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Abstract— Hyperspectral imaging is an important technique in remote sensing which is characterized by high spectral resolutions. With the 

advent of new hyperspectral remote sensing missions and their increased temporal resolutions, the availability and dimensionality of 

hyperspectral data is continuously increasing. This demands fast processing solutions that can be used to compress and/or interpret 

hyperspectral data on board spacecraft imaging platforms in order to reduce downlink connection requirements and perform a more efficient 

exploitation of hyperspectral data sets in various applications. Over the last few years, reconfigurable hardware solutions such as field 

programmable gate arrays (FPGAs) have been consolidated as the standard choice for on-board remote sensing processing due to their smaller 

size, weight and power consumption when compared with other high performance computing systems, as well as to the availability of more 

FPGAs with increased tolerance to ionizing radiation in space. Although there have been many literature sources on the use of FPGAs in remote 

sensing in general and in hyperspectral remote sensing in particular, there is no specific reference discussing the state-of-the-art and future 

trends of applying this flexible and dynamic technology to such missions. In this work, a necessary first step in this direction is taken by 

providing an extensive review and discussion of the (current and future) capabilities of reconfigurable hardware and FPGAs in the context of 

hyperspectral remote sensing missions. 
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The review covers both technological aspects of FPGA hardware and implementation issues, providing two specific case studies in which 

FPGAs are successfully used to improve the compression and interpretation (through spectral unmixing concepts) of remotely sensed 

hyperspectral data. Based on the two considered case studies, we also highlight the major challenges to be addressed in the near future in this 

emerging and fast growing research area.   

 
Index Terms— Hyperspectral remote sensing, reconfigurable hardware, field programmable gate arrays (FPGAs), hyperspectral data 
compression, spectral unmixing. 
 

I. INTRODUCTION 

Hyperspectral sensors are capable of generating very high-dimensional imagery through the use of sensor optics with a large 

number of (nearly contiguous) spectral bands, providing very detailed information about the sensed scene. From a remote sensing 

perspective, the spatial and significantly improved spectral resolutions provided by these latest-generation instruments has 

opened cutting-edge possibilities in many applications, including environmental modeling and assessment, target detection and 

identification for military and defense/security purposes, agriculture, urban planning and management studies, risk/hazard 

prevention and response including wild land fire tracking, biological threat detection, and monitoring of oil spills and other types 

of chemical contamination, among many others. 

Because of their potential, remote sensing hyperspectral sensors have been incorporated in different satellite missions over recent 

years like the currently operating Hyperion on NASA’s Earth Observing-1 (EO-1) satellite1 or CHRIS sensor on the European 

Space Agency (ESA)’s Proba-1. Furthermore, the remote sensing hyperspectral sensors that will be allocated in future missions 

will have enhanced spatial, spectral and temporal resolutions, which will allow capturing more hyperspectral cubes per second 

with much more information per cube. For example, it has been estimated by the NASA’s Jet Propulsion Laboratory (JPL) that a 

volume of 1 to 5 TBytes of data will be daily produced by short-term future hyperspectral missions like the NASA’s HyspIRI2. 

Similar data volume ratios are expected in European missions such as Germany’s EnMAP3 or Italy’s PRISMA4.Unfortunately, 

this extraordinary amount of information jeopardizes the use of these last-generation hyperspectral instruments in real-time or 

near real-time applications, due to the prohibitive delays in the delivery of Earth Observation payload data to ground processing 

facilities. In this respect, ESA have already flagged up in 2011 that “data rates and data volumes produced by payloads continue 

to increase, while the available downlink bandwidth to ground stations is comparatively stable” [1]. In this context, the design of 

solutions that enable to take advantage of the ever increasing dimensionality of remotely sensed hyperspectral images for real-

time applications has gained a significant relevance during the last decade.  

 
1http://eo1.gsfc.nasa.gov 
2http://hyspiri.jpl.nasa.gov 
3http://www.enmap.org 3http://www.enmap.org 
4http://www.asi.it/en/flash_en/observing/prisma 
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Within this scenario, on-board processing systems have emerged as an attractive solution in order to decrease the delays between 

the acquisition of a hyperspectral image, its processing/interpretation, and the decision on a proper action to be taken according to 

the information extracted from the image. This can be mainly achieved in two ways: 1) performing on-board (lossless or 

lossy)compression of the acquired data before transmitting them, so that the remotely sensed hyperspectral images are 

downloaded and further processed at the ground level; and/or 2) processing the hyperspectral images according to the needs of an 

application (or a set of them), so that only the obtained results (i.e. number and location of thematic classes after performing a 

classification/clustering of the sensed images, location of a set of sought targets within an image, pure spectral signatures 

(endmembers) together with their correspondent abundance factors obtained after spectral unmixing, etc.) are transmitted. At this 

point, it is worth mentioning that both scenarios, which have been exemplified at Figure 1 using a toy example, are not mutually 

exclusive since a possible framework could be to process the image on-board and then, compress the results obtained prior to the 

transmission to ground. 

For the particular case of Earth Observation satellites, these on-board systems should at least accomplish the following three 

mandatory characteristics. First, they must allow high computational performance, since all the state-of-the-art algorithms for 

compressing and/or processing a given hyperspectral image have a huge associated computational burden. Second, they should 

have compact size and reduced weight and power consumption, due to the inherent nature of remote sensing satellites. Last but 

not least, they must be resistant to damages or malfunctions caused by ionizing radiation, present in the harsh environment of 

outer space. Furthermore, it would be highly desirable that these high-performance on-board processing systems could also show 

a high degree of flexibility so that they can adapt to varying mission needs, faults, and/or to evolving and future processing 

algorithms and standards. 

Among the different general-purpose high-performance computing platforms that are nowadays commercially available, current 

radiation-hardened and radiation-tolerant field programmable gate arrays (FPGAs) undoubtedly represent the best choice in terms 

of the requirements outlined above, due to their negligible size and mass when compared with traditional cluster-based systems, 

as well as to their lower power dissipation figures when compared with Graphics Processing Units (GPUs). Because of this 

reason, this work is focused on demonstrating the suitability of FPGAs to on-board processing of hyperspectral images acquired 

by current and future remote sensing missions, as well as on highlighting the major challenges to be addressed in the near future.  

More specifically, in this work we provide an extensive review of the (current and future) capabilities of FPGAs in the context of 

remote sensing in general and hyperspectral imaging in particular. The review covers both technological aspects of FPGA 

hardware and implementation issues, describing two specific case studies in which FPGAs are successfully being used to 

improve the compression and data interpretation (through spectral unmixing techniques) of remotely sensed hyperspectral data. 

We believe that this contribution is much needed; although there have been many developments in the literature discussing the 
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use of FPGAs in remote sensing applications, there is no specific reference discussing the state-of-the-art and future trends of 

applying this flexible and dynamic technology to remote sensing missions. 

The remainder of this paper is organized as follows. Section II introduces the basics of FPGA technology, highlighting its most 

relevant characteristics for on-board systems. Section III reviews the state-of-the-art of FPGA implementations for hyperspectral 

imaging in general, and for compression and processing of hyperspectral images in particular. The next two sections detail these 

two example case studies: lossless/lossy compression (Section IV) and spectral unmixing (Section V), going from the 

architectural level to the FPGA implementation itself and providing implementation examples together with experimental 

validation and assessment using real hyperspectral scenes collected by a variety of sensors. Finally, Section VI provides some 

summarizing statements as well as future research hints and challenges. 

II. FIELD PROGRAMMABLE GATE ARRAYS (FPGAS) 

An FPGA can be roughly defined as an array of interconnected logic blocks, as it is depicted in Figure 2. One of the main 

advantages of these devices is that both the logic blocks and their interconnections can be (re)configured by their users as many 

times as needed in order to implement different combinational or sequential logic functions. In addition, modern FPGAs 

frequently include embedded hardware modules, such as static RAMs memories or multipliers specifically developed for digital 

signal processing computations, which can improve the efficiency of the system. As it is seen in Figure 3, this characteristic 

provides FPGAs with the advantages of both software and hardware systems in the sense that FPGAs exhibit more flexibility and 

shorter development times than application specific integrated circuits (ASICs) but, at the same time, are able to provide much 

more competent levels of performance, in terms of number of operations per watt, than general purpose processors (GPPs).In any 

case, these different platforms are not mutually exclusive. On the contrary, manufacturing companies such as Xilinx [2] or Altera 

[3] have developed System-on-a-Chip platforms that include ASICs modules, GPPs and FPGAs. These platforms can be used to 

develop a tightly integrated hardware/software system were the software running in the processors can take advantage of the 

hardware modules implemented both on the ASICs and on the FPGA. In these platforms, ASICs provide support for frequently 

used functions, such as those included on the communication standards, and FPGAs are used to customize the device adding 

hardware support specifically designed for the target applications. 

FPGAs offer good performance because they can implement optimized data paths for each computational task. These datapaths 

take advantage of the task internal parallelism and include a customized memory hierarchy. Moreover, due to the large number of 

available resources in current FPGAs, frequently it is also possible to execute several tasks in parallel in order to achieve further 

speedups. Using optimized datapaths not only improves the performance, but also reduces the power and energy consumption 

when compared with GPPs. The reason is that executing a given task in GPPs involves adjusting the required computations to the 
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GPP instruction set and carrying out an expensive instruction decoding process, which leads to important power and energy 

overheads. Furthermore, the power and energy efficiency of FPGAs has significantly improved during the last decade. FPGA 

vendors have achieved this goal improving the FPGA architectures, including optimized hardware modules, and taking advantage 

of the most recent silicon technology. For instance Xilinx reports a 50% reduction in the power consumption when moving from 

their previous Xilinx 6 FPGAs (implemented using 40nm technology) to their most recent Xilinx 7 FPGAs (a new architecture 

implemented using 28 nm technology). 

FPGAs are becoming an increasingly attractive solution for space-based systems not only because of their reduced size, weight, 

and power dissipation, as well as to their excellent tradeoff behavior between pure software and specific hardware systems, but 

also because the following four main reasons. First, because as with terrestrial applications, they perform well in high-throughput 

signal processing tasks encountered in space, like processing and/or compressing a hyperspectral image. Second, because FPGAs 

permit changes to the usage model and the data processing paradigm in space rather than hard-coding of all components prior to 

launch. In this sense, their inherent ability to change their functionality- through partial or full reconfiguration - aids in their 

agility, and extends the useful life of remote sensing autonomous systems. Third, because when compared to other technologies 

able to provide similar computational performance and design agility, FPGAs offer clear advantages in terms of size, area, and 

energy efficiency. At this point it is important to highlight that FPGAs have demonstrated their superiority in terms of energy 

efficiency with respect to other popular reduced-area low-weight kinds of general-purpose high-performance devices, such as 

GPUs. Fourth and last, because they can be manufactured in order to resist high levels of radiation without changing the content 

of their inner memories, which determines the FPGA programming, which undoubtedly constitutes another advantage of FPGAs 

with respect to current GPUs for space-based systems. Moreover, since FPGAs implement custom designs, additional fault-

tolerant levels can be included in the system when needed, such as dual or triple modular redundancy. 

Before analyzing the effects of outer space radiation in commercially available FPGAs, it is important to distinguish between 

antifuse, SRAM (static RAM) and Flash-based FPGAs. In antifuse-based FPGAs, the logical function to be reproduced within 

the targeted FPGA is obtained by burning off its internal connections, which are made of antifuses. Although these FPGAs are 

highly tolerant to radiation effects, their inherent nature converts them into one-time programmable devices and hence, they 

become less attractive for future space-based systems than SRAM and Flash-based FPGAs, since these last two can be 

reprogrammed. In a SRAM-based FPGA, the configuration of its logic elements and interconnections is stored in small SRAM 

memories distributed along the field programmable array. Since SRAM memories are volatile by default, these FPGAs must be 

programmed each time they are powered up, the program typically being stored in an off-chip non-volatile memory. On the 

contrary, in a Flash-based FPGA the configuration is stored in a non-volatile memory and hence, the FPGA device remains 

programmed even when the power source is removed from the system.  
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Besides the fact that that each way of (re)programming a FPGA has its own strengthens and weakness (in this sense, interested 

readers are referred to [4] for a comprehensive analysis), for the scope of this work it is important to highlight that they also 

behave in different ways under radiation effects. These effects can be categorized into two groups: total ionizing dose (TID) 

effects and single event effects (SEEs). The former gives an account of the energy accumulated in the device by ionizing 

radiation per unit of mass, being measured in the international system of units in grays (Gy – joules per kilogram), whereas the 

latter define the effects caused by aisle ionizing particles, which can be destructive (in the sense that they provoke permanent 

damages in the device) or not. With independence of its programmability, the families of FPGAs that are up to a certain limit 

resistant to these radiation effects are known as radiation-tolerant and radiation-hardened FPGAs, and different companies 

nowadays offer such devices. For instance, Xilinx presently offers the SRAM-based Virtex-4QV[5] and Virtex-5QV [6] families, 

with a frequency performance up to 450 MHz, and which have been extensively analyzed in terms of radiation effects by the 

NASA’s Jet Propulsion Laboratory (JPL) [7] while Microsemi manufactures the RT ProASIC3 series [8], based on nonvolatile 

Flash-based technology, which can run up to 350 MHz. 

Different state-of-the-art works have demonstrated that both families of reprogrammable FPGAs are suitable for space-based 

systems, although SRAM-based FPGAs are in general more tolerant than Flash-based FPGAs to TID effects, while on the 

contrary, SRAM-based FPGAs are more vulnerable than Flash-based FPGAs to SEEs [9]. In the remainder of this paper we will 

center our efforts in demonstrating that both types of FPGAs can be considered for future on-board hyperspectral imaging 

systems by means of two different case studies: compression and linear unmixing. 

III. REVIEW OF STATE-OF-THE-ART FPGA-BASED HYPERSPECTRAL IMAGING SYSTEMS 

Recently, significant efforts have been made directed towards the increase of the performance of remote sensing applications, 

specifically in the acceleration of hyperspectral imaging algorithms [10-14]. In the field of hyperspectral remote sensing, mainly 

four solutions have been addressed: cluster computing, heterogeneous computing, GPUs, and FPGAs. The motivation for this 

effort relies on the high computation requirements needed for achieving real or near real-time processing capabilities. Due to the 

superiority of FPGA devices for on-board systems, this section is focused on reviewing the state-of-the-art works that deal with 

the implementation of hyperspectral imaging algorithms onto FPGAs. More precisely, this section has been divided into three 

subsections devoted to review the existing FPGA-based implementations for hyperspectral image compression, spectral 

unmixing, and other hyperspectral imaging algorithms. 

A. State-of-the-art hyperspectral image compression implementations on FPGAs  

Due to the large amount of data generated by sensors, especially spaceborne ones, it is necessary to reduce the size of the data in 

order to download all the acquired sensor input. Image compression compensates for the limited on-board resources, in terms of 
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mass memory and downlink bandwidth and thus provides a solution to the “Bandwidth Versus Data Volume” dilemma of modern 

spacecrafts. The problem becomes increasingly important for hyperspectral remote sensing systems with the current trend 

towards developing more accurate hyperspectral sensors covering hundreds of spectral bands. Thus, hyperspectral image 

compression becomes an important on-board capability in order to alleviate the memory costs and communication bottleneck in 

present and future satellite missions [15]. 

1) Introduction to compression of satellite imagery 
 
Image compression methods can be divided into two classes, lossless or lossy. With lossless image compression, the 

reconstructed image is exactly the same as the original one, without any information loss at the expense of achieving relatively 

modest compression ratios when compared with lossy methods. This is because the entropy, which measures the quantity of 

information contained in a source, imposes a theoretical boundary on the lossless compression performance, expressed by the 

lowest compression bit-rate per pixel. Entropy depends on the statistical nature of the source and ideally an infinite-order 

probability model is needed to evaluate it. On the contrary, lossy image compression enables competitive compression ratios at 

the expense of introducing a varying degree of unrecoverable information loss in the reconstructed images. 

The process of lossless compression is achieved via removing the redundancy in the data. There are several types of redundancies 

in a remotely sensed image, such as spatial redundancy, statistical redundancy, human vision redundancy and spectral 

redundancy.  

Spatial or intra-band redundancy means that the pixel information could be partially deduced by neighboring pixels. Spatial 

decorrelation methods, like prediction or transformation, are usually employed to remove the spatial redundancy. Prediction is 

used to predict the current pixel value from neighboring pixels. For example, the Differential Pulse Code Modulation (DPCM) 

method is a typical prediction based technique. On the other hand, transformation is used to transform the image from the spatial 

domain into another domain, applying, for example, the Discrete Cosine Transform (DCT) or the Discrete Wavelet Transform 

(DWT) [15].  

Statistical redundancy explores the probability of symbols. The basic idea is to assign short codewords to high probability 

symbols, and long codewords to low probability symbols. Huffman or Arithmetic coding are two popular methods to remove 

statistical redundancy which are usually known as entropy coding methods. Human vision redundancy explores the fact that eyes 

are not so sensitive to high frequencies. Removing human vision redundancy is normally achieved by quantization, with high 

frequency elements being over quantized or even deleted. Spectral or inter-band redundancy is present in three dimensional (3-D) 

hyperspectral  imagery with a large number of spectral bands in addition to the spatial  redundancy present in two dimensional (2-

D) digital images, adding a third dimension to compressing 2-D images.  

A typical architecture of a 2-D image compression system consists of a spatial decorrelation stage, which is followed by a 
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quantization and entropy coding stages, exploiting the first three redundancies described above. Based on techniques used for 

spatial decorrelation, compression systems can be divided into prediction, DCT and DWT-based systems. Prediction-based 

compression methods used in space missions include DPCM [16], [17], Adaptive DPCM [18], the CCSDS Lossless Data 

Compression (CCSDS-LDC) [19], Lossless JPEG [20] and JPEG-LS [21]. DCT-based compression methods include JPEG-

baseline [20] and specifically designed DCT compression methods. DWT-based compression methods include JPEG2000 [22], 

Embedded Zerotree Wavelet (EZW) [23], SPIHT [24], CCSDS Image Data Compression (CCSDS-IDC) [25] and specifically 

designed DWT compression methods. 

The Consultative Committee for Space Data Systems has played and will continue playing a significant role in providing efficient 

on-board compression methods. In May 1997, CCSDS published a recommendation standard for lossless data compression, 

which is an extended Rice algorithm with added two low-entropy coding options [19]. This recommendation addresses only 

lossless source coding and is applicable to a large variety of digital data, generated by different types of imaging or non-imaging 

instruments on board satellites. The algorithm consists of two separate functional parts: a preprocessor and an adaptive entropy 

coder. The pre-processor is used to de-correlate a block of J sample data and subsequently map them into symbols suitable for the 

entropy coding stage. The entropy coding module is a collection of variable-length codes operating in parallel on blocks of J 

preprocessed samples. Each code is nearly optimal for a particular geometrically distributed source. The coding option achieving 

the highest compression is selected for transmission, along with an ID bit pattern used to identify the option to the decoder. 

Because a new compression option can be selected for each block, the algorithm can adapt to changing source statistics. 

Since 1998, the CCSDS data compression working group began to assess the feasibility of establishing an image compression 

recommendation suitable for space applications and the CCSDS-IDC Blue Book was finally produced in November 2005 [25]. 

The compression technique described in this recommendation can be used to produce both lossy and lossless compression. It 

supports both frame-based input formats produced, for example, by charge-coupled device (CCD) arrays and strip-based input 

formats produced by push-broom type sensors. An image pixel resolution of up to 16 bits is supported. The compressor consists 

of two functional parts, a DWT module that performs decorrelation and a Bit-Plane Encoder (BPE), which encodes the 

decorrelated data. Although similar to that of JPEG2000 standard, this architecture differs from it in several respects: a) it 

specifically targets high-rate instruments used on board space missions; b) a trade-off is performed between compression 

performance and complexity with a particular emphasis on space applications; c) the lower computational complexity of the 

CCSDS-IDC algorithm supports a fast and low-power hardware implementation; d) it has a limited set of options, enabling its 

successful application without an in-depth algorithm knowledge. According to literature sources CCSDS-IDC could achieve 

performance similar to that of JPEG2000 [26-29].  
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2) Basics of hyperspectral image compression 
 
When compressing hyperspectral images, both the spectral and spatial types of redundancy need to be removed in order to 

achieve a good compression performance via a lossless or a lossy process. In most of the cases, the spectral decorrelation is 

performed first, followed by the spatial decorrelation, which is used in 2-D image compression, as depicted in Fig. 4. The spectral 

decorrelation aims to reduce the spectral redundancy that exists between bands, whereas spatial decorrelation takes care of the 

inter-pixel redundancy within a band. This scheme has been used widely in remote sensing as well as in medical applications for 

three dimensional medical data. 

Each of the spectral and spatial decorrelation processes can be performed by either a lossless or a lossy algorithm as shown in 

Fig. 4. To achieve an overall lossless compression process, both the spectral and the spatial decorrelation stages should utilize 

lossless transformations. On the other hand, an overall lossy compression process can utilize not only lossy spectral and lossy 

spatial decorrelation modules but also lossless spectral decorrelation and lossy spatial decorrelation modules and vice versa.  

Different methods have been proposed for hyperspectral data compression, such as (i) predictive coding, e.g. Differential Pulse 

Code Modulation, CCSDS Lossless Multispectral & Hyperspectral Image Compression standard; (ii) Vector Quantization (VQ); 

(iii) transform coding, e.g. Karhunen-Loève Transform (KLT), DCT, DWT. VQ methods can be seen as coding of the 

hyperspectral image in a cube form, where the spatial and spectral decorrelations are processed in one single stage, while 

predictive and transform coding methods have been typically used to tackle both spectral and spatial decorrelation [30].  

The early hyperspectral image compression studies were based on DPCM. This predictive coding technique predicts a current 

pixel value using the neighboring pixels and makes use of the difference between the real and predicted values. DPCM can be 

employed for spatial, spectral and spectral-spatial decorrelation. Spatial predictive methods have been upgraded to perform inter-

band compression via increasing the size of the neighborhood from 2-D to 3-D. However, according to [31] the direct extension 

from 2-D to 3-D may not always provide tangible benefits, and sometimes can prove to be detrimental. Therefore, it is necessary 

to develop predictors that are specialized for 3-D hyperspectral images. 

Vector quantization is a form of pattern recognition, where an input pattern (i.e. the hyperspectral image) is ‘approximated’ by a 

predetermined set of standard patterns. The set of standard patterns is also known as a codebook. The difference between the 

original and the approximated data and the codebook address are the compressed data that is needed for decompression. 

Examples that use VQ for hyperspectral image compression are given in [32], [33]. VQ differs from the compression scheme 

described in Fig. 4, since it encodes the data in one stage, covering both the spatial and the spectral domains. However, in [34] 

DCT was applied in the spectral domain in order to compress the residual data produced by the mean-normalized vector 

quantization (M-NVQ) algorithm in the spatial domain, which may be seen as compliant with Fig. 4. 
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In transform coding, the original hyperspectral data is projected by a set of basis vectors to produce a set of product values. The 

basis vectors differ depending on the particular transform used, e.g. DWT, DCT or KLT. Transform coding such as DWT and 

DCT can be used for either spectral or spatial decorrelation in hyperspectral compression. KLT, on the other hand, has been used 

for spectral decorrelation due to its intrinsic energy-compacting capability that is based on a statistical method. For example in 

[35] spectral decorrelation is performed with KLT and spatial decorrelation with DCT, in [36] both, spectral and spatial 

decorrelation are performed with DWT and in [37] spectral decorrelation is performed with Integer KLT and spatial decorrelation 

with DWT.  

At this point, it should be highlighted that CCSDS have recently published a new recommended standard for lossless 

multispectral and hyperspectral image compression for space applications [38]. It is based on a predictive coding method that 

depends on the values of nearby samples in the current spectral band (where the reference pixel, 𝑠𝑠 , ,  is located) and P 

preceding spectral bands, where P is a user-specified parameter. In each spectral band, a local sum of neighbouring sample values 

is calculated through neighbour-oriented or column-oriented approach, which is used to compute one or more local differences 

within the spectral band. A predicted sample value,   𝑠𝑠 , ,  is then calculated by using an adaptive-weighted sum of the local 

differences in the current and P previous spectral bands. Following that the difference between 𝑠𝑠 , ,  and 𝑠𝑠 , , is mapped to an 

unsigned integer 𝛿𝛿 , , to produce the predictor output. Finally, the predictor output is coded using an entropy coder that is 

adaptively adjusted to adapt changes in the statistics of the mapped prediction residuals as defined in [39]. The algorithm 

provides spatial-spectral decorrelation in one stage.  

Finally, it is worth noting that very few remote sensing missions have included hyperspectral image compression capabilities on 

board so far. Among the missions that are operational at present only three spacecraft - EO-1, Mars-Express and IMS-1 - perform 

hyperspectral image compression on board. However, details about the used compression techniques and their implementation 

are not available in the open literature. The importance of on-board hyperspectral image compression will grow in the future, as it 

is expected that newly developed hyperspectral instruments will provide greater spectral coverage, generating tremendous 

amounts of valuable data [30]. 

3) FPGA-based hyperspectral image compression systems 
 
Due to their critical role in hyperspectral imaging systems, compression algorithms have been mainly implemented on FPGAs for 

on-board exploitation. For example, in [40] a Xilinx XC3S4000 FPGA is used to accelerate the critical path of a lossless 

hyperspectral image compression algorithm. A speedup of 21x is achieved when compared with the software version with a 

processing capability of 16.5 megapixels per second. The compressor proposed in [41] is also lossless in nature and has been 

implemented using a Xilinx Virtex-4 LX25 FPGA, resulting in an occupation of 43% and a power consumption of 1.27 watts 
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(W). Compared with the software version the speedup factor was 58x with a maximum data transfer of 58 megasamples per 

second. In [42], authors have presented a system based on the consultative committee for space data systems (CCSDS) 

recommendation, capable both of lossless and lossy image compression using three FPGAs from Xilinx: a Spartan3E 12000E-5, 

a Virtex-4 LX25-12 and a Virtex 5-LX30-3. Results are provided for three different optimization cases: case 1, with no 

optimizations; case 2, with supreme quantization; and case 3, with supreme quantization and multiplier free. For the best case, a 

throughput of 250 Mpixels/s at 8 bits/pixel was achieved. Depending on the optimizations performed, the power consumption on 

the Spartan3E was of 309 mW for case 1286 mW for case 2 and 273 mW for case 3, demonstrating that optimization efforts have 

a positive effect in the power consumption. In [43] a new compressor for hyperspectral images is presented. The compressor uses 

a linear prediction between bands to exploit the inter-band correlation. Although the authors claim that an FPGA implementation 

has been developed, only a rough estimation based on other references is provided. Another approach for compression is 

followed in [44], where the author uses the concept of spectral unmixing to extract the endmembers and abundances and express 

the remainder pixels as a linear combination of the extracted endmembers. For compression ratios of 20:1, 40:1 and 80:1, the 

spectral angle similarity scores among the USGS reference signatures from a well-known hyperspectral image collected over the 

Cuprite mining district in Nevada by the airborne visible infra-red imaging spectrometer (AVIRIS)9 show that the proposed 

compression system achieves better quality than JPEG2000 multi-component [22] or SPIHT (set partitioning in hierarchical 

trees) [45]. The compression algorithm is implemented on a Virtex-II XC2V6000-6 FPGA [46], using only 36% of the resources 

and when compared against a sequential implementation using a PC running at 2.6 GHz, the speedup factor was of 70x, using 

400 parallel processors and a transfer rate of 40 Mbytes/second. Although the results are obtained very fast (7.94 seconds for the 

whole compression procedure), the response is not strictly real-time as the AVIRIS instruments must process a full image cube 

(614×512 pixels with 224 bands) in no more than 5 seconds to fully achieve real-time performance. This same compression 

scheme has been also implemented in a GPU from NVidia, the C1060 Tesla GPU, and compared with a FPGA implementation, 

this time using the Virtex-II PRO xc2vp30 from Xilinx [47]. The total processing time for compressing an AVIRIS hyperspectral 

scene collected over the World Trade Centre in Manhattan was of 31.23 seconds using the FPGA and utilizing approximately 

76% of the resources at a frequency of 187 MHz. Using the GPU, the total processing time was of 17.59 seconds. Compared with 

the sequential processing on an Intel Core i7 920, with a total processing time of 1073.03 seconds, the speedup factor of the 

FPGA implementation was of 34.52x and the speedup factor of the GPU was of 61.28x. Even taking into account that the GPU 

exhibits a speedup factor of 1.77x compared with the FPGA, the power dissipation of this FPGA is of about 221.85mW [48], 

while the typical power consumption of this particular GPU is about 200W. This means that the GPU consumes 901 times more 

power than the FPGA, achieving only 1.77 times more speed than the FPGA. 
 

9 http://aviris.jpl.nasa.gov 
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B. State-of-the-art hyperspectral linear unmixing implementations on FPGAs  

The number and variety of information extraction tasks in hyperspectral remote sensing is enormous [49]. However, one of the 

main problems in hyperspectral data exploitation is the presence of mixed pixels, which arise when the spatial resolution of the 

sensor is not enough to separate spectrally distinct materials. Furthermore, no matter what the spatial resolution is, the spectral 

signatures collected in natural environments are invariably a mixture of the signatures of the various materials found within the 

spatial extent of the ground instantaneous field view of the imaging instrument. Within this context, spectral unmixing has 

rapidly become one of the most popular techniques to analyze hyperspectral data, which allows us for sub-pixel characterization 

[50].  

1) Basics of hyperspectral linear unmixing 
 
Spectral unmixing generally comprises two stages: (i) identification of pure spectral signatures (endmembers) in the data, and (ii) 

estimation of the abundance of each endmember in each (possibly mixed) pixel [50]. A standard technique for spectral mixture 

analysis is linear spectral unmixing, which assumes that the collected spectra at the spectrometer can be expressed in the form of 

a linear combination of endmembers weighted by their corresponding abundances. It should be noted that the linear mixture 

model assumes that the secondary reflections and the scattering effects can be neglected in the data collection procedure, and 

hence the measured spectra can be expressed as a linear combination of the spectral signatures of materials present in the mixed 

pixel. If the impact of the secondary reflections or the scattering effects is relevant, more complex non-linear models can be 

applied but they demand a priori information about the geometry and physical properties of the observed objects and also 

increase the computational complexity [49]. In the following, we will focus on the linear model since it is the most commonly 

applied for hyperspectral unmixing. 

To define the linear spectral unmixing problem in mathematical terms, let us assume that a remotely sensed hyperspectral scene 

with n bands is denoted by I, in which the pixel at the discrete spatial coordinates (i, j) of the scene is represented by a vector X(i, 

j) = [x1(i, j), x2(i, j), . . . , xn(i, j)] ∈ n, where  denotes the set of real numbers in which the pixel’s spectral response xk(i, j) at 

sensor channels k = 1, . . . , n is included. Under the linear mixture model assumption, each pixel vector in the original scene can 

be modeled using the following expression: 

wEwj)(i,j)x(i,
1

+Φ⋅=+Φ⋅≈∑ =
j

p

j
je  (1) 

where ej denotes the spectral response of an endmember, Фj is a scalar value designating the fractional abundance of the 

endmember ej, p is the total number of endmembers, and w is a noise vector. It should be noted that E = {𝑒𝑒 }  can be seen as an 

n×p matrix. The solution of the linear spectral mixture problem described in (1) relies on the correct determination of a set of p 
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endmembers and their correspondent abundance fractions Ф = {Ф } at each pixel x. 

Over the last decade, several algorithms have been developed for automatic or semiautomatic extraction of spectral endmembers 

[50], [51]. Winter’s N-FINDR [56] has been one of the most successfully applied techniques for automatically determining 

endmembers in hyperspectral image data. The algorithm attempts to automatically find the simplex of maximum volume that can 

be inscribed within the hyperspectral data set. The procedure begins with a random initial selection of pixels [see Fig. 6(a)]. 

Every pixel in the image must be evaluated to refine the estimate of endmembers, looking for the set of pixels that maximizes the 

volume of the simplex defined by selected endmembers. The corresponding volume is calculated for every pixel in each 

endmember position by replacing that endmember and finding the resulting volume [see Fig. 6(b)]. If the replacement results in 

an increase of volume, the pixel replaces the endmember. This procedure is repeated until there are no more endmember 

replacements [see Fig. 6(c)]. 

On the other hand, the image space reconstruction algorithm (ISRA) [57] is one of the most popular algorithms for abundance 

estimation in hyperspectral image data, including expectation-maximization maximum likelihood (EMML) [52], fully 

constrained least-squares unmixing (FCLSU) [53], and non-negative constrained least-squares unmixing (NNLSU) [54]. 

However, these algorithms are computationally intensive and place a heavy burden on computing systems, and hence, they 

demand efficient hardware for scenarios under tight time constraints. 

2) FPGA-based hyperspectral unmixing systems 
 
In [55] an implementation of the N-FINDR algorithm using a Virtex-4 XC4VFX60 FPGA from Xilinx was developed. This 

FPGA model is similar to radiation-hardened FPGAs certified for space operation. The experimental results show that the 

hardware version of the N-FINDR [56] algorithm can significantly outperform an equivalent software version while being able to 

provide accurate results in near real-time. The speedup of this implementation, compared with a software description developed 

in C language and executed on a PC with AMD Athlon 2.6 GHz processor and 512 Mb of RAM, is 37.29x for AVIRIS Cuprite 

(16 endmembers), 38.10x for a hyperspectral image collected also in the Cuprite mining district by EO-1 Hyperion (21 

endmembers), and 37.70x for an AVIRIS image collected over the Jasper Ridge biological preserve in California (19 

endmembers). This average speedup factor of 37.63x is quite constant across all the images, even taking into account the 

differences in the number of endmembers. The second main problem, together with the extraction of suitable endmembers, is the 

estimation of the fractional abundances of endmembers in each pixel of the hyperspectral scene. An FPGA implementation of the 

abundances computation task using a parallel image space reconstruction algorithm (ISRA) [57] is described in [58]. The FPGA 

was the same used in [55], i.e. the Virtex-4 XC4VFX60 FPGA from Xilinx. The system includes a direct memory access (DMA) 

module and implements a pre-fetching technique to hide the latency of the input/output communications, one of the main 

bottlenecks found in this kind of applications. In [58] the number of ISRA modules used in parallel is 16, achieving a speedup 
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factor of 10x when processing the AVIRIS Cuprite scene and over 12x when it comes to the two Jasper Ridge AVIRIS scenes. 

Authors also reach the conclusion that, using FPGAs, the execution time scales linearly with the size of the image. On the other 

hand, the software implementation increases 3.1 times, which is clearly worse than the hardware implementation. In [59] and 

[60], an FPGA implementation of the pixel purity index (PPI) algorithm [61] for endmember extraction using the Virtex-II PRO 

xc2vp30 is presented. The proposed hardware system is easily scalable and able to provide accurate results with compact size in 

near real-time, which makes the reconfigurable system suitable for on-board hyperspectral data processing. Results show that, 

against the serial software version which  takes 3068 seconds to process the whole image, the proposed FPGA implementation 

takes only 31 seconds, using 10000 skewers and launching 100 skewers in parallel, achieving a speed-up factor of 98.96x. 

Another FPGA implementation of the PPI algorithm is presented in [62], in this case the FPGA needs 62 seconds to process the 

same image, hence the speedup factor is smaller (49.48x).  

In [63], ISRA has been used in hyperspectral imaging applications to monitor changes in the environment and specifically, 

changes in coral reef, mangrove, and sand in coastal areas. In particular, authors have faced the problem using a 

hardware/software co-design methodology. The hardware units were implemented on a Xilinx Virtex-II Pro XC2VP30 FPGA 

and the software was implemented on the Xilinx Microblaze soft processor. As it has been observed in all the previous 

references, the main bottleneck found in this implementation was again data transfer. The only implementation data provided in 

this paper is that the FPGA was divided in three components: numerator, denominator, and multiplier, where each component 

works at operating frequencies of 93.75 MHz, 84.99 MHz and 113.14 MHz, respectively. 

Finally, we would like to highlight two very recent works that deal with the FPGA implementation of two different algorithms 

for hyperspectral endmember extraction. The first one [64] proposes an architecture for implementing onto a generic FPGA 

device the so-called real-time fast simplex growing algorithm (RT-FSGA), which is derived from the simplex growing algorithm 

(SGA) [65], [66], together with the fast computation of simplex volumes uncovered in [67]. One of the main advantages of this 

architecture comes from the fact that it allows the number of endmembers (p) to vary with image data sets to accommodate 

various values as opposed to being fixed in the N-FINDR published in [55]. Unfortunately, results about the logic resources 

occupied by the proposed architecture and/or about its maximum running frequency within a FPGA are not available since the 

authors have not mapped their architecture onto a FPGA, or at least, they have not disclosed their results. In this sense, only 

results concerning the speedup of an hypothetical implementation onto a generic FPGA working at 50 MHz with respect to a 

MATLAB description running onto an Intel Core2 Quad CPU@2.5 GHz and 2-GB memory are reported, resulting in a factor 

that ranges from 229 to 456 depending on the input image. The second of these works [68] proposes a novel FPGA-based 

architecture implementing the modified vertex component analysis (MVCA) algorithm [69]. In particular, two versions of the 

MVCA algorithm which differ on the use of floating point or integer arithmetic for iteratively projecting the hyperspectral cube 
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onto a direction orthogonal to the subspace spanned by the endmembers already computed were mapped onto a XC5VSX95T 

FPGA from Xilinx, which is quite similar to the new generation of radiation hardened reconfigurable FPGAs from the same 

company (Virtex-5QV series). With respect to the percentage of the FPGA resources occupied by both versions of the proposed 

architecture, the authors report that the number of slice registers used in the floating point implementation varies from 27% (p=3) 

to 80% (p=15) and the number of slice look-up tables (LUTs) varies from 21% (p=3) to 61% (p=15), while for the case of the 

integer implementation, the number of slice registers used varies from the 27% (p=3) to the 71% (p=15) while the number of 

slice LUTs varies from 21% (p=3) to 51% (p=15). Moreover, all the synthesized integer precision architectures can operate with 

a frequency up to 268.152 MHz while the maximum frequency achieved for the synthesized floating point architectures has been 

210.438 MHz, being these maximum working frequencies independent of the number of endmembers to be extracted thanks to 

design strategy followed by the authors. These results demonstrate that the FPGA implementation of the integer version of the 

MVCA algorithm shows a better performance in terms of hardware resources and processing speed than its floating point 

counterpart, both of them being capable of processing hyperspectral images captured by the NASA’s AVIRIS sensor in real-time 

once they are loaded in the internal FPGA memories. 

C. Other state-of-the-art hyperspectral imaging implementations on FPGAs  

Several other hyperspectral imaging algorithms have been implemented in FPGAs for improved exploitation. In [70], an 

implementation of independent component analysis (ICA) [71] is made in order to reduce the dimensionality of hyperspectral 

images. A parallel ICA has been implemented on a Virtex V1000E running at a frequency of 20.161MHz, and the board transfers 

data directly with CPU on the 64-bit memory bus is made at the maximum frequency of 133MHz. Unfortunately, authors do not 

provide execution times and comparisons with other similar ICA implementations ([72], [73]) are made based only on maximum 

synthesized frequencies and the size of the observation data sets.  

Another important field of application is hyperspectral image classification. The work in [74] explores design strategies and 

mappings of classification algorithms for a mix of processing paradigms on an advanced space computing system, featuring MPI-

based parallel processing with multiple PowerPC microprocessors, each coupled with kernel acceleration via FPGA and/or 

AltiVec resources (in-chip vector processing engine). The case-study algorithm adopted for this research uses a linearly 

constrained minimum variance (LCMV) beam-forming approach, as described in [75], and has a similar computational structure 

to many other algorithms. Design of key components for hyperspectral imaging systems as the autocorrelation matrix calculation, 

weight computation, and target detection are discussed, while the hardware/software performance tradeoffs are evaluated. Several 

parallel-partitioning strategies are considered for extending single-node performance to a clustered architecture consisted on a 10-

node PowerPC cluster. Each node contained a 1.4 GHz PowerPC 7455 with AltiVec and 1GB of SDRAM, connected together 

with Gigabit Ethernet. Additionally, four nodes were equipped with ADM-XRC-4 FPGA boards from Alpha Data, each 
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containing a Xilinx Virtex-4 SX55 FPGA and four independent 4MB SRAM modules. Speedup factors compared with the serial 

simple software version and using AltiVec and 64, 256 and 1024 bands were of 6.47x, 7.31x and 5.41x respectively, applying the 

classification algorithm to three 512x512 images. The highest speedup took place for 256 bands. When using FPGAs, the 

speedup factors were of 2.27x, 7.48x and 14.23x for the same amount of bands. It is clear that the use of FPGA is meaningful in 

the case of high-dimensional images in the spectral domain. When using 4 processing nodes, the speedup factor using AltiVec is 

3.46x, with an average power consumption of 178.75 W, including the CPU and a total energy consumption of 101.5 kJ. For the 

same amount of nodes, the FPGA accelerated version has a speedup of 32.86x, an average power consumption of 172.51 W and a 

total energy consumption of 10.3 kJ. Hence, it is clear how the FPGA based systems are capable of higher execution speedups 

with lower power consumptions. 

Another important hyperspectral application which requires on-board processing is target detection. In the literature, several 

efforts have been discussed towards the efficient implementation of target detection algorithms in FPGAs. For instance, in [11] 

several examples of FPGA implementations for target detection algorithms are discussed. Specifically, chapter 15 in [11] 

generally discusses the use of FPGAs in detection applications and provides specific application case studies in cloud detection 

and dimensionality reduction for hyperspectral imaging. Chapter 16 in [11] describes an FPGA implementation of constrained 

energy minimization (CEM), which has been widely used for hyperspectral target detection applications [76]. The 

implementation is carried out using the coordinate rotation digital computer (CORDIC) algorithm [76] to convert a Givens 

rotation of a vector to a set of shift-add operations. This strategy allows for efficient implementation of the CEM in FPGA 

architectures. Chapter 17 in [11] describes an on-board real-time processing technique for fast and accurate target detection and 

discrimination in hyperspectral data. In [77], a target detection system based on constraint linear discriminant analysis (CLDA) 

[78] is implemented using FPGAs. The system is aimed at real-time or near real-time target detection using hyperspectral data. 

Although the paper only provides resources consumed by the FPGA and total cycles for the matrix inversion, authors claim that 

the developed hardware accelerator is able to achieve real-time or near real-time throughput depending on the input pixel vector 

size. Recently, [79] presented an FPGA design for efficient implementation of the automatic target detection and classification 

algorithm (ATDCA) [76] on two different kinds of FPGA architectures: Xilinx Virtex-5 and Altera Stratix-III. The experimental 

results indicate significant performance gains in parallel execution of the ATDCA algorithm but not with real-time performance. 

In [80], a real-time target detection architecture for hyperspectral image processing is presented and discussed. The proposed 

architecture is designed and implemented in FPGA to illustrate the relationship between hardware complexity and execution 

throughput of hyperspectral image processing for target and anomaly detection [76], obtaining relevant results in terms of real-

time performance in the context of different applications. In [81], real-time implementations of several popular detection and 

classification algorithms for hyperspectral imagery are discussed. The adopted approach to real-time implementation of such 
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algorithms is based on using a small portion of hyperspectral pixel vectors in the evaluation of data statistics. An empirical rule of 

an appropriate percentage of pixels to be used is investigated, which results in reduced computational complexity and simplified 

hardware implementation. Last but not least, [82] recently discussed the problem of implementing matched filters on FPGAs, the 

Cell IBM processor and GPUs. The matched filter is an important technique for the processing of hyperspectral data, particularly 

in the context of target detection applications. In this work, the performance of a matched filter algorithm implementation on an 

FPGA-accelerated co-processor (Cray XD-1), the IBM Cell microprocessor, and the NVIDIA GeForce 7900 GTX GPU graphics 

card has been evaluated. Authors implement only a reduced set of operations for the matched filter, although it is fair to mention 

that the most time consuming parts have been the ones considered. In all the cases, the CPU, bus interfaces, power supplies, and 

involved support hardware are included in all of the performance measurements, including power. The speedup factor (compared 

with the serial CPU version) of the FPGA was of 3.91x with a power dissipation of 350 W. The speedup factor of the GPU 

version was of 3.1x, with a power dissipation of 350 W. Finally, the speedup factor of the Cell processor was of 8x, with a power 

dissipation of 315 W. In this case, the best performance, considering speedup and power, is achieved by the Cell IBM processor, 

mainly due to its native vector processing arithmetic, which easily maps the matched filter modules. 

IV. FIRST CASE STUDY: COMPRESSION OF HYPERSPECTRAL IMAGES 

In this section, we present an image compression system based on the Karhunen-Loève transform (KLT) as a case study. In order 

to provide a better understanding, the contents of this section have been divided into three subsections. Subsection IV.A 

introduces the KLT and its reversible version, known as Integer KLT. Subsection IV.B details the structure of the spectral 

decorrelation modules based on the KLT and Integer KLT transforms proposed in this works and, finally, Subsection IV.C 

discloses the most significant results achieved. 

A. The KLT and Integer KLT transforms 
 
Spectral decorrelation is a unique component in hyperspectral compression systems, while spatial decorrelation is similar to 2-D 

image compression performed in other applications. This section describes the results of a research effort, aimed at the 

development of lossless and lossy spectral decorrelators for satellite hypesrpectral image compression using KLT. The work 

enables the on-board implementation of all hyperspectral image compression options, shown in Fig.4, assuming that existing 

spatial decorrelation solutions are employed, such as the one reported in [42]. 

The Karhunen-Loève transform is an orthogonal linear transform, which is applied to 3-D data sets to decorrelate data across 

different bands, leading to a more compressible data set. KLT, which is strongly related to the well-known Principal Component 

Analysis (PCA) technique, has been used for multi-component image compression, not only in remote sensing applications but 

also in magnetic resonance imaging (MRI), facial recognition, as a technique for finding patterns in high dimensional data, etc.. 
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KLT is considered the optimum method to spectrally decorrelate multispectral data with a number of spectral bands above four 

according to [35]. The KLT algorithm was reported as the best spectral decorrelator for hyperspectral image compression in [83] 

where JPEG2000 was used as the spatial compression method.  

The reversible version of KLT, which is called the Integer KLT, performs lossless spectral decorrelation. Experimental results 

have confirmed that the Integer KLT outperforms other techniques in terms of compression ratio when applied to lossless 

hyperspectral compression [84]. 

However, the highly computationally intensive nature of KLT and Integer KLT is a major challenge when implementing these 

algorithms. In addition, KLT does not have a fast computation scheme, unlike other transforms, such as DCT and the discrete 

Fourier transform (DFT). The KLT computation flow consists of the following processes [85]: 

 BandMean - obtains the mean of each band  

 MeanSub - subtracts each band from its mean  

 Covariance Matrix - obtains the covariance matrix of the MeanSub 

 Eigenvectors - obtains the eigenvectors of the covariance matrix, which represent the principle components of the image 

 Multiplication of the eigenvectors by the MeanSub 

While some of the computation processes above are simple repetitive operations, such as BandMean and MeanSub, others, such 

as the covariance matrix and the eigenvector evaluations, are more complicated processes involving various sequential 

operations. Table I summarizes the KLT computational requirements, where M and L represent the spatial coordinates and n - the 

number of bands of the hyperspectral image, represented as a 3-D array of M×L×n. From Table I, it can be seen that the 

computational intensity is proportional to the dimensions of the image. It can also be concluded that the number of the 

multiplication, addition and subtraction operations is significantly higher than that of the division and trigonometric 

operations [85]. 

A distinctive feature of the KLT algorithm, when it is employed in hyperspectral image compression, is that the size of the 

processed matrix in the eigenvectors computations is very high, since its dimensions are equal to the number of the spectral 

bands, which are usually in the order of 100s. The resultant computational complexity can be overcome through a clustering 

approach to KLT, which is found to reduce the processing time and memory requirements although it compromises the 

compression ratio [86]. The negative effect on the compression ratio can be minimized by increasing the size of the clusters. In 

addition, it is found that selecting the cluster size to be equal to a power of 2 (i.e. 2, 4, 8, 16, 32 etc.) speeds up the multiplications 

in the KLT Covariance and BandMean modules [87]. 

The Integer KLT, proposed in [88], which represents the output in an integer form, is an approximation of KLT, based on matrix 

factorization. Similarly to KLT, the processes involved in the Integer KLT computation are performed on large matrices and 



 

 

19 

therefore they are computationally intensive, which slows down the Integer KLT evaluation significantly. In addition to 

BandMean, covariance matrix and eigenvectors computations as in the original KLT, the Integer KLT includes two more 

complex sequential processes: matrix factorisations and lifting. As in KLT, the compression of a hyperspectral image with n 

number of bands will involve generating an eigenvector matrix A of size n×n from the covariance matrix between each pair of 

bands. Matrix factorization will be applied on the A matrix, which is a non-singular matrix into four n×n matrices: a permutation 

matrix, P, and three other matrices called triangular elementary reversible matrices (TERMs): L (lower TERM), U (upper TERM) 

and S (lower TERM). The factorization is not unique and depends on the pivoting method used that will affect the error between 

the integer approximation and the original KLT transformation. The intrinsic energy-compacting capability of KLT will be 

affected by the factorization, so the error should be minimized as much as possible.  

B. Hardware designs 
 
Although hardware KLT implementations have been proposed previously, very few authors have targeted embedded computing 

platforms, such as [89], where a parallel approach to the KLT implementation is presented. However, in [89] only hyperspectral 

images with a limited number of spectral bands (up to 8) were considered. This section discusses novel lossy and lossless spectral 

decorrelation modules for a hyperspectral image compression system on board satellites based on the KLT and Integer KLT 

transforms, respectively.  

The proposed designs are targeted at the SmartFusion System-on-a-Chip (SoC) platform, which incorporates a Flash-based 

FPGA fabric and a 32-bit hardwired microcontroller. This heterogeneous SoC embedded platform supports a software-hardware 

co-design approach, which allows tackling the extreme computational complexity of the algorithms via splitting the functionality 

between a dedicated hardware accelerator and a powerful RISC microprocessor. In particular, the A2F200 SmartFusion SoC has 

been used in this work, which includes a 32-bit ARM Cortex M-3 Microcontroller Subsystem (MSS). The FPGA logic, which is 

based on the ProASIC3 device, runs at 50 MHz, while the Cortex M-3 runs at 100 MHz. 

The KLT algorithm has been mapped onto the SmartFusionSoC dividing the constituent computational processes between the 

embedded Cortex M-3 processor and the hardware accelerator on the FPGA fabric using two different approaches as detailed in 

[87]. A hardware accelerator (co-processor) is built within the FPGA fabric. The frequently occurring operations are performed in 

the FPGA fabric to accelerate the execution; while the less frequently occurring ones, such as high-level management and tasks 

scheduling are executed by the embedded Cortex M-3 processor. The BandMean process requires only sequential addition and 

division operations on a very large set of data and, if implemented on the hardware co-processor, will lead to an intensive 

exchange of data between the Cortex M-3 and the FPGA fabric, which will consume a significant time. Therefore, they cannot be 

efficiently implemented on the hardware co-processor. The same applies to the MeanSub process, where only subtraction 

operations are involved. In the first of the two aforementioned approaches, the co-processor executes the covariance matrix 
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calculation, the most computationally intensive parts of the Eigenvectors calculation and the multiplication 

Eigenvectors×SubMean. In the second approach, only the covariance matrix and the matrix multiplication 

Eigenvectors×SubMean are executed within the hardware co-processor. The rationale behind that is to reduce the bit-width of the 

datapath. In the first approach, the hardware accelerator utilizes a 32-bit data-width. However, while the eigenvectors calculation 

requires 32-bit operations, both the covariance and the matrix multiplication (Eigen×SubMean) are performed on a 12-bit wide 

datapath. Therefore, excluding the eigenvectors computations from the hardware co-processor makes all the operations 

performed on a 12-bit wide hardware datapath, freeing hardware resources.  

The Integer KLT algorithm has been mapped onto the SmartFusionSoC following a similar software-hardware co-design strategy 

as with the KLT design above. It is found that the computations of the covariance matrix and lifting scheme take the most of the 

execution time of the Integer KLT. Therefore, by implementing these two processes into the FPGA, a significant acceleration can 

be achieved. Details of the design can be found in [90]. 

The KLT and Integer KLT designs, discussed above, lend themselves very well to a combined hardware implementation, in 

which the designs share some of the computational modules. Such a unified design, performing both functions, would take less 

hardware resources than the two individual ones.  This is possible because the KLT and Integer KLT algorithms are never used 

simultaneously, due to the different types of the inter-band compression that they realize. 

A possible mapping with regards to the SmartFusion SoC is to execute the computations of the covariance matrix and all the 

matrix multiplications in the FPGA fabric, while the rest of the operations are performed by the Cortex M-3 processor. According 

to a preliminary estimate of the hardware resources such a combined joint design will only require 10% more system gates and 

25% more SRAM blocks than the individual designs. 

C. Implementation results 
 
The AVIRIS hyperspectral images are used as test images in the KLT implementation process. In particular, a portion of the 

AVIRIS Cuprite image10, comprised of 512×512 pixels, was employed in the experimental work, presented in this section. The 

KLT design uses a signed 32-bit fixed-point data format, where the first bit represents the sign, the next 16 bits - the integer 

number and the remaining 15 bits - the fractional part.  An error will be accumulated during the processing, the size of which 

depends on the matrix size and range of the input data. The effect of using this data format on the compression performance 

compared with a floating point format is an average compression ratio reduction of less than 5% [87]. 

In order to assess the performance of the proposed system in terms of execution time, the KLT algorithm was implemented on a 

desktop using an Intel Dual core (2.14 GHz) processor and on the embedded Cortex M-3 processor. The latter was compared 

 
10 http://aviris.jpl.nasa.gov/freedata 



 

 

21 

with the latency of the proposed SoC system, operating at 100 MHz. The execution times of each process of the KLT algorithm 

are presented in Table II [85]. The latencies of the PC and Cortex M-3 implementations illustrate the computation intensity of 

each process, confirming that the matrix multiplication (Eigen × SubMean) and the covariance matrix computation are the most 

computationally intensive operations, which together consume more than 95% of the overall processing time.  

As it can be seen in Table II, the iterative nature of the eigenvectors computations makes the hardware acceleration very efficient 

in the first approach, outlined above. In fact, the execution time is reduced by more than 50% while efficient accelerations of 

31.6% and 34.3% are achieved on the covariance and the matrix multiplication (Eigen × SubMean) processes, respectively. In 

total, the first approach offers a higher execution speed for the overall KLT algorithm by more than 33% when mapped onto the 

targeted FPGA-based SoC.  

The higher level of parallelism offered by the second approach leads to a noticeable further improvement in the performance. As 

it can be noticed from Table II, an acceleration of 46.3% in the covariance process and 59.4% in the matrix multiplication (Eigen 

× SubMean) is achieved, leading to an overall acceleration of 54.3%, cutting the processing time by more than half. 

The power consumption of both approaches, estimated using the Actel Smart Power tool, is outlined in Table III, which shows 

that it is less than 0.25 W, with the first design approach being less power hungry. For the purpose of comparison, the power 

consumption of the SoC design introduced in [89] was estimated, and it was found to be more than 2W [85], which is in stark 

contrast to the results in Table III. It can be concluded that the power consumption, offered by the proposed system, is 

significantly lower despite the four times higher number of processed spectral bands. Table IV summarizes the required hardware 

resources for the implementation of the KLT co-processor using both proposed approaches (including the AMBA Bus interface). 

Since Flash FPGA devices usually offer much smaller hardware resources compared to SRAM FPGAs, in both approaches the 

designs fitted in the FPGA fabric utilizing less than the full amount of gates. 

Table V [90] shows the acceleration offered by the proposed Integer KLT design. As it can be seen from this table, the proposed 

SoC design accomplishes an acceleration of 44.5% compared to the embedded Cortex M3 processor, almost halving the 

processing time. The overall power consumption is estimated to be less than 0.25 W. The hardware resources required by the 

Integer KLT design are identical with the resources incurred by the KLT design based on the second approach, as shown in 

Table IV. 

In conclusion, the experimental results presented in this section show that the developed FPGA-based KLT and Integer KLT 

implementations could be used for spectral decorrelation in hyperspectral compression systems on board remote sensing satellites 

for certain operational scenarios. However, further research efforts are necessary on reducing the order of complexity of some 

crucial computations to enable real-time execution of the algorithms.  
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V. SECOND CASE STUDY: SPECTRAL UNMIXING OF HYPERSPECTRAL IMAGES 

In this section, we present spectral unmixing as a hyperspectral image processing case study. More concretely, the 

implemented unmixing chain is graphically illustrated by a flowchart in Fig. 5 and consists of two main steps: (1) endmember 

extraction, implemented in this work using the N-FINDR algorithm [56], and (2) non-negative abundance estimation, 

implemented in this work using ISRA, a technique for solving linear inverse problems with positive constraints [57]. It is worth 

to mention that we have selected the ISRA algorithm because it provides the following important features:  (i) its iterative 

unmixing nature allows controlling the quality of the obtained solutions depending on the number of iterations executed; (ii) it 

guarantees convergence after a certain number of iterations; and (iii) it provides positive values in the results of the abundances, 

which is an important consideration in unmixing applications, as the derivation of negative abundances (which it is possible if an 

unconstrained model for abundance estimation is applied) is not physically meaningful.  

The section is organized as follows. Subsection V.A describes in detail the N-FINDR and the image space reconstruction 

algorithm (ISRA) used for endmember extraction and abundance estimation purposes, respectively, while Subsection V.B 

introduces a dynamically reconfigurable FPGA implementation of the considered chain and discloses the most significant results 

achieved. 

A. N-FINDR and the ISRA algorithms 

1) The N-FINDR endmember extraction algorithm 
 
In the following, we provide a detailed step-by-step algorithmic description of the original N-FINDR algorithm developed by 

Winter. It is interesting to notice that the algorithm below represents our own effort to delineate the steps implemented by N-

FINDR using available references in the literature [56], [91]. However, it is also worth noting that the N-FINDR algorithm has 

never been fully disclosed. As a result, this description was developed based on the limited published results available and our 

own interpretation. Nevertheless, the algorithm below has been verified using the N-FINDR software, provided by the authors, 

where we have experimentally tested that the software produces essentially the same results as the code below, provided that 

initial endmembers are generated randomly. The original N-FINDR algorithm can be summarized by the following steps: 

a) Feature reduction. Since in hyperspectral data typically the number of spectral bands (n) is much larger than the number of 

endmembers (p), i.e., n>>p, a transformation that reduces the dimensionality of the input data is required. Hence the first step 

consist on applying a dimensionality reduction transformation such as the minimum noise fraction [92] or PCA [93] to reduce the 

dimensionality of the data from n to p − 1, where p is an input parameter to the algorithm (number of endmembers to be 

extracted). 

b) Initialization. Let {E1
(0), E2

(0), ... , Ep
(0)} be a set of endmembers randomly extracted from the input data. 
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c) Volume calculation. At iteration k ≥ 0, calculate the volume defined by the current set of endmembers as follows: 
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d) Replacement. For each pixel vector X(i,j) in the input hyperspectral data, recalculate the volume by testing the pixel in all p 

endmember positions, i.e., first calculate V (X(i,j), E2(k), ... , Ep(k)), then V (E1(k), X(i,j), ... , Ep(k)), and so on, until V (E1(k), 

E2(k), ... , X(i,j)). If none of the p recalculated volumes is greater than V (E1(k), E2(k), ... , Ep(k)), then no endmember is replaced. 

Otherwise, the combination with maximum volume is retained. Let us assume that the endmember absent in the combination 

resulting in the maximum volume is denoted by Ej
(k+1). In this case, a new set of endmembers is produced by letting Ej

(k+1)= X(i,j) 

and Ei
(k+1)= Ei

(k) for i ≠ j. The replacement step is repeated in an iterative fashion, using as much iterations as needed until there 

are no more replacements of endmembers. 

2) The ISRA abundance maps estimation algorithm 
 
Once a set of p endmembers E = {𝑒𝑒 } has been identified, a positively constrained abundance estimation, i.e. Фj ≥ 0, can be 

obtained using ISRA, a multiplicative algorithm based on the following iterative expression: 
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where the endmember abundances at pixel x are iteratively estimated, so that the abundances at the k+1-th iteration, Фk+1, depend 

on the abundances estimated at the k-th iteration, Фk. The procedure starts with an unconstrained abundance estimation which is 

progressively refined in a given number of iterations. For illustrative purposes, Fig. 7 shows the ISRA pseudocode for unmixing 

one hyperspectral pixel vector x using a set of E endmembers. For simplicity, in the pseudocode x is treated as an n-dimensional 

vector, and E is treated as an n×p-dimensional matrix. The estimated abundance vector Ф is a p-dimensional vector, and variable 

iters denotes the number of iterations per pixel in the abundance estimation process. The pseudocode is subdivided into the 

numerator and denominator calculations in (3). When these terms are obtained, they are divided and multiplied by the previous 

abundance vector. It is important to emphasize that the calculations of the fractional abundances for each pixel are independent, 

so they can be calculated simultaneously without data dependencies, thus increasing the possibility of parallelization. 

B. FPGA-based linear unmixing of hyperspectral images 

With reconfigurable hardware, it is possible to apply much of the flexibility that was formally restricted to software developments 

only. The idea is that FPGAs can be reconfigured on the fly. This approach is called temporal partitioning [94], [95] or run-time 
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reconfiguration [96]. Basically, the FPGA (or a region of the FPGA) executes a series of tasks one after another by reconfiguring 

itself between tasks [97]. The reconfiguration process updates the functionality implemented in the FPGA, and a new task can 

then be executed. This time-multiplexing approach allows for the reduction of hardware components on-board since one single 

reconfigurable module can substitute several hardware peripherals carrying out different functions during different phases of the 

mission.  

To implement the spectral unmixing chain on FPGAs, we will take advantage of their reconfigurability. The idea is to start with 

the implementation of the N-FINDR algorithm occupying the entire FPGA in order to maximize the parallelization of the 

endmember extraction algorithm. Once the endmembers are found, we will apply dynamic reconfiguration to replace the N-

FINDR algorithm with the parallelized ISRA, occupying again the entire FPGA. In our particular case, the N-FINDR and ISRA 

algorithms are easily scalable because their basic processing units require few hardware resources. Hence, it will be shown that 

the FPGA is almost full in both cases. More details about our implementations of the N-FINDR and ISRA modules can be found 

in [55] and [58], although this is the first time that we have used these two modules to build an spectral unmixing chain using 

run-time reconfiguration. To this end we have included support for inter-task communication following a shared memory 

scheme. Thus, the N-FINDR module will store its results in a known memory address that correspond to an external DDR2 

SRAM memory. Once the system has carried out the reconfiguration, the ISRA module will load the data from that memory. 

Using external memories to store and load the data may introduce significant delays in the execution. As we will explain in detail, 

we have overcome this problem including a direct memory access module (DMA) in the system and overlapping the memory 

transfers with useful computations. With this approach both the reconfiguration and the communications introduce a negligible 

overhead. 

1) N-FINDR hardware design 
 

Fig. 8 describes the general architecture of the hardware used to implement the N-FINDR algorithm, along with the I/O 

communications. For data input, we use a DDR2 SDRAM and a DMA (controlled by a PowerPC using a prefetching approach) 

with a FIFO to store pixel data. For data output, we use again the PowerPC to write the position of the endmembers in the DDR2 

SDRAM. Finally, the N-FINDR module is used to implement our version of the N-FINDR algorithm. At this point, it is worth to 

mention that currently we have not developed a hardware implementation for the PCA or the MNF algorithm in order to carry out 

the dimensionality step. Hence, we will assume that this step has been previously performed and our hardware implementation 

will carry out all the remaining steps. 

The most time consuming part of the algorithm is the volume calculation. The limited available resources in a small or medium 

FPGA to calculate determinants of large order, makes it difficult to develop an efficient implementation of the algorithm. In our 

implementation we have solved this issue by taking advantage of the fundamental properties of the determinants and applying 
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them systematically to transform the determinant in others who are increasingly easy to calculate, down to one that is trivial. For 

the design of the algorithm we use the matrix triangulation method. 

Fig. 9 shows the hardware architecture used to implement the volume calculation step. We use registers to store the pixel vectors 

selected as endmembers until the current moment, their positions in the image and their volume, and also the current pixel vector 

data, its position, its greater volume and the index inside the matrix where it is obtained. Moreover, we have included a module 

that calculates the absolute value of the determinant using the matrix triangulation process: first, for j = 2, ...,n we take a multiple 

aj1/a11 of the first row and subtract it to the j-th row, to make aj1= 0. Thus, we remove all elements of matrix A below the ‘pivot’ 

element a11 in the first column. Now, for j = 3, ...,n, we take a multiple aj2/a22 of the second row and subtract it to the j-th row. 

When we have finished this, all sub-diagonal elements in the second column are zero, and we are ready to process the third 

column. Applying this process to columns i = 1, ...,n-1 completes the matrix triangulation process and matrix A has been reduced 

to upper triangular form. These operations are carried out by the data path (see Fig. 10). 

Obviously, if one of the diagonal pivots aii is zero, we cannot use aii to remove the elements below it; we cannot change aji by 

subtracting any multiple of aii= 0 to it. We must switch row i with another row k below it, which contains a nonzero element aki in 

the i-th column. Now the new pivot aii is not zero, and we can continue the matrix triangulation process. If aki = 0 for k = i, ...,n, 

then it will not be satisfactory to switch row i with any of rows below it, as all the potential pivots are zero and therefore det A = 

0. This behavior has been implemented using a modified circular queue with a small control unit (see Fig. 10).Finally, the 

segmented multiplier calculates the multiplication of the main diagonal elements of the triangular matrix and obtains the absolute 

value. Table VI summarizes the computational requirements for the N-FINDR hardware implementation, where M and L 

represent the spatial coordinates, n the number of bands of the hyperspectral image and p the number of endmembers to be 

extracted. 

2) ISRA hardware design 
 

Fig. 11 describes the general architecture of the hardware used to implement the ISRA, along with the I/O communications, 

following a similar scheme to the previous subsection. For data input, we use a DDR2 SDRAM and a DMA (controlled by a 

PowerPC using a prefetching approach) with a FIFO to store pixel data. ISRA module is used to implement our parallel version 

of the ISRA. Finally, a transmitter is used to send the fractional abundances via a RS232 port. 

Fig. 12 shows the hardware architecture used to implement the ISRA module. Three different memories are used to store the 

endmembers, the current pixel, and the fractional abundances for the current pixel, respectively. The ISRA data path represents 

the hardware architecture used to perform the calculations. The control unit carries out the ISRA execution: it reads the 

appropriate memory locations for each of the memories and updates the fractional abundances. In addition, we use a 

combinational circuit based on multiplexers to select the appropriate input data. Once calculated, the system writes the estimated 
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abundances to the read FIFO. 

Fig. 12 also describes the architecture of the data path used to implement the ISRA module. The dot-product unit is used for 

calculating both the numerator and denominator in Eq. (4), allowing a proper reuse of hardware resources. To perform the update 

of a fractional abundance value, it proceeds as follows: during n cycles (where n is the number of bands) it computes the dot-

product between the current pixel and the endmember corresponding to the proportion of abundance that is being updated. In the 

next clock cycle, the result of the dot-product is multiplied by the previous abundance fraction and the result is stored in register 

num, thus concluding the calculation of the numerator. To calculate the denominator, the aforementioned procedure is repeated p 

times (where p is the number of endmembers) with the appropriate input data, while partial results are accumulated using an 

adder and the register den. The calculation of the denominator requires therefore p×(n+1) clock cycles. The process finalizes with 

the division between the numerator and the denominator in 5 clock cycles. The computational requirements of this design are 

presented in Table VI, where i represents the number of iterations per pixel in the abundance estimation process. 

3) Implementation results 
 

The hardware architectures previously described have been implemented on a ML410 board, a reconfigurable board with a single 

Virtex-4 XC4VFX60 FPGA component, a memory slot which holds up to 2GBytes and some additional components not used in 

our implementation. We have used a Xilinx Virtex-4 XC4VFX60 FPGA because its features are very similar to the space-grade 

Virtex-4QV XQR4VFX60 FPGA.As far as the results obtained by our FPGA-based unmixing chain were exactly the same than 

the ones obtained with its equivalent software versions, and the efficiency in terms of unmixing of the N-FINDR and the ISRA 

algorithms have been already proven in many state-of-the-art works, we have decided to center this subsection in the hardware 

implementation results achieved. 

Table VII shows the resources used for our hardware implementation of the proposed N-FINDR algorithm design optimized to 

extract up to 21 endmembers, and Table VIII shows the resources used for our hardware implementation of the proposed ISRA 

design for 16 ISRA basic units in parallel, conducted on the Virtex-4 XC4VFX60 FPGA of the ML410 board. This FPGA has a 

total of 25280 slices, 50560 slice flip flops, and 50560 four input look-up tables available. In addition, the FPGA includes some 

heterogeneous resources, such as two PowerPCs, 128 DSP48Es, and distributed Block RAMs. Table IX outlines the power 

consumption of both designs, estimated using the Xilinx Power Estimator tool. Taking into account that we are using most of the 

FPGA computing resources simultaneously, these numbers are very affordable, especially when compared to the power numbers 

of high-performance general-purpose processors or GPUs. Finally, Table X reports the processing times measured for two well-

known hyperspectral data sets not only for our FPGA implementation, but also for an equivalent software version developed in C 

language and executed on a PC with an Intel Core i7 processor at 2.2 Gigahertz and 4 Gigabytes of RAM. The first dataset 

corresponds with a portion of 350×350 pixels of the AVIRIS Cuprite scene also used for the compression case study reported in 
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the previous section of this paper, while the second data set corresponds to an EO-1 Hyperion data set available in radiance units 

collected over the same Cuprite mining district as the aforementioned AVIRIS scene. In this case, we used a full EO-1 Hyperion 

flightline with much larger dimensions, i.e., 6479 × 256 pixels and 242 spectral bands, and a total size of around 800 Megabytes. 

In both cases our hardware implementation achieves a speedup of 9x which is a remarkable result if it is taken into account that 

the Intel Core i7 uses a much more recent technology (our Virtex-4 uses 2004 technology whereas the Intel Core i7 uses 

technology from the end of 2011), and is a power hungry platform that demands complex heat dissipation systems, which are not 

needed for our FPGA design. 

To conclude this section, we emphasize that our reported FPGA processing times are still slower than the sensors that collect the 

hyperspectral data. For instance, the cross-track line scan time in EO-1 Hyperion, a push-broom instrument, is quite fast (4.5 ms 

to collect 256 full pixel vectors). This introduces the need to process a hyperspectral data set with 256 x 6479 pixels (such as our 

considered EO-1 Hyperion Cuprite scene) in 29.16 s to fully achieve real-time performance. Although we believe that the 

inclusion of more recent FPGA boards could significantly improve our reported processing times, we have decided to report 

results on a board which is very close to those certified for space operation in the hope of illustrating the real challenges to be 

faced when porting hyperspectral imaging algorithms into certified FPGA hardware. For example, in a Virtex-4 FPGA 

XQR4VLX200 (89088 slices) certified for space, we could have 3.5 times more ISRA units in parallel simply synthesizing the 

second stage of the hardware architecture for the new number of units in parallel. In this way, we could achieve a speedup of 3.5x 

with regards to our current implementation without any modifications in our proposed design. In the case of an airborne platform 

without the need for space-certified hardware, we could use a Virtex-6 XQ6VLX550T (550000 logics cells) which has nearly 10 

times more logic cells than the FPGA used in our experiments. In future developments, we will also focus on improving our 

proposed implementation to achieve a better utilization of hardware resources and reduce the reported processing times, which in 

any event are considered to be acceptable in many remote sensing applications. 

VI. SUMMARY AND FUTURE RESEARCH 

This paper discussed the role of reconfigurable hardware in remote sensing missions by providing an extensive review and 

analysis of the (current and future) capabilities of FPGA devices, which are now the standard for on-board processing and 

analysis of remotely sensed data. Both the technological aspects of FPGA hardware and also specific implementation issues are 

covered in the context of two specific case studies dealing with remotely sensed hyperspectral data compression and spectral 

unmixing. While many other techniques currently exist for hyperspectral data exploitation, the selection of these two applications 

was based on their relevance and fast development in recent years. Several summarizing statements can be formulated after our 

detailed assessment: 
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 FPGAs currently represent the best choice for on-board hyperspectral processing due to their compact size and low 

weight, particularly when compared with other specialized hardware devices such as GPUs, which exhibit much higher 

power dissipation figures. FPGAs also perform well in high-throughput signal processing tasks encountered in space, 

like processing and/or compressing a hyperspectral image.  

 An important property of FPGAs is their inherent ability to change their functionality- through partial or full 

reconfiguration. In other words, they permit changes to the usage model and the data processing paradigm in space 

rather than hard-coding of all components prior to launch. Although FPGAs that support run-time reconfiguration has 

been available for many years, initially the reconfiguration flow was too complex, and very few designers’ teams use it. 

In fact the example described in Section V is the first time where run-time reconfiguration has been used for 

hyperspectral images. However, in the recent years FPGA vendors have done an important effort to simplify the 

development of run-time reconfigurable systems. Hence future on-board processing systems could easily take 

advantage of this useful feature.  

 Another important technological advantage of FPGAs over commodity high performance platforms such as current 

GPUs is that FPGAs can be manufactured in order to resist high levels of radiation without changing the content of their 

inner memories, which determines the FPGA programming. Moreover, since FPGAs implement custom designs, 

additional fault-tolerant levels can be included in the system when needed, such as dual or triple modular redundancy. 

 The aforementioned properties make FPGAs a very attractive solution for advanced hyperspectral data exploitation 

applications such as (lossless and lossy) hyperspectral data compression and unmixing, as discussed in this work. 

However, FPGAs cannot still provide real-time processing performance on board in the considered analysis scenarios. 

This is mainly due to the additional hardware resources required by the reconfigurability property, and also to the extra 

resources needed to enable adaptive execution of a particular processing algorithm among a suite of algorithms, 

implementing a desired functionality. In addition, in view of the computationally intensive nature of the hyperspectral 

imaging algorithms new low-complexity mapping hardware methods are required enabling real-time execution based on 

an appropriate trade-off among design requirements. In this regard, it is important to mention that due to the time 

needed for the certification process of hardware, current space-certified FPGA devices do not represent the state-of-the-

art hardware components, hence the technology available onboard is generally one generation behind the latest one 

available in the market. 

 Another consideration when porting processing algorithms to FPGAs is the programming effort needed, which is 

generally higher than the one required to develop an efficient implementation in a GPU or multi-core processor since 
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the full processing architecture needs to be developed from scratch. High-level design tools such as Handel-C12, 

Catapult C13, Dime-C14, or Impulse C15 among others have simplified the design process for FPGA developers, but the 

learning curve for inexperienced users implementing their algorithms in FPGA technology is still significant as 

compared to the efforts needed in other kind of commodity high performance computing platforms such as GPUs or 

multi-cores. In this sense, some efforts have been done in order to directly map hyperspectral imaging algorithms 

described in MATLAB (which is by far the preferred programming language within the hyperspectral research 

community) onto a generic FPGA, but the results are still far from being efficient when compared with the classical 

FPGA design flow [79], [98]. In any case, all the FPGA vendors are trying to reduce the design complexity not only 

including support to synthesize high-level language such as C or C++, but also including large component intellectual-

property (IP) libraries with hundreds of frequently used designs, and allowing the easy integration of previously 

designed hardware blocks in a custom design.    

In summary, reconfigurable hardware offers an unprecedented opportunity to achieve the long-desired goal of being able to 

perform real-time processing of high-dimensional remote sensing data (such as hyperspectral images) on board instrument. 

FPGA technology is now highly consolidated in both airborne and spaceborne scenarios, and provides an important property 

such reconfigurability which allows for a longer exploitation of the hardware and its dynamic adaptation to the availability of 

new processing techniques and algorithms. Due to these reasons, FPGA technology has attracted the attention of international 

space agencies for their future on-board processing systems. A good example is the SpaceCube program of the NASA Goddard 

Space Flight Center, which aims to provide 10x to 100x improvements in on-board computing power while lowering relative 

power consumption and cost thanks to the incorporation of commercially available radiation-tolerant FPGAs to their flight 

processing systems [99].  

In this regard, the review provided in this contribution analyzes current and future developments in this area and further discusses 

the role of FPGAs in future spaceborne missions for Earth observation, intended to provide full coverage of our planet with 

extremely high spatial, spectral and temporal resolutions. Expected developments in this field will comprise the full integration of 

reconfigurable technology into spaceborne missions and a more dynamic certification process by international agencies that will 

allow for the integration of state-of-the-art hardware devices into remote sensing missions as soon as they become available. 

Further developments towards enhancing the programmability of FPGA devices are also expected in order to facilitate the porting 

of algorithms to this kind of hardware using high-level tools. 

 
12  http://www.handelc.com 
13  http://www.calypto.com/catapult_c_synthesis.php 
14  http://www.nallatech.com/Development-Tools/dime-c.html 
15  http://www.impulseaccelerated.com/ 
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Figure 7 
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Figure 8 
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TABLE I 

KLT Computational Requirements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operations	  
	  
	  
Process	  

	  
Additions	  

	  
Subtractions	  

	  
Multiplications	  

	  
Divisions	  

	  
Trigonometric	  
operations	  

BandMean	   M×L×n	   -‐	   -‐	   n	   -‐	  

MeanSub	   -‐	   M×L×n	   -‐	   -‐	   -‐	  

Covariance	   0.5×M×L×n×(
n+1)+	  M×L×n	  

n 	   0.5×M×L×n×	  
(n+1)+	  
0.5n(n+1)+n 	  

n + n	   -‐	  

Eigen	   5(n-‐1)(n-‐2)	  ×	  
(4+2n)	  

5(n-‐1)(n-‐2)	  ×	  
(4+2n)	  

5(n-‐1)(n-‐2)	  
×(14+8n)	  

10(n-‐1)	  ×	  
(n-‐2)	  

15(n-‐1)	  ×	  (n-‐2)	  

Eigen	  
×MeanSub	  

M×L×n(n-‐1)	   -‐	   M	  x	  L	  x	  n 	   -‐	   -‐	  

Overall	   1.5×M×L×n×	  
(n+1)	  +	  	  
5(n-‐1)(n-‐2)	  ×	  
(4+2n)	  	  

M×L×n+n 	  
+5(n-‐1)(n-‐2)	  
×	  (4+2n)	  	  

M×L×n(1.5n+0.
5)+(n+1)(0.5n+1
)+n +5(n-‐1)(n-‐
2)	  ×(14+8n)	  	  

11n(n-‐1)	  
+20	  

15(n-‐1)	  ×	  (n-‐2)	  
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TABLE II 
 

Execution Times (in seconds) of the KLT Design for a Cluster of 32 Bands (AVIRIS Cuprite Scene) 

	   PC	   Cortex	   App	  1	   Improvement	  %	   App2	   Improvement	  %	  

BandMean	   0.22	   2.94	   2.94	   -‐	   2.94	   -‐	  

MeanSub	   0.90	   4.12	   4.12	   -‐	   4.12	   -‐	  

Covariance	   13.80	   211.65	   144.74	   31.6%	   113.60	   46.3%	  

Eigenvector	   3.50	   3.62	   1.71	   52.9%	   3.62	   -‐	  

Eigen	  ×	  SubMean	   16.80	   445.82	   292.74	   34.3%	   181.22	   59.4%	  

Overall	  KLT	   35.20	   668.15	   446.25	   33.2%	   305.40	   54.3%	  
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TABLE III 
Power Consumption of the KLT Design (AVIRIS Cuprite Scene) 

	   Static	   Dynamic	   Total	  

Approach	  1	   8.99	  mW	   204.59	  mW	   213.58	  mW	  

Approach	  2	   8.99	  mW	   215.4	  	  mW	   224.39	  mW	  
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TABLE IV 
Hardware Resources Required by the KLT Implementations (AVIRIS Cuprite Scene)Design 

	   Used	   Total	   Percentage	  

Approach	  1	  

FPGA	  Fabric	  
(System	  Gates)	  

4248	   4608	   92%	  

Embedded	  SRAM	  
(Blocks)	   4	   8	   50%	  

Approach	  2	  

FPGA	  Fabric	  
(System	  Gates)	  

3780	   4608	   82%	  

Embedded	  SRAM	  
(Blocks)	  

4	   8	   50%	  
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TABLE V 
Execution Time (in seconds) of the Integer KLT Design (AVIRIS Cuprite Scene) 

Operations	   Cortex	  
CPU	   SoC	   Improvement	  %	  

BandMean	   2.943	   2.943	   -‐	  
MeanSub	   4.117	   4.117	   -‐	  

Covariance	   211.65	   113.6	   46.3%	  
Eigenvector	   3.625	   3.625	   -‐	  

PLUS	   3.93	   3.93	   -‐	  
Lifting	   562	   309	  *	   55%	  

Overall	  Integer	  KLT	   787.6	   437.2	   44.5%	  
*preliminary	  results	  
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TABLE VI 

N-FINDR and ISRA Computational Requirements (Single-precision floating point operations) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	  	  

 

Operations	  
	  
	  
Process	  

Additions	   Subtractions	  	   Multiplications	   Divisions	  

N-‐FINDR	   -‐	   𝑀𝑀 ∗ 𝐿𝐿 ∗ 𝑝𝑝 ∗ 𝑗𝑗	   𝑀𝑀 ∗ 𝐿𝐿 ∗ 𝑝𝑝 ∗ 𝑗𝑗 + 𝑝𝑝 	   𝑀𝑀 ∗ 𝐿𝐿 ∗ 𝑝𝑝 ∗ 𝑗𝑗	  

ISRA	   𝑀𝑀 ∗ 𝐿𝐿 ∗ 𝑖𝑖 ∗ 𝑛𝑛 + 𝑝𝑝 ∗ 𝑛𝑛 	   -‐	   𝑀𝑀 ∗ 𝐿𝐿 ∗ 𝑖𝑖 ∗ 𝑛𝑛 + 𝑝𝑝 + 1 ∗ 𝑛𝑛 + 1 	   𝑀𝑀 ∗ 𝐿𝐿 ∗ 𝑖𝑖	  
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TABLE VII 
Summary of resource utilization for the FPGA-based implementation of the N-FINDR algorithm on a VIRTEX-4 XC4VFX60 

FPGA 
	  

Component	  
Number	  of	  

endmembers	  
(p)	  

Number	  
of	  

DSP48Es	  

Number	  
of	  

RAMB16s	  

Number	  
of	  slice	  

flip	  flops	  

Number	  
of	  4	  input	  

LUTs	  

Number	  
of	  slices	  

Percentage	  
of	  total	  

Maximum	  
operation	  
frequency	  

(MHz)	  

N-‐FINDR	  
module	  

21	   128	   217	   20077	   34155	   24622	   97.40	   51.3	  

DMA	  
Controller	  

-‐	   0	   0	   170	   531	   367	   1.45	   102	  
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TABLE VIII 
Summary of resource utilization for the FPGA-based implementation of the ISRA algorithm on a VIRTEX-4 XC4VFX60 FPGA 

	  

Component	  

Number	  
of	  

modules	  
(u)	  

Number	  
of	  

DSP48Es	  

Number	  
of	  

RAMB16s	  

Number	  
of	  slice	  

flip	  flops	  

Number	  
of	  4	  input	  

LUTs	  

Number	  
of	  slices	  

Percentage	  
of	  total	  

Maximum	  
operation	  
frequency	  

(MHz)	  

Parallel	  
ISRA	  

module	  
16	   128	   54	   5532	   42047	   22773	   90.08	   53.4	  

RS232	  
Transmitter	  

-‐	   0	   0	   69	   128	   71	   0.28	   208	  

DMA	  
Controller	  

-‐	   0	   0	   170	   531	   367	   1.45	   102	  
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TABLE IX 

Power Consumption of the N-FINDR and ISRA Designs 

	   Static	   Dynamic	   Total	  

N-‐FINDR	   455	  mW	   350	  mW	   805	  mW	  

ISRA	   455	  mW	   362	  	  mW	   817	  mW	  
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TABLE X 
Execution times measured for the FPGA hardware implementation (HW) and for an equivalent software (SW) version 

 

	  

AVIRIS	  Cuprite	  subscene	  
(16	  endmembers	  and	  10	  iterations)	  

	  
EO-‐1	  Hyperion	  Cuprite	  scene	  

(21	  endmembers	  and	  10	  iterations)	  

HW	   SW	   HW	   SW	  

Endmember	  extraction	  (N-‐FINDR)	   13.46	  s	   476.34	  s	   239.11	  s	   8464,99	  s	  

Dynamic	  reconfiguration	   694	  ms	   0	  ms	   694	  ms	   0	  ms	  

Fractional	  abundance	  estimation	  
(ISRA)	  

1.32	  min	   5.81	  min	   30.21	  min	   173.4	  min	  

Total	   1.56	  min	   13.75	  min	   34.21	  min	   314.48	  min	  
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