but never screened comprised:

o 8 offered a screen in wave 3 only and found to have died prior to a screen 

being performed (similar individuals may have existed for the first two waves 

but did not appear in the data  set);

o 261 who ‘refused’ a single screen (comprising 79 offered a screen during wave 

3 only: 128 out of the remaining 182 subsequently died) ;

o 108 who ‘refused’ two screens.

Another form of unit screen non-response, discussed briefly when choosing the
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time scale, is due to staggered entry. Individuals become part of the population 

of interest on attaining the age of 75 and are offered screens thereafter. Because 

the population of interest is defined as those aged over 75 who have been screened 

and the definition of survival time as time from entry into the study, it is more ap­

propriate to view their third (and possibly fourth) potential screens, rather than 

their first (and possibly second), to be missing. This staggered entry would not 

usually lead to any problems as those in the study could be viewed as a random 

sample of the population at risk. In this case, matters are a little more complex 

due to the sampling mechanism. If, as in most towns, geographic areas are related 

to the probability of occurrence of death, as they tend to be a measure of health, 

prosperity and other potential risk factors or their surrogates, then it is possible 

th a t a little bias could be introduced due to missingness th a t is non-ignorable in 

terms of the models fitted.

Table 5.2 contains the screen profiles of the 2203 people in the base data set. 

Those with leading missing values, numbering 805 in total, are largely those a t­

taining the age of 75 after screening commenced in their neighbourhood. The 

remainder are those who either moved to Melton Mowbray after the sta rt of the 

study or were missed due to moving within the town during this first screening 

wave. Those who were offered a screen in the first wave and yet were missed in the 

later waves were missed due to removal within or out of the town. These number 

25 for the second wave, comprising 4 refusers and 21 screened from the first wave, 

of whom 9 were offered the third screen. Similarly there were 81 missing for the 

third wave, comprising 14 who had been missing in the first wave, 16 who had 

been missing in the second wave, 30 who had previously been screened twice and 

21 who had had one previous screen and one previous refusal. Reasons for unit 

screen non-response, other than th a t of ‘late entry’ discussed earlier, may be a lit­

tle more problematical as they will depend on the true, but undetectable, reasons 

for the non-response. A few temporary hospitalisations may be included amongst 

those missed or recorded as refusals, although those hospitalised will tend to have
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been contacted on being discharged, providing they returned home or moved to 

an area of Melton in which the screening for tha t wave had not been completed. 

There will also be removals to other types of temporary or permanent residence 

within Melton. Removals of this type could be an indication of either continu­

ing good health or deterioration of health, depending on the type of the housing 

into which the subjects moved. Recent ill-health is likely also to contribute to 

removals out of the study area, such as those moving to live with relatives on a 

temporary or permanent basis. Data missing for this or other reasons for removal 

would be due to either a MAR or a non-ignorable missing-data mechanism, de­

pending on whether their cause could be detected from earlier screen information. 

Although cases recorded as ‘missing’ were moderate in number, especially for the 

third screen, and it would have been useful to determine their survival to enable 

this information to be included in the analysis, this was not possible at the time. 

It should be noted, however, tha t fully or partially excluding such cases from the 

analysis will tend to introduce a little bias into the estimation of the model pa­

rameters.

Considering those offered a screen and yet either actively or passively refusing, 

the first wave refusers (numbering 325) are ignorable due to the definition of the 

population. They are, however, right-censored by a mechanism which will not be 

MCAR if the first wave refusal is linked to survival. Those refusing the third screen 

but having earlier been screened, numbering 146, are members of the population 

but their covariate information is not available for the third screen (although this 

is not used in the analysis except when modelling for the multiple imputation). 

These individuals are, however, removed either fully or partially from many of 

the analyses described in Sections 5.3-5.6 and so, if their reasons for refusal are 

related to the change of state, their exclusion will tend to introduce bias.

Those individuals of particular interest in this thesis are the 238 non-respondents 

in the second wave. Of these, 116 had not previously been screened and so only
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their future covariate values, from the third wave, are available. As this thesis 

does not investigate imputation using the in d iv id u a l’s future realisations of risk 

factors as predictors, these cases will be excluded, either fully or partially, from 

the analyses. For the remaining 122, there was information available from previ­

ous screens which could be utilised in a number of ways in order to model changes 

of state. These methods will be discussed in Section 5.5 and applied in Section 

5.6. Of these 122, the nine who were missing at the third screen are therefore 

censored at their second screen, so the covariate information would not have been 

used (except in the modelling for the multiple imputation) even if it had been 

available. The remaining 113 comprise 55 screened during wave 3, 32 who refused 

at wave 3 and 26 who had died by wave 3.

Some insight into the pattern of unit screen non-response due to active or pas­

sive refusal can be obtained by considering those 870 screened at wave 1, offered 

a screen at wave 2 and not missing at wave 3. The 113 refusing a screen at wave 

2 are considered above whilst, of the remaining 757, 592 were screened at wave 3, 

48 refused and 117 had died. There is clearly, therefore, a tendency for multiple 

consecutive refusers as, of those still alive in wave 3, only 7.5% of those screened 

twice refused the third wave screen whereas 36.7% of those who followed a first 

wave screen by refusing the second wave screen also refused the third wave screen. 

Further insight into refusals could be gained by extending the number of ‘survival’ 

states from two {alive and dead) to three {alive, refused and dead) and then us­

ing multi-state modelling to investigate the probabilities of the state transitions. 

However, as this is an extension of the work presented in this thesis, it will still be 

subject to the problems of both missing covariate data and missing (rather than 

refusing) screens. Further insight into the unit screen refusal mechanism can be 

gained by comparing the percentages of those dying between waves 2 and 3 for 

the different screen participation rates over the first two waves. Excluding the 43 

individuals recorded as missing for wave 3:
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o 117 (15.46%) of the 757 screened twice had died;

o 69 (19.06%) of the 362 screened once had died;

o 22 (34.07%) of the 91 not screened had died.

These percentages would tend to provide support for the hypothesis th a t the 

refusal mechanism is not MCAR. In particular, on fitting a simple logistic model, 

there appears to be a trend in the log-odds of death which is linear in the number 

of refusals (%^=5.34, p=0.021).

The amount of item  missing data is considerably less. Many of the variables con­

sidered had little or no item non-response. The only variables with consistently 

over 5% item non-response were demi-span, perceived health status and weight. 

The numbers and percentages of item non-response at each wave are given in Ta­

ble 5.3. It is expected tha t item non-response is less problematical than the unit 

screen non-response as it is less prevalent and believed to be more likely to be due 

to an ignorable mechanism. On investigating the association between the item 

missing data for the three variables with consistently over 5% item non-response 

and health measurements made at the previous screen, the following observations 

were made. The item missingness in demi-span appeared to be associated with 

both ADL dependence and dementia status at the previous screen. The evidence 

of an association in each case was stronger for the second pair of screens than 

the first (p=0.115 and p=0.001 for ADL dependence and p=0.054 and p<0.001 

for dementia status respectively for the first and second pairs of screens using 

%^-tests). Similarly there was very strong evidence of associations between item 

missing weights and both ADL dependence and dementia status (p<0.001 for 

ADL dependence for each pair and p=0.115 and p<0.001 for dementia status re­

spectively for the first and second pairs of screens using %^-tests). The evidence of 

associations between item non-response for the perceived health status question 

is considerably less. There is no evidence of an association with ADL dependence 

although there is evidence of an association with dementia status, mainly for the
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Screen Screen2 Screen3 Frequency

1 328
1 14
1 1 310
1 2 38
1 3 59
2 1 56

1 16
1 1 3
1 2 1
1 3 1
1 1 30
1 1 1 592
1 1 2 48
1 1 3 117
1 2 9
1 2 1 55
1 2 2 32
1 2 3 26
1 3 3 143
2 1 4
2 1 12
2 1 1 179
2 1 2 27
2 1 3 43
2 2 1 60

Table 5.2: Frequencies of the different screen profiles for the 2203 individuals 
screened at least once: l=screened, 2=not screened, 3—dead, .=missing (due to 
removal or being aged under 75).
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second pair of screens (p=0.118 for the first pair and p<0.001 for the second pair 

using %^-tests). These observations indicate tha t the item non-response is not 

MCAR but it is still believed tha t is likely to be due to a MAR rather than  a 

non-ignorable mechanism.

5.3  N o n -im p u tâ t ion -b ased  m eth o d s

As described in the introduction to this chapter, several of the methods described 

in earlier chapters are potentially suitable for modelling state changes for the data 

arising from the annual screening of the elderly in Melton Mowbray. Implemen­

tation details for a number of the more basic methods will be described in this 

section whereas those for imputation methods will be described in Section 5.5. 

Throughout this chapter, modelling will concentrate on the change of state from 

‘alive’ to ‘dead’. Whilst other changes of state, such as from ‘independent’ to ‘de­

pendent’ for ADLs and from ‘non-demented’ to ‘demented’ would typically also 

be of interest in a study of this type, full consideration of their modelling will 

be inherently more complex as those lost to the study due to death would either 

require either formal multi-state modelling or the modelling of the missing-data 

mechanism corresponding to censoring due to death. However, some modelling of 

transitions between different levels of dependence for performing ADLs and be­

tween non-demented and demented states is performed in the model-based mul­

tiple imputations described in Section 5.5.

In this study, whilst the information regarding death is available as the day of 

occurrence, there are some instances where it will only be known th a t events have 

either ‘occurred’ or ‘not occurred’ during a specific period of time, th a t is the sur­

vival time will interval-censored. Only this form of event time would be available 

for modelling the changes of state relating to dependence for performing ADLs
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Wave 1 Wave 2 Wave 3

AGESCn 7 (0.65) 1 (0.07) 1 (0.06)

DIASn 12 (1.18) 10 (0.68) 32 (2.02)

DSPANn 188 (17.52) 166 (11.30) 91 (5.73)

HHCOMPn 27 (2.52) 10 (0.68) 12 (0.76)

lOSCOREn 0 (0.00) 0 (0.00) 0 (0.00)

SEXn 0 (0.00) 0 (0.00) 0 (0.00)

SHn 40 (3.73) 63 (4.29) 36 (2.27)

SMOKINGn 11 (1.03) 10 (0.68) 6 (0.38)

SYSn 10 (0.93) 8 (0.54) 32 (2.02)

TOTADLn 0 (0.00) 0 (0.00) 0 (0.00)

W Tn 65 (6.06) 80 (5.45) 88 (5.55)

TOTAL

SCREENED

1073 (100) 1469 (100) 1587 (100)

Table 5.3: Numbers (%) of item non-response in each of the potential risk factors 

in each wave (n =  1, 2, 3).
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and dementia outlined above. As the main objective of this thesis is to investi­

gate the modelling of changes of state where exact change of state times are not 

necessarily available, survival times will generally be viewed as interval-censored 

in this chapter although some investigations will also be performed on the ‘exact’ 

times.

As the recording of deaths is performed independently of the screening, there is 

screen-independent event collection present and so Prentice and Gloeckler’s (1978) 

proportional hazards model for interval-censored data can be fitted using Thomp­

son’s (1981) GLIM implementation, as described in Section 4.1. This will be done 

taking both complete case (CC) and available case (AC) approaches. Comparisons 

will then be made between inferences. The number of binary responses used in 

the two approaches can differ substantially if only a relatively small proportion of 

the potential risk factors are significant and the non-significant variables contain 

a reasonable amount of the item missing data. As many automatic variable selec­

tion procedures implemented in computer software use complete case methods, it 

is of interest to see the effect of restricting the data to those cases complete on 

all potential predictors has on inferences. This will give some indication as to the 

form of some of the active missing data mechanisms. For comparability purposes, 

the subset of the potential risk factors chosen using Prentice and Cloeckler’s mod­

el on complete cases will be the basis for all further models. This subset is to be 

chosen using a stepwise backward elimination strategy, implemented via the use 

of likelihood-ratio tests and a 5% significance level. However, the significance of 

additional terms in subsequent types of models will be investigated when deemed 

appropriate and is reported on in Section 5.4.

As described in Chapter 4, it is still common practice in survival studies to sim­

ply measure potential risk factors at baseline and use these as fixed covariates for 

the duration of follow-up. None of the publications based on studies of the elderly 

in Melton Mowbray have used updated risk factors in the modelling of mortality
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although there had been no such aim in the studies’ design. It was shown both 

in Chapter 4 and by Altman and de Stavola (1994) tha t the use solely of base­

line covariates will tend to lead to under-estimation of the size of the risk factor 

effects. Therefore, given these findings and the previous practice in the Melton 

studies, it is of interest to investigate the result of using regular updates of risk 

factor values rather than simply their baseline values on their estimated effects on 

survival. This will be done by comparing the effect on estimation from using base­

line covariates rather than the values of covariates from the most recent screen, 

and will be performed for both the interval-censored and ‘exact’ time forms of the 

proportional hazards model.

It is important to note th a t it is believed that, for most if not all the time- 

dependent potential risk factors measured in this study, it is recent rather than 

baseline values which will have the primary effect on survival. Once further waves 

of screens are completed and the population has been followed-up for a longer 

time, it will be useful to investigate the risk factor profile in more detail. Such 

investigations would include more sophisticated modelling of this profile and the 

consideration of the introduction of an augmented covariate vector (Wu and Ware, 

1979) into the survival models.

The final question to be posed in this section is whether, either through the 

decrease in power and precision or otherwise, the use of the interval-censored ap­

proach leads to substantively different conclusions in terms of the significance of 

potential risk factors and the magnitude of hazard ratios than when using the 

standard ‘exact’ times approach. To address this, proportional hazards mod­

els were fitted to the data, firstly using the interval-censored survival times and 

Prentice and Cloeckler’s model in CLIM, and secondly using the ‘exact’ survival 

times (recorded to an accuracy of ±1 day) via the standard implementation of 

Cox’s proportional hazards model in 8AS PROC PHREC (SAS, 1996).
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5 . 4  R esu lts  for non^im p u tâ tion=based m eth o d s

5.4.1 C o m p le te  case (C C ) an d  available case (A C) a n a l­

yses w ith  in te rv a l-cen so red  d a ta

To compare the use of complete case rather than available case methods, a data 

set was compiled from the base data set using SAS. The complete case analysis 

(C C A ) was then performed in GLIM. The data set was constructed by deleting 

all individuals who were not screened at least twice, constructing binary responses 

for each individual in each interval, subject to the individual being screened at 

the beginning of the interval and either being screened or dead at the end of the 

interval. Therefore, individuals with either a l l l o r a l l S  screen profile (see 

Table 5.2) will contribute two separate binary observations. Then all the binary 

observations for which at least one of the potential risk factors was missing were 

also deleted. Therefore, the view was taken that complete case meant th a t all 

potential covariates must be present, together with a screening indicator of ‘dead’ 

or ‘alive and screened’ at both the beginning and end of the interval. It should be 

noted tha t this set of potential covariates included age (at screen) and th a t this 

was missing for a small number of individuals. Only when considering im puta­

tion methods will these ages be imputed, despite their deterministic nature and 

the availability of relevant information from alternative sources. An additional 

factor ‘PERIOD’ was created to indicate the interval of interest and hence allow 

for potential time trends in survival, taking the value ‘1’ if the binary observa­

tion corresponded to the interval between the first and second wave of screens 

and the value ‘2’ if it corresponded to the interval between the second and third 

wave of screens. There were 1755 binary observations thus created. Following the
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stepwise backward elimination procedure, five variables remained in the model. 

These were the variâtes measuring age (AG E) and weight (W T ) and the factors 

classifying the level of independence in performing the activities of daily living 

(AD L), sex (SEX) and dementia status (lO).

Interactions between each pair of significant terms and quadratic terms in the 

continuous variables were then added, one at a time, to the main effects model. 

The quadratic term in weight (W T2) was highly significant {x^ = 9.77, p=0.002) 

whereas none of the other terms was significant at the 5% level. The variable 

W T2 was thus included in the model and the interactions and quadratic in age 

were added in turn. All were highly non-significant. As the effect of weight on 

survival is likely to depend on an individual’s size and body mass index (B M I), 

usually defined as ‘weight divided by (height squared)’, is often used as a more 

appropriate risk factor than weight, a proxy for BMI was calculated as ‘weight 

divided by (demi-span squared)’. When linear and quadratic terms in the BMI 

proxy were included in place of those for weight, a slightly greater level signifi­

cance was attained for the pair of weight terms (p<0.001 compared with p=0.002 

for the BMI proxy pair). Moreover, a considerable amount of the item missing 

data was for the measurement of demi-span. It was decided, for a combination of 

these reasons, to include the weight terms rather than those for the BMI proxy. 

It should also be noted th a t the inclusion of the linear and quadratic terms in the 

BMI proxy led to a non-significant improvement in the fit of the model already 

including the weight terms (%̂  =  2.50, p=0.287). The model chosen as a basis for 

all further modelling therefore included the six variables AGE, W T, WT2, ADL, 

SEX and 10.

W hilst interpretation of the weight effects in terms of hazard ratios is not appro­

priate, the presence of a quadratic term, leading to a U-shaped risk profile over the 

weight range, means th a t estimation of an optimal weight for survival, defined as 

the weight corresponding to minimum risk of death, will generally be of interest.
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Moreover, as the inclusion of the interactions of W T and WT2 with SEX was not 

significant =  3.33, p=0.189), the optimal weight for survival would appear 

to be the same for both males and females. Under CCA the optimal weight for 

survival was estimated to be 167.5 pounds (fractionally under 12 stone).

A data set was then compiled for the available case analysis (ACA ) from the 

base data set by deleting all binary observations for which at least one of the 

risk factors included in the complete case model was missing. There were 2100 

units of data. The near 20% increase in the number of binary observations was 

due largely to the absence of the demi-span variable (D SPA N ) from the set of 

significant risk factors. The resulting parameter estimates, hazard ratios and the 

corresponding 95% confidence intervals are given in Table 5.4 (page 223). There 

were moderate differences between the magnitudes of the parameter estimates 

obtained on fitting the chosen model to the two sets of data. There was no con­

sistent pattern in terms of the direction of the effect observed. Under ACA, the 

sex effect and tha t of moderate (as opposed to full) independence for ADLs were 

stronger than under CCA. The effects of age, moderate or high dependence (as 

opposed to full independence) for ADLs, dementia status and both linear and 

quadratic terms in weight were found to be less pronounced under ACA than 

under CCA. None of the changes in parameter estimates would lead to substan­

tially or statistically significantly different conclusions although, in the cases of 

dementia status and moderate dependence for ADLs, the changes in parameter 

estimates were of a moderate size (7.4% and 9.9% respectively, in relative terms). 

The greatest change, in both relative and absolute terms, was for the parameter 

estimate relating to a moderate dependence for ADLs and led to a reduction in its 

hazard ratio estimate from 2.40 to 2.21 on changing from CCA to ACA. In terms 

of the estimation of optimal weight for survival, there was a moderate difference 

in the estimates provided by the two analyses. Using ACA, the optimal weight 

for survival was estimated as 176.5 pounds, a nine pound increase over th a t from 

the CCA.
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The period indicator, which had been amongst the non-significant variables re­

moved from the model during the stepwise backward elimination under CCA, was 

then added to the model fitted to the available cases. It remained non-significant 

0.06, d f= l, p=0.806). Hence there was no evidence of any time trend in 

survival during the period of study under either CCA or ACA.

5.4.2 T h e  use of b aseline  m e asu rem en ts  versus la st m ea­

su rem en ts

Interval-censored survival tim es

For the comparison of exact and interval-censored approaches to modelling sur­

vival times, appropriate data sets were constructed using SAS. W ith the interval- 

censored approach, the number of available units rose from the 2 1 0 0  in the avail­

able case data set to 2421 when the baseline measurements were to be used as 

covariates and to 2317 when the measurements from the latest wave were used as 

covariates.

The parameter estimates, hazard ratios and the corresponding 95% confidence 

intervals from the two analyses are given in Table 5.5 (page 224). On comparing 

the parameter estimates from the baseline analysis with those from when the last 

measurements were used, their magnitudes were lower with the baseline analysis 

except those corresponding to age and both weight and weight-squared for which 

the estimates were similar. The decreases in magnitude were generally greatest for 

the terms tha t can be viewed as corresponding to serious deterioration in health, 

namely high dependence for ADLs (13.6%) and dementia (31.6%), although the
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effect of ‘sex’ was also weakened by a substantial degree (18.2%). As the effects of 

dependence for activities of daily living and the onset of dementia can be viewed 

as two possible intermediate states between a healthy state and death, it is to be 

expected tha t their time-dependence is particularly important when it comes to 

modelling survival. As the age and weight covariates can be viewed, at least par­

tially, as surrogates for updates of recorded risk factors (and also for unrecorded 

measures of health), the somewhat contrary effect on their effects due to using 

the baseline covariates is not unexpected.

W ith the baseline measurement analysis, the optimal weight for survival was 

estimated to be 169.4 pounds, a very similar value to tha t obtained using CCA, 

whereas tha t obtained using last measurement analysis led to an estimate of 172.8 

pounds. However, it should be noted that, as the former estimate relates to the 

optimal weight for survival on entry to the study whereas the latter relates to the 

optimal weight for survival at any screen, they are not strictly comparable.

W ith the last measurement analysis, the period effect was again non-significant 

cant (x^ =  0.64, d f= l, p=0.424). However, due to the weakening of most of the 

effects of the baseline covariates by the interval between the second and third 

waves of screens, the inclusion of the period effect then leads to a significant im­

provement in the model fit (%̂  =  6.46, d f= l, p=0.011) as it corresponds to a 

surrogate for the time-dependent effects of the baseline covariates.

The standard errors of the parameter estimates were generally slightly lower 

under baseline measurement analysis than under last measurement analysis. The 

exceptions to this were the parameter for 1 0 (2 ), measuring the effect of dementia, 

and W T and WT2, the linear and quadratic effects of weight. As the number of 

observations used in the last measurement analysis was approximately 95.7% of 

those used in the baseline measurement analysis, the fact th a t these three stan­

dard errors are estimated to be slightly lower in the last measurement analysis
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would tend to confirm tha t recent mental status and weight are more consistent 

predictors of mortality than recordings from the start of the study.

The results are extremely similar for ACA and the last measurement analysis. 

This is not unexpected as the only difference in construction of the data sets is 

tha t, for the ACA, all binary observations resulting from missed second and third 

screens were excluded whereas for the last measurement analysis such observa­

tions were only excluded if the covariate information from the sta rt of the interval 

was either subject to item or unit screen non-response.

‘E x a ct’ survival tim es

As shown in Tables 5.5 and 5.6 (pages 224 and 225), when the ‘exact’ (±  1  day) 

survival times are used as opposed to the interval-censored times, similar esti­

mates are obtained for most parameters, although the effects detected are slightly 

stronger when the ‘exact’ times are used. W ith regard to the precision, slightly 

lower standard error estimates were obtained with the interval-censored analysis. 

This is due to the additional implicit parameters in the non-parametric component 

of Cox’s proportional hazards model which, whilst not estimated directly, will re­

duce the precision of the estimates in the parametric component when compared 

with the interval-censored method in which a limited number of nuisance param­

eters, corresponding to the follow-up cut-points, are explicitly estimated.

The effect of using the baseline rather than the last measurements with ‘exact’ 

survival times mirrors tha t observed in the interval-censored approach, namely a 

weakening of all effects bar tha t of age. Similarly, the standard errors are general­

ly slightly lower under the baseline measurement analysis, due in this case to the 

increased censoring rather than loss of binary observations when there was item 

or unit non-response in the second wave following a first wave screen. On this
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occasion, only the linear and quadratic effects of weight had lower standard errors 

under last measurement analysis as the estimated standard error for 1 0 (2 ), which 

was marginally lower for the last measurement analysis with interval-censored da­

ta, was now marginally higher.

When using the baseline measurements, the optimal weight for survival was esti­

mated to be 172.6 pounds whereas it was 178.8 pounds when the last measurement 

analysis was used. As with the interval-censored approach, these estimates are 

not strictly comparable due to their different interpretations. However, both esti­

mates are greater than their counterparts under the interval-censored approach, 

th a t under the baseline analysis by around 3 pounds and th a t under the last mea­

surement analysis by around 6  pounds. W hilst differences of around a stone or 

a stone and a half may well be viewed as substantive, the difference between an 

optimal weight for survival of 12 stone 5 pounds and one of 12 stone 11 pounds 

would not be deemed important. Furthermore, when confidence intervals for the 

optimal weight for survival are constructed, the lack of precision in estimating the 

linear and quadratic effects of weight combine to give extremely wide intervals. 

For example, using Fieller’s method to construct a 95% confidence interval for the 

optimal weight for survival gave the interval (157.7, 276.8) pounds when the last 

measurement analysis was used.

As the weight effects are not particularly strong it is not surprising th a t there 

was no data-based evidence of differences between its effect on survival for the two 

sexes when the terms were chosen for inclusion in the model earlier. However, the 

selection of the same optimal weight for both males and females would be likely to 

be viewed with scepticism for obvious reasons. As discussed earlier, the inclusion 

of a BMI proxy in the survival model in place of weight might alleviate this prob­

lem but this is not particularly practical due to the moderate proportion of missing 

demi-span measurements. Further investigation of differential effects of weight for 

males and females showed that, under the last measurements approach, the in-
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ter actions of sex with weight and weight-squared were non-significant =  2.99,

p=0.224). However, on including these interactions, there were moderate differ­

ences between the resultant optimal weights for survival of 178.1 pounds for males 

and 168.2 pounds for females. For males this estimate is very similar to th a t ob­

tained under the homogeneous weight effects for the sexes whereas for females the 

estimate is a full ten pounds lower. Suggesting an optimal weight for survival of 

1 2  stone for elderly women may, perhaps, still be viewed with a certain degree 

of scepticism but is still more acceptable than the earlier value of 1 2  stone 1 1  

pounds suggested for both males and females. Therefore, although these interac­

tion terms were found to be non-significant, there is a reasonable argument for 

their inclusion in a model tha t might be used for determination of optimal weights 

for survival as it would be viewed as inappropriate to suggest the same optimal 

weight for both men and women.

An additional point of note is that, with the interactions between the weight 

terms and sex included in the model, the estimated risk profile was considerably 

flatter for women than for men, the coefficient of the quadratic term  for females 

being estimated at only a little over a half of tha t for males. W hilst the 95% 

confidence intervals for optimal weight for survival by sex under the last mea­

surement analysis are still very wide, the interval of (163.1, 237.5) pounds for 

males is far narrower than the interval for males and females combined, further 

suggesting that, despite the lack of statistical significance, the weight by sex in­

teraction should be included in the survival model. The corresponding interval 

for female optimal weight is (142.4, 591.9) pounds, illustrating the relatively ill- 

defined nature of the risk profile for women. It would therefore appear th a t an 

elderly individual’s weight is a more important risk factor for their survival if they 

are male rather than female.

The inclusion of the non-significant main effects from the model selection per­

formed using CCA was investigated. None of these terms attained significance at
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the 5% level although perceived health status, which had been the last 

term  removed in the earlier backward elimination under complete case analysis 

(%̂  — 3.80, df=2, p=0.150) was now close to significance a t the 5% level 

(X  ̂ =  5.50, df=2, p=0.064).
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Term Category/ Units Method

PARAMETER 

Estimate 95% C.I.

HAZARD RATIO 

Estimate 95% C.I.

ADL(2) Moderately CC 0.512 (0.175, 0.849) 1.669 (1.192, 2.339)
independent AC 0.530 (0.236, 0.823) 1.698 (1.267, 2.277)

ADL(3) Moderately CC 0.842 (0.455, 1.228) 2.320 (1.576, 3.415)
dependent AC 0.759 (0.415, 1.103) 2.135 (1.514, 3.012)

ADL(4) Highly CC 1.229 (0.827, 1.631) 3.418 (2.286, 5.110)
dependent AC 1.227 (0.890, 1.564) 3.412 (2.436, 4.780)

10(2) Demented CC 0.674 (0.302, 1.045) 1.961 (1.352, 2.844)
AC 0.624 (0.313, 0.934) 1.866 (1.367, 2.546)

WT 10 Pounds CC -0.532 (-0.816, -0.249) * *
AC -0.378 (-0.617, -0.138) * *

WT2 (10 Poundsp CC 0.0159 (0.0066, 0.0252) * *
AC 0.0107 (0.0028, 0.0186) *

AGE Years CC 0.0790 (0.0506, 0.1075) 1.082 (1.052, 1.114)
AC 0.0783 (0.0540, 0.1027) 1.082 (1.056, 1.108)

SEX(2) Female CC -0.711 (-1.014, -0.409) 0.491 (0.363, 0.664)
AC -0.747 (-1.009, -0.486) 0.474 (0.365, 0.615)

Not appropriate due to presence of both linear and quadratic terms

Table 5.4; Comparison of estimates of parameters and hazard ratios from propor­

tional hazards model for complete case (CC) and available case (AC) analyses with 

an interval-censored approach. Comparison groups: Fully independent (ADL(l)); 

Non-demented (10(1)); Male (SEX(l)).
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Term Category/ Units Method

PARAMETER 

Estimate 95% C.I.

HAZARD RATIO 

Estimate 95% C.I.

ADL(2) Moderately B M 0.537 (0.251, 0.822) 1.710 (1.285, 2.276)
independent LM 0.565 (0.272, 0.857) 1.759 (1.313, 2.356)

ADL(3) Moderately B M 0.714 (0.370, 1.058) 2.042 (1.448, 2.879)
dependent LM 0.768 (0.424, 1.112) 2.156 (1.528, 3.041)

ADL(4) Highly B M 1.066 (0.740, 1.393) 2.905 (2.096, 4.027)
dependent LM 1.234 (0.896, 1.572) 3.434 (2.450, 4.815)

10(2) Demented B M 0.443 (0.134, 0.752) 1.558 (1.144, 2.122)
LM 0.648 (0.340, 0.956) 1.912 (1.405, 2.601)

WT 10 Pounds B M -0.377 (-0.622, -0.132) * *
LM -0.380 (-0.619, -0.141) * *

WT2 (10 Pounds)'^ B M 0.0111 (0.0030, 0.0192) * *
LM 0.0110 (0.0031, 0.0189)

AGE Years B M 0.0775 (0.0543, 0.1007) 1.081 (1.056, 1.106)
LM 0.0768 (0.0525, 0.1010) 1.080 (1.054, 1.106)

SEX(2) Female B M -0.611 (-0.863, -0.359) 0.543 (0.422, 0.699)
LM -0.747 (-1.007, -0.486) 0.474 (0.365, 0.615)

- Not appropriate due to presence of both linear and quadratic terms

Table 5.5: Comparison of estimates of parameters and hazard ratios for available 

case (AC) analysis using baseline measurements (BM) and last measurements 

(LM) as covariates in proportional hazards model with interval-censored approach 

and screen-independent event collection. Comparison groups: Fully independent 

(ADL(l)); Non-demented (10(1)); Male (SEX(l)).
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Term Category/ Units Method

PARAMETER 

Estimate 95% C.I.

HAZARD RATIO 

Estimate 95% C.I.

ADL(2) Moderately BM 0.543 (0.235, 0.852) 1.721 (1.265, 2.343)
independent LM 0.572 (0.254, 0.889) 1.771 (1.289, 2.433)

ADL(3) Moderately BM 0.748 (0.386, 1.109) 2.112 (1.471, 3.032)
dependent LM 0.803 (0.436, 1.171) 2.233 (1.546, 3.224)

ADL(4) Highly BM 1.106 (0.757, 1.456) 3.023 (2.132, 4.288)
dependent LM 1.264 (0.895, 1.633) 3.539 (2.447, 5.119)

10(2) Demented BM 0.496 (0.176, 0.817) 1.643 (1.192, 2.263)
LM 0.665 (0.341, 0.988) 1.944 (1.407, 2.686)

WT 10 Pounds BM -0.412 (-0.668, -0.156) * *
LM -0.404 (-0.659, -0.149) * *

WT2 (10 Poundsf' BM 0.0119 (0.0034, 0.0205) * *
LM 0.0113 (0.0029, 0.0198)

AGE Years BM 0.0808 (0.0565, 0.1052) 1.084 (1.058, 1.111)
LM 0.0754 (0.0497, 0.1010) 1.078 (1.051, 1.106)

SEX(2) Female BM -0.679 (-0.948, -0.410) 0.507 (0.388, 0.664)
LM -0.815 (-1.097, -0.533) 0.443 (0.334, 0.587)

Not appropriate due to presence of both linear and quadratic terms

Table 5.6: Comparison of estimates of parameters and hazard ratios for available 

case (AC) analysis using baseline measurements (BM) and last measurements 

(LM) as covariates in proportional hazards model with ‘exact’ times approach. 

Comparison groups: Fully independent (ADL(l)); Non-demented (10(1)); Male 

(SEX(l)).

225



5.5 Im p u ta tion -b ased  m eth od s

A comparison will now be made between the use of the last available covariate 

values, corresponding to analysis following last measurement imputation, covered 

extensively in Chapter 4, and a model-based multiple imputation method, also in­

vestigated in Chapter 4. Each variable considered for inclusion in the model can 

be classified into one of four types: tim e-in d ep e n d en t; d e te rm in is tic ; non- 

d e te rm in is tic  con tinuous; n o n -d e te rm in is tic  o rd inal. A time-independent 

variable is one which, for each individual, is both known exactly and constant for 

the duration of the study. Such a variable is included in a model as a fixed rather 

than time-dependent covariate and, if missing for some cases, can be imputed as 

its value from another screen. A deterministic variable is time-dependent but only 

varies in a deterministic manner. This means that if such a variable is missing 

at a particular screen, its value can, in theory, be predicted ex a c tly  using its 

value from another point in the study and, additionally, such a variable is open 

to consideration for inclusion in a hazard model as a time-dependent covariate. 

It is assumed tha t there are no ‘measurement errors’ in the time-independent 

and deterministic variables. A non-deterministic variable is one whose value can­

not be predicted precisely from the knowledge of its value at other screens and 

therefore is subject to imputation with uncertainty. Non-deterministic continu­

ous variables will be modelled using standard linear modelling techniques whilst 

non-deterministic ordinal variables will be modelled using transition proportional 

odds models, with the special case of logistic models applying if there are only 

two categories. Missing values at item and unit screen level will be imputed using 

the same technique. Both last measurement imputation and model-based multi­

ple imputation analyses will firstly be performed under screen-independent event 

collection and then under the assumption tha t the event collection was screen- 

dependent.
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The difference between last measurement analysis considered earlier and last 

measurement imputation is th a t only the 2317 binary units available in terms of 

both all covariates in the model from the screen at the sta rt of the relevant inter­

val and knowledge of the screen-independent outcome at the end of the interval 

were used in the former whereas all 2458 binary units with a prior measurement 

of each model covariate and knowledge of the screen-independent outcome were 

used in the latter. The difference in binary units relates almost entirely to those 

who refused the second wave screen or failed to have their weights recorded at the 

second wave screen. In addition there were just seven individuals whose age was 

not recorded at their first wave screen and one other whose age was not recorded 

at their second wave screen.

Considering the significant variables SEX, AGE, ADL, 10, W T and WT2, the 

SEX covariate is time-independent and can be imputed as a know n value from 

earlier screens and is therefore not subject to different imputation strategies. The 

AGE variable is deterministic as it can, subject to being rounded to the nearest 

year, be determinined from either the first screen or, more easily and less sub­

ject to rounding problems, from the age at posting for the appropriate screen. 

Age a t posting was never missing unless an individual was not offered a screen in 

th a t wave. Age is therefore not subjected to the two imputation strategies. This 

leaves ADL, a non-deterministic ordinal variable with no item non-response, 10, 

a non-deterministic ordinal (more specifically binary) variable also with no item 

non-response and W T (and hence WT2), a non-deterministic continuous variable 

with 23 individuals subject to item non-response with a recorded weight from a 

screen during the first wave. The two ordinal variables will be subjected to last 

measurement imputation and multiple imputation based on a transition propor­

tional odds model. In the case of 10, the proportional odds model reduces to the 

logistic model. The variable weight will be subjected to last measurement impu­

tation and multiple imputation based on a linear model. The models for these 

three variables will be constricted independently and will consider all variables
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from the previous screen using available case analysis.

In the model-based multiple imputation approach the full parameter vector ^  is 

partitioned into four distinct components. These components are the param­

eters of the model for WT, the peirameters of the model for 10 and the 

parameters of the model for ADL and the parameters of the survival model.

Hence, in terms of the survivor function and missing data likelihood contributions 

for a particular individual, we have:

/(W T ^, 10^, ADL^, ^  I Æo) =  /(&  IW T^, I0„., ADL^, a ,)

X /(W T ^, 10,^, ADL,r.|2«)

where =  (ADL., 10 ., lOSCORE., WT., DSPAN., HHCOMP.,

SH., SYS., DIAS., AGE, SEX, PERIOD) .

Now, assuming independence,

/(WTm, lOm, ADL^ I g .) = /(W T_ I 3 . ) . / ( I 0 ^  | 2 .) /(ADL^ | g ,)

=  I  /(W T „  ! m.) / ( â  I a .)  d ft

X J /{I0„ I f t ,  m.) /(g , I &) d f t  

X I  /(ADL„ I f t ,  &,) /(ft, I d ft

It therefore remains to estimate the parameters of the models for WT, 10 

and ADL and, under the assumption of approximate M AR mechanisms caus- 

ing (/le missmp dofo, impute based on /(W T ^ | g .) ,  /(lOm | 2 .) ,

/(ADLm I jSg, az.) which are assumed to be of the same form as the models for 

the observed data for these variables. Ten separate data sets are then formed, the 

imputed values across the data sets being representative of the predictive density
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/(W T _, IO,^,ADL_ I 3L

which is generated as

/(WT^ I aL,)./(IOm I 2.)./(ADL,  ̂ I 3,).

The conditional density

/ ( a  I WTm, 10^, ADLm, 2 .)

is then averaged over the sample from the predictive density given by the ten data 

sets completed via imputation, using likelihood methodology to obtain estimates

of E ( ^ )  and V a r(^ )  as described in Section 1.3.1.

The models for WT, 10 and ADL were htted in SAS. PROC REG (SAS, 1996) 

was used for WT and PROC LOGISTIC (SAS, 1996) was used for both 10 and

ADL, the model for ADL being a transition proportional odds model (Diggle, 

Liang and Zeger, 1994) using the ADL values ffom the previous screen as de­

scribed in Section 4.5. This model is of the form:

log
P(ADLj < A: I ADL•j-i

P(ADLj > t I ADL'i-i O ij — i  j
j —l m

2,3; A: =  l, 2, 3

where a' j - l  m
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and ^  =  {Bx, 0 2 , n ,  T2 , T3 , 7 ^) .

For each model, selection of the main effects was via a backward elimination 

strategy followed by a forward selection of any interactions and quadratic terms 

based only on the main effects. As the asymptotic multivariate normality of the 

parameter estimates was to be used for multiple imputation and SAS does not 

include a function for generating random values from such a distribution, the 

vector of parameter estimates and its estimated variance-covariance m atrix was 

written to a separate file for each of the three models. These files were then 

read into short Fortran programs which, using the NAG subroutines G05CBF, 

G05EAF and G05EZF, generated the ten sets of simulated parameter values for 

each model. These parameter values were then written to file and read back into 

SAS where the ten completed data sets for analysis were generated. For each da­

ta  set the fitted values for the missing wave 2  weights were computed and added 

to  pseudo-random observations generated from a normal distribution with zero 

mean and an appropriate variance. For each data set, this variance was taken to 

be the mean square error from the model for WT, scaled by a random value from 

the x^-distribution on the error degrees of freedom (1712) divided by its degrees 

of freedom. Similarly, for each data set the logistic and proportional odds models 

were used to obtain the fitted probabilities for the missing wave 2 ADL and 10 

values based on the appropriate set of parameter values. Random values were 

then generated from a uniform distribution on the interval [0 , 1 ] and the missing 

values imputed following appropriate comparison of the fitted probabilités with 

these random values.

Analyses based on both last measurement imputation and the model-based mul­

tiple imputation under screen-independent event collection were performed using 

SAS PROG LOGISTIG (SAS, 1996) with complementary-log-log link.

Although it is rather artificial to illustrate the use of ‘adapted Finkelstein’ by
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treating the deaths as both interval-censored and collected only at screens, it was 

decided to pursue this approach purely for illustrative and comparative purposes. 

A number of actions were taken in order to treat the deaths in this way. Those 

missing at wave 2  were handled in the same way as those actively or passively 

refusing at tha t wave. Individuals ‘refusing’ at wave 3 were missing for the second 

interval and, except for those screened in both the first two waves, were also miss­

ing for the first interval. Finally, people screened during the first wave, missing 

or refusers during the second wave and screened or dead for the third wave were 

treated as follows:

o those dead by the third wave were treated as if they could have died during 

either the first or second intervals;

o those screened during the third wave were treated as ‘alive’ during both the 

first and second intervals.

Given th a t the deaths are really screen-independent and tha t those not screened 

in wave 2  are actually known to be alive at tha t time, it would be expected tha t 

treating those dead by the third wave and not screened during the second in this 

manner would introduce bias into the estimation. Moreover, as this action will 

tend to decrease the hazard for the second period and increase th a t for the first, 

the omission of a period term, corresponding to the assumption of equal interval- 

specific cumulative baseline hazard contributions, may not be supported by the 

data.

Fortran programs were written for maximum likelihood estimation of the pa­

rameters using ‘adapted Finkelstein’ for screen-dependent deaths. Both last mea­

surement imputation and model-based multiple imputation completed data sets 

were analysed. Additionally, a weight-by-sex interaction was included in each 

model to enable estimation of sex-specific optimal weights for survival. As these
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programs were written merely for illustrative purposes at this stage, it was not 

deemed time-efficient to consider estimation of the variance-covariance m atrix for 

the parameter estimates.

5 . 6  R esu lts  for im p u ta tion -b ased  tech n iq u es

In choosing the model for the variable W T, the variables measuring ‘weight at 

the previous screen’, ‘age at the previous screen’ and ‘systolic blood pressure at 

the previous screen’ were all highly significant at the end of the backward elim­

ination procedure. Their parameter estimates and standard errors are given in 

Table 5.7. The value of 88.25 compared with an R^ value of 88.07 when the 

variable measuring ‘weight at previous screen’ was included alone. There was 

no evidence of any quadratic or interaction effects of these three variables, nor 

was there any evidence of heterogeneity of variance or highly influential observa­

tions. The effect of the weight at the previous screen was estimated at 0.963 (to 

3 s.f.) and is highly significantly different from unity ( t= —4.26, p<0.001). There 

were, however, a relatively large number of very large standardised residuals, with 

eight standardised residuals with magnitude greater than four. However, given 

th a t there were 1716 observations used to constuct this model, even though eight 

standardised residuals is some eighty times the number expected, the main result 

will be th a t the variability in imputations will be greater leading to a increase 

in corrected standard errors for the parameters of the hazard model fitted to the 

multiply imputed data  sets. An alternative strategy would be to use hot-deck 

multiple imputation using the raw residuals, athough it was deemed unnecessary 

in this case due to the overall adequacy of the model for weight.

The second model related to the imputations for 10, namely for
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f{10m  I —o) for which the distribution of | acf) was esti­

mated using a logistic model for 10 based on the covariates from the previous 

screen using available case analysis. The significant terms following the selection 

procedure were PERIOD, lOSCORE, SEX, AGE, HHCOMP, SH, W T, WT2 and 

ADL. It should be noted tha t including lOSCORE rather than the dementia in­

dicator 10 provided a very much better fit. (Twice the negative of the difference 

in log-likelihoods equalled 73.79 with no difference in model degrees of freedom.) 

Moreover, there was no evidence of the effect of the lOSCORE value at the pre­

vious screen being of non-linear form and, whilst the interaction between ADL 

and W T was of marginal significance at the 5% level (%̂  =  8.03, df=3, p=0.045), 

it was decided to exclude this term on grounds of parsimony. The parameter 

estimates and their estimated standard errors are given in Table 5.8.

There was a highly significantly greater chance of individuals being classified as 

suffering from dementia at a wave 3 screen than at a wave 2 screen. In fact, the 

average score in the 1 0  subtest was greater at wave 2  than at wave 1  amongst

Parameter Estimate Standard error

INTERCEPT 26.472 5.333

W T 0.963 0.0087

AGE -0.198 0.0583

SYS -0.0415 0.0106

Table 5.7: Parameter estimates and standard errors for model fitted to W T for 

model-based multiple imputation.
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Parameter Estimate Standard error

INTERCEPT -1.922 1.652

PERIOD (2) 0.744 0.128

lOSCORE -0.471 0.041

W T -0.037 0.014

WT2 1 0 .0 x 1 0 -® 4.7x10-®

AGE 0.099 0.014

SEX(2) -0.496 0.142

HHCOMP (2) 0.008 0.128

HHC0M P(3) 0.493 0.282

SH(2) 0.664 0.132

SH(3) 0.237 0.309

ADL(2) 0.237 0.146

ADL(3) 0.608 0.192

ADL(4) 0.664 0.237

Table 5.8: Parameter estimates and standard errors for model fitted to dementia 

status (lO) for model-based multiple imputation.
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those screened at both the waves. It is believed that this is, at least partially, 

due to a learning effect but possibly also due to an increased familiarity with the 

screening process leading to less incorrect answers due to feeling pressurised un­

der questioning. As with the risk of death, those at the extremities of the weight 

distribution were at greater risk of dementia then those near the centre. Similarly, 

the risk of dementia was higher for the more elderly and also for males, those living 

in institutions, those with poor perceived health status and those with moderate 

or high dependency on others for performing their activities of daily living.

The third model for missing data related to the missing values for ADL, namely 

for f{AD Lm  I for which | x„) was estimated using a proportional

odds model for ADL based on the covariates from the previous screen, using avail­

able case analysis. The proportional odds model chosen following the selection 

procedure included the variables AGE, WT, DSPAN, HHCOMP, SH, ADL and 

interactions between AGE and each of SH and HHCOMP. Although this model 

had 17 parameters and the logistic link led to a better fit than either the probit 

or complementary-log-log link, there was strong evidence th a t the proportional 

odds assumption did not hold. Some investigation of this problem was carried 

out, involving the reduction of the number of ADL categories from four to three. 

This was done by combining those in the moderate and high dependence cate­

gories, due to the relatively low number of highly dependent individuals, and this 

action led to a considerably lower degree of lack of proportionality. However as 

this investigation is designed to provide an illustration of the general applicability 

of the technique, the time available for further investigation of modelling ADL 

was severely limited and earlier analyses had indicated th a t moderate and high 

dependence for ADLs had different effects on survival, it was decided to proceed 

with multiple imputation based on the proportional odds model whilst noting that 

better imputations would arise from a better fitting model for | Xo) ■ The

parameter estimates and standard errors for the proportional odds model are giv­

en in Table 5.9. In the table, the notation ADLXm corresponds to the parameters
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Tm under the model specification given in Section 5.5. It should be noted that, in 

this model, the effect of the previous ADL value on the log-odds is assumed con­

stant across the levels of present ADL value as there are no interactions between 

ADLXm and the present ADL category. The strongest effects on present ADL 

value for a given previous ADL value were found to be those of perceived health 

status and household composition. In particular, for the younger subjects with 

good perceived health status or living with others the odds favoured maintaining 

(or improving) independence amongst ADLs to a greater extent than for those 

with fair or poor perceived health status or those living alone or in institutions, 

although these effects tended to decline with age, resulting in a reversal of direc­

tion of effect by age 90. Those more independent in performing their activities 

of daily living and the lighter, taller and younger people were also less likely to 

deteriorate between successive waves than their more dependent, heavier, shorter 

and older counterparts.

5.6.1 S creen -in d ep en d en t even t co llection

The use of imputation rather than simply last measurement analysis meant that 

information on first wave covariate values could be used to impute for second wave 

covariate values amongst the 113 refusers who had been screened at wave 1 and 

were not missing at wave 3, together with weights for those with item missing 

wave 2 weights. The age of the single individual with age unrecorded at their 

wave 2  screen was imputed based on their age at posting, as described earlier. 

Similarly, the ages of the seven individuals with item missing first wave ages were 

imputed based on their ages at posting. This led to an increase to 2458 units 

used in the binary response modelling under last measurement imputation. One 

less observation was available for the model-based multiple imputations due to 

incomplete wave 1 covariate information for one individual. It was not deemed 

necessary to take special action for this case.
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Parameter Estimate Standard error

INTERCEPT 1 (01 ) 4.158 1.994

INTERCEPT 2 (0 2 ) 6.928 1.999

INTERCEPT 3 (0 3 ) 9.239 2 . 0 0 1

AGE -0.135 0 . 0 2 2

W T -6.71x10-® 2.26x10-®

DSPAN 0.0382 0 . 0 1 2 0

HHC(2) -4.732 2.249

HHC(3) -8.382 4.345

SH(2) -5.210 2.384

SH(3) -11.680 5.826

ADLXl 2.189 0.147

ADLX2 1.826 0.215

ADLX3 1.567 0.310

AGE*SH(2) 0.0581 0.0296

AGE*SH(3) 0.130 0.0709

AGE*HHC(2) 0.0557 0.0280

AGE*HHC(3) 0.0942 0.0516

Table 5.9: Parameter estimates and standard errors for model fitted to ADL 

dependence level (ADL) for model-based multiple imputation.
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When last measurement imputation (Table 5.10) was compared with last mea­

surement analysis (Table 5.6), the magnitudes of the parameter estimates were 

consistently lower in the former due to the imputation of wave 1  measurements 

causing a similar effect to tha t illustrated when baseline analyses were performed. 

However, due to the increase in the number of binary units available, the stan­

dard errors were markedly lower, albeit artificially so due to the imputed values 

being treated as ‘known’. Whilst it is clearly desirable to maximise the number 

of available cases, this should be done in a manner which does not tend to bias 

the parameter estimates towards zero, nor give artificially low estimates of their 

standard errors. The multiple imputation strategy appears, at least partially, 

to satisfy these requirements. Many of the parameter estimates are of a similar 

magnitude to those obtained under last measurement analysis rather than under 

last measurement imputation. However, the effects of ‘high dependence’ (as op­

posed to ‘full independence’) for ADLs, dementia and age are noticeably stronger 

using multiple imputation than even last measurement analysis, although those 

for ADL(2) (those ‘moderately dependent’) and 10(2) (‘demented’) were slightly 

smaller. Relatively similar levels of estimated precision are to be expected under 

the multiple imputation and last measurement analysis approaches as, for 113 of 

the 140 additional binary units, no new covariate information was available as the 

non-response was at the unit screen rather than item level. The only additional 

observed covariates were wave 2  values which had previously been excluded due 

to missingness in other items for the remaining 27 units. The apparent decrease 

in precision is likely to be due to the approach to modelling for the imputations. 

Improvements in the imputation models should lead to an increase in precision 

and, potentially, less biased estimates of the risk factor effects.

It was shown in the simulations in Chapter 4 that, under screen-indepdendent 

event collection with data filled-in using last measurements or multiply imputed 

using a model-based approach, bias tended to be lower for the latter than  the
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former. The bias in the estimation of the ordinal risk factor parameters tended 

to  be negative whereas tha t for the continuous risk factor could be positive or 

negative depending on the proportion of missing data and the mechanism causing 

the missingness. Therefore, in the absence of real information about the type of 

missing-data mechanism, it is clearly sensible to use various forms of sensitivity 

analysis by investigating the effect of different approaches to analysis and, where 

appropriate, modelling the non-response process and making inferences accord­

ingly.

Considering the estimation of an optimal weight for survival under the two im­

putation approaches, there was little difference between the estimates of 172.8 

pounds under last measurement imputation and 170.8 pounds under the model- 

based multiple imputation. Moreover, these values are very similar to tha t of 

172.8 pounds obtained under the last measurement analysis. W hilst there was 

no statistically significant evidence of a weight-by-sex interaction in the model, 

the inclusion of this interaction was justified mainly on physiological grounds and 

then investigated for ‘exact’ survival times in Section 5.4.2. Under last measure­

ment imputation, the optimal weight for survival for males was estimated a t 177.1 

pounds whilst th a t for females was estimated to be 163.0 pounds. Similarly, the 

estimated optimal weights for male and female survival under the model-based 

multiple imputation were estimated to be 177.2 pounds and 159.0 pounds re­

spectively. When compared with either the corresponding estimates of optimal 

weight for survival for males and females combined given above, or with the sex- 

specific optimal weights for survival of 178.1 pounds for males and 168.2 pounds 

for females under last measurement analysis, it is clear tha t somewhat differ­

ent inferences can be drawn depending on the approach taken to data analysis, 

although the precision of all of these estimates will be extremely low, as illus­

trated  in Section 5.4.2. The differences between point estimates are especially 

large for females for whom the optimal weight for survival ranges from a value 

close to 179 pounds (12 stone 11 pounds) under last measurement analysis with
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no weight-by-sex interaction to 159 pounds (11 stone 5 pounds) under the multi­

ple imputation approach with a weight-by-sex interaction included in the survival 

model. These observations are consistent with the theory th a t the analysis tech­

nique will considerably affect estimates, particularly in situations where precision 

is low or missingness is not completely at random.
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Term Category/ Units Method

PARAMETER 

Estimate 95% C.I.

HAZARD RATIO 

Estimate 95% C.I.

ADL(2) Moderately LMI 0.575 (0.296, 0.855) 1.778 (1.345, 2.351)
independent MI 0.557 (0.245, 0.869) 1.745 (1.277, 2.385)

ADL(3) Moderately LMI 0.755 (0.423, 1.086) 2.127 (1.527, 2.963)
dependent M I 0.798 (0.421, 1.175) 2.222 (1.524, 3.240)

ADL(4) Highly LMI 1.239 (0.916, 1.562) 3.452 (2.499, 4.768)
dependent M I 1.376 (0.996, 1.756) 3.960 (2.708, 5.789)

10(2) Demented LMI 0.635 (0.341, 0.928) 1.886 (1.407, 2.529)
MI 0.845 (0.529, 1.160) 2.327 (1.698, 3.189)

W T 10 Pounds LMI -0.330 (-0.564, -0.097) * *
MI -0.429 (-0.706, -0.152) * *

WT2 (10 Pounds LMI 0.0096 (0.0018, 0.0173) * *
MI 0.0126 (0.0035, 0.0216) *

*

AGE Years LMI 0.0730 (0.0499, 0.0961) 1.076 (1.051, 1.101)
MI 0.0926 (0.0652, 0.1200) 1.097 (1.067, 1.128)

SEX(2) Female LMI -0.664 (-0.914, -0.414) 0.515 (0.401, 0.661)
MI -0.772 (-1.059, -0.484) 0.462 (0.347, 0.616)

Not appropriate due to presence of both linear and quadratic terms

Table 5.10: Comparison of estimates of parameters and hazard ratios for available 

case (AC) analysis using last measurement imputation (LMI) and model-based 

multiple imputation (MI) in proportional hazards model with interval-censored 

approach and screen-independent event collection. Comparison groups: Fully 

independent (ADL(l)); Non-demented (10(1)); Male (SEX(l)).
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5.6.2 S creen -d ep en d en t even t co llection

On treating the collection of death information as screen-dependent, the number 

of binary units fully available for analysis was reduced from 2458 to 2282 for last 

measurement imputation and from 2457 to 2254 for the model-based multiple 

imputation. These reductions were due to missing screen-dependent event infor­

mation from the second and, in particular, the third waves and were only slightly 

compensated for by the inclusion of three individuals with a 1  . 1  screen profile 

plus a single individual with a 1 . 3 profile (see Table 5.2).

The parameter estimates and hazard ratios for both last measurement and 

model-based multiple imputation are given in Table 5.11. Under both approach­

es to imputation, the parameter estimates were of similiar magnitude to those 

obtained under last measurement imputation with screen-independent event col­

lection and are therefore generally weaker than those obtained under multiple 

imputation with the screen-independent death recording. This would tend to 

indicate th a t the loss of information on the habitual refusers who, as described 

earlier, tend to be at a greater risk of death than those regularly screened, has a 

weakening effect on the parameter estimates. However, as it was shown in Chapter 

4 th a t bias tended strengthen the apparent effects, especially for the continuous 

risk factor under both last measurement and multiple imputation techniques, al­

beit in circumstances where there were more measurements and hence a lesser 

problem with loss of information due to habitual refusers, it is unclear what the 

combined effect of these different forms of incompleteness will have on the esti­

mation.

The non-sex-specific estimates of the optimal weight for survival were found 

to be 173.6 pounds and 172.9 pounds under last measurement im putation and 

model-based multiple imputation respectively. These values are consistent with 

estimates obtained under earlier approaches. When differential effects of weight
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for males and females were included in the survival model, similar estimates of 

optimal weight for survival were obtained under the two imputation strategies. 

These estimates for females were 166.0 pounds and 165.0 pounds and those for 

males were 177.1 pounds and 176.9 pounds. For both sexes, the lower estimate 

was when the missing data were filled-in using model-based multiple imputation. 

These sex-specific estimates of the optimal weight for survival further illustrate 

the consistency of the values for males and the variability of the values for females 

under the different approaches to handling the incompleteness of the data.
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Term Category/ Units Method
Parameter
estimate

Hazard ratio 
estimate

ADL(2) Moderately LMI 0.584 1.794
independent MI 0.531 1.701

ADL(3) Moderately LMI 0.793 2.211
dependent M I 0.778 2.178

ADL(4) Highly LMI 1.243 3.467
dependent MI 1.212 3.361

10(2) Demented LMI 0.585 1.796
M I 0.602 1.826

WT 10 Pounds LMI -0.337 *
M I -0.334 *

WT2 (10 Pounds)'^ LMI 0.0097 *
MI 0.0097

AGE Years LMI 0.0679 1.070
M I 0.0715 1.074

SEX(2) Female LMI -0.631 0.532
M I -0.632 0.532

Not appropriate due to presence of both linear and quadratic terms

Table 5.11: Comparison of estimates of parameters and hazard ratios for available 

case (AC) analysis using last measurement imputation (LMI) and model-based 

multiple imputation (MI) in proportional hazards model with interval-censored 

approach and screen-dependent event collection. Comparison groups: Fully inde­

pendent (ADL(l)); Non-demented (10(1)); Male (SEX(l)).
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5c 7 Sum m ary

It has been shown in this chapter th a t estimates of the parameters of the pro­

portional hazards model can vary quite considerably depending on the approach 

taken to  analysing the event history arising from a screening study. W hilst the 

results of the simulations in Chapter 4 showed that bias could strengthen the ap­

parent effects in some circumstances, especially when there was screen-dependent 

event collection, it is likely tha t the techniques leading to the parameter estimates 

closer to zero are the more biased and, furthermore, it is believed tha t the more 

sophisticated imputation techniques are preferable to those which involve using 

only complete or available cases, particularly if the missing data mechanism is 

MAR. As the precise form of the missing data mechanism(s) influencing the in­

completeness of the data set analysed here is unknown, but believed to be MAR 

(or possible weakly non-ignorable), some account should be taken of the missing 

data to avoid the likely under-representation of cases with extreme survival prog­

nosis and the resultant effects on estimation under a proportional hazards model.

W hilst it was impractical to investigate the form of the non-response mechan­

ism, especially tha t relating to unit screen non-response, it should be noted that 

the models fitted and used to multiply impute the data are under the assumption 

th a t the missingness is ignorable. If this is not the case, there will be biased esti­

mation of the posterior distribution of the parameters of the models for W T, 10 

and ADL. This will, in turn, result in the introduction of bias into the parameter 

estimates for the survival model. An additional stage in this investigation could, 

therefore, be the use of sensitivity analysis in conjunction with the investigation 

of likely forms of non-response mechanism.

Differences between parameter estimates under the alternative approaches were, 

on the whole, relatively small. The effects of weight, dementia and high depen­

dence for performing ADLs tended to be those whose estimates varied to  the
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greatest degree. The effect of weight on survival showed a greater, but non­

significant, estimated degree of curvature in the complete case and model-based 

multiple imputation methods with the screen-independent event collection than 

under the other approaches to analysis. However, as with many of the other co- 

variates collected at the screens, whether the relationship is, at least partially, 

causal is open to question. Likewise, the estimated effect of dementia on mortal­

ity is highly dependent on the technique used for analysis. In fact the size of the 

parameter estimate under the model-based multiple imputation (0.845) is almost 

twice tha t when baseline covariate measurements were used under ACA (0.443) 

with screen-independent death collection and interval-censored times. Moreover, 

the degree of overlap of the 95% confidence intervals for the parameter is only 

around one third of each interval, indicating tha t inferences can be moderately 

different under alternative approaches to the modelling of survival using this data 

set. This, of course is despite the existence of only a single update of covariates 

and a follow-up period of around five years. Similarly, the effect of high depen­

dence for ADLs varies to a reasonable degree under the different analyses. In 

this case, the 95% confidence intervals under the two situations compared above 

overlap by a little over one-half of each. As both high dependence for performing 

ADLs and dementia could be viewed as intermediate states between healthy life 

and death and those either refusing a screen or not providing measurements of 

variables such as weight (and demi-span) tend to be amongst the less healthy, it 

is maybe not surprising tha t it is their effects on mortality for which there is the 

greatest dependence on the analysis technique. It is worth noting that, whilst it 

is possible tha t these effects may be over-estimated by the multiple imputation 

approach, particularly given the poor overall fit of the transition proportional 

odds model for imputing for missing values of dependence for performing ADLs, 

it is believed th a t the degree of under-estimation is real and reasonably substan­

tial when baseline measurements alone are used as covariates. This re-inforces 

the recommendation th a t updated covariate models should be used whenever it 

is believed tha t there are time-dependent effects of the risk factors.
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C h a p ter  6 

D iscu ss io n

Incomplete data can present a serious problem in event history analysis. It is 

advisable to limit the degree of incompleteness by suitable choice of design. How­

ever, removal of all incompleteness likely to introduce bias into the estimation 

of model parameters is often impractical. In particular, participation in screen­

ing studies is usually optional and therefore ensuring complete data are collected 

presents insurmountable practical difhculties. In addition to the failure to take 

up the offer of a screen, a common form of incompleteness in screening studies 

is due to events only being recorded as having occurred between two attended 

screens. In the case of two-state processes and proportionality of hazards, these 

can be handled by either existing methods for the analysis of grouped or interval- 

censored survival times (Prentice and Gloeckler (1978), Finkelstein (1986)) or by 

imputation of exact times within the interval (Dorey, Little and Schenker (1993), 

Little (1992)) followed by the use of standard survival analysis techniques for ex­

act times (e.g. Cox (1972)).

An alternative approach discussed briefly in Chapters 2 and 4 is by using 

stochastic differential equations to model the changes in risk factors over time. 

This formulation was derived from a biological model of human ageing and was 

first proposed by Woodbury and Manton (1977). However, as well as being some­
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what complex in formulation, this model relies on the assumption of multivariate 

normality of the risk factors and will therefore not be appropriate unless the 

screening process consists exclusively of physiological measurements (e.g. blood 

pressure, cholesterol level, heart rate). It has been stated th a t “where a physical 

examination or tests form part of an epidemiologic survey, participation is usual­

ly lower than interview only surveys” and tha t “those who undergo examination 

are more likely to be younger” (Arthur, Clarke, Donaldson, dagger, unpublished 

manuscript). This provides a justification for limiting or excluding non-question- 

based assessments as part of a health screening of an elderly population. In fact, 

in the annual screening of the elderly discussed in Chapter 5, the two variables 

with the highest levels of unit non-response are the physiological measurements 

which require physical movement of the subjects, with blood pressure readings 

having far lower rates of non-response than the measurements of weight or demi- 

span. As assessment is mainly via subjective responses in the Melton Mowbray 

screening study (not all of which were coded for the data set used in Chapter 5), 

the assumption of multivariate normality will not be appropriate and alternative 

methodologies should be used. Whilst a number of alternative approaches have 

been proposed to handle categorical data in modelling the health and mortality 

of elderly populations (Manton, Singer and Suzman, 1993), these are beyond the 

scope of this thesis.

Missing data in the covariates, caused by failure to take up the offer of a screen 

or item missingness amongst those screened, is a serious problem, more so than 

the incompleteness of information on failure times. Likelihood-based methods 

(e.g. Schluchter and Jackson (1989)) are recommended (Little, 1992b) although 

such methods apply only when the missing-data mechanism is ignorable and are 

usually very difficult to implement due to the lack of availability in the present 

versions of the major software packages and the extensive programming required 

to implement them otherwise. An alternative to this is imputation of the miss­

ing covariate data followed by analysis of the completed data set using standard
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methods or adaptations thereof.

To quote Little (1992b) in his conclusions on the analysis of incomplete data in 

event history analysis “. . .  imputation-based methods also deserve study, particu­

larly if multiple imputation is applied to reflect the uncertainty in the imputation 

process” . A major objective of this thesis has been to investigate methods for 

imputing missing covariate values in a particular form of event history analysis 

corresponding to screening studies. A secondary and associated line of investi­

gation relates to the use of time-varying rather than fixed baseline covariates in 

these studies. Given the widespread use of baseline covariates, even when the 

real interest is in updated covariate survival models or even in ‘strong models’ 

relating the survival process to the evolution of the risk factors, the investigation 

of the effect of using baseline covariates rather those updated at follow-up was 

felt to be important. This effect was investigated through simulations in Chapter 

4 and then, in Chapter 5, on an on-going screening study of the elderly of Melton 

Mowbray which provides an addition to the series of studies in to the health and 

well-being of the elderly population of this Leicestershire market town carried out 

over the last fifteen years. All previous publications based on these studies and 

based on survival have used baseline rather than updated covariate models and so 

it is likely th a t any estimated effects of risk factors on mortality have been under­

estimated due to the weakening of effects of baseline covariates as the follow-up 

time increases.

Chapter 3 investigated random coefficient models for growth curve modelling and 

concentrated on selection models, providing a useful insight into these models, es­

pecially th a t proposed by Wu and Carroll (1988). However, these models showed 

little potential for extension to event history analysis. Wu and Carroll’s pseudo­

maximum likelihood estimator based on a probit dropout model (PPMLE) proved 

computationally complex with a large number of parameters which required joint 

estimation in the maximisation process. The estimation of the parameters relat­
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ing to informative dropout processes with a range of intercept and gradient effects 

was relatively unbiased, with bias ranging from 0.9% to 4.0% for th a t relating to 

the gradient parameter and from 0.5% to 10.0% for tha t relating to  the intercept 

parameter, although in only one out of six sets of simulations was the percentage 

bias for the latter parameter over 5.5%. Although this illustrates tha t PPM LE 

performs adequately in the estimation of parameters of the dropout or survival 

process, these parameters are not the usual log-hazard ratio parameters but relate 

this process to the parameters of the repeated measures model. Moreover, these 

parameters may have a varied interpretation depending on their nature (and the 

nature of the covariate if the model were extended) and would prove extremely 

difficult to explain to non-statisticians. There would also be problems in extending 

the technique to cover additional covariates, particularly those of non-continuous 

form, and to dropout processes not of the probit form required for an analytic 

evaluation of the marginal likelihood function. However, on the positive side, the 

results of the simulations given in Chapter 3 and those of Wu and Bailey (1988) 

indicated th a t the performance of PPM LE may not be adversely affected by devi­

ations from a probit form of dropout, especially those of Cox (or complementary- 

log-log) form. Due to the problems associated with this model, it was decided 

th a t further work into potential extensions of random coefficient selection models 

to apply to typical forms of event history data was likely to prove unfruitful.

Several methods presently available for the analysis of grouped or interval- 

censored survival data were discussed in Chapter 4. In particular, the methods of 

Prentice and Cloeckler (1978) and Finkelstein (1986) have the advantages of a rea­

sonable degree of simplicity, a natural interpretation of the parameters of interest 

in terms of (log-)hazard ratios and, in the case of the former, ready availabili­

ty  in generalised linear model routines in a number of statistical software pack­

ages. Moreover, it was found tha t the desirable feature of time-varying covariates 

which was present in Prentice and Cloeckler’s model and th a t of irregularly-spaced 

follow-up times for survival present in Finkelstein’s model could be incorporated
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into a single model formulation which was termed ‘adapted Finkelstein’. How­

ever, missing data in the covariates still presented a problems and, to allow the 

‘adapted Finkelstein’ to be applied to such data, model-based multiple im puta­

tion techniques were proposed. W ith incomplete repeated measures data which 

incorporate both continuous and categorical variables, a very limited range of 

multivariate techniques is available for modelling and these methods apply only 

under the assumption of a MAR process. One technique which, in practice, could 

be applied to the imputation of data of this form is that introduced by Little and 

Schluchter (1985) and, in fact, this is one application of the model suggested by 

the authors.

Although it is recognised tha t efficient and unbiased imputation methods are 

the ideal, there is a strong argument for using simpler imputation methods than 

th a t described above, providing any deterioration in performance is minor. The 

imputation methods considered in Chapters 4 and 5 of this thesis are relatively 

simple univariate models. First-order autoregressive models were used for mod­

elling repeated realisations of continuous variables and Markov ehain regression 

models were used for modelling ordinal variables. One advantage of all the mod­

els discussed here is their potential for extension to non-ignorable missing data 

situations by suitable selection from the predictive density via the chosen missing 

data mechanism based on the value to be imputed (or some function thereof). 

This is an extension of the approach used in Chapters 4 and 5 and would merit 

further investigation although, for the Melton data set used for illustration in 

Chapter 5, it is believed th a t the non-response mechanism or mechanisms are at 

least approximately MAR.

The results of the simulations described in Chapter 4 show th a t the perfor­

mance of the first-order autoregressive process used for imputation of missing 

values of a repeatedly measured continuous variable was acceptable in terms of 

bias, particularly with low percentages (up to 10%) of data missing. It was also
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preferable to the cold-deck imputation method using the last recorded value for 

various forms of missing data mechanism (MCAR, covariate-based MAR, value- 

based non-ignorable and difference-based non-ignorable). However, the perfor­

mance of the multiple imputation approach deteriorated considerably when an 

ordinal repeatedly-measured variable was also included, the estimation of the pa­

rameters relating to the effect of the ordinal variable being especially susceptible 

to bias. In all these cases, both screen-independent and screen-dependent forms of 

event collection were investigated. The relative deterioration of the performance 

of the model-based multiple imputation technique with increasing percentages of 

missing data was generally greater with screen-independent event collection, par­

ticularly when compared with the corresponding deterioration of the imputation 

of the previously recorded value.

W hen the methods derived and applied through simulations in Chapter 4 were 

then applied to survival data arising from the Melton Mowbray screening study of 

the elderly in Chapter 5, it was shown that, whilst some estimates of effects were 

of similar magnitude when traditional complete or available case methods and 

model-based multiple imputation were used, others were considerably different. 

W hilst both item and unit screen non-response are likely to be approximately 

missing at random (MAR), ignoring information on recorded covariates, which 

happens when there is either unit screen non-response at the end of an interval or 

item missing data, will tend to force the non-response into a non-ignorable state. 

This means th a t bias is introduced into the likelihood-based estimation process 

and the use of appropriate imputation methods will tend to reduce this bias be­

cause they preserve a greater proportion of the cases. In particular, those highly 

dependent on others for performing their activities of daily living (ADLs) or clas­

sified as demented at the previous screen were more likely to be item missing, 

particularly on the weight variable which was included in all the survival models. 

Ignoring these cases entirely will tend to lead to a relative under-representation 

of those likely to die in a later inteval between screens but with present serious
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disability or dementia. Even a reasonable imputation stategy will tend to recover 

most of this information, especially given tha t the scope for improvement from 

clincially-diagnosed dementia and from a highly dependent state for ADLs will 

be extremely limited. This is borne out in the results from Chapter 5 where the 

size of the estimated effects of dementia and high dependence for ADLs are both 

amongst those noticeably greater under model-based multiple imputation than 

complete or available case methods.

As emphasised be Diggle, Liang and Zeger (1994), it is highly im portant to 

correctly specify the form of the model when considering repeated outcomes of 

dichotomous or ordinal responses. A transition rather than random effects mod­

el would seem appropriate for the Melton study as parameters at a population 

rather than individual level are required for the imputation model, particularly 

given th a t the imputations made in Chapter 5 were always based on a single pre­

vious measurement for tha t individual, this often being at the only screen they 

underwent. However, the proportional odds model used did not appear to be the 

most appropriate model for transitions in states of dependence for performing the 

activities of daily living assessed given the lack of proportionality found in the 

odds. Further work would be required either to investigate other forms of model 

for the ordinal responses or, alternatively, multivariate models such as th a t of 

Little and Schluchter (1985).

In terms of the use of baseline covariate rather than updated covariate models 

for survival data where the true change of state process relates to recent realisa­

tions of risk factors, the simulations support the conclusions of Altman and de 

Stavola (1994) that, if the covariate effects are constant over the follow-up period 

(as is expected to be true for the Melton Mowbray data), the effects estimat­

ed from an updated covariate model will be larger in absolute value ‘because of 

the time delay of the effect of entry values’. It is likely, therefore, th a t the eff­

ects of baseline covariates will decline over time and tha t the estimates of hazard
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ratios for the risk factors for mortality reported in earlier publications (dagger 

and Clarke (1988), dagger and Sutton (1991)) relating to the survival of the 1981 

cohort of the population of Melton Mowbray aged 75 years and over (based solely 

on baseline values of the risk factors) will be biased towards unity.

It would be sensible, if practical in the future, to check th a t the true form of 

examination scheme for the Melton Mowbray screening study corresponds to a 

non-informative process. In Section 2.1.2, four simple models for examination 

scheme (Grüger et al., 1991) are outlined, of which ‘patient self-selection’ is clear­

ly acting here. This form of process will tend to be non-ignorable although it may, 

as suspected here, be approximately MAR. Whilst this may be a reasonable as­

sumption to make, it would clearly be desirable to validate it by following-up those 

missing offered screens. Alternatively, a proposal of one or more plausible patient 

self-selection mechanisms (plus item non-response mechanisms if deemed poten­

tially non-ignorable) would enable further sensitivity analysis to be performed.

W hilst the imputation techniques employed in Chapter 5 have reduced the 

amount of missing data, they have not led to a fully completed data set. For 

this to be attained, additional imputation strategies need to be investigated and 

then employed. Although the left-truncation, due mainly to those aged under 

75 when the first wave population was defined, is not a problem, imputation of 

covariates for a missed first-offered screen is a major methodological hurdle to 

overcome in order to complete the data set. Choice of an appropriate strategy 

for this will depend greatly on the determination of the true form of the patient 

self-selection mechanism. Otherwise, potential bias of an indeterministic amount 

will remain in the estimates of the hazard ratios for the risk factors. Also, treating 

each wave as a single interval is somewhat simplistic. An alternative view would 

be to consider the twelve areas of Melton separately, define twelve separate points 

of follow-up for each wave corresponding to the first post-dates for each area and 

use ‘adapted Finkelstein’ for analysis. This would treat removals within the town
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in a more appropriate manner than the approach used in Chapter 5 but, unless 

there is variation in the ordering of the areas screened across waves, the limited 

number of removals is likely to have little impact on inferences. Moreover, there 

would then be the potential for thirty-five (rather than two) nuisance parameters 

for the time periods based on these three waves and, unless some parametric as­

sumption is made about the baseline hazard function, the total number of model 

parameters requiring estimation quickly becomes unmanageable as the number 

of waves increases. An additional problem is the asymptotic results relating to 

likelihood estimation which rely on the number of parameters not increasing with 

the number of observations. Whilst this is a minor problem in the form of anal­

ysis performed in Chapter 5 for which there would be one additional parameter 

per screen, the problem will be more substantial for this alternative suggestion 

as there would be twelve additional parameters per screen. It is therefore recom­

mended that, whilst ‘adapted Finkelstein’ offers the potential for this approach 

to be used, it should not be adopted for the modelling of the Melton Mowbray 

study of the elderly.

To summarise, it has been shown th a t the potential exists for extending the 

method of Finkelstein (1985) to include time-dependent covariates of the form 

described by Prentice and Gloeckler (1978) in which updates are performed at 

the follow-up times. However, unless these follow-up measurements are at regular 

times for all individuals, the potential exists for inconsistent assessment and in­

terpretation of the parameters. In particular, in screening studies with a regular 

schedule of screens in which the real interest is in the effect of the values of risk 

factors at a particular screen time on survival to the next scheduled screen, missed 

screens will lead to failure to update the risk factor values. As shown in Chapter 

4, this will lead to a weakening of the true effects, of the same form as caused 

by the inappropriate use of baseline covariates. One solution for such studies is 

the multiple imputation of unrecorded updates of risk factors. W hilst some inves­

tigation have been performed here into model-based methods for imputing risk
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factors of mixed continuous and ordinal form, further work is required to widen 

the choice of imputation models and to select the most appropriate model for the 

repeated measurements from the Melton Mowbray screening study of the elderly.

Further work motivated by the research presented in this thesis includes the ex­

tension to cover non-ignorable missing data mechanisms. For the Melton Mowbray 

screening study, this will be particularly important if the collection of information 

on a random subset of refusers at a particular screen were to show th a t unit screen 

non-response is not a MAR process. Additionally, as outlined earlier, it would be 

of interest to consider methods for imputation of risk factor values for individuals 

refusing a screen prior to their first acceptance of a screen in association with 

screen-independent event collection, especially as the time to event may be linked 

to unit screen non-response. Finally, the extension of the scope of these tech­

niques to cover multi-state processes with a single absorbing state, for example 

the three-state process for an elderly population in which the three states are:

o alive and non-demented; 

o alive and demented; 

o dead;

would be of considerable interest. Whilst such methods exist in cases of complete 

data (Hsieh, Crowley and Tormey (1983), Collett (1994)), further work would be 

required to consider the extension to interval-censored state transition times (or 

mixed ‘exact’ and interval-censored times) in the presence of incomplete updates 

of risk factors.

To close, whilst the Melton Mowbray study has provided much of the motivation 

for the research into the analytic techniques described here, resource constraints
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in performing the screens have led to the third wave only recently being complet­

ed. There has therefore been, at most, one update of risk factors available for 

use in conjunction with interval-censored survival times. The limited amount of 

imputation required for these updates using techniques proposed in Chapter 4 has 

been a problem in the comparison of different approaches to modelling the state 

transition data from this study. The real test of these and alternative imputation- 

based models will come when two or three more screens have been completed.
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A p p e n d ix  A

D er iv a tio n  o f  th e  lik e lih ood  

fu n ctio n  for P P M L E

An individual's contribution to the marginal likehhood is given by
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exp (â  (c„-'+s Y )  a - a’' (c.r'a+

exp ‘ 'â 'csr'a - â 4 , - 4 /a + (a' Ci.-'a+b y s i , - ' b ,

where

and Cai =  ( C i , - ' +  I : / , - ' ' - '

exp "  C'aidik) C"3i  ̂ — dik^C'3id^

259



=  exp

-  ( C i r 'A ,  +  ( c i r '  +  '  ( c i r 'A t  +

exp U ( a - c « Æ . ) ^ c - 3 . - ' ( a - c w . , )

-  I 4 c , r ‘ (C ,r' + S g - y '  (c.r'â + + l/c.r'a

exp C aijik) C"3i  ̂ -  C 3t^k)

^ " ' ( Z  +  ZT /a-'C i,)" ' (C i.- 'A , +

+  jSk^27^-'& k -  ( C i r 'z ; ^  +  f )  '  ( C i r 'A i  +

260



exp

exp C a ^ k ) '^ C 'a r ' ( ^  -  C a ^ k )  -  ( C "  +

+  Â  C u - 'Â  +  -  Â  (^ /)  +  C u ) - '&

exp a  -  C a ,^ k )"^ C a r ' (A, -  C s ^ k )  -

(C u  +  C i,z7 /,-^C u) -  C i r '  A

+  17^) '  -  z ; ^ - 4 g k  -  +  C H )- 'A

261



exp

^ ^ 'c ^ r 'A ,  -  (I +  C H i 7 ^ - y  -  C l , - '}  A,

where C 2, =  C i, +  17,g

exp ( ( ^  — C a ,^k ) Ca,  ̂ — Ca,d,k) — Ai ^^ i '&=

B j ^ C a - 'â  - j p  [ C i P S g ( S g  +  C „ ) - ‘ -  C „ - ‘} a

~ Bj,^ [ S g - ^ C u ( S g  + C,.)-‘ -  Eg- ' }Bj , ) ]

exp C3,da)''c3r' (a -  c„d„) - -  Bt^Ca-'a

B (  { C u - ' S g C 2 p  -  C l .- ')  à  -  B*^ (B ^ - 'C u C m -' - S g - ' ) U ,

262



exp f - i  ( ( a  -  C 3 id ,j)’’c 3 , - ‘ ( a  -  C3,d„) -

- g j { c , . - ‘ [Sg -  (S g  + C l .) ]c ^ r ' la  

B j { E g ~ ^ C u  -  (S g  + C ,.)|C 2. - ' } b ) ]

exp c,idg,Y c,r' (a - C3.d«) - â4c3.-‘a

-  B . ’’C2.-'g, + g,. C2.-'g,. + E jC ^ r B g ,

exp

+ (a - (a - a.

So,

L i
D

(27T)2 I Cl, |:/2 I 17̂  r/= y  exp — -  — Cs,^k) C 3,  ̂ — Cs,j,k^

X exp

J = 2

263

d/3.



Dexp . 1  (A,
(2 % ) 2  I C l, |V2 1 |i / 2

y  exp — -  — C 3,j,k) C 3,  ̂ — Csi^k)

j = 2

Z(iJ-l)

X 4 -a o ;))
(i-T.Z(ij))

d/3. ;

Dexp

(2%)̂  I Cl, I 17̂

I  ( Æ ) '  I C:„ I'/' ^2%, C3.di„ C3

n  (♦  W g i  +  “03) -  *  (a^B, + “ O i-l))
j= 2

Z(ij-l)

X 4-ao./))
(i-T.Z(w))

d/3. ;

264



Dexp (A, (A, -  B ^ )l I C 3, r/^

27T I Cl, |i/2 I |:/2

/  < ^ (^ , C3,çLk, C 3,) ^  (̂ 0 ;)  "  ^  +  ° ^ j - i ) )
j= 2

X (1 -  $  (̂ Ai '

Z(w-l)'

But it can be shown that:

+  c

T +

where c is a constant.

It easily follows that:

1 -  +  c)) V ) d ^  -  1 -  $ +  c

265



So,

Dexp L - m ) ' ' c 2, - X â - m ) 1 (Ci,-^ + 1 7 ^ -^ )-' r/"

27T 1 C l, |:/2 1 17^ 1/2

n  ( (C 3 i^ k )^ a  +  ( i  +  a ^ C 3,oç^
j —2 *' I-

1 1 1  (1- E ,  ^ 6 .;))

(C 3 ,j ,k )^ &  4- O o j-l)  ( l  +  &^C3,GL^

X j l  — $  ^(C3idik)^0( +  Aoj) ( l  +  a^C3,0(^

as exactly one of the last J  terms in the product is other than unity. 

Therefore

Dexp
Li

2 % I C l, |V2 I 17^ |i/2 I (C i,-^  +  17^-:) |V2

n  (dik^C3,^a +  ao;) ( l  +  a^C3iQ()
j = 2   ̂ ^

(d ,k^C 3,^a +  cKo;_i  ̂ +  a ^ C 3 ,a ^

X n  -  $ (d«k^C3,^a( +  a o j)  +  a ^ C 3 ,a ^

Z(ij-l)

(1- E ,

266



Dexp

2 7TI Cu I'/" 11;,? I'/" I + Cu)Cir'

%% { d i jJ 'C s i '^ O t  +  CKoi) ( l  +  o F C s i O ^

n  'k Z(w-i)

So

D exp

2  7T I C l ,  | : / 2  I | i / 2  I 1 7 ^  | - V 2 |  C 2 ,  | : / = |  C i ,  | - V 2

n  +  Aoj) ( i  4- a^^Csia^

$ 4- ( l  4- Ql^Csia^

j l  — $  4- 0:0 1̂ 4- ai^Cs^ai^
( i-E , ^('.j))

267



But

( C l ,- :  + Cl,-: + 17^-:)'

C l,-:)"" +  (17^-:

C l , : : ' ) " '  +  ( 1 7 / )

( C l , - '  +  ^ z ) - ' ') ' ' '  =  Cg,

as C l, and 17  ̂ are symmetric.

So,

Dexp

2  7T I C 2, |V2

n  (d,k^Cg,a +  ooj) (1 +  «^ C g,a )

(^k^C3,g[ 4- O0; - l )  (1 +  &^Cg,a)

(d,k^C3,a 4- oo j) (1 +  ^^C g,a)
il 1 (i-E, z(U))

268



A p p e n d ix  B

D e ta ile d  ta b le s  for p a ram eter  

e s tim a tio n  v ia  ‘a d a p ted  

F in k e ls te in ’ (in c lu d in g  n u isan ce  

p a ra m eters)

269



Param eter TYue Bias 95% C.I. 
for biaa

P 0.07 0.148x10-= (-0.344x10-=, 0.640 x 10"=)

71 -9.2000 -0.0255 (-0.0693, 0.0183)

72 -9.0019 -0.0222 (-0.0661, 0.0217)

73 -8.9237 4)0303 (-0.0739, 0.0134)

74 -8.8728 -0.0191 (-0.0644, 0.0263)

7» -8.8349 -0.0194 (-0.0652, 0.0264)

76 -8.8047 -0.0213 (-0.0678, 0.0252)

77 -8.7796 -0.0255 (-0.0711, 0.0201)

76 -8.7581 -0.0268 (-0.0724, 0.0188)

79 -8.7393 -0.0232 (-0.0697, 0.0233)

710 -8.7226 -0.0311 (-0.0782, 0.0159)

Param eter TVue MSB Standard Error 
of MSB

P 0.07 3.149x10-= 1.96x10-=

71 -9.2000 0.2496 0.0168

72 -9.0019 0.2511 0.0158

73 -8.9237 0.2484 0.0160

74 -8.8728 0.2676 0.0167

75 -8.8349 0.2732 0.0168

78 -8.8047 0.2817 0.0174
77 -8.7796 0.2713 0.0168

76 -8.7581 0.2705 0.0165

78 -8.7393 0.2816 0.0181

710 -8.7226 0.2880 0.0184

Table B.l: Comparison of bias and MSB from simulations of a Weibull mortality 
process with shape parameter 1.15 and =  1.5 and erg =  8.0 using 'adapted 
Finkelstein' with =  8.0 and a single continuous repeated measurement with 
no missing data.
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Param eter True
Value

EVENT
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for bias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

P 0.07 0.155x10-= (-0.338x10-=, 0.647 x 10"=) 0.471x10-= (-0.023x10-=, 0.965 x 10 '= )

71 -9.2000 -0.0260 (-0.0699, 0.0178) -0.0220 (-0.0659, 0.0219)

72 -9.0019 -0.0194 (-0,0633, 0.0245) -0.0411 (-0.0851, 0.0029)

73 -8.9237 -0.0274 (-0.0711, 0.0163) -0.0508 (-0.0947, -0.0068)

74 -8.8728 -0.0161 (-0.0615, 0.0292) -0.0430 (-0.0886, 0.0026)

75 -8.8349 -0.0164 (-0.0623, 0.0294) -0.0403 (-0.0862, 0.0056)

78 -8.8047 -0.0183 (-0.0648, 0.0282) -0.0445 (-0.0911, 0.0021)

77 -8.7796 -0.0224 (-0.0680, 0.0232) -0.0483 (-0.0942, -0.0024)

75 -8.7581 -0.0237 (-0.0693, 0.0219) -0.0486 (-0.0943, -0.0029)

78 -8.7393 -0.0201 (-0.0666, 0.0264) -0.0451 (-0.0916, 0.0015)

7tO -8.7226 -0.0279 (-0.0749, 0.0192) -0.0354 (-0.0828, 0.0121)

P a ram e te r TVue

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

P 0.07 3.150x10-= 1.96x10-= 3.192x10-= 2.00x10-=

71 -9.2000 0.2502 0.0168 0.2507 0.0167

72 -9.0019 0.2508 0.0157 0.2531 0.0161

73 -8.9237 0.2482 0.0159 0.2532 0.0162

74 -8.8728 0.2673 0.0167 0.2721 0.0171

75 -8.8349 0.2729 0.0167 0.2754 0.0169

78 -8.8047 0.2809 0.0173 0.2840 0.0177

77 -8.7796 0.2709 0.0168 0.2758 0.0172

78 -8.7581 0.2704 0.0166 0.2735 0.0167

79 -8.7393 0.2813 0.0181 0.2836 0.0184

710 -8.7226 0.2881 0.0183 0.2934 0.0188

Table B.2: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and (Tiy =  1.5 and erg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 5% data missing 
via a MCAR process under two diSerent situations for the assessment of the 
interval containing the event of interest using imputation of the last measurement.

271



P a ram e te r T rue
Value

EVENT
INDEPENDENTLY

COLLECTED

Biag 95% C.I.
for bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for b ias

P 0.07 0.144x10-= (-0.346x10-=, 0.635 x 10-=) 0.808x10-= (0.314x10-=, 1.302 X 10-=)

11 -9.2000 -0.0251 (-0.0689, 0.0186) -0.0184 (-0.0622, 0.0254)
-9.0019 -0.0153 (-0.0591, 0.0284) -0.0610 (-0.1050, -0.0169)
-8.9237 -0.0228 (-0.0663, 0.0206) -0.0728 (-0.1167, -0.0289)

74 -8.8728 -0.0114 (-0.0566, 0.0337) -0.0626 (-0.1082, -0.0169)

75 -8.8349 -0.0116 (-0.0572, 0.0341) -0.0649 (-0.1108, -0.0190)

76 -8.8047 -0.0133 (-0.0596, 0.0331) -0.0680 (-0.1145, -0.0215)

77 -8.7796 -0.0174 (-0.0628, 0.0281) -0.0701 (-0.1161, -0.0241)

78 -8.7581 -0.0187 (-0.0640, 0.0267) -0.0720 (-0.1177, -0.0264)

78 -8.7393 -0.0151 (-0.0614, 0.0312) -0.0688 (-0.1155, -0.0221)

710 -8.7226 -0.0228 (-0.0696, 0.0241) -0.0356 (-0.0831, 0.0118)

P a ram e te r TYue

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

P 0.07 3.129x10-= 1.93x10-= 3.231x10-= 2.01x10-=

71 -9.2000 0.2493 0.0165 0.2497 0.0162

7a -9.0019 0.2490 0.0155 0.2560 0.0162

73 -8.9237 0.2458 0.0157 0.2561 0.0163

74 -8.8728 0.2652 0.0165 0.2747 0.0171

75 -8.8349 0.2709 0.0163 0.2778 0.0170

76 -8.8047 0.2790 0.0172 0.2858 0.0178

77 -8.7796 0.2684 0.0166 0.2794 0.0175

78 -8.7581 0.2677 0.0163 0.2755 0.0168

79 -8.7393 0.2792 0.0178 0.2883 0.0187

710 -8.7226 0.2854 0.0180 0.2937 0.0186

Table B.3: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and aw  =  1-5 and erg =  8.0 using ‘adapted 
Finkelstein' with a single continuous repeated measurement with 10% data missing 
via a MCAR process under two different situations for the assessment of the 
intervEil containing the event of interest using imputation of the last measurement.
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P a ra m e te r True
Value

E V E N T
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for b ias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I. 
for bias

0 0.07 0.170x10-= (-0.322x10-=, 0.663 x 10-=) 1.612x10-= (1.113x10-=, 2.112 X 10-=)

71 -9.2000 -0.0274 (-0.0713, 0.0166) -0.0145 (-0.0588, 0.0297)

7a -9.0019 -0.0110 (-0.0549, 0.0329) -0.1078 (-0.1525, -0.0630)

73 -8.9237 -0.0165 (-0.0601, 0.0270) -0.1227 (-0.1670, -0.0783)

74 -8.8728 -0.0047 (-0.0500, 0.0405) -0.1140 (-0.1602, -0.0678)

75 -8.8349 -0.0045 (-0.0502, 0.0412) -0.1253 (-0.1720, -0.0786)

75 -8.8047 -0.0063 (-0.0527, 0.0402) -0.1221 (-0.1689, -0.0753)

77 -8.7796 -0.0103 (-0.0558, 0.0353) -0.1273 (-0.1738, -0.0808)

78 -8.7581 -0.0114 (-0.0568, 0.0341) -0.1252 (-0.1713, -0.0791)

79 -8.7393 -0.0077 (-0.0541, 0.0388) -0.1144 (-0.1620, -0.0668)

710 -8.7226 -0.0155 (-0.0625, 0.0315) -0.0449 (-0.0929, 0.0312)

P a ram e te r T rue
Value

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

P 0.07 3.157x10-= 1.94x10-= 3.500x10-= 2.18x10-=

71 -9.2000 0.2517 0.0167 0.2547 0.0166

72 -9.0019 0.2508 0.0156 0.2719 0.0172

73 -8.9237 0.2462 0.0156 0.2703 0.0173

74 -8.8728 0.2664 0.0164 0.2902 0.0177

76 -8.8349 0.2714 0.0163 0.2985 0.0180

76 -8.8047 0.2802 0.0172 0.2995 0.0184

77 -8.7796 0.2696 0.0166 0.2969 0.0185

78 -8.7581 0.2684 0.0162 0.2917 0.0178

79 -8.7393 0.2803 0.0178 0.3072 0.0201

710 -8.7226 0.2872 0.0179 0.3013 0.0191

Table B.4: Comparison of bias and MSB &om simulations of a Weibull mortality 
process with shape parameter 1.15 and (Tiy =  1.5 and erg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 20% data missing 
via a MCAR process under two diSerent situations for the assessment of the 
interval containing the event of interest using imputation of the last measurement.

273



Param eter True

EVENT
INDEPENDENTLY

COLLECTED

Bing 95% C.I.
for bias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

P 0.07 -0.126x10-= (-0.622x10-=, 0.369 x 10"=) 4.536x10-= (4.023x10-= , 5.047 x 10-=)
-9.2000 -0.0024 (-0.0464, 0.0416) 0.0553 (0.0102, 0.1004)

72 -9.0019 0.0340 (-0.0100, 0.0779) -0.2527 (-0.2992, -0.2061)

73 -8.9237 0.0422 (-0.0012, 0.0856) -0.2817 (-0.3269, -0.2364)

74 -8.8728 0.0617 (0.0166, 0.1068) -0.2768 (-0.3244, -0.2292)

75 -8.8349 0.0659 (0.0205, 0.1114) -0.3017 (-0.3497, -0.2537)

78 -8.8047 0.0660 (0.0196, 0.1124) -0.2923 (-0.3408, -0.2437)

77 -8.7796 0.0637 (0.0184, 0.1090) -0.2936 (-0.3413, -0.2458)

78 -8.7581 0.0632 (0.0178, 0.1085) -0.2597 (-0.3072, -0.2122)

79 -8.7393 0.0683 (0.0218, 0.1147) -0.2070 (-0.2562, -0.1578)

710 -8.7226 0.0610 (0.0142, 0.1077) -0.0603 (-0.1103, -0.0102)

Param eter TYue

EVENT
INDEPENDENTLY

COLLECTED

MSE Standard Error 

of MSE

EVENT
DEPENDENTLY

COLLECTED

MSB Standard Error 
of MSE

P 0.07 3.193x10-= 1.97x10-= 5.461x10-= 3.24x10-=

71 -9.2000 0.2516 0.0164 0.2671 0.0172

73 -9.0019 0.2522 0.0157 0.3456 0.0207

73 -8.9237 0.2461 0.0154 0.3454 0.0218
74 -8.8728 0.2681 0.0165 0.3715 0.0227

75 -8.8349 0.2725 0.0160 0.3907 0.0242

76 -8.8047 0.2842 0.0177 0.3920 0.0244

77 -8.7796 0.2708 0.0168 0.3824 0.0241

78 -8.7581 0.2714 0.0164 0.3606 0.0226

78 -8.7393 0.2852 0.0180 0.3574 0.0232

710 -8.7226 0.2877 0.0177 0.3291 0.0208

Table B.5: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and aiy =  1.5 and erg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 50% data missing 
via a MCAR process under two digerent situations for the assessment of the 
interval containing the event of interest using imputation of the last measurement.
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P a ram e te r T rue

EVENT
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for b ias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for b ias

0 0.07 0.079 x lO -= (-0.413x10-=, 0.572 x 10-=) 0.139x10-= (-0.354x10-=, 0.633 x 10-=)

71 -9.2000 -0.0197 (-0.0635 , 0.0241) 0.0061 (-0.0377, 0.0498)

73 -9.0019 -0.0161 (-0.0600 , 0.0279) -0.0169 (-0.0609, 0.0270)

73 -8.9237 -0.0242 (-0.0679 , 0.0195) -0.0257 (-0.0696, 0.0182)

74 -8.8728 -0.0130 (-0.0584 , 0.0324) -0.0175 (-0.0631, 0.0280)

75 -8.8349 -0.0132 (-0.0591 , 0.0326) -0.0146 (-0.0605, 0.0313)

78 -8.8047 -0.0152 (-0.0617 , 0.0314) -0.0186 (-0.0652, 0.0279)

77 -8.7796 -0.0193 (-0.0650 , 0.0264) -0.0223 (-0.0682, 0.0235)

78 -8.7581 -0.0206 (-0.0662 , 0.0250) -0.0223 (-0.0680, 0.0233)

78 -8.7393 -0.0169 (-0.0635 , 0.0297) -0.0188 (-0.0653, 0.0277)

710 -8.7226 -0.0249 (-0.0720 , 0.0222) -0.0079 (-0.0553, 0.0395)

P a ram e te r TVue

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSB

0 0.07 3.151x10-= 1.96x10-= 3.163x10-= 1.97x10-=

71 -9.2000 0.2495 0.0168 0.2491 0.0166

78 -9.0019 0.2511 0.0158 0.2514 0.0160

73 -8.9237 0.2486 0.0159 0.2509 0.0160

74 -8.8728 0.2675 0.0166 0.2698 0.0168

78 -8.8349 0.2731 0.0167 0.2735 0.0167

76 -8.8047 0.2812 0.0173 0.2818 0.0175

77 -8.7796 0.2714 0.0169 0.2737 0.0170

78 -8.7581 0.2707 0.0166 0.2712 0.0165

78 -8.7393 0.2821 0.0181 0.2816 0.0182

710 -8.7226 0.2888 0.0183 0.2920 0.0185

Table B.6: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and =  1.5 and (Tg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 5% data missing 
via a MCAR process under two diEerent situations for the assessment of the 
interval containing the event of interest using linear interpolation imputation.
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P a ram e te r T rue

EVENT
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for bias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for b ias

0 0.07 -0.009 xlO -= (-0.500x10-=, 0.483 x 10-=) 0.123x10-= (-0.370x10-=, 0.616 X 10-=)

71 -9.2000 -0.0122 (-0.0559 0.0315) 0.0396 (-0.0040, 0.0833)

72 -9.0019 -0.0084 (-0.0523 0.0355) -0.0109 (-0.0550, 0.0331)

73 -8.9237 -0.0166 (-0.0602 0.0270) -0.0212 (-0.0651, 0.0227)

74 -8.8728 -0.0053 (-0.0505 0.0400) -0.0103 (-0.0559, 0.0353)

75 -8.8349 -0.0055 (-0.0513 0.0403) -0.0122 (-0.0580, 0.0337)

78 -8.8047 -0.0073 (-0.0537 0.0392) -0.0149 (-0.0613, 0.0316)

77 -8.7796 -0.0113 (-0.0568 0.0343) -0.0168 (-0.0627, 0.0292)

78 -8.7581 -0.0126 (-0.0581 0.0329) -0.0181 (-0.0637, 0.0274)

79 -8.7393 -0.0089 (-0.0555 0.0376) -0.0143 (-0.0611, 0.0324)

710 -8.7226 -0.0169 (-0.0639 0.0302) 0.0210 (-0.0264, 0.0684)

P a ram e te r T rue

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

0 0.07 3.138x10-= 1.93x10-= 3.153x10-= 1.94x10-=

71 -9.2000 0.2485 0.0166 0.2487 0.0161

72 -9.0019 0.2501 0.0156 0.2519 0.0159

73 -8.9237 0.2470 0.0157 0.2507 0.0158

74 -8.8728 0.2662 0.0164 0.2700 0.0166

75 -8.8349 0.2724 0.0164 0.2733 0.0165

76 -8.8047 0.2802 0.0172 0.2806 0.0174

77 -8.7796 0.2699 0.0166 0.2743 0.0171

78 -8.7581 0.2688 0.0163 0.2699 0.0164

79 -8.7393 0.2816 0.0179 0.2837 0.0182

710 -8.7226 0.2876 0.0181 0.2923 0.0182

Table B.7: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and dw" =  1.5 and erg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 10% data missing 
via a MCAR process under two diSerent situations for the assessment of the 
interval containing the event of interest using hnear interpolation imputation.
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P a ram e te r True

EVENT
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for b ias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

0 0.07 -0.277 xlO -= (-0.766x10-=, 0.213 X 10-=) 0.066x10-= (-0.429x10-=, 0.561 x 10"=)

71 -9.2000 0.0104 (-0.0332 0.0540) 0.1171 ( 0.0734, 0.1608)

72 -9.0019 0.0151 (-0.0286 0.0588) 0.0067 (-0.0377, 0.0511)

73 -8.9237 0.0068 (-0.0366 0.0502) -0.0066 (-0.0507, 0.0375)

74 -8.8728 0.0182 (-0.0269 0.0632) 0.0036 (-0.0422, 0.0495)

76 -8.8349 0.0181 (-0.0274 0.0637) -0.0064 (-0.0527, 0.0400)

76 -8.8047 0.0164 (-0.0298 0.0626) -0.0022 (-0.0487, 0.0443)

77 -8.7796 0.0128 (-0.0326 0.0581) -0.0066 (-0.0528, 0.0396)

78 -8.7581 0.0116 (-0.0338 0.0569) -0.0035 (-0.0493, 0.0423)

79 -8.7393 0.0153 (-0.0310 0.0617) 0.0088 (-0.0385, 0.0561)

710 -8.7226 0.0070 (-0.0398 0.0539) 0.0831 ( 0.0355, 0.1307)

P a ram e te r T u e

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  Error 
of MSE

EVENT
DEPENDENTLY

COLLECTED

MSE S ta n d a rd  E rro r 
of MSE

0 0.07 3.119x10-= 1.92x10-= 3.178X10-= 1.94x10-=

71 -9.2000 0.2465 0.0165 0.2619 0.0169

72 -9.0019 0.2484 0.0157 0.2563 0.0162

73 -8.9237 0.2447 0.0156 0.2525 0.0159

74 -8.8728 0.2642 0.0163 0.2731 0.0163

75 -8.8349 0.2696 0.0163 0.2792 0.0165

78 -8.8047 0.2777 0.0170 0.2804 0.0172

77 -8.7796 0.2675 0.0166 0.2772 0.0172

78 -8.7581 0.2674 0.0163 0.2727 0.0166

79 -8.7393 0.2794 0.0179 0.2909 0.0187

710 -8.7226 0.2852 0.0177 0.3014 0.0184

Table B.8: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and =  1.5 and erg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 20% data missing 
via a MCAR process under two diSerent situations for the assessment of the 
interval containing the event of interest using linear interpolation imputation.
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Param eter TYue

EVENT
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for bias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

P 0.07 -3.053 xlO -= (-3.545x10-=,-2.562 x 10-=) -1.146x10-= (-1.648x10-=,-0.644 x 10"=)

71 -9.2000 0.2443 ( 0.2011 , 0.2876) 0.5457 ( 0.5020, 0.5894)

79 -9.0019 0.2544 ( 0.2105 , 0.2982) 0.1807 ( 0.1345, 0.2269)

73 -8.9237 0.2490 ( 0.2055 , 0.2925) 0.1459 ( 0.1008, 0.1909)

74 -8.8728 0.2619 ( 0.2168 , 0.3071) 0.1525 ( 0.1053, 0.1998)

78 -8.8349 0.2629 ( 0.2173 , 0.3084) 0.1307 ( 0.0830, 0.1783)

78 -8.8047 0.2620 ( 0.2155 , 0.3085) 0.1434 ( 0.0951, 0.1916)

77 -8.779G 0.2596 ( 0.2140 , 0.3051) 0.1453 ( 0.0977, 0.1929)

78 -8.7581 0.2592 ( 0.2137 , 0.3046) 0.1852 ( 0.1382, 0.2322)

79 -8.7393 0.2638 ( 0.2174 , 0.3103) 0.2451 ( 0.1964, 0.2937)

710 -8.7226 0.2556 ( 0.2089 , 0.3023) 0.4062 ( 0.3569, 0.4555)

P a ram e te r True

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

P 0.07 4.065x10-= 2.44x10-= 3.405x10-= 2.03x10-=

71 -9.2000 0.3029 0.0197 0.5461 0.0288

72 -9.0019 0.3144 0.0199 0.3095 0.0184

73 -8.9237 0.3077 0.0187 0.2847 0.0173

74 -8.8728 0.3332 0.0201 0.3132 0.0190

75 -8.8349 0.3389 0.0197 0.3119 0.0179

76 -8.8047 0.3493 0.0214 0.3232 0.0196

77 -8.7796 0.3367 0.0207 0.3154 0.0198

75 -8.7581 0.3356 0.0201 0.3213 0.0189

75 -8.7393 0.3501 0.0214 0.3680 0.0218

710 -8.7226 0.3485 0.0203 0.4806 0.0261

Table B.9: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and (Tiy =  1.5 and erg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 50% data missing 
via a MCAR process under two diEerent situations for the assessment of the 
interval containing the event of interest using linear interpolation imputation.
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Param eter TVue

EVENT
INDEPENDENTLY

COLLECTED

Biag 95% C.I.
for biag

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

P 0.07 0.255x10-= (-0.232x10-=, 0,742 x 10-=) 0.133x10-= (-0.335x10-=, 0.602 x 10"=)

71 -9.2000 -0.0272 (-0.0711, 0.0167) 0.0011 (-0.0401, 0.0422)

72 -9.0019 -0.0297 (-0.0734, 0.0140) -0.0133 (-0.0553, 0.0287)

73 -8.9237 -0.0309 (-0.0749, 0.0132) -0.0210 (-0.0643, 0.0222)

74 -8.8728 -0.0350 (-0.0802, 0.0102) -0.0138 (-0.0575, 0.0300)

75 -8.8349 -0.0232 (-0.0688, 0.0223) -0.0129 (-0.0553, 0.0295)

78 -8.8047 -0.0389 (-0.0850, 0.0072) -0.0207 (-0.0644, 0.0231)

77 -8.7796 -0.0353 (-0.0804, 0.0098) -0.0261 (-0.0706, 0.0184)

75 -8.7581 -0.0308 (-0.0752, 0.0137) -0.0306 (-0.0749, 0.0138)

75 -8.7393 -0.0344 (-0.0806, 0.0119) -0.0115 (-0.0569, 0.0339)

710 -8.7226 -0.0432 (-0.0895, 0.0030) -0.0048 (-0.0494, 0.0398)

Param eter True

EVENT
INDEPENDENTLY

COLLECTED

MSE Standard Error 
of MSE

EVENT
DEPENDENTLY

COLLECTED

MSE S tandard Error 
of MSE

P 0.07 3.084x10-= 1.78x10-= 2.850x10-= 1.66x10-=

71 -9.2000 0.2514 0.0150 0.2198 0.0127

72 -9.0019 0.2488 0.0147 0.2293 0.0137

73 -8.9237 0.2533 0.0153 0.2430 0.0140

74 -8.8728 0.2664 0.0152 0.2489 0.0152

75 -8.8349 0.2698 0.0159 0.2337 0.0133

76 -8.8047 0.2774 0.0172 0.2488 0.0150

77 -8.7796 0.2656 0.0157 0.2579 0.0151

75 -8.7581 0.2574 0.0146 0.2562 0.0151

79 -8.7393 0.2790 0.0163 0.2682 0.0154

710 -8.7226 0.2800 0.0174 0.2586 0.0152

Table B.IO: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and criy =  1.5 and (Tg =  8.0 using 'adapted 
Finkelstein' with a single continuous repeated measurement with 5% data miss­
ing via a MCAR process under two digerent situations for the assessment of the 
interval containing the event of interest using multiple imputation with gve im­
putations for each missing observation.
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Param eter T rie

EVENT
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for bias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

P 0.07 0.053x10-= (-0.541x10-=, 0.436 x 10-=) 0.350x10-= (-0.113x10-=, 0.814 X 10-=)

71 -9.2000 0.0075 (-0.0369, 0.0519) 0.0056 (-0.0359, 0.0470)

72 -9.0019 -0.0024 (-0.0465, 0.0418) -0.0266 (-0.0699, 0.0167)

73 -8.9237 -0.0062 (-0.0512, 0.0388) -0.0274 (-0.0693, 0.0144)

74 -8.8728 -0.0011 (-0.0455, 0.0433) -0.0319 (-0.0752, 0.0115)

75 -8.8349 -0.0040 (-0.0495, 0.0415) -0.0321 (-0.0749, 0.0108)

78 -8.8047 0.0023 (-0.0440, 0.0486) -0.0376 (-0.0820, 0.0068)

77 -8.7796 -0.0023 (-0.0484, 0.0438) -0.0301 (-0.0735, 0.0133)

78 -8.7581 -0.0051 (-0.0505, 0.0403) -0.0404 (-0.0835, 0.0027)

75 -8.7393 -0.0102 (-0.0575, 0.0371) -0.0285 (-0.0721, 0.0150)

710 -8.7226 -0.0174 (-0.0634, 0.0286) -0.0026 (-0.0470, 0.0418)

P a ram e te r T rue

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

MSB S ta n d ard  E rro r 
of MSE

P 0.07 3.099x10-= 1.93x10-= 2.803x10-= 1.78x10-=

71 -9.2000 0.2562 0.0160 0.2234 0.0145

72 -9.0019 0.2531 0.0157 0.2444 0.0153

73 -8.9237 0.2627 0.0172 0.2279 0.0140

74 -8.8728 0.2563 0.0153 0.2451 0.0171

75 -8.8349 0.2693 0.0164 0.2393 0.0144

76 -8.8047 0.2788 0.0177 0.2576 0.0166

77 -8.7796 0.2757 0.0167 0.2455 0.0160

78 -8.7581 0.2679 0.0168 0.2431 0.0145

75 -8.7393 0.2903 0.0185 0.2475 0.0160

710 -8.7226 0.2754 0.0167 0.2566 0.0159

Table B .ll:  Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and aiy =  1.5 and (Tg =  8.0 using 'adapt­
ed Finkelstein' with a single continuous repeated measurement with 10% data 
missing via a MCAR process under two diEerent situations for the assessment of 
the interval containing the event of interest using multiple imputation with hve 
imputations for each missing observation.
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P a ram e te r T rue

EVENT
INDEPENDENTLY

COLLECTED

Bias 95% C.I.
for b ias

Bias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

P 0.07 -0.492x10-= (-0.944x10-=,-0.039 x 10-=) 0.149x10-= (-0.357x10-=, 0.656 x 10 '= )

71 -9.2000 0.0273 (-0.0147, 0.0693) 0.1067 (0.0623, 0.1510)

72 -9.0019 0.0244 (-0.0164, 0.0652) 0.0005 (-0.0452, 0.0463)

73 -8.9237 0.0308 (-0.0097, 0.0712) -0.0073 (-0.0525, 0.0380)

74 -8.8728 0.0335 (-0.0094, 0.0764) -0.0161 (-0.0627, 0.0306)

75 -8.8349 0.0331 (-0.0099, 0.0761) -0.0066 (-0.0548, 0.0416)

76 -8.8047 0.0340 (-0.0096, 0.0776) -0.0191 (-0.0671, 0.0288)

77 -8.7796 0.0278 (-0.0146, 0.0702) -0.0160 (-0.0639, 0.0318)

78 -8.7581 0.0279 (-0.0149, 0.0706) -0.0204 (-0.0669, 0.0261)

79 -8.7393 0.0349 (-0.0083, 0.0780) -0.0011 (-0.0491, 0.0469)

710 -8.7226 0.0283 (-0.0152, 0.0718) 0.0741 (0.0259, 0.1224)

P a ram e te r T u e

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

P 0.07 2.684x10-= 1.64x10-= 3.336x10-= 1.88x10-=

71 -9.2000 0.2301 0.0145 0.2670 0.0161

19 -9.0019 0.2168 0.0132 0.2723 0.0156

73 -8.9237 0.2135 0.0133 0.2660 0.0156

74 -8.8728 0.2402 0.0147 0.2829 0.0165

75 -8.8349 0.2412 0.0151 0.3023 0.0177

76 -8.8047 0.2479 0.0155 0.2991 0.0172

77 -8.7796 0.2343 0.0146 0.2973 0.0178

78 -8.7581 0.2378 0.0145 0.2816 0.0158

79 -8.7393 0.2432 0.0154 0.2988 0.0170

710 -8.7226 0.2467 0.0160 0.3085 0.0182

Table B.12: Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape pareimeter 1.15 and (T;y =  1.5 and erg =  8.0 using 'adapt-
ed Finkelstein’ with a single continuous repeated measurement with 20% data 
missing via a MCAR process under two different situations for the assessment of 
the interval containing the event of interest using multiple imputation with ffve 
imputations for each missing observation.
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P a ram e te r T u e

EVENT
INDEPENDENTLY

COLLECTED

Biag 95% C.I.
for bias

B ias

EVENT
DEPENDENTLY

COLLECTED

95% C.I.
for bias

P 0.07 -1.665x10-= (-2.149x10-=,-1.180 X 10-=) -0.882x10-= (-1.367x10-=,-0.397 x lQ-=)

71 -9.2000 0.1260 (0.0836, 0.1684) 0.5073 (0.4641, 0.5504)

79 -9.0019 0.1437 (0.1004, 0.1871) 0.1727 (0.1276, 0.2177)

73 -8.9237 0.1207 (0.0767, 0.1648) 0.1290 (0.0845, 0.1736)

74 -8.8728 0.1332 (0.0884, 0.1780) 0.1311 (0.0863, 0.1760)

75 -8.8349 0.1386 (0.0937, 0.1835) 0.1070 (0.0628, 0.1511)

78 -8.8047 0.1373 (0.0922, 0.1824) 0.1199 (0.0735, 0.1663)

77 -8.7796 0.1314 (0.0860, 0.1769) 0.1206 (0.0740, 0.1672)

78 -8.7581 0.1343 (0.0897, 0.1788) 0.1503 (0.1053, 0.1953)

79 -8.7393 0.1326 (0.0871, 0.1781) 0.2135 (0.1655, 0.2614)

710 -8.7226 0.1268 (0.0812, 0.1724) 0.3670 (0.3198, 0.4142)

P a ram e te r T rue

EVENT
INDEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

EVENT
DEPENDENTLY

COLLECTED

M SE S ta n d a rd  E rro r 
of MSE

P 0.07 3.326x10-= 2.12x10-= 3.132x10-= 1.91x10-=

71 -9.2000 0.2492 0.0164 0.4990 0.0271

72 -9.0019 0.2651 0.0167 0.2937 0.0180

73 -8.9237 0.2664 0.0169 0.2744 0.0182

74 -8.8728 0.2784 0.0181 0.2785 0.0168

75 -8.8349 0.2806 0.0175 0.2647 0.0166

78 -8.8047 0.2832 0.0183 0.2940 0.0185

77 -8.7796 0.2856 0.0177 0.2966 0.0179

78 -8.7581 0.2761 0.0178 0.2856 0.0184

79 -8.7393 0.2863 0.0179 0.3437 0.0208

710 -8.7226 0.2863 0.0179 0.4238 0.0237

Table B.13; Comparison of bias and MSE from simulations of a Weibull mortality 
process with shape parameter 1.15 and =  1.5 and ag =  8.0 using 'adapt- 
ed Finkelstein’ with a single continuous repeated measurement with 50% data 
missing via a MCAR process under two different situations for the assessment of 
the interval containing the event of interest using multiple imputation with ffve 
imputations for each missing observation.
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A p p e n d ix  C

T h e  lo g -lik e lih o o d  and  its  
d er iv a tiv es for u se  in  th e  ord in a l 
variab le  m u ltip le  im p u ta tio n  
p ro ced u re

The multiple imputation for the four category ordinal variable was based on a 

transition proportional odds regression model (Diggle, Liang and Zeger, 1994) 

which is a special case of the proportional odds model (McCuUagh, 1980).

The form of the transition proportional odds model is:

=  log
P i, îj — k I ^ij—1 —
P  ^  k I Z ij—i =  2 , j_i) j-1, (C.I)

where =

=  ( ^ 1 , ^ 2 , ^ 3 , T i l ,  T i2 , T i3 , T2 1 , ?22 , T2 3 , T3 1 , T3 2 , 7 3 3 )

and Z,, is the ordinal variable for the individual at the start of the year.
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Using an extension of the notation used in McCuUagh (1980), it is convenient 

to let

P  — Zij j Zij—i =  z-ij—i) =  7Tk(z,j_i), k =  1 , . . . ,  4

represent the probability that the ordinal variable for the individual takes the 

value A; at the start of the j  +  l̂ :' year, given that it takes the value at 

the start of the j*:' year and to let 7T!(z,j_i), A; =  1, . . . ,  4,

represent the corresponding cumulative probabilities. Equation C.I can then be 

written:

i j —l m

The contribution from observation on the individual at the start of the j  + 

year to this likelihood function, as given in McCuUagh (1980) and based on the 

product of three components is, on supressing the conditioning on z, j_i from the

notation.

72/ \ 72 / \73/ \ 73

{(7 3)''̂ " (1 - 7 3)' } .

The Urst component represents the probabiUty, given that the Urst two

cells divide in the ratio z'j 2  ^  1 = 1 - the general proportional odds mod-

el as proposed by McCuUagh (1980), this partitioning is more appropriate as each
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‘observation’ is a multinomial one and so the random variables representing the 

cumulative observations are, unhke the in this special case, not restricted to 

the values 0 and 1. The second and third components represent, respectively, the 

probability, given z*j_i3 , that the third cell and the first two cells taken together 

divide in the ratio z*j 3 — z*j 2 ■ g and the probability tha t the fourth cell and 

the first three cells taken together divide in the ratio z*̂  ̂ — z*jg : z*jg .

Defining

and

7k4-l=  lo g { l +  exp((;6k)} =  log
(7&+1 -  7 k)

the contribution from the observation on the individual at the start of the 

j  +  I*:" year to the log-likelihood function is

-  zZj3g(<̂ )) + (<j3«A3 -  (̂(̂ s)) -

Differentiating this log-likelihood contribution with repect to 6_ gives

d l i j    d l i j  { d ( j)m  d 'Y rn  , d 4 ^ m  d ^ m + l  d f j i j  m + 1 i

For the transition proportional odds model used here.
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i m  i  m + 1  a i  ^  1 1 • • • > 3  .

where

[ lo g jl +  e*"}]

So

dlij * * 0
=  ::ijm -  'Z'üm-H -

1 -I- e^

Now, as <Am =  l o g i t ( : ^ ) ,   ̂ m = l ,  . . . , 3

this can be written in the alternative form

dlij * * 7m

It is this last form tha t was used in the Fortran subroutine written for implement­

ing the likelihood estimation of the parameters of the transition proportional odds 

model in Chapter 4.

Differentiating (pm partially with respect to 'jm gives

7m+l
d '^ r n  7m (7m+l 7m)
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and sinnlarly with respect to gives

d ')m + \ ')m + l  T m

Differentiating 'ym with respect to gives

dim
9*7, ( 1  +  '

and differentiating 7^+1 with respect to 77,;^+! gives

d7m+i ^

From (C.I),

3

V i j k  =  ' ^ r n k Z i j ^ i j n

and

^ I 1 if T = m
dOr I 0  otherwise

^  I if r  -  Ml

I 0 otherwise
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Similarly,

_ I 1 if r = m + 1
0 otherwise

and

_ I <j-ip :f r = m + 1
0  if otherwise

The log-likelihood function and its first partial derivatives are then obtained by 

summing these contributions over all observed screens for all the individuals. The 

NAG subroutine E04KCF used in the maximisation process used the value of 

the log-likelihood function and the values of its first, but not its second, partial 

derivatives.

It has been shown (McCuUagh (1980)) th a t the derivative of the log-likelihood 

with respect to the parameter vector 9 given in (C.2) can be written as

m=l

where =  I f c  ■ w tZ i =

} ■

Similarly, the contribution to the (rsy^ element of the Fisher information matrix 

from the individual at the start of the j  +  1 *̂* year was shown to be given by
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d'^l - \  ^
■A-ijra ~  — E  { Qj^ Q!^ j  ~  y Z  Vrn^QiimrQijms •

W hilst the Fisher information was not used in the NAG subroutine to maximise 

the log-likelihood, its inverse was used as an approximation to the variance- 

covariance matrix of the vector of parameter estimates.
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