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Abstract. In network activation problems we are given a directed or
undirected graph G = (V,E) with a family {fuv (xu, xv) : (u, v) ∈ E} of
monotone non-decreasing activation functions from D2 to {0, 1}, where
D is a constant-size domain. The goal is to find activation values xv for
all v ∈ V of minimum total cost

∑
v∈V xv such that the activated set of

edges satisfies some connectivity requirements. Network activation prob-
lems generalize several problems studied in the network literature such as
power optimization problems. We devise an approximation algorithm for
the fundamental problem of finding the Minimum Activation Cost Pair
of Node-Disjoint st-Paths (MA2NDP). The algorithm achieves approxi-
mation ratio 1.5 for both directed and undirected graphs. We show that a
ρ-approximation algorithm for MA2NDP with fixed activation values for
s and t yields a ρ-approximation algorithm for the Minimum Activation
Cost Pair of Edge-Disjoint st-Paths (MA2EDP) problem. We also study
the MA2NDP and MA2EDP problems for the special case |D| = 2.

1 Introduction

In this paper we consider network activation problems. In these problems we are
given an activation network, which is a directed or undirected graph G = (V,E)
together with a family {fuv (xu, xv) : (u, v) ∈ E} of monotone non-decreasing
activation functions from D2 to {0, 1}, where D is a constant-size domain. The
activation of an edge depends on the chosen values from the domain D at its
endpoints. We say that an edge (u, v) ∈ E is activated for chosen values xu and
xv if fuv(xu, xv) = 1. An activation function is called monotone non-decreasing
if for every (u, v) ∈ E we have that fuv (xu, xv) = 1 implies fuv (yu, yv) = 1 for
any yu ≥ xu, yv ≥ xv. The goal is to determine activation values xv ∈ D for all
v ∈ V so that the total activation cost

∑
v∈V xv is minimized and the activated

set of edges satisfies some connectivity requirements. Network activation prob-
lems were introduced by Panigrahi [11]. They generalize several known problems
in wireless network design, e.g., minimum broadcast tree, installation cost opti-
mization, and power optimization. For further applications and motivation for
network activation problems we refer to [11, 9].

We assume in the remainder of the paper that G is a directed graph. For the
problems under consideration, the case of undirected graphs can be modelled
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by replacing each undirected edge {u, v} by two directed edges (u, v) and (v, u)
with the same activation function, i.e., fuv(xu, xv) = fvu(xv, xu).

As D is a constant-size domain, we assume that the activation functions are
specified by lookup tables. For each edge (u, v) ∈ E we can then compute in
polynomial time the minimum cost cuv = xuvu + xuvv , where xuvu is the activation
value on u and xuvv the activation value on v such that fuv(xuvu , xuvv ) = 1 and
xuvu + xuvv is minimized.

Related work. The core objective of most network activation problems is to acti-
vate a network of minimum activation cost satisfying certain given connectivity
requirements. The simplest connectivity requirement is to find an st-path for a
specified pair of nodes s and t. Other examples of fundamental connectivity re-
quirements are: spanning tree, k edge-disjoint st-paths, k node-disjoint st-paths,
etc. Traditionally, these problems have been studied in a network model where
each edge (or node) has a fixed cost.

In recent years, considerable work has been done on various network activa-
tion problems such as Minimum Steiner Activation Network (MSAN), Minimum
Spanning Activation Tree (MSpAT), and Minimum Activation Flow (MAF).
The problem of activating a network with k edge/node-disjoint paths between
every pair of nodes is called Minimum Edge/Node-connected Activation Network
(MEAN/MNAN). Panigrahi [11] gives an exact polynomial-time algorithm to
solve the Minimum Activation st-Path (MAP) problem. However, he observes
that the MAF problem (activating k edge-disjoint st-paths with minimum ac-
tivation cost) is at least as hard as the `-densest subgraph problem. As shown
in [11], it is NP-hard to approximate MSpAT within a factor of o(log n). The
MSpAT problem is a special case of the MSAN, MEAN and MNAN problems.
Therefore, it is also NP-hard to approximate these problems within o(log n).
Panigrahi presents O(log n)-approximation algorithms for MSpAT, and also for
MEAN and MNAN in the case of k = 2. Nutov [9] establishes a connection be-
tween network activation problems and edge-cost network design problems and
shows that there exists a 2-approximation algorithm for the Minimum Activation
Cost k Node-Disjoint st-Paths (MAkNDP) problem and a 2k-approximation al-
gorithm for the Minimum Activation Cost k Edge-Disjoint st-Paths (MAkEDP)
problem.

Other relevant work has addressed power optimization [2, 7, 8]. In power op-
timization problems, each edge (u, v) ∈ E has a threshold power requirement
θuv. In the undirected case, edge (u, v) is activated for chosen values xu and xv
if each of these values is at least θuv. In the directed case, edge (u, v) is activated
if xu ≥ θuv.

Power optimization is a special case of network activation problems. As men-
tioned in [11], in the power optimization setting the MEAN and MNAN problems
have 4-approximation and 11/3-approximation algorithms, respectively, and it
is known that the MSpAT problem is APX-hard. By a simple reduction to the
shortest st-path problem, the Minimum Power st-Path problem is solvable in
polynomial time for both directed and undirected networks [7]. Another prob-
lem that has been studied in the literature is finding the Minimum Power k
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Edge-Disjoint st-Paths (MPkEDP). [6] shows that for both the directed and
undirected variants, the MPkEDP problem is unlikely to admit even a polyloga-
rithmic approximation algorithm. In contrast, the problem of finding Minimum
Power k Node-Disjoint st-Paths in directed graphs can be solved in polynomial
time [6, 12].

The problem of finding node/edge disjoint st-paths with minimum cost in a
network with edge costs is a well studied problem in graph theory. Polynomial-
time algorithms have been known for decades [1, 13, 14]. These algorithms do not
address the problem in the network activation setting, however. In this paper,
we study the minimum activation cost pair of node/edge-disjoint st-paths prob-
lem. To the best of our knowledge, it is not yet known whether these problems
are NP-hard. A ρ-approximation algorithm for a network activation problem is
an algorithm that runs in polynomial time and always outputs a solution whose
activation cost is at most ρ times the optimal activation cost for the given in-
stance.

Our results. We give a 1.5-approximation algorithm for the MA2NDP problem.
We also show that a ρ-approximation algorithm for the MA2NDP problem with
fixed activation values of s and t implies a ρ-approximation algorithm for the
MA2EDP problem. For the case where the domain D has size 2 and all edges
of the network have the same activation function, we prove that the MAkNDP
problem is polynomial-time solvable for four of five cases of the activation func-
tion, and that the MAkEDP problem is NP-hard.

We employ ideas and techniques from the theory of network flows in order to
establish approximation algorithms for our problems. The idea of the MA2NDP
algorithm is to first guess the optimal activation values for the nodes s and t by
enumeration. For each choice of activation values for s and t, we construct an
edge-cost network from G. We then use ideas similar to Suurballe’s algorithm
[13], with modifications in the construction of the residual graph, to find the two
node-disjoint st-paths. For the connection between the MA2NDP and MA2EDP
problems, we design an approximation algorithm for the MA2EDP problem by
using a ρ-approximation algorithm for the MA2NDP problem for every pair of
nodes in the graph and then iteratively combining disjoint paths to/from an
intermediate node into edge-disjoint paths with common nodes. We prove that
this algorithm has approximation ratio ρ. For the special case where the do-
main D has size 2 and all edges have the same activation function, we show
the NP-hardness of the MAkEDP problem by giving a reduction from the deci-
sion version of the maximum balanced complete bipartite subgraph (MaxBCBS)
problem [4].

The remainder of the paper is organized as follows. We start by presenting
our algorithm for the MA2NDP problem in Section 2. In Section 3, we establish
the connection between the MA2NDP and MA2EDP problems and obtain a 1.5-
approximation algorithm for MA2EDP. We then discuss the problem of finding
k node/edge-disjoint st-paths with minimum activation cost in the case where
|D| = 2 in Section 4. Finally, we conclude with a short section on future work
and open questions. Some proofs are omitted due to space constraints.
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2 Minimum Activation Cost Node-Disjoint st-Paths

The minimum activation k node-disjoint st-paths (MAkNDP) problem can be
stated as follows: Given an activation network G = (V,E) and source-destination
pair s, t ∈ V , find activation values xv for all v ∈ V such that k node-disjoint st-
paths P st = {P1, P2, . . . , Pk} are activated and the total activation cost

∑
v∈V xv

is minimized. [9] gave a 2-approximation algorithm for the MAkNDP problem.
In this section we consider the special case k = 2 and give a 1.5-approximation
algorithm for the MA2NDP problem.

Let FMA2NDP denote the variant of the MA2NDP problem where values
d ∈ D and d′ ∈ D are specified as activation values of s and t, respectively, and
do not count towards the objective value. In other words, only solutions with
xs = d and xt = d′ are considered feasible for FMA2NDP, and the activation
cost of a solution is

∑
v∈V \{s,t} xv.

The MA2NDP algorithm takes as input an activation network G = (V,E)
and a source-destination pair, s, t ∈ V . Its output is a set of activation values xv
for all v ∈ V that activate a pair of node-disjoint st-paths, P st = {P1, P2}. The
algorithm enumerates all pairs d, d′ ∈ D. For each choice of d and d′, it solves the
FMA2NDP problem with the values d and d′ chosen as the activation values of s
and t, respectively. Let C(s, d, t, d′) represent the activation cost of the solution
for d, d′. In the end, the algorithm outputs the solution of minimum activation
cost among the feasible solutions obtained for all pairs of values d, d′ ∈ D, i.e.,
the solution of activation cost minxs,xt∈D{C(s, xs, t, xt)}.

The algorithm for the FMA2NDP problem with xs = d and xt = d′ is as
follows. For ease of presentation, we assume here that D = {0, 1, 2, . . . , |D| − 1}.
(The extension to arbitrary domains of constant size is straightforward.) We
let C(s, d, t, d′) represent the total activation cost of the pair of node-disjoint
activation paths P st that the algorithm finds, or ∞ if such paths do not exist.

Step 1: Construct from G an edge-weighted graph Ḡ with two nodes sd, td′ and
2|D| nodes {vin0 , vout0 , vin1 , v

out
1 , ...., vin|D|−1, v

out
|D|−1} for every v ∈ V \{s, t}. The

edges of Ḡ are:
– For a ∈ D and v ∈ V \ {s, t}, add a directed edge (vina , v

out
a ) with cost 0.

– For each (u, v) ∈ E and a, b ∈ D where u, v /∈ {s, t} and fuv (a, b) = 1,
add a directed edge (uouta , vinb ) with cost b.

– For each (s, v) ∈ E and b ∈ D where v 6= t and fsv (d, b) = 1, add a
directed edge (sd, v

in
b ) with cost b.

– For each (v, t) ∈ E and a ∈ D where v 6= s and fvt (a, d′) = 1, add a
directed edge (vouta , td′) with cost 0.

– If (s, t) ∈ E and fst (d, d′) = 1, add a directed edge (sd, td′) with cost 0.
Step 2: Run Dijkstra’s algorithm on Ḡ to compute a shortest path P from sd to

td′ . Let C(P ) be the edge-cost of P . If Ḡ has no such path, set C(s, d, t, d′) =
∞ and skip Steps 3–5.

Step 3: Construct the residual network ḠP induced by P :
– For each v ∈ V \ {s, t} with (vina , v

out
a ) ∈ P for some a, add a directed

edge (voutā , vinā ) with cost 0 for all ā ∈ D with ā ≥ a.
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– For each v ∈ V \ {s, t} such that (vina , v
out
a ) /∈ P for all a ∈ D, add

(vina , v
out
a ) for all a ∈ D with cost 0.

– For each (u, v) ∈ E with (uouta , vinb ) ∈ P for some a, b ∈ D, add a directed
edge (vin

b̄
, uoutā ) with cost ā− a for all ā, b̄ ∈ D where ā ≥ a and b̄ ≥ b.

– For each (u, v) ∈ E with (uouta , vinb ) /∈ P for all a, b ∈ D where v is used
in P with activation value b̄ (i.e., vin

b̄
∈ P ), add edges (uouta′ , v

in
b′ ) with

cost b′ − b̄ for all a′ ∈ D, b′ ≥ b̄ such that fuv(a′, b′) = 1 .
– For each (u, v) ∈ E with (uouta , vinb ) /∈ P for all a, b ∈ D where v is not

used in P , add edges (uouta′ , v
in
b′ ) with cost b′ for all a′, b′ ∈ D such that

fuv(a′, b′) = 1.
– For each v ∈ V \ {t} with (s, v) ∈ E and (sd, v

in
b ) /∈ P for all b ∈ D, add

edges (s, vinb′ ) with cost b′ for all b′ ∈ D such that fsv(d, b′) = 1.
– For each v ∈ V \ {s} with (v, t) ∈ E and (voutb , td′) /∈ P for all b ∈ D,

add edges (voutb′ , td′) with cost 0 for all b′ ∈ D such that fvt(b
′, d′) = 1.

– If (s, t) ∈ E and fst (d, d′) = 1 and (sd, td′) /∈ P , add a directed edge
(sd, td′) with cost 0.

Step 4: Run Dijkstra’s algorithm on the residual network ḠP to identify a
shortest path P ′ from sd to td′ . Let C ′(P ′) represent the edge-cost of P ′. If
no such path P ′ exists, set C(s, d, t, d′) =∞ and skip Step 5.

Step 5: Decompose P and P ′ into two node-disjoint paths, by removing from
P ∪P ′ the edge set which consists of the edges of P whose reverse edge is in
P ′, and vice versa. Let P1 and P2 be the corresponding node-disjoint paths
in G, and let C(s, d, t, d′) be the activation cost of P st = {P1, P2}. Return
C(s, d, t, d′) and P st.

Note that the auxiliary graph Ḡ constructed in Step 1 has the property that
any path Q from sd to td′ in Ḡ with edge cost C(Q) corresponds to an activated
path Q′ in G from s to t with activation cost d + C(Q) + d′, and vice versa. If
the path Q uses an edge with head vina , this corresponds to activating node v
with activation value xv = a (and the cost of the edge ‘pays’ for this activation
value). The shortest path constructed in Step 2 thus corresponds to a minimum
activation cost st-path, under the constraint that xs = d and xt = d′.

Let an instance of the FMA2NDP problem be given by a graph G = (V,E)
with designated nodes s, t ∈ V , a family F of activation functions from D2 to
{0, 1}, and values d, d′ ∈ D. Let P st = {P1, P2} be the paths found by the
FMA2NDP algorithm and let POPT = {POPT

1 , POPT
2 } be an optimum solution

for this instance. We define CALG(Q) as the activation cost of a path Q in G in
the solution generated by the algorithm and COPT (Q) as the activation cost of
a path Q in the optimum solution. The edge cost of a path Q in Ḡ is denoted
by C(Q), and the edge cost of a path Q in ḠP is denoted by C ′(Q).

Lemma 1. For any xs, xt ∈ D for which there are two node-disjoint st-paths,
let ḠP be the residual network of Ḡ imposed by P (Step 3). Then there exists a
path P ′ ∈ ḠP from sd to td′ with edge-cost C ′(P ′) such that:

C ′(P ′) ≤ COPT (POPT
1 \ {s, t}) + COPT (POPT

2 \ {s, t}) (1)
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Proof. Let G̃ ⊂ G be the network generated by edges that belong to POPT and
the path in G that corresponds to P . Let G̃P be the (standard) residual net-
work of G̃ imposed by P . There exists a path P ∗ from s to t in G̃P . We have
COPT (P ∗) =

∑
v∈P∗ xv, where xv is the activation value of v in the optimal solu-

tion. Clearly, COPT (P ∗) is at most the total cost of the optimal solution POPT .
Consequently, COPT (P ∗)−(d+d′) ≤ COPT (POPT

1 \{s, t})+COPT (POPT
2 \{s, t}).

We want to prove that there is a path corresponding to P ∗ in ḠP with
edge cost at most COPT (P ∗) − d − d′. To prove this, one can show that for
each edge (u, v) of P ∗ there exists a corresponding edge in ḠP whose cost is
bounded by the activation value of v in POPT . As the algorithm computes a
path P ′ with minimum edge cost in ḠP , we get that C ′(P ′) ≤∑v∈P∗\{s,t} xv =

COPT (P ∗)− (d+ d′). ut

Theorem 1. The algorithm computes a 1.5-approximation for the FMA2NDP
problem.

Proof. Since P is an st-path of minimum activation cost, we get that the acti-
vation cost of its intermediate nodes, which is equal to its edge cost C(P ), is
bounded by

C (P ) ≤ min{COPT

(
POPT

1 \ {s, t}
)
, COPT

(
POPT

2 \ {s, t}
)
}

≤ COPT

(
POPT

1 \ {s, t}
)

+ COPT

(
POPT

2 \ {s, t}
)

2
(2)

From Step 5 in the algorithm we notice that:

CALG(P1 \ {s, t}) + CALG(P2 \ {s, t}) ≤ C(P ) + C ′(P ′) (3)

From Lemma 1, (2) and (3) we get that the solution computed by the algorithm
has objective value at most 1.5 times the optimal objective value. ut

As our MA2NDP algorithm enumerates all possibilities for the activation
values of s and t and outputs the solution of minimum activation cost among all
computed solutions, Theorem 1 implies the following corollary.

Corollary 1. There is a 1.5-approximation algorithm for MA2NDP.

3 Minimum Activation Cost Edge-Disjoint st-Paths

The minimum activation cost k edge-disjoint st-paths problem (MAkEDP) can
be stated as follows: Given an activation network G = (V,E) and a source-
destination pair s, t ∈ V , find activation values xv for all v ∈ V that activate
a set of k edge-disjoint st-paths P st = {P1, P2, . . . , Pk} such that the total cost∑

v∈V xv is minimized. We consider the problem for k = 2, i.e., MA2EDP.
We observe that a pair of edge-disjoint st-paths can be viewed as the con-

catenation of pairs of node-disjoint paths between consecutive common nodes of
the pair of edge-disjoint paths (see Fig. 1). This connection was used by Srinivas
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and Modiano [12] to derive a polynomial-time optimal algorithm for the special
case of MA2EDP that arises in the power optimization setting. We generalize
this method to the network activation setting and obtain the following theorem
that connects the FMA2NDP and MA2EDP problems.

Theorem 2. If there exist a ρ-approximation algorithm for FMA2NDP, then
there exists a ρ-approximation algorithm for MA2EDP.

The proof of this theorem is based on showing that the following MA2EDP
algorithm computes a pair of edge-disjoint paths of activation cost at most ρ
times the optimal activation cost. The MA2EDP algorithm takes as input an
activation network G = (V,E) and a source-destination pair, s, t ∈ V . Its output
is a pair of edge-disjoint activated st-paths, P st = {P1, P2}. The algorithm
executes a ρ-approximation algorithm for FMA2NDP for each pair of nodes in
G with specified activation values for that pair of nodes, and then iteratively
combines disjoint paths to/from an intermediate node to obtain edge-disjoint
paths. The MA2EDP algorithm can be specified via the following two steps:

Step 1: For every pair of nodes u, u′ ∈ V and every pair of activation val-
ues d, d′ ∈ D, the algorithm runs the ρ-approximation algorithm for the
FMA2NDP problem with source u, activated with xu = d, and destination
u′, activated with xu′ = d′. This produces a pair of node-disjoint activation
paths for each pair of nodes u, u′ ∈ V and specified activation values xu, xu′ .
Let P (u,xu,u

′,xu′ ) denote this pair of node-disjoint paths (and the correspond-
ing activation values of all nodes) and C(u, xu, u

′, xu′) its activation cost (or
∞, if such a pair of node-disjoint paths does not exist).

Step 2:

for each node w ∈ V :
for each xw ∈ D, each pair of nodes u, u′ ∈ V and each pair xu, xu′ ∈ D:

Combine the pairs of edge-disjoint paths P (u,xu,w,xw) and P (w,xw,u′,xu′ )

into a pair of edge-disjoint paths Q(u,xu,u
′,xu′ ) from u to u′ and update

the cost C(u, xu, u
′, xu′) via:

C(u, xu, u
′, xu′) =

min{C(u, xu, u
′, xu′), C(u, xu, w, xw) + C(w, xw, u

′, xu′)− xw}

If the cost C(u, xu, u
′, xu′) changes by this update, set P (u,xu,u

′,xu′ ) to
Q(u,xu,u

′,xu′ ).

The final output is the activation cost minxs,xt∈D{C(s, xs, t, xt)} and the corre-
sponding pair of edge-disjoint st-paths P (s,xs,t,xt).

To show that the MA2EDP algorithm actually finds a pair of edge-disjoint
paths of activation cost at most C(s, xs, t, xt), we have the following lemma.

Lemma 2. Consider any time in the execution of the algorithm. Assume that
at that time we have C(u, xu, u

′, xu′) = T <∞. Then P (u,xu,u
′,xu′ ) contains two

edge-disjoint uu′-paths with activation cost at most T such that u has activation
value at least xu and u′ has activation value at least xu′ .
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•
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•
t

•
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Fig. 1. A pair of edge-disjoint paths viewed as the concatenation of pairs of node-
disjoint paths.

Proof (of Theorem 2). Let an instance of the MA2EDP problem be given by G =
(V,E), s, t ∈ V and a family F of activation functions. Let V = {v1, v2, . . . , vn},
where the nodes are numbered in the order in which they are processed by the
outer for-loop in Step 2. Define Ck(u, xu, v, xv) as the value of C(u, xu, v, xv) after
k ∈ {0, ..., n} iterations of the outer for-loop in Step 2 and COPT

k (u, xu, v, xv)
to be the optimal activation cost for two edge-disjoint paths from u, activated
with xu, to v, activated with xv, for which the only intermediate nodes that
are common between the paths are among {v1, . . . , vk}. Let C̄k(u, xu, v, xv) =
Ck(u, xu, v, xv)−xu−xv and C̄OPT

k (u, xu, v, xv) = COPT
k (u, xu, v, xv)−xu−xv.

By induction, we will prove that for all u, v ∈ V and xu, xv ∈ D after k iterations
the following holds:

C̄k(u, xu, v, xv) ≤ ρ C̄OPT
k (u, xu, v, xv) (4)

Induction Base: If k = 0 (there is no common intermediate node), (4) holds as
before the first iteration the algorithm uses a ρ-approximation for FMA2NDP.
Induction Step: Assume that the statement (4) holds for the case where all
common nodes between the two paths are among {v1, v2, ..., vk−1}. This means
that for all u, v ∈ V , xu, xv ∈ D after k − 1 iterations of the algorithm, we have
C̄k−1(u, xu, v, xv) ≤ ρ C̄OPT

k−1 (u, xu, v, xv).
Now consider the k-th iteration, where vk is considered as additional inter-

mediate node for two edge-disjoint paths from u, activated with at least xu, to
v, activated with at least xv:

If the optimum solution for the two edge-disjoint uv-paths with common
nodes among {v1, . . . , vk} uses only nodes among {v1, v2, .., vk−1} as common
nodes, by induction hypothesis, (4) holds as C̄k(u, xu, v, xv) ≤ C̄k−1(u, xu, v, xv).

If the optimum solution for the two edge-disjoint uv-paths with common
nodes among {v1, . . . , vk} uses the node vk with activation value xvk as common
node, then we have:

C̄k(u, xu, v, xv) ≤ C̄k−1(u, xu, vk, xvk) + C̄k−1(vk, xvk , v, xv) + xvk
≤ ρ C̄OPT

k−1 (u, xu, vk, xvk
) + ρ C̄OPT

k−1 (vk, xvk , v, xv) + xvk

≤ ρ
(
C̄OPT

k−1 (u, xu, vk, xvk) + C̄OPT
k−1 (vk, xvk , v, xv) + xvk

)
= ρ C̄OPT

k (u, xu, v, xv) .

This completes the proof of the theorem. ut
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From Theorem 1 and Theorem 2, we obtain the following corollary.

Corollary 2. The MA2EDP algorithm computes a 1.5-approximate solution for
the MA2EDP problem.

We remark that for the special case of power optimization, [6, 12] gave an
exact polynomial-time algorithm for the MAkNDP problem in directed graphs.
Theorem 2 thus implies that there is an exact polynomial-time algorithm for the
directed MA2EDP problem for power optimization, as was already shown in [12].
Nutov [8] shows that for arbitrary k there exists a k-approximation algorithm
for the directed case of the MAkEDP problem.

4 Activation Networks with |D| = 2

In this section, we restrict the domain D to have size 2. This case is interesting
from a theoretical point of view because it is the smallest non-trivial case for
the size of the domain. From a practical point of view, this case corresponds to
a simple setting where nodes have just two different activation states, e.g., low
power and high power. Let D = {a, b} with a < b. Note that the cost of a solution
that activates B nodes with activation value b and |V |−B nodes with activation
value a is a|V | + B(b − a). This means that minimizing the activation cost is
equivalent to minimizing the number of nodes that have activation value b. In
the rest of this section, we assume that all edges of the activation network have
the same activation function f : D2 → {0, 1}.

4.1 Polynomial Cases of MAkNDP and MA2EDP

The following are all the different possibilities for a monotone non-decreasing
activation function f with domain D = {a, b}:

1. f(a, a) = 1
2. f(a, a) = f(a, b) = f(b, a) = 0, f(b, b) = 1
3. f(a, a) = f(a, b) = 0, f(b, a) = f(b, b) = 1
4. f(a, a) = f(b, a) = 0, f(a, b) = f(b, b) = 1
5. f(a, a) = 0, f(a, b) = f(b, a) = f(b, b) = 1

The problem MAkNDP for activation function 1 is trivial as either the so-
lution that activates all nodes with activation value a is optimal, or there is no
feasible solution. For activation functions 2-4, we observe that the problem of
minimizing the activation cost of node-disjoint paths from s to t is equivalent
to the problem of minimizing the number of nodes used by the paths: For ac-
tivation function 2, all nodes on all paths must be activated with value b. For
activation functions 3, all nodes on all paths except node t must be activated
with value b. For activation function 4, all nodes on all paths except node s must
be activated with value b. To calculate the optimal solution in these cases, we
first give unit cost to all edges of the graph, compute k node-disjoint paths of
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minimum edge-cost using a known polynomial-time algorithm for the minimum
cost k-flow problem (with unit edge and node capacities), and finally activate the
resulting network. Therefore, the MAkNDP problem with activation functions
1-4 can be solved in polynomial time for any k.

The problem with activation function 5 is polynomial-time solvable for k = 2.
Assume that the minimum number of internal nodes (nodes excluding s, t) used
by two node-disjoint paths from s to t is M ≥ 1. We activate s with value b, and
every other node on each of the two paths. If M is odd, one of the two paths
must have an odd number o of internal nodes, the other an even number e of
internal nodes, M = o+ e. In total we activate 1 + (o+ 1)/2 + e/2 = M/2 + 1.5
nodes with value b, and this is optimal and independent of o, e. If M is even,
there are two cases: If the two paths both have odd numbers of internal nodes,
say o1 and o2, we activate 2 + (o1 − 1)/2 + (o2 − 1)/2 = M/2 + 1 nodes with
value b. If the two paths both have even numbers of internal nodes, say e1 and
e2, we activate 1 + e1/2 + e2/2 = M/2 + 1 nodes with value b. In both cases the
optimal number of nodes activated with value b depends only on M . Thus, the
MA2NDP problem for activation function 5 can also be solved by minimizing
the number of nodes used by the two paths.

Note that minimizing the number of nodes used by the paths is not sufficient
for activation function 5 and k = 3. If the three node-disjoint paths have 3, 1
and 1 internal nodes, respectively, the number of nodes that must be activated
with value b is 3. If the three node-disjoint paths have 2, 2 and 1 internal nodes,
respectively, the number of nodes that must be activated with value b is 4. In
both cases the total number of nodes used by the three paths is the same, but
only one of the two cases yields a solution with optimal activation cost.

For all five activation functions, it is easy to see that FMA2NDP is also
polynomial-time solvable, and hence MA2EDP can be solved optimally in poly-
nomial time by application of Theorem 2.

4.2 Hardness of MAkEDP

Panigrahi [11] showed that the MAkEDP problem is NP-hard since it general-
izes the Node-Weighted k-Flow (NWkF) problem which is known to be NP-hard
[10]. Nutov [10] proved the inapproximability of the NWkF problem by a reduc-
tion from the bipartite densest `-subgraph problem to unit weight NWkF, and
Panigrahi [11] observed that this inapproximability result can be adapted to
MAkEDP as well. The reduction described in [10] uses parallel edges. Here,
we use a similar approach that avoids parallel edges and establishes that the
MAkEDP problem is NP-hard even in the case where |D| = 2, all edges have
the same activation function, and there are no parallel edges. This is in contrast
to the polynomial-time solvability of MAkNDP when |D| = 2 for activation func-
tions 1–4 and arbitrary k. We show the hardness of the MAkEDP problem by
giving a reduction from the decision version of the maximum balanced complete
bipartite subgraph problem, which is NP-hard (Problem GT24 in [5]).
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Fig. 2. A reduction of MaxBCBS (g=3)

Maximum Balanced Complete Bipartite Subgraph (MaxBCBS). Given a bipartite
graph G = (V1 ∪ V2, E), find a maximum balanced complete bipartite subgraph
(i.e. with the maximum number of nodes). Here, a balanced complete bipartite
subgraph H is a complete bipartite subgraph such that |H ∩ V1| = |H ∩ V2|.

In the decision version of MaxBCBS, we are additionally given a parameter g
and the question is to decide whether G contains a balanced complete bipartite
subgraph with 2g nodes (and g2 edges).

The reduction. Let a bipartite instance of the decision version of MaxBCBS be
given by G = (V1∪V2, E) and parameter g. We construct an instance Ḡ = (V̄ , Ē)
of MAkEDP as follows: We add to G as new nodes a source s and a target t.
For each v ∈ V1 ∪ V2 we add g new nodes {vi : 1 ≤ i ≤ g}. For each v ∈ V1, we
add the edges {svi : 1 ≤ i ≤ g} ∪ {viv : 1 ≤ i ≤ g}. For each v ∈ V2, we add
the edges {vvi : 1 ≤ i ≤ g} ∪ {vit : 1 ≤ i ≤ g}. The domain is D = {0, 1}, and
for all uv ∈ Ē, let fuv(1, 1) = 1 and fuv(0, 0) = fuv(1, 0) = fuv(0, 1) = 0. See
Fig. 2. The reduction can be used for both directed and undirected graphs. We
can show the following lemma and theorem.

Lemma 3. There exists a balanced complete bipartite subgraph Kg,g with 2g
nodes in G if and only if there exist k = g2 edge-disjoint paths in Ḡ of activation
cost 2g2 + 2g + 2.

Theorem 3. The MAkEDP problem is NP-hard even for activation networks
where the domain D is {0, 1} and all edges uv ∈ E have the same activation
function f : D2 → {0, 1}.

5 Conclusion

We have investigated the problem of finding disjoint st-paths of minimum activa-
tion cost in a given activation network. We gave a 1.5-approximation algorithm
for the MA2NDP problem and showed that a ρ-approximation algorithm for the
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FMA2NDP problem (MA2NDP with fixed activation values of s and t) can be
used to obtain a ρ-approximation algorithm for the MA2EDP problem. For the
restricted version of activation networks with |D| = 2 and a single activation
function for all edges, we showed that MAkNDP can be solved in polynomial-
time for arbitrary k (for k = 2 in one of the cases for the activation function).
In addition, we showed that this restricted version of the MAkEDP problem is
NP-hard.

The main open problem is to determine whether the MA2NDP problem
is NP-hard. Our results show that a polynomial-time optimal algorithm for
MA2NDP would imply a polynomial-time optimal algorithm for MA2EDP. It
would also be interesting to study the case of domain size 2 in a setting where
different edges can have different activation functions.
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