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Abstract

We present a unified framework for designing deterministic monotone polynomial time approxima-
tion schemes (PTAS’s) for a wide class of scheduling problems on uniformly related machines. This
class includes (among others) minimizing the makespan, maximizing the minimum load, and minimiz-
ing the `p-norm of the machine loads vector. Previously, this kind of result was only known for the
makespan objective. Monotone algorithms have the property that an increase in the speed of a machine
cannot decrease the amount of work assigned to it.

The idea of our novel method is to show that for goal functions that are sufficiently well-behaved
functions of the machine loads, it is possible to compute in polynomial time a highly structured nearly
optimal schedule. An interesting aspect of our approach is that, in contrast to all known approximation
schemes, we avoid rounding any job sizes or speeds throughout. We can therefore find the exact best
structured schedule using dynamic programming. The state space encodes a sufficient amount of infor-
mation such that no postprocessing is needed, allowing an elegant and relatively simple analysis without
any special cases. The monotonicity is a consequence of the fact that we find the best schedule in a
specific collection of schedules.

In the game-theoretical setting of these scheduling problems, there is a social goal, which is one of
the objective functions that we study. Each machine is controlled by a selfish single-parameter agent.
The private information of an agent is its cost of processing a unit-sized job, which is also the inverse
of the speed of its machine. Each agent wishes to maximize its own profit, defined as the payment
it receives from the mechanism minus its cost for processing all jobs assigned to it, and places a bid
which corresponds to its private information. Monotone approximation schemes have an important role
in the emerging area of algorithmic mechanism design, as in the case of single-parameter agents, a
necessary and sufficient condition for truthfulness with respect to the bids is that the allocation algorithm
be monotone. For each one of the problems, we show that we can calculate payments that guarantee
truthfulness in an efficient manner. Thus, there exists a dominant strategy where agents report their true
speeds, and we show the existence of a truthful mechanism which can be implemented in polynomial
time, where the social goal is approximated within a factor of 1 + ε for every ε > 0.

1 Introduction

A major question in algorithmic game theory is whether the presence of selfish agents affects the approx-
imability of various classic optimization problems [32]. Specifically, the following research agenda was
suggested by Nisan and Ronen [32]: “to what extent is incentive compatible efficient computation funda-
mentally less powerful than ”classic” efficient computation?” (see [18] for this formulation of the agenda of
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[32]). Of particular interest are scheduling problems, where jobs are assigned for processing to agents, each
controlling one machine, and who have some private information regarding their machines [32, 5, 30, 14]. In
this paper, we consider the case of single-parameter agents with scheduling problems on uniformly related
machines, which was among the first problems considered in the area of algorithmic mechanism design [5].
The private information of an agent is the cost of processing one unit of work, which is also the inverse of
the speed of the machine. We provide an answer to the question raised in [32] for scheduling problems on
uniformly related machines, by designing (1 + ε)-approximation mechanisms for all these problems.

Non-preemptive scheduling problems on m uniformly related machines are defined as follows. We let
the set of machines be denoted by M = {1, 2, . . . , m}. We are given a set of jobs J = {1, 2, . . . , n},
where each job j has a positive size pj . We let si denote the (actual) speed of machine i, meaning that
the processing of job j takes pj

si
time units if j is assigned to machine i. The jobs need to be partitioned

into m subsets S1, . . . , Sm, with Si being the subset of jobs assigned to machine i. For such a solution
(also known as a schedule), we let Li = (

∑
j∈Si

pj)/si be the completion time or load of machine i. The
work of machine i is Wi =

∑
j∈Si

pj = Li · si, that is, the total size of the jobs which are assigned to i.
We consider objective functions which are functions of the machine loads, L1, L2, . . . , Lm and a variety of
objective functions (social goals). A well-known objective function is the makespan, which is the maximum
load over all machines. The optimization problem of finding a schedule that minimizes the makespan is
a basic one [24, 23, 25, 26, 15]. The problem of finding a schedule that maximizes the minimum load,
also known as the cover value, is the famous Santa Claus problem (or the machine covering problem) on
uniformly related machines (see e.g. [22, 34, 2, 8, 20, 11, 21]). Both these problems are concerned with
the optimization of the extremum values of the set of machine loads. We will also consider the optimization
problem of minimizing

∑m
i=1 f(Li) where f is a well-behaved function. We say that a function f is well-

behaved if f is a non-negative, convex, strictly monotonically increasing function satisfying the additional
property that if x ≤ (1 + ε)y, then f(x) ≤ (1 + O(1) · ε)f(y). With regard to the problem of minimizing∑m

i=1 f(Li), we assume that there is an oracle such that given a rational number x it computes f(x) exactly
in constant time1. The most important example of such a function is f(x) = xp for p > 1 in which case the
problem is equivalent to minimizing the `p-norm of the vector of machines loads (if p = 1, then an optimal
solution which will satisfy our requirements would be to schedule all jobs on the fastest machine of minimum
index). The optimization goal function of minimizing the `2-norm (and the goal of minimizing the `p-norm
for p > 1) of the vector of completion times of the machines has been widely studied (see e.g. [17, 13, 7]).
The original motivation was minimization of the average latency in storage allocation applications (rather
than worst-case latency, see [17]), and the problem has additional applications in algorithmic game theory
[12]. Bansal and Pruhs [10] recently stated: “The standard way to compromise between optimizing for the
average and optimizing for the worst case is to optimize the `p-norm, generally for something like p = 2 or
p = 3.”

The setup of mechanism design for single-parameter agents operating uniformly related machines is as
follows. Agents present bids to a mechanism, where the bid bi of an agent i is the claimed cost per unit of
work of its machine (the inverse of its claimed speed). Based on these bids, the mechanism allocates the
jobs to the machines and also assigns payments to the agents. We assume that each agent is only interested
in maximizing its own profit, which is its payment minus its (actual) cost of processing the jobs allocated
to it. A mechanism is called truthful if reporting their true costs per unit of work is a dominant strategy
for the agents. That is, this strategy maximizes the profit for each agent, regardless of the strategies of
the other agents. In the case of single-parameter agents, a well-known necessary and sufficient condition

1We can loosen this condition by replacing f with a piecewise-linear continuous convex approximation of f (i.e., the approxi-
mation is well-behaved as well) without affecting the results. We will assume that f can be computed exactly for simplicity.
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for truthfulness is that the allocation algorithm be monotone [31, 33, 5, 4], that is, the allocation algorithm
must have the property that if an agent i increases its claimed speed (i.e., decreases its bid) while all other
bids are unchanged, the work allocated to i does not decrease. More precisely, in such a case there exist
simple payment functions that can be coupled with the (monotone) allocation algorithm to give a truthful
mechanism. If the allocation algorithm runs in polynomial time, and the payments can be computed in
polynomial time as well, then the resulting truthful mechanism can be implemented in polynomial time.
Thus, for single-parameter agents, since the problems are typically strongly NP-hard, the primary goal is
to design a monotone (polynomial time) approximation algorithm with the smallest possible approximation
ratio, and to show how the corresponding payments can be computed in polynomial time for its outputs.

Approximation schemes. An R-approximation algorithm for a minimization problem is a polynomial
time algorithm which always finds a feasible solution of cost at mostR times the cost of an optimal solution.
An R-approximation algorithm for a maximization problem is a polynomial time algorithm which always
finds a feasible solution of value at least 1

R times the value of an optimal solution (we use the convention
of approximation ratios greater than 1 for maximization problems). The infimum value of R for which
an algorithm is an R-approximation is called the approximation ratio or the performance guarantee of the
algorithm. A polynomial time approximation scheme (PTAS) is a family of approximation algorithms such
that the family has a (1 + ε)-approximation algorithm for any ε > 0 (the running time must be polynomial
in the input size). If the running time is polynomial in 1

ε as well, then the PTAS is in fact an FPTAS
(fully polynomial time approximation scheme). On the other hand, if the running time is quasi-polynomial
(logarithmic factors of the input size may appear in the exponent), then the approximation scheme (which
is not a PTAS) is a quasi-polynomial time approximation scheme (QPTAS). Being strongly NP-hard2, the
scheduling problems studied here cannot have an FPTAS unless P=NP.

A classic PTAS for these problems generally works by restricting the set of allowable schedules and
optimizing (approximately) over this set (thus obtaining an approximate solution), where the details depend
on the specific algorithm and the objective function considered. Typically, a chief method of restricting
allowed schedules is to do grouping and rounding of jobs (there is a number of subsets, such that the jobs of
each subset are seen as identical) and to treat jobs which are very small compared to the work that a machine
should receive as arbitrarily divisible (or sand). Several difficulties arise when trying to modify such schemes
to satisfy the monotonicity requirement (some of which were partially dealt with in the past, see below). It
is no longer possible to treat similar jobs as “identical”, and their exact sizes must be considered. Jobs that
are small for the machine receiving them are much more difficult to deal with; such jobs usually do not
affect the approximation ratio but nevertheless they must be assigned very carefully in order to satisfy the
monotonicity requirement, since even a very small reduction in the work when the machine increases its
speed is not allowed. Moreover, it is not known in advance which job is small on which machine because
the work of the machine is not known.

Dhangwatnotai et al. [18] used randomization to construct a monotone PTAS for the three main ob-
jective functions listed above (makespan, cover value, and `p-norm), which, combined with an appropriate
payment function they give, implies a mechanism which is truthful in expectation. That is, given a choice
of ε > 0, their algorithm for this value of ε has an approximation ratio of 1 + ε for any realization, but
the monotonicity is proved for the expected works of machines. In this weaker notion of truthfulness, the
agents are not interested in their actual profits (which are random variables, as the allocation algorithm is
randomized) but only in the expected ones, that is, the agents are risk-neutral. For example, if an agent
earns a profit of M with probability 1

M , then they would see their ’expected’ profit as earning nothing at all

2Using the standard reduction from the 3-Partition problem, deciding if there exists a schedule of the jobs on identical machines
for which all machines have unit load is NP-complete in the strong sense.
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(rather than earning 1 in expectation). The solution of [18] to the difficulties above is that when a machine
receives a job of a given rounded size, the actual job is chosen uniformly at random from the set of jobs
of this rounded size, so the “sizes” of jobs (the expected sizes) are easier to deal with. For jobs that are
small, a fractional assignment is found (and rounded using randomization). They also derived deterministic
monotone QPTAS’s for minimizing the maximum load and the `p-norm of the loads. A fully deterministic
(and hence universally truthful) monotone PTAS for minimizing the makespan was given by Christodoulou
and Kovács [15]. They assign jobs that have almost the same size (are in the same group) very carefully in
a fixed order (sorted by size) to the machines (where machines are given in a fixed order of their speeds).
Moreover, they begin by rounding speeds to powers of 1 + ε, and round the job sizes to powers of 1 + δ for
some δ ¿ ε. This ensures that when a speed changes, this change is always relatively large compared to
the job classification, so the rounding errors introduced by small jobs are not large compared to the required
change in the work. The authors give a long and technical proof to show that it is possible to combine these
main ideas and give a deterministic monotone assignment. This approach can be used only for minimizing
the makespan, since in the scheme of [15], machines of similar speeds should either receive almost the same
work (implied by the makespan), or no small jobs at all, except for a small number of machines. Informally,
the small jobs are pushed to the fastest machines. This method does not seem to work even for the similar
problem of maximizing the cover value (that is also a bottleneck optimization scheduling problem), but ap-
plying the methods of [15] leads to a deterministic monotone (2 + ε)-approximation for this last objective,
given by Christodoulou, Kovács, and van Stee [16] (the problem was also studied in [21]).

What can be seen from these previous results is that satisfying the monotonicity requirement would
become easier if we could simply avoid the notion of small jobs. Then, we could calculate with exact job
sizes (and thus exact loads) throughout. An important contribution of this paper is to show that for any
given schedule (the “original schedule”), a highly structured similar schedule exists, where although the
ratio of the maximum size and the minimum size of jobs assigned to a machine is unbounded, the jobs’
types assigned to this machine are restricted in the sense that these jobs are grouped into a sufficiently small
number of classes. This allows us to use dynamic programming without introducing a notion of small jobs
or inexact calculations even though it does not seem to be possible to actually bound the maximum ratio of
sizes of jobs assigned to a machine. The set of highly structured schedules is independent of the possible
speeds, which assists in dealing with speed changes, and finally, the work of each machine is very close
to its work in the original schedule, which keeps the approximation ratio close to 1. This enables us to
deal with all of the objective functions mentioned above at once using a dynamic programming formulation
represented by a layered graph, having one layer for each machine. Unlike previous approximation schemes
that use such graphs, a path in the graph corresponds to one specific schedule (not to a class of schedules, or
a schedule for a set of rounded jobs), and the cost of the path (with respect to a goal function) is precisely the
cost of the corresponding schedule and not its approximated value. That is, there is no rounding or imprecise
calculation with respect to relatively small jobs (or any other jobs). This makes proving monotonicity much
more straightforward, as our allocation algorithm satisfies the property of maximal in range where the range
is a set containing all highly structured schedules (and perhaps some additional ones). Moreover, it even
simplifies the proof of the approximation ratio, and the presentation of the algorithm, compared to previous
(non-monotone) PTAS’s. This simplification arises as we do not need to analyze the impact of re-rounding
the total size of small jobs, as the work of machines increases, and the size of every unassigned small job
become a smaller fraction of the work of the considered machine. Our construction works in the same way
for all inputs and all objectives, and does not require any special cases. Hence we streamline the monotone
PTAS for minimizing the makespan [15]. Moreover, we provide the first deterministic monotone PTAS’s
for maximizing the minimum load and minimizing the `p-norm, which are our main contributions.

Other related work. For a fixed (constant) number of machines, scheduling problems typically have an
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FPTAS [27, 9, 19], and even a (deterministic) monotone one for makespan minimization and for maximizing
the minimum load [3, 21]. The QPTAS of [18] for minimizing the `p-norm is in particular a PTAS for fixed
values of m. Prior to the monotone FPTAS of Andelman, Azar, and Sorani [3] for makespan minimization,
Auletta et al. [6] gave the first deterministic monotone algorithm for this problem (where the number of
machines is fixed), with an approximation ratio of 4 + ε.

In what follows we discuss the case where the number of machines is a part of the input. It was shown
by Hochbaum and Shmoys that the makespan minimization problem has a PTAS for identical (equal speed)
machines [25] and for uniformly related machines [26]. All optimization problems studied here, including
maximizing the minimum load and minimizing the `p-norm, are known to have a PTAS for identical ma-
chines [34, 1, 2], and for uniformly related machines [8, 20]. As for monotone algorithms for the makespan
minimization problem, before the papers [18, 15] mentioned above, Archer and Tardos [5] gave a random-
ized 3-approximation mechanism for minimizing the makespan which is truthful in expectation only. The
ratio was later improved to 2 [4] (and eventually to 1 + ε [18]). A deterministic monotone algorithm of
approximation ratio at most 5 was given in [3], and Kovács improved the ratio to 3 and then to 2.8 [28, 29].

Proof overview. Our proof consists of two parts. In the first one, we define several properties which
a structured schedule should have, and show that every schedule has a similar schedule fulfilling these
properties. Similarity is measured by allowing only a very small change in the work of every machine. For
the proof, we introduce a notion of a fractional schedule, where some (relatively small) jobs may be split
over multiple machines. For any (integral or fractional) schedule, we can define a magnitude vector with
a component for every machine. Unlike previous work, where the magnitude of a machine corresponded
directly to its work (or the largest job assigned to it), we use the magnitude component of a machine as an
upper bound for the size of any job which is assigned to it, but if a component of the magnitude vector is
different from the previous one, we require that the value of this component matches (approximately) the
work of the corresponding machine. If the schedule was already defined, its magnitude vector can be created
component by component (for a list of machines sorted by non-decreasing speed); increase the magnitude of
the current machine (as opposed to keeping the same magnitude of the previous machine) only if keeping the
same magnitude as for the previous machine would result in a violation of the upper bound on the maximum
size of any job assigned to the current machine. This novel approach allows additional flexibility in the set
of allowed schedules.

For a given integral schedule, where the works of the machines are increasing with the speeds, we
show (in Lemma 9) that there exists a fractional schedule where the total size of very small jobs which are
(partially) assigned to machines with high work (compared to the sizes of these jobs) is small, and the work
on each machine is the same as the work in the integral schedule. We then (in Lemma 12) refine this result
by constructing an integral schedule where no very small jobs are assigned to machines with high work,
the works of the machines are all close to the original works, and an additional technical property holds.
However, despite the works being close to the original works, they may no longer be sorted in the resulting
schedule (though if the works of two consecutive machines are out of order, then the difference between their
works is very small). We cannot search for unsorted structured schedules as sorted schedules are essentially
required for monotonicity, while a postprocessing step of sorting may also harm monotonicity. We therefore
do one extra step (in Theorem 15) to create a final integral schedule in which the works are sorted again (but
still very close to the original works) and several structural properties hold. We do not use rounding, but
jobs are partitioned into mega-classes and mini-classes according to their size, and we apply re-assignment
of jobs in every class to comply with the required structure. For a given schedule, some classes of jobs
can turn out to be too large for some machines, while they are very small compared to the work of all the
other machines. These jobs are combined into chunks called “alternative jobs”. Since this process can be
applied in particular for an optimal schedule (for each one of the studied problems), there exists a structured
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schedule where works are very close to the works in an optimal schedule, such that this schedule has an
objective value that is close to optimum.

Once we show the existence of such a schedule, we can turn to the design of an algorithm which finds
it. We use a dynamic programming formulation that is based on the structural properties. By the structural
properties and the existence of a magnitude vector, it is only necessary to have a small number of components
of this vector in the state space. A preprocessing step is performed, where all possible types of alternative
jobs are created. While a job will belong to a number of sets of alternative jobs, every solution will use it at
most once as a part of an alternative job (or possibly it will simply be assigned as a job). Thus, we find an
optimal solution out of a given class using a polynomial time algorithm, and this optimal schedule is then
guaranteed to be close to an overall optimal schedule, as well as being monotone.

2 Preliminaries

Without loss of generality, let ε be a small constant such that 0 < ε ≤ 1
32 and 1

ε is an integer power of 2,
where the exponent is denoted by r, such that r ≥ 5 (i.e., ε = 1

2r ). Throughout the paper, for a solution A
we denote by A both the solution and the value of the objective function for this solution. Without loss of
generality, we assume that 0 < p1 ≤ p2 ≤ · · · ≤ pn.

An integral schedule is a function S : J → M mapping each job to its assigned machine. We let
WS

i =
∑

j∈J :S(j)=i pj (this is the work of machine i in the integral schedule S). A fractional schedule is
a function X : J ×M → [0, 1]. The value X(j, i) is the fraction of job j assigned to machine i, and the
following condition (that every job is assigned completely) must be satisfied:
(F1) For every j ∈ J ,

∑
i∈M X(j, i) = 1.

Let WX
i =

∑
j∈J pj ·X(j, i) be the total fractional size of jobs of machine i, and let W̃X

i = 2αX
i , where

αX
i =

⌈
log2 WX

i

⌉
, be its rounded value (if WX

i = 0 then αX
i = −∞ and W̃X

i = 0). We call WX
i the work

of machine i in X (as for integral schedules) and W̃X
i is the rounded work (also for integral schedules) of

machine i in X .
We next define the notion of a valid fractional schedule. Intuitively, it means that if a job j is assigned

fractionally to machine i, then its size is small with respect to the work of i. Formally, a fractional schedule
is valid if it satisfies condition (F2):

(F2) There is a partition J = JZ(X) ∪ JR(X) (JZ(X) ∩ JR(X) = ∅), such that if j ∈ JZ(X), then there is
a unique value i ∈ M such that X(j, i) > 0 (and therefore X(j, i) = 1), and if j ∈ JR(X) and X(j, i) > 0,
then pj ≤ εW̃X

i .

Note that the partition in (F2) is not necessarily uniquely defined (for a given fractional schedule). Every
integral schedule S induces a valid fractional schedule X with the same jobs assigned to every machine as
follows: let X(j, i) = 1 if S(j) = i, else X(j, i) = 0. Furthermore, we let JR(X) = {j ∈ J : pj ≤
εW̃S

S(j)} and JZ(X) = J \JR(X) (this is one possible partition of J satisfying (F2), and the partition where

JR(X) is empty is another possible partition). Note that W̃S
i = W̃X

i for i = 1, . . . ,m. Let X be called the
(valid) fractional schedule induced by S.

On the other hand, every valid fractional schedule X for which X(j, i) ∈ {0, 1} for all j ∈ J, i ∈ M

induces an integral schedule S with the same works by setting S(j) = i for the value of i for which
X(j, i) = 1 (this value of i is unique due to (F1)). Let S be called the integral schedule induced by X . In

what follows we use the term schedule for an integral schedule. We let LS
i = W S

i
si

be the load of machine i

in the schedule S.
Our framework relies on the property that there is an optimal solution for which faster machines have
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no smaller work. We next show that the objective functions which we consider satisfy this condition (this
claim is similar to an observation in [20]).

Claim 1 Assume that s1 ≤ s2 ≤ · · · ≤ sm. There exists an optimal schedule S for the problem of minimiz-
ing

∑m
i=1 f(Li) where f is a well-behaved function, which satisfies WS

1 ≤ WS
2 ≤ · · · ≤ WS

m. There exists
an optimal schedule S1 for the makespan minimization problem which satisfies WS1

1 ≤ WS1
2 ≤ · · · ≤ WS1

m .
There exists an optimal schedule S2 for the machine covering problem which satisfies WS2

1 ≤ WS2
2 ≤ · · · ≤

WS2
m .

Proof. Consider a schedule S with makespan M and cover value C. Call a pair of machines i, j reversed if
1 ≤ i < j ≤ m and WS

i > WS
j . We show that removing a consecutive reversed pair (that is, j = i + 1) by

swapping the sets of jobs assigned to them from any schedule S does not increase the makespan or decrease
the cover value, which implies the second claim and the third claim (since after a finite number of such
steps there will no longer be reversed pairs). Let S′ be the schedule resulting from swapping the two job
sets of machines i,j. In S′, machine j gets more work, but the load remains at most M because we have
WS′

j /sj = WS
i /sj ≤ WS

i /si ≤ M. Machine i gets less work, but the cover value remains at least C since
we have WS′

i /si = WS
j /si ≥ WS

j /sj ≥ C. To prove the first claim, we show that swapping the sets of
jobs of i and j does not increase the objective function value. By swapping, the objective is changed by

an additive factor of f(W S′
i

si
) + f(

W S′
j

sj
) − f(W S

i
si

) − f(
W S

j

sj
) = f(

W S
j

si
) + f(W S

i
sj

) − f(W S
i

si
) − f(

W S
j

sj
). As

WS
i > WS

j and si ≤ sj , we have
W S

j

sj
≤ W S

j

si
<

W S
i

si
. By convexity, f(W S

i
si

) + f(
W S

j

sj
) ≥ f(

W S
j

si
) + f(W S

i
si

+
W S

j

sj
−W S

j

si
), and by monotonicity, f(W S

i
si

+
W S

j

sj
−W S

j

si
) ≥ f(W S

i
sj

), as W S
i

si
+

W S
j

sj
−W S

j

si
≥ W S

i
sj

is equivalent to

(WS
i −WS

j )(sj−si) ≥ 0, which holds by assumption. This shows that by swapping, the objective function
value does not increase.

For all cases, we conclude that if machines are sorted by non-decreasing speed, it is sufficient to consider
optimal schedules where the works are non-decreasing (as a function of the indices). This is the main
property of the objective functions that we will use in the next section to show the existence of near optimal
highly structured solutions.

3 The existence of near-optimal highly structured solutions

We define a partition of the job set J into mega-classes. For k ∈ Z, let Ik = (2k, 2k+1], and let mega-
class k be {j ∈ J : pj ∈ Ik}. Recall that 2r = 1

ε , and we say that an integer k dominates the integer k′

if k > k′ + r. Mega-class k dominates mega-class k′ if k dominates k′. If j, j′ belong to mega-classes
k, k′, respectively, such that mega-class k dominates mega-class k′, then pj′ < εpj . This holds because
pj > 2k ≥ 2k′+r+1 = 1

ε · 2k′+1 ≥ 1
ε · pj′ , since k′ + r + 1 ≤ k and ε = 2−r. We refine this partition of J

into mega-classes and consider the partition of J into mini-classes as follows. Denote by K ⊆ Z the set of
indices of non-empty mega-classes (clearly |K| ≤ n). Let λ = dlog1+ε 2e. For k ∈ K and 0 ≤ ` ≤ λ− 1,
let Ik,` = (2k · (1 + ε)`, 2k · (1 + ε)`+1]. The mini-class (k, `) is the set of jobs of mega-class k whose size
is in Ik,`. Note that (1 + ε)dlog1+ε 2e ≥ (1 + ε)log1+ε 2 = 2, and thus the partition of J into the mini-classes
is a refined partition of the partition into the mega-classes.

Given a set of consecutive mega-classes k1, k1 + 1, . . . , k2 where k2 ≥ k1, with the job set Ĵ consisting
of all jobs of J with sizes in the interval (2k1 , 2k2+1], and letting % = 2k2 , we create an alternative set of
jobs that will possibly replace Ĵ , as follows. These alternative jobs have sizes in the interval (%, 2%] (except
perhaps for one alternative job that may be smaller). A simple way to create these alternative jobs is to
partition Ĵ into subsets each of which has total size at most 2%, such that no two subsets can be united
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keeping this condition. A set of subsets satisfying this condition has at most one subset whose total size is at
most %. We create these subsets by picking in each step a maximal prefix of the jobs in Ĵ (where Ĵ is sorted
according to the indices of the jobs, i.e., by non-decreasing size) with total size at most 2% and remove the
selected jobs from Ĵ . This algorithm is equivalent to applying the bin packing algorithm Next-Fit Increasing
(NFI) using “bins” of size 2%. Our algorithm sometimes decides to replace Ĵ with the alternative jobs, and in
this case we partition these alternative jobs into separate mini-classes which we call alternative mini-classes
(for Ĵ). The alternative mini-class (k, `) contains all the alternative jobs with size in Ik,` ∩ Ik, resulting in
at most λ + 1 alternative mini-classes (λ mini-classes for the interval Ik1 = (%, 2%] and another one for the
remaining smaller alternative job, if it exists). If the algorithm decides to replace Ĵ with alternative jobs,
then in the output of the algorithm each alternative job is replaced with the original jobs that were combined
to form it, and this is done just before returning the output (the work of each machine is not affected by
this change). Since there are at most n non-empty mega-classes, there are O(n2) different sets Ĵ that the
algorithm possibly replaces with alternative jobs. Thus, creating all the sets of alternative jobs takes O(n3)
time. Note that one job can be contained in multiple alternative jobs, but at most one of these alternative
jobs will be used. Given such a set of alternative jobs, we assign indices to the alternative jobs such that a
smaller alternative job is assigned a smaller index (breaking ties arbitrarily).

Definition 2 An integral schedule respects the alternative jobs of mega-classes k1, k1 + 1, . . . , k2, where
k2 ≥ k1, if every pair of jobs j, j′ with sizes in the interval (2k1 , 2k2+1] of a common alternative job, are
scheduled on a common machine.

The motivation for this definition is that these jobs can be easily replaced by the alternative job to which
they belong without affecting the works of the machines. In what follows we will use the notion of a
magnitude vector to direct the algorithm. Roughly speaking, our magnitude vector encodes an upper bound
on the maximum (approximated) size of a job scheduled so far, as well as the approximated work of some
machines (but not all machines).

Definition 3 A vector ā = (a0, a1, . . . , am) (of length m + 1) whose components belong to Z ∪ {−∞} is
called a magnitude vector if a0 = −∞, for i = 0, 1, . . . , m − 1, ai ≤ ai+1 and if ai 6= ai+1, then ai+1

dominates ai (i.e., ai+1 ≥ ai + r + 1).

We now define the signature vector b̄ of a magnitude vector ā. The number of components in b̄ is
the number of distinct values among the components of ā excluding a0, which is denoted by τ(ā). Each
component t = 1, 2, . . . , τ(ā) of b̄ is a pair bt = (ξt, νt) such that ξ1 = 1, and for 1 ≤ t ≤ τ(ā) and
ξt ≤ i ≤ ξt+1 − 1 (where ξτ(ā)+1 = m + 1) we have ai = νt. That is, for t ≥ 2, the value ξt is always the
index of the first machine which has a larger component of ā than the previous machine and the value of this
component is νt. That is, the signature vector b̄ of a magnitude vector ā is a compact representation of ā.
For each component νt of ā, there may be jobs whose sizes are sufficiently close to 2νt , specifically, these
are jobs of sizes in (2νt−r, 2νt+r+1]. There may also be jobs whose sizes are not contained in such ranges.
For every t = 1, 2, . . . , τ(ā)− 1, we let J t(ā) = {j ∈ J : 2νt+r+1 < pj ≤ 2νt+1−r}.

Observation 4 For every job j and every magnitude vector ā with its signature vector b̄, there are at most
two values of t ∈ {1, . . . , τ(ā)} for which pj ∈ (2νt−r, 2νt+r+1], and if there exists at least one such value
of t, then j /∈ ∪θJ

θ(ā).

Proof. By the definitions above, for every j, there are at most two values of t for which pj ∈ (2νt−r,

2νt+r+1] (since νθ+1 ≥ νθ + r + 1 for every θ). Moreover, if pj ∈ (2νt−r, 2νt+r+1], then for every θ < t,
we have j /∈ Jθ(ā) because pj > 2νt−r ≥ 2νθ+1−r, and thus j is too large to be in Jθ(ā). If θ ≥ t, then
pj ≤ 2νt+r+1 ≤ 2νθ+r+1, and thus j is too small to be in Jθ(ā).
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Example. Let m = 11 and r = 10. Additionally, let ā = (−∞, 0, 0, 0, 0, 12, 12, 50, 50, 50, 100, 100). In
this case, ā has four distinct finite values, and τ(ā) = 4. Moreover, b̄ = ((1, 0), (5, 12), (7, 50), (10, 100)).
The sets J t(ā) for t = 1, 2, 3 are defined as follows. We have J1(ā) = ∅, J2(ā) = {j ∈ J : pj ∈ (223, 240]},
J3(ā) = {j ∈ J : pj ∈ (261, 290]}. We also have (2ν1−r, 2ν1+r+1] = (2−10, 211], (2ν2−r, 2ν2+r+1] =
(22, 223], (2ν3−r, 2ν3+r+1] = (240, 261], and (2ν4−r, 2ν4+r+1] = (290, 2111]. Consider jobs j1, j2, and j3,
where pj1 = 102, pj2 = 105, and pj3 = 1022. As 26 < pj1 < 27, it belongs to (2ν1−r, 2ν1+r+1] and
(2ν2−r, 2ν2+r+1]. As 216 < pj2 < 217, it belongs to (2ν2−r, 2ν2+r+1]. As 273 < pj3 < 274, it belongs to
J3(ā). See Figure 1 for an illustration of these ranges.

0 10 20 30 40 50 60 70 80 90 100 110−10

2 3J (a) J (a)

Figure 1: Example (on logarithmic scale). The dots represent the distinct values in the magnitude vector.
The thick black bars indicate sizes that are less than a factor 2r smaller or at most 2r+1 larger than the values
indicated by the dots. Sizes between two black bars are in some set J t(ā) as shown.

Definition 5 A valid fractional schedule X is consistent with a magnitude vector ā if

1. for every job j and machine i, if X(j, i) > 0, then pj ≤ 2ai+r+1, that is, machine i does not contain
parts of jobs of a mega-class higher than ai + r, and

2. if ai 6= ai−1 (for i ∈ M ), then ai = αX
i (=

⌈
log2 WX

i

⌉
).

Observation 6 If a valid fractional schedule X is consistent with a magnitude vector ā and WX
1 ≤ WX

2 ≤
· · · ≤ WX

m , then for every i ∈ M , we have ai ≤ αX
i .

Favorable pairs. The goal of favorable pairs is to make a first step towards fractional schedules and
schedules where there are no very small jobs assigned to machines whose components in the corresponding
magnitude vector are large. The following condition ensures, in particular, that the total size of parts of
jobs whose mega-class is dominated by mega-class νt, assigned to a given machine of index at least ξt+3,
is relatively small compared to the work of that machine. The condition requires that the total size of these
parts of jobs assigned to all machines of indices at least ξt+3 is at most 2νt+1+r+1 ≤ 2νt+2 < 2νt+3−r =
ε · 2νt+3 = ε · W̃X

ξt+3
.

Definition 7 A pair (X, ā), where X is a valid fractional schedule, and ā is a magnitude vector such that
X is consistent with ā is called favorable if for t = 1, 2, . . . , τ(ā)− 3, we have

m∑

i=ξt+3

∑

j:pj≤2νt−r

pj ·X(j, i) ≤ 2νt+1+r+1 .

We define several processes in which a valid fractional schedule is modified into a different valid frac-
tional schedule. These processes are defined algorithmically though they are not a part of the final algorithm,
but only of the proof that a highly structured integral schedule must exist (the properties of such a schedule
will be discussed later). First consider algorithm Fractional Next Fit Increasing (FNFI) defined as follows.
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Algorithm FNFI (Fractional Next Fit Increasing)
Input: A subset of jobs J ′ ⊆ J and a set of bounds U1, . . . , Um ≥ 0 (for the m machines) such that∑

j∈J ′ pj =
∑m

i=1 Ui.
Output: a fractional allocation of J ′.

1. Let i = 1 be the first active machine, and for every j ∈ J ′ let qj = pj .

2. While J ′ 6= ∅ do:

(a) Pick the minimum index job j ∈ J ′.

(b) Allocate β = min{qj , Ui} processing time of j to machine i.

(c) Decrease both Ui and qj by β.

(d) If Ui = 0, then increase i by 1, and if qj = 0, then remove j from J ′.

Algorithm FNFI defines a standard way to schedule jobs that are scheduled fractionally. Observe that
since

∑
j∈J ′ pj =

∑m
i=1 Ui, the event J ′ = ∅ occurs at the first iteration where i = m+1. FNFI is sometimes

used in our proofs to reassign a subset of jobs in a valid fractional schedule such that the total size of jobs
of this subset assigned to each machine is unchanged (i.e., the bounds Ui are given by the assignment of
the jobs of the subset in the original valid fractional schedule). This is done only in situations where it is
ensured that the resulting fractional schedule is valid.

Definition 8 A valid fractional schedule X is compatible with FNFI if running FNFI on the input job set
JR(X) with the set of bounds U1, . . . , Um such that Ui =

∑
j∈JR(X) pjX(j, i) allocates exactly pj ·X(j, i)

time units of job j to machine i for every j ∈ JR(X) and all i ∈ M , that is, it keeps the valid fractional
schedule unchanged.

We will use the observation that a valid fractional schedule which is compatible with FNFI has at most
two fractional jobs assigned to each machine, and these jobs are relatively small with respect to the work of
that machine. Thus, it is easy to round such a fractional schedule into an integral one using the procedure
which we define now.

Round-FNFI. On several occasions, given a valid fractional schedule X , which is compatible with FNFI,
we will apply the following rounding procedure, called Round-FNFI, that creates a schedule. Assign each
job j ∈ JR(X) completely to the minimum index i such that X(j, i) > 0. Since in the assignment process
of FNFI each machine receives at most two jobs that are not completely assigned to it, the job of smallest
index and the job of largest index, the resulting fractional schedule induces an integral schedule S in which
each machine may have additional parts of at most one job (the one of the largest index assigned to this
machine by FNFI), and may have less parts of at most one job (the one of the smallest index assigned to this
machine by FNFI). Since by condition (F2), the size of each fractional job j ∈ JR(X) on machine i (that is,
every j ∈ JR(X) such that X(j, i) > 0) satisfies pj ≤ εW̃X

i ≤ 2εWX
i , we conclude that for every i ∈ M

we have (1 − 2ε)WX
i ≤ WS

i ≤ (1 + 2ε)WX
i . We say that the integral schedule S is created by applying

Round-FNFI on X .

Lemma 9 Given a schedule S : J → M such that WS
1 ≤ WS

2 ≤ · · · ≤ WS
m, there exists a favorable pair

(X, ā) where WX
i = WS

i for i = 1, 2, . . . , m, and X is compatible with FNFI.

Proof. First, as described in Section 2, S induces a valid fractional schedule, here denoted by XS , with the
same sequence of works. Consider the values αS

i for i = 1, 2, . . . ,m. Since WS
1 ≤ WS

2 ≤ · · · ≤ WS
m,
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we have αS
i ≤ αS

i+1 for all i = 1, 2, . . . , m − 1. We define a magnitude vector āS = (aS
0 , aS

1 , . . . , aS
m)

as follows. We let aS
0 = −∞. For i = 1, 2, . . . , m, if αS

i ≤ aS
i−1 + r, then aS

i = aS
i−1, and otherwise

aS
i = αS

i . The valid fractional schedule XS is consistent with āS since for every i ∈ M , either aS
i = αS

i

or αS
i ≤ aS

i−1 + r = aS
i + r. In both cases, the size of any job assigned (completely) to machine i cannot

exceed WXS
i ≤ W̃XS

i = 2αS
i ≤ 2aS

i +r.
We next consider the set of pairs consisting of a valid fractional schedule and a magnitude vector (X ′, ā)

such that X ′ is consistent with ā, and such that for i = 1, 2, . . . ,m, WX′
i = WS

i and ai ≤ αX′
i (the set

is nonempty by the existence of (XS , āS)). Among all the possible choices for X ′ and ā, we consider one
such that the vector ā has a signature vector with the smallest number of components, and (as a secondary
objective, i.e., among such solutions which minimize the number of components in the signature vector)
|JR(X ′)| is maximized. Such a pair of a magnitude vector and its signature vector is well-defined because
the number of values that can be achieved by this bicriteria objective is finite and thus the optimum is
attained. Based on X ′, we will define another fractional schedule X (by applying FNFI on JR(X ′)), and X

will be shown to be a valid fractional schedule satisfying the lemma.
We modify X ′ by reassigning the jobs of JR(X ′) using FNFI with the set of bounds U1, . . . , Um such

that Ui =
∑

j∈JR(X′) pjX
′(j, i). We denote the resulting fractional schedule which is compatible with FNFI

by X where we define JR(X) = JR(X ′). It is obvious that X satisfies (F1), and we argue that X satisfies
(F2) as well. To prove this, we will show that if j ∈ JR(X) and i ∈ M satisfy that X(j, i) > 0, then
pj ≤ εW̃X

i . Since the works of the machines are sorted in a non-decreasing order and X ′ is valid, it suffices
to show that for j ∈ JR(X) and i such that X(j, i) > 0, there exists j′ ≥ j, j′ ∈ JR(X ′) and i′ ≤ i such that
X ′(j′, i′) > 0, since in such a case pj ≤ pj′ ≤ εW̃X′

i′ ≤ εW̃X
i . Assume by contradiction that this claim does

not hold for j and i. Thus, in X ′, machines 1, 2, . . . , i may only have parts of jobs of JR(X ′) with indices no
larger than j − 1. In X , as j is assigned to i by FNFI (at least partially), jobs of JR(X) = JR(X ′) of indices
at most j − 1 are only assigned to machines 1, 2, . . . , i, and they do not occupy this space completely (due
to j occupying some space on machine i). We find

∑
j′∈JR(X′):j′<j pj′ =

∑
j′∈JR(X):j′<j pj′ <

∑i
γ=1 Uγ

and
∑

j′∈JR(X′):j′<j pj′ ≥
∑i

γ=1 Uγ . Therefore, X is indeed a valid fractional schedule.
We claim that X is consistent with ā. It suffices to prove that in every prefix of machines 1, 2, . . . , i, the

maximum size of a job j such that X(j, γ) > 0 for some 1 ≤ γ ≤ i does not increase when we replace
X ′ by X . Let j be a job of maximum size which is assigned in X (possibly fractionally) to a machine
γ ∈ {1, 2, . . . , i}. If j ∈ JZ(X) = JZ(X ′) then X ′(j, γ) = X(j, γ) = 1, and the claim holds. Otherwise,
j ∈ JR(X). There exists j′ ∈ JR(X ′) and i′ ≤ γ such that X ′(j′, i′) > 0 and j′ ≥ j as we showed above,
and the claim holds as well.

Last, we prove that (X, ā) is a favorable pair. Let t be such that 1 ≤ t ≤ τ(ā) − 3. Let j ∈ J be
such that there is i ∈ [ξt+3,m] with X(j, i) > 0 and pj ≤ 2νt−r. If there is no such job, then we are
done. We have j ∈ JR(X) = JR(X ′) because W̃X

i ≥ 2ai ≥ 2νt+3 > 2νt · 23r = 1
ε3 · 2νt ≥ 1

ε3 pj

where the first inequality holds by Observation 6, so if j /∈ JR(X) then X(j, i) = 1 and we can add
j to JR(X), contradicting our choice of X ′. Consider the machines At+1 = {ξt+1, . . . , ξt+2 − 1}. If
all jobs assigned (possibly fractionally) by X to these machines have sizes of at most 2νt+r+1, then we
can redefine ai′ for all i′ ∈ At+1 to be νt, contradicting the minimality of the number of components of
the signature vector of ā. Consider a job j′ such that there is i′ ∈ At+1 for which X(j′, i′) > 0 and
pj′ > 2νt+r+1. By the existence of j ∈ JR(X) with size at most 2νt−r, such that a part of it is allocated
to a machine of higher index, we conclude that j′ ∈ JZ(X) since X is compatible with FNFI. We also
have pj′ ≤ 2νt+1+r+1 ≤ 2νt+3−r−1 < ε · W̃X

ξt+3
. If

∑m
γ=ξt+3

∑
j′′:pj′′≤2νt−r pj′′ · X(j′′, γ) > 2νt+1+r+1,

then
∑m

γ=ξt+3

∑
j′′:pj′′≤2νt−r pj′′ · X(j′′, γ) > pj′ . In this case, we add j′ to JR(X), and modify X as

follows. We consider a replacement of the position of j′ with the position of a set of parts of jobs (where
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each such job has size at most 2νt−r = ε2νt ≤ ε22νt+1−1 ≤ ε2 W̃ X
γ

2 < ε2WX
γ for every γ ∈ At+1, and

belongs to JR(X ′)) of total size pj′ which were previously assigned to machines with index at least ξt+3.
The resulting schedule indeed satisfies (F2) since the jobs which take the place of j′ are smaller than ε2WX

γ

for every γ ∈ At+1 while pj′ < ε · W̃X
ξt+3

. Thus, the resulting valid fractional schedule is consistent with ā,
contradicting our choice of X ′ since |JR(X ′)| is not maximal among valid fractional schedules consistent
with ā (and having the required properties).

Good schedules and schedules that are almost consistent with magnitude vectors. In the next step,
we would like to transform the fractional schedule X satisfying the properties which we established in the
last lemma into an integral schedule satisfying similar properties (some of these are relaxed versions of the
properties that X satisfies). One of our goals is to create a relationship between the works of a schedule and
its magnitude vector, while the other goal is to schedule jobs only on machines whose components of the
magnitude vector are sufficiently related to the sizes of these jobs.

Definition 10 A schedule S is almost consistent with a magnitude vector ā if for every i = 1, 2, . . . , m,
the set of jobs assigned to machine i does not contain any job of a mega-class higher than ai + r, and if
ai 6= ai−1 (for i ∈ M ) then |ai − αS

i | ≤ 1.

Observe that if the valid fractional schedule XS induced by the schedule S is consistent with a magnitude
vector ā, then S is almost consistent with ā (but the other direction does not necessarily hold).

Definition 11 A schedule S : J → M is good if the following properties hold.
1. There exists a magnitude vector ā such that S is almost consistent with ā, and furthermore for every
t = 1, 2, . . . , τ(ā)− 4 there is no j and i ≥ ξt+4 such that pj ≤ 2νt−r and S(j) = i.
2. For every t = 1, 2, . . . , τ(ā)− 1, if J t(ā) = {j ∈ J : 2νt+r+1 < pj ≤ 2νt+1−r} 6= ∅, then S respects the
alternative jobs of mega-classes νt + r + 1, νt + r + 2 . . . , νt+1 − r − 1.

Lemma 12 Given a schedule S : J → M such that WS
1 ≤ WS

2 ≤ · · · ≤ WS
m, there exists a good schedule

S′ : J → M such that for i = 1, 2, . . . , m, we have

(1− 12ε) ·WS
i ≤ WS′

i ≤ (1 + 12ε) ·WS
i . (1)

Proof. By Lemma 9, there exists a favorable pair (X, ā) where WX
i = WS

i for i = 1, 2, . . . , m, and X is
compatible with FNFI. We will transform X into a good schedule, denoted by S′, in two steps. First, for every
t = 4, 5, . . . , τ(ā) (in an increasing order of t), we reschedule all parts of jobs j such that pj ≤ 2νt−3−r and
for which there exists i > ξt such that X(j, i) > 0 by moving them to machine ξt (from all such machines
i > ξt). We denote the resulting fractional schedule by X̃ . We next bound the value of W X̃

i in terms of
WX

i for every i ∈ M . The work of i may increase (if i = ξt for some t = 4, 5, . . . , τ(ā)). Since (X, ā) is a
favorable pair, the amount of this increase is at most ε · W̃X

i < 2εWX
i , since 2νt−2+r+1 < 2νt−r = εW̃X

i .
Next, we bound the total size of parts of jobs removed from machine i (for 2 ≤ i ≤ m). Let t′ be the
maximum index such that ξt′ < i (which must exist since ξ1 = 1). Then, for every t = 4, 5, . . . , t′, we may
have removed a total size of at most 2νt−2+r+1 ≤ ε

2 · 2νt from machine i (and move these parts of jobs to
machine ξt). Thus WX

i −W X̃
i ≤ ε

2 ·
∑t′

t=4 2νt ≤ ε · 2νt′ ≤ 2ε ·WX
i . We conclude that for every i, we have

(1− 2ε)WX
i ≤ W X̃

i ≤ (1 + 2ε)WX
i .

Let JR(X̃) = JR(X). We observe that X̃ is a valid fractional schedule which is compatible with FNFI

(similarly to the bounds on such jobs in Lemma 9, if a job is moved to machine i, then its size is at most
2νt−3−r ≤ ε42νt , while εW X̃

i ≥ εWX
i · (1 − 2ε) ≥ ε(1 − 2ε)2νt−1 > ε22νt , since ε ≤ 1/32). We now
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apply Round-FNFI on X̃ to create an integral schedule S̃. Every j ∈ JR(X̃) such that X̃(j, i) > 0 has size
pj ≤ εW̃X

i ≤ 2εWX
i , so for every i ∈ M we have

(1− 4ε)WX
i ≤ W S̃

i ≤ (1 + 4ε)WX
i . (2)

The maximum size of a job in a prefix of machines in S̃ is the same as in X̃ , and a job moved from its
position in X to a new position on machine ξt in X̃ has size at most 2νt−3 < ε2νt = ε2aξt .

Now, we will do the second step of our transformation. Consider the set of jobs J t(ā). Since X is
consistent with ā, for every j ∈ J t(ā) and i < ξt+1, we have X(j, i) = 0, and since the maximum size of
a job in a prefix of machines did not change, S̃(j) > i. Since W̃X

ξt+1
= 2νt+1 , we have for all j ∈ J t(ā)

and i ≥ ξt+1 that pj ≤ 2νt+1−r = ε · W̃X
ξt+1

≤ ε · W̃X
i . We remove the jobs in J t(ā) from their positions

in S̃, and we will schedule the alternative jobs instead, using FNFI (which gives a schedule of the original
jobs which respects the alternative jobs of mega-classes νt + r + 1, νt + r + 2, . . . , νt+1 − r − 1). For
every i ∈ M , we let Ui be the total size of jobs in J t(ā) which are assigned to machine i by S̃. The set
of machines i for which Ui 6= 0 is contained in the interval [ξt+1, ξt+4] where if t + 4 > τ(ā), then we let
ξt+4 = m. We apply FNFI to fractionally schedule the alternative jobs, followed by Round-FNFI. This is
done for every value of t for which J t(ā) 6= ∅ sequentially. We denote by S′ the resulting integral solution.
Let i ∈ M . There are at most four values of t for which i participated in the process of the rescheduling
of J t(ā). As a result of applying Round-FNFI for the alternative jobs for all t, every machine i can have at
most four additional parts of alternative jobs and less parts of at most four alternative jobs, all of which have
size of at most εW̃X

i ≤ 2εWX
i . Thus, W S̃

i − 8εWX
i ≤ WS′

i ≤ W S̃
i + 8εWX

i . Using (2), we get (1).
The integral schedule S′ is almost consistent with the magnitude vector ā. To see this claim, first

observe that no job is too large: if the maximum size of a job on machine i in S′ is not the same as in
S̃, this maximum size job j ∈ J t(ā) is moved from its position in S̃ to a new position on machine i, and
therefore pj ≤ 2νt+1−r = ε2νt+1 , and ai ≥ aξt+1 = νt+1. The claim holds because for every i, we have
|αX

i − αS′
i | ≤ 1 since 1 + 12ε < 2 and 1

1−12ε < 2.

Structured schedules and schedules that are quasi-consistent with magnitude vectors. We now turn
to discuss the kind of schedules that we are interested in. The following relaxation of consistency allows to
schedule a job j on a machine subject to the constraint that j is not too large with respect to the next value
of the signature vector.

Definition 13 A schedule S is quasi-consistent with a magnitude vector ā if for every i = 1, 2, . . . , m such
that ξt ≤ i < ξt+1, the set of jobs assigned to machine i does not contain any job of a mega-class higher
than νt+1 + r, and if ai 6= ai−1 (for i ∈ M ) then |ai − αS

i | ≤ 1.

Definition 14 A schedule S : J → M is structured if the following properties hold.

1. There exists a magnitude vector ā such that S is quasi-consistent with ā, and furthermore for every
t = 1, 2, . . . , τ(ā)− 5 there is no j and i ≥ ξt+5 such that pj ≤ 2νt−r and S(j) = i.

2. For every t = 1, 2, . . . , τ(ā) − 1, if J t(ā) 6= ∅, then S respects the alternative jobs of mega-classes
νt + r + 1, . . . , νt+1 − r − 1.

3. WS
1 ≤ WS

2 ≤ · · · ≤ WS
m.

4. For each pair of jobs j, j′ /∈ ∪tJ
t(ā) belonging to a common mini-class, if j < j′, then S(j) ≤ S(j′).
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5. For each pair of alternative jobs j, j′ resulting from the set J t(ā) belonging to a common alternative
mini-class such that the index of j is smaller than the index of j′, the following holds. If S schedules
the original jobs in j and j′ on machines i and i′, respectively, then i ≤ i′.

Theorem 15 Given a schedule S : J → M such that WS
1 ≤ WS

2 ≤ · · · ≤ WS
m, there exists a structured

schedule S∗ : J → M such that for i = 1, 2, . . . , m, we have

(1− 14ε) ·WS
i ≤ WS∗

i ≤ (1 + 14ε) ·WS
i . (3)

Proof. Let S′ be the good schedule that is based on S as established in Lemma 12. We apply a careful
sorting procedure of the works of the machines similarly to the one of [15]. In this procedure we are given
as an input a partition of the jobs into subsets J1, . . . ,Jm, and we create a new partition of the jobs. The
new partition is created within m− 1 steps, such that in step i only the set of jobs for machine i is selected
(and the set for machine m will consist of the remaining jobs which were not selected to be in the set of any
machine out of 1, 2, . . . , m − 1). We will define how to select the set for machine i without modifying the
sets of machines 1, 2, . . . , i − 1, and prove that the resulting work of machine i is no smaller than that of
machine i − 1 (if i ≥ 2). The selection is done as follows. For every mini-class (including the alternative
mini-classes), consider the sorted list of the jobs of this mini-class. The jobs of each mini-class are sorted
in a fixed order by non-decreasing size, which for actual mini-classes means sorting according to indices.
Given a mini-class, we would like to assign smaller jobs of this mini-class to machines of smaller indices.
For alternative mini-classes, the original jobs will not necessarily have to be assigned in this way (sorted by
indices), but they will always be considered in one specific (fixed) sorted order (implied by the fixed sorted
order by the total size of the alternative jobs). For each set of jobs Ji, . . . ,Jm (these sets may have been
modified since they were given as an input, when the sets of machines 1, . . . , i − 1 were determined), for
every mini-class, temporarily replace the sizes of its jobs by the sizes of the smallest jobs of this mini-class
(that is, if the set has ni jobs of a given mini-class, replace them with the ni first jobs of this mini-class in
the sorted list). This results in m − i + 1 values of possible work. Select the smallest of these values, and
assume that this value was achieved for the set Ji′ (breaking ties arbitrarily). This value (of the work) is
denoted by Qi. By swapping jobs with other sets of jobs out of {Ji, . . . ,Jm} \ {Ji′}, create a subset of
jobs of total size Qi (that is, Ji′ will receive the smallest jobs for each mini-class or alternative mini-class).
Swap the set Ji and Ji′ (if i 6= i′). The set Ji has now been finalized. Note that if i ≥ 2, then when Ji−1

was determined, the potential work of the set Ji (with its final subset of jobs) was at least its final work (as
the jobs of all mini-classes that were available when Ji was determined were also available when Ji−1 was
determined). Thus, as Ji−1 was preferred to Ji, Qi−1 ≤ Qi.

We apply the sorting procedure on the partition defined by S′. The output of this procedure is an integral
schedule denoted by S∗. Clearly, WS∗

1 ≤ WS∗
2 ≤ · · · ≤ WS∗

m . Moreover, properties 2, 4, and 5 in the
definition of structured schedules are satisfied. We next prove the bounds on the work of i given by (3) for
every machine i. Every machine i receives a subset of jobs which is based on a subset of jobs allocated to
some machine i′ in S′, after swapping pairs of jobs within a common mini-class. Therefore,

WS′
i′

1 + ε
≤ WS∗

i ≤ (1 + ε) ·WS′
i′ . (4)

Fix a machine index i. When we choose the set Ji for machine i, at least one of the original i subsets
J1, . . .Ji (up to swapping some locations of pairs of jobs within common mini-classes and alternative mini-
classes) remains available. Let i′′ denote such an index. The total size of the jobs in this subset is at most
WS′

i′′ · (1+ ε) ≤ WS
i′′ · (1+12ε)(1+ ε) ≤ WS

i · (1+12ε)(1+ ε) where the first inequality holds by Lemma
12, and the second inequality holds by the monotonicity of works in S. Therefore, machine i receives in S∗
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a total work of at most WS
i · (1 + 14ε). We next prove the other inequality, that is, (1− 14ε) ·WS

i ≤ WS∗
i .

The schedule S has at most i − 1 machines which receive work strictly below WS
i . Therefore, in S′ there

are at most i−1 machines which receive work strictly below WS
i · (1−12ε). In S∗ the number of machines

with work strictly smaller than W S
i ·(1−12ε)

1+ε cannot exceed i− 1, and due to the monotonicity of the works in
S∗, the claim holds.

Finally, we prove property 1 of structured schedules. We first show that the integral schedule S∗ is
quasi-consistent with the magnitude vector ā. For every i, we have |αS

i − αS∗
i | ≤ 1 since 1 + 14ε < 2

and 1
1−14ε < 2. Intuitively, we will show that a job set is not exchanged with another job set which is two

magnitudes (or more) away. To see this claim, consider a machine i such that ξt ≤ i < ξt+1 and denote by
j the maximum sized job on machine i according to S∗. We need to prove that pj ≤ 2νt+1+r+1. The set of
jobs Ji which the sorting procedure allocated to machine i was scheduled on a machine i′ in S′ (possibly
swapping pairs of jobs in common mini-classes). A job j′ of the same mini-class as j was allocated to

machine i′ in S′. Recall that
W S′

i′
1+ε ≤ WS∗

i ≤ (1 + ε) ·WS′
i′ . By Lemma 12, S′ is almost consistent with ā,

and therefore pj′ ≤ 2ai′+r+1. Since j and j′ belong to a common mini-class, they also belong to a common
mega-class, and thus we also have pj ≤ 2ai′+r+1. In order to prove that pj ≤ 2νt+1+r+1 it suffices to show
that i′ < ξt+2. Assume by contradiction that i′ ≥ ξt+2. We have WS

i′ ≥ WS
ξt+2

> 2νt+2−1 which holds

since the works in S are monotonically non-decreasing and 2WS
ξt+2

> W̃S
ξt+2

= 2αS
ξt+2 = 2νt+2 . On the

other hand, WS
i ≤ WS

ξt+1
≤ 2νt+1 . By inequality (4) and Lemma 12, we have WS∗

i ≥ W S′
i′

1+ε ≥
W S

i′ (1−12ε)

1+ε ≥
WS

i′ (1− 14ε). Therefore, we get

2νt+1 ≥ WS
i

≥ WS∗
i

1 + 14ε
by (3)

≥ WS
i′ (1− 14ε)
1 + 14ε

> 2νt+2−1 · 1− 14ε
1 + 14ε

> 2νt+2−3 ≥ 2νt+1+r−2 , since ε ≤ 1
32

contradicting r ≥ 5. Therefore, S∗ is quasi-consistent with the magnitude vector ā.
The last part of the proof is symmetric to the above proof that S∗ is quasi-consistent with ā. Fix a value

of t = 1, 2, . . . , τ(ā) − 5, it remains to prove that there is no j and i ≥ ξt+5 such that pj ≤ 2νt−r and S∗

schedules job j to machine i.
Consider a machine i such that ξt+5 ≤ i < ξt+6. The set of jobs Ji which the sorting procedure

allocated to machine i, was scheduled on a machine i′ in S′ (possibly swapping pairs of jobs in common
mini-classes). Let j be a job such that S∗(j) = i. In order to prove that pj > 2νt−r it suffices to show that
i′ ≥ ξt+4. Assume by contradiction that i′ < ξt+4. We have WS

i′ ≤ WS
ξt+4

≤ 2νt+4 which holds since the

works in S are monotonically non-decreasing and WS
ξt+4

≤ W̃S
ξt+4

= 2αS
ξt+4 = 2νt+4 . On the other hand,

WS
i ≥ WS

ξt+5
> 2νt+5−1. By (4) and Lemma 12, we have WS∗

i ≤ WS′
i′ · (1 + ε) ≤ WS

i′ (1 + 12ε)(1 + ε) ≤
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WS
i′ (1 + 14ε). Therefore, using (3) we get

2νt+5 ≤ 2WS
i

≤ 2WS∗
i

1− 14ε
by (3)

≤ 2WS
i′ (1 + 14ε)
1− 14ε

≤ 2νt+4+1 · 1 + 14ε

1− 14ε

< 2νt+4+3 ≤ 2νt+5−r+2 , since ε ≤ 1
32

contradicting r ≥ 5.

4 The scheme and its analysis: an overview

Our scheme is based on computing the optimal structured schedule S∗. Our algorithm will use a dynamic
programming procedure which is based on a shortest path (or an optimal bottleneck path) in a directed
layered graph G = (V, E) with weights on its vertices. Each layer of an index 1, 2, . . . ,m corresponds
to a machine, and each vertex in one of these layers encodes a set of jobs which were scheduled prior to
the current machine (if the current vertex is reached, then the jobs were assigned to machines of smaller
indices), and a set of jobs that were scheduled up to and including the current machine. The difference
between these sets easily reveals the work of the current machine, and allows us to restrict the paths in
the graph to schedules in which the works are monotonically non-decreasing. To prioritize the possible
outputs, we number all vertices of each layer with distinct integers, and we always search for paths whose
reverse sequence of numbers along the path is minimal (lexicographically) out of paths which have an
optimal cost with respect to our goal function. As we are interested in finding a structured schedule, the
dynamic programming formulation will basically test the possible magnitude vectors (but for each vertex
it will only remember a constant number of components of the signature vector). As the component of
the magnitude vector that corresponds to a specific machine determines which jobs can be assigned to
this machine, the smaller jobs must be assigned to machines of smaller indices. The fourth condition of
structured schedules implies a very specific assignment for similar jobs. Moreover, the magnitude vector
determines the alternative jobs. See Section 5 for further details.

The claim that the resulting solution is an approximation scheme (for each of the problems which we
consider) is a trivial consequence of Theorem 15. The monotonicity proof is based on analyzing a scenario
where a machine changes its speed. There are two basic changes that we analyze. In the first one, a
machine increases or decreases its speed but remains in the same position in the sorted list of machines.
In the second case, a pair of machines with equal speeds change their relative position in the sorted list of
machines (without changing their speed). The ‘concatenation’ of a finite number of basic changes resulted
in a scenario in which the machine changes its speed. The proof of monotonicity is based on the property
that the dynamic programming finds an optimal solution subject to some constraints, and it is also heavily
based on the fact that the works of the machines are monotonically non-decreasing and the details of the
tie-breaking rule. We refer to Section 6 for the complete proofs of these results which we summarize as
follows.

Theorem 16 There are monotone PTAS’s for the problems of minimizing
∑m

i=1 f(Li) where f is a well-
behaved function, maximizing mini∈M Li, and minimizing maxi∈M Li.
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We further note that we can use the payment scheme due to Archer and Tardos [5] to create a truthful
mechanism. To do so we compute the payment for each agent by calculating (exactly) the integral of the
work function. We refer to Section 7 for details.

5 A dynamic programming formulation for computing the best highly struc-
tured solution

In this section we show how to compute the optimal structured schedule S∗. Our algorithm will use a
dynamic programming procedure which is based on a shortest path (or an optimal bottleneck path) in a
directed layered graph G = (V, E) with weights on its vertices.

We define a layered graph, in which the algorithm computes a path corresponding to an optimal solution
with respect to a given goal function. Each layer of an index 1, 2, . . . , m corresponds to a machine, and each
vertex in one of these layers encodes a set of jobs which were scheduled to machines of indices smaller than
the index of the current machine, and a set of jobs which were scheduled up to and including the current
machine. The difference between the total sizes of jobs of these sets is the work of the current machine,
and the property that the values of the work are completely defined by the properties of the vertices allows
us to restrict the paths in the graph to schedules in which the works are monotonically non-decreasing.
Given the work Wi of the current machine i, the weight of the vertex is the load of this machine Li, or
f(Li) for a well-behaved function f . The edges between layers correspond to compatibility conditions
which in particular enforce the condition that the works of machines are monotonically non-decreasing. The
order of the layers is according to the speeds of the machines, that is, machines with higher speeds have a
higher index of their layers, and any subset of machines with equal speeds are ordered according to a fixed
ordering of the machines. The graph which we will use allows us to find any structured schedule and maybe
additional schedules. The schedule which will be found will be at least as good as the structured schedule
whose existence we proved in the previous section. To distinguish between several optimal solutions, and
to prioritize the possible outputs, we number all vertices of each layer with distinct integers, and we always
search for paths whose reverse sequence of numbers along the path (that is, the sequence of vertices given
from the end of the path towards the beginning of the path) is minimal (lexicographically) out of paths which
have an optimal cost with respect to our goal function. This property allows us to assume that there exists a
total order over the paths in the graph, and the algorithm always outputs the minimal path (according to this
order) which is optimal in the current scenario.

The graph G will encode in each layer all possible short histories of the magnitude vectors (which we
call short magnitude vectors and define shortly). There will be a starting vertex s, also seen as the layer of
vertices of index 0, and an end vertex T , also seen as the layer of vertices of index m + 1, and we always
look for a path in G from s to T . Thus, V consists of m regular layers denoted as 1, 2, . . . ,m (one for
each machine) and two additional layers 0 and m + 1. For every possible structured schedule, there will
be an s − T path corresponding to it (and possibly additional s − T paths corresponding to other feasible
schedules).

A short magnitude vector ψ = (ψ0, ψ1, ψ2, . . . , ψ6) for machine i is a vector consisting of seven con-
secutive distinct values in a magnitude vector ā (that is, there exists 1 ≤ t ≤ τ(ā) such that ψη = νt+η−5

for η = 0, 1, 2, . . . , 6). If this vector is associated with machine i, then ai = ψ5. If ai = νt′+5 for some
value of t′, then ψ = (νt′ , νt′+1, . . . , νt′+6). If the magnitude ψ5 is the largest magnitude in ā, we will let
ψ6 be the fictitious value +∞. Similarly, if ψ5 is one of the smallest five values in ā, we add −∞ as the
first components of ψ. We say that a short magnitude vector ψ is quasi-consistent with a schedule S if ψ

consists of six consecutive distinct values of a magnitude vector ā such that S is quasi-consistent with ā.
Other than the entries which are −∞ or ∞, a short magnitude vector must be such that it can be a part
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of a magnitude vector. Thus, ψη+1 ≥ ψη + r + 1 for η = 0, . . . , 5. In addition, we define a list of allowed
finite components. Each component is of the form dlog2 pje + k for some job j ∈ J where k is an integer
such that−1 ≤ k ≤ dlog2 ne+1, which is a relaxation of the possible total sizes of jobs, as we prove in the
next lemma.

Lemma 17 For every possible subset J ′ ⊆ J of jobs whose total size is W , we have

dlog2 W e ∈
⋃

j∈J

dlog2 ne⋃

k=0

{dlog2 pje+ k} .

Proof. Let j ∈ J ′ be a maximum indexed job in J ′. Then, W ≥ pj and W ≤ n · pj . Therefore,
dlog2 pje ≤ dlog2 W e ≤ dlog2(n · pj)e = dlog2 n + log2 pje ≤ dlog2 ne + dlog2 pje and the claim holds.

Corollary 18 The number of possibilities of short magnitude vectors that are quasi-consistent with some
structured schedule is O(n8).

Proof. The set of different values for each component in a short magnitude vector is

⋃

j∈J

dlog2 ne+1⋃

k=−1

{dlog2 pje+ k} ∪ {−∞,∞}

since we are only interested in magnitude vectors which are quasi-consistent with some structured schedule
(the options of k = −1 and k = dlog2 ne + 1 were added to allow this). Therefore, there are at most
(n · (log2 n + 4) + 2)7 = O(n8) different short magnitude vectors.

Next, we define the set A(ψ) of active mega-classes for a short magnitude vector ψ. A mega-class
k belongs to A(ψ) if there exists a value of η = 0, 1, . . . , 6 such that |k − ψη| ≤ r, and an alternative
mega-class ψη+1−r−1 (and perhaps a smaller alternative mega-class consisting of a single alternative job)
belongs to A(ψ) if it is an alternative mega-class consisting of alternative jobs of mega-classes ψη + r +
1, . . . , ψη+1 − r − 1 for values of η = 0, 1, . . . , 5 for which ψη+1 − ψη ≥ 2r + 2 (thus there are at most 12
alternative mega-classes which are active mega-classes for a given short magnitude vector).

The motivation for this definition of A(ψ) is that if machine i has a short magnitude vector ψ, then all
jobs of size at most 2ψ0−r are scheduled on machines with magnitude at most ψ4 in any structured schedule
that is quasi-consistent with ψ, i.e., strictly before machine i (since ai = ψ5). Moreover, all jobs of size more
than 2ψ6+r+1 are scheduled on machines with magnitude at least ψ6 in any structured schedule that is quasi-
consistent with ψ, i.e., after machine i. Thus the only relevant mega-classes (and alternative mega-classes)
for machine i are the ones described above.

These properties will be enforced by the structure of the graph. Moreover, given a set of consecutive
mega-classes it can be decided to convert the jobs of these mega-classes into alternative jobs, and this can
only happen if no jobs of these mega-classes were already scheduled. Once it is decided, this decision is
irrevocable and future sets of consecutive mega-classes which are converted into alternative jobs will be
disjoint.

A status vector of a short magnitude vector ψ consists of a component for each mini-class which belongs
to a mega-class in A(ψ). This component represents the number of jobs (or alternative jobs if this is an
alternative mini-class) which were already scheduled (recall that in a structured schedule we always schedule
these jobs sorted by their sizes (with a fixed tie-breaking policy using their indices), and therefore the number
of jobs which were scheduled uniquely identifies which jobs these are). Recall that λ = dlog1+ε 2e.
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Lemma 19 The number of status vectors for one specific short magnitude vector ψ is O(n(7(2r+1)+12)λ).
Therefore, overall there are O(n((14r+19)λ+8)) status vectors.

Proof. Recall that by Corollary 18, the number of possibilities of short magnitude vectors is O(n8). The
claim holds since every component in the status vector is an integer in [0, n], the number of mini-classes in a
mega-class is dlog1+ε 2e = λ, and there are at most 7(2r + 1) mega-classes and 12 alternative mega-classes
in A(ψ).

Definition 20 Consider a pair of ordered pairs (ψ, u) and (ψ′, u′) where u and u′ are status vectors of the
short magnitude vectors ψ and ψ′, respectively. We say that such a pair is compatible if one of the following
cases holds.

1. If ψ = ψ′ and every component in u is at most its corresponding component in u′.

2. If for all η = 1, 2, . . . , 6, ψη = ψ′η−1, and every component in u corresponding to a mini-class (k, `)
(such that mega-class k is in A(ψ′)) is at most its corresponding component in u′. Moreover, every
component in u′ which corresponds to a mini-class (k, `) such that k /∈ A(ψ) is zero. Informally, jobs
of such zero components in u′ are too large for ψ.

If (ψ, u) and (ψ′, u′) are compatible, then their difference defines a set of jobs which can be scheduled
on a machine. This set of jobs J((ψ, u), (ψ′, u′)) is defined as follows. The set J((ψ, u), (ψ′, u′)) will
contain all remaining jobs of mini-classes which have corresponding components in u but not in u′ (these
are the last jobs of each mini-class which are not scheduled yet, according to the information encoded in u).
Informally, such jobs are too small for ψ′ and must be assigned immediately. For every mini-class which has
components in both u and u′, the number of jobs of this mini-class in J((ψ, u), (ψ′, u′)) is the difference
between these components (these are the next jobs in each mini-class). We denote by W ((ψ, u), (ψ′, u′))
the total size of jobs in J((ψ, u), (ψ′, u′)).

The set of vertices of layer i (for i = 1, 2, . . . , m) is the set of compatible pairs (ψ, u) and (ψ′, u′).
Thus such a vertex corresponds to ((ψ, u), (ψ′, u′)). The meaning of such a pair is to assign the jobs of their
difference to machine i (and thus the work of i would be exactly W ((ψ, u), (ψ′, u′))), where ψ is the short
magnitude vector of machine i, and ψ′ is the short magnitude vector of machine i + 1.

The weight of such a vertex in layer i is defined as W ((ψ,u),(ψ′,u′))
si

if we are solving the minimum
makespan problem or the problem of maximizing the minimum load. If we are interested in the problem of
minimizing

∑m
i=1 f(Li) for a well-behaved function f , then the weight of the vertex is f(W ((ψ,u),(ψ′,u′))

si
).

The vertices s, T do not have weights.
A vertex in layer i (for 1 ≤ i ≤ m−1) corresponding to ((ψ, u), (ψ′, u′)) is adjacent to a vertex in layer

i+1 corresponding to ((ψ′, u′), (ψ′′, u′′)) if and only if W ((ψ, u), (ψ′, u′)) ≤ W ((ψ′, u′), (ψ′′, u′′)). There
are no other edges between these layers, and thus in particular, there can be no edge from ((ψ1, u

1), (ψ′1, u
′1))

to ((ψ2, u
2), (ψ′2, u

′2)) in consecutive layers if (ψ′1, u
′1) 6= (ψ2, u

2). The vertex s of layer 0 is adjacent to
all vertices in layer 1 corresponding to ((ψ, u), (ψ′, u′)) such that all components of the status vector u are
zero, and ψ0 = −∞. The vertices of layer m which are adjacent to T (of layer m + 1) are the ones corre-
sponding to ((ψ, u), (ψ′, u′)) such that ψ′6 = ∞, and for every mini-class whose mega-class is in A(ψ′) the
component in u′ is exactly the number of jobs in this mini-class (also for an alternative mini-class).

Remark 21 The topology of the graph G depends only on the set of jobs and their sizes, and on the number
of machines (and not on their speeds). Only the weights depend on the objective function and on the speeds
of the machines.
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We observe that an s−T path in the graph gives immediately a schedule, since each vertex ((ψ, u), (ψ′, u′))
in the graph defines a specific set of jobs allocated to the machine with index equal to the index of its layer,
whose total size is exactly W ((ψ, u), (ψ′, u′)). Moreover, every s−T path defines a partition of the job set,
and every such solution resulting from an s− T path satisfies that the works of the machines are monotoni-
cally non-decreasing in the index of the machine. We also observe that every structured solution corresponds
to (at least) one s− T path in the graph G.

Using this graph, we compute a label for each vertex. This label is equal to the cost (or value) of the
partial solution defined by the best path from s to this vertex. Moreover, we compute a pointer π to the
previous vertex on this best path from s. If there are several possibilities for best paths (ending at the same
vertex) π is defined to be the minimum index of any vertex satisfying these conditions according to the
numbering of vertices in each layer.

We next define the notion of a best path for each of the objectives considered in this paper. For the
problem of minimizing the makespan, a best path is one that minimizes the maximum weight of a vertex
along the path. For the problem of maximizing the minimum load, a best path is one that maximizes the
minimum weight of a vertex along the path. Finally, for the problem of minimizing

∑m
i=1 f(Li) where f is

a well-behaved function, a best path is a path of minimum total weight of its vertices.

6 Monotonicity proof

Our monotonicity proofs are based on the analysis of a scenario where machine γ changes its speed. We
will assume that every machine γ′ 6= γ has a fixed speed of sγ′ while machine γ has two possible speeds sγ

and s′γ . We sometimes consider additional speeds between sγ and s′γ . In the next two lemmas s1, . . . , sm

denotes a sorted list of machines speeds.

Lemma 22 Consider two executions of the algorithm, both with respect to minimizing
∑m

i=1 f(Li) where
f is a well-behaved function (with a common function f ), where the sorted order of machines is 1, 2, . . . , m,
each with its own set of speeds, resulting in the two schedules S1 and S2 found by the paths P1 and P2. The
two sets of speeds are defined as follows. For every i′ 6= i the speed of i′ is si′ in both sets, and the speed
of i is σ1 and σ2, respectively, such that si−1 ≤ σ1 < σ2 ≤ si+1 (where s0 = 0 and sm+1 = ∞). Then,
WS1

i ≤ WS2
i .

Proof. For a schedule S denote by COSTS , COST′S the costs of schedule S using the speeds σ1 and σ2

for machine i, respectively. Recall that the graph G remains the same in the two executions. Since the
path P1 could have been found by the algorithm when it computes P2 and vice versa, COST′S1

≥ COST′S2
,

and COSTS2 ≥ COSTS1 , which gives COST′S1
− COSTS1 ≥ COST′S2

− COSTS2 . Assume by contradiction
WS2

i < WS1
i .

Since σ2 > σ1 and WS2
i < WS1

i , we find WS1
i ( 1

σ1
− 1

σ2
) > WS2

i ( 1
σ1
− 1

σ2
). Rearranging the last

inequality gives W
S1
i

σ1
+ W

S2
i

σ2
− W

S1
i

σ2
>

W
S2
i

σ1
. Since i does not change its position in the sorted order of

machines, we have COST′S1
−COSTS1 = f(W

S1
i

σ2
)−f(W

S1
i

σ1
) and COST′S2

−COSTS2 = f(W
S2
i

σ2
)−f(W

S2
i

σ1
), and

so we find using COST′S1
− COSTS1 ≥ COST′S2

− COSTS2 , that f(W
S1
i

σ2
) − f(W

S1
i

σ1
) ≥ f(W

S2
i

σ2
) − f(W

S2
i

σ1
).

Using σ1 < σ2 and WS2
i < WS1

i , we have W
S2
i

σ2
<

W
S1
i

σ2
<

W
S1
i

σ1
. By convexity, we find f(W

S1
i

σ1
) +

f(W
S2
i

σ2
) ≥ f(W

S1
i

σ2
) + f(W

S1
i

σ1
+ W

S2
i

σ2
− W

S1
i

σ2
). Using strict monotonicity of f , f(W

S1
i

σ1
+ W

S2
i

σ2
− W

S1
i

σ2
) >

f(W
S2
i

σ1
), which is a contradiction.
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The next lemma is used in the case that the index of a machine (in the sorted list of machines) changes.
We will split the process of changing the speed into steps, and one type of step will be swapping the positions
with another machine of the same speed. Therefore, we note the following.

Lemma 23 Consider two executions of the algorithm, both with respect to the same objective function, each
with the same set of speeds s1, s2, . . . , sm where si = si+1, where the sorted order of machines is given by
increasing indices in the first execution and the order obtained by swapping the positions of machines i, i+1
in the second execution, resulting in the two schedules S1 and S2. Denote by ω1 the work of machine i in
the schedule S1 (that is, ω1 = WS1

i ), and by ω2 the work of the same machine in S2 (that is, ω2 = WS2
i+1).

Then, ω1 ≤ ω2.

Proof. Since the two inputs are exactly the same, so is the set of optimal paths in the graph. Since our
algorithm always outputs the lexicographic minimal optimal path, we conclude that S1 = S2. The claim
holds because the solutions obtained as paths in the graph have monotonically non-decreasing works of
machines.

Theorem 24 The approximation scheme for minimizing
∑m

i=1 f(Li) where f is a well-behaved function is
a monotone PTAS. The approximation scheme for minimizing the `p-norm of the vector of machine loads
(obtained by running the algorithm with f(x) = xp) is a monotone PTAS even if p is a part of the input
(and thus the problem has a class of objective functions parameterized by the value of p where the input also
encodes the value of p for which we would like to minimize the `p-norm).

Proof. Let S be an optimal solution, then by Theorem 15, there is a structured schedule S∗ such that for
every i, we have WS∗

i ≤ (1 + 14ε) ·WS
i , and thus LS∗

i ≤ LS
i · (1 + 14ε), and therefore the cost of S∗ as

a solution to our problem is at most
∑m

i=1 f(LS∗
i ) ≤ ∑m

i=1 f(LS
i · (1 + 14ε)) ≤ (1 + O(1)ε)

∑m
i=1 f(LS

i )
where the first inequality holds by monotonicity of f , and the second inequality by the property of f that
if x ≤ (1 + ε)y, then f(x) ≤ (1 + O(1)ε)f(y). The schedule given by the algorithm as output has a
cost which is no larger than the cost of S∗. Note that the approximation ratio of S∗ for the problem of
minimizing the `p-norm of the vector of machine loads is at most 1 + 14ε since

(∑m
i=1

(
LS∗

i

)p)1/p ≤
(1 + 14ε) · (∑m

i=1

(
LS

i

)p)1/p.
To prove the monotonicity, consider a machine i which increases its speed from si to s′i. We split the

process of increasing the speed of a given machine into two types of events. The first type are time intervals
in which the position of this machine in the sorted order of the machines does not change. The second
type are points in time when the speed is fixed, but the machine swaps its location with the next machine
in the list of machines sorted by speed. There can be multiple such time intervals and points in time, and
it is sufficient to consider one event of each type, thus we consider two cases. The case where machine i

increases its speed, s′i ≤ si+1, and machine i does not change its position in the sorted list of machines, and
the case si = si+1, where the only change is that these two machines swap their relative order. For the first
case, the claim follows by Lemma 22. For the second case, the claim follows by Lemma 23.

In what follows we refer to an s− T path in the graph and its corresponding schedule interchangeably.

Theorem 25 The approximation scheme for maximizing mini∈M Li is a monotone PTAS.

Proof. Let S be an optimal solution, then by Theorem 15, there is a structured schedule S∗ such that for
every i we have WS∗

i ≥ (1 − 14ε) ·WS
i , and thus LS∗

i ≥ LS
i · (1 − 14ε), and therefore the value of S∗ is

at least 1− 14ε times the value of S. The schedule given by the algorithm as output has a value which is no
smaller than the value of S∗.
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To prove the monotonicity, consider a machine i which increases its speed from si to s′i. Consider the
solution S1 obtained by the algorithm for the case where the speed of i is si. Let C1 be the value of S1

(computed for the set of speeds where the speed of i is si). We split the process of increasing the speed
of machine i into two periods where the first period is split further into two types of events. In the first
period, the speed of i is at most σ, where σ is the maximum speed for which the value of the solution S1 is
exactly C1 (possibly swapping the contents of machines if machine i changes its position in the sorted list of
machines according to the sorting done by the algorithm). Note that σ is well-defined, that is, the maximum
exists. If σ = si, we say that this period is empty. If σ > s′i, we set σ = s′i. Therefore, during the first
period the speed of i is in [si, σ]. If σ = s′i, then the second period is empty, and otherwise the speed of i is
in (σ, s′i] in this period. For the first period, the first type of events are time intervals in which the position
of this machine in the sorted list of the machines does not change. The second type are points in time when
the speed is fixed, but the machine swaps its location with the next machine in the list of machines sorted by
speed.

We prove that for every speed in [si, σ], the solution S1 is returned by the algorithm. First, we show that
the value of an optimal path remains C1. Since the set of s − T paths in the graph remains the same, the
value of an optimal path cannot increase when i increases its speed, so by definition S1 remains an optimal
path. Moreover, when i increases its speed in the first period, the set of optimal paths is a subset of the
set of optimal paths when the speed of i is si (even if locations of machines are swapped). Therefore, the
algorithm outputs S1 for every speed in the first period. Thus, for time intervals in which the position of i

in the sorted list of machines is fixed, the work of i is exactly the same, and in events in which machine i

swaps its position with another machine, the work of i cannot decrease by Lemma 23. In the case σ = s′i
we are done. Otherwise, we assume that there are no further machines of speed σ which appear later than i

in the ordering of the machines (possibly by adding events of the second type for the first period).
Next, consider the case where σ < s′i. Denote by W the work of i in the solution S1 where the speed

of i is σ. Recall that for this speed of i, the value of the optimal path (i.e., of S1) is exactly C1. We prove
that W

σ = C1. Assume by contradiction that the claim does not hold (that is, we assume that W
σ > C1,

as otherwise the value of S1 in this case is strictly smaller than C1 contradicting the definition of σ). Let
σ1 > σ be such that σ1 ≤ W

C1
and σ1 is smaller than the speed of the next machine after i in the sorted list

of machines, if such a machine exists. Then, the value of S1 for the speed σ1 of i remains C1 contradicting
the maximality of σ. Let C2 be the value of an optimal path S2 found by the algorithm where the speed of
i is s′i. Then, C2 ≥ C1 · σ

s′i
since otherwise S1 is a strictly better solution for speed s′i of i, because even if

machines swap locations the machine in every position is faster by no more than s′i
σ . Denote by W ′ the work

of i in S2. We have W ′ ≥ C2 · s′i ≥ C1 · σ = W , and the claim follows.
The proof of the next theorem is similar to the proof of Theorem 25, and it is given for completeness.

Theorem 26 The approximation scheme for minimizing maxi∈M Li is a monotone PTAS.

Proof. Let S be an optimal solution, then by Theorem 15, there is a structured schedule S∗ such that for
every i we have WS∗

i ≤ (1 + 14ε) ·WS
i , and thus LS∗

i ≤ LS
i · (1 + 14ε), and therefore the makespan of S∗

is at most 1 + 14ε times the makespan of S. The schedule given by the algorithm as output has a makespan
which is no larger than the makespan of S∗.

To prove the monotonicity, consider a machine i which decreases its speed from si to s′i. Consider the
solution S1 obtained by the algorithm for the case where the speed of i is si. Let C1 be the makespan of S1

(computed for the set of speeds where the speed of i is si). We split the process of decreasing the speed of i

into two periods where the first period is split further into two types of events. In the first period, the speed
of i is at least σ, where σ is the minimum speed for which the makespan of the solution S1 is exactly C1
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(possibly swapping the contents of machines if machine i changes its position in the sorted list of machines
according to the sorting done by the algorithm). Note that σ is well-defined, that is, the minimum exists.
If σ = si, we say that this period is empty. If σ ≤ s′i, we set σ = s′i. Therefore, during the first period
the speed of i is in [σ, si]. If σ = s′i, the second period is empty, otherwise the speed of i is in [s′i, σ). For
the first period, the first type of events are time intervals in which the position of this machine in the sorted
list of the machines does not change. The second type are points in time when the speed is fixed, but the
machine swaps its location with the previous machine in the list of machines sorted by speed.

We prove that for every speed in [σ, si], the solution S1 is returned by the algorithm. First, we show
that the makespan of an optimal path remains C1. The makespan of an optimal path cannot decrease when
i decreases its speed as the set of s − T paths remains the same, and by definition, S1 remains an optimal
path. Moreover, when i decreases its speed in the first period, the set of optimal paths is a subset of the
set of optimal paths when the speed of i is si (even if locations of machines are swapped). Therefore, the
algorithm outputs S1 for every speed in the first period. Thus, for time intervals in which the position of i in
the sorted list of machines is fixed, the work of i is exactly the same, and in events in which machine i swaps
its position with the previous machine, the work of i cannot increase by Lemma 23. In the case σ = s′i we
are done. Otherwise, we assume that there are no further machines of speed σ which appear earlier than i in
the ordering of the machines (possibly by adding events of the second type for the first period).

Next, consider the case where σ > s′i. Denote by W the work of i in the solution S1 where the speed
of i is σ. Recall that for this speed of i, the makespan of the optimal path (i.e., of S1) is exactly C1. We
prove that W

σ = C1. Assume by contradiction that the claim does not hold (that is, we assume that W
σ < C1,

as otherwise the makespan of S1 in this case is strictly larger than C1 contradicting the definition of σ).
Let σ1 < σ be such that σ1 ≥ W

C1
and σ1 is larger than the speed of the previous machine before i in the

sorted list of machines, if such a machine exists. Then, the makespan of S1 for the speed σ1 of i remains
C1 contradicting the minimality of σ. Let C2 be the makespan of an optimal path S2 found by the algorithm
where the speed of i is s′i. Then, C2 ≤ C1 · σ

s′i
since otherwise S1 is a strictly better solution for speed s′i

of i, because even if machines swap locations the machine in every position is slower by no more than σ
s′i

.
Denote by W ′ the work of i in S2. We have W ′ ≤ C2 · s′i ≤ C1 · σ = W , and the claim follows.

7 Computing the payments

Archer and Tardos [5] defined a payment scheme which can be applied for any monotone scheduling algo-
rithm to create a truthful mechanism. Denote the payment to agent i by Pi. We briefly repeat the definition
of Pi. Let b−i denote the vector of bids, not including agent i. We write b (the complete bid vector) also as
(b−i, bi). Then the payment function for agent i is defined as

Pi(b−i, bi) = hi(b−i) + biwi(b−i, bi)−
∫ bi

0
wi(b−i, u)du, (5)

where wi(b−i, bi) is the work (total size of jobs) allocated to machine i given the bid vector b and the hi are
arbitrary functions (Theorem 4.2 in [5] states that the payments must have this form, and can be obtained if
and only if the algorithm is monotone).

In order to compute the payments, we need to calculate the integral in (5). Recall that the bid of an agent
represents its claimed cost for processing one unit of work, which can be seen as the inverse of the speed
of its machine. For a given set of bids (b1, . . . , bm), calculating the integral for agent i requires us to know
what its work would be for every possible bid β of this agent, i.e., for the bids (b−i, β) for β ∈ (0,∞).
First, we partition the possible bids into intervals in which the position of machine i in the ordered list of
machines (that is, its layer in the graph) remains constant. Consider the set {0,∞} ∪ {bj}m

j=1\{bi} and
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denote its elements by 0 = c1 < · · · < cm′ = ∞ (m′ ≤ m + 1), then the intervals to consider are (cj , cj+1)
for j = 1, . . . , m′ − 1.

For each vertex v in layer i, we compute a function Fv(β) which is the objective function value of the
best path which traverses this vertex, as a function of the bid of machine i. Recall that the algorithm outputs
the minimum or maximum (over all vertices of the layer) of these functions depending on the objective
function.

Claim 27 For each vertex v and every bid interval (cj , cj+1), Fv(β) is a piecewise linear continuous func-
tion with a polynomial number of pieces.

Proof. In layer i, the weight of vertex v which represents the compatible pair ((ψ, u), (ψ′, u′)) is the constant
W ((ψ, u), (ψ′, u′)) divided by si, where si = 1/bi. Note that the pair represented by v also specifies the set
of jobs assigned to machines before machine i, and the set assigned after i. Due to the tie breaking done in
the dynamic program, and the fact that only the speed of machine i changes, this means that the identity of
the best path which passes through v does not depend on β (only its objective value does).

For the makespan and the maximizing the minimum load problems, the objective value of a path is the
maximum (minimum, respectively) weight of a vertex along the path. Hence, as bi increases from cj to
cj+1, the only change that can happen is that the weight of vertex v starts having the maximum weight
along the fixed best path (for the makespan objective) or stops having the minimum weight (for the covering
objective). Therefore, Fv(β) has at most two pieces, where for one piece machine i is a bottleneck machine
(that is, a machine whose load equals the objective function value of the solution) and for the other it is not.
If i is the bottleneck, Fv(β) = β ·W ((ψ, u), (ψ′, u′)), else Fv(β) is constant.

For the minimization of
∑m

i=1 f(Li) for a well-behaved function f , the objective value of a path is the
total weight of its vertices. Here, Fv(β) is a constant plus f(β ·W ((ψ, u), (ψ′, u′)) (where the constant is the
total weight of the other vertices along the best path which traverses v). Hence by using the approximated
piecewise-linear convex monotonically increasing function of f instead of f itself the claim follows since it
is sufficient to consider such an approximated function with pieces ending at integer powers of 1 + ε (and
thus with polynomially many such pieces).

Claim 27 implies that the number of intersection points between any pair of functions (Fv(β), Fu(β)) is
also polynomial. Thus we can compute all of these points in polynomial time, and determine which points
lie inside the interval (cj , cj+1). Moreover, we can also determine which schedule our mechanism uses for
each intersection point by running the PTAS for each point, including cj (if cj > 0) and cj+1 (if cj+1 < ∞).
After removing duplicates, this gives us a list of intersection points with associated schedules and works.

Remark 28 The replacement of f with the convex monotonically increasing piecewise-linear approxima-
tion of f is crucial. Without it, computing the value of bi in which one solution becomes better than another
solution involves computation of an exact solution of equations involving convex functions (this cannot be
done even for the case where f(x) = x2 as for rational values of f(x) the value of x can still be irrational).
However, for piecewise-linear functions this can be done efficiently.

It is now straightforward to determine the schedule used for any possible bid β, and from that the work
for any bid, as follows. Note that the schedule chosen does not change between any pair of consecutive
intersection points by construction. Thus the work remains constant between any such pair. If the schedule
used is the same at both endpoints, the work in between is given by this schedule. If two different schedules
are used, then in the entire open interval between the pair, the used schedule is the one that gives the
best value for the objective function. This can be determined by running the PTAS for one point inside
this interval. Thus we can find the exact value of the integral in (5) (without rounding the speeds of the
machines).
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[15] G. Christodoulou and A. Kovács. A deterministic truthful PTAS for scheduling related machines.
SIAM Journal on Computing, 42(4):1572–1595, 2013.
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