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Assessment of electrical resistivity properties through development of three-dimensional

numerical models

Ceri Gwyn Williams 

Abstract

An understanding of the way in which electrical currents flow through geological materials 
enables pertinent problems to be addressed, for example: determination of oil saturation; 
prediction and monitoring of fluid flow; fracture characterisation; assessment of geological 
structure in a general sense. The objective of this work is to simulate current flow and 
electrical resistivity measurements made downhole and at the earth’s surface in three 
dimensions. This enhances interpretation by enabling the geological controls on field 
measurements of resistivity properties to be assessed. In addition, a basis for a wide range of 
applications using quantitative analysis of electrical measurements is provided.

A finite difference numerical model based on the direct solution of a generalised form of 
Poisson’s equation is developed. Both electric potential and current flow are readily simulated 
on a rectangular three-dimensional grid. Arbitrary resistivity distributions and electrical 
anisotropy can be accommodated. The model grid is advantageously analogous to (and 
therefore supersedes) resistor networks previously built to simulate resistivity logging tools.

The model is developed through three applications. The simulation of a novel multi- 
electrode focused surface array is used to assess and interpret field measurements. The Ocean 
Drilling Program High Temperature (ODPHT) tool, a new downhole focused resistivity 
device, is modelled on an adapted cylindrieal grid in order to calculate its geometric factors. 
Finally, a generalised model of a downhole electrical imaging device based on 
Schlumberger’s Formation MicroScanner is created. Current flow is simulated from an array 
of 5 mm diameter electric buttons that are passively focused into the formation. This is used to 
generate simulated electrical images. The numerical model is verified by comparison with 
field data in well-constrained situations.

Electrical measurements and current flow patterns have been investigated in three 
dimensions at a variety of scales. An enhanced understanding of the operation of surface and 
downhole electrical devices is gained through modelling selected geologically relevant 
scenarios. Specific benefits are: enhanced fault detection in the case of the surface array; 
quantitative characterisation of the ODPHT tool in idealised borehole environments; radial 
fracture characterisation using electrical images, and potential image artefacts due to localised 
off-hole anomalies.
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C h a p t e r  1

1.1 Background

The electrical properties of rock formations and rock-forming minerals can be characterised by 

resistivity and the dielectric constant (magnetic permeability may also be considered as an 

additional, indirectly related parameter). Of these electrical resistivity has the most dominant 

influence on electrical conduction. In particular it is the fundamental physical property governing 

situations involving d.c. (direct current: time-invariant, or low frequency) as opposed to a.c. 

(alternating current) electricity.

The work described in this thesis is concerned only with d.c. electrical conduction. In terms 

of the characterisation of electrical properties attention is therefore directed towards resistivity (or 

its reciprocal, conductivity) (§A.l).

Resistivity can be thought of as a measure of how difficult it is to pass current through a 

material. Since electrical conduction generally takes place by ionic conduction via the fluid phase 

of a rock mass, the electrical resistivity is related (at least in a general sense) to the geometry of 

pore spaces and other void spaces such as fractures, which are important features of many rocks. 

This relationship between electrical and geological properties is utilised in a wide range of 

applications including:

ground measurements—characterisation of shallow subsurface geology—which has 

applications in civil engineering, engineering geology, hydrogeology and archaeology; 

downhole logging—electrical logs give an indication of features such as bed boundaries, 

porosity and fluid property variations; 

downhole imaging—allowing interpretation of geological features on the borehole wall, and 

enhancing core-log integration; 

core analysis—porosity, saturation and permeability determination—enabling quantitative 

characterisation of reservoir fluids and fluid-flow properties.
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The above discussion is expanded in Chapter 2.

The relationship between measured electrical parameters, the flow of electricity in the earth, 

and geological and petrophysical parameters is in general a complex one. The development of 

computer technology has provided considerable assistance for the interpretation of electrical 

resistivity; analysis of complex situations in three dimensions is now viable. Numerical 

simulations of the electrical response of the earth can be used in a number of ways to enhance 

resistivity data interpretation, for example:

0  by providing a quantitative prediction of measurement responses in controlled situations;

o by assessing the response characteristics of resistivity measurement devices in three

dimensions, to aid both the interpreter and the design engineer.

The importance of electrical measurements in terms of their wide range of applications and 

the requirement for numerical simulations to aid their interpretation is a primary motivation for 

this study.

1.2 Objectives of the research

The aims of this research work can be divided into model development objectives and model 

application objectives.

Model development objectives

The first task undertaken in this work was the development of a three-dimensional numerical 

simulation of the conduction of electricity in rocks. A variety of different approaches to this 

problem are described in the literature (§3.1). The aim of the present research work is to apply 

ideas for simulating focused electrical measurements using properties specific to the finite 

difference solution method (§3.2). The start point is a numerical model with a solution algorithm 

due to Reece (1986), which has been developed for resistivity modelling by Jackson (pers. 

comm., 1991).

Initial models are based on a rectangular grid, which is suited to modelling surface-based 

electrical measurements. An important division of electrical measurements concerns those made 

in boreholes, therefore a principal development goal is to make use of a grid involving radial 

symmetry.
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Once basic models of electrical flow have been created, the next goal is to make 

modifications to allow specific measurement devices to be simulated. The research work has 

concentrated on three such devices, which form a natural progression in terms of model 

development:

1. a focused surface measurement array, which can be based on a rectangular grid;

2. a focused downhole logging device, which is simulated using a cylindrical grid; and

3. a downhole electrical imaging device, which is also based on a cylindrical grid, and 

requires the numerical simulation of a passive focusing mechanism.

Model application objectives

A  primary goal is to demonstrate the validity of the numerical model. This can be done by 

comparing simulated data with field measurements taken from well-constrained situations.

The next step is to develop models to enhance understanding of tool characteristics and 

the nature of (selected) electrical measurements in specific situations corresponding to 

geologically relevant scenarios, by modelling current flow in three dimensions.

The eventual goal of modelling of this kind is to improve understanding of d.c. electrical 

flow through geological materials and thus to aid resistivity data interpretation, thereby 

expanding knowledge of the electrical properties (specifically, the resistivity distribution) of 

the survey region and enhancing applications which make use of such information.

1.3 Structure of this thesis

Each chapter in this thesis follows a progression. Chapter 2 and the first part of Chapter 3 are 

essentially reviews, outlining important principles and providing a basis from which a model 

of electrical current flow can be developed and adapted for investigating a range of problems. 

The second part of Chapter 3 outlines in detail the general principles of the basic model. 

Specific applications of the model, which again progress from the basic model, are described 

in Chapters 4 and 5.

Chapter 2 discusses the means by which electrical conduction takes place in rocks. With 

this in mind, the formulation of equations governing the electric potential in a conductive 

medium, which pose the mathematical problem to be solved by numerical modelling, are 

reviewed. Principles of electrical measurement methods are outlined. An overview of the

1-3



Introduction

applications of electrical methods categorised as surface, conventional downhole, and 

downhole imaging is presented.

The first part of Chapter 3 reviews methods for modelling electrical flow by solving the 

governing equation (a generalised form of Poisson’s equation) described in Chapter 2. The 

equation is classified in order to identify suitable solution methods. For simple cases direct 

solutions are available; in more general cases, a numerical solution method is required. A 

variety of alternative solution methods (of both kinds) are reviewed. The second part of 

Chapter 3 describes a numerical model, based on the finite difference method, which has been 

developed. This model forms a basis from which specific simulations (described in the two 

subsequent chapters) are developed and applied. Modifications to take account of borehole 

geometry are described with a view to enabling the model to cater for downhole 

measurements.

Chapter 4 describes extensions of the model to simulate (‘actively’) focused 

measurements. After a brief introduction to the nature and mechanisms of focused arrays 

(§4.0), two different applications of the technique are presented. Section 4.1 describes the 

application of the focused technique to measurements made by an array of electrodes at the 

earth’s surface. The numerical algorithm used with the surface array measurements is applied 

both to synthetically focus field data and also to create a simulation of the measurement for 

use in the interpretation process. Selected case studies from fieldwork based in Germany are 

presented. Section 4.2 reports on a simulation of a novel focused downhole resistivity tool, 

which is used to derive geometric factors to aid in quantifying the tool measurements.

Chapter 5 describes the development and application of the numerical model to simulate 

downhole electrical imaging devices. Imaging tools are passively-focused devices; a resistor 

network analogy of the finite difference solution method is used in simulating the action of the 

focusing. The model is applied to a range of situations, demonstrating its viability and 

providing an insight into its response to selected, geologically relevant three-dimensional 

scenarios.

Chapter 6 brings the thesis to a conclusion by assessing the work described in this thesis 

with regards to the application and development objectives stated in Section 1.2. 

Recommendations for further work are made.
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C H A P T E R  2

m  m c A :^

In order to create a numerical model of the conduction of electricity in rocks, it is necessary to 

simulate both field observations and the flow of electrical current in the rock mass. An 

appreciation of these processes and their potential applications provides a motivation for this 

study in addition to a theoretical framework on which to base numerical simulations.

After reviewing the mechanisms of electrical conduction in rocks and rock-forming 

minerals and the way in which geological phenomena can influence electrical flow (§2.1) the 

theory of electromagnetism, as applied to d.c. (direct current) electricity in three dimensions 

(3D), is outlined (§2.2). This provides a foundation for a mathematical model of electrical 

conduction in rocks.

The practical means of determining electrical properties on the surface of and within the 

earth is by maldng electrical geophysical measurements. The principles of contemporary 

measurement methods are reviewed in Section 2.3. The same principles can be used in a 

numerical simulation in order to generate synthetic measurements.

Section 2.4 outlines some empirical relationships between electrical resistivity, porosity 

and other petrophysical parameters. The importance of electrical properties of rocks is 

subsequently demonstrated by describing applications in research and industry which utilise 

them. Applications are categorised according to whether they are based upon surface 

measurements, conventional downhole measurements, or downhole imaging. Numerical 

simulations have been developed in all three categories; these are described in chapters 3-5.

2.1 Background: electrical conduction processes in rocks

2.1.1 Direct current conduction

An electric current is a systematic drift of mobile charge-carriers. In the case of metallic 

conductors, the charge-carriers are free electrons associated with metallic bonds. Most rock-
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forming minerals do not conduct in ± is  way; for example quartz is a virtually perfect 

insulator due to its crystal structure, there are no electrons available to carry a charge. Instead 

conduction takes place through the fluids which permeate the rock matrix by the flow of 

aqueous ions.

The rock matrix is generally permeated by voids of various descriptions: pore are

cavities between the mineral grains making up a rock, whereas /wfwref (often caused by 

chemical processes such as leaching) and /rocmrgf (mechanical discontinuities produced by 

stresses) are larger-scale, (often planar) discrete features. The voids are generally filled with 

fluids in subsurface rocks, and in such cases conduction can take place via the aqueous ions 

present in the saturating fluids. In general the process of electrical conduction is an electrolytic 

rather than an electronic one, and the electrical properties of most rocks are therefore directly 

related to the electrical properties of the saturating fluid and its distribution in the rock mass.

A simulation of electrical conduction does not need to account for the conduction process 

since these are irrelevant on a macroscopic scale. From a geological perspective, the fact that 

the fluid phase is providing the means for conduction may be used to make inferences about 

geological properties by using electrical properties (§2.4).

The approximate range of measured resistivity values for some common rock types is 

shown in Figure 2.1. It is apparent that resistivity can vary over eight orders of magnitude or 

more. In the case of sandstones, for example, lower values can be attributed to electrical 

conduction via pore waters in high-porosity rocks, while the higher values reflect conduction 

through the highly resistive rock matrix in a dry sample. Figure 2.1 does not give any 

indication of the distribution of values. More detailed information may be found in 

Carmichael (1989) who provides extensive tables of measured rock resistivities.

Resistivity (Q-m)
1 10̂  10“ 10® 10®

_ l  1----------1--------- 1---------- -̂-------- 1--------- 1---------

Granite
Gabbro

Schist

Shale

■ Quartzite 
—  Sandstone

Clay
A&wlum

Flgore 2.1 A^iroximate range of resistivity values of common rock types (after Kearey and Brooks, 
1991).
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The resistivity of a saturating fluid typically has a controlling effect on the bulk resistivity 

of the rock it saturates, since it is commonly several orders of magnitude less resistive than the 

rock matrix and therefore carries the m^ority of the electric current. The resistivity of saline 

water depends on salinity and temperature since these parameters affect the mobility and 

abundance of charge carriers. The variation of resistivity with these parameters is shown in 

Figure 2.2.

800

30

400
20

200

82 4 6
C o n d u ctiv ity , m h o s /m

0

Figure 2.2 Conductivity of saline water with varying equivalent NaCl concentrations (from Grant 
and West, 1965).

Ellis (1987) demonstrates that the resistivity of an electrolyte may be expressed as 

where T| is viscosity, a is the electrolytic particle diameter, and n is  the number of 

charge carriers per unit volume each with a charge g. This relationship quantifies the

relationship between resistivity of an electrolyte and its physical parameters, and provides a 

physical basis for resistivity.

Some typical resistivity values for waters of various origins are given in Table 2.1. It can

be seen that there is a wide variation in values from the relatively pure (and therefore 

resistive) meteoric waters to saturating fluids which are much stronger electrolytes.

Determining the resistivity of saturating fluids is of particular importance in the downhole 

logging industry; this is reflected by a more comprehensive tables of resistivities of saline 

waters published by oil industry service companies.

The range of resistivity values in Figure 2.1 and Table 2.1 indicate that a model of 

electrical conduction in the earth needs to be able to cater for variations in resistivity of 4-5

orders of magnitude. This can be used as a guideline to guard against overflow or underflow 

problems in numerical calculations involving resistivity values.
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Resistivity (A m)

Water type Range Average

Meteoric waters 30-10^

Surface waters (igneous rocks) 0.1 -  3 x  Kf

Surface waters (sediments) 1 0 -1 0 0

Soil waters 100

Natural waters (igneous rocks) 0.5 -  150 9

Natural waters (sediments) 1 -  100 3

Sea water 0.2

Table 2.1 Resistivities of waters (from Telford et al., 1990).

Although the concentrations of electrolytes have a pronounced effect on the conductivity 

of a rock, there are other important parameters which have secondary effects. Electrical 

conduction in a rock is associated with its porosity and pore geometry and hence connected 

with its fluid flow properties. Note that porofity is simply the volume fraction of pore space in 

a rock; this definition does not take account of the geometry of the pore network (and the rock 

structure). The notion of connected porosity helps to emphasise the importance of pore 

channels being interconnected in order for electric current to pass easily: by considering 

connected pores only, isolated pore spaces which can occur in certain porosity styles are 

discounted. Isolated spaces are 'electrically redundant' in much the same way as branches of 

an electric circuit which do not form a complete loop. For a given formation, connected 

porosity may typically be related to (but is distinct from) hydraulic pgrmeobi/ity which is a 

measiu-e of how easily a fluid may pass through a porous material. The relationship is not in 

general an easily predictable one (see §2.4.1).

Pore geometry is related to the geological processes that created the rock. Porosity in 

sandstones is principally primary, consisting of voids between individual grains of rock, 

whereas carbonates often exhibit secondary porosity, which can be due to mechanical 

processes (which create discontinuities such as fractures, joints and bedding planes) or 

chemical processes (which cause, for example, fissures from solution of leachates). Such 

rocks are said to be pgrviowf. So although limestones have low overall porosity, they have 

very good connected porosity (and permeability) due to the influence of discontinuities like 

fractures in the rock fabric.
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2.1.2 Anisotropy

The electrical resistivity of rocks often exhibits a directional dependency, so that the measured 

resistivity depends upon the orientation in which the measurement is made. Materials for 

which this is the case are said to be electrically anisotropic.

In geological situations, electrical anisotropy can commonly be approximately 

characterised by two parameters: longitudinal resistivity, pL, (generally measured parallel to 

mineral orientation or bedding), and transverse resistivity, pr, measured normal to the 

direction of pz, (in reality pz, often exhibits a directional dependence since minerals and 

mineral orientations are rarely purely symmetrical. Variation in pz, is generally a number of 

orders of magnitude lower than the pz,:pr variation, and can thus be discounted to a first 

approximation). The ratio of these two quantities is used to define a coejficient o f anisotropy, 

X (Kunz and Moran, 1958):

which may be used to quantify the degree of anisotropy possessed by a material. Values of X 

for sedimentary rocks are typically in the range 1.1-2.5, whereas the figure can rise much 

higher in the case of metamorphosed sediments, gneisses and banded ores (Parkhomenko,

1967).

Geological situations which give rise to anisotropy are common, and may occur on a 

variety of scales. On the grain scale, platy minerals such as micas are often orientated parallel 

to each other so that conduction is better in the direction of orientation: the grain structure 

implies that pore connections are more direct in line with the minerals and more tortuous in 

the transverse direction. Preferential orientation is common in sedimentary rocks (especially 

shales) which are structured parallel to the plane of sedimentation (Kunz and Moran, 1958). 

Metamorphic processes can also cause re-orientation and alignment of mineral grains during 

deformation at high temperatures and pressures. In addition, banding in some metamorphic 

rocks provides preferential current flow directions (Parkhomenko, 1967).

Stress can also cause brittle deformation leading to the formation of joints and fractures 

which may be oriented in a preferential direction, reflecting the regional crustal stress 

direction. Such networks provide another potential source of electrical anisotropy.
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Rocks which are microscopically isotropic often exhibit structural anisotropy due to the 

effects of sets of bedding planes and/or fractures. Macroscopic features such as bedding 

planes provide fluid and electrical flow barriers, causing preferential conduction parallel to 

them. In the case of sediments, bedding planes and grain orientation may lead to anisotropy at 

both scales complementing each other; similarly with fractures at different scales 

(Parkhomenko, 1967).

The mathematical representation of anisotropy (which can be more general than simply 

specifying X) is discussed in Section 2.2.3; aspects of measuring anisotropy are outlined in 

Section 2.3.4.

2.1.3 Other conduction phenomena

In addition to electrolytic conduction, rock-forming minerals may conduct by a variety of 

other means. A concise summary of these phenomena is presented by Eskola (1992), whilst 

Parlchomenko (1967) and more recently Carmichael (1989) treat the subject of electrical 

conduction in rocks in much greater depth.

Although this study is concerned with the simulation of artificially induced electric 

currents, natural electric currents also exist which can be used in their own right to measure 

electrical properties (§2.3.1), but can also be a source of noise when making electrical 

measurements (§2.3.3). Natural electric currents are driven by electric potentials which may 

arise from a number of different causes (Telford et al., 1990): an electrokinetic (or streaming) 

potential is created when a solution is forced through a porous medium, whilst the liquid- 

junction (diffusion) potential, shale (Nernst) potential and mineralization potential arise from 

various electrochemical effects. In a general sense these are caused interactions between water 

and rock. Other electrical phenomena include large-scale telluric currents induced from 

sources such as the ionosphere and lightning strikes, and bioelectric currents associated with 

vegetation.

Frequency-dependent electrical conduction is observed in dielectric materials (which 

include the majority of rock-forming minerals) and is characterised by the dielectric constant 

(relative permittivity). The dielectric constant is unrelated to d.c. conduction, and is only of 

secondary importance to a.c. conduction (Keller and Frischknecht, 1966). It finds significance
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in ground-penetrating radar surveys (Davis and Annan, 1989) since it has a controlling 

influence on the propagation of radar waves.

Semi-conducting minerals may have a noticeable effect on the conductivity of the rock 

matrix. Pyrite, chalcopyrite and pyrrhotite can form networks of conductive paths through the 

body of the rock, although other semi-conductors such as galena and magnetite tend to exist as 

isolated grains making their contribution much smaller.

When a steady direct current passing through a material which contains mineral particles 

is suddenly turned on or off, a finite delay is often observed before the current again reaches a 

steady value. This decay is a characteristic of electrolytic conduction and is caused by a build 

up of ions at the interface between the saturating solution (electrolyte) and the mineral 

particles. A polarization potential, which opposes the current flow, results; the effect is 

termed induced polarization. In rocks containing metalliferous minerals the induced 

polarization effect is termed electrode polarization, whereas in clays a similar effect is caused 

by membrane polarization.

Another conduction effect is contact polarization which is a consequence of the non- 

linearity of resistivity possessed by polarizable rocks: the measured resistance is observed to 

drop when the measurement current magnitude is increased, due to new electrochemical 

reactions being initiated.

The presence of clay minerals can have an important effect on the conductivity of a rock. 

Although dry clay is a relatively poor conductor, when even a small amount of moisture is 

present the clay’s conduction improves dramatically. Clay platelets have an excess negative 

charge and attract hydrated cations from the saturating fluid resulting in an increased charge 

density in the vicinity of the clay. Since the clay is typically attached to the insulating rock 

matrix, this leads to a surface conduction effect (Winsauer and McCardell, 1953) where an 

extra conductive path exists in the thin layer of increased charge in addition to the 

conventional route through the pore fluid. Electrical double layer theory (Waxman and Smits,

1968) accounts for the resulting increased (excess) conductivity. Clays are often found in the 

pores of sedimentary rocks such as sandstones, and can also be associated with faults due to 

the action of preferential weathering.

In this work, only conventional conduction will be considered; the conduction effects 

described above fall outside the scope of the research work. This allows electrical properties
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to be characterised by a frequency-independent resistivity function, and ensures that the linear 

dependence embodied in Ohm’s law (equation 2.3) is a valid description of the relationship 

between current and potential. Despite these simplifications, a mathematical framework may 

be developed that approximates a wide variety of typical geological situations. This will be 

described in the following section.

2.2 The equations of electrical conduction

The fundamental relationships in current electricity are well known; they are used to develop 

vector equations for describing 3D electrical flow (Appendix A). A description of the 

generalised version of Ohm’s law (which in its original form applied to electric circuits) 

which governs current flow in 3D is given in §A.2. These ideas are pertinent to this work 

since they serve as a reminder of the underlying physics involved in electrical conduction; 

they are also useful in developing and adapting the principal numerical model used in this 

work (which is described in Section 3.2).

2.2.1 Differential representation of electric potential

The governing equation for electrical flow and electric potential is derived from Ohm’s law 

and Maxwell’s equations of electromagnetism. From Maxwell’s equations it can be shown 

(§A.2) that for d.c. situations the electric field E [V m"^] may be expressed as the (vector) 

gradient of a scalar potential function V:

E = - V y .  (2.1)

In this context V is termed the electric potential and is measured in volts [V]. According to 

vector theory V  may be expressed relative to an arbitrary datum; in practice it is nearly always 

differences in potential that are of interest [in this work, the term ‘voltage’ is taken to be 

synonymous with ‘potential difference’ (p.d.)]. In cases where absolute potential is of interest, 

the datum is usually defined so that the potential at infinity is zero. Numerical simulations

typically deal with absolute potentials and so a suitable reference point must be found (usually

this is on the boundary of the model).

Maxwell’s equation expressing conservation of charge, and using continuity, is:

= (2.2)
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where J is current density [A m"̂ ] (§A.2). The term 5 [A m"̂ ] represents any current sources

in the region of interest. In the case of a single point source S is zero everywhere except the 

location of the source itself. If the source is of magnitude /  and is located at y*, z*) it may 

be expressed mathematically using Dirac delta hinctions as:

^ = /6(x,)S(y,)6(zJ.

Where a source of magnitude /  [A] is distributed through a volume AxAyAz, S is given by:

5"= /  .
AxAyAz

Ohm’s law for a 3D, isotropic medium states (§A.2)

E  = p J , or

J = cE  (2.3)

(p: resistivity [O m]). Equation (2.3) embodies the relationship between voltage and current in 

3D space: the current density, J, is directly proportional to, and aligned with the vector 

gradient of the electric potential (i.e., the electric field, E).

By taking the scalar product of both sides of equation (2.3) with V, combining with 

equation (2.1), and substituting into equation (2.2), it can be shown that (Dey and Morrison, 

1979):

V - V V : or alternatively

IV o V y  = -^ l. (2.4)

where G is conductivity [S m“*].

Equation (2.4) is the differential form of the governing equation of electric potential for 

direct-current (time invariant) situations. In 'mathematical' terms the parameters V, o  and ,5 

may be functions of space but not of time. To fully specify the conditions governing the

electric potential in a given region û, conditions must also be specified for the boundaries of 0  

(which may be at infinity). Usually this involves specifying the potential, V, or the potential 

gradient, (or a combination of both) on the boundary of û (where n is the normal to the

boundary).
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Additional conditions can be specified for boundaries across which there is a 

discontinuity in p (or o). In a geologically relevant situation this might correspond to the 

contact between two different geological units, or a sudden variation within an ^arently  

homogeneous rock, e.g. a bedding contact or a fracture. Internal boundary conditions 

governing the variation in electric potential across such interfaces can be arrived at by using 

conservation laws. Consider such a boundary across which the resistivity changes from pi to 

p2 (Figure 2.3). The current density either side of the interface is denoted by J) and J 2 and n is 

the unit vector normal to the interface.

Figure 2.3 An internal boundary between different conducting zones.

To satisfy the requirements of conservation of energy, the amount of work needed to 

deposit a given charge on one side of the boundary must be the same as the work needed to 

deposit the same amount of charge on the other side. From the definition of electric potential

(eq. A .l), the potential across the boundary must be continuous, i.e.

(2.5)

In order to ensure conservation of charge, the component of current density, J, normal to the 

boundary must be continuous (assuming there are no current sources at the interface itself):

J, - n = Jj - n. (2.6)

The above relations may alternatively be derived formally from Maxwell’s equations (Grant 

and West, 1965).

Use of the del operator [V (§A.2)] enables expressions to be formulated which are not 

relative to any particular coordinate system; for example equation (2.4) is equivalent to

a r  a y \  a r  ay"| a r  av") ^

in rectangular cartesian coordinates (x, y, z), or
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r a r l ^ ' a r j  / a o r a e j  a z v a z

in cylindrical polar coordinates (r, 0, z).

In the case of a region where the resistivity is constant (i.e. not a function of space) 

equation (2.4) becomes the Poisson equation:

V^y = /  (where /  = -  ̂ 5 ) .  (2.7)

If in addition there is no source of charge (or current) in the region, equation (2.7) reduces to

Laplace’s equation:

W  = 0 .  (2.8)

The mathematical aspects of solving equation (2.4) are discussed in detail in Chapter 3.

2.2.2 Integral representation of electric potential

Equation (2.4) is the differential form (i.e. involving derivative functions) of the governing 

equation for electrical potential. There is a corresponding mtggral form (i.e. involving mfegroZ

functions) of this equation, which can be used as a starting point for alternative formulations 

to describe electrical flow in a 3D medium.

The integral form of equation (2.4), with boundary conditions as expressed by (2.5) and

(2.6) is derived using Green’s second identity (Kellogg, 1967). For a volume 0, the equation 

is of the form

V(r) = jG (r,ro)S(rJdûo, (2.9)
*

where F(r) is electric potential, and S is the current source term. The vector r gives position 

(x, y, z) and fg is the source location. The parameter G is the Green’s function [termed the

kernel function in the context of equation (2.9)] corresponding to the situation under 

investigation (Roach, 1982). The role of G in the integral equation (2.9) is closely related to 

the role of the electric potential, V, in the differential equation (2.4). Note that the definition of 

G incorporates any boundary conditions, so that equation (2.9) completely describes a specific 

problem.
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Methods based on integral equations are generally the preferred approach to an electrical 

flow problem when only one or a few small anomalous bodies are to be modelled. For more

complex situations, differential methods are favoured. More details of the application of the 

integral equation method are given in Section 3.1.3.3.

2.2.3 Anisotropy

The form of Ohm's law stated in equation (2.3) applies to isotropic materials, whose 

resistivity is independent of the direction in which measurement is made (i.e., independent of 

the direction of the applied electric Reid). In such cases, resistivity may be represented by a 

scalar value, and the electric field, E, and current density, J, are parallel. In the more general 

case, the resistivity (and therefore conductivity) may vary with direction, and in addition E 

and J are not necessarily parallel (Grant and West, 1965).

Denoting the component of electric current density in the x-direction by Jx, and 

considering this direction only, equation (2.3) becomes

(2.10)

If E and J are not parallel then there will be contributions to from the other components of 

J and so (2.10) must be generalised to

where represents the contribution to E, from the current density component Jy and so p;q, 

is a constant of proportionality relating E% and J y . Similar equations can be written down for 

Ey and E% so the complete relationship between E and J may be written in matrix form 

(Parasnis, 1986) as

'P « P
= Pyjt P

^P zx P

(2.11a)

or using by making use of suffices and the summation convention

Ei=p^jJj .  (2.11b)
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The nine scalars represented by pÿ are the components of a second order resistivity tensor, p. 

Equation (2.11) is a more general version of Ohm’s law (equation 2.3). Equation (2.11) may 

be solved for J, and will take the form

(2 .12)

where the nine scalars are the components of a conductivity tensor, a . The conductivity is 

now the matrix inverse (rather than simply the reciprocal) of the resistivity, i.e. 2  = Note 

that in general the corresponding elements of a  and p  are not reciprocals of each other, i.e. 

<3 ij ^  1 / P i ÿ .

A simpler and more common form of anisotropy occurs when E  and J  are parallel. In 

equation (2.11) this corresponds to the off-diagonal elements of p  being zero. In this case, the 

resistivity can be represented by three principal (diagonal) values which are often termed px, 

py, and pz. The style of anisotropy described in Section 2.1.2, where the resistivity of a 

material can be characterised by longitudinal (pi) and transverse (pr) components, 

corresponds (with suitable orientation of coordinate axes) to px = py = pL and p̂  = pr.

Electrical anisotropy is commonly observed in rocks (§2.1.2). It is noted that any model 

of electrical conduction should be capable of catering for anisotropy in resistivity in order for 

it to be applicable to a substantial branch of typical geological situations.

2.3 Electrical measurement techniques

The numerical models that are developed and applied in this work simulate not only the 

electrical flow in the earth, but the response of electrical measurements made on and in the 

earth, since geophysical measurements are the practical means of determining electrical 

properties. It is therefore beneficial to review the principles employed in practical methods to 

determine the electrical properties of the earth described in Section 2.1. The mathematical 

framework described in Seetion 2.2 provides the basis for relationships necessary for 

conversion of raw measurement data (typically current magnitudes, voltages, and/or 

resistances) into resistivity values.

Particular attention is paid to measurement techniques that are closely related to the 

measurement devices modelled in this work.
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2.3.1 Electrical methods

A variety of different geophysical electrical measurement methods have been developed both 

for application to specific problems and to make use of different electrical properties. For the 

purpose of this thesis attention will be directed only towards methods which involve the 

introduction of artificial d.c. electric currents into the earth, commonly termed resistivity 

methods. For specific surveys eleetrical resistivity methods may be combined with other 

electrical measurements in an integrated approach. The principal alternative methods are:

Self (spontaneous) potential—natural electric potentials are associated with certain 

minerals, especially sulphides; they are also generated in geothermal areas. In 

borehole geophysics, measurements of these potentials are used to differentiate 

between sandstones and shales;

Mise-à-la-masse—this is a specialised resistivity technique which involves injection of 

current directly into a conductive (typieally ore) body which outcrops or is intersected 

by a borehole. Electric potentials are mapped in order to delineate the extent of the 

body underground;

Induced polarization—this method utilises the polarization effects described in Section 

2.1.3. It is typically used in searches for base metals and groundwater. Downhole, it 

may be used in conjunction with conventional resistivity measurements to search for 

mineralization;

Electromagnetic (EM)—these methods make use of high frequency alternating currents 

to search for good conductors at generally shallow depths. A principal advantage is 

that such methods are non-contacting, allowing airborne surveys to be carried out. 

Downhole induction tools make use of EM principles in order to characterise 

resistivity properties close to the borehole;

Telluric methods are concerned with measurements of alternating telluric currents 

(Section 2.1) and aim to deduce information about electrical structure deep within the 

earth.

2.3.2 M easurement principles

Direct current resistivity measurements are generally made using four electrodes (if 

specialised eleetrical measurements such as those that make use of focusing mechanisms are
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discounted). The four electrodes are a current source, C,, which emits a current /, a current 

return, C2 , to complete the current circuit, and two potential electrodes f  1 and between

which a measurement voltage is recorded (Figure 2.4).

- W -

-------AF------

f \ i \ -I  A

q

Figure 2.4 General electrode arrangement used in earth resistivity measurements.

The raw measurements are a p.d. (voltage), AV, and a current /. These are commonly used 

to calculate an apparent re^ütivity, pg. The general form for an apparent resistivity expression

may be written as

AV
G(r)- (2.13)

where is the apparent resistivity at some point of interest, AV is the measured voltage, and /  

is the measurement current magnitude. The parameter G is termed the ggomethc_^tor, and is 

in general a function of position, r. Any given electrode arrangement will have a characteristic 

function G, which is defined so that for a /wmoggneowf medium of constant resistivity p*, p̂

equals p̂  at all points. Substituting this condition into equation (2.13), for the homogeneous 

case,

/
AK

G(r), (2.14)

where AV* is a theoretical voltage calculated for a homogeneous half-space. Explicit 

expressions for ^parent resistivity may therefore be found if an expression for the electric 

potential V* is known since this allows calculation of p.d.’s between any two given points.

(Suitable expressions are given in §3.1.2.)

The kind of spacing used depends upon what is to be measured. In general, resistivity 

measurements may be split into three groups (Keller and Frischknecht, 1966):

1. Those that measure a vo/fage between two widely-spaced potential electrodes;

2-15



Review: electrical conduction in rocks

2. Those that measure a potential gradient between two closely spaced potential 

electrodes;

3. Those that measure the curvature o f the potential function by using closely-spaced 

current and potential electrodes.

In the context of the work described in this thesis it is pertinent to expand upon the first 

group of measurements: these may be divided into measurements where a potential difference 

is measured and measurements where the electric potential is measured, by placing one of the 

two potential electrodes effectively at infinity.

Surface electrode configurations

The most common electrode configurations are the Wenner (which has equal spacing 

between all four electrodes, and measures a p.d.) and the Schlumberger (with widely spaced, 

fixed current electrodes, and narrowly spaced potential electrodes, measuring the potential 

gradient). If both current and potential pairs are closely spaced, the array is termed ‘dipole- 

dipole’ (for measuring the curvature of the potential function).

If C2 is placed a long way (effectively at infinity) from the other three electrodes 

(effectively at infinity), the spread is termed ‘pole-dipole’, also known as a half-Schlumberger 

array.

If both P 2 and C2 are placed some distance away, the array is termed a ‘pole-pole’. This is 

closely related to the focused surface measurement described in Section 4.1, and is intended to 

measure absolute potential rather than a voltage difference.

Downhole configurations

In the downhole situation the measurement electrodes are located in a full space rather 

than at the surface of a semi-infinite halfspace, but the principles involved are the same as 

those for surface measurements. The two basic electrode arrangements are the normal log and 

the lateral log. The normal log is analogous to the pole-pole surface measurement, with 

remote potential reference and current return electrodes. The lateral log corresponds to the 

pole-dipole surface aixay, with a remote current return and closely-spaced potential electrodes. 

Remote electrodes are usually placed many metres from the measurement electrodes, at the 

top of the tool sonde, or by making use of the logging eable armature.
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The focused log described in Section 4.2 is similar to the Laterolog (Doll, 1951; 1953) 

and essentially makes the same measurement as a normal log while simultaneously emitting 

additional focusing currents.

Electrical imaging tools (Chapter 5) are based on button-type electrical measurements. 

Such tools have evolved from the dipmeter (Allaud and Ringot, 1969; Chauvel et al., 1984) 

which measures current intensity rather than eleetric potential and uses only two electrodes: a 

current source electrode from which the eurrent intensity measurement is made, and a remote 

current return electrode. In terms of the eurrent flow generated these tools are similar to the 

normal log, but the measurement made is completely different emphasising the fact that 

numerical models need to simulate the measurement process over and above the current flow 

in a region of interest if they are to be compared with actual field data.

2.3,3 Measurement distortions

A variety of practical problems are commonly encountered when making resistivity' 

measurements, notably: eleetrolytic polarisation, which causes a build-up of ions at the current 

electrodes; telluric currents, whieh add a background signature to the measured eurrent; and 

contact resistance between electrodes and the earth.

The first two phenomena are countered by using low-frequeney a.c. currents which 

prevent the build up of ions and cancel out the effect of background currents (by averaging the 

measurement data). At low frequencies a.c. effects are considered negligible. Contact 

resistance is countered by making four-terminal resistance measurements.

During the field measurement process the above effects are removed by instrumentation 

and thus may be neglected for the purposes of numerical modelling (although there is in 

principle no reason why a simulation could not be developed to include the above effects). 

When comparing simulation results with field data is also important to bear in mind that the 

theoretical models can be several orders of magnitude more accurate than the field 

measurements.

In the case of pole-pole and pole-dipole measurements, distortions may be caused by the 

location of the current return electrode. A well documented effect on downhole lateral log 

measurements is the Groningen effect (Woodhouse, 1978; Lacour-Gayet, 1981), which is 

observed below extensive, highly resistive beds. In its original form it was known as the
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Delaware effect (Suau et al., 1972). It is caused by bunching of current as it flows through the 

conductive borehole which provides a low resistance path through the resistive layer to the 

current return (Figure 2.5). A drop in electric potential at the remote reference electrode, N, 

results, causing the tool to produce anomalously high measurements up to 20 m (the distance 

to the reference electrode) below the base o f the resistive layer. As indicated in part b of the 

figure, the Delaware effect can be overcome by locating the current return at the earth’s 

surface. However, the effect of low, but finite, frequency a.c. measurement current means that 

the resistive bed can still cause a phantom increase in measured resistivity, due to mutual 

inductance phenomena (the effect of a finite skin depth)', this phenomenon is the Groningen 

effect.

earths surface

Figure 2.5 The Delaware effect (schematic) (after Suau et al., 1972).

M easurement distortions may also be caused in surface electrode spreads where the 

choice o f location of the remote return electrode (e.g. in a conductive or resistive medium, or 

near to a low resistance return path such as a river) can distort the apparent location and 

magnitude of anomalies; this is discussed further in Section 4.1.

These effects serve to illustrate the effects of non-ideal measurements, and the importance 

of location of the return electrodes. In numerical simulations, similar care must be taken with 

regards to choosing a reference from which electric potential is measured.
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2.3.4 Anisotropy

The effect and detection of anisotropy in surface measurements has been addressed by Asten

(1974), Matias and Habberjam (1986), and Sinha and Bhattacharya (1967) amongst others. 

Edwards et al. (1984) address effects on a survey technique made on the sea floor.

The consequence of maldng downhole measurements in the presence of electrical 

anisotropy is analysed by Kunz and Moran (1958) and Moran and Gianzero (1979); Rauen 

and Lastovickova (1995) attempt to quantify the degree of anisotropy using downhole 

measurements.

Electrical measurements cannot generally distinguish between the various causes of 

anisotropy. If the measurement resolution is lower than the scale of certain structures (for 

example a series of isotropic beds) macroanisotropy may be observed in the measurements 

(Maillet, 1947), which is indistinguishable from the effect of a single equivalent (micro-) 

anisotropic layer.

2.4 Significance of electrical properties

Despite the fact that the electrical resistivity of rocks is controlled to an extent by a 

eombination of petrophysieal parameters which may differ between rock types and lithologies, 

there is a eonsiderable overlap between the resistivity of different rocks (illustrated in Figure 

2.1). Discrimination between rocks or lithologies on the basis of resistivity alone is therefore 

not possible, except in very general terms. Despite this ambiguity, if analysis is restricted, say, 

to a given formation, geological features sueh as different rock porosities and porosity styles, 

fraetures, zones with different fluids within them and faults all exhibit quantifiable variations 

in their eleetrieal properties. A knowledge of variations in resistivity therefore has a variety of 

applications where the characterisation of the subsurfaee geology is a requirement. In the 

eontext of this thesis, it is noted that numerical modelling plays an important role in the 

interpretation of electrical data through improved understanding of electric current flow 

phenomena.

Electrical measurements made on or in the earth can be used to infer the distribution and 

magnitude of resistivity in the ground away from the measurement location. Survey 

information can be broadly divided into two categories:
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1. quantitative information about resistivity, and hence physical parameters such as 

porosity, salinity or water saturation (derived indirectly);

2. delineation of anomalous regions or spatial electrical structure. The most important 

detectable features are a layered electrical structure (due to e.g. water table, bedrock, 

or geological units), and localised anomalies (due to e.g. cavities, ore bodies or 

faults).

In practice, many applications make use of a combination of both types of inferences.

The Rrst part of this section (§2.4.1) describes the principles behind quantitative 

applications of resistivity measurements. The remainder of the section summarises

applications of electrical measurements, which have been divided into three categories; 

surface surveys (§2.4.2), downhole surveys (§2.4.3), and downhole imaging (§2.4.4).

2,4,1 Relationship between resistivity and porosity

The resistivity of the majority of saturated rocks is primarily determined by the resistivity of 

the saturating fluid. However, the secondary effect of the geometry of the rock matrix (which 

in turn may be related to porosity) on electrical conduction is one of the key factors utilised 

when finding applications of resistivity measurements, particularly in the oil industry and in 

hydrogeology.

Many of the relationships still in use today are based on the empirical relationships

proposed by Archie (1942). He termed the ratio of the bulk resistivity of the saturated rock,

Ro, to the resistivity of the fluid, R^, the ‘formation factor’ (F);

F = ̂ .  (2.15)

For many different saturated rocks, F  is found to be constant; this is principally a consequence 

of the resistivity of the saturating fluid being several orders of magnitude lower than that of 

the rock matrix. After conducting experiments on saturated sandstone core samples, Archie 

related F  to porosity, (|), with what is now named the ‘Archie equation’:

F = ({)-'", (2.16)

where m is an empirically derived constant. Archie (1942) found the parameter m to take a 

value of about 1.3 for unconsolidated sand, increasing to around 1.8-2.0 with more
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consolidated sandstones. Subsequent workers also found similar patterns [e.g. Wyllie and 

Gregory (1953)]; for this reason m is often referred to as the ‘cementation exponent' although 

as Doveton (1986) points out, its value is in fact the consequence of a host of interrelated 

textural properties. Amongst these, the most important factors are the ‘tortuosity’ of the pore 

network (the ratio of pore channel length to straight line length between two points) and in a 

general sense the geometry of the rock matrix. A great deal of research has been directed 

towards defining relationships between m and textural properties of potential reservoir rocks. 

Physical and synthetic grain-packing models (Sen et al., 1981; Grattoni and Dawe, 1991) and 

analysis of grain shape (Jackson et al., 1978; Atkins and Smith, 1961; Mendelson and Cohen, 

1982), in addition to applications of percolation theory (Kirkpatrick, 1973) and network 

models (Schopper, 1966; Straley, 1976) have identified grain shape, shape sorting and degree 

of fabric anisotropy as primary controls in sandstones. The porosity structure in carbonates is 

more complex (Focke and Munn, 1987; Choquette and Pray, 1970) and harder both to 

simulate and to relate back to empirical constants (Doveton, 1986).

Often a modified version of equation (2.16), first proposed by Winsauer et al. (1952), is 

used to obtain a better fit with certain data sets by the use of an empirical constant a:

,(2.17)

Archie (1942) also proposed a relation for partially saturated rocks. Pore spaces could be 

filled with a fluid in addition to pore water, for example gas, or more typically oil. He defined 

a resistivity index /:

/  = (2.18)

where R, is the resistivity of (rock + water + oil/gas), and found that I  was related to the 

volume fraction of pores containing water (vol. water/vol. pores), Sw, by

/  = (2.19)

The parameter n is termed the ‘saturation exponent’, and again is derived empirically. It is 

related to pore geometry and rock texture, and is found to vary between 1.8 and 2.5, although 

for convenience it is often set to 2 by default.

Combining (2.15), (2.16), (2.18) and (2.19) yields
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x . = ^ -  (2.20)

The relation (2.20) is often referred to as ‘Archie's law' (in some cases, equation (2.17) is

included, adding the extra empirical constant multiplier a to the right hand side of the 

formula). It is invaluable in the hydrocarbons industry, where it is used routinely to estimate 

oil reserves in a given reservoir. In finding empirical relationships which fitted his data, 

Archie was the first person to propose a quantitative relationship between porosity, saturation 

and resistivity. His empirical findings are generally corroborated by the findings of research 

intended to derive a physical basis for equation (2.20) (e.g. Madden, 1976; Korvin, 1982).

Archie (1942) originally proposed equation (2.20) to apply to clean (clay-free)

sedimentary rocks. Subsequent workers have found it applies equally well to other rock types 

such as igneous rocks and metamorphosed sediments (Carmichael, 1989); modifications have 

also been incorporated to take account of the effect of clays in the pore spaces of rocks 

(Waxman and Smits, 1968; Bussian, 1983). Many authors have pointed out shortcomings of 

the 'law' (e.g. Herrick and Kennedy, 1994) but equation (2.20) remains an important general 

description of the relationship between resistivity, porosity and saturation applicable to a wide 

range of rock types.

2.4.2 Applications of surface measurements

The systematic use of resistivity (and self-potential) methods dates from early this century 

(Schlumberger, 1920). Electrical measurements are now used routinely to characterise 

subsurface geology but may also be used to detect other buried targets. Depth of investigation 

is limited in practical cases to the order of 1 km, since deeper investigations inherently require

larger amounts of electric current to be injected into the ground, and also require power cables 

to stretch over longer distances.

Many applications of electrical surveys attempt, in a general sense, to characterise 

(commonly shallow) subsurface geology; surveys are typically designed to investigate 

variation of resistivity with depth or lateral variations over a section of ground. With the

advent of more sophisticated measuring equipment and data interpretation, it is possible to 

infer properties in two or even three dimensions. When the earth is known to be horizontally 

layered or gently dipping vertical surveys can be used to estimate the depths and resistivities 

of the various layers. Transverse measurements can be used to map the location of lateral
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geological contacts or isolated bodies such as mineralized veins. Fault zones are also 

associated with changes in electrical properties since they are a focus for fluid flow and 

weathering which can cause leaching and accumulation of clays.

Some specific applications of surface measurements are outlined below.

Characterisation of deeper geology—Some electrical experiments aimed at 

investigating deep into the earth’s crust have been performed, particularly in the 

former Soviet Union. Blohm and Flathe (1970) describe an experiment to investigate 

the structure across the Rhinegraben which used a current source and sink separated 

by 150 km. Conventional resistivity measurements have been used in combination 

with other electrical techniques to investigate the electrical properties of the Iceland 

crust (Hermance and Garland, 1968; Hermance, 1973). Experiments in the USSR 

generally involve the use of a dipole-dipole configuration (Section 2.3.2) with a 

current electrode separation of the order of 500 m, allowing measurements down to a 

depth of 2.5-3 km. In general, however, telluric and magnetotelluric measurements 

are more convenient for deep surveys.

Engineering applications—resistivity surveys are used routinely in civil engineering 

investigations where the use of both spatial interpretation (for example to detect 

underground cavities or to infer the depth of a solid rock foundation), and 

quantitative values (typically for inference of differing compaction or moisture 

content or other parameters which may affect the strength of the foundation of 

constructions such as dams, buildings or roads) is required. Aspinall and Walker

(1975) and Owen (1982) provide two examples of locating and mapping buried mine 

shafts using surface measurements. Owen (1982) found that subsurface cavities could 

be sensed at significant depths, with the penetration of the electrical survey being 

dependant upon the size of the cavity, the homogeneity of the overburden and the 

electrical contrasts involved.

Hydrogeological applications—the location of the water table, delineation of reservoirs 

or fresh water lenses and monitoring of fluid flow is possible if there is an associated 

change in electrical properties. Fresh water zones are typically less conductive than 

saline waters and in addition may be revealed by vertical surveys since they float on 

top of the more dense saline water (e.g. Bugg and Lloyd, 1976). A typical monitoring 

application is described by Oteri (1981) who investigates the extent of contamination
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of a chalk aquifer by conductive saline water from nearby mine workings. Resistivity 

values are also used to infer the degree of salinity in the aquifer, and hence quantify 

the amount of contamination.

Investigation of geothermal areas—changes in conductivity are often associated with 

geothermal areas due to a variety of phenomena (Thanassoulas, 1991), viz.:

o the conductivity of electrolytic conductors generally increases with temperature; 

o conductive solutions form different compositions at different temperatures; 

o self-potential anomalies also exist over fluid flow paths due to thermoelectric 

and electrokinetic coupling; 

o host rock conductivity may increase due to hydrothermal alteration;

® host rock conductivity may also be increased due to the effect of mineral

deposits in fractures.

Thanassoulas (1991) uses the above characteristics in an attempt to delineate fracture 

zones and faults in geothermal field in Greece. Such features are important since they 

can be targeted in the commercial development of a geothermal field.

Prospecting for minerals—minerals which are good conductors may be located and 

delineated, typically with lateral traverses. Modern techniques usually employ a 

combination of other geophysical methods in addition to resistivity surveys (in 

particular induced polarization). Seigel (1967) describes an application where a 

porphyry-copper deposit in British Columbia is associated with a drop in the 

measured apparent resistivity. Induced polarization data is used to delineate the body.

Archaeological investigations—lateral traverses and vertical surveys may reveal the 

location and/or depth of buried man-made features such as wall foundations, ditches, 

or roads, since these are often composed with materials which differ in composition 

from the overburden which typically consists of conductive soils or clays [e.g. 

Papamarinopoulos et al. (1988) use a twin probe array, akin to a dipole-dipole 

survey, to map the layout of part of an ancient buried town in Greece].

Environmental monitoring—resistivity surveying of contaminated land can be used for 

location of undesirable leachates, or to track the extent of contaminant fluids below 

ground. Mazac et al. (1987) use resistivity methods to detect subsurface oil pollution
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using a similar approach to that of Oteri (1981): lateral surveys are used to map the 

extent of contamination and Archie’s law (eq. 2.20) is used to quantify the amount of 

pollution. In this case the presence of hydrocarbons is indicated by an overall 

increase in resistivity.

2.4.3 Applications of downhole resistivity measurements

The first log of resistivity measurements taken along the length of a borehole was made by 

Henri Doll in 1927 (Allaud and Martin, 1977). Initially, electrical logs were used in a 

qualitative way to identify different subsurface geological layers and to located hydrocarbons 

(which are typically bad electrical conductors and are therefore associated with an increase in 

measured resistivity).

On the basis of experimental findings, notably those of Archie (1942), quantitative 

applications of electrical logs became possible. Electrical logs are still vital components of 

hydrocarbons exploration, since resistivity can be related to porosity and hydrocarbon 

saturation (see Section 2.4.1). For the same reason, electrical logs are also used widely by 

hydrogeologists. Porosity itself is now usually derived from downhole sonic velocity, gamma- 

ray-density, or neutron-gamma-ray measurements (Schlumberger, 1991), although it may still 

be estimated from resistivity if this data is not available. Once a porosity estimate has been 

obtained, resistivity measurements can be used with equation (2.20) to obtain an estimate of 

hydrocarbon saturation, and thus the volume of hydrocarbon present. Due to the relationship 

between electrical conduction in rocks and the fluids which generally saturate them, indirect 

information about fluid flow properties and permeability may also sometimes be derived, 

although [indeed, as Archie (1942) found] it is difficult to quantify in general. Focused 

electric tools may be used to investigate different regions of interest (Schlumberger, 1984), for 

example Schlumberger’s Dual Laterolog can adjust its focusing to make both deep (several m) 

and shallow (~ 1 m) measurements while their Microspherically Focused Log is designed to 

respond primarily to the invaded zone immediately beyond the borehole wall.

Resistivity measurements may also be made between adjacent boreholes, and between 

boreholes and the surface of the earth. Daniels and Dyck (1984) describe the various possible 

configurations and report on the testing of selected electrode styles with a view to applying 

measurement techniques to mineral exploration. Wang et al. (1991) use borehole-to-surface
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measurements to investigate the results of a hydraulic fracturing experiment. They were able 

to infer the direction of propagation of induced fractures, but determination of fracture length 

was less certain. The principal limiting factors in interpreting the data were identified as the 

resolving power of the electrical measurements, and the sophistication of the interpretation 

(inversion) technique. Analysis of downhole electrical array data is generally more complex 

than for conventional surface measurements, although some modelling has been carried out to 

aid interpretation (Le Masne and Poirmeur, 1988; Busby and Dabek, 1986).

Cross-borehole resistivity measurements benefit from increased data control, and in such 

situations electrical tomography becomes possible: the creation of a two- or three-dimensional 

image of the resistivity distribution of the ground in the region being investigated (Daily and 

Owen, 1991). Beasley and Tripp (1991) investigate the potential for monitoring an enhanced 

oil recovery programme using cross-hole tomography, whilst Daily et al. (1992) use similar 

techniques to investigate underground structure and groundwater movement in the vadose 

(above the water table) zone.

Qualitative electrical measurements are utilised by the dipmeter logging tool (Allaud and 

Ringot, 1969; Chauvel et al., 1984), which measures a set (two, four or six) of resistances 

around the circumference of the borehole wall as the tool is raised. By correlating these 

resistance measurements, information about structural dip and bedding orientation may be 

derived. In the case of this tool, calibrated resistivity measurements are not a requirement, 

since it is only local variations in resistivity that are required to obtain the desired information.

2.4.4 Downhole imaging applications

Over the last decade, dipmeters (see above) have been developed into more sophisticated 

downhole tools capable of making high resolution electrical resistance measurements over the 

surface of the borehole wall (Ekstrom et al., 1987; Seiler et al., 1994). These measurements 

can be combined to produce an electrical image of the borehole wall, which is orientated using 

readings from three magnetometers and a triaxial accelerometer located on the tool sonde. 

Applications of downhole electrical imaging can be considered to form a distinct set within 

the broader range of downhole resistivity measurement applications as a consequence of their 

unique (high resolution, oriented, spatial) nature.
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In the commercial sector, electrical images are used for high-resolution reservoir analysis. 

In a general sense, features which exhibit a contrast in electrical resistivity may be 

investigated in detail. In addition, the spatial information contained in an electrical image 

allows inferences to be made about the geometry of specific structures. Typical examples 

include:

sedimentary analysis—for example, images allow detailed zonation of units and 

identification of non-planar bedding surfaces, slumps and cross-bedding;

thin bed analysis—an electrical imaging tool has much higher resolution than 

conventional logging tools. Consequently, the tool can resolve much narrower beds 

and identify parameters such as thickness and lamination;

structural dip interpretation—this is akin to the use of the dipmeter, from which 

imaging tools have evolved. The extra information contained in an electrical image 

may make it possible to interpret dip in difficult or poor quality intervals, and to 

provide quality control of such information;

aiding core description—downhole electrical images, which are orientated, can be 

correlated with rock core (which is not usually oriented and is not accurately depth- 

located) from the same borehole, allowing accurate core orientation and depth 

determination. In addition, inferences can be made for intervals where there is little 

or no core recovery. Interpretation software such as Schlumberger’s Diamage 

package allow interactive manipulation and presentation of scanned-in core 

photographs alongside borehole images.

Electrical imaging tools were originally developed in response to industry needs; typical 

‘industry-orientated’ applications are outlined by Bourke et al. (1989) and discussed in more 

detail by Serra (1989). Bourke et al. (1989) broadly classify interpretable features as 

structural, sedimentary or diagenetic.

Fractures are commonly observed structural features. Open fractures are commonly 

filled with conductive borehole drilling fluid whilst closed fractures often contain resistive 

cement; in both these cases a contrast in electrical properties results. An electrical image can 

provide information about fracture geometry allowing, for example, assessment of whether 

fractures are open or closed, their orientation and length, and the nature of stress regimes in 

the formation (Dennis et al., 1987; Pezard and Luthi, 1988; Plumb and Luthi, 1986). When
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associated with fracturing, a fault (or fault zone) may be identified and characterised using 

fracture geometry. Folds may also be observed, identified as laminations with characteristic 

structure visible in electrical images.

Bedding surfaces are sedimentary features visible in electrical images (Luthi, 1990), 

since electrical properties generally vary with parameters such as compaction and grain size. 

Bedding planes may be cemented, reducing fluid flow and causing an associated increase in 

resistivity. Other observed sedimentary features detailed by Bourke et al. (1989) include 

slumps and cross-bedding, where once again the spatial information contained in an 

electrical image allows inferences to be made about the geometry of specific structures. 

Stylolites, which are formed by pressure solution processes and are often associated with 

residual, insoluble, resistive minerals, have also been observed (Serra, 1989).

When electrical images are integrated with conventional logging measurements, more 

detailed interpretation becomes possible. Electrical image textures can be correlated with log 

and core data to infer property variations in, for example, grain size and sorting, porosity type 

(by identifying the presence of e.g. vugs or cementation in bedding), and the presence of 

bioturbation (Bourke et ak, 1989). More detailed analysis of fractures may reveal, for 

example, whether they are natural or drill-induced (Pezard et ak, 1988) and can provide 

information about fluid flow properties (Dennis et ak, 1987).

All the above applications are defined with reference to a commercial environment. Their 

principal goal is to enhance reservoir characterisation, and in particular provide information 

that can be used to infer permeability paths and barriers and thus to improve hydrocarbon 

recovery. It is noted, however, that the use of electrical imaging also has great potential 

benefits in non-commercial research work. A slimline version of Schlumberger’s Formation 

MicroScanner imaging tool is run routinely in the Ocean Drilling Program. The information 

obtained is used as a geological aid, where the emphasis shifts to applications like detailed 

sedimentological evaluation (Pezard et ak, 1990; Hiscott et ak, 1993), structural analysis and 

core orientation (MacLeod et ak, 1992), and tools are run in a much wider variety of 

environments than would generally be encountered in industrial applications: for example 

Brewer et ak (1995) analyse FMS data from a hole in oceanic crast corresponding to pillow 

lavas and breccias.

Electrical images can also be used in a petrophysieal sense if suitable calibration of the 

resistance data to resistivities is available at the same scale (Hornby et ak, 1992);
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unfortunately there is currently no downhole resistivity measurement at the same scale as the 

imaging tools. Bourke et al. (1989) describe how FMS resistance curves can be used to 

generate high resolution nominal porosity (and even permeability) logs if suitable calibration 

data is available. Again, such applications are only cautiously implemented since true 

calibration is not possible without downhole measurements at a high enough resolution. 

Numerical modelling can provide important quantitative control to help interpretation in this 

area.

2.5 Summary

This chapter describes a basis for the development of a numerical model of electrical current 

conduction in rocks and provides a motivation for assessing electrical resistivity properties in 

3D.

Resistivity is the dominant electrical property which can be used exclusively to 

characterise earth properties in numerical simulations of d.c. conduction (§2.1). The 

mathematical theory which describes electrical flow in 3D has been outlined (§2.2); this 

provides the theoretical basis for a numerical model.

In addition to a knowledge of the nature electrical flow in rocks, principles of 

measurement techniques (§2.3) have been reviewed since the numerical modelling is directed 

towards simulating electrical measurements over and above electrical flow in the earth.

Finally the wealth of potential applications of electrical measurements (§2.4) provides a 

motivation for developing numerical simulations which can be used to improve understanding 

and aid interpretation of resistivity measurement data in any one of the applications 

mentioned. The applications have been categorised as surface, conventional downhole, and 

downhole imaging. The numerical model described in Section 3.2 has been applied to all three 

of these areas (§4.1; §4.2; Chap. 5).
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C H A P T E R  3

Solution of the three-dimensional electrical 

conduction problem

Chapter 2 describes the nature of electrical conduction in rocks, and the governing equations 

of electricity that are used to provide a mathematical framework on which to base a numerical 

model. This framework is embodied in the governing differential equation for electric 

potential (equation 2.4, §2.2),

v . l v y  = -:5, (3.1)
p

which is a generalised form of Poisson’s equation.

The fundamental problem to be addressed when simulating any electrical flow regime, or 

the response of any electrode array which uses direct current (d.c.) measurements, is to find 

the solution of this equation for a given resistivity distribution. This Chapter is split into two 

parts: the first part reviews the available solution methods, and the second part describes in 

detail the method used in this research work.
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3.1 Review: solution methods for the electrical flow problem

This section reviews the available approaches for addressing the electrical current flow 

problem. Analytic solutions (reviewed in §3.1.2) of the generalised Poisson equation (3.1) are 

available only for a limited number of special cases. In order to model more general situations, 

some form of numerical solution must be used. The principal numerical techniques are 

outlined in Section 3.1.3.

The work in this thesis builds on an existing numerical model which is formulated using 

the finite difference approach (Chapter 1). In addition to providing a review of possible 

solution approaches, this section assesses the suitability of the finite difference method for 

modelling three dimensional electrical current flow, and compares the method with alternative 

competing techniques.

3.1.1 Introduction

There is no definitive mathematical solution to equation (3.1). Each problem is specified with 

a set of boundary conditions (§2.2) which must be satisfied in addition to the governing 

equation implying that for each set of different boundary conditions a new problem is posed. 

Given a set of boundary conditions, a general form of a solution might be found, but this 

would still represent a family of related but different solutions. A particular solution would 

depend on the resistivity distribution, p(x, y, z)- Given a specific resistivity function, a wide 

range of related electric potential distributions, V, would still be possible by having different 

source magnitudes and locations.

No general expression exists to encompass the infinite number of combinations of 

boundary conditions and resistivity and source distributions. Even for a given set of boundary 

conditions, an explicit solution cannot, in general, be found. However a variety of different 

solution methods, yielding solutions for a variety of different situations, have been determined 

for certain specific cases. In addition, approaches exist for obtaining solutions in more general 

cases.

Mathematical solutions to equation (3.1) can be broadly divided into either analytic or 

numerical solutions. Analytic solutions may be characterised by the following features:
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o the solution consists of an algebraic expression derived from direct mathematical

solution of the equation;

® the effect of varying parameters (such as resistivity or source location) can be

assessed by inspecting the solution;

© the solution is known everywhere in the region of interest;

o the evaluation of an analytic is usually relatively rapid.

In comparison, numerical solutions may include the following features:

® the solution consists of the values of electric potential at a series of pre-defined

points (nodes);

® the effect of varying parameters can in general only be evaluated by obtaining a series

of solutions for different situations in order to build up an overall picture;

© the detail of the solution is determined by the distribution of the nodal points, which

are the intersections of a grid. Therefore a finely-spaced grid will provide a more 

detailed solution. The values of a solution between nodal positions are generally 

found by inteipolation.

It can be argued that analytic solutions are exact, whereas numerical solutions are 

approximate. However, this distinction becomes blurred because analytic solutions may 

require some form of numerical procedure for final evaluation: for example, a function or

integral may be found using an infinite series or some other approximation. It is also worth

noting that numerical solutions can in principle be made as accurate as desired by performing 

calculations to the correct precision, and using a grid with a fine enough mesh. In practice the 

limits on accuracy for both analytic and numerical solutions may therefore be controlled by 

the computer (rather than the solution method) employed.

Analytic solutions of equation (3.1) only exist for a few relatively simple situations. 

Excepting these simplified situations the governing equation cannot be solved directly and a 

numerical solution has to be applied.

3.1.1.1 Classification o f the problem

It is useful to classify the problem expressed by equation (3.1), particularly to aid decisions in 

the choice and implementation of numerical solution methods. In rectangular cartesian 

coordinates, equation (3.1) becomes
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j=

In two dimensions, equations of the form

a — ^ + 26— —+ =
dx dxdy 9y‘

are classed as elliptic partial differential equations if -  ac < 0, where a, b and c are 

functions of x and y only. Closely associated to equation (3.2) are the equations of Laplace and 

Poisson [equations (2.8) and (2.7), §2.2] which may be classed as elliptic since they 

correspond to a = 1,6 = 0 and c = 1. The more general form of equation (3.2) may be classed 

as a linear self-adjoint elliptic equation (Mitchell and Griffiths, 1980).

In addition, and more importantly from a computational point of view, problems defined 

by partial differential equations are classified as either boundary value or initial value 

problems. The electrical flow problem as described here is a boundary value problem; the

values of electric potential must be found in some region of interest subject to some pre

defined variations in potential along the boundary of the region (Press et al., 1992).

Boundary conditions can take one of three forms (Mitchell and Griffiths, 1980), viz.:

1. Dirichlet conditions. The electric potential, V, is specified at the boundary;

2. Neumann conditions. The component of the potential gradient normal to the 

boundary, dV/dn, is specified at the boundary;

3. Robbins conditions. A linear combination of the potential gradient and the electric 

potential [which can be written as aV  + |3(8V/8n), where a  and p are known

functions of space] is specified on the boundary.

The problems considered in this work generally involve boundaries which are effectively 

at infinity, where the electric potential and the potential gradient are zero, and either Dirichlet 

conditions (V = 0) or Neumann conditions (dV/dn = 0) can be used.

3.1.1.2 Other applications o f the electrical flow equation

The governing equation for electrical flow, and in particular the associated equations of 

Poisson and Laplace [equations (2.7) and (2.8), §2.2] arise in many physical situations, and 

are therefore applicable to other problems, principally: potential field theory (gravity and
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magnetics); laminar fluid flow; steady-state heat conduction; and flow through porous media 

(noting that the fluid flow and electrical flow equations are governed by essentially 

independent parameters).

3.1.2 Analytic solutions

Analytic solutions, although limited to situations involving relatively simple geometries, are 

extremely valuable in the mathematical analysis of the electrical conduction equation. They 

provide a basis for the definition of apparent resistivity (§2.3.2), which is useful in 

determining the resistivity of the ground from measured resistance values, and also goes some 

way to giving an idea of the nature of anomalies where the resistivity distribution departs from 

an otherwise predictable structure. In cases where they can be applied, they are generally less 

computationally intensive than equivalent numerical algorithms.

Analytic solutions are also an invaluable aid to numerical simulations in two ways: firstly, 

they can be used to verify for numerical approximations; secondly, they may speed up 

computation by providing a starting point for an iterative solution in the evaluation of a more 

complex situation.

The following sections outline some analytic results which have been used to enhance 

and test the numerical modelling described later in this work (chapters 4 and 5). More detail, 

including an outline of the derivation of the results, can be found in Appendix B. Section

3.1.2.1 outlines the principle of superposition, which is an important result used when 

calculating the effect of multiple current sources and sinks.

3.1.2.1 Combinations o f sources: the principle o f superposition

As a result of the linear relationship embodied in Ohm’s Law, equation (3.1) is also linear 

[implying that a linear combination of two known solutions of (3.1) is also a solution]. The 

resultant effect of multiple source configurations may therefore be deduced by algebraically 

summing the solutions for the individual sources: this is an important result used in the 

calculation of potentials for any multiple electrode configuration. The result may be 

demonstrated as follows: consider the case where there are two current sources, and %. 

Then from equation (3.1) the electric potentials V], and V2 due to the respective sources satisfy
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Adding the two equations in (3.3) gives

1

Equation (3.4) simplifies to

V - V % + V  - v % = - q - s , .  
P P

v l v ( %  + v ^ ) = - ( E + ^ J ,

(3.3)

(3.4)

(3.5)

so the potential field due to the combined source (5i + 5a) is (Vi + Va), i.e. the algebraic sum 

of the potentials due to the individual fields. In general, if a  and (3 are arbitrary scaling factors 

(scalars), then the potential field due to an electric source of magnitude (aS| + |35a) is (aV, + 

pVa). This is the principle o f superposition in d.c. electric field theory [see, for example, 

Moran and Chemali (1985)].

3.1.2.2 Homogeneous media

If the resistivity of a medium is a constant value and the boundaries of the medium extend to 

infinity, the governing equation (3.1) may be simplified by considerations of symmetry and 

can be solved directly by conventional calculus. The following two results are standard 

results, described in more detail in Appendix B.

Infinite homogeneous medium

The electric potential V at a distance r from a point source emitting a current I  located at a 

point O in an infinite medium of constant resistivity p (Figure 3.1, left) is given by (§B.l)

_2L
4jtr

(3.6)

resistivity = <

resistivity = p resistivity = p

infin ite m edium

k  Y 4
/ V

sem i-in fin ite m edium

Figure 3.1 Point sources in homogeneous, isotropic media.
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This is an idealised situation which represents a buried electrode in a uniform, 

homogeneous, isotropic earth.

Semi-infinite homogeneous medium

A  theoretical representation of an electrode located at the surface of a flat, uniform, 

homogeneous, isotropic earth is illustrated in right hand part of Figure 3.1. The analytic 

solution of equation (3.1) for this case, in which a current source of strength I is located on an 

infinite planar interface between a region of resistivity p and a region of infinite resistivity, is 

(§B.2):

_PL
2nr

(3.7)

3.1.2.3 Solutions to plane interface problems

The method o f images

By comparing equations (3.6) and (3.7) it can be seen that a source located at the surface 

of the earth effectively doubles its magnitude. The earth-air interface acts as a ‘current mirror’, 

reflecting current downwards and doubling the electric potential compared with that for the 

full-space case. The idea of using optical ray theory to treat electric current flow has been 

developed much further in the method o f images (Keller and Frischknecht, 1966), the use of 

which has allowed some of the following results to be obtained. The method of images is only 

applicable to a limited number of situations, in particular regions separated by plane 

boundaries, but also anomalous three-dimensional bodies such as a buried sphere (Snyder and 

Merkel, 1973).

Vertical interface

vertical interface tw o-layered  earth 

Figure 3.2 Plane interface problems.
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The vertical interface problem is illustrated in the left-hand part of Figure 3.2. Denoting 

the electric potential by Vi in the region containing the current source, and V2 in the other 

region, it can be shown that (§B.4)

where n  and n  are the distances from the point of interest to the source and its image 

respectively, in the first region, and rg is the distance to the current source from a point of 

interest in the second region. The parameter k is the transmission coejficient, defined by:

(3.9)
.P2 + P1

Two-layered earth

The potential at the earth’s surface when a horizontal layer of thickness h and resistivity 

pi overlies a region (infinitely deep) of resistivity pi (Fig. 3.2, right-hand side) can be shown 

to given by the infinite series (§B.5):

y  = - ^  
2jcr

Integral solutions

 im=i / r)
(3.10)

A more fundamental solution for the electric potential in a layered earth can be derived by 

considering the Laplace/Poisson equation in cylindrical polar coordinates, separating 

variables, and making use of Bessel functions in the solution (§B.6).

The potential V at the earth’s surface (z = 0) can be written as

V = ^ ( l  + 2rj"x{XV„(X,r)dx), (3.11)

where Jq is the Bessel function of order zero. The function K(X) (often termed the kernel 

function of resistivity in this context) depends on the number of layers under consideration. In 

the two layer case (n = 2),
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where h is the top layer thickness and ^ = (p2 -  Pi)/(p2 + pi) as in equation (3.9). The solution

(3.11) was originally described by Stefanescu et al. (1930). It is equivalent to the infinite 

series derived from the images method (equation 3.10).

The evaluation of the integral in equation (3.11) requires a numerical approach. This 

process has been expedited by the use of linear digital filter techniques, pioneered by Ghosh 

(1971).

3.1.2.4 Other solutions

The most general analytic approach to solving partial differential equations is separation of 

variables (Gianzero, 1981), which usually results in analytic solutions involving integrals of 

Bessel functions. The conditions which apply when employing separation of variables imply 

restrictions on the geometries which can be analysed (Snyder and Merkel, 1973). For example. 

Grant and West (1965) describe solutions for a single sloping interface, a conducting sphere, 

an oblate spheroid, and a conducting ribbon. These solutions require the use of exotic 

coordinate systems and some simplifying assumptions even though the situations, whilst of 

some geological significance, are relatively simple geometrically. Examples of refined models 

of a layered earth include those described by Roy and Rao (1977) and Stoyer and Wait (1976).

For borehole situations, Keller and Frischknecht (1966) present a simplified 

approximation for a highly conductive borehole. This approximation is not valid for porous 

formations which typically exhibit conductive invaded zones. Other analytic analyses of 

simplified borehole situations are presented by deWitte and Gould (1959) and Gianzero and 

Anderson (1982). Gianzero (1981) reviews the various solutions that have been developed for 

the downhole situation. More recently, Kaufman (1990) has presented a solution for a cased 

borehole in a homogeneous formation, but a more general analytic solution for a finite- 

diameter borehole does not exist—other solution approaches have to be taken in this case.

In addition to the homogeneous solutions (equations 3.6 and 3.7), the method of images 

was favoured for providing analytic test solutions since it is flexible and easy to implement in 

practice. In more complex scenarios, homogeneous solutions based on a suitable averaged 

background resistivity are often found to be the most practical means of generating a starting 

point from which to iterate towards a solution.
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3.1.3 Numerical solutions

With the development of computer technology enabling repetitive calculations at ever- 

increasing speeds and allowing the manipulation of increasingly large arrays of data, 

numerical solutions have superseded analytic approaches in many areas, including the general 

electrical current flow problem.

There are a variety of different numerical methods available to solve equation (3.1), 

which each have different strengths and weaknesses. The following sections outline the 

principal competing numerical approaches. Of these, the finite difference method and the finite 

element method are applicable to arbitrary resistivity distributions, in three dimensions, and 

are described in more detail than other approaches.

3.1.3.1 Finite difference method

The finite difference (FD) method has been used for electrical resistivity problems in 

geophysics by a number of workers, including Dey and Morrison (1979), Hermance (1983), 

James (1985), Mufti (1976; 1978; 1980), and Scriba (1981).

The first step in the application of the FD method to the electrical governing equation

(3.1), is to define a grid to cover the region of interest (examples of FD grids can be found in 

subsequent chapters, e.g. Figure 4.1.9). The electric potential function V, which is continuous 

in the region of interest, is represented by a set of discrete values which are located at the grid 

intersections or nodes. If a continuous function of the potential is required then the potential 

between nodes is approximated using surrounding nodal values; linear interpolation is usually 

used.

Although the grid spacing may be non-uniform, the grid itself cannot be completely 

arbitrary. Each grid line must be parallel to a coordinate direction, so that any grid can be 

completely described by three arrays, each array storing the intersection points of grid lines 

along a particular coordinate direction. Usually, rectangular cartesian coordinates are used, 

although any orthogonal curvilinear system may be used in general. In particular, cylindrical 

polar coordinates are useful for borehole investigations.

The FD method approximates equation (3.1) at each of the grid nodes. As an example, 

consider equation (3.1) in rectangular cartesian coordinates (§3.1.1.1):

3-10
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(3.2)

The basis of the FD method is the expression of the partial derivatives of V using differences 

of the discrete function values at the nodes. As an example, the partial derivative (9 /̂9%) can

be approximated at a point midway between nodes located at xq and x\ using the central 

difference formula

dx
(3.12)

This is illustrated graphically in Figure 3.3. 

V

FD approximation

dv

F(%i) -  V(%o)

Figure 3.3 Central difference approximation [gradient of the line drawn between V(xo) and Ffx,)] for 
a first order partial derivative (gradient of the tangent at xif).

Second order derivatives may be expressed as differences of first order derivatives and so 

on, allowing in principle any order derivative to be approximated, provided there are enough 

nodes available. The extension of the above example to three dimensions is straightforward [a 

full FD formulation of equation (3.1) is described in Section 3.2.1], The accuracy of the 

approximation improves as nodes get closer together or as modelled functions become 

smoother. This is borne out intuitively in Figure 3.3: if the points xo and xi are moved closer 

to each other, or if the graph of the function V(x) becomes straighter, then the FD 

approximation [the gradient of the line drawn between y(xo) and y(x,)] will converge to the 

actual value of dV/dx at x = x^ (the gradient of the tangent at x./̂ ).

Boundary conditions (§3.1.1.1) are specified on the external nodes of the FD grid. In 

general, the boundaries in a FD model must coincide with coordinate surfaces, although it is 

possible to approximate non-aligned boundaries (Mitchell and Griffiths, 1980).
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In addition to V, the parameters p and S  are also specified at each node. Using these, and 

difference quotients to express partial derivatives (equation 3.12), the electrical governing 

equation (3.1) may be approximately formulated for each node in terms of the surrounding 

nodal parameter values.

Specification of resistivity, p, by a set o f values at nodes is equivalent to discretizing the 

resistivity distribution in the model region into a series of cells, the size and shape of which 

are defined by the grid/node locations. In the case of geological models this is, to an extent, 

observed in reality where resistivity may change abruptly at contacts between different units 

or beds, for example. Complex resistivity distributions may in principle be simulated, 

provided a fine enough grid is used.

The discretization of a resistivity distribution is illustrated with a schematic example in 

Figure 3.4. This shows how a borehole logging tool might be represented using a cylindrical 

grid (which possesses convenient geometry). Cells in the central part of the model correspond 

to the logging tool and are surrounded by cells defined to be equivalent to borehole fluid. 

Outside these cells variations in the model resistivity correspond to simulated variations in the 

formation resistivity.

logging tool borehole drilling mud 

form ation m odel 

cell

Figure 3.4 Discretization o f a resistvity distribution using FD cells.

The set o f nodal approximations to equation (3.1) are combined to give a set of 

simultaneous equations. Expressed in matrix form, the equation set forms a sparse, banded, 

matrix. Various numerical procedures exist for solving this kind of problem; they are 

discussed further in Section 3.5. The solution of the simultaneous equations gives the values 

o f V  at the FD grid nodes and thus the simulated electric potential in the modelled region; 

from these values the simulated response of electrical tools may also be generated.
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The FD method can be seen to be applicable to arbitrary geometry, although grid 

definition is not completely flexible. Model detail is limited by time and space on the 

computer being used.

A FD formulation of equation (3.1) is described in more detail in Section 3.5.

3.1.3.2 Finite element method

The finite element (FE) method (Zienkiewicz, 1971) has been used for electrical resistivity 

modelling by Coggon (1971), Bibby (1978) and Sasaki (1994) amongst others. It is also a 

popular approach for modelling downhole situations (Chang and Anderson, 1984; Luthi and 

Souhaité, 1990; Chemali et al., 1983, and others).

As with the FD method, the first step in the application of the FE method is to define a 

grid to cover the region to be modelled. The electric potential function, V, is again represented 

by a set of discrete nodal values; interpolation is used to give values between nodes. In 

contrast to the FD method, the FE grid is not constrained by a particular coordinate system. 

The grid splits the modelled region into a series of elements (hence the method’s name). 

Physical properties are associated with an entire element rather than grid nodes (although a 

property may vary between vertices of an element if desired). Two-dimensional elements are 

commonly triangular or rectangular; in 3D they become tetrahedral or cuboid.

The FE method is based on minimisation o f energy. It can be shown that solving the 

Poisson equation is equivalent to minimising the total power, t|/, in a d.c. system (Coggon, 

1971), which is expressed by the integral

V = j { ( r ( v y " ) + 2 y v  J ,)d i3, (3.13)

where V is the electric potential; Js represents the contribution from current sources, and a  is 

conductivity in a region of interest i3.

The FE method approximates the minimisation of equation (3.13). The solution involves 

assuming a form for the resultant potential function by approximating it with local functions 

over each element (in three dimensions tetrahedral elements are commonly used and a linear 

variation of the potential is assumed) and formulating the power expression (eq. 3.13) for each 

element. The equations for each element are combined to give a set of simultaneous equations 

which can be assembled into a sparse matrix equation, as in the case of the FD method. A
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variety of standard approaches exist for solution of the simultaneous equations [see, for 

example, Press et al. (1992)].

Boundary conditions are automatically incorporated into the minimisation formulation, 

allowing complex boundary geometry to be catered for by the FE method. In comparison with 

the FD method, this makes the FE method better suited to modelling Neumann conditions 

(§3.1.1.1), or situations involving irregular boundary geometries.

As with the FD method, the FE method is capable of modelling situations with arbitrary 

geometry and resistivity distributions. In terms of grid definition and boundaries the FE 

method is more flexible, although the situations modelled in this work can be adequately 

represented using grids and boundaries ‘tied’ to specific coordinate systems (i.e. rectangular 

cartesian or cylindrical polar coordinates). The comparison between the FD and FE methods is 

discussed further in Section 3.1.4.

3.1.3.3 Other methods

The FD and FE methods are the most important solution approaches to modelling the three 

dimensional electrical conduction problem in the context of this work since they are 

applicable to problems with arbitrary geometry and resistivity distributions. A variety of other 

methods have also been used to model electrical flow: these are outlined below.

Integral equation approaches

Integral equation methods are based on the integral representation of the electrical 

governing equation (eq. 2.9, §2.2.2):

y(r) = j  G(r, Fg )S(ro )dû  ̂ . (3.14)

The key to using an integral equation approach is to derive an expression for G 

corresponding to the situation being modelled. There is no general expression for G (which 

incorporates boundary conditions) although for a full space, for example, it is given by the 

whole space Green’s function:

An r

3-14



Solution o f  the three-dimensional electrical conduction problem

The similarity between G and V for the differential equation is apparent (cf. eq. 3.6). In 

practice, solution of an integral equation problem involves finding G for any anomalous 

regions in the area of interest.

Once G is known, it is substituted into equation (3.14) which may be converted to a set of 

algebraic equations (Harrington, 1968) that can be solved by standard numerical techniques. 

The set of simultaneous equations is in general much simpler than the sets obtained from 

differential models (such as the FD and FE methods); this is the main advantage of the 

integral equation approaeh.

Integral equation methods are discussed in detail by Eskola (1992), and have been applied 

to eleetrieal resistivity modelling by a number of authors ineluding Daniels (1977) and Straub 

(1995); Schenkel and Morrison (1994) use integral equation modelling to analyse the response 

of a resistivity tool in a cased borehole; Beasley and Ward (1986) deseribe simulation of the 

mise-à-la-masse teehnique. The approaeh is also popular for electromagnetic (Hohmann, 

1975; Wannamaker et al., 1984) and magnetotelluric (Ting and Hohmann, 1981) models, 

whieh are based on similar prineiples to those of resistivity simulations.

Lee et al. (1981) use a method which combines aspects of both FE and integral solutions 

in order to reduce the size and solution time for some electromagnetic simulations. Hermance

(1983) uses local integral forms to improve the accuracy of a FD electromagnetic model. In 

a.c. simulations the accuracy of cerivatives of the electric field and potential, particularly near 

sharp discontinuities, is more critical than for d.c. resistivity modelling.

Resistor network analogues

Electrical conduction in three dimensions can be approximated by using physical 

networks of resistors. Such networks have been used to analyse electrical logging tools 

(Guyod, 1955) but have now been superseded by computers which can duplicate the models 

without the need to build them. The network analogue is a direct consequence of the 

eurrent/eharge conservation rules expressed in equation 2.2 (§2.2.1). This property is also 

possessed by the FD formulation of the problem since it is based directly on the conservation 

equation (see §3.2.3). Zemanian and Anderson (1987) use results for an infinite electrical grid 

to refine an essentially one-dimensional model used to simulate electrical borehole tools.
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Alpha-centre method

The alpha-centre method (Stefanescu and Stefanescu, 1974) produces relatively fast 

simulations of electrical problems, but is limited to smoothly-varying resistivity distributions 

between localised conductive bodies. Petrick et al. (1981) use this approaeh in a 3D inversion 

scheme. The formulation of the problem moves away from the original electrical governing 

equation (3.1), so derivation of secondary parameters such as current flow is more difficult.

Fourier methods

Equation (3.1) can be made more tractable by using fourier transformations and solving 

the transformed problem (Burden and Paires, 1985). As with the alpha-centre method this 

approaeh gives fast solutions, but places severe restrictions on the resistivity distributions that 

can be catered for. Solution approaches based on fourier methods include those by Tripp et al.

(1984) and LaBreque and Ward (1990) who apply it to a cross-hole model interpretation.

3.1.4 Summary

Excepting simplified situations, simulation of electrical flow generally requires a numerical 

approach. Analytic solutions (§3.1.2) are valuable both for verification of numerical methods 

and for providing good starting points for iterative solutions; the superposition principle 

(§3.1.2.1) is a useful analytical result allowing the deduction of potential fields for multiple 

source configurations, or sources of different magnitudes, if the fields due to single 

sources/sinks are known.

In the context of this work the most important numerical solution approaches are the 

finite difference method (§3.1.3.1) and the finite element method (§3.1.3.2) whieh can deal 

with arbitrary resistivity distributions in three dimensions. Other numerical techniques are in 

general faster but do not allow enough scope for simulating realistic three-dimensional models 

(§3.1.3.3). These approaches are useful in other modelling applications, for example 

resistivity inversion schemes.

The FE method is more flexible than the FD method in terms of grid definition and 

boundary conditions, and can more easily incorporate sophisticated ‘base’ functions for 

approximating highly variable parameters. For modelling the electrical conduction problem 

such refinements are not essential and the FD method is considered to be suitable for the
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purpose of this work. Onee the problem has been formulated, both approaches lead to the 

solution of simultaneous equations which can be expressed as a sparse matrix equations.

Dirichlet boundary conditions are handled well by both the FD and FE methods. The 

flexibility of the FE method allows Neumann conditions or irregular boundary geometries to 

be catered for with more ease and accuracy than for the FD method. Typical problems dealt 

with in this thesis can be expressed without the need for such difficult boundary conditions by 

using resistive boundaries, effectively locating electrode arrays in large, insulating tanks.

The FD formulation developed has the benefit of being based directly on the generalised 

Poisson equation, allowing secondary parameters such as current flow, current density and the 

electric field to be readily deduced. This approach is also directly analogous to a three- 

dimensional resistor network which is a useful physical reference when analysing any 

problems with models and ensures that models are physically reasonable. Secondary 

parameters are not so easily derivable from the FE method which is based on minimisation of 

energy.

The resistor network analogy of the FD formulation allows it to effectively replace 

physical resistor networks previously built for simulation purposes (§3.1.3.3). Resistor 

networks closely simulate the physical process of current conduction and the analogy is 

invaluable for modelling tools whieh make use of the measurement and control of current 

flow. For example, this is exploited to simulate the passively focused current intensity 

measurements made by electrical imaging devices (Chapter 5).

Following the above discussion, the FD method is identified as a suitable approaeh for 

creating a 3D numerical model of eleetrieal current flow in rocks.
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3.2 Development of a three dimensional finite difference numerical 

model

This section describes in detail the formulation and implementation of a FD solution of the 

three-dimensional electrical conduction problem embodied in equation (3.1). This solution 

forms the core of the numerical models used in chapters 4 and 5.

3.2.1 Formulation of finite difference equations

Initial models used a grid based on rectangular cartesian coordinates. In such a system, 

equation (3.1) is written as (eq. 3.2, §3.1.1.1):

-5.

The objective of the FD method is to find the electric potential V{x, y, z) for a modelled 

region 91. The conductivity distribution a(%, y, z) and source function 5(x, y, z) [5 = (dq/dt) 

represents the location and magnitude of any current sources] are known in 91. In addition, the 

variation of V at the boundaries of 91 (the boundary conditions) are specified.

Consider a 3D grid consisting of I x J x K  nodes, where the coordinates of the {i,j, k)th 

node are denoted by (%„ y/, %). Consider a typical node { i j ,  k). For convenience label {i,j, k) 

( i - l , ; , t )  'W', ( i+ l , ; ,k )  ' r ,  ( f , y - l , t )  ( i,;+ 1 ,k )  'AT, ( f , ; ,k - l )  W  and

(!,;,t+ l)'[T (F ig u m 3 .5 ).  

z, t
AC

D

Figure 3.5 Coordinate notation convention.
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Equation (3.2) can be approximated using FD quotients for partial derivatives (§3.1.3.1). 

For simplicity this process is illustrated for a typical node, P, on a one-dimensional grid 

(Figure 3.6).

a (av 
a%̂a%

a%
0̂  Ôp O,;
% % H:

%

Figure 3.6 Model parameters at a typical node on a one-dimensional grid. 

For this example, equation (3.2) reduces to:

djc I dx J
(3.15)

In order to represent this equation at P, an expression for the partial second derivative 

d/dx(adV/dx) must be found; this is achieved by using first derivatives calculated between the 

grid nodes, at Xwp and xpp:

dx dx
(3.16)

P̂E -̂ WP

The first order derivatives are in turn approximated by difference equations:

" f ) dx
= C7 (3.17)

Substitution of equations (3.16) and (3.17) into (3.15) yields the FD approximation to 

equation (3.15) atP :

(3.18)
'■PE -^W P

The above procedure is easily extended to three dimensions, giving:
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(3.19)

The term xpg refers to the x-coordinate midway between nodes P and E, which is the 

mean of xp and xe, i.e. Vi{xp + xp). In common with coordinate locations, the inter-nodal 

variation of most model parameters is found by linear interpolation. An important exception is 

0, which is not linearly interpolated for physical reasons (Reece, 1986): consider the case 

when node P is just below the earth’s surface, and node E is just above it. Then (Sp is set to the 

rock conductivity (a finite number) and Og = 0 as air is (effectively) an electrical insulator. 

There is no conduction of current across the PE boundary which implies (Spp = 0. However, 

linear interpolation gives Cpe = 16(0? + 0g) = ‘/2 0 />, i.e. a non-zero value in general. To 

overcome this problem resistivity, rather than conductivity, is interpolated. This gives

1 1 J _  + A
l i e ,  G.

=>0pg =
20,0

0 , 4 - 0
(3.20)

so in the case of the earth-air interface, equation (3.20) gives <5pe = 0 as required.

The mistake of averaging conductivity instead of resistivity has been made in published 

literature (Scriba, 1981). The fact that the FD method has been established for many years is 

no guarantee of it being implemented correctly.

Kirchhoff s current conservation rule

The source term Sp represents current (emitted at P) per unit volume (§2.2.1), or in the 

one-dimensional case per unit length, and may be expressed as:

_  4  _ 4
—  —  ?

^  PE ^ W P

where Ip [A] is the magnitude of the current source at P. Substituting this into equation (3.18) 

and cancelling like terms:

y . - y .
— —I n  .

y
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Denoting (V^ -  V?) by AVpe, (V), -  by AVw?, (xg -  %g) by Axpg, and (xg -  by A%;yp:

. ^ A V „ - . ^ A V „ = - / , .  (3.21)
/X X  /X X y^p

In one dimension, (Gpe/Expe) represents conductance (§A.l), the reciprocal of resistance, so 

equation (3.21) is equivalent to

AV,, AVL,
P .

(3.22)

where Rpe is the resistance between P and E\ similarly for Rwp- On applying Ohm’s Law, 

equation (3.22) can be seen to be a statement of Kirchhoff s current conservation rule (§A.3) 

for node P and thus the FD formulations expressed in equations (3.18) and (3.19) are 

equivalent to current conservation rules for electric circuits. Equation (3.19) is therefore 

analogous to a three-dimensional resistor network with inter-nodal resistances dependent on 

node spacing and conductivity. This analogy is used in this work in a variety of ways when 

generating numerical models, most notably for deriving 3D current flow from nodal electric 

potential values. The resistor network analogy confirms that a physically valid model should 

use interpolation of resistivity rather than conductivity values between nodes (eq. 3.20), in the 

same way as resistors are added in series (§A.4).

Boundary conditions

Both Dirichlet and Neumann boundary conditions can be specified for the FD model 

(§3.1.1.1). The voltage values at the boundaries of the FD grid are generally fixed, and thus 

Dirichlet conditions are naturally specified at the outer grid surfaces: the initial value of the 

boundary voltage specified before the start of iteration towards a solution is the boundary 

condition. Neumann conditions are incorporated in general by a minor modification to the 

solution algorithm so that the boundary voltage varies as the interior values of V are iterated, 

in order to preserve the potential gradient specified initially.

The only Neumann condition that needs to be specified for the purposes of this work is 

that for a resistive boundary (as in the earth-air example above). A model with such boundary 

conditions is analogous to simulated electrical equipment located in an insulating tank.

Equation (3.19) is used to approximate equation (3.2) at each of the interior nodes of the 

FD grid. A total of (/ -  2)x(/ -  2)x(K  -  2) simultaneous equations are formulated: one for
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each node excluding the boundaries. The solution of these equations is discussed in the 

following section.

3.2.2 Solution of finite difference equations

It is convenient to rearrange equation (3.19) in the form

-Vpkp + V^k^ + Vpkp. + V^kg + + V^k^ = -S(clx pcly pdzp) (3.23)

The /c’s are all known constants which depend upon a  and the node coordinates; 

(dxp X dyp X dzp) is the (known) dimension of the cell surrounding P, so the seven V’s are the 

only unknowns in equation (3.23). In order to find a value of V at each of the grid nodes, the 

whole set of equations [in (/ -  2)(7 -  2){K -  2) unknowns, i.e. the number of internal nodes] 

must be solved simultaneously.

Direct matrix inversion methods make use of the fact that the equation matrix is sparse—

i.e. it contains many zero elements. There are a total of (7 - 2)(J -  2){K -  2) unknowns, with 

seven unknowns (in general) in each equation. This leaves at least [ ( / -  2){J -  2){K -  2) -  7] 

zero entries per row. A one-dimensional formulation of equation (3.23) produces a tri

diagonal matrix with non-zero elements only on the main diagonal and on the diagonals 

above and below in the equation matrix; this is readily invertable. Two- and three-dimensional 

formulations produce two and four extra non-zero diagonals {sparse, banded diagonal 

matrices) respectively, which are more difficult to invert, and require progressively more 

computer storage space.

For small matrices (‘small’ being a computer-dependent definition, but typically when 

dealing with simplified models such as two-dimensional ones) direct matrix inversion may be 

used. Tailor-made software packages exist for inversion of sparse matrices (see, for example, 

Eisenstat et ah, 1977). For cases involving larger matrices, which include realistic three- 

dimensional formulations, iterative processes must be used. The principal iterative methods 

which may be employed are simultaneous overrelaxation (SOR) (Press et ah, 1992) used by 

Scriba (1981) and alternating direction iteration (ADI) (Gunn, 1964).

James (1985) uses a specialised technique (Polozhii decomposition), which is reported to 

be efficient and compact, at the expense of full flexibility. Three-dimensional models must be 

capable of being divided into a number of regions, each of which have resistivity variation in 

one dimension only. Geological situations which may be approximated on a rectangular grid
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using this approach can typically be classed as fault-bounded tectonic blocks. Vertical faults 

and horsts and grabens are among the list of examples of potential applications given by 

James (1985).

Dey and Morrison (1979) compare the performance of SOR and ADI with more 

sophisticated techniques (the incomplete Cholesky-conjugate gradient method and full-banded 

Cholesky decomposition), finding that these techniques are faster and more accurate than the 

standard approaches. Full-banded decomposition is particularly useful when many (>15) 

electric sources are to be simulated, since computations for arbitrary source distributions can 

be rapidly performed once the matrix inversion has been carried out. These approaches are 

unfortunately impractical on smaller computers because of memory and storage requirements.

The modelling programs described in this work utilise a hybrid relaxation method (Reece, 

1986) which solves for an entire line of nodes simultaneously, and thus iterates by rows (or 

columns) rather than just node-by-node. This approach is similar to the successive line 

overrelaxation method described by Varga (1962) and used by used by Mufti (1976), which 

does not require a great deal of computer memory, and allows models to be small enough to 

be run on a powerful personal computer (PC) or workstation.

3.2.3 Calculation of resistor values

Since the FD model is analogous to a 3D resistor network (§3.2.1), each cell in the 3- 

dimensional model resistivity distribution may be represented by three resistors: one in each 

coordinate direction. The resistor values represent the equivalent resistance of the (isolated) 

cell in each of the three directions. In Appendix C, relations between the resistance of an 

elemental cell and its resistivity and geometry are derived; these results are summarised 

below.

Rectangular cartesian coordinates

The conversion equations for rectangular cartesian coordinates are based on finding 

expressions for the resistance across opposite ends of a rectangular cell (§C.2) as illustrated in 

Figure 3.7. Denoting these resistances by R x , R y ,  and R ^  in the x, y, and z directions 

respectively the resistances are given by

R = R = - e ^ ;  and
AyAz AxAz '  AxAy
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R z Az

-Ax'

Figure 3.7 Cell geometry in rectangular cartesian coordinates.

Cylindrical polar coordinates

An important modification to the numerical model is to express the problem in cylindrical 

polar coordinates. Such a coordinate system lends itself to modelling the borehole situation (in 

the case of an idealised, circular borehole) with the borehole axis coincident with the centre of 

the FD grid.

The conversion equations for cylindrical polar coordinates (§C.3) express the resistance 

across opposite ends of a wedge-shaped cell (Figure 3.8). Denoting these resistances by R r , R q ,  

and Rz in the radial, tangential, and vertical directions respectively the resistances are given by

&
A0.Az

I n l ^
2Az [ r . - r .

A0 ; and Æ pA z

cell resistivity p

Figure 3.8 Cell geometry in cylindrical polar coordinates.

Using this approach it is possible to account for a cylindrical mesh using internal storage 

based on a rectangular grid.

3-24



Solution o f  the three-dimensional electrical conduction problem  

3.2.4 W rapping the grid for cylindrical polar coordinates

The FD model can be modified for cylindrical polar coordinates by ‘wrapping’ the ends of the 

originally rectangular mesh back onto themselves (Reece, pers. comm., 1992). This process is 

illustrated in Figure 3.9. The advantage of this approach, rather than reformulating the FD 

equations, is that the arrays for internal storage of the FD model remain the same, and the 

solution algorithm does not need to be greatly modified.

grid based on rectangular cartesian 
coordinates

grid based on cyiindricai polar 
coordinates

Figure 3.9 Wrapping o f a rectangular mesh.

Originally rectangular cells become wedge-shaped and so the conversion equations for 

cylindrical polar coordinates are used to find resistance values as detailed in the previous 

section.

In the tangential direction (circling the central axis) nodes that were originally at the 

opposite ends of the grid come into contact with each other (indicated by the hatching in 

Figure 3.9). These are fixed boundary nodes in the rectangular grid, but are required to vary 

freely in the wrapped grid. This is enabled by repeatedly setting the boundary nodes equal to 

the interior nodes of the opposite side of the grid each time the solution iterates, effectively 

overlapping the boundary nodes in the tangential direction.
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3.2.5 Accuracy and grid definition

The choice of the extent and resolution of a FD grid is compromised by requirements for 

accuracy (which is improved by finer mesh spacing, implying the need for more nodes) and 

speed (smaller grids have less nodes, implying fewer computations). An understanding of the 

parameters governing accuracy is therefore important when considering model development. 

This section describes theoretical and practical analysis of grid definition and solution 

accuracy. Grid definition for models described in this work has been implemented using the 

discussion here as a guide.

3.2.5.1 Discretization errors

The discretization error associated with the FD approximation of partial differential equations 

can be quantified analytically (Mitchell and Griffiths, 1980).

Consider a two-dimensional formulation of Laplace’s equation (eq. 2.8, §2.2) in 

rectangular cartesian coordinates:

0 , (3.24)

on a rectangular grid with a node spacing of a in the x-direction and b in the y-direction 

Consider the typical node P illustrated in Figure 3.10.

k N ,

P , ,

S

Figure 3.10 Typical node point in a regular two-dimensional grid.

A Taylor expansion may be used to express the potential Ve in terms of that at Vp:

- ,  a^ V u u Y u
(3.25)

Similarly,
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a y  a" a^y  a v a"y
dx 2 dx^ 6 dx^ 24 dx 

Adding equations (3.25) and (3.26) gives

y , + y u ,-2 y ,  =

(3.26)

2 a "y  o" a v

Similarly, in the y-direction,

y» + y , - 2 y .

a%" "^12 a%"
(3.27)

(3.28)

An expression involving ± e  LHS of Laplace's equation as stated in equation (3.24) may

be derived by adding [1/a^ x eq. (3.27)] to [l/b^ x  eq. (3.28)]:

1 1 1 1

From equation (3.29) it can be seen that the approximation

y, = o

. (3.29)

(3.30)

is equivalent to Laplace’s equation with a discretization error [termed ‘local truncation error’ 

by Mitchell and Griffiths (1980)] of

ax" 3 /
H---- (3.31)

Note that equation (3.30) is equivalent to a FD approximation derived from central 

difference formulae (cf. eq. 3.23, §3.2.2).

The discretization error expressed by equation (3.31) is governed primarily by the grid 

spacing factors a and b, and to a lesser degree by the variation of the potential function (or to 

be more specific, its fourth derivative). The truncation error is of the order of and b^ for the 

X- and y-directions, respectively. Accuracy is therefore improved if a and b are reduced, i.e. 

the grid is made finer. This argument may be extended to define discretization error for three- 

dimensional grids.
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If the grid is not uniform, terms in equations (3.25) and (3.26) will no longer cancel, 

leading to an error expression involving larger magnitude quantities proportional to dVIdx and 

dV/dy. This effect can be reduced by expanding the grid smoothly which reduces the 

difference between the ‘non-cancelling’ terms since adjacent grid spacings are of similar 

magnitude.

The global error associated with FD approaches can be analysed in addition to the local 

truncation error (Mitchell and Griffiths, 1980). Again this is found to decrease as the number 

of nodes increases and the inter-nodal spacing decreases, but is not specifically dependent on 

grid geometry and spacing, and will not be considered further.

3.2.5.2 Comparison with analytic solutions

To test the accuracy of the models developed in this work, the FD solution may be compared 

with the analytical results for certain simplified situations outlined in Section 3.1.2. It is noted 

that the model cannot be tested for more general cases since analytic solutions do not exist for 

comparison (indeed, this is the motivation for choosing a numerical technique in the first 

place).

As an example, test results for the focused surface array described in Section 4.1.4 are 

outlined below. The FD solution was compared with analytic solutions for the following three 

situations:

1. a homogeneous, isotropic earth;

2. an isotropic earth with a single horizontal layer;

3. an isotropic earth with a single vertical interface.

Homogeneous, isotropic earth

Figure 3.11 compares the FD solution with the electrical potential derived from equation 

(3.7) (§3.1.2.2) for a homogeneous, isotropic earth of resistivity 75 ohm-m.
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Analytic solution Numerical solution

100.00

•5 10.00!

5.00 y (m)

x( m)
5.00

100. 0 0 :

=  10. 0 0 :

x(m)
5.00

Percentage difference

m 10%

5.00 y (m)

x( m)
5.00

Figure 3.11 Analytic vs. FD solutions for a homogeneous halfspace.

The three plots in Figure 3.11 show parameters for the plane at z = 0, for the region - 5  m 

< X, y < 5 m. This region corresponds to a 10 m x 10 m square on the surface of the simulated 

earth centred around the current injection point [which is located at (0, 0)]. The first two plots 

show electric potential calculated using equation (3.7) and using the FD model. The voltage is 

at a maximum at the current injection point, decaying rapidly away from the centre of the 

square in all directions (a logarithmic scale has been used to improve detail). The solutions 

can be seen to be similar, and this is confirmed in the third plot which illustrates the difference 

between the two numerical approaches, expressed as a percentage of the analytic value. The 

correspondence between the two approaches deteriorates away from the source location: the 

error approaches 8% near the source location, and also towards the edges of the 10 m x 10 m 

square shown in the plot.

The focused surface array model calculates focused electric potential and focused 

apparent resistivity values using the voltages at the locations of eight simulated focusing 

electrodes [located at (-2 , 0), (-1 , 0), (1, 0), (2, 0), (0, -2 ) , (0, -1 ) , (0, 1) and (0, 2)]; the 

errors at these crucial nodes are less than 2%.
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Isotropic earth with a single horizontal layer

The analytic solution for an isotropic earth consisting of a single horizontal layer 

overlying an infinitely deep lower layer is given by equation (3.10) (§3.1.2.3). Figure 3.12 

compares the FD solution with the electric potential derived from equation (3.10), for a model 

consisting of a horizontal layer of resistivity 12 Q-m, 3.5 m deep, overlying a lower 75 Q-m  

layer.

C

Î
a.

Analytic solution

10 .0 0 /

x(m )
5.00

Numerical solution

10.00

Ia.

5.00 y (m)

X (m)
5.00

Percentage difference

I I I  1 0 %

x(m )
5.00

Figure 3.12 Analytic vs. FD solutions for a single-layered earth.

The numerical and analytic solutions for this case can again be seen to be similar, with 

the percentage difference error typically around 4% rising to nearer 7% in the close vicinity of 

the source (which is to be expected, since the grid spacing does not become any smaller at the 

source). The errors at the locations of the eight focusing electrodes are less than 2.5%.

Isotropic earth with a single vertical interface

Figure 3.13 compares the FD solution with the electrical potential derived from equations 

(3.8) (§3.1.2.3).
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Numerical solution

100.00

—  10.00

0.10 
-5.00

lOO.OOf'

>

1 10.001

a i.oo):
§.

w

0.1 oW

x(m)
5.00

Percentage difference

m  10%

Figure 3.13 Analytic vs. FD solutions for a two-region earth divided by a vertical interface.

The error for the case of the vertical interface is similar to that for the homogeneous 

halfspace; the error (percentage difference) ranges from 8% near the source location and also 

the edges o f the area shown in the plot, down to less than 2% at the locations of the potential 

electrodes.

The percentage error in the case of the homogeneous case (Fig. 3.11) and the vertical 

interface (Fig. 3.13) is seen to increase towards the edge of the modelled region illustrated. 

There are two reasons for this: firstly, the model grid coarsens at the edge of the 10 m x 10 m 

square shown in the plots (the full grid is illustrated in Fig. 4.2.2, §4.2.4.2); secondly the 

percentage error can magnify small differences in regions where numerical value o f the 

potential is small (e.g. away from current sources and sinks), since a small absolute difference 

between theoretical and approximated values can still result in a large proportional difference 

(percentage error, e, is calculated using e = \{Vanaiytic ~  Vnumencai) /  Vanaiytic I x 100).
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3.2.5.3 Self consistency

The Kirchhoff error and simulated current flow through the FD resistor network can be 

monitored during model runs to confirm that any residual error (after iteration) is small and 

that conservation laws are not being violated (i.e. simulated current flow in the resistor 

network representing the three dimensional space and the borehole tool is physically 

reasonable and thus the model is self-consistent).

Numerical models which involve the simulation of artificially induced currents into the 

grounds can use current sources and sinks to represent current electrodes. The total current 

flow between simulated electrodes in the mesh is particularly important since this has an 

important bearing on the magnitude of the calculated geometric factor. The total current flow 

across any surface dividing the source and sink should be equal to the source/sink value. A 

vertical section illustrating part of the calculated resistor currents within a FD grid [for an 

initial simulation of the ODPHT tool (§4.1.4)] is shown in Figure 3.14. The current source is 

located at (i, k) = (2, 20) and is of magnitude 1/12 (= 0.0833) A, while the sink is at (2, 40) 

and is of magnitude -1/12 A. The total vertical current flowing across a series of horizontal 

interfaces is shown in an extra column in the upper table. Where the interface divides the 

source and sink the total current flow is seen to be close to 0.0833 A as required. In the sink 

region, the grid spacing increases, and the current flow across boundaries in this region is less 

accurate (= 0.0835 A); this is a consequence of discretization errors. This loss of accuracy is 

offset by a decrease in the required computation time, and does not adversely affect the 

modelled electric potentials in the area of interest. Variation in accuracy is also observed when 

comparing current flow across the arbitrarily chosen boundaries a and b (marked in Figure 

3.14). The total current across the surface of boundary a is found by summing vertical resistor 

currents for the upper and lower parts of the boundary, and radial currents for the vertical 

section, as illustrated in Figure 3.15. Again, the current flow (= 0.08332 A) is close to the 

expected value. Similar calculations give the current flow across surface b to be 0.08346 A. 

This can be used as a check that the grid ‘wrapping’ technique is operating correctly.
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Vertical curren t flow
k\i 8 7 0 12 Total vertical current
14 0.00 1.886-6 3.616-6 1.006-5 7.3064 1.986-3

2.346-6 2 . ^ - 5 7.4764 1.096-3
2.066-6 2.516-5 2.016-3

-2.406-7 2.846-5 6.506-5
0.00 -2.106-7 3226-5 7.076-5
0.00 -1.206-7 7.686-5
0.00 2.236-7 2 0 0 6 5 3.506-06

3.766-6 5.506-6 2.346-5 3.036-4 8.336-02
4.116-6 6.736-6 2.666-5 3.166-4
4.206-6 7.176-6 3.206-4 8.336-02

7.306-6 2.006-5 1.076-4 8.336-02
7.606-2 7.526-6 2JSX-B 1.126-4 2.136-3 8.336-02
7.606-2 4.276-6 7.606-6 1.406-5 2.206-5 1.176-4 2.146-3 8.336-02
7.506-2 4J276-6 7.666-6 1.426-5 2.356-6 1216-4 9.3364 2.166-3 8.336-02
7.506-2 4.286-6 1.436-5 1.246-4 9.4564 8.336-02
7.686-2 7.036-5 1276-4 0.566-4 2.175-3
7.586-2 1.456-5 2.476-5 7 .iœ -5 1.306-4 2.176-3 8.336-02
7.506-2 4J20E-6 1.4:^-5 2.536-5 3.876-5 7.356-5 1.346-4 4.136-4 2.106-3 8.366-02
7.586-2 4.206-6 7.826-6 1,486-5 2.186-5 2.566-5 3.946-5 1.386-4 4.246-4 3.676-3

4.206-6 7.836-6 2.106-5 3.076-5 7.576-5 1.3%-4 4.296-4 2216-3 3.686-3
7.586-2 7.836-6 2.106-5 7266-5 1.306-4 4206-4 2216-3 3.686-3 8.356-02
7.586-2 7.486-5 1.376-4 4.2364 2216-3 8.356-02
7.506-2 3.856-5 7206-5 1.3H-4 4.1264 8.366-02
7.506-2 3.716-5 6066-5 1.276-4 3.0564 8.356-02

^  0.00 7.606-2 7676-6 3.466-5 1.106-4 3.7364
0.00 7.126-6 1.276-5 3.046-5 3.4764 8.356-02
0.00 2.106-6 4.006-6 7.066-6 2.366-5 3.1764 8.336-02

1.076-7 1.066-6 3.246-6 6.736-6 1.676-5 7.806-5 2.8764 -5276-06
1.036-7 5.046-7 4.456-6 1246-5 6,676-5 2.5764 -6.336-06
6.6œ-8 3.766-7 2.936-6 8.666-6 5216-5 2.1864 7.4564 3.506-3 8.726-06
3.006-8 2.286-7 1.796-6 3.616-5 1.5764 6.3664 3.516-3 3.816-06

Horizontal (radial) current flow
11

6.466-6 6.456-5 6.306-5 5.086-5 5.546-5
0.00 6.806-5 6.526-5 6.016-5 5.536-5
0.00 6.766-6 6.646-5 6.036-5

7.176-5
7.436-5 6.386-5
7.646-5 6286-5

7.306-5 7.156-5 6.106-5
6.666-5 6.616-5 6.856-5 2.016-5
6.136-6 6.106-5 5.566-5 1.016-5
5.656-5 6236-6 4.016-5 1.816-6
5206-5 4.616-5
4.766-5 4.736-5 4.296-6 1.606-5
4.346-5 4.326-5 3.066-5 1.496-S

3.936-5 3.016-5 1.386-5 5.406-6
3236-5 3.516-5 3.416-5 1.276-5 4.9764
5 .4 * 5 5.486-5 6.476-5 5.W6-5 5.316-6 5.126-5 2.015-5 7.9464

5.426-5 5.416-5 5.336-5 5286-5 5.136-6 2.146-5
3.046-5 3.006-5 2.016-5 1.386-5

5.986-6
-1.796-6

-6.406-5
-9.036-5 -8.076-5
-1.1864 -1.1664 -1.1164

•1.4364 -1.3264 -7.136-5
-1.626-4 •1.5764 -1.5364 •1.4764 -1.4164 -1.1164 -7206-5
-1.4764 -1.4764 -1.4664 -1.4364 -1.4064 -1.1664 2.896-5 -4.896-5
-2.1064 2 .0064 2.086-4 2 .0764 -2.0564 •1.7064 4.086-5 -3.066-5
•3.8964 -3.8964 •3.8564 -1.866-4 -7.406-5
-7.066-4 -7.0364 •4.3964 -1.926-4

labelling convention
vertical section through 
i-k plane illustrated

current source at (20, 2) = A m" 

current sink at (40, 2) = : ^  A m'®

Figure 3.14 Current flow through branches in the FD grid.
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= 6.87E-03 Aa w/ydr

19

20
= 2.68E-04 A

21

22

S  lower

Total current across
interface a = 8.332E-02 A

Figure 3.15 Calculating current flow across boundary a.

3.2.6 Anisotropy

The equivalence of the FD model representation of a three-dimensional resistivity distribution 

to an electrical resistor network (§3.2.1) provides a natural basis for the representation of 

electrical anisotropy.

A typical node in a rectangular grid will have resistors connecting it in each of the three, 

orthogonal coordinate directions. Resistors can therefore be used to represent the resistivity in 

each of the coordinate directions, as indicated in Figure 3.16. With suitable orientation of the 

grid axes, the resistor directions may coincide with the principal components of anisotropy, 

and these components can be substituted directly into the equations summarised in Section 

3.2.3.

In cases where the FD grid is not aligned with the principal components of anisotropy, the 

principal components can be resolved to give their respective contributions to the resistivity in 

each of the grid coordinate directions. This procedure would be required by default when 

using cylindrical grids since the radial resistors are not parallel to any one direction.

Although the most general case of anisotropy (eq. 2.11, §2.2.3) cannot be simulated using

this approach, cases where the electric field and current density are parallel can be catered for.
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This includes many physical situations, including cases which commonly arise in geology 

where anisotropy can be approximately represented by a transverse and a longitudinal value 

(§2 .1.2).

Figure 3.16 Using resistors to represent components of anisotropic resistivity.

3.2.7 Simulation of electrical arrays

The operation of electrical arrays (current electrodes) which introduce artificial electric 

currents into the ground can be simulated by locating a current source and sink in the model at 

the earth’s surface or in the centre of a borehole. Potential electrodes are not catered for 

specifically since the electric potential is known everywhere in the model and every node can 

thus in principle be a voltage measurement location.

Current sources are located at nodes, whereas resistivity interfaces are located midway 

between nodes. Adjustments must be made to the model in order to accurately represent a 

source located at the earth’s surface (rather than buried half the inter-nodal distance into the 

ground). Using the resistor network analogy, it is easily demonstrated that resistances in the 

horizontal plane should be doubled since the cells at the model earth’s surface are representing 

half earth and half air and therefore conduct across only half the cell’s surface area. Vertical 

resistances remain unaltered.

In order to simulate a survey involving different current source locations (i.e. to simulate 

tool motion in the case of a downhole model, or to cater for relocation of a surface array) it is 

necessary to run a series of related numerical models. This process is expedited by usiAg the 

solution for a previous position as the start point for the present location. It is found that in 

order to simulate the motion of a fixed electrode array it is convenient to effectively move the 

resistivity distribution relative to the FD grid rather than vice-versa. This means that source 

and sink locations have a fixed position relative to the grid, which is preferable because
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primary discretization effects are related to the grid spacing in the source/sink vicinity rather 

than the spacing around any resistivity variations (§3.2.5.1).

The running time of models is highly dependent on the model size and the number of 

positions run. Models run on a 486DX 66MHz PC with 8Mb of RAM can take anything from 

less than a minute for two-dimensional focused log simulations (§4.1) to more than twelve 

hours for a detailed electrical imaging run (Chap. 5).

3.2.8 Summary

This section has described in detail the implementation of the three-dimensional FD numerical 

method which is the basis of all the numerical models used in this work.

The finite-difference formulation of the problem (§3.2.1) is based on the direct solution of 

the generalised Poisson equation. As a result, numerical models are closely related to a 

physical representation of the conduetion problem by a 3D network of resistances (§3.2.3) 

allowing seeondary parameters such as current flow to be readily derived from the models, 

which solve for the electric potential field (the primary parameter).

An iterative scheme based on the suceessive line overrelaxation method is used to solve 

the simultaneous equations generated by the FD formulation (§3.2.2) which does not require a 

great deal of computer memory (but by the same token does not minimise solution time) 

allowing the modelling programs to run on powerful PC’s or workstations.

The model is suffieiently flexible to cater for envisaged modelling applications. In 

principle, arbitrary resistivity distributions can be represented by using sufficiently fine grids; 

modifieations are also made to incorporate cylindrical grids for downhole simulations 

(§3.2.4). Adequate boundary conditions may be specified at the outer surfaces of the FD grid 

(§3.2.1). Anisotropy ean be incorporated (§3.2.6).

A study of theoretical controls on discretization errors and model accuracy (§3.2.5) is 

used to provide practieal guidelines for grid definition. Coarsening of grids away from areas 

of interest can be used to model larger regions while remaining with in practical limits on the 

number of nodes. Testing shows accuracy to be good in regions of interest, for cases which 

can be compared with analytic solutions. Other praetical aspects for the modelling of moving 

electrical arrays, both at the surface and downhole, have been outlined.
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This chapter has reviewed the available solution methods for the three-dimensional 

electrical conduction problem. The FD method has been identified as a numerical approach 

which is capable of modelling both 3D current flow and the measurements made by resistivity 

electrode arrays tools in arbitrary resistivity distributions.

The following chapters (4 and 5) describe the application of models based on the FD 

method (as deseribed in Section 3.2) to both surface and downhole measurements.
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C H A P T E R  4

This chapter describes the application of the model described in Chapter 3 to two focused 

electrode arrays. Both measurements are actively focused, one using five electrodes at the 

earth’s surface (§4.1) and the other using three electrodes downhole (§4.2).

In the first example ideas used in numerical models of focused measurements are applied 

to the generation of a novel field measurement which was tested in the field. A numerical 

model is developed to simulate this focused surface array and to aid in the interpretation of the 

field data.

The second example is a model of a focused borehole tool. Whilst the focusing principle 

is the same, the geometry of the problem is different, requiring a revised numerical model to 

be developed. In this example, a numerical model is developed to enable the geometric factor 

(a characteristic of the tool measurement) of a specific focused borehole tool (the Ocean 

Drilling Program High Temperature tool) to be caleulated.

In addition to demonstrating applications of the numerical model, these simulations serve 

to develop and test the model towards more sophisticated downhole applications. Operational 

details of both arrays are known, enabling the systems to be closely simulated, providing a 

good testing environment.

The first part of this chapter introduces some eommon concepts of the active focusing 

technique used in both numerical models.
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Results: focused measurements

4.0 Introduction

The purpose of focused eleetrical measurements is to control the region in whieh current 

flows, and thus to constrain the region to which a measurements applies.

Focused electrical measurements are routinely made in borehole geophysics. Most 

electrical resistivity logging tools operate by measuring a resistance between two electrodes; 

this resistance is dependent upon the properties of the volume of material through whieh the 

electric current generated by the tool flows. The principal aim of focusing the current emitted 

by a tool is to constrain the shape and location of the volume of rock through which current 

flows, and therefore to constrain the region of measurement of the tool. This gives improved 

vertical resolution and readings more representative of specific beds, taken away from the 

invaded zone (Ellis, 1987).

Focusing is achieved in the downhole case by using extra focusing (or guard) electrodes. 

A typical electrode arrangement which uses this technique is illustrated in Figure 4.0.1. The 

magnitude of the focusing currents is varied so that the potential difference between them and 

the sensing electrode is zero. Their magnitudes depend on the current flow (and consequently 

the resistivity distribution) in the tool region.

In the borehole case, the unfocused electrode currents typically travel preferentially in the 

conductive borehole mud and also close to the borehole. The focused sensing currents are 

forced further into the formation rather than travelling directly up the borehole, therefore 

travelling through less borehole fluid and less of the invaded zone.

Focusing the measurement

Figure 4.0.2 illustrates a typical device with a central sensing current electrode AO and 

two focusing electrodes A1 and A2. In order to enable active focusing in electrical 

measurement devices, a feedbaek system is employed to control the magnitude of the focusing 

currents; this is achieved by using the pairs of potential electrodes (Ml, M l') and (M2, M2').

Different methods are used to focus electrical currents. In the case of the work reported in 

this thesis, focusing is achieved by maldng the potential difference across each of the potential 

electrode pairs zero—this implies that there is no eurrent flow between adjacent potential 

electrodes and the sensing current from AO is constrained to flow perpendicular to the tool
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Focusing (guard) electrode

Focusing current paths

Sensing (m easurem ent) electrode

Measuring current paths

V
Unfocused Focused

Figure 4.0.1 Focused versus unfocused electrode measurements.

borehole axis

A 2

M 2 '

M 2

AO

M l

M l '

at

current electrode 

potential electrode

Figure 4.0.2 Current and potential electrodes used by focusing devices.

orientation (this idea is illustrated schematically in Figure 4.1.1, §4.1). The focused potentials 

of each electrode pair are independent of each other, allowing the measurement device to 

compensate for non-symmetrical resistivity distributions. Mathematically, the focusing 

conditions for the device illustrated in Figure 4.0.2 may be expressed as
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Results: focused measurements

Fmi = Vmi', and

y  M 2  =  V m 2’-

There is no condition relating Vm\ to Vm2-

There are critics of focused measurements, notably Roy (1982) who argues that such 

measurements are unnecessary. His assertion that any focused measurement can be 

constructed from a series of normal (single-electrode, unfocused) logs is correct— indeed it is 

the basis of both numerical models described in this Chapter, and also used to generate the 

focused field measurements described in Section 4.1. However, his interpretation of the 

measurement involves the use of an apparent resistivity factor which effectively defocuses the 

measurement (Jackson, 1976; 1981), and with this in mind it is not surprising that the focused 

measurements appear to be worthless.

The benefit of actively focused measurements in the field is their provision of a raw 

measurement which is much closer to the true formation values than equivalent unfocused 

readings; since their inception in the 50’s (Doll, 1951) they have continued to be applied 

widely both in commercial and research fields. Numerical modelling of focused electrode 

arrays enhances the assessment and interpretation of such measurements.
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4.1 Focused surface array

The work described in this section forms part of a project involving geophysical fieldwork 

carried out in Saarland, Germany. A novel resistivity technique involving a ‘dual laterolog’ 

focused surface array proposed by Jackson (1981) was implemented and tested in the field. 

The following sections describe the measurement method and interpretation of data acquired.

The focused field measurement is based on a numerical algorithm which is described in 

Section 4.1.2.2. This algorithm is also used by a numerical model developed to simulate the 

measurement.

As well as providing an opportunity to work with real field data, the focused surface array 

allows the testing of a numerical model in a simpler geometry than is required for modelling 

down-hole situations (i.e. rectangular cartesian coordinates rather than cylindrical polar 

coordinates). Numerical simulations enhance analysis and interpretation of the focused 

measurement data.

4.1.1 Outline of project

As part of a collaborative project between the BOS and Saarberg, the Saarland state coal 

company (which derives its funding jointly from the Saarland government and the German 

Federal government) fieldwork was carried out in Saarland, Germany in the summer of 1993 

and 1994. The project itself was jointly funded by Saarberg and the CEC (Commission of 

European Communities—European Coal and Steel Community).

The project aimed to assess the relative merits of different geophysical techniques in 

mapping faults at the earth’s surface, with a view to developing an optimum methodology for 

tracing fault lines. When mining works cut through fault planes, faults can often be reactivated 

resulting in slippage at the earth’s surface, which in turn may cause undesirable structural 

damage.

Known fault intersections found in underground workings were extrapolated upwards to 

identify where faults might reach the surface, and on this basis a number of test sites were 

proposed for investigation, each approximately 100 m x 100 m.
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A variety of geophysical techniques were employed to map each of the test sites, 

including low-frequency (VLF) and conventional (EM) electromagnetics, resistivity 

(including the BGS RESCAN system), seismics, and ground-penetrating radar.

The resistivity measurements used to create focused measurements were made with the 

BGS RESCAN resistivity measuring equipment. This is a computer-controlled multi

electrode resistivity measurement system (Meldrum et al., 1994; Jackson et al., 1989). In view 

of its lack of mobility and large number of measurements, it was envisaged that RESCAN 

would provide relatively high-resolution characterisation of the electrical properties of a 

specific location rather than being used as a prospecting tool. It was hoped that this would aid 

the electrical methods by providing a more detailed picture of the electrical properties along a 

fault and the surrounding area, and thus give an insight into any electrical characteristics 

associated with the faulting (or perhaps due other associated processes such as alteration, 

weathering or fluid-flow).

RESCAN is capable maldng four-electrode measurements, where one electrode 

introduces an artificially generated current into the earth, one electrode provides a current 

return, and the remaining pair of electrodes measure a potential difference. Electrodes in a 

grid may be addressed independently allowing a variety of different array styles to be 

employed. The work described here is concerned specifically with the development and 

testing of the focused surface array resistivity measurement.

The ‘focused surface array’ forms part of the suite of different survey styles carried out by 

the RESCAN d.c. earth resistivity measurement system. It is essentially a pole-pole type 

measurement: a single electrode injects measurement current creating a voltage field which is 

measured using a single potential electrode; both the current return and the potential reference 

electrodes are located some distance away from the survey area, effectively at infinity. The 

focused array proposed by Jackson (1981) requires four independently controlled focusing 

currents in addition to the measurement current that are used to constrain the volume of earth 

through which the measurement current flows. The RESCAN system cannot simultaneously 

emit multiple currents but the focused measurement may be reconstructed from a set of 

conventional pole-pole measurements (see §4.1.2.2). This is the principal difference between 

the focused measurement and the other survey styles used by RESCAN.
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4.1.2 The focused measurement

This section describes some theoretical aspects of the focused measurement.

4.1.2.1 Measurement principles

The focused surface array makes resistivity measurements using similar principles to those of 

the laterolog and microlaterolog focused electric borehole tools (Doll, 1951; 1953).

The principles used in making focused downhole logging measurements (§4.0) may be 

developed for surface measurements. Figure 4.1.1 illustrates the operation of a typical focused 

surface array schematically. The central electrode is the sensing electrode, the current from 

which is used to make resistivity measurements; this is surrounded by focusing electrodes 

which emit current with the intention of constraining the region of earth through which the 

measurement (sensing) current flows.

focusing
current

electrode

distorted 
sensing 

current path

I sensing
current
electrode

potential
electrodes

electric
potential
minimum

resistive conductive

Unfocused array

focusing current In 
resistive region 

decreased

sensing current 
travels vertically 

downwards

A V = 0 focusing current In 
conductive region 
Increased

electric potential 
1 \  minimum centred
^  X  4 '* '' betw een potential

' electrodes

Focused array

Figure 4.1.1 Focusing currents over a conductive/resistive boundary (schematic).

At the surface of the earth, the maximum focusing effect would be achieved by using a 

ring-shaped electrode surrounding the measurement electrode, as is the case with the
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microlaterolog. However, Jackson (1981) shows that four orthogonal electrodes in a cross 

shape around the measurement electrode can still achieve a significant focusing effect. Such 

an arrangement has an additional benefit since the focusing currents may be adjusted 

independently of each other, allowing compensation for lateral inhomogeneities in the 

electrical properties of the earth (as illustrated in the lower part of Figure 4.1.1 ).

An implementation of a focused surface array proposed by Jackson (1981), similar in 

principle to that of the Laterolog 7 borehole tool (Doll, 1951), but using four focusing 

electrodes, is illustrated in Figure 4.1.2. In this arrangement, P is the measurement current 

electrode, while N, S, E  and W are the focusing current electrodes. The current electrodes 

simultaneously inject current into the ground (which returns to a common electrode located 

effectively at infinity), and the magnitudes of the focusing currents are adjusted to achieve 

focusing. Active focusing of the array is achieved by monitoring the measurements made by 

four pairs of potential electrodes: M  and Nj, Si and S2, E\ and E2 and Wi and W2.

^ 0 0  Current electrode

®  Potential electrode

0  ®  ®  0
E, E  

®  ®  #

* 0

Figure 4.1.2 Electrode configuration (schematic) for a ‘double laterolog’ focused array proposed by 
Jackson (1981).

Focusing the array

The focusing conditions outlined in Section 4.0 for the array shown in Figure 4.1.2 are:

Vjv, =  VXr,, Vs, =  V4» ^  Vw, =  (4 .1 .1 )

4.1.2.2 Synthetic focusing

Focused electric borehole tools operate by continually adjusting the magnitude of the focusing 

currents using electronic feedback loops to ensure that the tool remains correctly focused. 

These principles have been applied to surface arrays (Apparao et al., 1969; Apparao and Roy,

1971) but are not used extensively in surface geophysics.
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The RESCAN measurement system can only allow current to flow out of a single 

electrode at any one time. In order to produce a focused measurement, a hybrid approach 

using physical measurements in conjunction with numerical processing techniques is taken, 

using ideas originally developed for numerical simulations of focused borehole tools. In such 

models, focusing current magnitudes are determined theoretically rather than by simulating 

the electronic balancing process, which is less expensive in terms of time.

The principles involved in simulating focused electric borehole tools has been described 

in detail by Gianzero (1981) and Moran and Chemali (1985). Jackson (1981) investigates the 

response of various focused surface arrays, including a combination of two surface laterologs 

at 90° to each other which is equivalent to the focused surface array being described in the 

present work. Parra and Owen (1990) develop a methodology to create focused surface 

measurements from readings taken with a single line of current electrodes. Theoretical 

approaches involve the combination of electric potentials, computed for individual current 

electrodes, in a weighted sum to derive the potential that would exist if all current electrodes 

were simultaneously emitting current (superposition of electric potentials is discussed in 

Section 3.1.2.1). The relative weighting of the contributions from individual electrodes are 

calculated so that focusing conditions are satisfied.

The approach of Moran and Chemali (1985), which uses the concept of transfer 

impedances in conjunction with the principle of superposition, is developed in §D. 1 to derive 

an expression for a focused surface measurement created from individual unfocused 

measurements made using a surface electrode array. In equation (D.6), the superposed focused 

electric potential at a potential electrode B, Vfs, is shown to be given by an equation of the 

form

Wb = + ^NB^In + ^SB^fs + ^EB^fu + '^WB^fw)h = (4.1.2)

where Ip is current emitted from the central, sensing electrode and terms of the form Zab are 

transfer impedances determined by measuring the electric potential at electrode B when unit 

current is emitted from electrode A. The terms of the form R/À are balance factors pertaining to 

current electrode A; these express the relative magnitude of each of the four focusing currents 

required to focus the array, and are determined by solving a set of simultaneous equations (as 

detailed in §D.l) involving the transfer impedances.
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The theoretical investigation described by Parra and Owen (1990) is a similar synthetic 

focusing technique, designed with a view to increasing the depth of investigation of pole- 

dipole measurements in order to improve location of sub-surface cavities. Their system 

involves using multiple focusing electrodes along a single line only, and focusing current 

magnitudes are symmetrical about a central measurement electrode. Whilst such an

arrangement would be useful in detecting anomalies in an otherwise homogeneous medium, it

is unsuitable for the (three dimensional) situations encountered in the field areas described 

here, where non-symmetrical focusing is required to counteract the effect of lateral 

inhomogeneities. Hence for this work, an electrode configuration similar to that illustrated in 

Figure 4.1.2 has been used.

4.1.2.3 Apparent resistivity

In Section 2.3.2 the general expression for apparent resistivity, p̂ , is given as (eq. 2.13):

P . = G ( r ) ^ .  (4.1.3)

In the case of a pole-pole measurement, the p.d. AV  is measured between a near electrode and 

a distant reference electrode where the electric field is effectively zero. The measured p.d. 

therefore closely approximates the absolute potential V. In this case, equation (2.14) for the 

geometric factor, G, can be written as:

- ^ P * = G ( r ) ,  (4.1.4)

where Vh is the electric potential in a homogeneous half-space of resistivity p*. For the 

focused array, Vh, may be determined analytically. For a single current source, the electric 

potential Vh at a distance r  from the source is given by (eq. B.7, §B.2):

In the case of the focused array, there are Bve current sources: N, .S, E, W and f , emitting

currents In, Is, h ,  Iw, and Ip respectively, so the ‘homogeneous’ electric potential is found by 

using superposition (§3.1.2.1), i.e. summing the contribution from each source:

y  , P&4 , I  ̂ P / ,^ f  (4 .1 .5 )
* 2w« 2ttr, 2ttr„ 2jtru, 27tr„
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where /"A/, rg, rg, and rp are the distances from Ae respective current sources N, E, W and

P to the point of interest. The magnitudes of the currents In, Is, h  and &  are chosen so that 

they focus the array (Section 4.1.2.1) for the homogeneous case. In the case of a symmetrical 

array, they will be some constant proportion B f of the sensing current Ip, i.e.

fAf = fs = fE = fw = Effp. (4.1.6)

Substituting equations (4.1.6) and (4.1.5) into (4.1.4), we arrive at

I  nv /-E /-g nv

and thus substituting equation (4.1.7) in equation (4.1.3), we obtain an expression for the

apparent resistivity of a focused array:

y  2n

h

y V'w 'J 'E 'w y 'f  y

" ' = 7 : 7 ^ 7   n  rEf I  ---- 1------1------ 1-----H-------

where V [V] is the electric potential at the point of interest. Ip [A] is the measurement current 

magnitude, rv, r$, rp, rw and rp [m] are the distances from the respective current sources N, S, 

E, W and P to the point of interest, and B f is an analytically determined balance factor which 

is the relative proportion of the focusing currents to the measurement current required to 

balance the focused array fo r  a homogeneous half-space. [The quantity B f is found by solving 

the set of simultaneous equations (D.4) using transfer impedances derived by substituting 

equation (B.7) (the electric potential in a homogeneous halfspace) into equation (D.l)]. The 

geometric factor, G, is a function of position, array geometry, and Ip only, and is not (as Roy, 

1982 assumed) related to the magnitude of the balance currents.

It is noted that the measurement current flow is constrained by the surrounding balance 

currents, so the apparent resistivity should be indicative of the properties of a column of 

ground directly below the central sensing electrode of the focusing star configuration. This 

property of the apparent resistivity is used to define the objectives of the focused measurement 

outlined in Section 4.1.2.5 below.
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4.1.2.4 Summary: focused measurement technique

Using the ideas described in sections 4.1.2.2 and 4.1.2.3 above, it can be seen that a 

synthetically focused measurement may be ‘reconstructed’ from sets of independent RESCAN 

measurements, made for the measurement electrode and the four focusing electrodes, by 

numerically balancing and superposing the readings (Figure 4.1.3). For each of the five 

current positions, the electric potential is measured at the eight potential electrodes, resulting 

in 40 measurements which are then combined to produce a focused measurement.

1. w • 2. £■ • • . g ̂
@ . . @ . . . . . ®
@ . . @ . . . . . ®

• ® # ® ® 4
@ - - @ . . • ®
@ . . @ . . . . . ®

. . .  0

* • • • 5. P ■ •@ . . @ . .
@ . . @ . .

s • ® ®
@ - . @ . .
@ . . @ . .

combine and
balance
numerically

Figure 4.1.3 Superposition of RESCAN measurements.

In summary, a focused measurement is obtained as follows (refer to Figure 4.1.2 which 

illustrates the electrode labelling conventions, and §D.l which details the focusing equations);

1. With the current source located at N  (and current sink at infinity), measure the 

electric potential at the eight potential electrodes (A,, N2 , S\, S2 , E\, E2 , W,, and W2). 

Calculate the corresponding transfer impedances Z/y//,, Ẑ /v,, Ẑ r̂ ,, Ẑ fg,, Ẑ rE,, Ẑ fw, 

and Znw, using equation (D. 1);

2. Repeat (1) for current sources located at S, E, W and P;

3. Substitute the transfer impedance values obtained into the set of simultaneous 

equations (D.4) and solve for In, Is, h  and &  using e.g. Gaussian elimination;

4. Derive the focused potential distribution for the eight potential electrodes using 

equation set (D.6);

5. Use the focused electric potentials to give eight focused apparent resistivity 

measurements, one for each potential electrode, using equation (4.1.8).
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4.1.2.5 Measurement objectives

In common with other electrical measurements, the focused measurement will respond to 

changes in resistivity of the earth. Contrasts in the resistivity of shale and sandstone layers 

could be readily identified, allowing a fault line to be located where these two rock types lie 

on either side of the fault.

There are two envisaged advantages of using a focused measurement, which stem from 

the fact that the region of measurement is constrained by the focusing:

1. enhanced depth of investigation in comparison with equivalent unfocused 

measurements—allowing, for example, penetration of overburden to investigate 

structure deeper in the earth;

2. accurate lateral placement of conductive/resistive boundaries. Conventional 

measurements are often distorted by preferential current flow in conductive zones, 

since standard methods (before inversion) do not take account of such effects when 

attributing an apparent resistivity measurement to a region of earth. The focused 

measurement can reduce distortion effects at the measurement (rather than 

interpretation) stage, by forcing the measurement region to remain below the 

measurement electrode, as illustrated in Figure 4.1.1.

4.1.3 Fieldwork and data acquisition

This section gives an overview of the initial results of the fieldwork carried out in Saarland, in 

addition to deseribing aspects of data acquisition and processing. The general approach to 

interpretation of the focused measurement is also outlined. This section precedes a more 

detailed description of the numerical model used to aid interpretation, and detailed 

descriptions of the results and interpretation of data from two specific survey areas that have 

been used as case studies.

4.1.3.1 Survey areas investigated

The focused array was run in addition to other measurement styles on the RESCAN electrode 

grid. The focused measurement was not carried out at every site where RESCAN was 

deployed, but was made at a total of five sites, as detailed in Table 4.1.1.
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Year Site name Notes

1993 1 . 2 Three adjoining grids, labelled 1.2a, 1.2b and 1.2c. 
Lines 4, 5, 6 , 7, and 8  on 1.2a 
Lines 5, 6 , and 7 on 1.2b 
Line 6  on 1.2c

1.4 Line 6  only

2 . 1 Lines 4, 5, 6 , 7, and 8 .

1994 3.1 Line 6  only

3.2 Two adjoining grids, labelled 3.2a and 3.2b 
Line 6  only on both.

Table 4.1.1 Sites where focused measurements were carried out

The electrode grid was a rectangular array of 20 x  11 electrodes which were spaced at 1 m 

intervals at all sites. A focusing star with a 6 m span was used, allowing a total of 14 

measurement positions along the longer axis of the grid and 5 positions in the perpendicular 

direction (Figure 4.1.4).

< 20 electrodes-------------------------- >

.   ....................................................................
1 m

%
?
I
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• • O '  line 4, position 1

o  o  •  o  o  •  • • • •
• • O .....................................
• • O .....................................
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<  1 >

<  2  >
<-------- 3-------- > \

< ----------4 ---------- >  ... - e

line
4
5
6
7
8

-14-

Figure 4.1.4 RESCAN electrode grid and focused array positions.

In the field, surveys were arranged as a series of 14 measurements along the long axis of 

the electrode array. As indicated in Table (4.1.1), at some sites (e.g. Site 2.1) a series of 

parallel surveys were conducted, enabling a two-dimensional array of focused measurements 

to be built up. At other locations only one line was run due to time restrictions. At sites 1.2 

and 3.2, wide anomalies were indicated by other survey techniques, and measurements were
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made on overlapping adijacent grids in order to try to cover a wider lateral range (Figure 

4.1.5).

grid 'a'

grid 'b'

grid 'c'

Figure 4.1.5 Adjacent grids.

4.1.3.2 Measurement data

The raw data provided by the RESCAN measurement equipment consist of a series of 

resistance measurements which are then given coordinates using data in a position file. The 

resistance measurements are converted to focused apparent resistivities using the technique 

summarised in Section 4.1.2.4. The balance factors required to satisfy the focusing conditions

are also output for reference. For comparison, defocused and conventional pole-pole apparent 

resistivity values have also been calculated from the same data sets.

The focused apparent resistivity (§4.1.2.3) is calculated using

2%
7— 7 -;-----

y_
h

(4.1.8)

where F is a superposed electric potential calculated by combining the voltages due to current 

sources CKÿwjW in magnifWe to t/ie ybcwaing condition.;. The defocused apparent

resistivity is calculated with the formula

P .  =
F. 27t

1 1 1 1 1— I------1------1—  -|—
r, r, 7^ J r,

(4.1.14)

p /
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where %, is the superposed electric potential calculated using current sources of fixed

magnitude equal to those required for a homogeneous half-space (i.e. focusing conditions will 

not in general be satisAed, except in the case of a uniform, homogeneous earth). The pole-pole 

apparent resistivity is calculated using

p, (4.1.15)
^  p

where Ff is the electric potential due to the measurement electrode only (i.e. the focusing

electrodes are effectively inactive).

4.1.3.3 Focused apparent resistivity traverses

The results of focused apparent resistivity traverses are presented in Appendix E on a site-by- 

site basis. On each page, focused, defocused and pole-pole data are plotted for a single line. 

For each apparent resistivity type, four apparent resistivity curves (IF, E, S, and N) have been 

superimposed, corresponding to calculations using the potential on electrodes IF;, E2 , and 

)V2  respectively. The vertical scale (apparent resistivity) is logarithmic. The horizontal scale 

refers to the relative position of the focusing star in the electrode array (as illustrated in Figure 

4.1.4). This can be related to site coordinates by referring to the relevant field reports 

(Greenwood et al., 1993; Meldrum and Williams, 1995).

In the lower half of each page, the calculated balance factors required for focusing are 

plotted. A plot of the normalised balance factors for the orthogonal current electrode pairs W- 

E  and N-S is also included to aid analysis of balance variation. The normalised balance factor 

for the IF-electrode, Bfw' is calculated using

where Bfw is the (non-normalised) W-balance factor and Bfh is the analytically calculated 

balance factor for a homogeneous medium. Similarly for the E, S and N  balance factors. The 

normalised balance factors express the relative increase or decrease of a balance current 

relative to the homogeneous balance factor, A normalised balance factor of 2 would 

correspond to a reduction to 50% or an increase to 200% of Bfh.
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It should be noted that no compensation has been made in the plots in Appendix E for 

occasional erroneous readings which manifest themselves as sudden jumps in the apparent 

resistivity curves (e.g. Site 1.2a, Line 4 position 4 m, or Site 3.2a position 5 m).

4.1.3A  Interpretation methodology

Interpretation of the electrical properties in the region of the electrode array initially centres on 

the focused apparent resistivity traverses; however important information can also be gained 

by inspecting the magnitude of the focusing currents, or in the case of the synthetically 

focused array, the calculated balance factors required to focus the array.

Numerical models of the response of the focused array to specific simplified geological 

models have been used to provide a quantitative guide to the response to key situations. It is 

noted that as a further step, models may be ‘fine-tuned’ to simulate specific field situations in 

order to confirm any inferences made, but the models considered in this work have not been 

extended beyond a low level of complexity.

Apparent resistivity data

The primary data source is the focused apparent resistivity traverse. Changes in apparent 

resistivity can be used to infer changes in the electrical properties of the earth which can be 

caused by faulting (e.g. where two rock types of differing resistivity lie alongside each other). 

More detailed information may be derived by analysis of the relationship between the focused, 

de-focused and pole-pole traverses (although in practice the de-focused measurement was not 

found to be of much assistance in data interpretation). The focused measurement is taken to be 

indicative of the resistivity of a cylindrical region directly below the central, sensing electrode 

(Section 4.1.2.5), due to the constraining effect of the balance currents. The focused current 

may also penetrate further into the ground than a conventional unfocused measurement, giving 

an indication of electrical resistivity properties deeper into the earth.

Focusing balance factors

The variation of the focusing currents (calculated balance factors) is often more sensitive 

to changes in resistivity than the focused apparent resistivity measurement itself (see §4.1.5 

and §4.1.6). When one side of the array is in a conductive medium, current will tend to flow 

preferentially into that medium, and the focusing current on the conductive side will increase 

to counteract this effect. Conversely, the focusing current required on the resistive side is
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reduced since the sensing current already has a tendency to flow away from that region. In this 

way, lateral inhomogeneities such as faults are expected to disturb the balance currents as was 

illustrated schematically in Figure 4.1.1.

Compensation fo r  bad readings

Many experimental precautions are taken to improve the accuracy of resistance readings 

made with the RESCAN equipment (Jackson et ak, 1989; Meldrum et ak, 1994). Multiple 

readings are taken for a given measurement position, and the waveform of the current being 

passed can also be monitored. An electronic filter is available if large amplitude 50 Hz 

frequency electrical noise is found to be present at any site. In the Saarland fieldwork, an 

initial ‘ground truth’ survey was carried out at each site to ensure good electrical contact 

between each of the electrodes and the earth. This and other experimental procedures are 

detailed by Meldrum and Williams (1995).

These built in precautions in the RESCAN measurement procedure ensured that the 

majority of resistance readings were of a good quality. However, some more subtle problems 

came to light only after processing was carried out. This caused some spurious readings in the 

focused apparent resistivity data.

Each focused apparent resistivity is arrived at using 40 resistance measurements. On some 

lines, a handful of readings were evidently inaccurate. An attempt was made to smooth these 

erroneous readings by comparison with the measurements taken in their immediate 

surroundings. Rather than adjust processed apparent resistivity values, raw RESCAN 

resistance data were manipulated, with the aim of allowing error-free readings in any set of 40 

measurements to preserve any natural trends in the data.

4.1,4 Numerical modelling

This section describes the development of the three-dimensional finite difference model to 

analyse both apparent resistivity profiles and variations in balance current magnitudes in order 

to aid and enhance interpretation.

The fundamental aspects of a model suitable for simulating d.c. electrical problems using 

the finite difference method were described in Chapter 3. The next step in generating a model 

for a specific application is to define a suitable grid and to choose appropriate boundary
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conditions at the edges of this grid. Once this has been achieved, the grid is used as a 

framework on which to set up a physical resistivity model.

4.1.4.1 Finite difference grid

As discussed in Section 3.2.5, the choice of the extent and resolution of a finite difference grid 

is compromised by requirements for accuracy and speed. In the case of the focused array, the 

most crucial region of the model is in the immediate vicinity of the current injection point, 

since the electric potentials calculated here are used to generate the focused measurement. 

Unfortunately, this is also the most difficult area to model accurately because the electric 

potential varies most rapidly around a current source or sink.

The region to be modelled in the case of a surface measurement is a semi-infinite half

space, since the earth may be considered to extend to infinity laterally and with depth (at the 

measurement scales considered here), and is bounded above by air which is electrically 

insulating. In practice, the electric potential approaches zero a finite distance away from the 

current source, and the model grid need only extend as far as where the voltage and its 

derivative (the potential gradient) are to all intents and purposes zero. This is checked by 

inspecting the values of voltage at the boundary. As an additional check, the difference 

between applying conductive (Dirichlet) or resistive (Neumann) boundaries should be 

minimal in the region of interest.

By following the guidelines outlined above, a rectangular mesh was used to represent a 

160 m x  80 m x  80 m region of earth, with mesh spacing (and therefore model resolution) 

down to 0.5 m in the region of the focused array measurement electrodes (Figure 4.1.6). Away 

from the source region, the grid is expanded since the potential gradient changes much less 

rapidly between nodes. It was not found to be necessary to place as large a number of nodes at 

the sink location as at the source [verified by testing of the model (§4.1.4.3)].
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Figure 4.1.6 Model grid used in simulations o f the focused surface array.

4.1.4.2 Boundary conditions

The model grid was chosen to extend sufficiently away from the source and sink to prevent 

boundary conditions from greatly affecting the numerical solution. In practice, this meant 

ensuring that the electric potential and potential gradient at the boundaries are small. Both 

conductive (Dirichlet) and resistive (Neumann) outer boundaries were tested (the results are 

not reported here). The solutions for both methods were similar, and satisfactorily accurate 

(§4.1.4.3). For these models, conductive boundaries were preferred as they give slightly more 

accurate and faster converging solutions in the cases tested.
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4.1.4.3 Testing o f the model

To demonstrate the accuracy of the model, the finite difference solution was compared with 

theoretical results for a selection of simplified situations where an analytic solution exists for 

comparison. This is described in detail in Chapter 3 (§3.2.5.2).

In the case of the focused array, the most crucial region of the model is the immediate 

vicinity of the current injection point, since the electric potentials calculated here are used to 

generate the focused measurement. This is also the most difficult area to model accurately 

because the electric potential varies most rapidly around a current source or sink.

For the three cases tested (a homogeneous, isotropic earth; an isotropic earth with a single 

horizontal layer; and an isotropic earth with a single vertical interface), the percentage 

difference between analytic and numerical solutions at the locations of the eight simulated 

potential electrodes is found to be in the region of 2-2.5%.

The model is considered to offer good accuracy in the region of most interest, for the 

cases tested. Whilst this is a far from rigorous test, it does at least provides a basis for 

assuming the model will provide a reasonable approximation for more complex situations. It 

is noted that accuracy could in principle be increased to any level desired by expanding the 

boundaries of the mesh and including more nodes in the region of the source and the sink, but 

this would be at the expense of increased computation times.

4.1.4.4 Simulated focused measurements

The numerical model works on a similar principle to the method of focusing described in 

Section 4.1.2.2 above. For a given resistivity model, the electric potential due to a single 

current source (with the sink located effectively at infinity) is calculated. This process is 

repeated five times for each of the source locations in the focusing star; the five calculated 

electric potentials are then combined in a weighted sum so that the focusing conditions are 

satisfied. The combined electric potential may then be used to derive a focused apparent 

resistivity.

The modelled electric potential is used to create data files with an identical format to the 

measurement file generated by RESCAN in the field. This allows the similarity between real 

and modelled focused measurements to be exploited since the modelled focused apparent
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resistivity can be generated using the same program code as that used for the field data 

processing.

Typical models simulated surveys where the focused array is moved along an 8 m line 

(details of simulating tool motion are given in §3.2.7). The grid employed (§4.1.4.1) allowed 

steps of 0.5 m to be simulated (compared with 1 m in the field, since this was the fixed 

electrode spacing used in all the surveys concerned with focused measurements).

4.1.5 Case study; Site 2.1

4.1.5.1 Apparent resistivity traverses

Focused measurements were made on lines 4, 5, 6, 7 and 8 at Site 2.1. All the traverses 

exhibit a trend in apparent resistivity (pa) from a lower value of around 60 O-m at the western 

end of the grid to 300 O-m at the opposite side, in agreement with data from other electrical 

surveys. Subsequent trenching at this site has indicated that the lower resistivity region is 

shale, whilst more resistive sandstone lies at the eastern end of the array.

Taking Line 7 as an example (Figure 4.1.7), the focused array shows a steep increase in pa 

values between 3 and 6 m, whilst the increase in pa values for the pole-pole measurements is 

not so pronounced

4.1.5.2 Focusing balance factors

Again, talcing Line 7 as an example (Figure 4.1.8), the W-E balance factors exhibit the largest 

variation, indicating that the principle variation in electrical properties is parallel to this 

direction. The most notable feature is a drop in the E  value around 3 m followed by a rise in 

the W  value at 6 m. The normalised W-E values (Figure 4.1.9) indicate that the anomaly is 

symmetrical and centred about 4.5 m. The inference here is that moving from left to right, the 

E  factor drops as it encounters resistive material (which the sensing current tends to naturally 

avoid) and the W  factor rises once the array is centred over a more resistive zone (since the 

sensing current must be prevented from flowing preferentially back into the conductive zone). 

This is confirmed by numerical models.
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Figure 4.1.7 Site 2.1, Line 7: Apparent resistivity traverses.
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Figure 4.1.8 Site 2.1, Line 7: Focusing balance factors.
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Figure 4.1.9 Site 2.1, Line 7; Normalised W-E balance factors.
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4.1.5.3 Numerical modelling

Apparent resistivity traverses for a numerical model of a simple earth consisting of two 

regions of resistivity 50 Q-m and 300 Q-m, separated by a vertical, planar interface (Figure 

4.1.10) are presented in Figure 4.1.11.

current sink

array line location

100 m

300 n-m

lOfl-i

Figure 4.1.10 Idealised model o f a vertical interface.

In addition to the four apparent resistivity (pa) curves the model earth resistivity has also 

been superimposed for comparison. To reflect the grid spacing and the fact that parameters are 

interpolated between nodes, the model resistivity is not vertical, but varies steeply between 

adjacent nodes located at -0 .25  and +0.25 m. The simulated focused array was modelled 

traversing a span of 7 m, with measurements being taken every 0.5 m.

Comparison of the model data (Figure 4.1.11) with the field data (Figure 4.1.7) 

(especially between array positions 2 -8  m) reveals a similar trend in focused, de-focused and 

pole-pole pa traverses, although the model values are generally too high. Considerable weight 

is added to the plausibility of the model when the simulated focusing current data (Figures 

4.1.12 and 4.1.13) are compared with the corresponding field data (Figures 4.1.8 and 4.1.9). It 

is noted that although the apparent resistivity traverses are asymmetric about the vertical 

interface, the focusing current data is close to being symmetrical. The asymmetry of the Pa 

traverses is therefore considered to be inherent in the measurement and not caused by, say, the 

approximation of the vertical contact by an interpolated (near-vertical) slope.
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Figure 4.1.11 Vertical interface model results: Apparent resistivity traverses.
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Figure 4.1.12 Vertical interface model results: Focusing balance factors.
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Figure 4.1.13 Vertical interface model results: Normalised W-E balance factors.
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4.1.5.4 Interpretation

The close correspondence between numerical models and field data indicates a near-surface 

conductive-resistive contact in the survey area. Field apparent resistivity values are in the 

range 45-180 Q-m compared with model values of 60-250 Q-m indicating that the model 

50/300 resistivity contrast is too high. Measured balance current anomaly peaks are also 

smaller than those modelled. A crossover point in the W-E balance factors almost coincides 

with the model fault location, being shifted about 0.5 m towards the resistive region. Models 

with lower resistivity contrasts indicate crossovers would be likely to be shifted by around 

0.3 m towards the resistive zone in the case of the field data. The resulting inferred anomaly 

location is plotted in Figure 4.1.14.

5S -

7 

9 

11

13 —  

15S
65W 63 61 59 57 55 53 51 49

X B alance  cu rren t c ro sso v er point 

• • • • Inferred fault location

47W

Figure 4.1.14 Site 2.1: Inferred surface location of fault line.

4.1.6 Case study: Site 1.4

4.1.6.1 Apparent resistivity traverses

Smoothed apparent resistivity data are shown in Figure 4.1.15. The histogram at the top of the 

figure indicates that most of the data points remain unaffected, with the largest correction 

being applied to the reading for position 4 m where nearly 10 (25%) of the 40 RESCAN 

measurements used to generate an apparent resistivity at this point have been altered. The 

effect of the smoothing can be seen by comparison with the raw data in Appendix E.

The focused apparent resistivity varies from a minimum of 90 Q-m around 3-5  m up to 

200 Q-m, whereas the pole-pole data are much flatter, remaining around 200 Q-m along the
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entire line. Other resistivity data acquired at this site, in particular the half-schlumberger 

measurements, indicated the presence of a resistive covering which obscured deeper variations 

in resistivity. This was consistent with the site location on a valley floor, where recent alluvial 

cover would be expected. The focused measurement is apparently able to sense some of the 

deeper variation, whereas the pole-pole measurement seems to be responding to the surface 

cover only.

Site 1.4 Line 6 : 
Number of corrected 
measurements

Site 1.4 Line 6  (corrected); 
Focused apparent resistivity

T, 50-1 
3  40- 
§  30-

Î S :
0 -
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1000

100:
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Array position (m)

Site 1.4 Line 6  (corrected): 
Pole-pole apparent resistivity

1000=

à  100:

2 40 6 8 10 12 14
Array position (m)

52W 50 48 46 44 42 40 38W

Grid coordinates (line 30S)

Figure 4.1.15 Site 1.4, Line 6 : Corrected apparent resistivity traverses.

4.1.6.2 Focusing balance factors

The focusing balance factors exhibit relatively little variation (Figure 4.1.16) in contrast to 

that seen at Site 2.1. The largest variation corresponds with the low apparent resistivity values 

around 3-5  m.
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Figure 4.1.16 Site 1.4, Line 6 : Focusing balance factors.

4 .1 .63  Numerical modelling

The proposal that the variance between pole-pole and focused apparent resistivity data was 

caused by the presence of a resistive overburden was tested with the model illustrated in 

Figure 4.1.17.

current sink

array line iocation

'1 .5  m
100 m

200  n - m

180 £2-m

i5 Q-i

Figure 4.1.17. Idealised model o f a vertical interface with overburden.

Apparent resistivity traverses generated by the numerical model are shown in Figure 

4.1.18. Model and field resistivity traverses show close agreement in the region 4 -10  m; in 

particular the pole-pole curve is seen to be flatter than the focused curve, with a pa value 

reflecting the resistivity of the 200 O-m overburden.
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Figure 4.1.18 Site 1.4 model results: Apparent resistivity traverses.

The variation in balance currents (figures 4.1.19 and 4.1.20) is not so easily matched with 

field data, although the magnitude of the current variations is similar, and the absence of a 

large ‘cross-over’ anomaly (observed at Site 2.1) is confirmed.

4.1.6.4 Interpretation

Close agreement in apparent resistivity values between field and model data indicate that the 

resistivity of the units in the overburden model are plausible. In addition, this model accounts 

for the mismatch between pole-pole and focused apparent resistivity values, and indicates that 

the expected variation in balance currents is small in magnitude.

On the basis of the model described above, the alluvial overburden is interpreted as being 

of the order of 1.5m thick, damping the response of more conductive layers below. A change 

in resistivity between 45 Q -m  and 180 Q-m indicating a possible fault plane is tentatively 

located at array position 6 m (= 46W  on Line 30S).
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Figure 4.1.19 Site 1.4 model results: Focusing balance factors.
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Figure 4.1.20 Site 1.4 model results: Normalised W-E  balance factors.

4.1.7 Discussion

The two case studies described in Sections 4.1.5 and 4.1.6 provide examples of interpretations 

that have been verified by numerical modelling. They can therefore be used as a guide for 

interpreting data from other field areas.

Figure 4.1.21 is a presentation of data from Sites 1.2 a, b and c. Line 6 (which Line 20N 

referred to the local site coordinates), combined on the same plot. The three sites overlapped 

by 5 m, allowing confirmation o f the repeatability of the RESCAN measurements: the average 

difference in overlapping data points was less than 5%. A conductive anomaly is seen between 

84W and 76W, but the picture becomes clearer when the balance currents are plotted (Figure 

4.1.22). The normalised W-E balance factors show cross-overs at 85.5W, 82.5W, 79.5W, 

76.5W and 69.5W, all similar in shape and magnitude to the single crossover seen at Site 2.1. 

Hence a series of near-surface discontinuities is inferred, probably due to a series of faults
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Figure 4.1.21 Site 1.2 a, b and c, Line 6 : Apparent resistivity traverses.

causing two blocks of conductive rock to contact at the surface with a more resistive 

background zone.

A similar pattern occurs at Site 3.2 (Appendix E), although the data at this site are more 

noisy. A cross-over in the normalised W-E balance factors is present at position 9.5 m on grid 

b, and other steps in resistivity could be placed at 12 or 14 m. The anomaly at 3-4 m may be 

due to a handful of erroneous measurements; smoothing would help to confirm this. At this 

site, it is noticeable that the variation in S-N  balance factors is similar in magnitude to the W-E 

factors, indicating some variation in properties perpendicular to, as well as parallel to the 

array.

In contrast to the variation seen at other field areas, no anomalies are visible at Site 3.1 

(Appendix E). This may be due to too small a resistivity contrast, or too deep an overburden. 

The site location was on a hillside, suggesting that the former reason is more likely since the 

overburden is unlikely to be very thick.
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Figure 4.1.22 Site 1.2 a, b and c, Line 6 : Focusing balance factors.

4.1.8 Conclusions

4.1.8.1 Synthetic focused measurement

The objectives of the focused measurement were to enhance depth of investigation and to 

accurately locate lateral conductive/resistive boundaries (§4.1.2.5). Both of these have been 

achieved, demonstrating the synthetic focusing method works in practice as well as in theory. 

In addition, the normalised balance currents have been shown to provide an additional 

response characteristic of faulting. The focused survey seems to give best results where an 

electrical resistivity contrast is present close to the earth’s surface (as at Site 2.1, §4.1.5). In 

such cases, analysis of variation in synthetic focusing balance factors allows accurate location 

of subsurface lateral discontinuities, and thus enhances the detection and delineation of faults.
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In order to create numerical models it was found that data from other survey styles, 

particularly the half-Schlumberger measurements, were helpful in giving an overall picture of 

the electrical stmcture in the region of interest. Focused apparent resistivity traverses, whilst 

providing less variable apparent resistivity values than pole-pole measurements, do not 

necessarily directly correspond to the resistivity of the earth. In addition, the coverage of the 

focused measurement is more limited than the half-schlumberger style. From this point of 

view, the best potential application of the data is as an extra constraint on existing data, rather 

than a unique survey style.

The focusing technique is seen to be robust enough to successfully produced synthetic 

focused measurements despite a degree of noise in the raw field data. In cases where 

anomalous measurements were observed, they could often be replaced using interpolation 

from the surrounding resistance measurements. The synthetic focusing technique appears to 

be more sensitive than conventional spreads in terms of the magnitude of anomalous values. 

However, these generally appear to be caused by systematic measurement errors rather than 

experimental noise, and so the technique could act as a quality control on the measurement 

data.

The number of measurements required to generate a focused measurement meant that the 

survey is relatively inefficient in terms of time. A survey run of 14 positions on a single line 

takes around 90 minutes, depending on the measurement frequency. Following the ideas 

outlined above, it may be possible to include the necessary focused pole-pole measurements in 

another survey style allowing more data to be generated from a single survey.

Although the focused array deseribed here allowed focusing in two directions, many of 

the anomalies encountered were essentially uni-directional. In such situations, focusing could 

be restricted to one direction only (using just two focusing current electrodes). This would 

require only 12 measurements per focusing array location, a reduction of 70% (reducing the 

survey time for a single line to 25-30 minutes. However, some variation perpendicular to the 

array was seen at sites 1.2 and 3.2, and in this case bi-directional focusing is assumed to be 

superior, although no attempt to interpret these variations has been made at this stage.

4.1.8.2 Numerical modelling

The principal objective of the work described in this section was to provide a basis on which 

to develop numerical models for further modelling applications. Satisfactory operation of both
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the focusing technique (which has been proven to be robust enough to cope with a certain 

amount of noise in the input potential values) and the finite difference model (which matches 

analytic solutions closely in the region of interest) has been demonstrated.

This part of the research work also illustrates the direct application of numerical model to 

the interpretation of field data. Field data at certain sites has been used to infer near-surface 

faulting; the model is able to verify these proposals. In addition, comparison of field results 

with numerical simulations can quantify fault location and overburden depth in favourable 

conditions.

4.1.8.3 Integration o f other field measurements

In addition to d.c. resistivity measurements, a suite of other geophysical data was acquired 

during the Saarland project (§4.1.1). The combination of this data into an integrated 

geophysical interpretation for each survey area would provide additional support for the initial 

interpretations presented in sections 4.1.5 and 4.1.6. Whilst the importance of this final step is 

recognised, it was not directly in line with the aims of this PhD and it was consequently not 

pursued. An overall report of the findings of the fieldwork (Peart et al., 1996) shows that 

interpretations derived from other survey data are in agreement with the inferences made from 

the focused surface array measurements. The amalgamated survey measurements provide an 

inviting data set for future study.

The focusing technique has been demonstrated to operate well in the case of a surface 

array, based on a rectangular grid. The next section describes the development of the 

numerical model to cater for a borehole resistivity device, located in a borehole, and modelled 

using a cylindrical grid.

4-34



Results: focused measurements

4.2 Simulation of ODP high temperature tool

4.2.1 Introduction

The work described in this section is the result of a project to model the basic characteristics 

of a new focused resistivity logging tool designed by Peter Jackson at the British Geological 

Survey and engineered by CSM Associates, for use in the Ocean Drilling Program (ODP).

The tool is designed to operate in high temperature conditions sometimes encountered in 

ODP drill-holes: hence the acronym ODPHT (Ocean Drilling Program High Temperature) 

tool. The tool is especially useful for logging boreholes drilled in hydrothermal systems which 

are typically permeated by highly saline/mineralized fluids. In addition to the high temperature 

environment in such drillholes, borehole fluids can be highly conductive; a focused 

measurement is necessary in order to counteract the short-circuiting effect of conductive 

boreholes. Another special feature of the tool is its exceptionally narrow diameter: it is 

intended to be operated whilst a diamond coring system is in place in the borehole, which 

presents a severe constraint on the tool diameter since it must be able to pass through a core 

barrel with an internal diameter of only 56 mm.

The prineipal objective of the modelling in this case is to assess the geometric factor of 

the tool which compensates for tool geometry and primary borehole effects on the tool 

measurement (standard results cannot be used due to the narrow sonde diameter). The 

geometrie factor facilitates the conversion of a raw resistance measurement into an apparent 

resistivity value (see §2.3.2), which is the primary parameter required by ODP scientists for 

interpretation of the focused log. When considering a numerical simulation, only relatively 

straight-forward resistivity models are needed in order to derive the geometrie factor. The 

modelling also provides an opportunity to test the performance of a ‘wrapped’ grid (based on 

cylindrical polar coordinates) in solving the electrical flow problem.

The principles of modelling a focused resistivity measurement (outlined in §4.0) are 

adapted for the case of a downhole device based on cylindrical polar coordinates. The ODPHT 

tool has only two focusing current electrodes so although the geometry of the problem is more 

complex the actual focusing simulation is simpler than in the case of the focused surface array 

described in Section 4.1.
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The ODPHT tool emits sensing and focusing currents simultaneously and uses electronic 

feedback systems to achieve focusing dynamically as the measurement is made, in contrast to 

the focused surface measurement made using RESCAN, which was generated by combining 

measurements made from individual electrodes (§4.1.2.4). The superposition approach for 

modelling the focused measurement is therefore only used in the numerical model of the tool, 

as opposed to the focused surface array work where superposition is used to generate both 

field and model focused measurements.

Since the details of tool operation were available, the numerical model could be 

developed to mirror the tool operation (this is not possible in the case of the electrical imaging 

models described in Chapter 5).

4.2.2 Tool description

The prototype ODPHT tool is illustrated in Figure 4.2.1. Further tool details are presented by 

Halladay (1994). The mode of operation of the ODPHT tool follows the theory of the 

Laterolog 7 borehole tool (Doll, 1951). Electric current, which is used to make a resistivity 

measurement, is emitted from the central sensing electrode AO. This current flows into the 

formation and back to a common current return (Vref) located 7 m above AO. The sensing 

current flow direction is constrained by the effect of additional currents emitted by the two 

balance electrodes A1 and A2. The magnitude of these two currents is adjusted using 

electronic feedback loops to keep the potential measured at M l equal to that at M l', and also 

the potential at M2 equal to that at M2'. This is intended to force the sensing current to flow 

normal to the axis of the tool, through a dise-shaped region, giving improved vertical 

resolution and improved depth of investigation.
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Figure 4.2.1 ODPHT tool configuration and focused current flow (schematic).

4.2.3 Numerical simulation of the focused measurement

Focused electric borehole tools (including the ODPHT tool) operate by continually adjusting 

the magnitude of the focusing currents using electronic feedback loops to ensure that the tool 

remains correctly focused (see above). In this case (in contrast to the focused surface array), 

synthetic focusing (§4.1.2.2) is used only for numerical simulation of the tool measurement.

4.2.3.1 Superposed focused electric potential

The principles involved in simulating focused electric borehole tools have been described in 

detail by Gianzero (1981) and Moran and Chemali (1985). Using the approach of Moran and 

Chemali (1985), and following the derivation of focusing equations for the focused surface
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array, expressions for the superposed focused electric potential (VjO measured on each of the

ODPHT tool potential electrodes are derived in §D.2. These are:

M X ~ ^ A O M l  ^ A l M l ^ f  AX A l M X ^ f  A l ) ^ A O

y f M V  ~  i ^ A O M X ’ ^ A X M X ' W A X  A l M v W A l ) ^ .

y f M 2  ~  i ^ A O M l  ^ A X M l ^ f  AX ^ A 2 M 2 ^ f  A l ) ^ A

y f  M 2 '  ~ i ^ A 0 M 2 ’ ^ A X M T ^ f A X  ^ A 2 M 2 ’ ^ f A l ) f /10

(4.2.1)

In equation (4.2.1), terms of the form Bfy are balance factors which are functions of the 

transfer impedances (denoted by the terms The transfer impedances are determined by

measuring the voltage at each of the potential electrodes while current is being emitted from a 

single current electrode only; thus the superposed focused electric potential is arrived at by 

calculating potentials where current is emitted from a only at any one time.

This is the principal advantage in using this approach in numerical simulations of focused 

measurements, since the model can proceed without any a priori knowledge of the relative 

magnitudes of the measurement and balancing currents, avoiding the need for extra iteration 

in the solution process. Since there are only two unknowns in the focused potential 

expression, B/ai and B/a2 , it is appropriate to derive explicit expressions (given in §D.2) for 

the balance factors in terms of the transfer impedances, rather than solve the simultaneous 

equations each time the balance factors are calculated.

4.2.3.2 Apparent resistivity and geometric factor

In Section 4.1.2.3 (eq. 4.1.3), the geometric factor G was introduced in the relationship

y
P . = G y .

In the case of the ODPHT tool, V [V] corresponds to a potential difference measured between 

two points on the tool/logging cable and I  [A] is the magnitude of the measurement current 

(which is independent of the variable balance currents). The purpose of the geometric factor is 

to convert the raw resistance measurement of the logging tool (/?,„„/ = V/I) to a more 

meaningful parameter: pg [O-m], the apparent resistivity, which is equal to the true resistivity 

in the case of a homogeneous, isotropic formation.

An analytic expression is derived for the apparent resistivity of the focused surface array 

in Section 4.1.2.3. This is not possible in the case of a borehole tool since an analytic solution
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for the geometry of an electric tool situated in a borehole does not exist (§3.1.2.4). In this 

case, some sort of numerical evaluation of the electric potential for the homogeneous case 

must be used.

One approach is to use the finite difference method to create a model of the borehole, tool 

and surrounding formation. Using this model, the expected measured tool resistance, Rfooi, for 

a known formation resistivity, p/, may be determined. Rearranging equation (4.1.3) and 

substituting these parameters, the geometric factor may be determined from the relation

G = - ^ .  (4.2.2)
^wol

Using equation 4.2.2 in conjunction with the results of numerical models, it is possible to 

derive a value for the geometric factor for a given electrode location. In comparison with the 

geometric factor of the focused surface array there is an additional degree of freedom in the 

form of the borehole/formation resistivity contrast. Values of G must therefore also be 

determined for a variety of such resistivity contrasts.

4.2.4 Finite difference model

The development of the numerical model for simulating the ODPHT tool follows a similar 

pattern to that described for the focused surface array (§4.1.4). The principal difference 

between the two models is the geometry of the finite difference grid. In the case of the focused 

surface array, a grid based on rectangular cartesian coordinates is used, whereas a cylindrical 

grid is more appropriate for the simulation of a borehole tool. In order to derive geometric 

factors relatively simple resistivity distributions are required which represent a borehole 

located in a homogeneous, isotropic medium extending (effectively) to infinity in all 

directions. Grid definition away from the borehole does not therefore have to be sophisticated.

4.2.4.1 Boundary conditions

The region to be modelled is a three-dimensional volume, centred on the borehole tool, which 

may be considered to extend to infinity in all directions. As outlined in Section 4.1.4.1, the 

region covered by the finite difference grid is chosen to extend only to the point where the 

electric potential generated by the modelled tool approaches zero; this is found by inspecting 

the value of the electrical potential at the boundaries of test grids. With grid boundaries
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located sufficiently far away from source/sink locations, the nature of the boundary conditions 

chosen for the finite difference model is not crucial. In practice, resistive (Neumann) 

boundaries were chosen in preference to conductive (Dirichlet) boundaries as these give faster 

convergence, although the end results using either condition are very similar.

4.2.4.2 Finite difference grid

The determination of the size and shape of the finite difference grid required to model the 

ODPHT tool is compromised by the conflicting demands of accuracy and speed (§3.2.5). The 

most crucial area of the grid is that part which represents the surface of the borehole tool, 

since this is where the voltages used to generate an apparent resistivity and geometric factor 

are located.

The homogenous case used for determining tool geometric factors is axisymmetric and so 

there is no need in principle to have many nodes in the tangential direction, circling the 

borehole axis. The problem can in principle be reduced to a purely two-dimensional one, since 

variation in electric potential will only take place in the radial and vertical directions. 

However, this part of work aims to develop a model which can be used to simulate current 

flow and tool geometry in three dimensions, for more complex simulations, and so the 

application of a 3-D model to a 2-D problem provides a useful stepping stone in the model 

development. Model results can be checked for symmetry to verify the wrapping process is 

working properly.

Figure 4.2.2 illustrates a vertical section through the finite difference grid developed for 

modelling the ODPHT tool. The left-hand edge of the section is the tool/borehole axis, located 

at r  = 0. As illustrated in the blown up part of the figure, nodes are closely spaced in the 

region of the tool. The vertical locations of the respective electrodes A l, M l, M Y, AO, M2', 

M2 and A2 are z = -1 , -0.6, -0.4, 0, 0.4, 0.6 and 1.0 m respectively. The current return 

electrode (y,e/) is located at z = 7 m; grid spacing here is wider than for the source electrodes 

since this is not found to significantly affect the calculated potentials in the region of interest 

(i.e. the region from which values used for calculating geometric factors are taken).

In this idealised model the tool radius is set at 0.028 m, located midway between nodes 

placed at 0.018 m and 0.038 m in the radial direction. The borehole radius is 0.145 m, 

corresponding to a diameter of 29 cm or approximately 11.5 in which is a typical value for
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ODP holes. The tool sonde is represented by resistive cells located between z = -1 .7  and z =

2.3 m.

A 2  1.0 
M 2'  0.6 
M 2  0.4 
AO 0 
MX -0 .4  

M l ' - 0 . 6

AI -1 .0  _i^5

r[m )

Figure 4.2.2 Vertical section through finite difference grid used for ODPHT simulation.

4 .2 .43  Testing o f the model

Once a suitable finite difference grid has been defined, the model can be tested against known 

analytic solutions. Close agreement was found in the case of a homogeneous region (with no 

borehole) containing a source and a sink located at various points in the grid, and for the case 

of a horizontally layered earth (again, with no borehole). The details of this are not reported

4-41



Results: focused measurements

here, but the testing is similar to the example given in Section 3.2.5.2. Note that there is no 

suitable analytic solution available for the electric potential in an earth containing a borehole 

(§3.1.2.4)—hence the need for a numerical approach to the problem.

Self-consistency

The Kirchhoff error and simulated current flow through the finite difference resistor 

network can be monitored during model runs to confirm that any residual error is small and 

that conservation laws are obeyed (a specific example is given in §3.2.5.3). This ensures that 

the model is self-consistent (i.e. it obeys the conservation principles on which the electrical 

conduction equations are based) and can be used to confirm that the grid ‘wrapping’ technique 

is not introducing unwanted errors.

4.2.5 Results

4.2.5.1 Two-dimensional modelling

Initial models confirmed the assumption that there is no variation in the eleetric potential in 

the azimuthal direction. This provides some confirmation that the wrapping routine operates 

correctly. Since there is no current flow azimuthally, it is not necessary for any relaxation of 

the calculated voltage values in this direction, and so the finite difference algorithm was 

modified to miss out iterations in the azimuthal direction, considerably reducing solution 

times.

With this modification, the three dimensional finite difference model effectively 

represents a two-dimensional problem by a segment as illustrated in Figure 4.2.3. The 

magnitude of any current source in the region is reduced in proportion to the size of the 

wedge: for example, a source of magnitude 1 A m~̂  in a segment subtending an angle of 30° 

would have an equivalent strength of 12 A m“  ̂ when the full 360° contribution is taken into 

account.

The angle subtended by the wedge is arbitrary in principle. This was tested by a series of 

models which are summarised in Table 4.2.1. Each model has a different number of azimuthal 

nodes, as indicated in the second row; this is the input parameter in the finite difference model 

whieh defines the angle subtended by the ‘2D’ segment. The geometric factor was calculated 

using a formation resistivity of 1000 O-m.
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Figure 4.2.3 Wedge representing 2D model.

Model SVOl SV02 SV03 SV04

Calculated balance factors BfA^ 18.183 21.801 21.515 21.515
240.652 288.799 284.982 284.982

No. azimuthal nodes 7 21 31 61

Wedge angle 90° 20° 12.86° 6.21°

Source strength 1/4 1/18 1/28 1/58

Calculated geometric factor Gwi 0.932 0.777 0.788 0.788
Gm2 0.932 0.777 0.788 0.788

Table 4.2.1 Results o f series o f models investigating effect of varying number of azimuthal nodes.

4.2.5.2 Geometric factors

Table 4.2.2 shows a range of geometric factors derived from models of the ODPHT tool 

operating in differing borehole/formation resistivity contrasts. The six runs WB01-WB06 

correspond to respective borehole-formation resistivities of 0.025:1000; 0.25:1000; 2.5:1000; 

25:1000; 0.025:1; and 2.5:10 (Q-m in each case). For each run, the simulated potentials on the 

tool electrodes are given; following the derivation in §D.2 these are used to calculate the 

transfer impedances below, which in turn are used to calculate simulated focused balance 

factors. Finally, a value for the geometric factor is calculated, using equation 4.2.2. The 

potential on either voltage electrode pair (M l or M2) may be used, hence the reason for two 

values of G for each model. A summary of the geometric factor calculations is given in Table 

4.2.3.
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Run W B O l WB02 WB03

Source location AO Al A2 AO Al A2 AO Al A2

Vat 0.367 0.677 0.212 2.800 5.701 1.416 17.739 41.467 7.597
Vmv 0.376 0.495 0.219 3.097 4.144 1.656 22.777 29.599 11.130
Vm i 0.380 0.421 0.222 3.249 3.544 1.780 25.538 25.686 13.051
Vw 0.423 0.274 0.229 3.911 2.352 2.033 35.093 18.334 17.239

0.240 0.127 0.237 2.321 1.170 2.296 22.900 11.510 21.957
Vm 2 0.166 0.054 0.241 1.703 0.582 2.432 18.813 8.264 24.548

0.018 -0.093 0.283 0.476 -0.588 3.059 11.095 2.048 33.746
^ref -2.166 -2.258 -1.954 -17.385 -17.833 -15.828 -89.054 -88.459 -82.909

Transfer impedances
h o 1 1 1 1 1 1 1 1 1

Z aomv, ZaiAfis Z 42MI' 2.541 Z753 2.173 20.482 21.977 17.484 111.831 118.058 94.039
ZaoMi, Z a im i , Z a im i 2.545 2.680 2.176 20.634 21.377 17.608 114.592 114.145 95.960

Z aOMX, Z a im X, Z a 2M2 2.332 2.312 2.194 19.088 18.415 18.260 107.867 96.723 107.457
Z aOM2, Z a im 2, Z a 2M2 2.406 2.386 2.191 19.706 19.003 18.124 111.954 99.969 104.866

Solution coefficients
Yi. «1, Pi -0.004 -0.074 0.004 -0.153 -0.600 0.123 -2.761 -3.913 1.921

02, k -0.074 0.073 -0.004 -0.617 0.588 -0.136 ^.087 3.247 -2.591
Balance factors

% l , # 2 24.322 498.906 10.797 51.325 3.845 6.396
1 1 1

Focused electric potential
V f  M l, V f  Ml 1153.394 1153.381 1155.142 1155.106 1167.245 1167.054
V/m v , V /m x 1153.394 1153.381 1155.142 1155.106 1167.245 1167.054

R , 1000 1000 1000
Geometric factor (Ml, M2) 0.867 0.867 0.866 0.866 0.857 0.857

Run W B 0 4 WB05 1VB06

Source location AO Al A2 AO Al A2 AO Al A2

Vai 65.105 217.570 24.466 0.065 0.218 0.024 0.676 8.705 0.243
Vm \' 96.635 122.090 37.356 0.097 0.122 0.037 1.220 1.792 0.349
V«i 117.840 100.410 45.574 0.118 0.100 0.046 1.784 1.226 0.426
%40 212.390 67.850 66.920 0.212 0.068 0.067 8.689 0.676 0.673
V m i 116.160 44.850 97.860 0.116 0.045 0.098 1.771 0.417 1.212
V m i 94.107 35.781 118.740 0.094 0.036 0.119 1.201 0.334 1.775
V u 60.827 21.118 212.630 0.061 0.021 0.213 0.644 0.215 8.695
Vmf -231.130 -228.390 -225.040 -0.231 -0.228 -0.225 -6.244 -6.244 -6.215

Transfer impedances

h o 1 1 1 1 1 1 1 1 1
Z aomv, Z a im v , Z a im v 327.765 350.480 262.396 0.328 0.350 0.262 7.464 8.036 6.564
Z ao m i, ZaiMi, Z a im i 348.970 328.800 270.614 0.349 0.329 0.271 8.028 7.470 6.641

Z aOMI', Z a iM2', Z a2MT 325.237 264.171 343.780 0.325 0.264 0.344 7.445 6.577 7.990
Z ao m i, Z a im i , Z a im i 347.290 273.240 322.900 0.347 0.273 0.323 8.016 6.661 7.428

Solution coefficients
Yi, a i ,  Pi -21.205 -21.680 8.218 -0.021 -0.022 0.008 -0.564 -0.566 0.077
72, «2. P2 -22.053 9.069 -20.880 -0.022 0.009 -0.021 -0.571 0.083 -0.563

Balance factors
% l.% 2 1.650 1.773 1.650 1.773 1.159 1.186

1 1 1
Focused electric potential

V /m i , V f  Ml 1371.298 1370.635 1.371 1.371 24.559 24.541
VfMV, V fM l 1371.298 1370.635 1.371 1.371 24.559 24.541

R, 1000 1 10
Geometric factor (Ml, M2) 0.729 0.730 0.729 0.730 0.407 0.407

Table 4.2.2 Results of geometric factor calculations.
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Run borehole; formation 
resistivity contrast

Ratio G (average) Balance current ratios 
(4 0 A IA 2 )

WBOl 0.025:1000 0.000,025 0.867 1:24.322:498.906

WB02 0.25:1000 0.000,250 0.866 1: 10.797:51.325

WB03 2.5:1000 0.002,500 0.857 1:3 .845 :6 .396

WB04 25:1000 0.025 0.730 1:1.650:1.773

WB05 0.025:1 0.025 0.730 1:1.650:1.773

WB06 2.5:10 0.250 0.407 1:1.159: 1.186

T ab le  4.2.3 Summary of geometric factor calculation results.

4.2.6 Discussion

The results from investigating the effect of different width wedges confirms that the angle 

subtended by the segment of the finite difference grid has little effect on the calculated model 

potentials. Referring to Table 4.2.1 it is apparent that the calculated balance factors and the 

derived geometric factor show no variation (to 3 d.p.) for angles less than 20°. For larger 

angles, calculated values are seen to depart from the steady values of narrower sections. The 

geometry of the ‘wedge’ may be coming into play with a wide difference in the orientation of 

opposing faces of the finite difference cells and significant curvature of the radial faces 

introducing discretization errors. On inspection of calculated potential values it was noted that 

a small difference in voltage caused a much wider variation in calculated geometric factor, 

magnifying any discretization effects.

The wrapping method for generating a cylindrical polar grid may be considered 

successful for the case of an azimuthally symmetrical model, since the symmetry is preserved 

in the calculated voltages, and these match values calculated using the modified ‘wedge’ 

solution algorithm. It is noted that a two-dimensional model would be the ideal choice for this 

application, although the model simulations have been used in the development of a three- 

dimensional model in this instance.

Although the model is azimuthally symmetrical, it does not exhibit vertical symmetry 

about the central current electrode. This is apparent on inspection of the calculated balance 

factors in Table 4.2.3, particularly in the case of runs WBOl, WB02 and WB03. In run WBOl, 

the magnitude of the upper electrode (A2) current is calculated to be nearly 500 times that of 

the measurement current, whilst the current magnitude of the lower electrode (A 1 ) increases 

by a factor of 24.3. This is due in part to the proximity of the current return [located 7 m from
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AO, as compared with around 100 m for the focused surface array (§4.1)], but is principally 

caused by highly conductive borehole fluid (0.025 O-m) which magnifies the effect of the 

current sink and tends to ‘drag’ the measurement current upwards towards the sink. The 

focusing is working hard to reach balanced voltages on the potential electrodes, but this is still 

achieved [as can be seen from the calculated potential pairs (V/mi, Vjuv) and (V/m2 , V/m2')]- 

Focusing is much easier in cases where the borehole/formation contrast is lower, as can be 

seen, for example, in run WB04, where balance factors are around 1.7 and are approximately 

equal since the potential becomes more symmetrical about AO.

In conclusion, the ODPHT tool has been successfully simulated, allowing the calculation 

of geometric factors which can be used by ODP logging scientists to transform raw 

measurement data into more meaningful resistivity values. The geometric factors would 

normally be verified by testing of the tool. This typically involves running the tool in test 

wells where a suite of conventional log data is available for comparison, and possibly 

measuring the response of the tool whilst suspended in a tank of water. Unfortunately such 

data was not available for this project, precluding any practical verification of the numerical 

model.

The model development goals stated at the beginning of this section have been achieved, 

providing a basis for the development of more sophisticated simulations of electrical borehole 

devices. The following chapter describes one such simulation: that of a downhole electrical 

imaging tool.
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Results: electrical imaging

5.1 Introduction

This chapter describes the application of the finite difference model developed in Chapter 3 to 

the numerical simulation of electrical imaging tools. After introducing imaging tools and their 

principles of operation, the elements of a numerical model of such tools are described. This 

model is then used to simulate some specific, geologically relevant situations.

Detailed information regarding both the operation and simulation of imaging tools is not 

available from the service companies which have developed this technology, presumably to 

protect their commercial interests. The information that is available in the public domain 

includes an overview of tool function and image generation, and the barest details of 

theoretical modelling which has been used to analyse tool response. This is not enough on its 

own to be able to create a tool simulation using standard modelling techniques. However, 

published information can been used to infer the basic principles of tool operation, and a 

numerical model has been developed which aims to simulate these principles by making use 

of some of the properties of the finite difference model described in Chapter 3.

This model is then compared with the limited amount of published simulation data, and 

some (more widely available) field data, firstly to validate it and subsequently to help 

characterise the first-order response of imaging tools, with the intent of providing an insight 

into the nature of the measurements made by this important branch of downhole logging 

devices.
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5.2 Electrical imaging tools

5.2.1 Tool description and operating principles

Downhole electrical imaging has become possible with the development of Schlumberger’s 

Formation MicroScanner (FMS) (Lloyd et ah, 1986; Ekstrom et ah, 1987; Boyeldieu and 

Jeffreys, 1988; Luthi and Souhaité, 1990) and Formation Microimager (FMI) tools (Bourke, 

1992); more recently equivalent devices have since been produced by Western Atlas and 

Halliburton [Electrical Micro Imaging (EMI) tool (Seiler et ah, 1994)]. These modified 

dipmeter-style tools provide detailed images related to variations in the resistivity of the 

borehole wall. A schematic representation of a typical imaging tool is shown in Figure 5.2.1 

which illustrates the important elements of these wireline devices. Measurements are made on 

the surface of passively focused metal pads which are pressed against the face of the borehole 

wall using sprung arms as the tool is drawn upwards. (The FMS has two or four pads, whilst 

the FMI has eight pads [Bourke, 1992]; the EMI has six pads [Seiler et ah, 1994]). The pad 

measurements correspond to readings from an array of electrical buttons located centrally on 

each pad surface (as illustrated in Figure 5.2.1), and are used to generate an electrical image of 

the borehole wall. In the case of the FMS, the buttons are circular with a diameter of 5 mm 

and are arranged in rows so that they overlap. This gives the FMS a potential tool resolution 

of 2.5 mm at the appropriate logging speed.

tool
motion

curren
return

9.5 m

borehole

direction of 
urrent flow

insulated

T
Imaging tool

button array 

button 0 = 5 mm 

'  metal pad

pad detail

Figure 5.2.1 Downhole electrical imaging tool (schematic). Dimensions and pad detail refer to the 
FMS.
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Figure 5.2.1 also illustrates the flow direction of current generated by the tool. The 

imaging buttons, pad face, and lower part of the tool body are at a higher electric potential 

relative to a return electrode located near the top of the tool body. Currents are thus induced to 

flow out of the buttons, through the formation, and back to the tool; these are passively 

focused to flow directly into the formation (rather than along the borehole) by the metal pad 

surrounding the buttons, and the lower part of the tool. The current emitted by the tool is 

varied to compensate for variations in the formation resistivity (Bourke et al., 1989): in 

resistive zones, the current is increased to keep current levels at an optimum level for 

measurements to be made; conversely current flow is reduced in the presence of conductive 

zones to avoid saturation of the electric signal. Currents through each button are recorded 

enabling a current density map of the surface of the button array to be produced; this is then 

eonverted to resistance values which are used to generate an electrical image of the borehole 

wall—the tool can be thought of as producing a picture of the borehole wall as seen by an 

electrical eye. Ideally, such an image is obtained from measurements with a very shallow 

depth of investigation, although it is evident that the currents used to make measurements 

flow a finite depth into the formation. Tool readings are influenced primarily by current flow 

close to the pads, where current density is highest, although Bourke et al. (1989) report that 

modelling by Trouiller (1988) and others indicates that the depth of investigation of the tool 

can be as much as 25 cm in a homogeneous formation with a smooth borehole. In practice, 

formation heterogeneities can reduce the depth penetration to as little as 2.5 cm and the 

focusing effect of the tool further reduces depth of investigation. A three-dimensional (3D) 

numerical simulation is one way of quantifying the depth of investigation of imaging tools in 

different geological settings

5.2.2 Data acquisition and processing

Since the numerical models developed for this work are intended to simulate not only the tool 

operation but in addition the generation of electrical images, an appreciation of the data 

acquisition and processing procedure used to translate raw tool measurements into downhole 

images is required.

Details of the processing procedure in the case of Schlumberger’s FMS/FMI are given by 

Serra (1989), with some further discussion in Bourke et al. (1989) and Barker et al. (1990).
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The latter authors divide the process by which raw tool data are used to generate images of the 

borehole wall into three steps: data restoration, image generation and image enhancement.

Data restoration involves correcting the raw measurement data for varying measurement 

conditions. A speed correction is made using vertical accelerometer data which removes ‘saw

tooth’ artifacts in the images caused by incorrectly aligned button measurements resulting 

from any mismatch in the measured cable speed and the actual tool speed (which typically 

occurs when the tool sticks). The gain and offset of individual buttons is equalised to 

compensate for differing responses to resistivity variations, and effects due to borehole 

rugosity and eccentricity. This removes stripy features in the images (note that the button 

measurements are not actually calibrated). Finally a correction is made to allow for variation 

in the tool focusing current.

Image generation is the mapping of current intensity measurements to grayscale values (of 

pixels) or other colour scales, thus allowing the measured resistance curves to be converted 

into a two-dimensional image. The usual convention is to represent conductive (high current) 

values by dark tones and resistive (low current) values by light tones. Common colour 

schemes are variations from brown to yellow or a rainbow (blue through green and yellow to 

red).

Image enhancement involves re-scaling the generated image (i.e. modifying the mapping 

of measurements to grayscale values). Schlumberger typically use static normalisation (where 

a particular scale of values is applied to a long interval of data), dynamic normalisation (where 

images are scaled over a moving window, typically 1 m in length), or dynamic histogram 

normalisation (which emphasises fine variations in button current intensity), depending on 

what kind of features are being analysed.

5.2.3 Applications of electrical imaging

The applications and significance of electrical imaging have already been outlined in Section 

2.4.3. Downhole electrical imaging provides a connection between geological interpretation 

and conventional log analysis. Numerical modelling can be of benefit by characterising the 

nature of the measurement and its expeeted response, and also opens up the possibility of 

more quantitative petrophysical information being derived from electrical images.
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It is noted that much of the imaging tool application relies on interpretation of images 

which can be strikingly similar to what would be seen by the naked eye. Numerical modelling 

is one way of verifying or dissuading the use of conventional ‘optical intuition’ in the 

interpretation process.

5.3 Simulation of electrical imaging tools

Reported simulation of electrical imaging tools has been exclusively in-house, carried out 

with proprietary software (Ekstrom et ah, 1987; Luthi and Souhaité, 1990; Trouiller, 1988). 

The present work represents an attempt at modelling such tools outside the commercial 

environment.

Information regarding simulation of electrical imaging tools in the public-domain is 

limited; in addition many details of tool specification, method of operation, and data 

acquisition and processing are also restricted to in-house engineers and scientists. It is not 

therefore viable to aim to produce the detail of previously reported modelling, or to attempt to 

simulate a specific device in detail. Instead, the more fundamental characteristics of such tools 

aim to be assessed, with the intention of investigating first order measurement effects. In 

creating models of imaging devices, certain assumptions have been made with regards to 

operational details; these have been translated into numerical simulations which make use of 

some of the properties of the finite difference method to simulate the electric button 

measurements used to generate synthetie electrical images.

5.3.1 Introduction

Numerical models of the FMS have been described by Ekstrom et al. (1987) and Luthi and 

Souhaité (1990). Results of in-house modelling by Trouiller (1988) are reported by Bourke et 

al. (1989), but no detail of the models used are given. Even in the case of the modelling 

described by Ekstrom et al. (1987), little detail is given about the technique used, other than to 

say it utilises a 3D finite element model with a flexible grid consisting of about 50,000 nodes. 

These features are also present in the model used by Luthi and Souhaité (1990), although it is 

larger, consisting of about 70,000 nodes, but the response of a single button only is simulated. 

Chang and Anderson (1984) give some details of the method used, and describe how the grid
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is automatically generated by considering (estimated) discretization error. It seems likely that 

the model described by Ekstrom et al. (1987) is also based on the same principles.

In common with the models described in the literature, and as described in Section 3.2,

the model presented here is a forward model, as illustrated in Figure 5.3.1. For a given model 

the grid geometry and resistivity distribution are pre-defined. Tool characteristics are also 

specified (e.g. diameter, length, location and magnitude of current source and sink). The 

model then calculates the electric potential we would expect in a formation with a resistivity 

distribution matching that speciEed in the simulation. Since the solution includes the 

potentials on the surface of the tool, a simulated tool response, and thus a simulated electrical 

image can be generated.

specify
formation resistivity 

characteristics

specify 
logging tool

characteristics

MODEL

calculate 
voltage distribution 

in formation

recover imaging tool 
response and simulated 

electrical image

Figure 5.3.1 Flow diagram to illustrate a forward model for simulating electrical imaging.

The model used here diners from those previously described in several respects. As 

described earlier, it is based on the finite difference method, although it is also 3D with a

similar number of mesh nodes. The mesh itself is also flexible within the constraints of the 

cylindrical polar coordinate system although it is not automatically generated. The model 

attempts to simulate current flow in the borehole region surrounding the whole imaging tool, 

not just the pad region.

In general the finite difference method is less flexible, but simpler, than the finite element 

method used in the simulations of Ekstrom et al. (1987) and Luthi and Souhaité (1990). The 

full flexibility of a finite element mesh is not always required: the model described here could
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easily accommodate the meshes described by Chang and Anderson (1984), for example. In 

addition, the models presented here are deliberately restricted to simple situations with a view 

to illustrating the fundamental tool characteristics.

Perhaps the most important aspect of the numerical model is the simulation of the current 

flowing from the passively focused button electrodes. Although the physical dimensions of the 

buttons and surrounding pad have been published (e.g. Ekstrom et al., 1987), the method of 

controlling, focusing, and measuring the current flowing from them has not. Information 

concerning methods of simulating this process is equally limited. Section 5.3.2 describes how 

the button measurements are simulated by making specific use of the way the electrical flow 

problem is formulated in the finite difference method.

5.3.2 Simulation of electrical imaging buttons

The electrical imaging buttons are micro electrodes which independently inject current into 

the formation (the buttons are illustrated schematically in Figure 5.2.1). The button currents 

are measured and form the basis of the downhole electrical image. The current flow from the 

buttons is passively focused by current from the tool pad; to generate a reasonable replication 

of the imaging tool measurement, the focusing mechanism must also be represented. Focusing 

is achieved by ensuring that the tool pad and buttons are at the same potential: this implies 

that current flow from the buttons will be normal to the pad, directly into the formation (rather 

than ‘short-circuiting’ up the borehole). The focusing is termed ‘passive’ since there is no 

attempt to vary focusing currents to compensate for the effect of formation heterogeneities (as 

opposed to the focusing described in Chapter 4).

In order to simulate the electric buttons, direct use is made of the resistor analogy of the 

finite difference approximation (Section 3.2.3). A single resistor in the finite difference grid is 

used to represent an individual imaging button. Once a resistivity model has been specified, 

the finite difference method is used to calculate the electric potential across each button 

resistor. To calculate the current intensity associated with each model button. Ohm’s law is 

applied. The simulated button current intensities are thus intended to be generated from a 

theoretical process which is similar to the way the actual tool operates (notwithstanding any 

assumptions that have been made about tool function).
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In the FD model, given nodes cannot, in general, be held at a fixed potential. The 

exception is the boundary of the grid. One of the boundaries of the wrapped grid coincides 

with the axis of the borehole, and therefore conveniently runs down the centre of the logging 

tool. Passive focusing is simulated by translating the fixed boundary potential at the centre of 

the grid to the grid cells representing the surface of the imaging tool pads, using very low 

resistance inter-nodal connections. The button resistors form part of the connection between 

boundary and pad, but must be finite in order for a measurable potential difference to be 

present across them. With these low resistance connections in place, the electric potential at 

the simulated pad surface will be very close to that of the boundary, which may be fixed to a 

constant value ensuring the surface of the pad approximates an equipotential surface.

The implementation of simulated electric buttons is illustrated schematically in Figure 

5.3.2, which shows a vertical section through part of the finite difference grid in the simulated 

imaging tool’s pad region. The radial nodes of a typical row have been labelled Ai. . .  A@ for 

convenience. The potential of the boundary node A| is set at 100 V. Radial resistances 

between the boundary and As are set close to zero (actually 1 x 1 0 ”*° H to prevent division by 

zero errors in the solution algorithm). Note that nodes A%, A3 and A4 are not needed for the 

button simulation; they are used to represent the imaging tool body and borehole fluid further 

up and down the grid. The vertical resistances and tangential resistances (which are normal to 

the plane in Figure 5.3.2 and are not illustrated) connecting nodes A2 . . .A5 are set effectively to 

infinity (in practice to an equivalent resistivity of 1x10^° O-m) ensuring current flows 

independently through individual buttons. The electric potential at A5 is thus virtually the 

same as the boundary value of 100 V. The radial resistor connecting As to Ag is the button 

resistor and is set to a small value AR to ensure that the potential Ag is still close to 100 V. The 

current 4  flowing through this button resistor is given by Ohm’s law:

AR

The real imaging button current data generated by the FMS/FMI is corrected for 

variations in the pad focusing current (Section 5.2.2). In the simulation described here, the 

equivalent process is the normalisation of 4  to a button resistance Rb, using

(5.1)



g/ecfrica/ imagwg

grid
boundary inside tool button formation

AY;boundary 
set at 100 V

zero resistance -  

infinite resistance
---

1 2 3 4

Figure 5.3.2 Representation of passively focused imaging tool button using FD grid resistors.

Note that Vg represents absolute potential, relative to infinity (approximated by the boundary 

of the model).

In practice, it was found necessary to make AR equal to 1 Q, in order for the potential drop 

across this resistor big enough to be measurable (i.e. to prevent numerical underflow). Testing 

shows the potential at Ag is still found to be close to 100 V, preserving the simulated passive 

focusing effect.

5.3.3 Boundary conditions

In the electrical imaging tool model, boundary conditions are used to generate current flow, as 

opposed to the models described in Chapter 4 which use current sources and sinks. This 

allows simulation of passive focusing to be accommodated, as described in Section 5.3.2 

above. Electrical currents are generated by having a voltage drop between the tool pads and 

the current return, which is located at the top of the tool body. This is illustrated schematically 

in Figure 5.3.3. The portion of the grid boundary which corresponds to the lower part of the 

imaging tool is set to a positive potential (100 V) with respect to the top part of the tool 

(which is set to 0 V). Other boundaries are made highly resistive, so no current can flow 

through them; this is analogous to locating a tool within an electrically insulating tank. Thus 

the model has a mixture of Dirichlet and Neumann boundary conditions (illustrated in Figure 

5.3.3).
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borehole
axis current return at 0 V

resistive (Neumann) boundaries 

conductive (Dirichlet) boundariesO V

current induced by potential drop

100 V

tool pads and lower part of body at 100 V

Figure 5.3.3 Schematic vertical section through a model o f an electrical imaging tool illustrating 
boundary conditions used to generate current flow.

5.3.4 Finite difference grid

By experimentation the model grid is defined to extend three metres from the top, bottom and 

axis of the simulated imaging tool, using the principles outlined in Section 3.2.5. The tool is 

located between z = -0 .16  and z = 7 m; in Figure 5.3.4 the location of the tool pad and 

simulated buttons corresponds to a dense packing of grid nodes centred around z = 0 m. There 

are 17 radial nodes and 47 vertical nodes. Where azimuthal variation is important, up to 91 

azimuthal nodes (including those used for wrapping) are used giving a total grid size of 

72,709 nodes; this is reduced when symmetrical models are to be investigated.

The locations of the grid nodes are defined to match the published dimensions of the 

Formation MicroScanner (Ekstrom et al., 1987). The simulated tool is azimuthally 

symmetrical: rather than simulate four individual pads, a single 360° ring of electric buttons is 

effectively present. This allows full borehole coverage, and provides an adequate 

approximation to a real tool: given the other simplifying assumptions in the model, it was not 

thought important to try to incorporate the extra detail of individual imaging pads.
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Figure 5.3.4 Vertical section through grid used in finite difference simulation of electrical imaging 
tools.

5.3.5 Generation of electrical images

The process by which downhole images are generated from raw tool resistance measurements 

has been outlined in Section 5.2.2. Any true simulation of a specific logging tool would 

require detailed knowledge of these procedures, but not all such information is publicly 

available.
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Certain processing steps are not applicable to the idealised situation represented by the 

numerical model: there is no need to make a speed correction or gain and offset correction 

since tool motion is uniform and imaging buttons are identical; other sources of measurement 

noise such as borehole rugosity and contact resistances are also absent.

Static and dynamic normalisation has not been carried out on simulation data in the 

generation of grayscale images since simulations have been run over relatively small intervals. 

Where grayscale images have been generated, data imaging software has been used to create 

an appropriate colour or grey scale.

Perhaps the most crucial processing step is compensation of the variation of the focusing 

current (controlled by what is termed the ‘EMEX’ voltage by Schlumberger). Clearly the 

compensation procedure depends on the method used to vary focusing current; in the 

numerical model this is achieved by fixing the voltage between the tool pads and the current 

return (Section 5.3.3). In this case, current normalisation is easily implemented by converting 

measured button currents into resistances using equation 5.1.

5.3.6 Testing

The finite difference model used for the FMS is based on the cylindrical grid of the ODPHT 

model described in Section 4.2. Section 4.2.4.3 refers the testing of this grid using known 

analytic solutions for simplified resistivity distributions. Note that there is no suitable analytic 

solution available for the electric potential in an earth containing a borehole, or even an 

idealised electrical device located in a homogeneous region (§3.1.2.4)—hence the need for a 

numerical approach to the problem.

Section 4.2.4.3 also describes how a model may be tested for self-consistency by 

monitoring current flow through the finite difference grid and analysing Kirchhoff error. 

Similar procedures have been adopted in the case of the electrical imaging model, with 

accurate results as required.

Beyond this, rigorous testing of the model is not possible. However, simulation data may 

be compared with published results to provide confirmation that the modelling is producing 

reasonable results. This is described in the next section.
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5.4 Application of the numerical model

Numerical modelling has been carried out with the intention of investigating some simple 

geometries with some geological significance. The results presented here involve relatively 

simple situations with a view to illustrating the fundamental tool characteristics. In addition, 

initial models aim to test the simulation which has been developed.

The models follow a progression, starting with cases which aim to demonstrate the 

validity of the numerical model, and moving on to potential applications of the quantitative 

numerical simulation. In view of the fact that information concerning both the operation of 

electrical imaging tools and the simulation of such tools is restricted (as described in Section 

5.2), it is not viable to rigorously demonstrate that any model closely simulates an actual tool. 

However, model output can be compared with reported tool responses to various situations, 

and a less direct test is thus made.

5.4.1 Sequence of horizontal layers

A section of downhole data from ODP Leg 126, Hole 793B is illustrated in Figure 5.4.1. The 

section corresponds to thick turbidite beds exhibiting classic grading of particles: the largest 

pebbles are found at the base of each bed with particles fining upwards and becoming clays at 

the top. The particle grading is typically associated with a change in resistivity: the clay-rich 

parts of each bed are observed to be more conductive. This is due to a combination of surface 

conduction effects associated with clays (see §2.1.3) and a high porosity typically observed in 

clay-rich marine sediments (Ellis, 1987; Taylor, Fjioka et al., 1990). A trend in resistivity 

values from high (at a layer base) to low (at the top of the layer) is apparent on conventional 

resistivity log data (on the left of the figure). An FMS image from the same section is 

presented on the right of the figure (finer, more conductive beds appear as darker bands).

At present, downhole resistivity measurements are not available on the same scale as 

electrical images, but in this case the relatively thick beds allow the conventional resistivity 

data to be used as a control on the interpreted resistivity of the formation. Using the 

conventional (quantitative, calibrated, but lower resolution) resistivity measurements, a model 

consisting of a series of horizontal layers (illustrated in Fig. 5.4.2) is created. The location and 

resistivity of each model layer is shown in the left hand plot of Figure 5.4.2.
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Figure 5.4.1 Resistivity and FMS data from ODP Hole 793B.
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Figure 5.4.2 Numerical simulation o f data from ODP Hole 793B.
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A  borehole diameter of 0.29 m is specified to match caliper data. The drilling fluid 

occupying the borehole, which is sea water in the case of the ODP, has a resistivity of

0.3 O-m. This is used as the input to the electrical imaging model, which generates the 

synthetic electrical image shown on the right. The modelled image shows general agreement 

with the ODP data, as would be expected. Note that the fine detail picked up by the FMS is 

not present in the model and is not therefore expected in model results. This illustrates the 

difference in resolution between FMS and conventional resistivity logging measurements. 

Although this does not constitute a rigorous test, experiments such as this provide evidence 

that the numerical model is at least viable.

5.4.2 Offhole resistive anomalies

Figure 5.4.3 shows a set of results for a different model in which a horizontal, conductive 

(blue) zone has a resistive (red) anomaly within it. Such a resistivity model can find 

geological relevance if interpreted as e.g. dolomitic porosity structure, a gas-filled cavity 

within a conductive bed, solution breccia, or mineral infilling.

The fracture is 15 mm deep, and the resistive anomaly is a cube with sides of 5 mm. The 

resistive feature is effectively modelled at different distances from the borehole wall. The 

anomaly is initially absent (top), but is then introduced intersecting the borehole wall (middle) 

and finally at 5 mm away from the borehole wall (bottom). It can be seen that the resistive 

feature contributes an anomaly to the tool response even when it does not intersect the 

borehole wall.

Resistive anomalies on a similar scale to that modelled above have been observed in ODP 

data. A section of FMS image from ODP hole 835B, which is located in the Lau Basin, near 

Tonga in the Pacific Ocean (Parson et ah, 1992) is shown in Figure 5.4.4. This interval 

corresponds to a turbidite layer consisting of clayey nannofossil ooze. The layer itself is very 

uniform, exhibiting very little sedimentary structure; this is reflected in conventional log 

curves over the interval, and also in the recovered core. The FMS image shows much more 

variation than might be expected, and is characterised by resistive spots (most abundant on the 

second pad trace). These anomalies are thought to be caused by clumps of foraminifera fossils 

which are composed of resistive calcite, and have dimensions of the order of up to 5 mm 

(Rothwell, pers. comm., 1995). The modelling illustrated in Figure 5.4.3 confirms that such a

5-15



Results: electrical imaging

resistivity modei 
(borehole region)

1 ohm-m 
10 ohm-m

simulated 
conductance image 

(full-bore)

Resistance 
High Low

N E S W  N

1. No resistive anomaly

2. Resistive anomaly

N E S W N

2. Resistive anomaly intersects borehole wall

N E S W N

3. Resistive anomaly 5mm away from borehole wall

Figure 5.4.3 Simulated electrical imaging tool responses to a resistive anomaly within a conductive 
zone.
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proposal is reasonable, and in addition suggests that the less bright spots may be caused by 

fossils located a few mm away from the borehole wall. It is noted that the depth of 

investigation modelling described in Section 5.4.4 extends the present model, by looking at 

different resistivity contrasts and anomaly depths, and adds more weight to the hypothesis that 

highly resistive features are causing the observed image anomalies.

5.4.3 Dipping, resistive layer

Steeply dipping, thin resistive layers are reported to cause halo-like anomalies on electrical 

images, and provide a good example of a case when there is a mismatch between electrical 

and optical images, as illustrated in Figure 5.4.5. Such situations can arise when cemented 

fractures intersect the borehole. Examples of such effects occurring in FMS measurements are 

given by Serra (1989); similar effects in the EMI response are reported by Seiler et al. (1994), 

and are shown in Figure 5.4.9.

Bourke (1989) reports that modelling by Trouiller (1988) indicates that the anomaly is 

caused by distortion of the current flow of the FMS when it encounters the resistive layer, 

counteracting the focusing effect of the tool, as illustrated in Figure 5.4.6. The tool senses the 

presence of the resistive plane before it actually contacts the borehole wall, causing 

anomalously high readings on one side of the fracture intersection which result in the pale 

‘halo’ or ‘aureole’ seen in some electrical images.

A finite difference model has been set up which aims to replicate the halo effect. 

Unfortunately, the geometry of a dipping plane does not conveniently coincide with that of the 

cylindrical polar grid—this situation illustrates one of the limitations of the finite difference 

grid. A dipping layer is set up by using a ‘staircase’ effect as illustrated in 5.4.7. To further 

simplify model definition, the resistivity distribution was chosen to be azimuthally 

symmetrical, so in three dimensions it actually represents a cone (rather than a plane) 

intersecting the borehole.

Results of the modelling are shown in Figure 5.4.8. On the left of the Figure, the relative 

location of the dipping anomaly is shown for comparison with the simulated imaging tool 

response, which is on the right of the figure. In this diagram, the imaging tool response has 

been shown as a raw resistance curve to emphasise the asymmetry of the simulated response. 

The curve exhibits a steep variation on the lower side of the intersection, whilst it decays
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Figure 5.4.8 Finite difference model o f a resistive cone: results.

much more slowly on the upper side. When converted to a grayscale image this corresponds to 

a pale halo which is similar in appearance to those seen on electrical images, as can be seen in 

Figure 5.4.9.

5.4.4 Depth of investigation

A series of model simulations have been performed to investigate the nature of the imaging 

tool response to small, near-hole anomalies as illustrated in the upper half of Figure 5.4.10. 

This model series is intended to quantify the simulated tool response with respect to:

1. distance of the anomaly from the borehole;

2. formation/anomaly resistivity contrast (for both conductive and resistive features).

The anomaly was chosen to be a cube with sides of 1 cm. For the case of a conductive 

anomaly within a resistive formation, the formation resistivity was set to 1000 Q-m while the 

cube resistivity given values of 100, 10, 1 and 0.1 Q-m. In the case of a resistive anomaly in a 

conductive formation, the formation was set to 0.3 Q-m, and cube resistivities of 1, 10, 100 

and 1000 O-m were modelled. In cases the where cube was more resistive than the formation, 

a resistive shoulder was introduced in order to make the model more physically relevant: 

without the shoulder, there would effectively be no borehole, and the simulation would be

5-21



Results: electrical imaging

3 -D

resistance

N E S  W N

xxoo

-X X 0 2

-X X 0 3  ^

XXD4

-X X 0 5

-X X 0 6

AiM..
RAW IMAGE

raw image, model 
enlarged image

EMI Im age of dipping resistive fracture Im ages of resistive c o n e
gen erated  by num erical m odel

Figure 5.4.9 EMI response to dipping resistive fracture {left and centre), after Seiler et al., (1994), 
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analogous to running the tool in a tank of water. In addition, the shoulder improves current 

flow back to the current return, and aids the passive focusing of the tool.

Conductive anomaly

a  1 0 .0 1 1

0.01 m

Resistive anomaly

conductive zon e

□ resistive zon e

Sim ulated EIT Signal Attenuation: 
R esponse to  1 cm Conductive Anomaly

Simulated EIT Signal A ttenuation: 
R esponse to  1 cm Resistive Anomaly

0.00

D epth of anom aly  from  boreho le  wall, d[m]

0.01 0.02 0.03 0.04 0.05
1.00

&
g
.1 1000:100 

• •A "  1000:10 

1000:1 

1000:0.1
0 .10 -*

10000

0.3:1 

" à "  0.3:10 

- 4 -  0.3:100 

- o -  0.3:1000

#1000

100

0.00 0.01 0.02 0.03 0.050.04

D epth of anom aly  from  boreh o le  wall, d  [m]

Figure 5.4.10 Investigation o f  im aging tool response to near-hole anomalies.

The imaging tool responses have been summarised in the two graphs in the lower part of 

Figure 5.4.10. The normalised response magnitude is the maximum measured button 

resistance expressed as a proportion of the ‘background’ tool response when there is no 

anomaly present. The tool is seen to give the strongest response to features within 2 cm of the 

borehole wall, for both resistive and conductive anomalies, irrespective of resistivity contrast.

5-23



Results', electrical imaging

The variation in response to resistive versus conductive features is not symmetrical. Both 

graphs show data for a variation in resistivity contrast of four orders of magnitude, but the 

conductive anomaly response is not seen to vary once the contrast is above 1 0 0 :1 , whilst, for 

the range of contrasts modelled, the resistive response continues to increase as the contrast 

increases. This is because the resistive anomaly forms a barrier to current flow and as the 

resistance of the anomaly increases, successively larger potential differences across opposite 

ends of the cube will be required in order to enable current to flow. The reverse is not true of a 

highly conductive cube: a threshold value is reached (around 1 0 0 : 1  in the above model) where 

the potential drop across the cube becomes very small in comparison to the drop across the 

rest of the formation; beyond this stage variations in the conductivity of the cube have little 

effect on the potential distribution in the formation, and the tool is effectively sensitive only to 

the more resistive formation. It is noted that in the case of a resistive anomaly, a threshold is 

reached in cases where the cube does not contact the borehole wall—for example, the 

response to contrasts of 0.3:100 and 0.3:1000 can be seen to be similar for an anomaly located 

1 cm from the borehole wall. As the anomaly becomes more resistive, current will tend to 

bypass it in favour of travelling through the more conductive formation: beyond a certain 

value, virtually no current will pass through the resistive cell, and further increases in 

resistivity will have little effect on the overall current flow and potential distribution.

It is further noted that the above results for resistive anomalies provide more information 

to support arguments that clumps of fossils are the possible cause of the white spots observed 

in Figure 5.4.4, as discussed in Section 5.4.2.

5.4.5 Deepening conductive fracture

Figure 5.4.11 shows slices through a set of simplified physical models, each exhibiting a 

horizontal conductive layer of finite radial extent. Such a feature could be interpreted, for 

example, as a fluid-filled fracture, a shale bed within a sandstone, or a porous layer within a 

tight rock.

The models are azimuthally symmetric and, from top to bottom, exhibit an increase in 

depth into the formation of the conductive layer. In three dimensions, the model represents a 

horizontal conductive disc or annulus, the diameter of which increases in each step of the 

model, from 0.02 m to 2.4 m. The vertical depth of the feature is 0.02 m. The resistivity 

contrast between rock and fluid is 10:1. On the right of the Figure the simulated response of
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the numerical model is shown for each situation. For this model, which is effectively 2- 

dimensional, it is more instructive to present the response as a resistance curve rather than an 

unwrapped image of the borehole wall (which would appear as a horizontal stripe). In the case 

of the shallowest layer, a shouldering effect is observed either side of the conductive zone. 

This effect rapidly dies off as the conductive layer extends further into the formation, so that 

responses for a 5 cm depth feature and a 2.4 m depth feature are virtually identical. This 

suggests that, for example, gleaning information about whether or not a fracture is connected 

away from the borehole zone using an imaging tool would be difficult. In addition, it may be 

possible to infer when conductive features are very shallow by looking for shouldering effects 

at the edge of the response they produce.
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Figure 5.4.11 Simulated electrical conductance tool responses to a deepening conductive, horizontal 
layer (using a logarithmic resistance scale).
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Figure 5.4.12 presents the same data as in Figure 5.4.11, but using more intermediate 

steps. A linear scale has been used for the resistance measurements to emphasise the 

shouldering effect, which can be seen to be pronounced at shallow depths but falls off as the 

radial extent of the conductive layer increases.

increasing 
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depth

0.02m
0.08m

0.52m

2.40m
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(linear scale)

8
depth (m)

Figure 5.4.12 Simulated electrical conductance tool responses to a deepening conductive, horizontal 

layer (using a linear resistance scale).

On an electrical image, a shouldering effect on a shallow conductive feature would appear 

as a pale zone at the border of the dark conductive region. Such a feature may be present in 

the FMS image in Figure 5.4.13, which corresponds to a metre interval in GDP Hole 835B 

(see Section 5.4.2). Core recovered from this depth consists of clayey nannofossil ooze, and 

does not exhibit any features on a similar scale to the larger dark zones present in the 

electrical images. Pale fringing is observed at the edges of a conductive feature present on the 

eastern pad trace (enlarged on the right of Figure 5.4.13); the above models suggest that this is 

therefore a shallow feature and could be caused by poor pad contact on the borehole wall 

resulting in a thin layer of (conductive) borehole fluid between the pad and the borehole wall. 

This provides another example o f a mismatch between electrical and optical images.
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Figure 5.4.13 Pale fringing observed at edges o f conductive feature observed on FMS image from 

ODP Hole 835.
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5.5 Discussion

The initial goal of the modelling applications presented in Section 5.4 was to provide evidence 

that the numerical model is valid. In the horizontal layer model (Section 5.4.1) it was shown 

that the simulated imaging tool response is similar in a general sense to actual data, but 

comparison was made at a lower resolution than the real tool response. In order to make a 

comparison at higher resolutions more information about how the tool varies current and how 

the raw measurement data is processed would (ideally) be required. Even if such information 

was available, calibration (and thus quantification) of the raw tool data could still prove 

extremely difficult due to the nature of the measurement itself which suffers from inherent 

problems such as the contact effects on the buttons where the tool measurement is made.

The model of a cone (Section 5.4.3), intended to approximate a dipping fracture, 

illustrates the limitations of the finite difference method, which is constrained by the 

coordinate system on which it is based when generating a resistivity distribution. Despite this, 

it is noted that the representation of a slanting line on a non-aligned grid is no different to the 

use of pixels on a screen or dots on a printed page to create an image. Using this analogy, it 

can be seen that so long as the finite difference grid is fine enough, any oblique feature may be 

adequately approximated. In addition, the depth of investigation models (Section 5.4.4) 

indicate that the electrical images do not pick up features more than a few cm away from the 

borehole, so in principle a grid could still be coarsened away from the tool pad region without 

loosing accuracy. The modelling described in Section 5.4.3 successfully reproduced halo 

effects seen in actual images of an oblique, resistive feature (Figure 5.4.9) indicating that the 

simulation is capable of handling these kinds of models.

Modelling results presented in Section 5.4.4 indicate a tool depth of investigation of a 

similar order of magnitude to published information (Bourke et al., 1989), although in general 

image sensitivity seems shallower than maximum depths reported in the literature. The results 

are considered reasonable in the absence of detail on how reported tool depth of investigation 

has been arrived at (for example, details of the modelling of Trouiller [1988] have not been 

published). The way the pad current is focused is particularly crucial in influencing the depth 

to which current travels into the formation. Precise inferences cannot be made unless more 

information about tool characteristics becomes available.
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The depth of investigation modelling confirms reported findings that the tool response to 

conductive versus resistive anomalies is not symmetrical (Bourke et al., 1989). In Section 

5.4.4 considerations of variation of electric potential and current flow within the formation 

were used to explain the observed model results. The simulated tool is not sensitive to 

variations in conductivity once a certain threshold is exceeded. It is interesting to note that in 

reality the actual tool can suffer current saturation in conductive regions, although the cause of 

the phenomenon may be due to power limitations of the tool, which are not simulated in the 

model.

It is worth noting that the electric potential field is known throughout the whole volume 

of formation covered by the model. This enables parameters such as current flow to be 

investigated in three dimensions in the whole borehole region rather than just specific points 

on the surface of the tool (which would be the case in a field test), allowing confirmation of 

ideas such as those proposed in Section 5.4.4. As an example, Figure 5.5.1 illustrates the 

modelled electric potential and current flow for an imaging tool located near a narrow, 

conductive event (as described in Figure 5.4.11). A series of vertical sections through the 

simulation is shown. The left and central images illustrate the simulated electric potential over 

the whole model. In the central image, the pad region is indicated by red colouring (high 

potential) and the potential can be seen to decay away to violet (low potential) further up the 

borehole wall where the current return is located. On the right hand side, a blow up of the pad 

region illustrates the simulated current flow out of the pad. The passive focusing mechanism 

of the pad and lower part of the tool manifests itself as high current flow in the conductive 

borehole fluid. Higher current flow is apparent in the centre of the pad, which is where the 

conductive feature in the resistivity model is located. The electrical image is generated from 

these currents.

This additional 3-D information enables the modeller to appreciate exactly how the tool is 

behaving under specified conditions: for example, the amount of passive focusing that is 

being applied is evident from inspection of the current flow up and down the simulated 

borehole.
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Figure 5.5.1 Vertical sections through a simulation of an imaging tool located near a narrow, conductive 

event.

5-30



Results: electrical imaging

5.6 Summary and conclusions

As stated in the introduction, the simulation only addresses primary effects of the electrical 

imaging process, due to the lack of availability of detailed information on the tool 

construction and signal processing techniques. One avenue to explore with a numerical model 

is to try to simulate closely real tool data over specific intervals of interest, at a high 

resolution. A more rigorous test would involve using button resistance data to create a more 

detailed resistivity model. Button measurements are not calibrated to resistivity, but could be 

calibrated at a lower resolution with conventional logs.

A useful modelling enhancement would be to enable oblique bodies to be modelled by 

using inteipolation between grid cells which are partially intersected by resistivity 

distributions that are not aligned with the grid coordinates (§5.5). Averaging between cells 

may be used to smooth the jagged edges—Ohm’s Law can be used as a physical basis for the 

derivation of an interpolation law. Automatic generation of models involving dipping planes 

based on cylindrical meshes could be incorporated into the model. Such models would 

(hopefully) reproduce the sinusoidal features observed when planar features intersect the 

borehole at an oblique angle (see, for example, Fig. 5.4.6).

Modelling can help to constrain the possible geological and geometrical effects that could 

give rise to an electrical image of interest. One example is an FMS image from ODP Leg 133 

(Jackson et al., 1993) where a hint of possible structure in a carbonate reef is observed (Figure 

5.6.1). Work such as that described in Section 5.4.4 can add weight to speculation about how 

deep into the formation the measurement may be sensing, and the possible geometry of the 

feature of interest.
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Figure 5.6.1 FMS image data from ODP Leg 133.
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The numerical model described in this chapter has been seen to produce viable results in 

test situations, and in addition has provided an insight into the way imaging tools are likely to 

respond to simple geometries which may approximate geological situations. Understanding 

such features, especially at high resolutions of a few millimetres, is important in validating the 

interpretation of downhole images in terms of their geological significance. Whilst the 

limitations of numerical modelling of this kind are recognised, a forward model is often most 

useful when applied to fundamental situations. The modelling allows an appreciation of first 

order effects generated by the measurement technique, rather than finer anomalies which 

might be caused by specific geometry of a particular tool. The results serve to emphasise that 

tools such as the FMS and EMI are electrical rather than optical imaging devices. In 

particular, in the models presented here such tools are seen to have small but finite depths of 

investigation which in certain situations may lead to images which are at variance with 

conventional visual interpretations of borehole wall features.
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C H A P T E R  6

In Chapter 1 research objectives were introduced which involved elements of numerical 

model development and model application.

6.1 Assessment of model development

The initial models developed aimed to simulate (‘actively’) focused electrical measurements 

(Chapter 4). In Section 4.1, the focusing technique is applied to field data, and is seen to be 

robust enough to successfully produce synthetic focused measurements despite a degree of 

noise in the raw data set. The synthetic focusing technique is also successfully applied to the 

numerical model: theoretical potential distributions satisfy the focusing conditions as required. 

The model is able to reproduce characteristics seen in field data, and agrees well with analytic 

solutions used to test its accuracy.

Chapter 4.2 describes the development of the model to cater for downhole situations by 

simulating a novel focused borehole tool: the Ocean Drilling Program High Temperature 

(ODPHT) tool. Both the ‘wrapping’ method and the modification of the focusing algorithm 

for a cylindrical grid were successfully implemented, with current conservation laws being 

obeyed and symmetry in the model being preserved. Focusing is achieved even in 

unfavourable conditions (e.g. a highly conductive borehole). The three dimensional (3D) 

model also matches results from a modified two-dimensional scheme. Derived geometric 

factors are sensitive to small changes in the calculated electric potential, which can be caused 

when the number of azimuthal nodes is very low. This effect is thought to be caused by 

discretization errors.

In Chapter 5, the development of the model to simulate downhole electrical imaging 

devices is described. This requires the modelling of a passive focusing mechanism, which is 

achieved by considering the resistor network that is analogous (§3) to the numerical model. 

Investigation of current flow in the model and the results of various model applications (§6.2) 

indicate that the model is operating correctly.
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In all cases the accuracy of the numerical models have been demonstrated by comparison 

with analytic results. In addition to these rigorous tests in idealised scenarios the model gains 

credence from the fact that the simulation results match characteristics in the actual field data.

The FD method is one of many possible solution strategies for simulating electrical 

current flow (Chapter 3); which one is chosen for a specific problem depends on the problem 

itself and the compromise between speed, accuracy and computer power required. Of the 

possible solution approaches, the finite element method is the only other technique that is 

versatile enough for this work. While the finite element method has advantages such as the 

possibility of arbitrary grid node locations and irregular grid boundaries, these are not required 

for modelling measurements made by electrode arrays. Boundary conditions are typically 

regular and are easily catered for with the FD method; the only disadvantage is the inclusion 

of unnecessary nodes due to grid restrictions (see e.g. §4.1). Additional features of the FD 

approach which have benefited numerical models are its direct relationship with the 

generalised Poisson equation (§2) and the 3D resistor network analogy which allows current 

flow to be easily derived (from the primary parameter; electric potential) in any naodel. 

Models are generally limited in complexity only by grid size and solution time.

The benefit of 3D modelling has been demonstrated despite the relative simplicity of the 

models described in this work. Increased complexity may introduce detail that is of little help 

when interpreting field data, especially when the effect of noise is taken into account. There 

are a wide range of basic features (for example a point source rather than a line source, or an 

isolated resistive feature rather than a resistive plane) many of which have been addressed by 

the modelling in this work, that can only be properly represented in three dimensions.

6.2 Assessment of model application

The application of the numerical model has been expanded alongside the model development 

(Chapters 4 and 5). The modelling of the ODPHT tool (§4.2) was restricted to basic models in 

order to determine the tool’s geometric factor, but simulations have been used to address a 

wider range of problems in Section 4.1 and Chapter 5.

The numerical model is used in the case of fieldwork in Germany (§4.2) as an 

interpretational aid by attempting to reproduce the principal features seen in field data. In 

cases where there are shallow subsurface contacts between rocks of contrasting resistivity the
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modelling is particularly successful, demonstrating that the focused measurement provides 

enhanced fault detection. The simulations also serve to provide guidelines for areas of 

application where the use of the focused surface array would be beneficial.

In the case of the electrical imaging simulations (Chapter 5), the emphasis of the 

modelling shifts to characterising the tool response, and verifying that the model is a valid one 

(since some of the operational details of imaging devices are not available). The model is 

validated by comparison of simulation results with data from well-constrained situations. 

There are a variety of potential applications of the imaging simulations: mismatches between 

electrical and optical images can be identified; the 3D response of the imaging tool can be 

investigated in terms of its current flow characteristics and consequent imaging response; 

interpretation (or speculation as to the nature) of specific features can be confirmed or 

discredited.

Chapter 2 gives an indication of the wide range of possible applications of resistivity 

measurements. Numerical simulations can play an important part in any one of them. Even 

within this thesis, simulations of various focused measurement devices have been used to 

investigate a range of different applications both on the earth’s surface and in downhole 

environments.

6.3 Recommendations for further work

The numerical model, which models the flow of artificially induced d.c. electricity in 3D, 

could be extended in a variety of different directions:

o existing models of specific measurement devices could be enhanced;

o the basic model could be applied to different devices;

o general model improvements, for example: more efficient solution algorithms for the

FD equations, or the explicit inclusion of geological information such as anisotropy 

or bed dip and thickness as input parameters; 

o the modelling (computer) program could be improved;

o the modelling and interpretation of more complex geology could be attempted.

Each of these ideas are discussed below.
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Development o f existing model applications

The modelling of the field data carried out in Germany (§4.1) only attempted a 

reconstruction of basic features based on vertical contacts with or without an overburden. 

More sophisticated models could easily be defined involving, for example, dipping fault 

planes or conductive features in inferred fault zones to simulate the presence of clay or water. 

No use of non-d.c. resistivity field measurements has been made in the case studies presented 

in sections 4.1.5. and 4.1.6. In addition to verifying independently derived interpretations, 

different geophysical measurements often complement each other by filling in the gaps 

inevitably left when any one method is considered in isolation. The full potential of these data 

can only be realised if they are integrated more closely with each other to provide an 

interpretation based on all available survey information.

The calculation of geometric factors for the ODPHT tool (§4.2) makes only minimal use 

of the 3D FD model. More complex geological models can be readily defined and simulated 

using the existing program. Tool characteristics and response could be assessed and could 

prove especially useful for investigating performance in the envisaged operating conditions of 

high salinity (and thus high conductivity) borehole fluids. Using a similar approach to that of 

the focused surface array interpretation, specific logging data could also be interpreted by 

comparison with suitable models.

The sophistication of the electrical imaging tool simulation (§5), based to a large extent 

on Schlumberger’s FMS tool, is limited by the availability of information in the public 

domain. Use of information that is currently confidential would allow a more detailed model 

to be constructed and evaluated. Imaging tools have been engineered by other service 

companies (e.g. Halliburton, Western Atlas). When and if suitable information becomes 

available, models of these tools could also be created using existing program code.

Use can be made of existing FMS data to investigate model versus tool response at a 

higher resolution than has been tried at present. Raw button measurement curves could be 

calibrated at intervals (at a lower resolution) using conventional, quantitative resistivity 

measurements. A resistivity model of the formation could then be generated based on this 

information and used to test the simulation at the same resolution as the button measurement 

curves.
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Work has begun to include dipping planes in the numerical model. Extending this 

approach, input for modelling of bodies of arbitrary geometry, structural discontinuities, or 

specific fracture geometries could be incorporated into the model.

Extension to new model applications

There are many different resistivity measurement devices which make use of d.c. 

electricity, reflecting the wide variety of applications of electrical measurements (Chapter 2). 

Any one of these can in principle be simulated using the basic numerical model as a start 

point. The model can be applied to surface and downhole, focused and unfocused arrays, at 

both conventional and micro scales.

Development o f the numerical model

The basic formulation and solution of the 3D electrical flow problem using the finite 

difference method and the resistor network analogy has been shown to operate successfully. 

Different solution methods for the simultaneous equations generated could be compared with 

the hybrid relaxation method used at present. A wide variety of alternatives exist; which one is 

best depends on computer power and desired model size, solution time, and accuracy required 

(§3).

The resistivity models described here are presently defined by specifying a resistivity 

value for each node of the FD grid. The program could be made more specific to geological 

applications by allowing input of parameters such as bed thickness and dip, and using internal 

routines to calculate nodal resistivities from this information. A similar approach could be 

used to allow anisotropy (§2 and §3) to be included as an explicit parameter.

Development o f computer modelling code

The FORTRAN programs used in the modelling are still at an experimental stage. The 

code could be modularised, providing building blocks for a more general modelling 

application program. It would also benefit from an enhanced user interface to simplify the 

process of data input, grid generation, and output/visualisation.

This project has made use of properties specific to the finite difference method, but there 

is, in principle, no reason why a different solution approach could not be incorporated. A 

modular approach to program development would be able to take advantage of any
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improvements to existing methods, or allow a equation solver for a specific problem to be 

included without major modifications.

Extension to more sophisticated interpretation

Although there are valid reasons for restricting the complexity of forward models, more 

detailed problems would provide interpretational aids and 3D analysis directly applicable to 

field data. A future goal of this kind of modelling is to enable closer integration of simulation 

and field data.

In the long term, more sophisticated modelling routines could be included in data 

visualisation software (such as Schlumberger’s Diamage or Z&S’s Review) allowing 

quantitative interpretation of field data direct comparison with numerical results. Constraints 

could be placed on possible interpretations of specific features by automatic or interactive 

design of models which attempt to replicate observed measurement characteristics.

Quantitative analysis of electrical measurements has a role to play in any one of the wide 

range of applications of resistivity techniques. It is hoped that the work in this thesis will 

eventually aid geoscientists in the interpretation of electrical data, perhaps by leading to the 

development of tools on the workstations of the future.
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A.1 DeGnitions m current electricity

This section defines electric current, potential difference, resistance, resistivity, conductance, 

conductivity, and current density from first principles. SI Units are given for each quantity. 

These parameters are used to develop the vector equations for describing 3D electric current 

flow given in §2.2.1. Since the finite difference model is analogous to a resistor network 

(§3.2.1) any of the parameters listed below can be related to the model and interpreted in the 

context of a 3D simulation; for example current density (eq. A.5) can be deduced from model 

potentials and inter-nodal resistance values.

When an electrical potential difference is applied to a typical electrical conductor it sets 

up an electric field within the conductor, and an electric current passes through it. The current 

consists of the systematic drift of (positively or negatively charged) mobile charge-carriers 

which are influenced by an electric force due to the field; the direction of the current is taken 

to be the direction in which positively-charged carriers move. Using the SI Units measurement 

convention, the fundamental quantity in electricity is electric current, which is measured in 

amperes [A] (Whelan and Hodgson, 1978). Current (I) is related to charge (Q) by the 

definition

d t

where (dQ/dt) is the rate of flow of charge past a given cross-section. Time (t) is in seconds 

[s] and Q is measured in coulombs [C].

Consider a material which has a constant cross-sectional area A and length I, through 

which a current I  flows (Figure A.l). By definition, the potential difference (or voltage) Vab 

(volts [V]) between the ends a and b is
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where Wab (joules [J]) is the work that would be done in moving a charge Q from a to b.

Figure A .l To define V, R, p, a  and J. 

Resistance R (ohms [Q]) is defined by

- 7 -
(A.2)

The definition of resistance stems from Ohm’s law which states that for many materials, 

particularly metallic conductors,

V oc /  => /? is constant.

This should not be confused with equation (A.2) which is a definition of R  and does not 

necessarily imply that R is independent of I  and V (Whelan and Hodgson, 1978). Materials 

which obey Ohm’s law are termed linear conductors, reflecting the nature of the 1-V  

relationship.

The resistance of a given material is dependent upon its physical dimensions and in 

general will be directly proportional to the length I, and inversely proportional to the cross- 

sectional area A, of the material. It is desirable to define a property of the material which is 

independent of its size and shape; such a property is the resistivity p, (ohm-metres [Q-m]) 

defined by

AR
P =

I
(A.3)

The resistivity of a material is a physical property which describes how difficult it is to 

pass a current through a unit length of that material, of unit cross-section. The reciprocal of

resistivity is termed conductivity, a  (siemens/metre [S m ']), so

A-2



The name ‘mho’ is sometimes used as a synonym for siemen.

The electric current density, J, over a cross-section of area A (and at any point in the 

prismatic conductor of Figure A .l) is defined by

J = -^ . (A.5)

A.2 Generalisation of Ohm’s law

Ohm’s law in its original form applied to electric circuits. This section discusses the

generalisation of the law to describe current flow in three dimensional space, as used in §2 .2 .1

and §2.2.3. The generalised version relates the electric field E (rather than potential difference 

V) to current density J  (rather than current I).

The electric field, E

If a (test) charge go [coulombs, C] has a force F [newtons, N] exerted upon it by virtue of 

its position in an electric field, then the electric field E [N C“‘] is defined as

E = —
^  . (A.6)

Now consider moving the charge go a distance 8x within the field, where 6 x is chosen to be in 

the direction of the action of F. The work ÔW done in moving go will be (magnitude of 

force)x(distance moved), i.e.

= - F & . (A.7)

From equation (A.l) there will be an associated change in potential 8V at the location of go:

^  . (A.8)

Combining equations A.6 , A.7 and A.8 ,

ox
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(A.9)

and in the limit as Sx —> 0  we arrive at the relation

£  = - ] p .  d x

An alternative unit for E is seen to be the volt per metre [V m"'].

Ohm’s Law

Consider a small volume of material in the form of a box (rectangular prism), with sides 

of length &x, 6y and Sz (Figure A.2). A current /  passes through the material; for convenience 

let the box be orientated so that the current direction is parallel to the side of length Sx. The

potential difference between opposite faces of the box in the direction of current flow is SF.

Figure A.2 To describe current flow in a volume of material. 

Equation (A.3) for this box is

8y8zR
•’ = - a r '

(A. 10)

where F is obtained from equation (A.2). Expressing F in terms of F and /  and including this 

in (A. 10) we have

SySzSF

but from (A.5) and (A.9)

so making Sx very small.

and hence from (A. 11 )

Sx/

7 = in r- and E = ------
SySz dx

(A. 11)

lim&-»oi
rSySzSF'l^SySzdF^ 7 
I 5x/ j /  dx E
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E = p7. (A. 12)

Since c  = 1/p (equation A.4) equation (A. 12) may also be stated as

7 = oE . (A. 13)

Ohm’s law and current density in three dimensions

Equation (A.5) deHnes current density in electric circuits. The components of the electric

Eeld E can be denoted by (Eĵ , Ey, EJ. Equation (A.9) can easily be generalised to describe

each of the electric field components in three-dimensions:

F, = E, = E, = . (A.14)

which in combination gives the relationship stated in Chapter 2 (equation 2.1):

E = -V V ,

where V is the del-operator, which equals (9/9x)i + (9/9y)j + (9/9z)k in rectangular cartesian 

coordinates (Bourne and Kendall, 1977). Similarly, in order to describe the flow of electricity

in three dimensional space, the electric current density J  is expressed as a vector quantity J:

J = 7_,l + 7^j + 7^k, (A.15)

where (7̂ , 79 are the components of current density and (:, j, k) are the unit vectors in the

(x, y, z) -coordinate directions, respectively.

Applying (A.14) and (A.15) to the Ohm's law expressions (A. 12) and (A. 13) we arrive at

a generalised Ohm's law applicable to conduction in three-dimensional space:

E = pJ

J = oE (A. 16)

This is the version of Ohm's law stated in Chapter 2 [equation (2.3)]. It assumes that the 

conducting medium is isotropic, i.e. the resistivity is independent of direction and may be 

represented by a scalar value.

Maxwell's equations

Maxwell's equations [see, for example, Stratton (1941)] summarise the fundamental 

relations in electricity and magnetism in the form of a set of vector equations. They can
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therefore be used as an alternative starting point for defining relationships in current 

electricity.

Equation (2.1), the vector form of equation (A.9), can be arrived at from Maxwell's 

equations as follows: Maxwell's equation, relating electric field strength E[V m"'] and 

magnetic flux density B[Vs m" ]̂ is

V x E = - ^ .9r

For direct current situations, in which the magnetic Held is constant,

dt

so that

V x E  = 0 .  (A.17)

Equation (A.17) implies that the electric field is conservative and can be expressed as the 

(vector) gradient of a scalar potential function:

E = -V F . (2.1)

Ohm's law, as expressed in equation (A. 16), may also be derived from Maxwell's 

equations, and is commonly used as an extra relationship in combination with the other

equations.

A.3 KirchhofTs rules

KirchhofFs rules express the laws of conservation of charge and conservation of energy for 

electric circuits (Whelan and Hodgson, 1978). In Section 3.2.1 the finite difference 

formulation of the generalised Poisson equation is shown to be equivalent to the Erst rule, as

stated below.

Rule 1 (conservation o f charge): the algebraic sum of currents at a junction plus the 

magnitude of any current source at that junction is equal to zero:

%/ + S = 0
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Rule 2 (conservation of energy): around any closed loop, the algebraic sum of the 

e.m .f s is equal to the algebraic sum of the products of current and resistance:

S 4  = I « .

A.4 Generalisation of resistor addition

Due to the resistor network analogy of the numerical models described in this work (§3.2.1) 

concepts from resistor networks can be applied during model development. Resistor addition 

may be used in fine-tuning of resistivity models.

The effective resistance of two resistors in series is derived using Ohm’s law and 

conservation of charge considerations. Consider two resistors, R\ and R2 , connected in series 

(Figure A.3), across which there are respective p.d.’s of F, and Fz. Conservation of charge 

dictates that the current though each resistor must be the same, /. Denote the total resistance 

provided by Ri and R2 by R.

/  , , ,  /
— Ëj ----------- 1 ^  I—

-----------F

Figure A.3 Resistors in series. 

Applying Ohm’s law (equation A.2) to R, and Ry.

F F.
F, = - r ; F 2 = - r -  (A.18)/  '  I

Applying Ohm’s law to the total effective resistance R:

(F ,+ F j= /R ;

substituting equations (A. 18), R = R, 4- . (A. 19)

The same principle can be applied to adjacent 3D cells, with respective resistivities p, and 

P2 , lengths 7 and /2 , and cross-sectional areas Ai and A2  (Figure A.4). Substituting equation

(A.3) into equation (A. 19) for this case:
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(A.20)

Pi P]

I

Figure A.4 Resistance o f 3D cells in series.

The above result (eq. A.20) is extended in Appendix C which develops relationships relating 

FD model cell geometry and resistivity to inter-nodal resistances in the analogous 3D resistor 

network.

It is noted that equation (A.20) requires the same current I  to flow through both cells 

since equation (A. 19), on which it is based, assumes conservation of charge. In circumstances 

where the current flow is not parallel over both the cells some may flow through the cell sides. 

On physical grounds, therefore, the relationship (A.20) is in general only approximate, 

becoming more accurate when cells are small and/or current flow is parallel.
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Analytic solutions of the electrical conduction 

equation

This appendix describes (in more detail than in Section 3.1.2) the derivation of some of the 

fundamental analytic solutions to equation (2.4) (§2.2.1):

v.lvv = -s.
p

B.l Infinite homogeneous medium

Consider the case where a point source emitting a current I  is located at a point O in an 

infinite medium of constant resistivity p. In this case, it is convenient express equation (2.4) in 

spherical polar coordinates (r, 8, (|)) since this coincides with symmetry in the electrical field. 

In this system, for constant p, equation (2.4) becomes

r ^ d r y  d r )  sin8 98 L 96 j  sin ̂ 8 9(|)

Due to synunetry, the partial derivatives 9W98 and 9W9(|) vanish, giving

where r  is distance from O. Consider a region which does not include the point source (O); for 

this region #5 = 0. Multiplying each side of equation (B.l) by and integrating with respect to

r:

= (B.2)
dr J

Integrating once more.
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y  = - ^ ^ g .
r

The parameter V is commonly defined so that as r —> «o, V —> 0; This implies fi = 0 in (B.3). 

By symmetry, current flows out from the source location in all directions, and by conservation 

principles the total current I  crossing a spherical surface centred on O will be Anr^J where J  is 

current density (§A.l). Using Ohm's law as stated in equation (A. 13) (§A.2) for the radial 

direction:

/  = -47cr"-E . (B.4)
P

Using E = -(dWdr) (equation A.9, §A.2) and combining (B.2) and (B.4),

4jt ’

so that in equation (B.3) the electric potential in a infinite homogeneous medium is found to 

be

4îtr

Equation (B.5) was formulated for a region which does not contain the current source (O).

In practice this region can be made to include all space except O itself, which is a singularity 

(i.e. the current density there is theoretically infinite).

B.2 Semi-infinite homogeneous medium

Consider a current source of strength /  located on an inhnite planar interface between a region

of resistivity p and a region of infinite resistivity.

Following the above approach of §B.l, equation (2.4) reduces to the general solution

y  = - - .  (B.6)
r

In this case, the condition dV/dz = 0 applies at the earth-air interface, since there is no current 

flow out of the earth (z is the vertical coordinate direction). Substituting r = +z^ into

equation (B.6):
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Differentiating:

V = -A (x ^ + z^ J '.

^  = -A (x ^  + ^ Ÿ  -11 = Az(x^ + z ^ Ÿ . 
Bz 2 ^

At z = 0 the condition dVIdz = 0 is clearly satisfied.

In this case current flows out from the source location in all downward directions, since 

no current passes into the air. The total current I  crossing a hemispherical surface centred on 

O, is 2jcr̂ y. Following a similar argument to that outhned above (§B.l), the electric potential

in a semi-infinite homogeneous medium is found to be:

_PL
27Cr

(B.7)

B.3 Plane boundary

Consider two regions of resistivity pi and p2 separated by a plane boundary (Figure B.l). A 

current source, Ci, of magnitude I  is located in the first region. When using the method of 

images (§3.1.2.3) the boundary between the two regions is regarded as a semi-transparent 

‘current mirror’. The electric potential in the first region is a combination of that due to a 

reflection from the plane boundary plus the direct contribution from the source itself. An 

image source Cf in the second region symmetrically placed with respect to the boundary and 

Cl is used to represent the effect of current reflections on the plane boundary.

Figure B .l Current source near a plane boundary.

In this situation, the potential Vi at a point Pi in the first region can be shown to be 

(Telford et al., 1990):
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where k is the transmission coefficient, defined by:

t  = (B.8)
IP 2 + P1 J

and n  and ri are the distances from P, to the source and its image respectively. The potential 

V2 at a point P 2 in the second region can be shown to be

y  ^
4n 7̂

where is the distance to the current source from P 2 .

B.4 Isotropic earth with a single vertical interface

Using the method of images, and following the derivation outlined above, the potential V, at a 

point of interest in the region containing the current source can be shown to be (Keller and 

Frischknecht, 1966):

V | = W -  + - 1 ,  (B.9)

where k is the transmission coefficient, defined as in equation (B.8), and r, and are the 

distances to the source and its image respectively. The potential Vz in the other region can be

shown to be

where is the distance to the current source from a point of interest in the second medium.

B.5 Two-layered earth

Using the method of images, the potential at the earth's surface due to two horizontal layers

can be shown to given by the infinite series (Telford et al., 1990)
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ZPj_
2nr 1+ 2X

Ajl + (2mh/ r f
(B .ll)

where r  is distance from current source, h is the depth of the top layer and k is defined as in 

equation (B.8).

B.6 Integral solutions for layered earth

The potential Vj in the jth  layer of a stratified earth consisting of (n -  1 ) layers lying upon an 

infinitely-deep base layer is (Koefoed, 1979):

j^[A/k)e-^+BXX)g^)/o(Xr)dX, 1 < j < n;

A,(X,)g"^yo(Xr)dX, j = n; (B.l 2)

A
.2tt

where r and z are the radial (horizontal) and vertical distances from the current source (located

at the origin), respectively. The function Jq is the Bessel function of order zero, which is a 

known quantity. The terms Ay and B, are constants which depend upon the number of layers, n, 

and are evaluated using the continuity conditions [equations (2.5) and (2.6), §2.2.1] across

layer boundaries

and 1 1 av,
Py-i Py Bz

In particular, the potential V at the earth’s surface (z = 0) can be written as 

' '  = ^ ( l + 2 r J > ( X K ( V ) d ^ ) ,

where ^(X) (often termed the kemeZ of regfftzvify in this context) depends on the

number of layers under consideration. In the two layer case (n = 2),

K { X )
- k

where h is the top layer thickness and k = (pz -  pi)/(pz + Pi) as in equation (B.8).
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A P P E N D I X  C

Resistivity to resistance conversions

The finite difference model described in this work is analogous to a 3D resistor network 

(§3.2.1). This appendix derives relations between the resistance of elemental cells and their 

resistivity and geometry. These relationships are used to convert three-dimensional resistivity 

distributions into resistance values for internal storage in computer models.

C.l Introduction

The models used in this thesis represent 3D resistivity distributions by dividing a region of 

interest into a series of discrete cells of constant resistivity (§3.1.3.1). Each cell is centred on a 

node of the finite difference grid. The size of each cell is governed by the grid spacing, whilst 

the general shape of a cell is determined by the coordinate system on which the grid is based.

In the modelling programs developed and used for this work, resistivity values are 

represented by three (independent) 3D airays of conductance values, one array for each 

coordinate direction. In combination, the three arrays are analogous to a 3D network of 

resistors which connect the nodes of the finite difference grid (Figure C.l). The value of a 

given resistor represents the effective resistance of adjacent cells between the two nodes it 

connects (see §A.4).

Notation

The three nodal (grid) coordinates are denoted by i, j  and /c; these respectively represent 

the X, y and z directions in rectangular cartesian coordinates and the r, 0 and z directions in 

cylindrical polar coordinates. The physical coordinates of the nodes in 3D space are recorded 

in three ID arrays: X, Y and Z. The three 3D conductance arrays are labelled W, F  and S.
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> resistors

Figure C .l The finite difference grid: a 3D resistor network.

As indicated in Figure C .l, the nodal coordinates range from (1, 1, 1) to (imwcjnmx, 

resulting in a grid with ( w -  ^)x(jmax- l )x (k ma x-  1) nodes. Thus the arrays X,  Y  and Z have 

dimension ( w ) ,  (jmox) and (kmax) respectively, and the arrays W, F  and S  each have dimension 

Umax ^jmax ^  kmax)-

To compress notation when coding routines in FORTRAN, the following convention has 

been adopted to refer to the resistors: in the /-direction, the resistor Wÿ* joins node (/ -  \ , j ,  k) 

to node { i , j ,  k). Similarly, the resistor Fÿ* joins node { i , j  -  1, /c) to node { i , j ,  k) and S'y* joins 

node { i , j ,  -  1) to node { i , j ,  k) (Figure C.2). Note that W\jk, F ,u  and 5ÿi are thus undefined.

I J ,

j

Figure C.2 W, F  and S  resistors.
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Mesh alignment

Two basic mesh alignments are catered for in the numerical models. The first is based 

between nodes (around resistors), the second around nodes. This is illustrated in Figure C.3 

for a one-dimensional mesh.

* w m m m  - •

ce lls  centred between nodes

cells centred on nodes 

Figure C.3 Alternative mesh alignments.

The following two sections derive formulae for converting three-dimensional model 

resistivity distributions into resistances, firstly for rectangular cartesian coordinates, and 

secondly for cylindrical polar coordinates. In both cases, general ‘cell’ formulae are used to 

develop expressions for W, F  and S  values for both mesh alignments illustrated in Figure C.3.

C.2 Rectangular Cartesian coordinates

C.2.1 Cell formulae

The definition of resistivity (eq. A.3, §A .l)

F  = pL/A (C.2.1)

can be applied to the unit cell illustrated in Figure C.4 in each of the coordinate directions. 

This gives:

pAx
AyAz

(C.2.2)
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and R

AicAz

pAz

(C.2.3)

(C.2.4)

where /(y and are the resistances across opposite faces of the cell in the )»- and z-

directions respectively.

cell resistivity p

Figure C.4 Dimensions and resistances of an elemental cell in a rectangular cartesian grid.

C.2.2 Resistance of cells centred between nodes

Equations (C.2.2), (C.2.3) and (C.2.4) are easily modiOed to relate to a resistor in the finite

difference grid.

In the x-direction, from equation (C.2.2),

1 = P»«A% 
AyAz

2 < ( ^

where

Ax — X: — X._,, 2 < I ^  ! ;

(C.2.5)

(C.2.6)

Ay:

Az

j  = 1; (C.2.7)

1 < ^
k = \; (C.2.8)

1' t

In the y-direction, from equation (C.2.3),
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1 _ Po,»Ay
AxAz

where

Ax : ; = 1;

~ ^i-\ » * — m̂nr ■

Ay — Yj 1̂ ._,, 2< j  < ;

and Az is defined as in equation (C.2.8).

In the z-diiection, from equation (C.2.4),

1 _P«„Az
AxAy

AppeWix C 

(C.2.9)

(C.2.10)

(C.2.11)

(C.2.12)

where

Ax is defined as in equation (C.2.10); 

Ay is defined as in equation (C.2.7); and 

Az = Z* -  , 2 ^ t  ^

C.2.3 Resistance between cells centred on nodes

(C.2.13)

In this case a given resistivity values is associated with one node of the 3D network. The inter-

connecting resistors are weighted averages of the resistivities of the pairs of nodes they 

connect (§A.4). The resistivity associated with the node (;,y, t) is p,y*.

The resistance (l/Wi/t) is found by summing two component resistors R\ and Rz, which 

represent the adjoining halves of the cells surrounding the nodes ( / -  l j , k )  and ( i,j ,k )  

respectively.

From equation (C.2.2),

AyAz AyAz
(C.2.14)
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where Ax, Ay and Az are defined by equations (C.2.6), (C.2.7), and (C.2.8) respectively.

Summing the component resistors R\ and R2 in equation (C.2.14):

1 i ( p , + p z ) A x

AyAz
, 2 ^  ^  imax- (C.2.15)

Similarly, expressions for resistances in the y- and z-directions may be found by summing

component resistors expressed using equations (C.2.3) and (C.2.4) respectively.

In the y-direction.

1 _ 2 ( P i  + p2)Ay
AxAz ^ — j  —jmaxi (C.2.16)

where Ax and Ay are now defined by equations (C.2.10) and (C.2.11) respectively, and Az is

given by (C.2.8) as above.

In the z-direction.

1 _  2 ( P i  +  P z ) A z  

AxAy
, 2 ^  k ^  kffiax- (C.2.17)

In this case. Ax, Ay and Az are defined by equations (C.2.10), (C.2.7), and (C.2.13)

respectively.

C.2.4 Summary

Table C .l summarises the formulae for deriving resistances of cells in rectangular cartesian 

coordinates.

cell formula cell centred on resistor cell centred on node

x-resistance S  _  pAx 1 _  Pc,«Ax 1 i (p ,  +Pz)A%
' AyAz AyAz AyAz

y-resistance
R  - 1 _  P«»Ay 1 K Pi+Pz)^)'

 ̂ AxAz AxAz AxAz

z-resistance
R -  P ^ 1 _ Pee«AZ 1 i(p i+ P 2)A z

 ̂ AxAy îjk AxAy AxAy

Table C .l Resistance formulae for cylindrical polar coordinates.
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C.3 Cylindrical polar coordinates

In cylindrical polar coordinates, a typical cell is wedge-shaped, bounded by arc-shaped 

surfaces in the radial direction, non-parallel planes radiating from the centre of the grid in the

tangential direction, and parallel, horizontal planes in the vertical direction (Figure C.5).

cell resistivity p

Az

Figure C.5 Typical cell surrounding a node in a cylindrical polar grid.

C.3.I Cell formulae

This section describes the formulation of expressions for the resistance of a cell, defined in 

cylindrical polar coordinates, in each of the coordinate directions. The coordinate directions 

are termed (r), rongenfûz/ (8) and verftcu/ (z) (Figure C.6), and the corresponding

resistances are /(r, /(e and respectively. Calculations are based on /( = pI/4 (eq. A.3, §A.l).

% = rcos8
y  =  r  s in 6

Figure C.6 Cylindrical polar coordinates.

As can be seen from Figure C .l, the width of a typical cell in the radial direction is not 

constant, varying from riA8 to rzAB (measuring arc lengths). The total resistance between the

two curved faces may be found by summing the contributions of elemental slices.
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Az

Figure C.7 Elemental slice for the radial direction.

Across the slice of width 5r the cross-sectional area A is assumed to remain 

approximately equal to r.AQ.Az. The resistance of this slice in the radial direction is found by 

substitution into equation (C.2.1)

= p X br/rAQAz.

Summing from r  = ri to rz, and taking the limit as ôr —> 0:

pdr
Az

I.e. R — ^  In
^ '" A G .A z J

(C.3.1)

C.3.1.2 Tangential resistances

Figure C.8 Elemental slice for the tangential direction.

Referring to Figure C.8, the area A  is constant at (rz -  n )  Az, but the ‘length’ from 0 = 0 to 9 

= A0 is more difficult to define (Figure C.9).
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inner arc length outer arc length

average = middle arc length 
#  straight line distance

Figure C.9 Defining cell length.

Arc lengths are chosen rather than straight-line distances. Note that the smaller A0 gets, 

the closer the end faces get to becoming parallel and the better the approximation gets. Taking 

the middle arc length, i.e. 16(n + r2)A0 , the resistance of the elemental slice will be

: (n

( r - 2 - r , ) A z

Summing from 0 = 0 to A0, and taking the limit as 60 —> 0

p (^  + n )
2 A z ( r 2 - r , )J.A 0

.
d0

I.e.
2Az

^ 2 + 'i A0 (C.3.2)

C.3.1.3 Vertical resistances

Figure C.IO Measuring resistance in the vertical direction. 

Refer to Figure C.IO, the area of a sector = Vir^Q

=> A = 4" A0 — 4- f]^A0 = 4- A0 {r2 —

This remains constant.
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^ A Q ( r 2 - r ^ )

Appendix C

(C.3.3)

C.3.2 Resistance o f cells centred between nodes

C.3.2.1 Radial resistances

r , =X:

Figure C . l l  Cell associated with a radial resistor.

Substituting the parameters of a cell of uniform resistivity pceii, tangential dimension Ay and 

height Az (Figure C .l 1) into equation (C.3.1):

1 _  P cell
f  1

^jk A y .A z '" < ^i-i J

2 < i <  L (C.3.4)

where

Az =

Ay = 2 n / { j ^  -3>,

"2 i^k+i ~  ^ k - \  ) ’ 1 <  ^  <  >

^k+\ ~^k->  /: =  1;

^ k  ~  ^ k - \  ’ ^  “  ^max '

(C.3.5)

(C.3.6)

In calculating Ay, the three nodes used to ‘wrap’ the mesh have been taken into account. 

In calculating Az, the following assumptions have been made:

1. The FD cell boundaries lie exactly half-way between nodes;

2. At the extremities of the network, the cell extends outwards to the same extent as it 

does inwards (Figure C .l2).
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external cell bou ndaries ex ten d  
outw ard from th e n od e  an am ou n t 
eq u a l to  th e d ista n ce  to th e internal 
cell boundary

e d g e  of grid

internal b ou ndaries are  
m id w ay b e tw ee n  n o d es

C.3.2.2 Tangential resistances

Figure C.12 End cells.

Consider the cell of uniform resistivity pce», illustrated in Figure C .l3. It has tangential 

dimension Ay and height Az, and is located from to xz in the radial direction. The location %,

is midway between the i* and i -  f  nodes, whilst xz is midway between the ; + and r* 

nodes [cf. Az for the radial resistances (eq. C.3.6)]

Figure C.13 Cell associated with a tangential resistor. 

Substituting these parameters into equation (C.3.2):

In this case.

1 X; +X,
2Az I X, -  X,

Ay (C.3.7)

(C.3.8a)

C-11



Appendix C

(C.3.8b)

The dimensions Ay and Az are defined as for the radial resistances (equations (C.3.5) and 

(C.3.6) respectively).

C.3.2.3 Vertical Resistances

^ A y

_L

Figure C.14 Cell associated with a vertical resistor.

Consider the cell of uniform resistivity pceii, illustrated in Figure C.14, with tangential 

dimension Ay and height Az, and is located from x\ to X2 in the radial direction. Substituting 

these parameters into equation (C.3.3):

1 ^  2 p ,,„ A z (C.3.9)

where x\ and X2 are defined by equation (C.3.8), Ay is defined by equation (C.3.5), and

Az = Z k - Z k - i ,  2<k<k,„ax. (C .3.10)

C.3.3 Resistance between cells centred on nodes

The value of inter-connecting resistors in the 3D grid are weighted averages of the resistivities 

of the pairs of nodes they connect. The resistivity associated with the node (/, j ,  k) is denoted 

b y  Pÿ*.
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C. 3.3.1 Radial resistances

A0 =  Ay

Az

Figure C.15 Adjoining cells in the radial direction.

Referring to Figure C.15, the resistance MWijk is found by summing two component resistors 

R\ and R 2 , which represent adjoining halves of the cells surrounding the nodes (/ -  \ , j ,  k) and 

(i,j ,  k) respectively.

Let dx = _ 1, then in equation (C.3.1):

A,
Ay.Az

= - ^ l n

 ̂X,._i + ^ d x ^

I y

/

Ay.Az

(C.3.11)

(C .3.12)

Substituting equations (C.3.11) and (C .3.12) into the relation \/Wijk = R\ + R2 , and noting that 

X■_̂  +-^dx = + % ,):

1 1
Ay.Az

Pi-ijk  In 2X,_,
+ P,;*ln

2X:

V ^ , - 1  +  y
, (C .3.13)

The variables Ay and Az are defined as in equations (C.3.5) and (C.3.6) respectively.

C.3.3.2 Tangential resistances

Refer to Figure C .l6. Using equation (C.3.2) to express the two component resistors R\ and 

/?2, which represent adjoining halves of the cells surrounding the nodes ( i , j  -  1, fc) and (i, j,  k) 

respectively:

r  . \
x ^ r f y .

1*

2Az
+ ^ |

v ^ 2  ^ 1  y
(C .3.14)
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'A0 =  A-

{ i , j— 1, k)

Figure C.16 Adjoining cells in the tangential direction.

and R ,  =
_  9  ijk

y ~ \ d y . (C .3.15)

Substituting equations (C .3.14) and (C .3.15) into 1/Fÿ* = R \ +  R2 '.

1 _  Ay f  , A 
% 2  + ^ 1

fijk 4Az ^  X 2 — X ,  ^
(p y-U P iJk ) (C .3.16)

Again, Ay and Az are defined as in equations (C.3.5) and (C.3.6) respectively. The positions x, 

and%2 can be calculated from equations (C.3.8a) and (C.3.8b).

C.3.3.3 Vertical resistances

Az

Figure C.17 Adjoining cells in the vertical direction.
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Refer to Figure C.17. Using equation (C.3.3) to express the two component resistors R, 

and Ri, which represent adjoining halves of the cells surrounding the nodes 1) and

( i j ,  k) respectively:

Substituting equations (C.3.17) and (C.3.18) into 1 /%  = R\+  Ry.

(C.3.17)

(C.3.18)

1 ^ /^ (pQW+PyJ  
Ay(x^ -  X,")

(C.3.19)

As before, x, and x% are defined as in equation (C.3.8),.and Ay is defined as in (C.3.5).

However, Az is now defined by equation (C.3.10).

C.3.4 Summary

Table C.2 summarises the formulae for deriving resistances of cells in cylindrical polar 

coordinates.

cell formula cell centred on resistor cell centred on node

Radial resistance

Tangential resistance

Vertical resistance

R.
A8.Az 1 n

-r; 

pAz

_ L _  jpç^ 
Ay.Az

 ̂ _ Pcell ( ̂ 2 + ̂ 1

1 _ 2pg,gAz

Ay.Az

P,-,;. k  

+P„* M
2%,

Ay
I Ay f x ^ +x ,

' }A 8 (r Ay(;
1

Table C.2 Resistance formulae for cylindrical polar coordinates.
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Simulated focused measurement equations

This appendix describes theoretical expressions for the magnitude of the focusing currents 

required to focus two specific electrode configurations, and expressions for the focused 

electric potential in each case. Section D. 1 derives an expression for a surface electrical array 

(see §4.2); Section D.2 derives equivalent expressions for the OOP high-temperature focused 

resistivity tool (see §4.1 ).

D.l Focused surface array

The focused surface array electrode configuration, described in Section 4.1.2.1, is illustrated 

in Figure D .l. It consists of a measurement current electrode: P\ four focusing current 

electrodes: N, S, E, and IV, and eight potential electrodes: W,, Â2 , .̂ 2 , E|, E2 , 1V|, and IVz-

The magnitudes of the focusing currents are adjusted to satisfy conditions on the measured 

potential at the potential electrodes, and are dependent on the array geometry, the magnitude 

of the measurement current, and the resistivity distribution in the earth.

0  Current electrode

®  P d em ia le lec liode

(y  *4 f  1
0  ®  ®  0

:2 r ,  f  
®  ®  #

%
^ 0

Figure D .l Focused array electrode configuration (schematic).

Transfer impedances

Consider an electrode A emitting a current //», which causes a potential Vg at an electrode

B. The transfer impedance, Zab, between A and B is defined by
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(D.l)

The transfer impedance Zab can be seen to be equal to the voltage at B when a unit current 

source is positioned at A.

Each of the current electrodes N, .5, E, W and E has 8 transfer impedances associated with 

them, one for each potential electrode. For electrode TV, these are denoted by Ẑ w,,

Z;vE,, Ẑ f̂ , Ẑ w, and Ẑ w,; similarly for electrodes .5, E, IV and E. The impedances ZAfAt,, 

ZAw,, ZAfg,, ZÂg,, ZAfg,, ZAfE;, ZAw, and ZAw, are determined by measuring the voltage at each of

the potential electrodes while current is being emitted from electrode N  only. Similarly, 

transfer impedances for the other four current electrodes can be found, giving a total of 5 x 8 

= 40 transfer impedances for the focused array that are determined by making measurements 

where current is only emitted from a single electrode at any one time.

The transfer impedances can be used to express the voltage that would exist at each of the 

potential electrodes if all current electrodes were simultaneously emitting current. This is done 

by using superposition: for example the voltage VXf, at is given by algebraically summing

the contributions from In, Is, h ,  Iw and Ip. The full expressions are:

V  ̂ “  I \ fZ\ fX!  f  c Z f  r Z 4" fu/Zu/j,; 4" I  „Z ̂

V ,
V,

^ t>Ki’ ^n'^NN2 ^s'^SN2 ^ e'^EN2 ^w'̂ WN,
^N^NS,

^ .2 +  Zg^^ + 1 pZp^^

^E^EEi +  /pZpg^

- +  /jZgg^ +  /EZEE, +  f^Z^g^ + 1 pZpp^

+  Iw  ZwW| + 1 p Z p ^

^ .2 -  ^N^NW2 ZsW;, +  ^  E^EW

(D.2)

A set of simultaneous equations may be formulated by substituting the set of equations

(D.2) into the following/ocM5?/ng conditions (eq. 4.1.1, §4.1.2.1 ):

(D.3)

The unknowns are the balance currents /Ar, fj, fg and /w- Rearranging the result of substituting

(D.2) into the four equations (D.3):
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( Z / w ,  ~  ^ N N ,  )  4  ( Z j v ,  “  ZsA Jj )  +  T fi (Z fSV , “  ^ E N ,  )  "^ f  w  (ZwjV, ~  )  =  — /  p  ^ Z p ^  — ZpjY^ )

Âf (ZA«, "  Z^^ )+ (Z$$, — )+ /g(Zĝ  ̂ -  Zg;̂  )+ /w(Z^i -  Z^^ ̂  = - / p ^  I
I n (Zae, ~  Z ^  ) +  f  s (Zs£, ~  Zjg^ )+  fg (ZfE, “  ^ eê  ) 4  v̂r (Z*E, ~ Z ^^ ) —~Ip (Zpg- — Zpg  ̂)

In (Zmv, ~ Ẑ ŷ  ) 4 (Ẑ ĵ  — Z ^  ) 4 /g (Zg^ — Zĝ  ̂) 4 Ẑ, ̂ Z^ — Z^^ ) = ~ Z p ̂ Zp  ̂ "  ZpW] )

BaZwîce currgnf magnZWgf

The solution of the set of simultaneous equations (D.4) is expressed in terms of the 

sensing current, /g, and the pre-calculated transfer impedances, and may be expressed as

I n  —  W n  I p

4 = ^ , 4

Iw ~ ^fw lp

(D.5)

where B/r is the ‘balance factor’ for the R  electrode—that is, the magnitude of the balance 

current relative to the measurement current required for focusing to be achieved.

It is noted that the conditions required to focus ± e  array are independent of array

geometry (i.e. the distance between and location of the electrodes is arbitrary in principle, 

although it is usually preferable to have a uniform, symmetrical configuration).

Focwfgj g/ecZric poZenZmZ

The focused potential distribution is found by summing the contribution from the four 

current electrodes (eq. D.2), each contribution being weighted according to the balance factors

in eq. D.5. Substituting (D.5) into (D.2):

— (̂ PAf, +Z gy B/]; + Z gy^ ^ g +Z ^^ i^ ^ ^ p

Wv; ~  (ZpM; 4  Zf^^^Bf y +  Z^i^^Bf Ç +  Zp^^Bf g +  Z^fj^Bf  ̂ /̂p

yfs, ~  (Zps, 4  Z ^  B f  ̂  +  Zg^ 4  Zĝ  ̂B /g  +  Z^^ B f  y ^/p 

Vfs2 ~  (Zfg; 4  Ẑ ĝ  B/^ +  Zjg B /j +  Zgg B f p +  B f  ̂  ^/p

yfEl ~  (ZpE, 4  Zf̂ p- B f  ̂  + Zgg B f 5 + Zp.g B f g +  Z^p B f  ̂  Ẑp 

^A«^^V Zgg^B/^ + Zgg^B/]g + Z ^ B / ^ ^ p

Vfwi ~  (Zpiv, 4  N̂Wi N 4  Ẑ w, s 4  Zĝ  ̂B f  g +  Ẑ ŷ  B f  ̂  ̂ Zp 

WW2 ~ (ZpWj 4  Z^^ B/^ + Z^^ B /j + Zgyŷ  B f  g + Z^^ B f  ,y  y  p

(D.6)
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where %  is the theoretical focused electric potential at electrode R. These focused electric 

potentials may be used to calculate a focused apparent resistivity, as described in Section 

4.1.2.3.

D.2 ODPHT tool

Consider the downhole tool electrode configuration illustrated in Figure D.2. As described in 

Section 4.2.2, this focusing tool consists of a measurement current electrode: AO; two focusing 

current electrodes: A1 and A2, and four potential electrodes: M l, M l', M2 and M2'. As with 

the focused surface array, the magnitudes of the focusing currents are adjusted to satisfy

conditions on the voltage at the potential electrodes, and are dependent on the electrode 

geometry of the tool, the magnitude of the measurement current, and the resistivity 

distribution in the formation surrounding the borehole.

Transfer impedances

Following the discussion in Section D .l, 3 x 4 = 12 transfer impedances can be defined

from equation (D.l). For example, the four transfer impedances associated with electrode AO 

are

7  — . 7  _ Y m2.- 7  —YmL and 7 - Y m2L- /ry 71ÂQMX ~ J  ’ ^A0M2 ~ j ’ ÂOMV ~ j ^nU ~ j ’ \kJ-l)
‘ a O I a O I a O I  AO

similar expressions for transfer impedances for electrodes A1 and A2 may also be written 

down.

DA
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- borehole axis

A 2

M l '
Ml

AO

M l

M l '

Al

current electrode 

potential electrode

Figure D.2 ODPHT electrode arrangement (schematic).

Using superposition, if all current electrodes were simultaneously emitting current, the 

electric potentials at each of the potential electrodes would be given by

^Ml  ~  I a O^AOMI I a I ^AIMI I a I ^ A I M I

~  Iao^aom v  4  Ia i^a im v  4  Ia i^ a im v  

^M2 ~ IaÔ AOMI 4  IaI^AIMI 4  Ia2̂ A2M2

~  I aO^AOMI " ^ Ia I^AIMX I a2^A2M2'

(D.8)

where lAn  denotes the current emitted by electrode An.

Equations (D.8) are substituted into the focusing conditions Vm \ = Vmv and Vmi = Vmi' to 

obtain two simultaneous equations:

I A O ^ A O M l  4  I A l ^ A l M l  4  I A 2 ^ A 2 M l  ~  I A O ^ A O M Y  4  I A l ^ A l M V  4  I A 2 ^ A 2 M Y  

I A 0 ^ A 0 M 2  4  I A l ^ A l M 2  4  I A 2 ^ A 2 M 2  ~  I A O ^ A O M T  4  I A l ^ A l M T  4  I A 2 ^ A 2 M T  ,

There are two unknowns: Ia\ and Ia2 - Equations (D.9) can be rearranged to give:

(D.9)

I m { Z A l M l  M l ' )  4  ( Z ^ 2  M l Z ^ 2 M I ' )  ̂ A o i ^ A G M l  ^ A O M v }

I a i { ^ A I M 2  “  Z ^ , j ^ 2 ' ) 4  Z _ 4 j( Z ^ 2 M 2  ~  ^  A 2 M T ^  ~  ~  I  Ao { ^  AO M2 ~ ^ A O M T )J
(D.IO)

Balance current magnitudes

The two simultaneous equations (D.IO) can be solved by elimination, giving

D-5



I a\ ~  ^ / aJ aO’ I a2 -  B / a iI aO-̂ (D .ll)

where

and where

■“AI M X  ^ A X M V

- Z .
(X I  —  Z  a

^2 “  ^AIM2 Â1M2*
P i  ~ ' ^ A 2 M l  ~ ^ A 2 M V ’

Pz "^A2M2 "^A2M2 '
T 1 ~ ~(̂ AOMi ~ ^AOMi'  ̂ and 
Y 2 =  —(Z^Q^2 ~  ^AOMT )•

The solution (D.l 1) is expressed in terms of (Ao, and ± e  pre-calculated transfer impedances. It

is noted that these results are independent of the tool’s electrode geometry.

FocftrgfT ekcrric porenria/

Substituting equation (D.l 1) into (D.8), a set of equations expressing the focused electric

potential at each of the potential electrodes results:

y f M l  ~  ( ^ A O M l  ^ A l M l B f A l  ^ A l M l B f A l ) l A O

M l ’ ~  i ^ A O M l '  ^ A l M l ' B f  A l  ^ A l M l ’ B f  A 2 ^ I A O

^M2 "  (̂ A0M2 4Z^;^2^AI ^A2M2^A2 )̂ A0

y f M 2 '  ~ i ^ A 0 M 2 ’ ^ A l M l ' B f A l  A l M l ' B f  a i ) I A

(D.l 2)

In equation (D .12), terms of the form refer to the theoretical focused electric potential

at electrode R. These focused electric potentials may be used to calculate a focused apparent 

resistivity and to derive a geometric factor for the tool (§4.2.3.2).
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Focused apparent resistivity field data

This appendix contains focused apparent resistivity data acquired in Saarland, Germany, in

August 1993 and September 1994. Resistivity traverses (focused, defocused and pole-pole 

measurements) and focusing balance factors are presented on a site-by-site basis (see §4.1.3). 

The table below lists the survey sites where focused measurements were made. Refer to the 

relevant field reports (Greenwood et al., 1993; Meldrum and Williams, 1995) for more details.

Year Site name Notes

1993 1.2 Three adjoining grids, labelled 1.2a, 1.2b and 1.2c. 
Lines 4, 5, 6, 7, and 8 on 1.2a 
Lines 5, 6, and 7 on 1.2b 
Line 6 on 1.2c

1.4 Line 6 only

2.1 Lines 4 ,5 , 6, 7, and 8.

1994 3.1 Line 6 only

3.2 Two adjoining grids, labelled 3.2a and 3.2b 
Line 6 only on both.
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RoS2ROW2 RoN2

1000

100

Array position (m)

Site 1.20(8): D e -fo c u se d  a p p a r e n t  resistivity

• RoW2 ----° ----  RoE2  ' ----- RoS2  °----- RoN2

0 2 4 6 8 10 12 U

Array position (m)

Site 1 .2a(d): P o le -p o le  o p p o r e n t  resistivity

• RoW2 ---- °----  Ro£2  •----  RoS2  ®----- RoN2

 #

4 6 8 10 12 14

Arroy position (m)

Site 1.20(8): F o cu sin g  C urren ts

Horn.

?s
&

0.1

Array position (m)

Site 1 .2a(8): N o rm alised  W-E C urren ts

OJÎ
0.25

02
0.15
01

Array poMHon (m)

Site 1 .2a(8): NomrxsHsed S-N C urren ts

• N  ^  D iff

025

10
Array potM on (m)

E-6



Appendix E

W F

e------

Site 1.2b(5): F o c u se d  c^>parent resistfvtty

PoE2 ROS2R0W2

1000

100

Ana/ poetton (m)

Site 1.2b(5): D e -fo c u se d  a p p a r e n t  resistivity

6 8 10 12 14

Array potHlon (m)

Site 1.2b(5): P o le -p o le  a p p a r e n t  resistivity

• RoW2 — °------Ro€2

6 8 10 12 14

Array position (m)

Site t .2 b (5 ): F o cu sin g  C urren ts

Horn.

I

I
1

aoi

Array position (m)

Site ).2b (5 ): N o rm alise d  W-E C urren ts

0

A noy poainon (m)

Site 1 2b(5): N o rm alised  S-N C urren ts

• N ^  Dtft

035

02
C I S

01

A ney poctlton (m)

E-7



Appendix E
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