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Abstract

Descriptions of Groups using Formal Language Theory
Gabriela Aslı Rino Nesin

This work treats word problems of finitely generated groups and variations
thereof, such as word problems of pairs of groups and irreducible word prob-
lems of groups. These problems can be seen as formal languages on the gen-
erators of the group and as such they can be members of certain well-known
language classes, such as the class of regular, one-counter, context-free, re-
cursively enumerable or recursive languages, or less well known ones such
as the class of terminal Petri net languages. We investigate what effect the
class of these various problems has on the algebraic structure of the relevant
group or groups.

We first generalize some results on pairs of groups, which were previously
proven for context-free pairs of groups only. We then proceed to look at
irreducible word problems, where our main contribution is the fact that a
group for which all irreducible word problems are recursively enumerable
must necessarily have solvable word problem. We then investigate groups for
which membership of the irreducible word problem in the class of recursively
enumerable languages is not independent of generating set. Lastly, we prove
that groups whose word problem is a terminal Petri net language are exactly
the virtually abelian groups.
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Chapter 1

Introduction

One area where computer science interfaces with important concepts in math-

ematics is in the consideration of word problems of finitely generated groups

as formal languages (we are talking here of formal languages over a finite

alphabet, so in this thesis all groups will be assumed to be finitely generated

unless explicitly stated otherwise). The first questions considered here con-

cerned solvability/decidability; the word problem was shown to be undecid-

able for finitely presented groups by Novikov [44] and Boone [3]; so a finitely

presented group can have a word problem that is recursively enumerable but

not recursive. Attention then turned to considering groups with word prob-

lems in simpler classes of languages. A characterization of groups with a

regular word problem was given in [1] and then the same was done (assum-

ing a subsequent deep result of Dunwoody [9]) for groups with a context-free

word problem in [43] by Muller and Schupp.

The computer science side of these questions used algorithmic consider-

ations, definitions of formal languages in terms of automata with varying

degrees of memory, but also logic (monadic second-order logic in particular)

and string-rewriting.

On the mathematical side of things, apart from the expected algebraic and

group theoretic considerations, techniques from geometric and combinatorial
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group theory were used, as well as from homology and cohomology theory.

The Cayley graph of a group gives a visual representation of the relationships

between its elements - as such, many nice properties of the group can be

deduced from the shape of this graph. For example, Muller and Schupp’s

characterisation above essentially uses triangulation of the Cayley graph of

a context-free group, and considers its number of ends.

In this thesis we try to continue this tradition, where some of our contri-

butions have a fairly geometric flavour: we investigate the number of ends a

pair of groups can have, and we prove a theorem about groups with recur-

sively enumerable irreducible word problems using a geometric property of

a generating set, which we call ‘loopiness’. We go further and make some

comments on separability of Cayley graphs of groups where the irreducible

word problem is not well-behaved when it comes to recursive enumerability.

Let us come back to the main question for a moment: given a class of

formal languages, what can we say about the groups having a word problem in

this class? As a group has many word problems, depending on the generating

set we choose, one can expect this study to be quite chaotic. However, there

is a way around this: for a class of languages closed under inverse monoid

homomorphism, if one of the word problems is a member of the class then

all of them are. The classes of languages studied previously - the regular,

one-counter, context-free, recursively enumerable and recursive languages -

all have this property.

As such, algebraic characterizations have been given for groups with a

word problem in these classes. As stated above, in [1] Anisimov showed that

a group has regular word problem if and only the group is finite. Higman

characterized groups with a recursively enumerable word problem in [23] as

those embeddable into finitely presented groups (a result commonly called

the Higman embedding theorem), and he and Boone characterized groups

with recursive word problem in [4] as groups which can be embedded into a

simple group which can itself be embedded into a finitely presented group.
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Muller and Schupp’s characterisation in [43] of groups with context-free word

problem as virtually free groups came next. Then Herbst proved in [21]

that groups with a one-counter word problem are exactly the virtually cyclic

groups.

In this thesis we look at variations on the word problem and investigate

what algebraic properties can be deduced from them.

In Chapter 2 we give the group theoretical background we will need in

the thesis. We define Cayley graphs of a group and give a short taste of the

theory of ends.

In Chapter 3 we then move on to the formal language side of things,

defining the classes of formal languages mentioned above. We summarize

the various correspondences which we build on. The closure properties under

various language operations of the various classes of languages imply closure

of the class of groups with word problem in those classes under various group

operations.

The work in Chapter 4 is largely inspired by the work in [5] where the

authors look at word problems of pairs of groups. Many of the theorems in

that paper are valid for other classes of languages - we restate and sometimes

reprove those theorems in the most general setting possible. In the same

chapter we present partial results about one-counter pairs of groups, relating

the questions with geometric considerations such as Schreier graphs and their

number of ends.

In Chapter 5 we consider another variation on word problems: the irre-

ducible word problem. This is the set of elements of a word problem with

no subword in the word problem. Unfortunately, we do not know whether

the irreducible word problem is as well-behaved as the word problem when

it comes to recursive enumerability - there could potentially be a group with

an irreducible word problem which is recursively enumerable and another

irreducible word problem which is not. Our main result is the fact that if all

the irreducible word problems of a group are recursively enumerable, then
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the group must have solvable word problem. We also give a partial charac-

terisation of groups whose irreducible word problems are badly behaved, if

indeed these groups exist.

In Chapter 6, we go back to the word problem, but change the formal

language class we are speaking of. As such, we classify groups whose word

problem is a terminal Petri net language as exactly the virtually abelian

groups. In the process, we state some relationships with other classes of lan-

guages, and give a normal form for Petri nets recognizing the word problem

of a virtually abelian group.

We finish by suggesting some possibilities for future research in Chap-

ter 7.
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Chapter 2

The basics of group theory and

word problems

In this chapter we define monoids and finitely generated groups, describing

the relationship between them. We focus shortly on some special kinds of

groups that we will consistently encounter throughout this thesis, as well as

some algebraic constructions on groups - essentially ways to get new groups

from old ones. These constructions will be associated in Chapter 3 with

invariance properties of certain classes of formal languages, giving a practical

way to go back and forth between the two areas.

Finally, we introduce Cayley graphs as a geometric description of a group

with respect to a finite generating set. This turns out to be an easy way to

visualize a word problem.

2.1 Basics of group theory

2.1.1 Monoids, groups and group presentations

Definition 1. A monoid is a set M closed under a binary operation · which

is associative and has an identity element 1M .
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Given a finite set (or alphabet) Σ, the set of all finite strings of sym-

bols of Σ (called words) forms a monoid under the concatenation operation

(appending one string onto the end of another). Its identity element is the

empty word, denoted λ. This monoid is called the free monoid over Σ and

is denoted by Σ∗. A (formal) language is just a subset of Σ∗ for some finite

alphabet Σ.

Definition 2. A monoid G is called a group if every element of G has an

inverse, i.e. if for all g ∈ G there is an h ∈ G such that g · h = h · g = 1G.

Often the operation symbol · is omitted (emphasizing the relationship

with strings), and the element h as in the definition above is denoted g−1.

Definition 3. A subset H of G is called a subgroup of G if it is a group

and the operation on it is the restriction of the operation on G. If H is

furthermore not equal to G then it is called a proper subgroup of G.

It follows automatically that in this case, the identity and inverses of

elements of H are the same as those of G. We write H 6 G.

Definition 4. A group G is said to be finitely generated if there is a finite

subset A of G such that no proper subgroup of G contains A.

This means that any element of G can be expressed as a product of

elements of A and their inverses. If instead of seeing generators a and a−1

as elements of the group we take them as formal symbols, then words over

the alphabet Σ = A∪A−1 represent elements of G. This the idea behind the

following formal definition.

Definition 5. If a group G is generated by a finite set A then there is an

onto monoid homomorphism φ : (A ∪ A−1)∗ → G. The set A−1 is a set of

formal symbols {a−1 : a ∈ A} with the property that φ(a−1) = φ(a)−1 for

all a ∈ A. We call A a group generating set of the group G, and φ the

presentation map.
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By “a represents g” we shall mean φ(a) = g. Since the definition of φ

is somehow “natural” given A, we will often use the two interchangeably,

assuming φ given A or vice versa. In this thesis all groups will be assumed to

be finitely generated unless stated otherwise. For all words w, v ∈ (A∪A−1)∗

and any group element g ∈ G, we will write w =G g to mean φ(w) = g and

write w =G v to mean φ(w) = φ(v); in the second case we say that w = v is

a relation in G. If we have a relation of the form w = 1G (i.e. w =G λ) we

say that w is a relator in G.

There are relations, such as aa−1 = 1G for a generator a, which hold in

any group. These are the relations which follow directly from the definition

of a group. A group where the only relations that hold are the ones that

follow from the group definition is called a free group. We will see more

about these groups later. However, not all groups are free: other relations

might hold depending on the group. For example, in the group of rotations

of the (labelled) square, generated by the 90 degree rotation r, the relation

r4 =G 1G holds, as doing the rotation r four times gives us back the original

square. This leads us to the concept of group presentations:

Definition 6. We say that 〈A|R〉 is a presentation for a group G (and

write G = 〈A|R〉) if A is a generating set for G, R is a set of elements of

Σ∗ = (A ∪ A−1)∗, and any relation holding in G can be deduced from the

group definition and by rewriting elements in R to 1G or vice versa. R is

called the set of relators of the presentation.

The above definition is a bit vague: we will give a better one once we

have defined normal subgroups and quotients of groups. In any case, 〈A|R〉
is the most general group generated by A such that the equalities r =G 1G

for all r ∈ R hold (together with all of their consequences). Note that the

terminology is consistent with that of ‘presentation maps’: relators are just

words which φ sends to the identity. The free group over the set A is just the

group with presentation 〈A| 〉. The group of rotations of the square can be

presented as 〈r|r4〉.
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In general in group theory, groups are said to be “the same” if they are

the same up to isomorphism - homomorphisms which are also bijective.

Definition 7. Let G and H be two groups, with ·G and ·H as respective

operations and 1G and 1H as respective identity elements. A map f : G→ H

is said to be an isomorphism if it is one-to-one, onto, and satisfies

f(g ·G g′) = f(g) ·H f(g′)

for all g, g′ ∈ G. We say that G is isomorphic to H, denoted G ' H.

It is straightforward to show that f(1G) = 1H and f(g)−1 = f(g−1). It is

also not difficult to show that being isomorphic is an equivalence relation -

reflexive, symmetric and transitive on the class of groups.

As examples of isomorphic groups, we can see that for generating sets A

and B of the same cardinality, the groups 〈A| 〉 and 〈B| 〉 are isomor-

phic - essentially the same group up to renaming of generators. Similarly,

a group may have more than one presentation (i.e. different presentations

may give isomorphic groups). For example, consider the groups 〈a| 〉 and

〈b, c|b2c−3, bcb−1c−1〉. These two groups are isomorphic via the isomorphism

f(c) = a2 and f(b) = a3.

We already know that a group G = 〈A|R〉 is finitely generated if A is

finite. We say that it is finitely presented if moreover R is finite.

2.1.2 Normal subgroups, quotients and index

Given a group and a subgroup, we define a notion of how “large” the subgroup

is relative to the group. To this end, we define the notion of coset. For a

subgroup K 6 G and an element g ∈ G, define

Kg = {kg : k ∈ K}.
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This is called a right coset of K in G (left cosets are defined analogously). It

is not difficult to prove that for any g, g′ ∈ G, Kg and Kg′ are either disjoint

or equal. Hence, the cosets form a partition of G. The number of right cosets

of K making up G is called the index of K in G (if G is a union of n right

cosets, it is also a union of n left cosets). The index is denoted by [G : K]

and can be either finite or infinite. If it is finite, then K is a finite index

subgroup of G, and G is a finite extension of K.

We have the following theorem, whose proof is straightforward:

Theorem 8. If K 6 H 6 G, then

[G : K] = [G : H][H : K].

A subgroup where any left coset gK is equal to the right coset Kg is

called a normal subgroup, denoted N EG:

Definition 9. A subgroup N of G is called normal if for all g ∈ G, Ng = gN .

The kernel of a homomorphism is always a normal subgroup, and con-

versely every normal subgroup is the kernel of a homomorphism. For a group

homomorphism f : G→ H, the kernel of f is the set of all elements the func-

tion f sends to the identity:

Ker(f) := {g ∈ G : f(g) = 1H}.

It is straightforward to show that Ker(f) is a subgroup of G. Now to show

it is normal: for any g ∈ G, g′ ∈ Ker(f),

f(g−1g′g) = f(g)−1f(g′)f(g) = f(g)−11Hf(g) = 1H ,

so g−1Ker(f)g ⊆ Ker(f). Replacing g by g−1 and vice versa, we get the

opposite inclusion.

Now, when we have a group G with a normal subgroup N , the cosets

of N in G form a group themselves.
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Definition 10. If N E G, then G/N is the group whose elements are the

cosets Ng (sometimes denoted [g]) and with group multiplication

[g][g′] = [gg′].

It is easy to see that the identity element is [1G]. This group is called the

quotient of G by N .

Thus, if N has finite index in G, then G/N is a finite group. Essentially,

the quotient is the group where we have identified all elements which are in

the same coset. Similarly, if we have a group homomorphism f : G→ H, then

G/Ker(f) is a ‘copy’ of G where we have identified the elements which have

the same image under f . Furthermore, if f is an onto group homomorphism,

then G/Ker(f) ' H.

By analogy with the above, we can also talk about the quotient of a group

(or indeed a monoid) by a congruence ∼ (a congruence is just an equivalence

relation which agrees with the group operation, so that if m1 ∼ n1 and

m2 ∼ n2 then m1 · m2 ∼ n1 · n2). In that case, for any element m of the

monoid M , [m]∼ = {n ∈M : m ∼ n} (hence the notational similarity to the

definition above).

We can now define group presentations properly:

Definition 11. We say 〈A|R〉 is a presentation for a group G (and write

G = 〈A|R〉) if A is a generating set for G, R is a set of elements of

Σ∗ = (A ∪ A−1)∗, and G is isomorphic to the quotient F/Ker(π) where:

• F is the free group 〈A| 〉generated by A, and

• π : F → G is the group homomorphism sending each element of R to

the identity.
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2.1.3 Special kinds of groups and operations on groups

There are many ways to construct new groups from old ones, easily express-

ible in terms of presentations.

We have seen the definition of a free group, and noted that for every

cardinality of generating set there is one free group up to isomorphism. Other

types of groups which will be useful in this thesis are the following:

Definition 12. A cyclic group is a group generated by one element only.

Note that in such a group everything is determined by the order of the

generator, i.e. how many times it must be multiplied by itself to give the

identity (if such a number exists). Hence for example 〈a|a3〉 is a cyclic group

of order three, with only three elements: the identity, a, and a2. If the

generator does not have finite order, we get 〈a| 〉, which is also the free

group on one generator, and is often denoted by Z. It is fairly easy to prove

that given a value in n ∈ N∪{∞}, the cyclic group of order n (i.e. the group

generated by a single element of order n) is unique up to isomorphism. The

cyclic group of finite order n will often be denoted by either Zn or Z/nZ.

If an element of a group has finite order then it is called a torsion element.

A torsion-free group is one which has no torsion elements. As a side note:

surprisingly, a finitely generated group where all elements are torsion can still

be infinite - this was an famous problem called the general Burnside problem

which stayed open for six decades until Golod and Shafarevitch answered it

in the negative in 1964 in [16] (see also Tarski monster groups [45] which

constitute an interesting class of examples of these types of groups).

Another type of group where elements interact in a specific way is the

following:

Definition 13. An abelian group is a group G where for all generators a

and b, ab =G ba.

Note that this means that in an abelian group any two elements com-

mute, as every element has an expression as products of generators and their
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inverses.

We will be particularly interested here in groups which have large free,

cyclic or abelian subgroups. In general, we have:

Definition 14. If P is a property of groups and G is a group with a sub-

group H of finite index such that H has property P , then G is said to be

virtually P .

Thus groups with finite index free, cyclic or abelian subgroups are called

virtually free, virtually cyclic and virtually abelian respectively.

We have seen above how to get a new group from an old one by quotienting

out a normal subgroup. This, in analogy to division, gives us a “smaller”

group. We will now see ways of combining two groups into a “larger” one.

Definition 15. Let G1 = 〈A1|R1〉 and G2 = 〈A2|R2〉 be two groups such

that A1 ∩ A2 = ∅. The free product of G1 and G2, denoted G1 ∗ G2, is the

group with presentation 〈A1 t A2|R1 ∪ R2〉. This can also be generalised to

arbitrarily many groups {Gi : i ∈ I}, in which case we write the free product

as ∗i∈IGi.

Thus in the free product, the old generators interact as they used to,

but no interaction between the generators of the different component groups

occurs. On the other hand, in the direct product, we stipulate that the

generators of the factors commute with each other (but there are no other

interactions). Thus:

Definition 16. Let G1 = 〈A1|R1〉 and G2 = 〈A2|R2〉 be two groups such that

A1 ∩ A2 = ∅. The direct product of G1 and G2, denoted G1 × G2, is the

group with presentation 〈A1 t A2|R1 ∪R2 ∪ [A1, A2]〉, where

[A1, A2] = {a−1
1 a−1

2 a1a2 : a1 ∈ A1, a2 ∈ A2}.

The free product is in some sense pasting two groups together without

letting them interact (or rather, pasting a copy of one group at each element
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of the other, and vice-versa). If we have two groups that have very similar

- isomorphic - subgroups, we can also paste them together, but identifying

the two isomorphic subgroups.

Definition 17. Let G and H be two groups with subgroups K1 and K2 re-

spectively, such that ψ : K1 → K2 is an isomorphism. Let N be the smallest

normal subgroup of G ∗ H containing kψ(k)−1 for each k ∈ K1. Then the

free product with amalgamation G ∗ψ H with respect to ψ is (G ∗H)/N .

In general, ψ is understood, K1 and K2 are identified as K, and the free

product with amalgamation is said to be the free product with K amalga-

mated and denoted G ∗K H.

A related concept is the HNN extension, where instead of two groups we

have a single group with two isomorphic subgroups. We paste a new copy of

the group to itself, identifying the two copies of the subgroup with the aid of

a new generator.

Definition 18. Let G = 〈A|R〉 be a group with two subgroups K1 and K2,

such that ψ : K1 → K2 is an isomorphism. Then the HNN extension of G

relative to ψ, denoted ∗ψG, is the group with presentation

〈A, t|(t−1ktψ(k)−1) ∀k ∈ K1〉.

Again, when ψ is understood, we write ∗KG.

Many of the above constructions can be expressed in terms of category

theory: the free group on the generating set A is the image of the set A under

the free functor for the category of groups. The direct and free products are

respectively the product and coproduct in the category of groups. The free

product with amalgamation is a pushout in the same category.

Lastly, we shortly mention the semidirect product, similar to the direct

product but making one of the component groups normal in the resulting

group. Formally, G = NoH if and only if NEG, G = NH and N∩H = {1}.
Note that H and G/N are then isomorphic.
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2.2 Cayley graphs and word problems

Let us return to generating sets of groups. The presentation map φ is onto but

never one-to-one: there are many words representing the same group element

(at the very least, φ(aa−1) = 1 = φ(bb−1) for any a, b in the generating set).

The question may therefore be asked as to which words represent the same

elements of the group. Because φ(a)−1 = φ(a−1) for any generator,

φ(w) = φ(v) ⇐⇒ φ(wv−1) = 1

for all words w, v (v−1 being just what one might expect - if v = a1 . . . an

then v−1 = a−1
n . . . a−1

1 ), and the above reduces to the simpler question of

which words represent the identity.

Definition 19. Let A be a finite generating set for G. Then the word prob-

lem of G with respect to A is the set

WA(G) = {w ∈ (A ∪ A−1)∗ : φ(w) = 1G} = φ−1({1G}).

Related to the word problem is the Cayley graph of a group with respect

to a generating set, a way of visualising the structure of a group.

Definition 20. Let G be a group and A a group generating set for G. The

Cayley graph of G over A is a labelled oriented graph where the set of nodes

is the set of elements of G, and g
a−→ h for a ∈ A ∪ A−1 if gφ(a) = h. We

denote it by Γ(G,A).

Throughout this thesis A will always be finite, so that in our Cayley

graphs all vertices will always have finite degree.

Example 21. Portions of the Cayley graphs of Z×Z = 〈a, b|aba−1b−1〉 and

of the free group of rank two F2 := 〈a, b| 〉 are depicted below. Only positive

labels are displayed - the inverse arrows go the opposite way.
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b // a2 b //

a

OO

a2b

b// ab−1 b //

a

OO

a

a

OO

b // ab

a

OO

b // . . .

. . .
b // a2 b //

a
OO

a
OO

b // ... b // a
b//

a
OO

ab = ba //
a
OO

b// b−1 b //
a
OO

1 b //
a
OO

b b //
a
OO

. . . b // 1 b //

a

OO

b

a

OO

b //

b // b //
a
OO

a−1 b //
a
OO

a−1b
a
OO

b // a

OO

a−1

a

OO

There is a close relationship between Γ(G,A) and WA(G). Take a word w

in WG(A), and starting at the node in Γ(G,A) representing the identity 1G,

start reading each letter of w along the arrows of the graph. Since

1Gφ(w) = 1G ⇐⇒ w ∈ WA(G),

after reading all of w we must be back at the origin node, and conversely

the label of a loop starting and ending at 1G must be a word in the word

problem. Hence the word problem with respect to A can be seen as the set

of labels of loops in the Cayley graph starting and ending at 1G.

The reader may have noticed that the shape of the Cayley graph changes

according to the generating set one takes for the group (for example, the

Cayley graph of Z under the presentations 〈a| 〉 and 〈a, b|a2 = b3, ab = ba〉)
are quite different. However, there is a geometric invariant to the general

shape of the Cayley graph: how it looks “from very far away”. This invariant

is called the number of ends of a graph.
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Before defining this, we need to define a concept of ‘distance’ in a Cayley

graph. For a directed graph Γ and two nodes x and y, we define the distance

dΓ(x, y) between them to be the length of the shortest directed path between

them. However, since in a Cayley graph for any edge labelled a from vertex x

to vertex y we have another edge labelled a−1 from y to x, we do not need to

specify that the path be directed. The distance function defined above then

truly becomes a metric: symmetric and satisfying the triangular inequality.

Definition 22. Let Γ be a graph with a designated origin vertex o. Define

for every n ∈ N the ball with centre o and radius n as:

B(o, n) = {x ∈ V (Γ) : dΓ(o, x) 6 n}.

Definition 23. Let Γ be a connected locally finite graph (i.e. a connected

graph where any node has only finitely many edges connected to it) and let o

be a vertex designated as the origin. Let B(o, n) be as in Definition 22 above.

Define Γ(n) := Γ − B(o, n) and denote by cc
(
Γ(n)

)
the number of connected

components of Γ(n). Then the number of ends of Γ is

e(Γ) := lim
n→∞

cc
(
Γ(n)

)
.

It is not difficult to see that the sequence has a limit: instead of connected

components of Γ(n), consider infinite connected components only. The limit

of that sequence as n goes to infinity is the same as the limit of {cc(Γ(n))}n,

as finite connected components will eventually be fully contained inside a ball

and taken away. The sequence of infinite connected components is strictly

non-decreasing as n goes to infinity: each successive removal of a bigger ball

either disconnects an existing infinite component into two components, at

least one of which is infinite, or leaves the infinite component connected.

Hence the limit e(Γ) exists, though it may be infinite. See [41] for example.

We state the following theorem and only sketch its proof for now - a full

proof will be given in Chapter 4.
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Theorem 24. If A and B are two finite generating sets for the same group G,

then Γ(G,A) and Γ(G,B) have the same number of ends.

Proof Sketch: The “translation” of elements of A ∪ A−1 into words over the

alphabet B have a maximal length. Therefore, when changing generating

sets for the Cayley graph, the distance between two points cannot increase or

decrease by more than a constant factor (we then call the two graphs ‘quasi-

isometric’). Therefore the number of ends cannot increase or decrease. �

We will see more about ends of graphs and of Cayley graphs in particular

in Chapter 4.
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Chapter 3

Formal languages:

correspondences with word

problems and groups

Here we introduce the five main classes of languages we shall be referring

to in this thesis: the classes of regular, one-counter, context-free, recursive

and recursively enumerable languages. All of these will be given automata-

theoretic definitions. It is also possible to define some of them in terms

of generating grammars, however we find the automata-theoretic definitions

more useful for the purposes of this thesis.

After describing these classes of formal languages, we make the connection

with groups clear. Given a group G and a finite generating set A for it, we

see that the word problem of G with respect to A is a formal language over

the alphabet Σ = A∪A−1. The word problem, as it determines which words

represent the same group element, gives us information on the interaction

of elements within the group. It should come as no surprise, then, that the

study of how complicated a word problem is would give us some information

about the algebraic structure of the group: we will see later that there are

various correspondences between the algebraic structure of a group and the
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formal language class its word problems are in.

We shall make clear why we speak in particular about regular, one-

counter, context-free, recursive and recursively enumerable languages. These

classes are special because of the various closure properties they enjoy. Next,

we will explain why choosing these classes is an advantage when considering

groups. In particular, the analysis of group structure as relating to word

problems would be quite chaotic if it were the case that a group could have

one word problem in a particular class of languages and another word prob-

lem not in that class.

3.1 Automata and formal languages

As we mentioned in Chapter 2, a (formal) language L over an alphabet Σ is

just a subset of the free monoid Σ∗. Central to the study of formal languages

is the study of how complicated they are, and this is measured by the model

of computation required to ‘recognize’ such a language. Essentially, given

a computational model, for example a type of automaton which is designed

to give an answer ‘yes’ or ‘no’ on an input word, the question is whether

we can construct an automaton of that type which will answer ‘yes’ on all

words of L and ‘no’ on all other words. We say then that the automaton

recognizes L. Thus we classify formal languages by the types of automata

which are capable of recognising them.

The simplest type of automaton is the (non-deterministic) finite automa-

ton, called an NFA: it has a finite number of states, and transitions labelled

by letters of a finite alphabet. A start state determines where we should

start reading the input word, and a finite number of final states determine

where it should end in order to be accepted. Thus, a word is accepted by

the automaton if there is a path through the automaton starting at the start

state, ending at a final state, and whose sequence of transitions spells out

the input word. The formal definition is given below.
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Definition 25. A (non-deterministic) finite automaton or NFA A is a quin-

tuple (Q,Σ, δ, s, F ) where

• Q is a finite set (of states),

• Σ is a finite set (of input symbols),

• δ ⊆ Q× (Σ ∪ {λ})×Q is a ternary relation (the transition relation),

• s ∈ Q is a designated state (the start state) and

• F ⊆ Q is a designated finite set of states (the final or accept states).

The automaton A is said to accept or recognize a word w ∈ Σ∗ if (s, w, f) is

in the reflexive transitive closure of δ for some f ∈ F , and is said to reject

it otherwise. The set of words accepted by A is denoted L(A).

Definition 26. A formal language L ⊆ Σ∗ is said to be regular if there is a

finite automaton A such that L = L(A).

Note that this model is non-deterministic - at a state q, there may be

more than one outgoing transition with the same label. However, it turns

out that making the model deterministic (i.e. making δ a function rather

than a relation and prohibiting transitions labelled by λ) does not change

the expressiveness: for every non-deterministic finite automaton there is a

deterministic one (called a DFA) recognizing the same language, so we still

obtain the same class of languages.

Definition 27. We denote by REG the class of all regular languages.

A finite automaton has no memory, in the sense that at any given point

it doesn’t have any more information than the state it is in. As such, the

expressiveness of such a formalism is restricted. For example, a finite au-

tomaton cannot “count” beyond its set of states, so to speak. Hence the

language {anbn : n ∈ N} over two symbols a and b is not regular, because no
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finite automaton can keep track of the number of as long enough to compare

it to the number of bs. To remedy this situation, we can add some memory

to the finite automaton. Let us start with the most general way of adding

memory: we add to the finite automaton a ‘last in first out’ stack, which can

contain a certain number of stack symbols, and a bottom marker at its very

bottom. The automaton then acts more or less like a finite automaton, ex-

cept that now the possibility of taking a transition at a state can be restricted

by the symbol on the top of the stack. Furthermore, at each transition we

are allowed to push and pop some symbols on and off the top of the stack

(see the rules governing this below).

Definition 28. A pushdown automaton A is a sextuple (Q,Σ,Γ, δ, s, F )

where

• Q is a finite set of states,

• Σ is a finite set of input symbols,

• Γ is a finite set of stack symbols, including the bottom marker #,

• δ ⊆ Q× (Σ ∪ {λ})× (Γ ∪ {λ})×Q× Γ∗ is the transition relation1,

• s ∈ Q is a designated state (the start state) and

• F ⊆ Q is a designated set of states (the final or accept states).

We require it to satisfy

(q, a,#, r, γ) ∈ δ ⇒ γ ∈ {Γ− {#}}∗#

and

(q, a, g, r, γ) ∈ δ, g ∈ (Γ ∪ {λ})− {#} ⇒ γ ∈ {Γ− {#}}∗.
1Essentially, this is a tuple consisting of the current state, the symbol we’re reading,

the top of the stack (which we pop off), the next state, and the symbols we will push onto
the stack.
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In other words, the stack always contains # at the bottom only, followed by

a certain number of stack symbols other than #.

A configuration is a triple in Q× Σ∗ × {Γ− {#}}∗#, keeping track of

the state we are currently in, the portion of the input word remaining to be

read and the current configuration of the stack (read from top to bottom).

We inductively define a binary relation � on the configurations as follows:

(q, aβ, gγ) � (r, β, θγ) if a ∈ Σ and (q, a, g, r, θ) ∈ δ

and

(q, β, gγ) � (r, β, θγ) if (q, λ, g, r, θ) ∈ δ.

Writing �∗ for the reflexive transitive closure of �, we then say that A accepts

a word α if

(s, α,#) �∗ (f, λ, γ#)

for some γ ∈ {Γ− {#}}∗, f ∈ F .

Note that the acceptance condition is the same as that for a finite au-

tomaton - there is no need for the stack to be empty when we have finished

reading the input word. Again, this does not make a difference in terms of

computational power; for every pushdown automaton that accepts by final

state only, we can construct a pushdown automaton that accepts by final

state and empty stack by adding to every final state a λ-transition (a tran-

sition reading nothing) that exclusively pops symbols off the stack until it

reaches the bottom marker.

Definition 29. A formal language L is said to be context-free if there is a

pushdown automaton A such that L = L(A). The class of all context-free

languages is denoted by CF .

The augmentation in memory brings a great increase in expressiveness:

for example one can now recognize the language L = {anbn : n ∈ N}. But

in fact we don’t even need all this memory in order to recognize L; a single
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stack symbol would suffice. We would just have to push the symbol onto the

stack each time an a is read, and to pop it off each time a b is read. With

this in mind, we make the following definition:

Definition 30. A one-counter automaton is a pushdown automaton whose

stack alphabet Γ = {#, c} contains only one symbol c apart from the bottom

marker.

For all intents and purposes, in a one-counter automaton the stack can be

represented simply by a natural number. This model is strictly weaker than

a pushdown automaton. Although we can now recognize languages such as

{anbn : n ∈ N}, we can still only recognize languages where we are counting

one thing at a time (or comparing, such as the number of as and bs above).

For example, consider the language {aibjcjdi : i, j ∈ N} over four symbols

a, b, c, d: a one-counter automaton is too weak to recognize it. Intuitively,

this is because we have to choose whether to keep track of the number of as

or bs in the stack initially; if we don’t, then the only thing we will be keeping

track of is the sum i + j, and this level of detail is not enough (we will end

up accepting a word not in L). We need more than one counter to recognize

this language - we in fact need the full power of a pushdown automaton

to recognize it (intuitively, push a certain symbol while reading as, then a

different symbol when reading bs. We can now match the cs with the bs

and the ds with the as by popping them off the stack due to the use of two

different symbols).

Definition 31. A formal language L is said to be one-counter if there is a

one-counter automaton A such that L = L(A). The class of all one-counter

languages is denoted by OC.

Lastly, we define recursive and recursively enumerable languages. These

are often more formally defined in terms of Turing machines accepting them

- as such they are more powerful than all the classes of automata previ-

ously mentioned. However, for the rest of the thesis expressing algorithms in
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terms of Turing machines would be too complicated and would obscure the

intuition behind them. As a consequence we declare ourselves proponents

of the Church-Turing thesis and will describe all our algorithms in natural

language.

Definition 32. A language L ⊆ Σ∗ is said to be recursive or decidable2

if there is an algorithm which, given w ∈ Σ∗, outputs “yes” if w ∈ L and

outputs “no” if w /∈ L.

L ⊆ Σ∗ is said to be recursively enumerable if there is an algorithm

which, given w ∈ Σ∗, outputs “yes” if and only if w ∈ L (but which may not

terminate otherwise).

It is clear that a subset of Σ∗ is recursive if and only if both it and its

complement in Σ∗ are recursively enumerable.

The class of recursive and recursively enumerable languages will be de-

noted by R and RE respectively. We have the following strict inclusions:

REG ⊂ OC ⊂ CF ⊂ R ⊂ RE .

We have already seen witnesses for the strictness of the first two inclu-

sions. A very famous example for the strictness of the last one is the halting

set: the set of program/input pairs such that the given program halts on the

given input is recursively enumerable but not recursive. To see these pairs

as a formal language all that is needed is to encode the pairs into a specific

alphabet. We only need a one-letter alphabet to find an example of a recur-

sive language which is not context-free: the language L = {ap : p is prime} is

well known to be recursive, as we have an algorithm to determine whether a

number is prime or not. However it can be shown not to be context free: one

possible method is to use the pumping lemma for context-free languages,

which we will not state here. The intuitive explanation is that if this set

2One sometimes also says solvable about a language which is the word problem of a
group.
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were context-free then the sequence of primes would have an arithmetic sub-

sequence.

3.2 Properties of classes of formal languages

We will list here the properties of the five classes of languages mentioned.

We describe which properties are often grouped together and given a special

name, and also which are consequences of other properties. For more details

and proofs, see pages 270-284 of [26].

Definition 33. A class F of languages is said to be a cone or full trio if:

1. It is closed under homomorphism, i.e. if L ⊆ Σ∗ is an element of F
and ψ : Σ∗ → Ω∗ is a monoid homomorphism, then ψ(L) ∈ F .

2. It is closed under inverse homomorphism, i.e. if L ⊆ Ω∗ is an element

of F and ψ : Σ∗ → Ω∗ is a monoid homomorphism, then ψ−1(L) ∈ F .

3. It is closed under intersection with regular languages, i.e. if when

L ⊆ Σ∗ is in F and R ⊆ Σ∗ is a regular language, then L ∩R ∈ F .

Definition 34. A class of languages is called a trio if it is closed under

inverse homomorphism, intersection with regular languages, and λ-free ho-

momorphism, meaning homomorphisms where no letter is sent to the empty

word λ.

Definition 35. A class of languages is called a (full) semi-AFL if it is a

(full) trio and is furthermore closed under union.

Definition 36. A class F of languages is called a (full) AFL if it is a (full)

semi-AFL and furthermore closed under

1. Concatenation: If L,K ∈ F , then so is LK := {lk : l ∈ L, k ∈ K}.
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2. Kleene star: If L ∈ F , then so is L∗ := {λ} ∪
⋃∞
n=1 L

n (where Ln is L

concatenated with itself n times).

There are a few other properties that are worth mentioning here and that

will be used at some point in this thesis.

Definition 37. A generalized state machine or GSM M is a finite state

automaton (Q,Σ,∆, δ, s, F ) with an output alphabet ∆ such that each transi-

tion can have an output word. More specifically, δ is a function from Q× Σ

to finite subsets of Q × ∆∗, where (p, w) ∈ δ(q, a) is taken to mean that if

the automaton is in state q reading a, it may chose to move to state p while

outputting w. We then extend δ to Q× Σ∗ inductively as expected:

• δ(q, λ) = {(q, λ)} for all q ∈ Q, and

• For each x ∈ Σ∗ and a ∈ Σ, (p, w) ∈ δ(q, xa) if and only if there are

w1, w2 ∈ Ω∗ and a state r ∈ Q such that w = w1w2, (r, w1) ∈ δ(q, x)

and (p, w2) ∈ δ(r, w1).

Thus for a word accepted by the GSM, the output word is the concate-

nation of all outputs of its transitions. So the GSM M defines a mapping

θM : Σ∗ → ∆∗, which sends a language L to the language

{y ∈ ∆∗ : (p, y) ∈ δ(s, x) for some x ∈ L, p ∈ F}

and which is called a GSM mapping.

The function θ−1
M : ∆∗ → Σ∗ sending a language L ⊆ ∆∗ to

{x ∈ Σ∗ : (p, y) ∈ δ(s, x) for some y ∈ L, p ∈ F}

is in turn called an inverse GSM mapping (note that this is not a true func-

tional inverse).

A GSM mapping is said to be λ-free if no transition has empty output.
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Any monoid homomorphism can be seen as a GSM mapping. Also, for

any language L and regular language R, one can define a GSM mapping

sending L to L∩R. On the other hand, any GSM mapping can be expressed as

a combination of homomorphisms, inverse homomorphisms and intersections

with regular languages, and any trio is closed under inverse GSM mappings

(see [26] Theorem 11.1 and 11.2). Hence:

Proposition 38. A class of languages is closed under GSM mappings and

inverse GSM mappings if and only if it is a cone.

Lastly, we define substitutions:

Definition 39. A substitution is a monoid homomorphism from Σ∗ for an

alphabet Σ to the monoid ℘(∆∗) consisting of all languages over that alphabet,

under the concatenation operation. Thus, for a language L ⊆ Σ∗ it substitutes

a letter of a word in L by another language K ⊆ ∆∗.

A substitution is said to be a regular substitution if all languages replacing

letters of the source words are required to be regular.

Proposition 40. REG,OC, CF and RE are full AFLs. R is an AFL only,

as it is not closed under arbitrary homomorphisms.

Table 3.1 keeps track of which formal language class has which properties.

We include in it the class of terminal Petri net languages (PNL), which will

only be introduced in Chapter 6, for reference. By ‘substitution’ we mean

substitution of languages of a class into languages of the same class.
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Table 3.1: Closure properties of language classes

Property REG OC CF PNL R RE
−1 homomorphism X X X X X X

λ-free homomorphism X X X X X X
homomorphism X X X × × X
∩REG X X X X X X

λ-free GSM X X X X X X
GSM X X X × × X
−1 GSM X X X X X X
Union X X X X X X

Concatenation X X X X X X
Kleene ∗ X X X × X X

Intersection X × × X X X
Complement X × × × X ×

Regular substitution X X X λ-free X X
Self-substitution X × X × × X
λ-free substitution X × X reg X X

3.3 Word problems of groups and their lan-

guage classes

The aforementioned properties of our five classes of languages will have im-

portant consequences in terms of groups having word problems in those

classes. The most important among these is closure under inverse homo-

morphism. This property of a language class F ensures that even though

the word problems with respect to two generating sets can differ vastly, they

cannot differ so much that one lies in the class F and the other does not.

The following is a well-known result (see [21] and [22] for example):

Theorem 41. Let G be a finitely generated group and φ : (A ∪ A−1)∗ → G

and ψ : (B∪B−1)∗ → G two surjective monoid homomorphisms. Then there

is a monoid homomorphism θ : (A∪A−1)∗ → (B∪B−1)∗ such that ψ ◦θ = φ.

This essentially means that for a class of languages closed under inverse
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homomorphisms, translating into another alphabet does not take us out of

the class. This gives us a very nice property (see [22] for example):

Proposition 42. If a class of languages F is closed under inverse homo-

morphism and the word problem of a group G with respect to some finite

generating set lies in F then the word problem of G with respect to any finite

generating set lies in F .

This now means that for any class F which is closed under inverse homo-

morphisms and any finitely generated group G we can talk about “the” word

problem of G being in F without any reference to the choice of generating

set. In this case we will (mildly) abuse notation and write G ∈ F .

Definition 43. Let F be a class of languages closed under inverse homo-

morphisms, G a finitely generated group. The set of F-subsets of G is

F(G) := {S ⊆ G : ∃ surjective monoid homomorphism φ s.t. φ−1(S) ∈ F}.

So G ∈ F means that {1G} ∈ F(G).

The other properties of a cone also help preserve membership in a cone

when performing algebraic operations on groups. All the classes mentioned

before thus satisfy the following two theorems. In their statements, we specify

only the minimum conditions on language families for them to hold.

Theorem 44. Let F be a class of languages closed under inverse homomor-

phism and intersection with regular languages. Let G ∈ F , and let H be a

finitely generated subgroup of G. Then H ∈ F as well.

Proof. See Lemma 2 in [25]: if H is finitely generated, it has a finite gen-

erating set A. Choose a generating set B for G that includes A. Then the

word problem of H is just

WA(H) = WB(G) ∩ (A ∪ A−1)∗

which is in F since (A ∪ A−1)∗ is regular.
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Note that arbitrary subgroups of finitely generated groups are not neces-

sarily finitely generated. However, finite index subgroups are. So the above

theorem holds in particular for finite index subgroups H. How about the

opposite? If we know that H is in F , when can we say that G ∈ F?

Theorem 45. Let F be a class of languages closed under union with regular

sets and inverse GSM mappings. Let H be a finitely generated group and

let G be such that [G : H] <∞. Then G ∈ F .

Proof. See Lemma 5 in [25]. The idea is that we can write a GSM mapping

which essentially keeps track of which coset ofH inG we are in, and translates

a word in a coset Hg to a word wg where w represents a word in H.

Apart from closure properties of classes of groups with word problem

in a certain language family, we also have a classification of the algebraic

structure of such groups. The properties of groups whose word problem lies

in a certain class of languages have been studied for a long time. One of the

first correspondences in this direction is Anisimov’s in [1]. We only sketch

the proofs below.

Theorem 46. A group is finite if and only if its word problem is a regular

language.

Proof Sketch: First done in [1]; see [43] for a simple proof. The idea for the

left to right direction is to use the Cayley graph of the group as the finite

automaton, with the unit being the start and accept state. �

Theorem 47. A group is virtually free if and only if its word problem is a

context-free language.

Proof Sketch: See [43]. In fact, Muller and Schupp proved only that a group

is virtually free if and only if it is context-free and accessible (see [43] itself

for the definition of accessibility). Dunwoody proved two years later in [9]

that any finitely presented group is accessible. It was already known that
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context-free groups are finitely presented (see [2]), so we have the result in

its current form. Muller and Schupp’s proof uses the theory of ends and

in particular Stallings’ theorem on ends of groups (see Theorem 80) in an

essential way. �

Theorem 48. A group is virtually cyclic if and only if its word problem is

a one-counter language.

Proof. See [21]. Using the fact that one-counter groups are context-free,

and the previous theorem, Herbst proved that the normal free subgroup of

finite index in a one-counter group (we can take the free subgroup of finite

index in a virtually free group to be normal) must have a single generator,

because the Dyck language on two sets of parenthesis generates CF as a cone.

The converse is more involved and follows from considerations about rational

subsets, and from a result we state in Chapter 4 in the proof of Theorem 54.

An intuitive explanation of why virtually cyclic groups are one-counter is

given below.

The intuition behind the previous theorems is as follows: with a regular

language, one is dealing with a NFA, a machine with no memory. Thus

after a certain length of word, one can no longer distinguish between group

elements representing the identity and other elements (in an argument similar

to that of the pumping lemma for regular languages). Only finitely many

group elements are therefore representable in this way.

When a group is virtually cyclic, we can see each group element as having

a cyclic component and a finite component indicating which coset of the

cyclic subgroup it is in. In other words a group element has a normal form

zkg where z is the element of infinite order generating the finite index cyclic

subgroup, and g is a coset representative. Intuitively, we use the stack to

keep track of the power of z, and the states of the one-counter automaton to

keep track of the coset representatives. Similarly, for a virtually free group,

we keep track of the cosets in the states of the pushdown automaton, but
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since we now have various stack symbols, we can express elements of the

free group in the stack: we can test whether a word represents the identity

in a free group by writing down one symbol at a time and performing free

reductions whenever possible; the word represents the identity if and only if

we end up with the empty word, and this procedure can be implemented in

a natural way using a stack.

Herbst [21] also showed that, if F is a cone that is a subset of the context-

free languages, then the class of groups whose word problem lies in F is either

the class of groups with a regular word problem, the class of groups with a

one-counter word problem or the class of groups with a context-free word

problem. There are therefore no more classes of groups corresponding to

cones below the context-free languages.
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Chapter 4

Pairs of groups and their ends

4.1 Definitions and motivation

Our aim here is to look at a generalization of the word problem: instead

of asking which words over the generators of a group represent the identity,

we ask which words represent a given subgroup. This is sometimes called

the membership problem, but we will call it the word problem of the pair

of groups. There are many versions of the membership problem - some

have studied it with respect to rational subsets, some study the generalized

membership problem, where the subgroup is not specified, and the question

asks if the problem is decidable for every finitely generated subgroup. Some

work in these areas has been done by Markus Lohrey, Benjamin Steinberg,

Zeph Grunschlag, Mark Kambites, Pedro Silva and Claas Röver, amongst

others.

We mostly follow the terminology used in [5].

Definition 49. Let G be a finitely generated group, K 6 G a subgroup. Let

φ : Σ∗ → G be a finite group presentation. The word problem of the the pair

(G,K) with respect to φ is the language

L(G,K, φ) := {w ∈ Σ∗|φ(w) ∈ K}.
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The language above clearly depends on the generating set we are taking

for G. As with single groups, we will use the generating set and presentation

interchangeably, sometimes writing L(G,K,A) for a finite generating set A,

or even L(G,K,Σ) where Σ = A ∪ A−1. As with ordinary word problems,

closure of the language class under inverse homomorphism is enough to make

the class of the word problem of a pair independent of choice of generating

set (the proof is also much the same here):

Lemma 50. Let F be a class of languages closed under inverse homomor-

phism. If L(G,K, φ) ∈ F for some finite presentation φ, then L(G,K, ψ) is

in F for every finite presentation ψ of G.

Proof. This is a reformulation of the discussion around Lemma 2.1 in [22].

Let φ : Σ∗ → G and ψ : Ω∗ → G be the two presentations. It is well

known that since these are two surjective monoid homomorphisms, then there

is a “translation”, a monoid homomorphism θ : Ω∗ → Σ∗ such that φ◦θ = ψ.

Now θ−1(L(G,K, φ)) = L(G,K, ψ), and because F is closed under inverse

homomorphism and L(G,K, φ) ∈ F , L(G,K, ψ) is also in F .

We can now simply talk about the pair (G,K) being in F when F is a

class of languages closed under inverse monoid homomorphisms. Recall that

all three language classes mentioned in this chapter (the class REG of regular

languages, the class CF of context-free languages, and the class OC of one-

counter languages) are cones and hence closed under inverse homomorphism.

In this chapter we want to learn about what the language class of the

word problem of a pair of groups can tell us about the structure of the pair.

For this, we study Schreier graphs, the analogue to Cayley graphs for pairs

of groups, and the operations on groups which preserve membership of a pair

in a class of languages.

Another question we try to answer is the relation between (G,K) being

in a class F of languages and (G,KG) being in F , where KG is the normal

core of K in G (i.e. KG is the largest normal subgroup of G contained in K
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- see Definition 73). This is because the normal core is closely related to G

being realized as a syntactic monoid (see Section 4.5 for further details).

We will first give some general facts about pairs of groups. Some results

are gathered from previous work of T. Herbst, D. Holt, M. Owens and R.

Thomas. Apart from these, our main inspiration is the paper [5], which

gathers many of these results in the specific case of context-free groups.

Many of them can be generalized from context-free languages to arbitrary

cones without much trouble. Where more specific results are true for context-

free and one-counter pairs, we will describe them.

We will then review some of the work Claas Röver has done in [53] - he

looks at which groups can be syntactic monoids of languages in a certain

class.

In an effort to use the theory of ends to help us answer the above ques-

tions, we also make a brief foray into this theory which was introduced in

Chapter 2, where an invariant of the geometry of a pair of groups can tell

us something about their algebraic relationship. End theory was mainly pio-

neered by Freudenthal and Hopf, and later Stallings proved a very important

result. Much work on ends of pairs of groups has been done by P. Scott and

G.A. Swarup.

4.2 General facts, regular pairs

4.2.1 Schreier graphs and their properties

When we are talking about pairs of groups, the graph to be considered is no

longer the Cayley graph but a generalization: the Schreier graph of a group

with respect to a subgroup.

Definition 51. Let G be a group and A a finite generating set for G, φ its

presentation map. Let K be a subgroup of G. The Schreier graph Γ(G,K,A)

of the pair (G,K) over A is a labelled oriented graph where the set of nodes
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is the set of cosets of K in G, and Kg
a−→ Kh for a ∈ A ∪A−1 if and only if

Kgφ(a) = Kh.

This agrees with the definition of the Cayley graph in a natural way: if K

is the trivial subgroup, then the Schreier graph is just the Cayley graph of G.

Furthermore, if K is normal in G, then the Schreier graph of (G,K) is in

fact isomorphic to the Cayley graph of the quotient group G/K (over the

same generating set1). In fact, we have an even more general result, which

is folklore but which we spell out here:

Proposition 52. Let G be a finitely generated group, Σ a set closed under

inversion generating it, and φ its presentation map. Let K 6 G, and let

N 6 K be a normal subgroup of G. Then the Schreier graph Γ(G/N,K/N,Σ)

is isomorphic to the Schreier graph Γ(G,K,Σ).

Proof. The map ψ : Γ(G,K,Σ)→ Γ(G/N,K/N,Σ) defined by

Kg 7→ (K/N)(Ng)

is easily shown to be a labelled graph isomorphism.

• It is well-defined and one-to-one: for all x, y ∈ G,

Kx = Ky ⇐⇒ xy−1 ∈ K

⇐⇒ Nxy−1 ∈ K/N

⇐⇒ NxNy−1 = Nx(Ny)−1 ∈ K/N because N is normal

⇐⇒ (K/N)(Nx) = (K/N)(Ny).

• It is clearly onto.

1Technically, if {a1, . . . , an} is the generating set for G, then we are taking the gener-
ating set {Ka1, . . . ,Kan} for G/K.
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• It is a labelled graph homomorphism: assume that Kx
a−→ Ky for a

generator a of G. Here we will identify a with its image φ(a) in G, to

ease clutter. We will show that (K/N)(Nx)
Na−−→ (K/N)(Ny).

Kx
a−→ Ky ⇐⇒ Kxa = Ky

⇐⇒ xay−1 ∈ K

⇐⇒ Nxay−1 ∈ K/N

⇐⇒ (Nx)(Na)(Ny)−1 ∈ K/N because N is normal

⇐⇒ (K/N)(Nx)(Na) = (K/N)(Ny)

⇐⇒ (K/N)(Nx)
Na−−→ (K/N)(Ny).

There are more analogies to be made with the Cayley graph. For nodes

x, y ∈ Γ(G,K,Σ) define the language

Lx,y := {w ∈ Σ∗ : xφ(w) = y}.

This is the language of labels of paths in the Schreier graph leading from

node x to node y.

We can take the origin in the Schreier graph Γ(G,K,Σ) to be the coset K.

Just as in a Cayley graph, it is obvious that L(G,K,Σ) is just LK,K . What

can we say about Lx,y for other nodes in the Schreier graph? First we will

need the following definition:

Definition 53. Let G be a finitely generated group. For any S ⊆ G, we

define the set of rational subsets of G as follows: S ∈ RAT (G) if and only

if

∃φ onto monoid homomorphism, ∃L regular s.t. φ(L) = S.

Note that there are alternative definitions of rational subsets (see [21] for

example) but they are equivalent to this one in the case of finitely generated
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groups.

The following result was proven in [5] for context-free languages but we

give a different proof for general families of languages:

Theorem 54. If F is closed under concatenation with regular languages,

and (G,K) ∈ F , then LK,Kg ∈ F for all g ∈ G.

Proof. For every g ∈ G, {g} ∈ RAT (G): just take a singleton consisting of

a word representing g. The image of this set under φ is {g}, and it is a finite

and hence regular set.

In [21], it is proven that for any language family F closed under con-

catenation with regular languages, if R ∈ RAT (G) and T ∈ F(G), then

RT, TR ∈ F(G). We know by assumption that K ∈ F(G). Hence for any

g ∈ G, Kg ∈ F(G). But this means exactly that LK,Kg ∈ F .

As a corollary of the proof, since we can concatenate with rational subsets

both on the right and on the left, we have the following:

Corollary 55. If F is a family closed under concatenation with regular lan-

guages and (G,K) ∈ F , then (G, g−1Kg) ∈ F for any g ∈ G.

We shall see below that whether or not L(G,K,A) lies in a particular

cone does not change when we vary the generating set. We have a similar

result for Schreier graphs; essentially, the Schreier graphs for two generating

sets cannot be too different. Again, we have the more general result stated

in Theorem 58 below.

Recall the notion of distance in a Cayley graph, defined in Chapter 2. We

use the same metric for Schreier graphs. We now define quasi-isometry, which

tells us when two graphs have the same “coarse geometry”, i.e. whether they

look the same when squinted at from a distance. The following definition is

stated in terms of metric spaces.

Definition 56. Let (X, dX) and (Y, dY ) be two metric spaces, f : X → Y a

function. We say that f is a quasi-isometry if
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1. There is a constant α > 1 such that for all x, x′ ∈ X,

1

α
dX(x, x′)− α 6 dY (f(x), f(x′)) 6 αdX(x, x′) + α.

2. There is a constant α such that for all y ∈ Y there is x ∈ X such that

dY (f(x), y) 6 α.

The smallest constant α satisfying both conditions above is called the quasi-

isometry constant of f .

It is fairly straightforward to prove the following:

Theorem 57. Quasi-isometry is an equivalence relation over metric spaces.

Proof. See Proposition 11.39 in [41].

Theorem 58. Let G be a finitely generated group, and K 6 H 6 G such

that [G : H] <∞. Let S (closed under inversion) be a generating set for H.

Let T be a set of coset representatives of H in G, excluding the representative

for H. Then S ′ = S ∪ T ∪ T−1 is a group generating set for G.

Then the Schreier graphs Γ(H,K, S) and Γ(G,K, S ′) are quasi-isometric.

Proof. To simplify notation, we will set Γ := Γ(H,K, S) and Γ := Γ(G,K, S ′).

First note that with this setting of generating sets, Γ is a subgraph of Γ. The

quasi-isometry is therefore just the inclusion function, and we just need to

show the following two properties:

1. ∃α > 1 s.t. ∀Kh,Kh′ ∈ H/K,

1

α
dΓ(Kh,Kh′)− α 6 dΓ(Kh,Kh′) 6 αdΓ(Kh,Kh′) + α.

2. ∃α s.t. ∀Kg ∈ G/K,∃Kh ∈ H/K

dΓ(Kh,Kg) 6 α.

42



Note that in this case, H/K just denotes the set of cosets of K in H, as

K is not necessarily normal.

Since Γ is a subgraph of Γ, we have that dΓ(Kh,Kh′) 6 dΓ(Kh,Kh′) for

all Kh,Kh′ ∈ H/K, and we do not need to prove the second inequality of

property (1).

Let us prove (2). Let Kg ∈ G/K be any coset of K in G. g is in a certain

coset of H in G, say g ∈ Ht for t ∈ T . Then there is h ∈ H such that g = ht.

But then Kh
t−→ Kg, and therefore dΓ(Kh,Kg) 6 1. We can therefore take

α = 1.

Now for the first inequality of (1). Let Kh,Kh′ ∈ H/K. Look at a Γ-path

π of shortest length from Kh to Kh′. Some of the nodes on this path are in

H/K, some are not. Look at consecutive nodes Khi, Khi+1 in H/K on π,

where by “consecutive” we mean that any node (if any such node exists)

between Khi and Khi+1 on the path π is in (G/K) − (H/K). Look at the

following sets:

S,

{st−1 : s ∈ S ′, t ∈ T} ∩H,

{t1st−1
2 : t1, t2 ∈ T, s ∈ S ′} ∩H,

{ts : s ∈ S ′, t ∈ T} ∩H.

These are all finite sets, all of whose elements are in H, so there is an

upper bound to their shortest expression as words over S (in other words,

their expression in terms of generators of H and their inverses). Call this

upper bound N . Now, for each stretch of the path π between consecutive

H/K-nodes Khi and Khi+1, one of the following holds:

1. Khi and Khi+1 are really adjacent on π, i.e. Khi
a−→ Khi+1 is a portion

of π for a ∈ S ′, or
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2. There is at least one node in (G/K)− (H/K) between Khi and Khi+1

on π.

In the first case, since Khia = Khi+1, hiah
−1
i+1 ∈ K ⊆ H.

Therefore a ∈ H ∩ S ′ = S and this means that

dΓ(Khi, Khi+1) = dΓ(Khi, Khi+1) = 1.

In the second case, suppose the concerned portion of π is

Khi
a0−→ Kg1

a1−→ Kg2
a2−→ . . .

ak−1−−→ Kgk
ak−→ Khi+1

where Kg1, . . . , Kgk ∈ (G/K) − (H/K), a0, . . . , ak ∈ S ′. Recall that for

each Kgj where 1 6 j 6 k there is a Khij at distance one from it. In fact,

there is tj in T such that Khij
tj−→ Kgj and Kgj

t−1
j−−→ Khij . So we have the

diagram below:

Khi
ao //

6N ## ##

Kg1
a1 //

t−1
1
��

Kg2
a2 //

t−1
2
��

. . .
ak−1 // Kgk

ak //

t−1
k
��

Khi+1

Khi1
6N // //

t1

OO

Khi2
6N // //

t2

OO

. . .
6N// // Khik

6N

:: ::

tk

OO

Since all of a0t
−1
1 , t1a1t

−1
2 , . . . , tkak are in the sets mentioned above, there

are paths purely in Γ between Khi and Khi1 , Khi1 and Khi2 and so on,

whose lengths (in Γ) do not exceed N . So we have that

dΓ(Khi, Khi+1) 6 NdΓ(Khi, Khi+1)

in both cases.
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Denote the nodes of H/K along π by Kh,Kh1, Kh2, . . . , Khn, Kh
′. Then

dΓ(Kh,Kh′) 6 dΓ(Kh,Kh1) + . . .+ dΓ(Khn, Kh
′)

6 N (dΓ(Kh,Kh1) + . . .+ dΓ(Khn, Kh
′))

= NdΓ(Kh,Kh′),

because π is a shortest path in Γ and because the triangular inequality always

holds in a graph. We can now take α = max{1, N} and we are done.

Of course, taking G = H this shows that:

Corollary 59. The Schreier graphs of (G,K) with respect to two different

presentations/generating sets are always quasi-isometric. In particular, the

Cayley graphs of a group with respect to different generating sets are also

quasi-isometric.

4.2.2 Certain properties regarding cones and pairs

Now, there are a certain number of theorems we can state about word prob-

lems of pairs of groups which reside in a class of languages. Again, a proof of

the following theorem is given in Lemma 3.1 of [5], but we give a more general

and language-theoretic proof, whereas their proof is automata-theoretic and

is specific to context-free languages.

Theorem 60. Let F be family of languages closed under inverse homomor-

phism, G a finitely generated group and H a finitely generated subgroup of G.

Let φ : Σ∗ → G be a finite presentation of G and ψ : Ω∗ → H a finite pre-

sentation of H. Then for any subgroup K of G, if L := L(G,K, φ) ∈ F then

L′ := L(H,K ∩H,ψ) ∈ F .

Proof. We have essentially the same proof as in Lemma 50 above. The

diagram below commutes; ψ ◦ ι = θ ◦ φ on Ω∗ (where ι is just the inclusion

45



mapping). It is therefore straightforward to show that L′ = θ−1(L) and we

are done.

Σ∗
φ // G

Ω∗
θ

OO

ψ // H

ι

OO

Clearly, taking H = G in the theorem above, we get back Lemma 50.

Recall the similar result about Schreier graphs in the previous section - the

two are not unrelated. Intuitively, there is a bound to how much longer

paths can get in a Schreier graph with respect to another generating set.

If one thinks of the typical examples of cones - regular, context-free, one-

counter (corresponding to finite automata, pushdown automata and one-

counter automata respectively), this is nothing we cannot handle in the states

of the automaton, so we remain in the same class of languages.

Furthermore, keeping H 6 G and taking K 6 H, we also get that the

class of languages a word problem of a pair is in is closed under taking finite

index subgroups of the larger group:

Corollary 61. If F is closed under inverse homomorphism, K 6 H 6 G

and H is finitely generated, then

(G,K) ∈ F ⇒ (H,K) ∈ F .

The converse of this corollary is true when F is closed under inverse GSM

mappings and H has finite index in G:

Theorem 62. Let F be a family of languages closed under inverse GSM

mappings. Let G be a finitely generated group, and K and H two subgroups

such that K 6 H and [G : H] <∞. Then

(H,K) ∈ F ⇒ (G,K) ∈ F .
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Proof. This proof is taken from [25]. Since H has finite index in G, it is also

finitely generated. Call its set of generators (together with their inverses) Σ.

Let T be a set of coset representatives ofH inG, including 1. Complete Σ to a

generating set Ω forG by adding the set of representatives: Ω := Σ∪(T−{1}).
For each pair t ∈ T and y ∈ Ω∗, ty ∈ Ht′ for some t′ ∈ T ; pick an element

hty ∈ Σ∗ such that ty =G htyt
′. Now, the generalized sequential machine

mapping γ : Ω∗ → Σ∗T which takes every such ty to the corresponding htyt
′

clearly takes any word w over Ω to a word w′t′ indicating the coset of H w

is in. In other words, w′ ∈ Σ∗ and w =G w
′t′.

We now want to show that (G,K) = γ−1(H,K). Let w ∈ (H,K) be

an element whose γ-image is w′ ∈ (H,K). Then necessarily w′ ∈ Σ∗ ⊂ Ω∗

(as w must represent an element of K, which is in H). Since γ preserves

the element of G represented, w′ ∈ (G,K). Conversely, if w ∈ (G,K) then

γ(w) ∈ (H,K) as again, the coset representative must be unity.

Since (H,K) ∈ F , so is (G,K) = γ−1(H,K) since F is closed under

inverse GSM mappings.

Note that the classes of regular, one-counter and context-free languages

are all closed under inverse GSM mappings.

There are also some manipulations we are allowed to do to the smaller

group without changing the class of languages:

Theorem 63. Let F be a family of languages closed under finite unions and

concatenation with regular languages. Say K has finite index in H 6 G.

Then

(G,K) ∈ F ⇒ (G,H) ∈ F .

Proof. The idea of the proof is from [5] Lemma 4.11. Look at the Schreier

graph Γ := Γ(G,K, φ) for an arbitrary finite presentation φ. Take the finite

set H/K of cosets of K in H, and look at the nodes Kh corresponding to

these in Γ. Then L(G,H, φ) =
⋃
x∈H/K LK,x is a finite union of languages

in F (according to Theorem 54), so we are done.
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Thus the language class a word problem is in is closed under taking finite

extensions of the smaller group. Note that if we take K to be the trivial

subgroup then we get the following:

Corollary 64. If the word problem of G is in a language family F closed

under finite unions, and if K is a finite subgroup of G, then (G,K) ∈ F .

A remark that should be made here is that the converse to Theorem 63

does not hold: in Example 5.9 of [5] such a pair of subgroups is constructed

for the family of context-free languages.

We can also quotient out normal subgroups:

Theorem 65. Let F be a family closed under inverse homomorphisms. Let

K 6 G and let N be a normal subgroup of G contained in K. Then

(G,K) ∈ F ⇐⇒ (G/N,K/N) ∈ F .

Proof. Let π : G→ G/N be the natural projection, and let φ be the presen-

tation mapping for G.

(⇒) : φ ◦π is a monoid homomorphism giving a finite presentation of the

quotientG/N . Furthermore, (φ◦π)−1(K/N) = φ−1(K). So (G/N,K/N) ∈ F .

(⇐) : By assumption, there is a language in F mapping onto K/N via a

presentation ψ of G/N . But φ◦π is also a presentation of G/N , and since F
is closed under inverse homomorphism, φ−1(K) = (φ ◦ π)−1(K/N) ∈ F . But

this is exactly (G,K).

Finally, we have an expected result for regular languages: a pair is regular

if and only if the small group has finite index in the larger one. The proof is

essentially the same as Anisimov’s proof for the word problem [1].

Theorem 66. Let G be a finitely generated group and K a subgroup. Then

(G,K) ∈ REG ⇐⇒ [G : K] <∞.
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Proof. See [5] for a simple proof, essentially using the Schreier graph to define

the NFA. For a more algebraic proof, see [22].

4.3 Context-free pairs

As the class CF of context-free languages is a cone, and furthermore closed

under inverse GSM mappings, finite unions and concatenation with regular

sets, it satisfies all the properties listed in Section 4.2 above.

To go further, we will have to introduce some concepts relating to the

geometry of the Schreier graph of a pair of groups. Recall the concept of

balls of diameter n in a graph.

Definition 67. Let Γ be a graph with designated origin o. Recall that for

every natural number n

B(o, n) = {x ∈ V (Γ)|dΓ(o, x) 6 n}.

We say that Γ is a context-free graph with respect to F if there are only

finitely many isomorphism classes (as labelled graphs) of connected compo-

nents of Γ−B(o, n) across all ns.

Now, it turns out that this notion of context-freeness of graphs coincides

perfectly with our notion of a context-free language for pairs of groups. The

proof can be found in [5] and is modelled after (and generalizes) Muller and

Schupp’s 1985 paper [42] where they prove the same thing for Cayley graphs

rather than Screier graphs. More explicitly:

Theorem 68. The Schreier graph Γ(G,K, φ) is context-free in the above

sense if and only if the language L(G,K, φ) is context-free in the ordinary

sense. Furthermore, in this case L(G,K, φ) is deterministic context-free.

Proof. The left to right direction is contained in Theorem 4.2 and the right

to left direction in Theorem 4.6 of [5].
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We need an additional lemma to prove that any pair consisting of a virtu-

ally free group and its finitely generated subgroup is context-free (the overall

proof is mainly taken from [5] but the proof of the Lemma below is a bit

different):

Lemma 69. Let F be a finitely generated free group, K a finitely generated

subgroup. Then the pair (F,K) is context-free.

Proof. Let A be a finite generating set for F . Note that K inherits freeness

from G. From Remark 2.8 and Proposition 3.8 in [33], we know that the

set of all freely reduced2 words over A∪A−1 representing elements of K is a

regular language - call it L.

Now, to get the full membership problem of K in F (not just the freely

reduced words), we need to insert elements of WA(F ) into L. In fact, the

parallel insertion (L⇐ WA(F )) is enough. This operation is defined as:

(L1 ⇐ L2) =
⋃
u∈L1

(u⇐ L2)

for L1 ⊆ Σ∗, L2 ⊆ Ω∗ where

(u⇐ L2) := {v0a1 . . . akvk : aj ∈ Σ, vi ∈ L2, u = a1 . . . ak}.

We know from Theorem 2 in [34] that any class of languages closed under

concatenation and λ-free substitution is closed under parallel insertion. Since

the context-free languages have these properties (see [26] for example), we

have that

L(G,K,A) = (L⇐ WPA(F ))

is context-free.

2A word is said to be freely reduced if it has no subwords which would represent 1 in
the free group over the same generators.
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Theorem 70. If H is a finitely generated subgroup of a finitely generated

group G, then

G ∈ CF ⇒ (G,H) ∈ CF .

Proof. If G is in CF then it is virtually free - let F be a free subgroup of finite

index. Then K := F ∩ H is also a free group and it has finite index in H.

So it also inherits finite generation from H. We know that (F,K) ∈ CF by

Lemma 69. By Theorem 62, (G,K) ∈ CF . By Theorem 63, so is (G,H) and

we are done.

Note that though context-free languages are closed under λ-free substi-

tution, one-counter languages are not. The proof of Lemma 69 is therefore

not valid in that case. However, due to the simpler structure of one-counter

languages, the overall theorem still holds, for a different reason which we will

see in the next section.

4.4 One-counter pairs

In the case of one-counter pairs, the larger group being one-counter gives

us some information about the properties of an arbitrary subgroup. The

following theorem is folklore; we give here a simple proof.

Lemma 71. If G ∈ OC and K 6 G, then either |K| 6∞ or [G : K] <∞.

Proof. Recall from the previous chapter that if G is a one-counter group,

then G is either finite or it has a finite index subgroup H ' Z. If G is finite

then we are done; so assume we have this infinite cyclic subgroup H.

We have H ∩K 6 H. If H ∩K is non-trivial, then, since all non-trivial

subgroups of Z are of the form nZ for some n ∈ Z, we can deduce that H∩K
has finite index in H. Now from the equation

[G : H ∩K] = [G : H][H : H ∩K]
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we get that [G : H ∩K] is finite. But since [G : K] 6 [G : H ∩K], the former

is also finite.

So we may assume that H ∩K = {1G}. We now show that for any coset

Hg of H in G, |Hg ∩ K| 6 1. Say k, k′ ∈ K are in the same coset, i.e.

k′ ∈ Hk. Then k′k−1 ∈ H ∩K = {1}, so that k′ = k. Now |K| 6 [G : H]

and therefore K is finite.

The property of being one-counter therefore transfers from the larger

group G to the pair (G,K) for any K:

Lemma 72. If G is one-counter and K 6 G, then (G,K) is a one-counter

pair.

Proof. By Lemma 71, either K or its index in G is finite. In the second case,

(G,K) is a regular pair, hence also one-counter. So assume |K| <∞. Then

by Corollary 64, (G,K) is one-counter.

4.5 Normal cores of subgroups and syntactic

monoids

After having shown that the class in which a pair lies can be closed under

taking finite index subgroups, finite extensions and so on, we will here take

a closer look at a particular operation, namely taking the normal core of a

subgroup in a larger group.

Our aim is to try to answer the following question for certain classes F
of languages:

Question 1: If (G,K) ∈ F , is it true that (G,KG) ∈ F?

The normal core of a subgroup in a group is defined as follows:

Definition 73. Let G be a group, K a subgroup. The normal core KG of K

in G is the largest normal subgroup of G contained in K.
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It is well known that KG =
⋂
g∈G g

−1Kg.

The reason Question 1 is an interesting question is that it is equivalent

to one about syntactic monoids:

Question 2: If a language L is in F , a group G its syntactic monoid, and

[L] a subgroup of G, when can we deduce that G ∈ F?

Let us explain the details of the question above. The syntactic monoid of

a language L ⊆ Σ∗ is the smallest monoid which is a homomorphic image of

L and which distinguishes words in L from words outside of L. It is formally

defined as follows:

Definition 74. Let L ⊆ Σ∗. Then the syntactic congruence is the equivalence

relation ∼L defined on Σ∗ as follows:

w ∼L u ⇐⇒ ∀x, y ∈ Σ∗(xwy ∈ L ⇐⇒ xuy ∈ L)

for every w, u ∈ Σ∗. Then the syntactic monoid of L is the monoid Σ∗/ ∼L.

[L] is then the image of L under the natural map [ ] : Σ∗ → Σ∗/ ∼L
sending each word to its equivalence class.

Let us first establish that the two questions are equivalent:

Proposition 75. The answer to Question 1 is positive if and only if the

answer to Question 2 is positive.

Proof. (⇒) : Let L ⊆ Σ∗ be a language in F , let G = Σ∗/ ∼L, and suppose

that [L] is a subgroup of G. We will show that the only proper normal

subgroup of G contained in [L] is the trivial one. Then a positive answer to

Question 1 (taking K = [L]) shows that (G, {1}) ∈ F , i.e. that G ∈ F .

Let N be a proper normal subgroup of G contained in [L]. We will show

that the only element of N is the identity of G, i.e. [λ]. It is enough to show

then that, for any w ∈ Σ∗ such that [w] ∈ N ,

∀x, y ∈ Σ∗ (xwy ∈ L ⇐⇒ xy ∈ L).
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Note that for any word u, [u] ∈ [L] if and only if u ∈ L: a word in L and

a word outside L can never be ∼L-equivalent, as we can just take x = y = λ

in the definition of equivalence.

So now xwy ∈ L ⇐⇒ [x][w][y] ∈ [L]. But by our choice of w, and

because N is contained in [L], we have:

xwy ∈ L ⇐⇒ [x][w][y] ∈ [L]

⇐⇒ [x][y]N ∈ L

⇐⇒ [x][y] ∈ L

⇐⇒ xy ∈ L.

and we are done.

(⇐) : Set L = L(G,K, φ). We will show that the syntactic monoid of L

is in fact G/KG. Since [L] = K/KG is then a subgroup of G/KG, a positive

answer to Question 2 means that G/KG ∈ F , i.e. that (G,KG) ∈ F .

Let f : G → Σ∗/ ∼L be the monoid homomorphism defined by g 7→ [w]

where φ(w) = g. We will show that this is a well-defined and onto map whose

kernel is KG.

It is well-defined as, if φ(w) = φ(u), then for any x, y ∈ Σ∗,

xwy ∈ L ⇐⇒ φ(xwy) ∈ K

⇐⇒ φ(x)φ(w)φ(y) ∈ K

⇐⇒ φ(w) ∈ φ(x)−1Kφ(y)−1

⇐⇒ φ(u) ∈ φ(x)−1Kφ(y)−1

⇐⇒ φ(x)φ(u)φ(y) ∈ K

⇐⇒ φ(xuy) ∈ K

⇐⇒ xuy ∈ L.

So [w] = [u]. It is clearly onto.

It remains to show that g ∈ KG if and only if f(g) = [λ]. Assume that
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g ∈ KG, and let w be such that φ(w) = g. Then for any x, y ∈ Σ∗,

xwy ∈ L ⇐⇒ φ(x)φ(w)φ(y) ∈ φ(L) = K

⇐⇒ g ∈ φ(x)−1Kφ(y)−1

On the other hand, since g ∈ KG, we know that g ∈ φ(x)−1Kφ(x). Now

the element φ(x)g is in two cosets Kφ(y)−1 and Kφ(x). Since cosets are

either disjoint or equal, it must be that Kφ(y)−1 = Kφ(x), from which we

get φ(x)φ(y) ∈ K, i.e. φ(xy) ∈ K. By definition of L, this means exactly

that xy ∈ L.

Conversely, say φ(w) = g and [w] = [λ]. Then for all x, y ∈ Σ∗,

xwy ∈ L ⇐⇒ xy ∈ L.

Choosing x and y such that φ(x) = φ(y)−1 ranges over all elements of G, we

get that g = φ(w) ∈ h−1Kh for all h ∈ G. So g ∈ KG.

In fact, because of Proposition 65, Question 1 effectively just asks the

following:

If (G,K) ∈ F and K is core-free, is G ∈ F?

The answer to our questions is clearly “yes” for regular pairs: If (G,K)

is a regular pair, then the index of K in G is finite. Then L(G,KG, φ) is just

the intersection of finitely many sets of the form L(G, g−1Kg), all of which

are also regular. So (G,KG) ∈ REG (note that we could have also proven

this without recourse to formal language theory: the normal core of a finite

index subgroup also has finite index).

In [53], Claas Röver gives an example of a deterministic context-free lan-

guage whose syntactic monoid is a group which is not context-free. With

some very slight assumption we can turn this into a counterexample to Ques-

tion 2 for context-free languages. The construction below is entirely due to

Röver.
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Take a deterministic context-free language L ⊆ Σ∗ whose syntactic monoid

is a group, which we call G. Since the syntactic monoid of a language is also

the syntactic monoid of its complement, we can assume without loss of gen-

erality that λ ∈ L. Take H to be a context-free group generated by a finite

symmetric generating set Ω (without loss of generality, Ω ∩ Σ = ∅).
Let π : (Σ ∪ Ω)∗ → Ω∗ be the natural projection. Define also Aλ(w) for

any w ∈ (Σ ∪ Ω)∗ to be the subsequence of w consisting of all occurrences

of xs in Σ such that π(px(w)) ∈ WΩ(H) where px(w) is the prefix of w up to

that occurrence of x.

Now we define

L′ := {w ∈ (Σ ∪ Ω)∗ : π(w) ∈ WΩ(H) and Aλ(w) ∈ L}.

Röver shows that for any deterministic context-free language L as above

(i.e. whose syntactic monoid is a group G and which contains λ) and for any

virtually free H as above, we have that

1. The syntactic monoid of L′ constructed as above is the wreath product

group G oH of G and H, and

2. L′ is a deterministic context-free language.

What exactly a wreath product is is not very relevant here, so we omit

the definition (all we need to know, for later, is that the wreath product of

Z with a finite group cannot be context-free - see [53]).

So we have:

Proposition 76. There exists a context-free language whose syntactic monoid

is a non-context-free group and whose image under the natural map [ ]

(sending each word to its syntactic congruence class) is a subgroup of the

syntactic monoid.

Proof. Let L be the word problem of Z. This is clearly a deterministic

context-free language, and by definition it contains the empty word. Take
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H to be any finite group. Follow Röver’s construction described above to

obtain L′. Note that [L′] is indeed a group:

• Clearly λ ∈ L′ so [L′] contains the identity.

• Let u, v ∈ L′. We want to show that uv ∈ L′. Since π(u) and π(v)

are in WΩ(H), π(uv) ∈ WΩ(H) as well. Also, Aλ(uv) = Aλ(u)Aλ(v).

This is because there can be no occurrence of x ∈ Σ in Aλ(v) such

that π(upx(v)) ∈ WΩ(H) but π(px(v)) /∈ WΩ(H), as π(u) ∈ WΩ(H) by

definition. Since L is closed under concatenation, Aλ(uv) ∈ L.

• We want to show that if u ∈ L′, then u−1 ∈ L′. For any occurrence

of x ∈ Σ in u, if the image under π of the prefix px(u) is in the word

problem, then so is the image of the suffix sx(u). Also, since π(u) =H 1,

Aλ(u
−1) = (Aλ(u))−1. Since L is closed under inversion, u−1 ∈ L′.

L′ is thus our counterexample to Question 2 in the case of context-free

groups, as the wreath product Z oH is not context-free.

As a side note, it can be shown that if both G and H are Z, then the

resulting syntactic monoid group of L′ is a soluble group. A group K is

soluble if it has a series {1} = K0EK1E . . .EKn = K such that the factors

Ki+1/Ki are abelian for all i.

A polycyclic group is a soluble group where every subgroup is finitely

generated, or equivalently where we have {1} = K0EK1E . . .EKn = K such

that the factors Ki+1/Ki are cyclic for all i. All finitely generated nilpotent

groups (see Section 6.3 for the definition of nilpotent groups) are polycyclic

and hence soluble (see [52] for a proof). If G is Z and H is Z2, then the

syntactic monoid of L′ above is a polycyclic group which is not context-free.

Thus the answer to Question 1 for polycyclic groups and context-free pairs

is negative.

An interesting question would be to find out the answer to Question 1 for

nilpotent groups and context-free pairs.
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4.6 Ends of pairs of groups

4.6.1 General facts about ends

Recall from Chapter 2 the definition of the number of ends of a graph. It is

only to be expected that if two graphs have the same “coarse geometry”, then

they have the same number of ends. We can finally prove Theorem 24, as we

now know that any two Cayley graphs of the same group are quasi-isometric.

Theorem 77. Any two quasi-isometric graphs have the same number of

ends.

Proof. This is a well-known result, with a straightforward but long proof.

Let Γ and Γ be quasi-isometric, with quasi-isometry f and quasi-isometry

constant α. Let their underlying vertex sets be X and Y respectively, and

origins be o and ō respectively. Thus f(o) = ō.

Let x, x′ ∈ X be in distinct connected connected components of Γ(k) for

some k (recall that Γ(k) is the graph with a ball of center o and radius k

taken out). We want to show that their images are in distinct connected

components of Γ
(l)

for some l.

Let π̄ be a path in Γ between f(x) and f(x′). As in Lemma 58, for any

node on π̄ which is not in f(X) there is a node in f(X) which is no further

than α away from it, by the second property of quasi-isometry. So we have

a diagram of the form:

f(x) // . . . // z //

6α
����

z′ //

6α
����

. . . // f(x′)

f(w)
62α+1

// // f(w′)

Let π be a shortest path in Γ connecting x and x′ passing through all

nodes w such that f(w) is as above (i.e. either on π̄ itself or at most α away

from it), and furthermore such that all portions of π between such nodes w
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are the shortest possible. By definition (as x and x′ are in different connected

components of Γ(k)), there must be a node u on π such that dΓ(o, u) 6 k.

We know that there is a bound to how far f(u) can be from ō, by the second

half of the first part of the quasi-isometry definition:

dΓ(ō, f(u)) 6 αdΓ(o, u) + α = αk + α.

Without loss of generality say that the location of u on π is between w

and w′ as above. Then

dΓ(w, u) 6 dΓ(w,w′) 6 α(dΓ(f(w), f(w′)) +α) 6 α((2α+ 1) +α) = 3α2 +α.

where the second inequality is a consequence of the first half of (1) in the

definition of quasi-isometry. Using the second half of (1) we get

dΓ(f(w), f(u)) 6 αdΓ(w, u) + α = 3α3 + α2 + α.

Let z be the closest node to f(w) on π̄ - so either z and f(w) are equal

or at most α away from each other.We will now show that z cannot be too

far away from ō.

dΓ(ō, z) 6 dΓ(ō, f(u)) + dΓ(f(u), f(w)) + dΓ(f(w), z) 6 3α3 + α2 + (k + 3)α.

This means that if x, x′ are in different connected components of Γ(k),

then f(x) and f(x′) are in different connected components of Γ
(l)

where

l = 3α3 + α2 + (k + 3)α.

We have just shown that cc(Γ(k)) 6 cc(Γ
(l)

) = cc(Γ
(3α3+α2+(k+3)α)

) for all

k ∈ N.

Since quasi-isometry is an equivalence relation, we also know that

cc(Γ
(l)

) 6 cc(Γ(3β3+β2+(k+3)β))
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for some β > 1. So

cc(Γ(k)) 6 cc(Γ
(l)

) 6 cc(Γ(3β3+β2+(k+3)β)).

By the sandwich lemma the sequences must have the same limits, which

means that the two graphs have the same number of ends.

Using Lemma 58, the following corollary falls out:

Corollary 78. Any two Schreier graphs of the same pair of groups (or in

particular any two Cayley graphs of the same group) have the same number

of ends.

We can thus say the number of ends of a group or of a pair of groups

without reference to any generating set.

For ends of single groups/Cayley graphs, options are restricted in terms

of ends. It is clear that finite groups have no ends. The free abelian group

Z × Z on two generators has one end (its Cayley graph with respect to the

natural generating set is an infinite grid), and it is easy to see that the free

group on two generators has infinitely many ends. However these are the

only possible numbers of ends: a finitely generated group cannot have an

arbitrary number of ends. The well-known Freudenthal-Hopf theorem states

that

Theorem 79 (Freudenthal-Hopf). A finitely generated group has either 0,1,2

or infinitely many ends.

Proof. See Theorem 11.27 page 211 in [41] for a nice proof.

Unfortunately, not much can be said of the algebraic properties of a group

if it has one end. However, two-ended groups and groups with infinitely many

ends are a bit special and have their own classification.

Theorem 80. Let G be a finitely generated group. Then
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1. G has two ends if and only if it is virtually Z.

2. G has infinitely many ends if and only if either

• G = H ∗F K where F is a proper finite subgroup of H and K with

index strictly greater than 2 in both, or

• G = ∗FH where F is a proper finite subgroup of H.

Proof. (1) is an important result of Hopf’s [27] - see Corollary 11.34 of [41]

for a nice proof. The second is called Stallings’ Theorem on ends of groups:

see [56].

We thus have a nice classification of two-ended groups as one-counter

groups.

Unfortunately, when we go to ends of pairs of groups, the situation gets

a bit more complicated. To begin with, pairs of groups can have as many

ends as they like: see example 2.3 page 187 in [54].

However, with a quite strong restriction, we do get back to the situation

for Cayley graphs. The following result was proved by Houghton in [28] for

locally compact groups - we cite it here for our case, where all groups are

discrete. For a subgroup K of G, the normalizer NG(K) of K in G is the

largest subgroup of G in which K is normal.

Theorem 81. If G and K are both finitely generated, and K has infinite

index in its normalizer NG(K), then the pair (G,K) has 1, 2 or infinitely

many ends. Furthermore, if the pair has two ends, then we can find G′ and

K ′ such that:

1. K 6 K ′ EG′ 6 G,

2. [K ′ : K], [G : G′] <∞,

3. G′/K ′ is either Z or the infinite dihedral group Z2 ∗ Z2.
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In any case, there are various properties of ends of pairs of groups that

can be stated:

Theorem 82. Let G be finitely generated, K an arbitrary subgroup of G.

Then

1. e(G, {1G}) = e(G).

2. If N EG, then e(G,N) = e(G/N).

3. If [G : H] 6∞, then e(G,K) = e(H,K).

4. If N EG and N 6 K 6 N , then e(G,K) = e(G/N,K/N).

5. If [K : H] 6∞, then e(G,K) 6 e(G,H) 6 [K : H]e(G,K).

Proof. (1) and (2) are clear from the properties of Cayley graphs. So is (3):

it is a direct consequence of quasi-isometry, Lemma 58. (4) is a consequence

of Proposition 52. For a proof of (5) see Lemma 1.7 in [54].

As a remark, an example which shows that we do have a strict inequality

in item (5) rather than equality between e(G,K) and e(G,H) is as follows:

Take G to be the dihedral group with the natural generating set (one gener-

ator of order two acting by inversion on the other which is of infinite order -

apart from Z2 ∗ Z2, this group can also be written as Z o Z2), and take K

to be the subgroup of order two, H the trivial subgroup. Then e(G,K) = 1

but e(G,H) = e(G) = 2.

4.6.2 Ends and language classes for pairs

We already know that a pair (G,K) is regular if and only if K has finite

index in G, if and only if Γ(G,K) has no ends.

We saw in Section 4.3 that for context-free pairs of groups, we can also

somewhat characterise the space of ends:
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Theorem 83. If (G,K) ∈ CF , then any Schreier graph of (G,K) has only

finitely many isomorphism classes of connected components.

This is a result from [42] that we make more explicit here. Let Γ be a

finitely generated labelled graph with designated origin o. For any vertex v in

the graph, one can define the connected component Γ(v) to be the connected

component of Γ − B(o, |v|) containing v. Define also the boundary ∆(v) of

this connected component as all vertices in Γ(v) such that |u| = |v|. Now, an

end-isomorphism between connected components Γ(v) and Γ(v) is a labelled

graph isomorphism which sends the boundary ∆(v) to ∆(u), and a context-

free graph is one which has only finitely many isomorphism classes in the set

{Γ(v) : v ∈ V (Γ)}. As an example with infinitely many ends, look at the

Cayley graph of the free group of rank two under the natural generating set.

For any vertex v, the boundary of Γ(v) is just the singleton {v}, and the

connected component Γ(v) itself is just the subtree of the Cayley graph cut

off at v. All Γ(v)s thus look identical, like a ternary tree - there is only one

isomorphism class of connected components.

We would like to find a similar result for ends of one-counter groups: is

a pair of groups with two ends always one-counter, and does a (non-regular)

one-counter pair always have two ends? The answer to the second question

turns out to be no: Example 88 below gives a pair which is one-counter but

has only one end. We therefore replace it by a new conjecture: a one-counter

pair has at most two ends.

For the question of whether a one-counter pair has at most two ends, we

would need something like the following conjecture:

Conjecture 84. Let G be infinite, K 6 G such that [G : K] = ∞. Let

(G,K) be a one-counter pair. Then there is a subgroup H of finite index

in G and a normal subgroup N EG such that

1. N ⊆ K ∩H, and

2. H/N ' Z.
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If Conjecture 84 held then we would have:

Conjecture 85. Let (G,K) be a one-counter pair, [G : K] = ∞. If Con-

jecture 84 is true, then there is an N E G such that N 6 K and G/N is

one-counter.

Proof. We are assuming Conjecture 84, so there are H and N satisfying (1)

and (2). Since H/N 6 G/N and [G/N : H/N ] <∞, G/N is virtually cyclic

and therefore one-counter.

Remark 86. Conjecture 85 and Conjecture 84 preceding it are in fact equiv-

alent. If we have Conjecture 85, then we know that G/N , being one-counter

and infinite, has an infinite cyclic subgroup of finite index. This is a sub-

group of the form H/N for some subgroup H 6 G containing N , and as

[G/N : H/N ] = [G : H], the index of H in G must be finite. Clearly

N ⊆ K ∪H, so we get Conjecture 84.

Theorem 87. Assume that Conjecture 84 holds. If (G,K) is a OC pair, then

the Schreier graph Γ(G,K,A) of G and K (with respect to any generating

set A) has at most two ends.

Proof. If [G : K] < ∞, then the Schreier graph of G and K is finite and

therefore has no ends. So we can from now on assume that K has infinite

index in G.

By Conjecture 85, we have a normal subgroup N of G contained in K

such that G′ := G/N is one-counter. By Lemma 71, either |K/N | <∞ or

[G/N : K/N ] <∞. We can ignore the second case, because it implies that

[G : K] is finite. So assume we are in the first case. Set K ′ = K/N .

The situation is then the following: we have a one-counter group, G′,

with a finite subgroup K ′. Since G′ is one-counter, it is virtually cyclic; in

fact it is virtually Z, since otherwise G/N would be finite, contradicting our

assumption that [G : K] = ∞. Let H ′ be a subgroup of finite index in G′

isomorphic to Z. We can assume that H ′ is normal in G′: if it is not, look
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at M = g−1
1 H ′g1 ∩ . . . ∩ g−1

n H ′gn where g1, . . . , gn are coset representatives

of H ′ in G. Clearly g−1Mg = M for all g ∈ G′, so M is normal in G′, and M

has finite index in G′ since it is the intersection of finitely many finite-index

subgroups. Since any finite subgroup of Z is isomorphic to Z itself, we still

have an infinite cyclic group, and it still has finite index in G′; so replace H ′

by M if necessary.

Note that any nontrivial element of H ′ has infinite order, so no such

element can be in K ′ since the latter is a finite subgroup. We now have two

trivially intersecting subgroups, one of which is normal. So set

G′′ := H ′ oK ′.

This semidirect product has finite index in the whole groupG′, becauseH ′

does. Now by Lemma 77 (and the fact that the Schreier graph of (G/N,K/N)

and the Schreier graph of (G,K) are isomorphic), we know that

e(G′′, K ′) = e(G′, K ′) = e(G/N,K/N) = e(G,K).

Hence it is enough to show that the Schreier graph of the pair (G′′, K ′)

has at most two ends. Let us examine this graph. As a finite generating set,

choose K ′ ∪ {u} where u generates H ′. The nodes of the graph are of the

form Kuz with z ∈ Z. It is obvious how u acts on the coset space, but what

can we say about the elements of K ′?

In a semidirect product, there is always a group homomorphism from

the non-normal subgroup to the group of automorphisms3 of the normal

subgroup, defined by conjugation (see [52] page 27). So here there is a

group homomorphism θ : K ′ → Aut(H ′) defined by θ(k)(h) = khk−1 for

all k ∈ K ′, h ∈ H ′ (we call this the action of k on h). But Z has only two

automorphisms, so each k ∈ K ′ acts on H ′ either as the identity map or the

3An automorphism of a group is an isomorphism from the group to itself. The set of
automorphisms of a group form a group under composition of functions.
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inversion map. Note that if k acts as inversion, then so must k−1, as θ is a

group homomorphism.

If K ′ has elements acting as inversion, then the Schreier graph will look

as follows (ignoring reflexive loops, and where the arrows labeled k and k−1

exist for each element of K ′ acting as inversion):

K ′
u // K ′u

u //

k−1

��

K ′u2 u //

k−1

��

. . .
u // K ′uz

u //

k−1

��

. . .

K ′u−1

u

cc

k

OO

K ′u−2
u
oo

k

OO

. . .u
oo K ′u−z

uoo

k

OO

. . .
uoo

and this clearly has one end. If there is no element acting as inversion on

H ′, then the Schreier graph of (G′′, K ′) (again ignoring reflexive loops) is

isomorphic to that of Z and therefore has two ends.

Example 88. Let G = 〈u, k|k2 = 1, kuk = u−1〉 be the infinite dihedral

group, and let K = 〈k〉 be the subgroup of order two generated by k. Then

(G,K) is a one-counter pair, and a one-counter automaton recognizing it is

shown below:

p

(u,λ,c),(u−1,c,λ)





(λ,#,#)

xx
(u−1,#,#c)

~~

(k,λ,λ)

��

(λ,λ,#) // s

(k,λ,λ)

��

(u,λ,c)

88

(u−1,λ,c)

&& q

(u−1,λ,c),(u,c,λ)

TT

(λ,#,#)

ff (u,#,#c)

>> OO

66



Intuitively, if we are in state p we are in a coset of type Kui for some i > 0,

and if we are in q we are in a coset of type Ku−i for i > 0. When the stack

is empty, these two states are equivalent. The action of u modifies the stack,

and the action of k swaps between p and q without changing the stack, which

corresponds to swapping between Kui and Ku−i. The coset K is represented

by the state s, at which point the stack must be empty.

This pair has only one end: its Schreier graph is exactly the one shown

in the previous theorem, except that K ′ is replaced by K.

67



Chapter 5

Groups with a recursively

enumerable irreducible word

problem

5.1 Introducing irreducible word problems

In this chapter we consider the irreducible word problem of a group; this is

the set of words in the word problem W which have no non-empty proper

subwords in W (see Definition 94). The irreducible word problem is intrin-

sically connected with the word problem; using the terminology of [29] we

have that W is the insertion closure of the irreducible word problem I to-

gether with the empty word {λ}, and I is the insertion base of W (see [13]

for further details).

The notion of an irreducible word problem was introduced in [20] where

groups with a finite irreducible word problem were studied. The history of

the study of the irreducible word problem has, in some sense, followed that of

the word problem in the reverse direction; with the word problem the initial

considerations were with groups with a recursive or recursively enumerable

word problem and the cases where the word problem lay in a more restricted
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class of languages came later. The study of the irreducible word problem

started with groups with a finite irreducible word problem in [20], which

was continued in [47, 48]; it was then pointed out in [13] that there are no

groups whose irreducible word problem is regular but not finite. There are

also some interesting connections with string rewriting systems as explained

in [39]. Groups with a context-free irreducible word problem were considered

in [12, 13, 14] and with a context-sensitive irreducible word problem in [35].

In the case of recursive languages it was shown in [14] that the irreducible

word problem of a group is recursive if and only if the word problem is

recursive. As we point out in Remark 97, this gives an example where the

irreducible word problem lying in a class F of languages is independent of

the choice of finite generating set for the group in question. While this also

holds for context-sensitive languages (see [35]) it does not hold in general

even when F is closed under inverse homomorphism, which is a particular

complication when studying irreducible word problems.

In this chapter we take the next natural step by considering groups which

have a recursively enumerable irreducible word problem; this is a situation

where membership could possibly depend on the choice of finite generating

set (see Question 101). Our main result (Theorem 100) considers the case

where we do have independence and is rather surprising: having a recursively

enumerable irreducible word problem with respect to every finite generating

set is equivalent to having a recursive word problem. In such groups having

a recursively enumerable irreducible word problem and having a recursive

irreducible word problem are equivalent, which is in complete contrast to the

situation for word problems as mentioned above.

The structure of the chapter is as follows. In Section 5.2 we introduce

the notion of a loopy group (Definition 89) which plays a fundamental role

in proving our results. We show that any group of order at least three is

loopy with respect to some finite generating set (Theorem 92) and give an

alternative characterisation of loopiness (Theorem 93). In Section 5.3 we
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consider irreducible word problems and establish our main result. We then

ask whether having a recursively enumerable irreducible word problem can

depend on the choice of finite generating set in Section 5.4 and go on to

investigate the potential properties of groups which do have this dependence.

The material in Sections 5.2, and 5.3 has been published in [50].

5.2 Loopy groups

We now introduce the idea of a ‘loopy group’ which will play a central role

in establishing our results. This concept appears not to be in the literature

and hence the terminology is ours.

To avoid trivial situations we confine our attention to groups with at least

three elements (this is not a real restriction, as when talking about groups

with a recursively enumerable irreducible word problem we are really only

interested in infinite groups anyway. We could potentially add Z2 to the

definition below with no adverse effects).

Definition 89. Let A be a finite generating set for a group G with |G| > 2

and let Σ = A ∪ A−1. G is said to be loopy with respect to A if, there are

a, b ∈ Σ such that ab−1 6=G 1G, and for any such a and b there is a simple cycle

in Γ(G,A) starting at 1G labelled by ac1 . . . cmb
−1 for some c1, . . . , cm ∈ Σ.

c1...cm // //

1G

a

``

b

>>

Remark 90. In other words, if a group is loopy, then there is a way to get

from any vertex a at distance one from the origin in Γ(G,A) to any other

such vertex b without passing through the origin (if there is a path from a

to b that does not pass though the origin then there is a simple such path P .

Then the cycle that goes from 1G to a, then follows P , and finishes by going
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from b to 1G is a simple cycle of the required form). The converse of this also

holds. We will use this equivalent formulation of loopiness in what follows.

Remark 91. If G is loopy with respect to a finite generating set A then, for

any edge in Γ = Γ(G,A), there is a simple cycle through 1G containing said

edge. To see this consider an edge e with label a ∈ Σ joining a vertex g to

a vertex h. There is then an edge joining 1G to a = g−1h. If we pick some

other element b of Σ with ab−1 6=G 1G then, by the definition of loopiness,

there is a simple cycle in Γ starting at 1G labelled by ac1 . . . cmb
−1 for some

c1, . . . , cm ∈ Σ. The word ac1 . . . cmb
−1 also labels a simple cycle starting at

g where the first edge in the cycle is e as required.

A critical fact is that any finitely generated group is loopy with respect

to some finite generating set:

Theorem 92. For any finitely generated group G with |G| > 2 there is a

finite generating set A with respect to which G is loopy.

Proof. Let G = 〈B|R〉 be a presentation of G where B is finite. We extend

the generating set B as follows: for any two elements a, b ∈ B∪B−1 such that

a−1b /∈ B ∪B−1 ∪{1G} we define a new generator za−1b where za−1b =G a
−1b.

Let

A = B ∪B−1 ∪ {za−1b : a, b ∈ B ∪B−1, a−1b /∈ B ∪B−1 ∪ {1G} }

and

S = R ∪ {za−1bb
−1a}.

It is clear that 〈A|S〉 is another presentation for G; we will show that G is

loopy with respect to A. As we commented in Remark 90 all we need to show

is that, for any two elements a and b in our new set A of generators such that

a−1b does not represent the identity, there is a path from one to the other in

Γ = Γ(G,A) not passing through the origin. We split our consideration up
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into three cases, assuming at the outset that a−1b /∈ B ∪ B−1, otherwise we

are already done.

1. If both the generators a and b are in B∪B−1, then za−1b labels a simple

path from a to b and we are done.

2. Next let us assume that one of the generators b is in B ∪B−1 and that

the other generator is in A − (B ∪ B−1); so the other generator is of

the form za−1c for some a, c ∈ B ∪B−1.

(a) If b 6= a−1 then zb−1a−1c labels a path from b to za−1c which does

not pass through the origin and we are done.

(b) If b = a−1 then c labels a path from b to za−1c and we are done.

3. Finally let us assume that both the generators are in A − (B ∪ B−1);

call them za−1b and zc−1d.

(a) If a 6= c then b−1zac−1d labels a path from za−1b to zc−1d and we

are done.

(b) If a = c then b−1d labels a path from za−1b to zc−1d and we are

done.

•
za−1b // • •

zb−1a−1 // •

a��
c

��

•
zac−1 //

b
��

a

��

•

c��
d

��
1G

a

[[

b

CC

1G

b

]]

za−1c

// • • 1Gza−1b

oo
zc−1d

// •

(1) (2a) (3a)

We have covered all the possibilities and so the result is established.
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If G is a group with a finite generating set A we define a property PA

on G as follows: if g ∈ G then PA(g) means there is a simple cycle passing

through 1G and g in Γ(G,A). We now have the following characterisation

of loopiness:

Theorem 93. Let G be a group with a finite generating set A; then G is

loopy with respect to A if and only if PA(g) holds for all g ∈ G.

Proof. (⇒) : Assume that G is loopy. If a ∈ Σ = A ∪ A−1 then, as in

Remark 91, there is a simple cycle containing the edge joining 1G to a in

Γ = Γ(G,A) with label a; hence PA(a) holds for any generator. Given that Γ

is connected, to prove that PA(g) holds for all g ∈ G it is sufficient to prove

the following:

if PA(h) holds and g is a neighbour of h in Γ

then PA(g) holds.

So assume that PA(h) holds and that g is a neighbour of h in Γ. Let L1

be a simple cycle passing through 1G and h in Γ. Let a be the label of the

edge from h to g in Γ.

Choose a neighbour k of h on L1 and let b be the label of the edge from h

to k. Assume for a contradiction that PA(g) does not hold; we have that g

does not lie on L1 and so b is distinct from a. Since G is loopy there is a simple

cycle starting at 1G with label of the form ac1c2 . . . cnb
−1. Premultiplying the

vertices of the cycle by h gives a simple cycle L2 starting at h with the same

label; the first vertex (after h) on the cycle is ha = g and the last vertex

(before h is reached again) is hb = k.

Let m be the first vertex on L2 after g that lies on L1 (see Figure 5.1);

such a vertex must exist as k lies on L1. Let P be the subpath of c1 . . . cn

between g and m. By our choice of m, P does not intersect L1 at any vertex

except m. Therefore, to get a simple loop containing 1G and g, all we need

to do is replace the portion of L1 between h and m by the edge from h to g

followed by P . This contradicts the fact that PA(g) does not hold.
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•
1G

• h

• g

• k

• m

a

b

Figure 5.1: The path in bold indicates the simple loop through g; solid lines
represent L1 and bold dotted lines represent P .

(⇐) : Let a and b be any two elements of Σ with ab−1 6=G 1G. We know that

PA(a−1b) holds and so there are two simple paths σ and τ to the vertex a−1b

in Γ which only have the vertices 1G and a−1b in common. The vertex a−1

can only lie on one of these two paths and so we may assume that σ does

not contain a−1. Since σ is a path from 1G to a−1b not containing a−1,

premultiplying each vertex on the path by a gives a path (with the same

label as σ) from a to b not containing 1G. As in Remark 90 we see that this

ensures that G is loopy.

5.3 Irreducible word problems

We now come to the main topic of this chapter, where we define the irre-

ducible word problem and describe its similarities, differences and interac-

tions with the word problem.
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Definition 94. Let A be a finite generating set for a group G. The ir-

reducible word problem IA(G) of G with respect to A is the set of words

w ∈ WA(G) such that

(w = αuβ and αβ 6= λ and u ∈ WA(G)) =⇒ u = λ.

In other words IA(G) is the set of words w ∈ WA(G) which have no

non-empty proper subwords belonging to WA(G).

Just as the word problem for a group G with respect to a finite gener-

ating set A can be identified with the set of labels of cycles in the Cayley

graph Γ(G,A) which start and end at 1G, the irreducible word problem (with

respect to A) can be identified with the labels of the simple cycles starting

and ending at 1G, as any subloops would have subwords in the word problem

as labels.

Similarly, just as we can express an arbitrary path starting and ending

at 1G in the Cayley graph as a combination of simple loops stuck to each

other at certain nodes, we can express the word problem as the result of

an operation on the irreducible word problem. This is the idea behind the

following definitions:

Definition 95. Let L ⊆ Σ∗ be a formal language. L is said to be insertion

closed if for any u, v, w ∈ Σ∗,

v ∈ L, uw ∈ L⇒ uvw ∈ L.

K is said to be the insertion closure of L if it is the smallest insertion closed

language containing L.

It is easy to see that WA(G) is the insertion closure of IA(G) for any

group G and finite generating set A. Given this, it is easy to generalize an

algorithm determining membership in the latter to one determining mem-

bership in the former. This is idea behind the proof of the following result

from [14] (see Theorem 4.4 there):
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Proposition 96. If G is a group and A is a finite generating set for G then

IA(G) is recursive if and only if WA(G) is recursive.

Remark 97. If F is a family of languages then the fact that the irreducible

word problem of a group G with respect to a finite generating set A belongs

to F depends on the choice of A even if F is closed under inverse homo-

morphisms, in contrast to the situation with the word problem. However

Proposition 96 shows that this is not the case if F is the class of recursive

languages.

We also need the following result from [12] (see Proposition 8.3.1 there):

Proposition 98. Let G be a group and A be a generating set for G. If IA(G)

is recursively enumerable then WA(G) is recursively enumerable.

Proof. Assume that I = IA(G) is recursively enumerable.

Let Σ = A ∪ A−1 and let A be an algorithm that, when given an input

α ∈ Σ∗, terminates if and only if α ∈ I. We outline an algorithm A′ which,

given an input α ∈ Σ∗, terminates if and only if α ∈ W := WA(G).

We apply A to α and every one of its non-empty proper subwords. If A

does not terminate on any of these words, then α is not in W and A′ does

not terminate either. If A terminates on α (in which case α ∈ I ⊂ W ),

then A′ terminates. If A terminates on some non-empty proper subword u,

say α = βuγ, then u is deleted from α. The following procedure is then

repeated:

(A) The algorithm A is applied to every non-empty subword of the leftover

word. If A terminates on some such non-empty subword u′, then u′ is

deleted.

The algorithm A′ terminates with the empty word λ if and only if α ∈ W . If,

on some iteration of (A), A does not terminate on any non-empty subword,

then A′ does not terminate either.
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We now see that loopiness and recursive enumerability with respect to

the same generating set is enough to give recursivity for the word problem.

The following is important for establishing our main result:

Theorem 99. Let G be a group generated by a finite set A such that PA(g)

holds for all g ∈ G in the Cayley graph Γ(G,A). Then

IA(G) is recursively enumerable ⇒ WA(G) is recursive.

Proof. Assume that I = IA(G) is recursively enumerable, so that we have an

algorithm A which terminates if and only if its input is in I.

We aim to show that both the word problem and its complement are

recursively enumerable. By Proposition 98 we know that W = WA(G) is

recursively enumerable and so we have an algorithm B which terminates if

and only if its input is in W . We now want an algorithm B′ which terminates

if and only if its input is not in W .

Let Γ = Γ(G,A) and Σ = A ∪ A−1. If w is any word in Σ∗ −W then,

since PA(w) holds, we may choose a simple cycle containing 1G and w in Γ.

If v is the label of the simple path from 1G to w and u the label from w back

to 1G on that cycle then we see that wv−1 ∈ W and that vu ∈ I.

Our algorithm B′ which terminates if and only if its input w is not in W

proceeds as follows:

(A) Start enumerating words which have w as a proper prefix; for each

such word α we enumerate, we start B on α which will terminate if α

is in W . This successively generates the non-empty words v−1 such

that wv−1 ∈ W .

(B) For each such word v−1 we generate in (A) we start enumerating words vu

which have v as a proper prefix; for each such word vu we enumerate,

we start A which will terminate if vu ∈ I.

As above, if w 6∈ W , then such non-empty words v and u must exist and,

once we have generated them and confirmed that vu ∈ I, then we know that

77



v 6∈ W (by definition of I) and hence that w 6∈ W (since w =G v). So B′

terminates if and only if its input w does not lie in W as required.

We now have our main result:

Theorem 100. If G is a finitely generated group then the following are

equivalent:

1. G has a recursively enumerable irreducible word problem with respect

to every finite generating set.

2. G has a finite generating set with respect to which it has a recursively

enumerable irreducible word problem and is loopy.

3. G has a recursive word problem with respect to every finite generating

set.

4. G has a recursive irreducible word problem with respect to every finite

generating set.

Proof. (1 ⇒ 2): Suppose G has a recursively enumerable irreducible word

problem with respect to every finite generating set. By Theorem 92 there is

a finite generating set A with respect to which G is loopy. Since G has a

recursively enumerable irreducible word problem with respect to every finite

generating set, it certainly has such an irreducible word problem with respect

to A.

(2⇒ 3): Suppose that G is loopy with respect to a finite generating set A

and that IA(G) is recursively enumerable. By Theorem 93 we have that

PA(g) holds in Γ(G,A) for all g in G. Since IA(G) is recursively enumerable

Theorem 99 gives that WA(G) is recursive. As the word problem of G be-

ing recursive is independent of the choice of finite generating set, G has a

recursive word problem with respect to every generating set.

(3 ⇒ 4): This follows immediately from Proposition 96.

(4⇒ 1): This follows immediately from the fact that a recursive language

is recursively enumerable.
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5.4 Dependence on generating set

In [12] it is claimed that a group can be constructed whose word problem

with respect to a particular finite generating set A is recursively enumerable

but not recursive. However, the proof presented there is faulty - we therefore

present it as a question below (Question 101).

Question 101. Is there a group which has a recursively enumerable but not

recursive irreducible word problem with respect to one of its finite generating

sets?

Remark 102. Suppose Question 101 had a positive answer. Then the group

G in question would have two finite generating sets A and B such that IA(G)

is recursively enumerable but IB(G) is not recursively enumerable. By Propo-

sition 98 we would have that WA(G) is recursively enumerable; given that the

word problem of a group being recursively enumerable is independent of the

choice of finite generating set, we have that WB(G) would also be recursively

enumerable. So the converse of Proposition 98 would not hold (given that

WB(G) would be recursively enumerable but IB(T (L)) would not).

In what follows, we investigate what the class of groups where the irre-

ducible word problem is recursively enumerable with respect to some but not

all finite generating sets would look like if this class were non-empty. How-

ever, sentences such as the above are so cumbersome that we feel the need

to introduce some sanity-preserving terminology!

Definition 103. We say that a group G is A-mimsy for a finite generating

set A if IA(G) is recursively enumerable. We say that G is uniformly mimsy

if G is A-mimsy for every A, and uniformly non-mimsy if G is not A-mimsy

for any A. We will call G partially mimsy if there are generating sets A

and B such that G is A-mimsy but not B-mimsy.

Recall the definitions of the Cayley graph of a group and of its number of

ends (Definitions 20 and 23 respectively). Recall also that finitely generated
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groups can have either 0 (if they are finite), 1, 2 (if they are virtually cyclic)

or infinitely many ends. Since a group is virtually cyclic if and only if its

word problem is one-counter, it transpires that every two-ended group has

solvable word problem, and hence is uniformly mimsy. The same is true of

course for finite groups.

Unfortunately, the situation for one-ended and infinitely ended groups

is not nearly as clear-cut. On the other hand, we will now see that, with

regards to being mimsy, groups with one end act rather tamely. Intuitively,

this is because such groups have Cayley graphs that are highly connected.

Indeed, we will show below that groups with one end are loopy with respect

to every generating set. By the results in Section 5.3, this will mean that as

soon as we have mimsiness with respect to a certain generating set, it will

propagate to all generating sets.

We first need to define some properties of graphs:

Definition 104. An n-separation of a connected undirected graph is a set

of n nodes whose removal (together with any adjacent edges) disconnects the

graph. A graph is said to be n-separable if there is an n-separation and n

is the smallest such natural number. A graph is n-connected if it has no

(n− 1)-separation. The connectivity of a group is the minimum connectivity

over all its Cayley graphs.

The theorem below is from [8].

Theorem 105. A group possesses a 1-separable Cayley graph if and only

if it is either infinite cyclic or a nontrivial free product of a finite rank free

group and groups of connectivity two or more.

We remark here that all the groups of connectivity two or more are freely

indecomposable (i.e. not expressible as a nontrivial free product): if a group

is freely decomposable it is 1-separable.

Also note that the above theorem automatically excludes finite groups, as

finite groups cannot be 1-separable. This is because every group element g
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has finite order, therefore there is a simple loop passing through g. So to

disconnect 1G and g one needs to remove at least two points. This holds for

any two points in the Cayley graph. This argument gives a little flavour of

what is to come: loopiness sabotages 1-separability.

Lastly, nontrivial free products of groups generally have infinitely many

ends, intuitively because the two free factors are unrelated, giving rise to

infinitely many “branches” in the graph. The only exception to this rule is

the group Z2 ∗ Z2 (the infinite dihedral group) which in fact has two ends.

Therefore the above theorem exclusively concerns groups which either have

infinitely many ends, or are infinite cyclic or infinite dihedral.

Recall from Chapter 4 Stallings’ theorem on groups with infinitely many

ends, characterizing them as HNN extensions or free products with amal-

gamation (Theorem 80). Note that a free product is just a free product

with amalgamation over the trivial subgroup. This explains the remark

above about ends of free products (it is easy to see that the infinite di-

hedral group has two ends: its Cayley graph with respect to the presentation

〈a, b|a2 = 1, aba = b−1〉 looks like a two-way infinite ladder).

Proposition 106. All groups with one end are loopy with respect to every

generating set.

Proof. Let G be a one-ended group. Assume G has a generating set A with

respect to which it is not loopy, then by definition of loopiness, the removal

of the origin in Γ(G,A) disconnects the graph. Then by Theorem 105, G is

either infinite cyclic or a nontrivial free product, all of which have either two

or infinitely many ends.

We will now show that being loopy with respect to every generating set is

almost equivalent to being freely indecomposable, but first we need a simple

auxiliary lemma (again folklore).

Lemma 107. If G = H ∗K is finitely generated, then so are H and K.
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Proof. Let g1, . . . , gn be a set of generators for G. Let π : G → H be the

unique group homomorphism sending every element of H to itself and every

element of K to the identity. We know such a π exists due to the universal

property of free products (in other words, any element of G can be uniquely

expressed as a product h1k1 . . . hnkn where hi ∈ H and ki ∈ K; π sends

h1k1 . . . hnkn to h1 . . . hn). Since π is a group homomorphism, H = π(G) is

generated by π(g1), . . . , π(gn), so is finitely generated. The same argument

of course holds for K.

Proposition 108. A group is freely indecomposable if and only if it is either

infinite cyclic or loopy with respect to every generating set.

Proof. (⇐) : Assume for a contradiction that G = H ∗ K. Then G can-

not be loopy with respect to the natural generating set, i.e. the union of a

generating set for H and a generating set for K: there cannot be a path

from a generator of H to a generator of K not passing through the identity,

as this would imply the existence of a nontrivial relation between the two

generators, contradicting the fact that G is a free product of H and K.

(⇒) : If G is not infinite cyclic and not loopy with respect to a certain

generating set, then it has a 1-separable Cayley graph with respect to that

generating set, so it is freely decomposable by Theorem 105.

Proposition 109. If a group is freely indecomposable, then it is either uni-

formly mimsy or uniformly non-mimsy.

Proof. If the group is infinite cyclic, then it has recursive word problem and

so it is uniformly mimsy.

If on the other hand it is loopy with respect to every finite generating set,

then if it is A-mimsy for some finite generating set A then it is uniformly

mimsy (see Theorem 100).

This gives us that groups with one end are either uniformly mimsy or

uniformly non-mimsy. It is not difficult to think of an example of a one-

ended group with solvable (i.e. recursive) word problem (which would then
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be uniformly mimsy). Take Z×Z with presentation 〈a, b|ab = ba〉. Then the

word problem is the set

{w ∈ {a, a−1, b, b−1}∗ : |w|a = |w|a−1 , |w|b = |w|b−1}

of words containing the same number of a symbols as a−1 symbols, and the

same number of b symbols as b−1 symbols. This set is clearly recursive.

However, is there indeed an example of a uniformly non-mimsy group?

This question is equivalent to asking whether there are any one-ended groups

with unsolvable word problem. To see that there are indeed such groups, note

first that the direct product of two finitely generated infinite groups has one

end (see below, or [7], Theorem 6.2.3).

Theorem 110. The direct product of two finitely generated infinite groups

always has one end.

Proof. Clearly the direct product is infinite and thus has at least one end.

It is a result of Freudenthal’s [15] that a group with infinitely many ends

cannot be a direct product of infinite groups. It therefore remains to show

that such a group cannot have two ends.

Groups with two ends are virtually Z: let 〈(g, h)〉 6 G×H be the infinite

cyclic group of finite index1. Then 〈g〉 and 〈h〉 both have finite index in G

and H respectively: it is easy to see that

[H : 〈h〉], [G : 〈g〉] 6 [G×H : 〈(g, h)〉].

So 〈g〉 and 〈h〉 are both infinite cyclic, because G and H are both infinite.

But now, 〈(g, 1H)〉 is isomorphic to Z and has infinite index in G×H. This is

not possible because by Lemma 71, any subgroup of a virtually cyclic group

is either finite or has finite index in the virtually cyclic group. Therefore the

direct product has only one end.

1When x, y are elements of a set X, notation such as 〈x, y〉 6 X will mean the subgroup
of X generated by x and y.
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Now recall that if two groups H and K have presentations 〈A|RH〉 and

〈B|RK〉 respectively (we can always choose A and B to be disjoint), then

G = H × K has presentation 〈A ∪ B|RH ∪ RK ∪ S〉 where S is a set of

relators specifying that every element of A commutes with every element

of B. Clearly

WA(H) = WA∪B(G) ∩ (A ∪ A−1)∗.

Since the class of recursive languages is closed under intersection with regular

languages, if the word problem of G were to be recursive then so would the

word problem of H. Hence a group which is the direct product of two infi-

nite (finitely generated) groups, one of which has unsolvable word problem,

is a one-ended group with unsolvable word problem. This ends our small

digression on one-ended groups.

We have seen that only groups with infinitely many ends can be partially

mimsy. But can we say even more? Using the above analysis, we will deduce

a theorem about the structure of partially mimsy groups. But first we will

need a few well-known theorems from group theory that will make it clear

why we were so interested in freely indecomposable groups.

Theorem 111 (Grushko-Neumann). If F is a finitely generated free group

and φ : F → ∗iAi is an onto group homomorphism, then F factorizes into a

free product ∗iFi such that φ(Fi) = Ai.

Proof. See [38], III.3, Proposition 3.7.

Corollary 112. Let r(G) denote the rank (i.e. minimum number of gener-

ators) of G for any group G. Then

r(A1 ∗ . . . ∗ An) =
n∑
i=1

r(Ai)

for any n ∈ N.

That r(A1 ∗ . . . ∗ An) 6
∑n

i=1 r(Ai) is clear. For the converse, note

that there is an onto group homomorphism from the free group of rank
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r(A1 ∗ . . . ∗ An) onto G, and then use the Grushko-Neumann theorem (it is

clear that if φ is an onto group homomorphism and Fi is any group then we

have r(φ(Fi)) 6 r(Fi)).

Corollary 113 (Grushko decomposition theorem). Any finitely generated

group is a free product of a finite rank free group and finitely many freely

indecomposable non-free groups.

This tells us quite a lot about the structure of partially mimsy groups, if

they exist:

Theorem 114. If G is a partially mimsy group, then it has a nontrivial

finite free decomposition

G = F ∗ A1 ∗ . . . ∗ An

where F is a free group of finite rank and the Ai’s are all freely indecompos-

able.

Moreover, at least one of the Ai’s is uniformly non-mimsy.

Proof. The first part of the theorem is a direct consequence of the Grushko

decomposition theorem. Take the decomposition in question. Since all of the

free factors involved are either free or freely indecomposable, they are either

uniformy mimsy or uniformly non-mimsy. Therefore the free product cannot

be trivial: it must have at least two factors.

Moreover, if all of the Ai’s were uniformly mimsy, then all of the free

factors involved would have recursive word problem, and hence recursive ir-

reducible word problem. It is easy to see that if A and B are finite generating

sets for H and K respectively, then IA∪B(H ∗K) = IA(H) t IB(K)). So G

would have a recursive irreducible word problem (namely with respect to

the union of the generating sets of the factor groups), and thus it would be

uniformly mimsy by Theorem 100, a contradiction.
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As a remark, note that partial mimsiness is preserved in free products

with uniformly mimsy groups:

Proposition 115. The free product of a partially mimsy group and a uni-

formly mimsy group is partially mimsy.

Proof. Let H be partially mimsy, with IA(H) recursively enumerable and

IB(H) not recursively enumerable for two finite generating sets A and B

of H. Let K be uniformly mimsy and C a finite generating set for it.

Since IA∪C(H ∗K) = IA(H)t IC(K) we have that H ∗K cannot be uni-

formly non-mimsy - since IC(K) is recursively enumerable for any generating

set C of K, IA∪C(H ∗K) must also be recursively enumerable.

On the other hand, the free product cannot be uniformly mimsy, as then

WB∪C(H ∗K) would be recursive. But

WB(H) = WB∪C(H ∗K) ∩ (B ∪B−1)∗

and so WB(H) would be recursive, making IB(H) recursive as well - a con-

tradiction.

So the free product is partially mimsy.
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Chapter 6

Groups with a Petri net word

problem

We saw in Chapter 3 that Anisimov characterised the groups with regular

word problem, and that Muller and Schupp showed in [43] (modulo a sub-

sequent result of Dunwoody’s [10]) that a group has a context-free word

problem if and only if it is virtually free. Herbst [21] classified the groups

with a one-counter word problem as being the virtually cyclic groups. This

was extended in [24], where it was shown that a group has a word problem

that is a finite intersection of one-counter languages if and only if it is virtu-

ally abelian. There is also an interesting result in [11], where it is shown that

a group has a word problem that is accepted by a blind counter machine if

and only it is virtually abelian; see Section 6.5 for the definition of such an

automaton and for some further discussion.

Whilst other classes of languages have been investigated, there are very

few complete characterizations. We add to this by investigating groups whose

word problem is a terminal Petri net language and establishing the following:

Theorem 116. A finitely generated group G has a word problem that is a

terminal Petri net language if and only if G is virtually abelian.

Just like Muller and Schupp’s characterisation, which uses Stallings’ clas-
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sification of groups with more than one end, our proof uses quite heavy group

theoretic paraphernalia - in particular Gromov’s theorem about groups with

polynomial growth. It would be nice to have a purely language-theoretic

proof, but we haven’t as yet been able to find one.

Whilst the above gives a correspondence between an important family of

languages and a natural class of groups, there are many variations on Petri

net languages which could potentially give rise to different classes of groups.

Many of these modifications are so powerful that the class of languages is

found to be equal to the class of recursively enumerable languages, but there

are other interesting possibilities, such as the class obtained by allowing

empty transitions (i.e. λ-transitions) in the Petri net.

The structure of this chapter is as follows. We recall some basic facts

about Petri nets in Section 6.1. In Section 6.2 we comment on the equivalence

of various definitions for Petri net languages and cite some previous results in

Section 6.3. Given this background material, showing that a finitely gener-

ated virtually abelian group has a word problem that is a Petri net language

is fairly straightforward, and we do this in Subsection 6.4.1. The proof of the

converse is rather more involved and we provide that in Subsection 6.4.2. In

Section 6.5 we comment on how this class of groups relates to certain other

classes which have arisen in considering word problems. The results in Sec-

tions 6.2, 6.4 and 6.5 have been published in [51]. We then prove a standard

form theorem in Section 6.6, showing that the word problem of a virtually

abelian group can always be recognized by a Petri net with a single terminal

marking which is the same as the initial marking.

6.1 Definitions

In this section we set out our conventions and notation for Petri nets and

recall some properties of the class of languages they accept.
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Definition 117. A labelled Petri net is a tuple P = (S, T,W,m0,Σ, l) where:

(i) S is a finite set, called the set of places; we will assume that an order

is imposed on S and so it will be displayed as a tuple.

(ii) T is a finite set disjoint from S, called the set of transitions.

(iii) W : (S × T ) ∪ (T × S)→ N is the weight function, assigning a multi-

plicity to pairs of places and transitions. If W (x, y) = n then we will

write x
n−→ y. If W (x, y) = 0 then we say there is no arrow from x to y.

(iv) m0 ∈ NS, the initial marking, assigns to each place a natural number.

(v) Σ is a finite set called the alphabet and the labelling function l : T → Σ

assigns a label to each transition.

Note that the function l can be extended to a funtion T ∗ → Σ∗ in the

natural way (setting l(λ) = λ)1.

As usual we will represent a labelled Petri net as a labelled directed

graph, where the places are represented by circles, transitions by rectangles

(in the diagrams of this chapter we will prefer to denote transitions by their

labels for simplicity), the weight function by arrows and arrow multiplicities

by numbers on the arrows (with no arrow drawn if the multiplicity is zero

and no label if the multiplicity is one). Markings (i.e. elements of NS) are

represented by tokens or natural numbers drawn in each place. The labelling

function will be assumed to be total throughout this chapter.

t
2

3

t

Figure 6.1: An example of a Petri net diagram.

1Note that l does not have to be bijective; in fact, there is a special name for the
labelled Petri nets in which this holds: free Petri nets.
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Now we shall describe the execution semantics of Petri nets.

Definition 118. Let m ∈ NS be a marking and t ∈ T be a transition. We

say that t is enabled at m if, for all places s ∈ S, we have W (s, t) 6 m(s); we

denote this by m[t〉. If t is enabled at m, we can fire t to get a new marking

m′ ∈ NS, defined by

m′(s) = m(s) +W (t, s)−W (s, t)

for all s ∈ S. We denote this by m[t〉m′ (note that writing this automatically

implies that m[t〉).

We generalize this to sequences of transitions (i.e. elements of T ∗) by

taking the reflexive and transitive closure in the obvious way.

We need the notion of a labelled Petri net accepting a language; there

are various possibilities and we consider the “terminal language” of a Petri

net. To do this we extend the definition of a labelled Petri net to include a

finite set of terminal markings M ⊂ NS and write

P = (S, T,W,m0,M,Σ, l).

Definition 119. The ( terminal) language L(P ) recognized by P is the set

{l(w) : m0[w〉m some m ∈M,w ∈ T ∗}.

We say that a language L ⊆ Σ∗ is a Petri net language (PNL for short)

if there is a labelled Petri net whose terminal language is L and let PNL
denote the class of all Petri net languages.

The class PNL has several nice closure properties (see references such

as [31]), some of which we note here for future use:

Proposition 120. (i) PNL contains all regular languages.
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(ii) PNL is closed under union.

(iii) PNL is closed under intersection.

(iv) PNL is closed under inverse GSM mappings (and, in particular, under

inverse homomorphisms).

(v) PNL is closed under λ-free GSM mappings (and, in particular, under

λ-free homomorphisms).

In the terminology of Chapter 3, PNL is therefore a semi-AFL, though

it is not full as it is not closed under arbitrary homomorphisms.

The last four properties of Proposition 120 are defined in Chapter 3. For

the first, note that any NFA can be transformed into a Petri net: we let the

states be places, the labels of transitions in the NFA be transitions in our

Petri net, the initial marking be a token in the place corresponding to the

start state, and the final markings the equivalent for places corresponding to

the accept states of the NFA.

Note that some authors define Petri net languages (or indeed CSSs, a very

close concept), in a slightly different way: they only allow one final marking,

or disallow a final marking equal to the initial one. Several clever construc-

tions (see pages 8-21 of [19]) show that these definitions are equivalent, up

to the inclusion of the empty word λ in the language. We give the details of

the constructions in the next section.

6.2 Equivalence of definitions

In this section we will explicitly give the various definitions of Petri net

languages given by the various authors used in our references, and we will

then show that the definitions are equivalent (to each other and to ours).

Many authors use the definitions interchangeably, so their equivalence is

well-known but not often explicitly proven: we give the details here.
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The definition in the previous section is the same as given in Jantzen’s

1987 paper [31] (though he does use a different one in [30]). We will keep

our terminology of labelled Petri net and PNL as above.

Below are the definitions Petersen uses to define CSS or computation

sequence sets [49]:

Definition 121. A P-Petri net N is a 5-tuple (P, T,Σ, S, F ) where P is

a finite set of places, T is a finite set of transitions disjoint from P , Σ is

the input alphabet (or the set of labels), S ∈ P is a designated start place,

F ⊆ P is a designated set of final places, and each transition t ∈ T is a triple

consisting of a label in Σ, a multiset (or bag) I of input places, and a bag O

of output places.

This is therefore almost the same as our original definition except for the

designated start and final places. The labeling implies that there can be

more than one transition with the same label, and the multiplicity of a place

in a bag is just the multiplicity of its arrow to or from its transition in our

original definition. Enabled transitions and so on are defined in the same

way.

Definition 122. The Computation Sequence Set of a P-Petri net is the set

of all sequences of labels of transitions leading from the start marking (one

token in the start place, none anywhere else) to one of the final markings

(one token in one of the final places, none in any other place).

The class of all languages which are computation sequence sets of a P-

Petri net we will call CSS.

Lastly, we give Hack’s definition from [19].

Hack’s definition of a labelled Petri net is the same as ours (he actually

splits the weight function into two separate forwards and backwards incidence

functions, but this is not an essential difference).
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Definition 123. The set of H-terminal label sequences of a labelled Petri

net N for a final marking mf 6= m0 is the set labels of sequences of transitions

leading from m0 to mf .

The difference between our definition and Hack’s is twofold: he only

allows one final marking, and this final marking cannot be equal to the start

marking. His justification is that he then avoids having any H-terminal

languages containing λ, as if one keeps the unique final marking condition

but allows these languages to contain λ, the class of H-terminal languages of

labelled Petri nets is no longer closed under union (see page 8 in [19]). Hack

calls this class L0 and we shall adopt this terminology.

It is known that L0 and CSS are the same up to inclusion of the empty

word:

Theorem 124. For any language L, L ∈ CSS ⇐⇒ L− {λ} ∈ L0.

Proof. In other words, any language in L0 is in CSS (since none contain the

empty word), and any language in CSS can be seen as a language in L0 with

the empty word added in. For a proof, see pages 19-20 of [19].

Now for the essential part: showing that PNL is the same as CSS. Clearly

CSS ⊆ PNL; the reverse inclusion is the interesting one. To show it, we

will use a “standardisation” of Petri nets described in [19]. Assume we have

a Petri net N ; we will show it can be transformed into a P -Petri net without

changing the terminal language.

1. The run place: Add a place named run with a loop to all transitions

in the original net N . This clearly does not change the language. The

practicality of this place is that it enables one to activate and deacti-

vate N at will; no transitions in N can fire unless there is a token in

run.

2. The first transitions : (See page 12, section 2.2.2 in [19].) There were

finitely many transitions t1, . . . , tn enabled at the initial marking m0 of
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our labelled Petri net N . For each of these ti we add a new transition t′i

with the same label as ti. This t′i will do two things: deposit the

marking corresponding to m0[ti〉 (thus imitating ti) and deposit a token

in run, thus activating N .

3. The start place: Now add a place named start with an arrow to each

of the t′i. It is easy to see the language is not changed. We now have a

designated start place and can take our new initial marking to be one

token in the start place and none anywhere else.

4. The stop transitions: These use the same principle as the first tran-

sitions - for any final marking of our original Petri net N , there are

finitely many last transitions ti leading to them - in other words, there

are finitely many ti such that there is a marking mj where mj[ti〉m
for m ∈ M a final marking. Again, add a new transition t′′ij for each

of these. Each t′′ij will both take away the token in the run place and

empty the penultimate marking it is associated to (so if mj had k tokens

in place p, there will be an arrow labelled k from p to t′′ij). Note that

this only works if the last transition is not the first transition (i.e. mj

is not m0). In that special case, t′′ij has just a simple arrow from the

start place, bypassing run altogether.

5. The final places: For each t′′ij, add a new place pij, with a simple arrow

from t′′ij to pij. If the empty word is not in the language, taking these

as the final places and assuming each final marking to be a token in

a single final place and none anywhere else is enough. If λ is in the

language recognized by N , simply designate the start place to be a final

place as well.

The modifications above can be straightforwardly seen not to change the

terminal language of the net, and allow us to transform a labelled Petri net

(according to our definition) into one of Petersen’s P -Petri nets.

We therefore have:
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Theorem 125. PNL = CSS,

as required.

6.3 Previous results

As we saw in Proposition 120, the class PNL is closed under inverse homo-

morphisms and intersection with regular languages (the latter fact following

from parts (i) and (iii)); as a result, we have the following immediate conse-

quence of Theorem 44:

Proposition 126. The class of finitely generated groups with word problem

a PNL is closed under taking finitely generated subgroups.

We also have:

Proposition 127. If G and H are finitely generated groups with word prob-

lems in PNL then the word problem of the direct product G ×H is also in

PNL.

Proof. If P1 and P2 are Petri nets recognising the word problems of G and H

with respect to finite generating sets A and B respectively (where A and B

are disjoint), then the disjoint union of P1 and P2 recognizes the word problem

of G×H.

Of fundamental importance in what follows will be the so-called Heisen-

berg group, which is the group of matrices
 1 a c

0 1 b

0 0 1

 : a, b, c ∈ Z


under multiplication. This is an example of a nilpotent group. One way of

defining this concept is to let Z(G) denote the centre of a group G

Z(G) := {g ∈ G : gh = hg ∀h ∈ G},
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and then define a series of normal subgroups Z1(G) 6 Z2(G) 6 . . . of G by:

Z1(G) := Z(G), Zi+1(G)/Zi(G) := Z(G/Zi(G)) for i > 1.

We say that G is nilpotent if Zi(G) = G for some i ∈ N.

Recall the definition of ‘virtually’ (Definition 14). The following fact (see

[25] for example) will be important here:

Proposition 128. A finitely generated torsion-free virtually nilpotent group

that does not contain the Heisenberg group is virtually abelian.

As PNL is closed under union with regular languages and inverse GSM

mappings, we have the following consequence of Theorem 45:

Proposition 129. The class of finitely generated groups whose word problem

lies in PNL is closed under taking finite extensions.

Returning to generating sets, we say that a group G with finite generating

set A has polynomial growth if there is a polynomial p(x) such that the

number of elements of G represented by words in (A ∪ A−1)∗ of length at

most n is bounded above by p(n).

6.4 Virtually abelian if and only if PNL word

problem

6.4.1 Virtually abelian implies PNL

In this subsection we prove one direction of Theorem 116, showing that a

finitely generated virtually abelian group G has a word problem in PNL.

We start with the case where G is abelian:

Proposition 130. The word problem of a finitely generated abelian group is

always a PNL.
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Proof. Let G be a finitely generated abelian group. According to the struc-

ture theorem for finitely generated abelian groups, G is expressible as a direct

product

Zr × Z/a1Z . . .× Z/amZ

where r > 0, m > 0 and ai = pni
i for some prime pi and some natural number

ni > 1. The word problem of a finite cyclic group Z/aZ is regular (as in

Theorem 46), and hence a PNL. The word problem of Z is a PNL as shown

in the diagram below.

a a−1

a−1 a

Figure 6.2: A labelled Petri net recognizing the word problem of Z = 〈a| 〉.
The empty marking is both initial and terminal, and there are no other
terminal markings.

The result follows from Proposition 127.

Propositions 129 and 130 immediately give:

Corollary 131. Any finitely generated virtually abelian group has its word

problem in PNL.

6.4.2 PNL implies virtually abelian

Now we consider the converse to Corollary 131 which (together with Corol-

lary 131) will establish Theorem 116. First we prove the following:

Proposition 132. A finitely generated group with PNL word problem has

polynomial growth.
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Proof. Let G be a group generated by a finite set A and let Σ = A ∪ A−1.

Assume that the word problem ofG is recognized by P = (S, T,W,m0,M,Σ, l)

with initial marking m0 and set of terminal markings M .

Let us call markings which are reachable from m0 in P and which al-

low the possibility of reaching a terminal marking acceptable markings. No-

tice that, given an acceptable marking m, any two sequences of transitions

reaching m from m0 must represent the same group element. This is be-

cause, if m0[t1 . . . tn〉m and m0[t′1 . . . t
′
k〉m and m is acceptable, then there

is a sequence of transitions w from m to some terminal marking m′. But

then m0[t1 . . . tn〉m[w〉m′ and m0[t′1 . . . t
′
k〉m[w〉m′ and hence both sequences

of transitions are in the word problem WA(G). So

l(t1 . . . tnw) =G 1G =G l(t
′
1 . . . t

′
kw),

from which we get that l(t1 . . . tn) =G l(t
′
1 . . . t

′
k).

So we have a natural mapping θ from the set of acceptable markings to G.

As P recognizes the word problem of G, for each group element g there must

be an acceptable marking m with mθ = g, otherwise no word ww−1, where w

represents g, can be accepted by P . So the mapping θ is surjective.

In order to show polynomial growth, we want to show that there is a

polynomial p(n) such that the number of group elements represented by a

sequence of generators of length n is at most p(n). Since the mapping θ is sur-

jective it is therefore sufficient to bound the number of acceptable markings

reachable by a sequence of transitions of length n by such a polynomial p(n).

If a sequence t1 . . . tn reaches an acceptable marking and so does the se-

quence tσ(1) . . . tσ(n) for some permutation σ of {1, 2, . . . , n}, then the two

sequences reach the same marking2; this follows directly from the effect on a

marking of firing a transition. In counting the number of acceptable mark-

2Recall here that the ti are actual transitions, not labels of transitions (i.e. generators);
therefore this argument does not imply that G is abelian as, for example, being able to
swap labels a and b in one such sequence does not mean that we would necessarily be able
to do so in all such sequences.
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ings, one can therefore ignore the order in which the transitions fire: the

only important thing is their multiplicity. If there are k possible transitions

t1, . . . , tk in P , this means that there are at most as many acceptable mark-

ings induced by sequences of n transitions as there are possible values for

µ(t1), . . . , µ(tk) ∈ N such that

µ(t1) + . . .+ µ(tk) = n.

The function µ(ti) denotes the multiplicity of the transition ti in the tran-

sition sequence. It is now clear that the number of acceptable markings is

bounded above by the polynomial (n+1)k, as there are at most n+1 choices

for each of the µ(ti).

Using Gromov’s wonderful theorem [18] about groups with polynomial

growth we immediately deduce the following:

Corollary 133. A finitely generated group whose word problem is a PNL is

virtually nilpotent.

We now want to show that a finitely generated group whose word problem

is a PNL is virtually abelian. As we will show later, it is enough to show

that the Heisenberg group’s word problem is not a PNL. To do this, we use

the idea that a Petri net cannot “do multiplication” (in the sense described

in [6]).

There are other ways to prove that the Heisenberg group does not have

a PNL word problem. The result is not essentially new, and there are many

alternative ways to prove it. One way would be to use Lambert’s Pumping

Lemma. The proof is outlined in Remark 134 below.

Remark 134. A consequence of Lambert’s Pumping Lemma (see [36]) is

that for any Petri net P with initial marking m0, final marking mf , and

letter a in the alphabet of P , the set L(a) := {|l(u)|a : m0[u〉mf} is infi-

nite if and only it contains an arithmetic sequence with a non-zero common
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difference. If the language L of Theorem 137 were in PNL, then its inter-

section {anbnAnBnCn2
: n ∈ N} with {anbnAnBnCk : n, k ∈ N} would also

be in PNL. But then L(C) = {n2 : n ∈ N} would have an arithmetical

subsequence with nonzero common difference, a contradiction. The rest of

the proof is contained in Theorem 138.

We give below a longer and more detailed proof as we believe it provides

more of the intuition. Hidden in the proof above is the use of the decidability

of the reachability problem for Petri nets, which is made explicit below (see

Theorem 136).

Definition 135. A function f : Nn → N is said to be computable by a Petri

net if there is a (unmarked) Petri net P = (S, T,W ) with places

{p1, . . . pn, start, stop, pf , run} ⊆ S

and transitions go and finish in T , each with multiplicity one, such that:

(i) W (t, start) = 0 for all t ∈ T .

(ii) W (start, go) = W (go, run) = 1.

(iii) W (stop, t) = W (pf , t) = 0 for all t ∈ T .

(iv) W (run, finish) = W (finish, stop) = 1.

(v) W (t, run) = W (run, t) = 1 for all t ∈ T − {go, finish}.

(vi) For any initial marking m0 such that

(a) m0(pi) = ai for all 1 6 i 6 n,

(b) m0(start) = 1 and

(c) m0(p) = 0 for all other places p (i.e. p ∈ P − {p1, . . . , pn, start}),
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any marking m reachable from m0 satisfies

m(stop) = 1,

m(p) = 0 ∀p ∈ P − {stop, pf}

}
⇒ m(pf ) = f(a1, . . . , an).

In [6] Chrza̧stowski-Wachtel uses the undecidability of Hilbert’s 10th

problem to prove the following important result:

Theorem 136. If multiplication is computable in a class of Petri nets then

the reachability problem for that class of Petri nets is undecidable.

By a class of Petri nets, we mean an extension of our definition of Petri

nets, for example nets with inhibitor arcs or priorities (see [6]). By multipli-

cation being computable, we mean in the sense of Definition 135 above, as a

function from N2 to N.

We now use Theorem 136 to prove that the word problem of the Heisen-

berg group cannot be a PNL. This will follow from the following result:

Theorem 137. Let Σ = {a, b, A,B,C}. Then

L = {aibjAiBjCij : i, j ∈ N}

is not a Petri net language.

Proof. We assume that L is a PNL and let P = (S, T,W,m0,M) be a Petri

net recognizing L, where S = (p1, . . . pn), m0 = (a1, . . . an) is the initial

marking and

M = {(b11, . . . , b1n), . . . , (bm1, . . . , bmn)}

is the set of terminal markings, where m ∈ N, n = |S| and ak, bkl ∈ N for

all k and l. We now modify P to get a new Petri net P ′ as follows:

1. Add new places start, run, almost stop, q1, q2 and q3.
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2. Add new transitions go, finish1, . . . , finishm and finish (each with

multiplicity one).

3. Add the arrow start→ go.

4. For each place pl ∈ S (for 1 6 l 6 n), add the arrows go
al−→ pl. This

means that the transition go effectively puts in place the initial marking

of P .

5. For each transition t ∈ T , add the arrows t → run and run → t.

This means that the place run can effectively enable and disable all

the firings of P , according to whether or not there is a token in it.

6. Add an arrow go → run, so that go is necessary to enable the func-

tioning of P .

7. For each of the transitions in P labelled a, add an arrow q1 → a, for

each of the transitions in P labelled b, add an arrow q2 → b and, for

each of the transitions in P labelled C, add an arrow C → q3. Thus, q1,

q2 and q3 will effectively “count” occurrences of a, b and C respectively

(though q1 and q2 will accumulate tokens whereas q3 will ‘eat’ them).

8. For each pl ∈ S, add an arrow pl
bkl−→ finishk. Essentially, there is a

finishk-transition for each of the terminal markings in M , and each of

these transitions empties the places of P .

9. Finally, in order to deactivate P at the end, add arrows run→ finishk,

finishk → almost→ finish→ stop for all k.
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Figure 6.3: The Petri net P ′ at its initial marking. The grey area corresponds
to the original net P . The places pl of P are represented twice for convenience.

We let S ′ = (start, run, p1, . . . , pn, q1, q2, q3, almost, stop) and define the

new initial marking for P ′ to be

m′0 = (1, 0, 0 . . . , 0, x, y, 0, 0, 0)

for x, y ∈ N. Let m be any (reachable) marking where every place of S ′

except for q3 and stop is empty. We want to show that q3 has to hold xy

tokens. Let w be the sequence of (labels of) transitions leading from m′0

to m.

1. w must start with go, as it is the only enabled transition initially (the

initial emptiness of run blocks all the other transitions).

2. The penultimate transition in w must be finishk for some k in order

to empty run (recall that all places except stop and q3 must be empty

at marking m). After this it is clear only finish can fire.
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3. In between go and finishk there must be a word (recognized by P )

in L: note that the only way that a finishk transition empties all places

of P is if we are in the terminal marking (bk1, . . . , bkn) ∈ M . Since go

puts m0 in place, we must have that w = run v finishkfinish for some

k 6 m and v ∈ L.

4. In order to empty q1 and q2, v must have caused a and b to fire x and y

times respectively. Since v ∈ L, this forces v = axbyAxByCxy. This

means that q3 has xy tokens in m.

Thus, if L were recognizable by a Petri net, then multiplication would

be computable. By Theorem 136, this would mean that reachability in Petri

nets is undecidable. We know that this is false [40] and so L is not a PNL.

We can now immediately deduce the required result about the Heisenberg

group:

Theorem 138. The word problem of the Heisenberg group H is not a PNL.

Proof. If a, b and c respectively denote the matrices 1 1 0

0 1 0

0 0 1

 ,

 1 0 0

0 1 1

0 0 1

 and

 1 0 1

0 1 0

0 0 1


then a, b and c generate H and every relation in H can be deduced from the

relations

ac = ca, bc = cb and ab = bac

(this is a well known presentation for H, see [32] for example). Let W denote

the word problem of H with respect to {a, b, c}. To ease clutter, we let A

represent a−1, B represent b−1 and C represent c−1. We claim that the

language L from Theorem 137 is just W ∩a∗b∗A∗B∗C∗. To see this, we recall
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that ab =G bac. So we get

aibj =G ai−1abbj−1 =G ai−1bacbj−1 =G ai−1babj−1c

=G ai−1babbj−2c =G ai−1b2abj−2c2 =G · · ·
=G ai−1bjacj =G · · · =G bjaicij.

Now:
aibjAkBlCm =G 1 ⇐⇒ bjaicijAkBlCm =G 1

⇐⇒ bjaiAkBlcijCm =G 1.

It is clear that, if i = k, j = l and ij = m, then bjaiAkBlcijCm =G 1.

On the other hand, if bjaiAkBlcijCm =G 1, then this still holds true in the

factor group G/〈c〉 which is a free abelian group (i.e. with no other relation

other than the commuting of generators) generated by the two elements

[a] and [b]. So [b]j[a]i[A]k[B]l =G [1], which gives that i = k and j = l.

So bjaiAkBlcijCm =G cijCm, and so we must have ij = m as well. So

aibjAkBlcijCm =G 1 if and only if i = k, j = l and ij = m, which is what

we wanted to establish.

Since the class PNL is closed under intersection with regular languages,

we have that W /∈ PNL.

Our result now follows:

Proposition 139. If a finitely generated group G has a PNL word problem,

then G is virtually abelian.

Proof. We know already that G is virtually nilpotent by Corollary 133. As-

sume that G is not virtually abelian; then G has a nilpotent but not virtually

abelian subgroup K of finite index in G. In turn, it is known (see 5.4.15 (i) of

[52] for example) that K must have a torsion-free subgroup L of finite index,

and L must then be nilpotent but not virtually abelian. By Proposition 128

we have that H 6 L 6 K 6 G where H is the Heisenberg group. So H is

a finitely generated subgroup of G. Since G has a PNL word problem, so

does H by Proposition 126, contradicting Theorem 138.
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Taken together with Corollary 131, this completes the proof of Theo-

rem 116.

6.5 Relationship with other language classes

In this section, we put our results into some context, comparing the class

of groups with word problem in PNL with those in some other classes of

languages, such as the class CF of context-free languages and the class OC
of one-counter languages. Let coCF be the class of co-context-free languages

(i.e., languages that are complements of context-free languages).

Recall that the one-counter languages can be thought of as those recog-

nized by an automaton which has a counter where we store a natural number

and where we can test for zero. If we have two such counters, it is well known

that we can simulate a Turing machine, and so such machines accept all the

recursively enumerable languages; however there are natural variations which

restrict the class of languages that can be accepted. If we allow the counters

to contain integers and accept a word if we can reach a designated accept

state with all the counters equal to zero, then we have a BMM (blind mul-

ticounter machine). We could strengthen the model to allow the counters

to contain natural numbers and, whilst we still cannot test if the counters

are empty, transitions that attempt to decrease a counter which currently

has value zero are not enabled; we again accept if we can reach a designated

accept state with all the counters equal to zero. Such a machine is called

a PBMM (partially blind multicounter machine). It was shown in [17] that

every Petri net language is accepted by such a machine but that, if L is the

language {anbn : n > 0}, which is in both OC and PNL, then L∗ is not

accepted by a PBMM, and hence is not in PNL. Since L∗ ∈ OC, we have

that OC 6⊆ PNL. On the other hand, it is well known that PNL 6⊆ CF (let

alone OC); for example, the language {anbncn : n > 0} is in PNL.

As we have just seen, these families of languages are both incomparable
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with PNL. However, when we turn to word problems of groups, the situation

changes:

Proposition 140. If G ∈ OC then G ∈ PNL.

Proof. A group with one-counter word problem is virtually cyclic by [21] and

hence virtually abelian; the result follows from Corollary 131.

Of course, since OC 6⊆ PNL, finite intersections of one-counter languages

are not necessarily in PNL; however this situation also changes when we

restrict ourselves to word problems. As we mentioned in the introduction

to this chapter, it was shown [24] that a group has a word problem that is

the intersection of finitely many one-counter languages if and only if it is

virtually abelian; so we have the following:

Corollary 141. G ∈ PNL if and only if G ∈
⋂

finOC.

We should mention that not only is
⋂

finOC not a subset of PNL, but

PNL is not a subset of
⋂

finOC either. In order to prove this, we must

introduce semilinear sets and the Parikh mapping.

Definition 142. A subset X of Nn is said to be linear if there are n-tuples

~v0, ~v1, . . . , ~vm ∈ Nn such that

X =

{
~v0 +

m∑
i=1

mi~vi : mi ∈ N

}
.

A set Y ⊆ N is said to be semilinear if it is a union of finitely many linear

sets.

Let Σ be an alphabet with n symbols (we can assume they are ordered

in some way a1, . . . , an). Then the Parikh mapping is the map which just

counts the number of occurrences of each letter: Φ : Σ∗ → Nn is defined

by w 7→ (|w|ai)i. Parikh’s theorem essentially says that if one ignores the

ordering of the letters in the words, a context-free language is just like a

regular language; the precise statement is as follows:
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Theorem 143 (Parikh). For any context-free language L, Φ(L) is a semi-

linear set.

Proof. See Theorem 2 in [46].

This enables us to prove:

Proposition 144. L = {anbm : 1 6 m 6 2n, 1 6 n} is in PNL but not in⋂
finOC.

Proof. It is known that L ∈ PNL; see [30]. Assume that L ∈
⋂

finOC, say

L = L1 ∩ · · · ∩ Ln

where the Li are one-counter languages. Let K be the regular language a∗b∗.

Since L ⊆ K, we have L = (L1 ∩ K) ∩ · · · ∩ (Ln ∩ K) and so, without

loss of generality, we can assume that Li ⊆ K for all i (as the intersection

of a one-counter language and a regular language is one-counter). Since the

Parikh mapping Φ : Σ∗ → N2 defined by w 7→ (|w|a, |w|b) is bijective on K,

we have

Φ(L) = Φ(L1) ∩ · · · ∩ Φ(Ln).

By Theorem 143, we know that any context-free language, and hence any

one-counter language, has a semilinear Parikh image. Since the Li are all

one-counter, Φ(Li) is semilinear for all i. Since any intersection of semilinear

sets is semilinear, L would have a semilinear Parikh image. However, L does

not have a semilinear Parikh image [30], a contradiction.

There is a nice characterization of groups whose word problem is accepted

by a BMM in [11], where it is shown that the word problem is accepted by

such a machine with n counters if and only if the group G has a free abelian

subgroup of rank n of finite index in G. Whilst the class of groups is the

same as that characterized here, the languages accepted by BMMs form a
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proper subclass of PNL (see [17]). The proof in [11] has some similarities

with our approach.

We finish with a comment relating groups with a word problem in PNL
to those with a word problem in coCF . The latter is a very interesting class

of groups (see [25, 37] for example) but we do not yet have a classification as

to which groups lie in this class. However, we can say the following:

Proposition 145. If G ∈ PNL then G ∈ coCF , but the converse is false.

Proof. By Proposition 6 in [25], all virtually abelian groups are in coCF , and

so the inclusion follows from Proposition 139.

For the converse consider the free group on two generators; this is not

virtually abelian, and so is not in PNL, but it is in coCF (see [25] for

example).

Let us try to summarize all the relations in a diagram. Recall from Sec-

tion 3.1 our diagram of the inclusions among the various classes of formal

languages. We now know that PNL, the class of terminal Petri net lan-

guages, is incomparable to both OC and CF . However, it properly contains

the class of regular languages and is properly contained in the class of recur-

sive languages. In contrast to this, the incomparability situations disappear

when we are talking only of languages which are word problems of groups.

Denoting these classes with subscripts G (i.e. OCG is the class of languages

in OC which are also word problems), the relationships now become:

REGG ⊂ OCG ⊂ PNLG =

(⋂
fin

OC

)
G

⊂ coCFG ⊂ RG ⊂ REG.

Witnesses for the strictness of the inclusions are, in order from left to

right: the word problem of any group which is virtually cyclic but not finite

(Z, for example), the word problem of any group which is virtually abelian

but not virtually cyclic (Z × Z for example), the word problem of the free

group of rank two, the word problem of the Heisenberg group, and the word
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problem of a group of type T (see Section 5.4). The incomparability between

CFG and PNLG remains, however, since there are virtually abelian groups

which are not virtually free and vice-versa. Their intersection is exactly the

OCG, as a group is both virtually abelian and virtually free if and only if it

is virtually cyclic.

6.6 Standard form theorem

In this section we will show that if a language is the word problem of a

virtually abelian group, then it can be recognized by a labelled Petri net

in standard form - namely, one with the same initial and terminal marking,

and we give a way to construct this Petri net. We will call this a tidy Petri

net. This kind of language has been mentioned in [19] under the name cyclic

terminal languages.

The first and easiest thing to note is that any abelian group is recog-

nized by a tidy Petri net: infinite cyclic groups satisfy this property (see

Figure 6.4.1 - the initial and terminal marking are both the empty mark-

ing) and so do finite cyclic groups (the corresponding Petri net is a cycle

with a place for every possible exponent of the generator - the initial and

terminal marking are then the marking with a token in the place for the 0th

exponent and no tokens anywhere else). By the classification of finitely gen-

erated abelian groups, any abelian group’s word problem will be recognized

by a disjoint union of tidy Petri nets, where the initial/terminal marking

is the “disjoint union” of initial/terminal markings of its components (what

we mean by this is the operation that sends ((a, b), (c, d, e)) to (a, b, c, d, e),

rather more similar to concatenation of tuples).
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THE CONSTRUCTION

Let G be a virtually abelian group, with abelian subgroup H of finite index.

Say H is generated by the finite generating set Ω closed under inverses. Let

{1, g1, . . . gn} be a set of coset representatives of H in G. Define

Λ := {g1, . . . , gn, g
−1
1 , . . . , g−1

n }

and Λ+ := {g1, . . . , gn}, Λ− := {g−1
1 , . . . , g−1

n }.
We know that there exists a tidy labelled Petri net PH = (S, T,W,m0,Ω, l)

recognizing the word problem of H with respect to Ω. From PH , we will con-

struct a new tidy labelled Petri net P = (S ′, T ′,W ′,m′0,Σ, l
′) with underlying

alphabet Σ = Ω ∪ Λ. This tidy Petri net will recognize the word problem

of G with respect to Σ.

The set S ′ of places of P : We extend S with a place for every coset

representative of H in G, including 1:

S ′ := S ∪
{
pg : g ∈ Λ+ ∪ {1}

}
.

We will later see that a token in one of these places will indicate which coset

of H a word we have read is in. We call this token the coset marker.

The initial/terminal marking m′0 of P : The initial marking will be

identical to m0 on S, and have a coset marker in the place p1. So

m′0(p) = m0(p) for all p ∈ S,

m′0(p1) = 1,

m′0(p) = 0 for all p ∈ S ′ − (S ∪ {1}).

Transitions, arrows and labels of P : We shall give the definitions of

T ′,W ′ and l′ all at once in order to facilitate their description.
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• Firstly, we stipulate that T ⊆ T ′, W ′ �(T×S)∪(S×T )= W , and l′ �T= l,

so that P is truly an extension of PH .

• The place p1 will be connected with a simple arrow to and from each

transition in our original net PH . It thus acts similarly to the ‘run’

place described in Section 6.2. So

W ′(p1, t) = W ′(t, p1) = 1

for all t ∈ T . This is because we want PH to be active only when the

coset marker indicates that we are in H.

• Let g ∈ Λ+ ∪ {1} be arbitrary. For each of these we will go through

the process described below.

Let x ∈ Σ. We know that gx ∈ Hg′(g,x) for some unique g′(g,x) ∈ Λ+∪{1}.
So we choose a shortest word α(g,x) ∈ Ω∗ such that

gx =G α(g,x)g
′
(g,x).

However, recall that many transitions in T may have the same label.

There are therefore many sequences of transitions whose labels spell out

α(g,x). Each sequence σ may be represented by a vector ∆(σ) := CΨ(σ)

where C is the incidence matrix3 of PH and Ψ the Parikh mapping.

In other words, let

E
(
α(g,x)

)
:=
{

∆(σ)|σ ∈ T ∗, l(σ) = α(g,x)

}
.

Now for each vector ∆(σ) ∈ E
(
α(g,x)

)
, add a new transition t

∆(σ)
(g,x) ∈ T ′

such that

3The incidence matrix C : T ×S → Z is a matrix such that C(t, s) = W (t, s)−W (s, t).
Thus ∆(σ) is essentially a vector in Z|S| where each entry corresponding to s ∈ S keeps
track of the sum of what σ does to it - tokens added and tokens taken away.
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– This transition is labelled by x:

l′
(
t
∆(σ)
(g,x)

)
= x,

– t
∆(σ)
(g,x) takes the coset marker from pg and deposits it in pg′

(g,x)
:

W ′ (pg, t∆(σ)
g,x

)
= 1 = W ′

(
t∆(σ)
g,x , pg′

(g,x)

)
,

– t
∆(σ)
(g,x) does to the places in S what reading α(g,x) would have done:

for all p ∈ S,

∆(σ)(p) > 0⇒

 W ′
(
p, t

∆(σ)
(g,x)

)
= ∆(σ)(p)

W ′
(
t
∆(σ)
(g,x) , p

)
= 0

∆(σ)(p) < 0⇒

 W ′
(
p, t

∆(σ)
(g,x)

)
= 0

W ′
(
t
∆(σ)
(g,x) , p

)
= ∆(σ)(p)

and both are 0 otherwise.

Here we should point out a special case: if g = 1 and x ∈ Λ+, then

α(1,x) = λ and g′(1,x) = x. So in this case we just get one transition t(1,x),

labelled x and taking the coset marker from p1 to px.

Now given any word w ∈ Σ∗, we define the following algorithm to rewrite w:

Look at the leftmost letter of w which is in Λ, say f . Call the letter to its

right x ∈ Σ.

1. If f is the last letter of the word w, stop.

2. If f ∈ Λ+, then rewrite fx to α(f,x)g
′
(f,x), and

3. If f ∈ Λ−, then rewrite f to α(1,f)g
′
(1,f).
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Repeat from the leftmost letter in Λ. Note that this process always termi-

nates. Each iteration of (2) brings the leftmost element of Λ strictly closer

to the end of the word, and (3) cannot happen twice in a row, as the g′

produced is always in Λ+ ∪ {1}!
Furthermore this rewriting is unambiguous and terminates in a unique

word of Ω∗(Λ ∪ {λ}), which we will denote w̄.

We can now prove our lemma:

Lemma 146. Reading a word w ∈ Σ∗ as input into P is the same (gives the

same possible markings) as reading w̄.

Proof. We prove this by induction on the number k of rewrite steps from w

to w̄.

If k = 0, then w = w̄ ∈ Ω∗(Λ ∪ {λ}) and there is nothing to prove.

For the induction step, let w′ be the result of the first rewrite step from w,

i.e. w  w′  ∗ w̄ (where  ∗ denotes an arbitrary number of rewrite

steps, including possibly none). By induction, reading w′ gives the same

markings as reading w̄, so we only need to show that reading w is the same

as reading w′.

Look at the leftmost letter in w of Λ - the one which will be rewritten

in w′, and the letter directly to its right. Call them f and x respectively. We

can assume that

w = ufxv

where u ∈ Ω∗,f ∈ Λ, x ∈ Σ and v ∈ Σ∗. Let us observe what happens in P

while reading w. Until the end of u, the only transitions fired are those in T -

because of the coset marker in p1, the only part of the net which is activated

is the original net PH . We now read f . There are two cases:

1. f ∈ Λ+. Until we read f , the coset marker was still in p1. Since f is

already a coset representative, we just fire the transition t(1,f) labelled f

taking the coset marker from p1 and depositing it in pf . The interesting
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part happens when we read the next letter, x. Say

fx = α(f,x)gi

where α is the shortest such word in Ω∗ (picked in the definition of

our tidy Petri net above). We know that there is at least one sequence

of transitions in PH reading uα(f,x), because uα(f,x)α
−1
(f,x)u

−1 ∈ WΩ(H).

By definition, at least one of those is a sequence of transitions reading u

followed by a sequence σ ∈ T ∗ such that ∆(σ) ∈ E
(
α(f,x)

)
(in other

words, at least one of the σs will be enabled after reading u).

After reading uf , we therefore fire the transition t
∆(σ)
α(f,x) (with σ as

above). By definition, this will take the coset marker from pf and

deposit it into pgi . Furthermore, its effect on the places S of PH is

exactly as if α(f,x) had been read. Therefore overall we have read the

equivalent of uα(f,x)v, which is exactly w′.

2. f ∈ Λ−. Then we do exactly the same as above, but using f = α(1,f)gi

only - we end up reading the equivalent of uα(1,f)xv = w′.

Because of the way we defined the rewriting rules, clearly w =G w̄, so

one is in the word problem of G if and only if the other is. If a word w is in

the word problem, since w̄ ∈ Ω∗(Λ ∪ {λ}), it must be the case that w̄ = uv

where u is in the word problem of H and v = λ. By Lemma 146 above, this

means that we read u in such a way that we are back at the initial marking

of PH (because PH is tidy), and the coset marker is back in p1 where it was

in the beginning. Therefore w is accepted by P .

Conversely, assume that w is a word accepted by the Petri net P - we

need to show w is in the word problem of G.

Lemma 147. Any sequence of transitions accepted by the Petri net P rep-

resents a word in the word problem of G.
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Proof. Let τ be a sequence of transitions leading from m′0 back to m′0. We

want to show that w := l(τ) =G 1G.

First, note that to simplify things we can assume H to be normal4 in G.

The consequence of this is that the only transitions within τ that will change

the place of the coset marker are transitions of type t
∆(σ)
(g,f) where g and f

are both in Λ ∪ {1} (note that g is always in Λ+ ∪ {1}). Each of these

transitions takes the coset marker from pg to the place for whatever coset

the group element gf is in. Therefore, each of these transitions equates to

multiplying the previous coset representative on the right with f (call f the

‘second component’ of t
∆(σ)
(g,f)).

Now look at the subsequence τ ′ of τ consisting only of transitions t
∆(σ)
(g,f)

as above. The coset place the marker ends up in will be the coset where the

product of all their second components, in order, is. However, at the end of τ

the coset marker must be back in p1 (it also starts out in p1), so the product

of all second components of τ ′ must represent 1G. Luckily, the product of all

second components of τ ′ is also the label l(τ ′)! So l(τ ′) =G 1G.

Let us come back to τ and w for a moment. By construction, we know

that there is a sequence ρ of transitions which is τ with all t
∆(σ)
(f,x) replaced by σ.

This is essentially a sequence of transitions corresponding to the rewritten

version w̄ of w - by the comment above about the overall effect of transitions

of type t
∆(σ)
(g,f) , we can ignore their effect on the coset places and only take into

account their effect on the places of PH . Now by construction, the sequence

of markings defined by ρ on PH is the same as that defined by τ . Since τ

was accepted by P , so must ρ be. Since ρ takes place solely in PH , it goes

from m0 to m0, so 1 =G l(ρ) = w̄ =G w and we are done.

This doesn’t hold for Petri net languages which are not word problems of

groups, as it implies that the language must be closed under concatenation

4Replace H by its normal core, which also has to have finite index in G.
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and indeed Kleene star. Clearly the language

L = {anbm : 1 6 m 6 2n, 1 6 n}

(see Proposition 144) does not have this property.

6.6.1 A comment on regular languages

Inspired by the discussion above, we shortly remark here that the same sort of

thing is not true for regular languages: we can have a regular language which

is closed under Kleene star but which is not accepted by any DFA with the

same start and final state. As an example, consider L = {λ} ∪ {an : n > 2}.
In this case clearly L = L∗, but it is straightforward to see that there is

no tidy DFA recognizing it - this can be proven by means of minimal DFAs

defined below.

Note that there is, however, a tidy Petri net accepting L, even though L

is not the word problem of a group (in order to be so, it would have to have

property (ii) in Theorem 149 below). This means that non-word problem

terminal Petri net languages can also occasionally have the desired property.

The tidy Petri net recognizing L is shown below. The initial and terminal

marking is the empty marking.

a a

a

However, if we add to L = L∗ the condition

(αβ ∈ L) ∧ (α ∈ L)⇒ (β ∈ L)

then we do have a tidy DFA recognizing L. To show this we need to introduce
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the concept of a minimal DFA.

Definition 148. Recall that a deterministic finite automaton

A = (Q,Σ, δ, s, F )

is simply one where the transition relation δ is a function. As usual we extend

this function to words, giving a function Q× Σ∗ → Q.

For p, q ∈ Q two states, we say that p and q are distinguishable if there

is w ∈ Σ∗ such that δ(p, w) ∈ F but δ(q, w) /∈ F .

For a language L ⊆ Σ∗, A is a minimal DFA recognizing L if it has no

indistinguishable states and no unreachable states.

It is a consequence of the Myhill-Nerode theorem that any regular lan-

guage has a minimal DFA recognizing it (it in fact has a minimum state one

- see page 67 of [26]).

We now prove our claim:

Theorem 149. If L is a regular language such that

i. L = L∗ and

ii. (αβ ∈ L) ∧ (α ∈ L)⇒ (β ∈ L),

then L is recognized by a DFA with the same initial and terminal state.

Proof. Let A = (Q,Σ, δ, s, F ) be a minimal DFA recognizing L. Since λ ∈ L
(because L∗ = L), the start state must be accepting. Assume for a contra-

diction that there is another accept state, f . We will show that s and f are

indistinguishable, contradicting the minimality of A.

First assume δ(s, w) ∈ F for some w ∈ Σ∗. We will show that δ(f, w) ∈ F .

We know that there is a u ∈ Σ∗ such that δ(s, u) = f , otherwise f is just an

unreachable state and we can discard it. We know that uw ∈ L by (i). Since

A is deterministic, there must be a path reading w from f to a final state.

In other words, δ(f, w) ∈ F .
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Conversely, assume δ(f, w) ∈ F . Let u be as above. Then uw is accepted

by the automaton and hence is in L, and also u ∈ L by definition. But then

by (ii), w ∈ L which means exactly that δ(s, w) ∈ F and we are done.

Note that our two conditions above are strictly weaker than L being a

word problem of a group: in [48], Parkes and Thomas show that the following

two properties characterize languages L ⊆ Σ∗ which are word problems of

groups generated by the alphabet Σ:

1. For all α ∈ Σ∗ there is β ∈ Σ∗ such that αβ ∈ L, and

2. If αγβ ∈ L and γ ∈ L then αβ ∈ L.

An example of a language which satisfies (i) and (ii) of the previous

theorem but not (1) above is the language L = {(ab)n : n ∈ N} - any word

that starts with a b is impossible to complete to a word in L.

It would be nice to know whether the two conditions (i) and (ii) above

are enough for PNL languages to have normal form Petri nets as well, but

unfortunately we don’t know how to do it without our correspondence theo-

rem.
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Chapter 7

Conclusion and future work

In this thesis we have presented a fairly eclectic mix of new results, and

attempted to give the background work they are building on. The thread

tying all of the different questions in this thesis is the deduction of algebraic

properties of groups from language-theoretic facts about their word problems

and variations.

In our fourth chapter we have gathered and sometimes generalized pre-

vious work on word problems of pairs of groups, their closure properties and

algebraic relationships. It is clear that much more work would be possible on

this subject - our conjecture is still not proven, and the surface of the connec-

tion with normal cores of subgroups has barely been scratched. Especially

on the subject of one-counter pairs of groups, the main problem is that we

do not know of many examples of one-counter pairs where the large group

is not already one-counter. This makes both the formulating of hypotheses

and the hunt for counterexamples difficult.

In the fifth chapter our main contribution is the result that groups where

all irreducible word problems are recursively enumerable are actually groups

with solvable word problem. We add to this a partial classification of par-

tially mimsy groups: those with some irreducible word problems which are

recursively enumerable and others which are not, if they do indeed exist. A
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clear future aim here is to either find a partially mimsy group or show that

none can exist. If there are partially mimsy groups, in order to have a full

classification, we would need to prove some sort of converse to Theorem 114.

We do know that the free product of a partially mimsy group and a uni-

formly mimsy group must be partially mimsy. However, in Theorem 114 the

free product is constructed with uniformly mimsy and non-mimsy groups.

Therefore we would need to know what properties the free product of a uni-

formly mimsy and a uniformly non-mimsy group has, or the free product of

a universally non-mimsy and a partially mimsy group.

The sixth chapter concerns terminal Petri net languages, and our main

contribution is that the groups whose word problems are such languages are

exactly the virtually abelian groups. In our opinion this last chapter is the

richest with regards to possibilities for future work. We mentioned investi-

gating whether we still obtain the virtually abelian groups if we allow our

Petri nets to have λ-transitions. This would be an interesting result, as this

class of languages (which we call PNLλ) is in fact closed under arbitrary

homomorphisms rather than only λ-free homomorphisms. Its closure prop-

erties are therefore more helpful and more comparisons with other language

classes may be possible. It seems as though all parts of our main result for

PNL could be replicated for PNLλ, with the exception of the growth of

groups. It is not clear to us that groups with PNLλ word problems have

polynomial growth - the possibility of padding words with arbitrary numbers

of λs poses a problem.

Other additional questions about PNL could be asked. One of the more

interesting ones is as follows: we know that the equivalence problem for Petri

nets is undecidable (see Section 8.2 in [19]), meaning that given two Petri nets

it is undecidable whether their terminal languages are the same. However, as

we have seen the intersection of Petri net languages with word problems of

groups is rather better behaved than the whole class - could it be that given

two Petri nets which we know recognize word problems of groups, we could
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decide equivalence? The idea here is to use our classification, and to in fact

deduce a group presentation from the Petri net. Since it is decidable amongst

virtually abelian groups whether two presentations give the same group (in

fact, this is true for a larger class, that of the virtually polycyclic groups -

see [55]), we would be done. In order to try to guess a presentation from a

Petri net known to recognize a word problem, we would try to enumerate

partitions on the set of generators (and hence the alphabet of the Petri net)

into two sets, one of which generates the abelian group of finite index and

the other contains coset representatives. The difficult part here is to deduce

a presentation for the abelian part.

There are a plethora of decidability questions about PNLs which we

haven’t had time to investigate in this thesis, such as: Given a PNL, is

it decidable whether it is the word problem of a group? Given a PNL which

is known to be the word problem of a group, is it decidable whether it is reg-

ular? One-counter? Context-free? Whether it has semilinear Parikh image?

In sum, this thesis is but a small fishing hole on the surface of a frozen

lake, but we hope to melt some more of the ice in the future.
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