Engineering Sustainability Through Language

Ruzanna Chitchyan
Department of Computer Science
University of Leicester
Leicester, UK
Email: rc256 @leicester.ac.uk

Abstract—As our understanding and care for sustainability
concerns increases, so does the demand for incorporating these
concerns into software. Yet, existing programming language
constructs are not well-aligned with concepts of the sustainability
domain. This undermines what we term technical sustainability
of the software due to (i) increased complexity in programming of
such concerns and (ii) continuous code changes to keep up with
changes in (environmental, social, legal and other) sustainability-
related requirements. In this paper we present a proof-of-concept
approach on how technical sustainability support for new and
existing concerns can be provided through flexible language-level
programming. We propose to incorporate sustainability-related
behaviour into programs through micro-languages enabling such
behaviour to be updated and/or redefined as and when required.

I. INTRODUCTION

Presently, there is no single, universally accepted definition
for technical sustainability of software. For instance, [13]
states that: “Technical sustainability refers to longevity of
information, systems, and infrastructure and their adequate
evolution with changing surrounding conditions”. On the other
hand, the ICSE-SEIS 2015 call for papers [8] states that it is
“... software that can evolve, adapt to changing requirements,
adapt to ever-changing society”. Both these definitions use
the terms ‘“evolve” and “adapt” to subsume the numerous
software engineering characteristics. These characteristics, to
name a few, include: adaptability, maintenance, innovation,
reuse, obsolescence, etc.

Given the present state of software engineering research and
practice, no single technique can possibly address all technical
sustainability issues of software. But what are the impediments
to its evolution and adaptation? If we consider the difficulties
faced when integrating fast changing requirements for software
in society, we observe drivers of un-sustainability. Although
the following drivers equally apply to other fast changing
requirements, here we focus on the sustainability domain itself,
i.e., environmental, social, and human sustainability issues:

« Construct Asymmetry: The existing programming con-
structs are first and foremost computational by nature
leading to a disconnect between societal sustainability
properties and the constructs used to operationalise them.
This asymmetry increases programming complexity with
regards to sustainability requirements (negative social
impact) and the effort spent on addressing them within
the software (negative economic impact).

Walter Cazzola
Department of Computer Science
Universita degli Studi di Milano

Milan, Italy
Email: cazzola@di.unimi.it

Awais Rashid
School of Computing and Communications
Lancaster University
Lancaster, LA1 4WA, UK
Email: marash@comp.lancs.ac.uk

« Change Integration: Sustainability requirements change
over time since systems operate in constantly changing
contexts. As the regulatory environment and societal un-
derstanding of sustainability issues change, these changes
need to be integrated into existing software.

+ Emergent Concepts: With the improved understanding
of sustainability issues and continuously modified targets,
new concerns frequently come to the fore. Incorporating
these new requirements into the software is challenging.
For instance, the recent EU regulation on power use
for vacuum cleaners has led to full review of both the
hardware and software components of these appliances.

In this paper, we present the first step towards countering

these drivers — a flexible, micro-language based approach. A
micro-language is essentially a very small language — very
much like a domain-specific language (DSL) — dedicated to
expression of a single aspect of a domain, such as battery
life in (environmental) sustainability domain. Micro-languages
can be used to (i) incorporate domain concerns, (ii) manage
changes/adaptation of such concerns, and (iii) handle emergent
ones that could not be foreseen at the conception stage of the
software. The underlying language implementation is such,
that, when the semantics of a given domain concern, and hence
the micro-language, change, these can be updated without
any side effects on other micro-languages. Thus, the language
environment allows each language element to be updated in
a localised fashion, with all the change effects absorbed into
that same element. Thus, the contributions of this work to
furthering technical sustainability are, twofold:

o Illustration of how concepts from the wider sustainability
domain can be meaningfully represented and integrated
into a new or evolving code base, and

« Demonstrating that, the improved technical sustainabil-
ity, can also better support other sustainability-related
behaviour (i.e., behaviour realising sustainability needs).

In the following, Section II motivates the need for micro-
languages. Section III outlines the language environment we
use as a proof of concept implementation. Section IV presents
two sustainability scenarios and their implementation in our
approach. Section V concludes with a discussion.

II. MOTIVATING MICRO-LANGUAGE USE

Existing research in programming languages strives for
improved modularity to limit change ripple effects and sep-

arate concerns. The limitations of object-oriented languages
with regards to scattering of broadly-scoped properties are
well-documented [10]. Though paradigms such as aspect-
oriented programming aim to address these limitations, the
noted problems of construct asymmetry and change integration
cannot be readily addressed — the well-known problem of
coarse granularity of pointcuts will either limit the approach to
code where input and output operations are confined to specific
methods or force to restructure the code to fit the granularity
limit [14]. Other research focused on aligning domain and
programming language concepts, e.g., [12], [15] provides a
valuable starting point for research into tackling the technical
sustainability issues highlighted above.

A significant research has already been done on numer-
ous topics related to software and sustainability. Examples
include: systems for minimising energy use and emissions in
data centres [4], energy-efficient algorithms to minimise CPU
cycles [7], tools for ultra-large-scale community engagement
in design of socio-technical systems [5] and study of software
impact on social sustainability [1]. However, to date, the
changing and emergent nature of sustainability concerns and
its impact on technical sustainability of software has not been
adequately researched. Nor have there been any approaches
that explicitly account for the asymmetry between sustainabil-
ity concepts and programming language constructs.

Recent studies [6] suggest that nearly 80% of changes in
software are evolutionary, i.e., not caused by bug fixes. Such
changes arise due to new and changed requirements and ne-
cessitate re-writing of (parts of) the software code, increasing
its complexity and reducing understandability. As discussed
above, sustainability concerns pose many new, rapidly chang-
ing requirements. Using micro-languages to capture and codify
sustainability concerns would ease the task of programming to
such requirements through better cognitive alignment of the
available language constructs with the programming task.

A single DSL would not be well-suited to addressing the
challenges as the core concepts of the sustainability domain
are still emerging. Committing to any one DSL will still
leave open the challenge of frequent code re-writes as well as
frequent changes to the semantics of the language elements.
In order to utilise the advantage of conceptual alignment
afforded by DSLs and yet avoid frequent code re-write due to
evolution of the element semantics, a set of micro-languages,
as envisaged in our approach, provides an effective solution.
A micro-language captures semantics of a single concern and
can fluently evolve as that concern does, without negatively af-
fecting the other, related micro-languages. Thus, both changes
to semantics of a concern, and hence the micro-language, as
well as emergent concerns can be supported.

III. NEVERLANG LANGUAGE ENVIRONMENT

To demonstrate the feasibility of our approach, we utilise
the Neverlang environment [2], [3], [16] which considers
language units as first-class concepts. In Neverlang, language
components are developed as separate units that can be com-
piled and tested independently, enabling developers to share

module StateModule {
reference syntax
State g StateName "="|Expr|

role (execution)

o { newstate state, action); }.
}

}

slice State {
concrete syntax from StateModule
module StateModule with role execution

}

language HooverlLang {
slices Program StateDecl EventDecl TransDecl StateList State
StateName EventList Event EventName Expr BExpr TransList
Transition Support
roles syntax < execution

}

Listing 1: Slice syntax, semantics for the state concept and
hoover language configuration.

and reuse these units across different language implementa-
tions. Here the base unit is the module (Listing 1). A module
may contain a syntax definition or a semantic role. A role
defines actions that are to be executed when some syntax is
recognised, as prescribed by the syntax-directed translation
technique. Syntax definitions are portions of BNF grammars,
represented as sets of grammar rules or productions. Semantic
actions are defined as code snippets that refer nonterminals
in the grammar. Syntax definitions and semantic roles are
tied together using slices. Thus, module StateModule in
Listing 1 declares a reference syntax for the state concept
(used by the Hoover example in Section IV-1) and actions are
attached to the nonterminals on the right of the production.
Semantic actions are attached to nonterminals by referring
to their position in the grammar: numbering starts with O
from the top left to the bottom right, so the first State is
referred to as 0, StateName as 1, and the Expr is referred
as 2. The slice State declares that we will be using this
syntax (which is the concrete syntax) in our language, with
those particular semantics. Finally, the language descriptor
(Listing 1) indicates which slices are to be composed to-
gether to generate the language interpreter or the compiler.
Composition in Neverlang is, therefore, twofold: (1) between
modules, which yields slices, and (2) between slices, which
yields a language implementation. The composition result is
independent of the order of specified slices. The grammars are
merged to generate the complete language parser. Semantic
actions are performed with respect to the parse tree of the
input program; roles are executed in the order specified in the
roles clause of the language descriptor. Please see [3] for a
more detailed description of Neverlang’s syntax. Although we
use Neverlang, there are also other frameworks able to support
seamless sustainability at the language level, e.g., Lisa [11],
StrategoXT/Spoofax [9] and Silver [17]. Lisa provides an
inheritance-based language composition mechanism that is
less flexible than Neverlang’s but still efficient. Spoofax has a
granularity similar to that of Neverlang, but does not support

separate compilation and any extension requires recompilation
of the whole compiler. Silver is functional by nature and
provides flexibility similar to Neverlang.

IV. SEAMLESS LANGUAGE SUPPORT FOR SUSTAINABILITY

We demonstrate our approach to technical sustainability via
two scenarios: (i) change to micro-language semantics, and (ii)
extension of a general purpose language’s (GPL) semantics.

1) Technical Sustainability via Change to DSLs semantics:
Consider a hoover controller designed to turn the hoover on
and off when the switch is turned to “ON”/ “OFF” respectively.
A new requirement is added later stating that the controller
should switch the hoover off when it is not in use (e.g.,
when accidentally switched on by a toddler), to reduce energy
waste and emissions. When in use the hoover should be in
motion; if it is not in motion for 10 sec., it is considered not
in use. Instead of having to modify the controller program
with condition checks for motion monitoring, we propose to
initially implement and then re-define the semantics of the
“turn on” construct through a micro-language. This enables
realising the newly added requirement, leaving the controller
code unchanged.

The behaviour of a hoover (or any other electrical household
appliance) can be easily modelled with a state-machine: it has
some feasible states (e.g., on, off, etc.) and some transitions
that, under given events (e.g., clicks on a button), move the ap-
pliance from one feasible state to another. Such behaviour can
be implemented using a simple event-based micro-language as
in the code snippet in Listing 2.

states
on
off

events
click = get_click()

turn_on()
turn_off()

transitions
on { click=-off }
off { click=on }

Listing 2: Hoover’s Code

This snippet realises the previously described naive on/off
behaviour (Fig. 1(a)). Supporting the behaviour of “turning
the hoover off when inactive for a given period” in this event-
based language would require (Fig. 1(b)) addition of new:

« state stand-by to move to when hoover is on but inactive,

« event time-elapsed which is triggered when the specified

number of seconds have elapsed without activity,

o transition from the stand-by state to off state when the

time-elapsed event occurs, and

« events handling activity/inactivity of the hoover.

Although such adaptation is quite simple and general, it is
also very invasive and thus not advisable if it is to be applied
to a large set of various types of electronic appliances. The
same level of adaptation can be achieved when acting at the
language implementation level by changing the meaning of
the language constructs. Here we need to: (i) collapse the two
“active” states (i.e., on and stand-by) into one (i.e., on) and
(i1) change the meaning of “being in a such a state”.

module StateModule {
reference syntax {
State <— StateName "="

}

role(execution) {
0 .{ newstate($l.state, $2.action); }.
2 .{ if ($1.state == "On")
$2.action = add_code($2.action,
"counter = System.currentTimeMillis()")

Expr ;

Listing 3: New version of the State module.

In short, the turn_on() operation will not only turn on the
appliance but also store when it is turned on. Two (internal)
events: activity and time_elapsed are added (cf. Fig. 1(c)), as
well as transitions from the state on to the state on (guarded
by activity) and to state off (guarded by time_elapsed). The
former event will reset the stored time as a consequence of
some activity, while the latter will check the current time
against the stored time to detect if it is time to turn the
appliance off due to prolonged inactivity.

To understand the entirety of the change, compare Listings 1
and 3. Essentially, we extend actions associated with the state
on when it is initially declared. The original action is stored
in the attribute action and calculated during the evaluation of
the Expr concept (i.e., the corresponding slice); in the State
slice we add an instruction to save the current time to it before
creating the state with the associated action. Note, that due to
a peculiarity of Neverlang, the semantic action associated with
position 2 is evaluated before that of position 0.

2) Technical Sustainability via Extension to GPLs: Con-
sider a new requirement aimed at extending phone battery
life, stating that when phone battery is low a less resource-
intensive mode (e.g., with darker screen, no internet access,
etc.) of the application should be used. Instead of extensively
changing the application to create various modes, we propose
to extend the programming language by introducing a battery
construct through a micro-language leaving all else unchanged.
This construct will permit to dynamically switch through the
different code implementations according to the battery level.

The implementation is shown in Listing 4. Here the new
statement smoothly composes with any language that supports
the statement concept (represented by the Stmt nonterminal)
and the code block concept (represented by the Block nonter-
minal). These two concepts are provided by other slices and
compose on the corresponding nonterminals. So, the battery
statement can be used where a statement can be used including
a code block. Basically, the execution role has to determine
which piece of code should be executed comparing the current
battery charge to the ranges specified for the various branches.

V. DISCUSSION AND CONCLUSIONS

The two scenarios above highlight various benefits of the
micro-language approach with regards to technical sustainabil-
ity of software. Firstly, it preserves program clarity throughout

time_elapsed

(a) without stand-by

Fig. 1.

module BatteryModule {
reference syntax {
Stmt «— BatteryBranch ;
BatteryBranch <— Battery ;
BatteryBranch <— Battery "(O" BatteryBranch ;
Battery < "battery" " (" Number ")" "—" Block ;
}

role(execution) {
0 .{ $0.code = $1.code }.
2 .{ $2.level = $3.number; $2.code = $3.code; }.
4 .{ int bl = getBattery();
if (bl<=$5.level and bl1>$6.level) {
$4.code = $5.code; $4.level=$5.level;
} else { $4.code = $6.code; $4.level=%$6.1level; }
7 .{ $7.level = $8.number; $7.code = $9.code; }.
}
}

Listing 4: Neverlang Battery statement implementation.

evolution. The language implementation adaptation has the
benefit of changing only the language semantics, preserving
its syntax. Therefore, any program written in the language
remains unaltered and benefits from the new behaviour. Also,
extensions can be easily introduced by affecting only the
components that implement the related concepts.

Secondly, it supports seamless alignment with domain con-
structs providing the ability to define a language element
that directly aligns with sustainability concepts and can be
realigned as these concepts evolve. Finally, it reduces code
repetition and maintenance costs by moving the behaviour re-
quired by the sustainability semantics into language constructs.

The work presented here contributes towards technical sus-
tainability research by addressing such characteristics as: (i)
Adaptability: micro-languages facilitate unimpeded evolution
of both concerns and language semantics; (ii) Maintenance:
the narrow scope of a micro-language localises changes within
this scope, reducing ripple effects; (iii) Innovation and
Understandability: each new concern can be equally well-
supported and directly aligned with the domain; (iv) Obsoles-
cence: as software can evolve without affecting hardware and
also accommodate hardware change.

While, this paper largely focused on technical sustainability
of software, its application examples are from the wider
sustainability domain (i.e., reduced emissions and resource

(b) with stand-by

nacyy, vity

(c) with “active” nodes merged

Hoover’s behaviour

use), showing that wider sustainability too is facilitated by
this work. Indeed, since it directly maps the vocabulary of
the sustainability domain onto that of software development,
it also allows for the more direct expression of relevant
behaviour in programs. Thus, any concept and its behaviour
perceived important for sustainability (e.g., privacy, health,
etc.) can be directly captured into its own micro-language.
As for further work, studies are needed to understand the
overhead arising from design of multiple micro-languages.
Furthermore, the risk of mistaken use of language constructs
needs to be analysed, i.e., when using the same language
element to convey evolving semantics and behaviour, one may
risk confusion as to which version of semantics one is using.

REFERENCES

[1] M. Al Hinai and R. Chitchyan, Social Sustainability Indicators for Soft-
ware: Initial Review, Proc. RE4SuSy’ 14, pp. 21-27, 2014.

[2] W.Cazzola, Domain-Specific Languages in Few Steps: The Neverlang
Approach, Proc. SC’12, LNCS 7306, pp. 162-177, 2012.

[3] W.Cazzola and E. Vacchi, Neverlang 2: Componentised Language De-
velopment for the JVM, Proc. SC*13, LNCS 8088, pp. 17-32, 2013.

[4] S.Garg, C.S.Yeo, A.Anandasivam, R.Buyya, Environment-Conscious
Scheduling of HPC Applications on Distributed Cloud-Oriented Data
Centers, J. of Parallel and Distributed Computing 71(6): 732-749, 2011.

[5] P.Greenwood, A.Rashid, J. Walkerdine, UDesignlt: Towards Social Me-
dia for Community-Driven Design, ICSE NIER, pp. 1321-1324, 2012.

[6] G.Eick, T.L.Graves, A.F. Karr, J.S.Marron, A.Mockus, Does Code
Decay?, IEEE Trans. SW Eng., 27(1): 1-12, 2001.

[71 F. Héliot, Near-Optimal Energy-Efficient Joint resource Allocation for
Multi-Hop MIMO-AF Systems, Proc. PIMRC, IEEE, pp. 943-948, 2013.

[8] ICSE-SEIS 2015: SEIS Track Call for Contributions, URL:
http://2015.icse-conferences.org/call-dates/call-for-contributions/seis.

[9] L.Kats, E. Visser, The Spoofax Language Workbench: Rules for Declar-
ative Specification of Languages and IDEs, OOPSLA’10, pp. 444-463.

[10] G.Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-
ingtier, J. Irwin, Aspect-Oriented Programming, ECOOP’97, pp 220-242

[11] M.Mernik, M. Leni¢, E. AvdicauSevié, V. Zumer, LISA: An Interactive
Environment for Programming Language Development, CC’02, 2002.

[12] A.Moreira, A.Rashid, J. Araujo, Multi-Dimensional Separation of Con-
cerns in Requirements Engineering, Proc. RE 2005, pp. 285-296

[13] B. Penzenstadler, Infusing Green: Requirements Engineering for Green
In and Through Software Systems, Proc. RE4SuSy’ 14, CEUR pp. 44-53.

[14] A.Rashid, R. Chitchyan, Persistence as an Aspect, AOSD’03, 120-129.

[15] P.L.Tarr, H. Ossher, W. H. Harrison, S. M. Sutton Jr., N Degrees of Sepa-
ration: Multi-Dimensional Separation of Concerns, ICSE, 107-119, 1999.

[16] E.Vacchi, W.Cazzola, Neverlang: A Framework for Feature-Oriented
Language Development, Comp. Lang., Systems & Struct. To appear.

[17] E.van Wyk, D.Bodin, J. Gao, L.Krishnan, Silver: An Extensible At-
tribute Grammar System, Science of Comput. Programming: 75(1-2), pp.
39-54, 2010.

