Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G37868.1

1 U-Pb geochronology of calcite-mineralized faults: Absolute

2 timing of rift-related fault events on the NE Atlantic margin

- 3 Nick M.W. Roberts¹ and Richard J. Walker²
- 4 ¹NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, NG12
- *5GG*, *UK*
- 6 ²Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH,
- *UK*

ABSTRACT

Constraining the timing of brittle fault events is critical in understanding crustal deformation and fluid flow, but a number of regional-scale fault systems lack readily available techniques to provide absolute chronological information. Calcite mineralization occurs in crustal faults in many geological settings, and can be suitable for U-Pb geochronology. This application has remained under-utilized because traditional bulk dissolution techniques require uncommonly high U concentration. As U and Pb are distributed heterogeneously throughout calcite crystals, high spatial-resolution sampling techniques can target domains with high U and variable U/Pb ratios. Here we present a novel application of in situ laser ablation inductively coupled mass spectrometry (LA-ICPMS) to basaltic fault rock geochronology in the Faroe Islands, NE Atlantic margin. Faults that are kinematically linked to deformation associated with continental break-up were targeted. Acquired ages for fault events range from Mid-Eocene to Mid-Miocene, and are therefore consistently younger than the regional Early Eocene onset of ocean spreading. These new absolute ages highlight a previously unrecognized protracted brittle

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G37868.1

deformation within the newly developed continental margin. LA-ICPMS U-Pb calcite geochronology represents an important and novel method to constrain the absolute timing of fault and fluid-flow events.

Introduction

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Constraining the timing of brittle faulting is critical in understanding crustal deformation and fluid flow in the upper crust, but for many settings there is a lack of readily available techniques to provide absolute chronological information. Calcite is a common fault-hosted mineral that has the potential to be dated by U-Pb geochronology. Calcite growth associated with slip (such as slickenfibres) or inter-slip periods can therefore be used to constrain the timing of slip events along the host fault. U-Pb geochronology of calcite has been applied to various geological systems including the depositional, diagenetic, and formation ages of sediments, fossils, and ore deposits (Rasbury and Cole, 2009). Bulk dissolution techniques have been used traditionally, targeting material with high U (>1 ppm) contents. Precise age determinations also require low initial Pb contents, and hydrothermal settings typically have unfavorable initial U/Pb ratios (Rasbury and Cole, 2009). Recently, U-series dating has been applied successfully to the dating of precipitates and striations on fault structures (Uysal et al., 2011; Nuriel et al., 2012), but this can be applied to only relatively young faults (i.e., < 0.6 My). Before now, calcite U-Pb geochronology has not been applied successfully to the absolute dating of faulting. Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICPMS) U-Pb geochronology has recently been applied to dating diagenetic calcite in fossils (Li et al., 2014), and to hydrothermal veins in oceanic crust (Coogan et al., 2016). These studies highlight the utility of the LA-ICPMS method, whereby a large spread in U-Pb ratios can

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G37868.1

46	be determined from a single sample, thereby potentially increasing the precision of a
47	determined age compared to that of the averaging effect of dissolution-based methods. To
48	our knowledge, the technique has not been presented for the successful characterization
49	and dating of calcite-bearing fault rocks.
50	Here we use LA-ICPMS on calcite hosted within continental basaltic fault zones
51	from the Faroe Islands, NE Atlantic margin, to present the first absolute ages for fault
52	sets associated with rifting synchronous with continental break-up. Volcanic passive
53	margins provide a crucial record of rift processes and continental break-up. The Faroe
54	Islands lava sequence represents an onshore expression of the North Atlantic Igneous
55	Province (NAIP). Fault and dike sets in the Faroe Islands show cross-cutting
56	relationships, which have been fit to a relative chronology of deformation events
57	associated with rifting, leading to continental break-up and formation of the NE Atlantic
58	(see Walker et al., 2011a). Current age constraints for faults along the margin use offset
59	marker horizons in the host stratigraphy, but there are a number of significant limitations
60	with that approach. Faults in the Faroe Islands cut all of the Paleocene sequence (Moy
61	and Imber 2009; Walker et al. 2011a) and thus these markers constrain only maximum
62	ages of faulting. Additionally, NAIP ages for onshore samples, acquired through K-Ar
63	and Ar-Ar techniques, range from ~60.5–54.5 Ma (Jolley and Bell, 2002), predating
64	magnetochron ages for break-up (i.e., 55–53 Ma). The ages for volcanism therefore do
65	not provide any lower age bracket for phases of continental break-up, but more
66	importantly, volcanism is not unique to deformation stages during break-up. Direct dating
67	of faults is therefore important in constraining the history of continental break-up. Faults

Journal: GEOL: Geology DOI:10.1130/G37868.1

in the Faroe Islands host abundant zeolite and calcite mineralization, lending the area to

69 U-Pb calcite geochronology.

Relative Chronology

Faults in the Faroe Islands, suitable for dating using U-Pb in calcite, were identified during detailed onshore mapping (Fig. 1; see Supplementary Files; Walker et al., 2011a). The following fault sets are recognized based on their orientation and kinematics (Walker et al., 2011a): (1) N-S and NW-SE striking normal faults that accommodated E-W to NE-SW extension; (2) ENE-WSW to ESE-WNW conjugate strike-slip and normal faults that accommodated N-S extension; and (3) NE-SW and NNE-SSW-striking oblique-slip faults that accommodated NW-SE extension. Some Set 1 faults can be relative-age-constrained to syn-emplacement of the Faroes lavas (57–54 Ma), by stratigraphic thickness variations across faults. Sets 2 and 3 cut the entire onshore sequence, with no clear evidence of thickness variations, hence are inferred to post-date the entire lava sequence (54 Ma and younger). Where local cross-cutting relationships are observed, Set 1 is cut by Set 2, which is in turn cut by Set 3, leading to the interpretation that faults in the Faroe Islands represent a progressive rotation in the extension direction prior to, during, and following break-up (Walker et al., 2011a).

Absolute Dating Method

Fault rocks were characterized to constrain deformation textures, and in particular to identify *crack seal type* veins (Fig. 2A,B). Crack seal texture represents vein-widening as a function of repeat fracture events (Petit et al., 1999); individual veins are inferred to seal rapidly, limiting the potential for long-lived open cavities. The calcite within crack-seal veins is inferred to represent instantaneous mineralization, recording the age of the

Journal: GEOL: Geology DOI:10.1130/G37868.1

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

fracture within the resolution of the dating technique. For comparison, vein material was selected from faults that do not display crack seal texture, such as implosion breccia mineralization associated with the sudden creation of an open cavity (Sibson, 1986), and dilational jog zones. Walker et al. (2012) and Walker et al. (2013) showed that the faults used in the present study accumulated displacements through repeat fault episodes, involving fracture growth, linkage, and slip, with several stages of mineralization. It is therefore important to note that a successful age for a crack seal vein represents the age of the sampled vein, but does not represent the full age range of faulting associated with a given fault zone. Here we aim to use the range of ages for a given fault population, to constrain the duration of the associated stress state (Fig. 1B), and the potential persistence of open cavities along faults. Calcite samples were collected from each of the three fault sets. Calcite chips were extracted from the fault rock samples and mounted in epoxy. After optical examination, elemental mapping using LA-ICPMS (Fig. 2) was conducted to identify primary growth and secondary alteration zones. Suitable domains containing high U and low Pb were targeted with spot analyses using LA-ICPMS to provide the best achievable precision and accuracy. See supplementary file for a full description of the method. Results are displayed as Tera-Wasserburg plots shown in Figure 3. **Absolute Dating Results** Elemental mapping shows that U and Pb contents of the samples are highly variable. Average U and Pb contents across the nine successful samples range from 12-161 ppb and 0.2–13 ppb, respectively; some chips are homogeneously low, whereas others feature zoning in uranium (Fig. 2; see also supplementary file). Uranium content is

Journal: GEOL: Geology DOI:10.1130/G37868.1

114 distributed similarly to most trace metals (see Fig. 2C-F), indicating the preserved 115 elemental pattern represents a primary (crystal growth) distribution. 116 Seventeen samples were analyzed for U-Pb, and age determinations were 117 obtained from nine samples (Fig. 3), taken from eight different faults. Set 2 samples 118 (n=7) provide a range of ages between 44.8 ± 2.0 Ma to 11.2 ± 1.1 Ma (Fig. 3). Set 3 119 samples (n=2) provide ages of 41.7 ± 1.9 Ma and 16.3 ± 1.2 Ma (Fig. 3). Analyses were 120 unsuccessful on the Set 1 N-S to NW-SE normal faults, due to very low U contents. 121 Unsuccessful analyses fall into two categories: (1) those that are dominated by high 122 common lead; and (2) samples with analytical uncertainties that preclude a regression. 123 Obtained ages that are deemed to be successful have variable precision owing to the 124 combination of low U abundance and variable proportions of radiogenic to common Pb 125 (Fig. 3). Of the successful results, seven show mean squared weighted deviates (MSWD) 126 values outside of the expected range for a single population, with scatter in these cases 127 consistent with variable common Pb isotope composition. The quoted uncertainties take 128 account of this scatter, but absolute uncertainties should be viewed with caution. In all 129 cases, the obtained ages, including uncertainties, are younger than the host basaltic lavas 130 (57–54 Ma; Jolley & Bell, 2002). 131 Discussion 132 Set 2 samples taken from crack seal veins on the slipped portions of faults cluster 133 within an age bracket of 44.8 ± 2.0 Ma to 40.1 ± 4.8 Ma, and samples from along a single 134 fault (MOL-1-1 and MOL-1-2; Fig. 3) have overlapping ages within uncertainty. Calcite 135 in these cases must precipitate between slip events (Petit et al., 1999), hence we interpret

these dates as recording the age of slip within uncertainty. The Set 2 sample from an

136

Journal: GEOL: Geology DOI:10.1130/G37868.1

137	implosion breccia (TJN-1-3: 40.9 ± 8.1 Ma) looks to fall within this age range, but for
138	poor uncertainty, as anticipated for a near-instantaneous mineralization (see e.g., Sibson,
139	1986). Samples taken from dilational oversteps on Set 2 faults (TJN-6-1: 37.7 ± 1.9 Ma),
140	and with potentially incomplete crack seal texture (LEY-2-1: 11.2 ± 1.1 Ma) provide ages
141	that are younger than demonstrated crack seal veins. We infer that these young ages
142	record the maintenance of open cavities within the mechanically strong basalt lavas
143	(Walker et al., 2011b), rather than representing a record of slip events along the fault.
144	A crack seal vein sample from Set 3 (TJN-2-1: 16.3 ± 1.2 Ma) fits with the
145	Walker et al. (2011a) stepwise rotation in extension direction through time, though it is
146	noted the age is considerably younger than their predicted Eocene age. However, TJN-5-
147	2 (Set 3: 41.7 ± 1.9 Ma) falls within error of the main grouping of Set 2 samples, which is
148	not easily reconciled with this stepwise deformation history. Both of the Set 3 faults
149	benefit from good relative age constraints, as the structures cut and offset faults (and
150	dikes) associated with Set 2 (Fig. 4). It should be noted that deformation histories based
151	on observed cross-cutting relationships are vulnerable to the impact of unobserved
152	relationships, and it is possible that structures in the Faroe Islands represent a more
153	gradual change in extension directions, potentially with overlap between kinematic fault
154	sets. In any case, we are presenting a single age, and clearly further age-dating is required
155	to constrain this and elucidate a full geodynamic history.
156	Faults in the Faroe Islands are geometrically and kinematically linked to stages of
157	continental rifting and break-up to form the NE Atlantic (Walker et al., 2011a), which is
158	generally constrained to Magnetochron 24R (~55-53 Ma). Initial spreading began on a
159	segmented ridge system involving a NE-propagating Reykjanes segment, and SE-

Journal: GEOL: Geology DOI:10.1130/G37868.1

160	propagating Aegir, and Mohns ridge segments (Lundin, 2002; see Fig. 1A, 4), but the age
161	of continental break-up in the sense of a through-going oceanic crust, is difficult to
162	define. The Aegir and Reykjanes ridges were separated by a continental relay zone
163	between Kangerlussuaq (East Greenland) and the Faroe Islands (Gernigon et al., 2012;
164	Ellis and Stoker, 2014). Extension on these ridges is thought to result in an anticlockwise
165	stress-field rotation in the continental relay zone, which is consistent with the progressive
166	rotation documented for structures in the Faroe Islands (Walker et al., 2011a). Detailed
167	characterization of sea floor magnetic anomalies suggests break-up of the relay zone, and
168	formation of a through-going oceanic crust, by the Early to Mid Eocene (~49.7–47.9 Ma;
169	Gernigon et al., 2012). Alternatively, regional tectonostratigraphic correlation on the East
170	Greenland and European margins (Ellis and Stoker, 2014) suggests the continental relay
171	zone remained intact until the Early Oligocene (~33 Ma), and possibly as late as the Late
172	Oligocene (~25 Ma). Our fault-slip related calcite ages are Mid Eocene (44.8-40.1 Ma),
173	and we tentatively suggest that this represents stages of dismemberment of the
174	continental relay zone consistent with the Ellis and Stoker (2014) model. The range in U-
175	Pb calcite ages, including Miocene age crack seal veins (LEY-2-1) suggests faulting
176	persisted on the continental margin, potentially for a period of time following formation
177	of a through-going oceanic spreading centre. Further detailed fault rock dating across the
178	region, and ideally to include the conjugate Greenland margin, has the potential to
179	constrain this complex rift and break-up history.
180	LA-ICPMS U-Pb geochronology of calcite mineralization presents a novel
181	approach in obtaining absolute ages of fault episodes, as well as the potential to constrain
182	the timing of fluid flow in the subsurface. Given the abundance of fault-hosted calcite in

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G37868.1

183	various settings, and provided that structural characterization can constrain the calcite
184	mineralization to discrete slip events, this technique has wide application in determining
185	the age of upper crustal faults and fractures.
186	ACKNOWLEDGMENTS
187	The authors acknowledge support from the NERC Isotope Geosciences
188	Laboratory to conduct analyses critical for this project. NR thanks M Horstwood, D
189	Condon, and R Parrish for discussion, and T Rasbury for the reference calcite. The
190	authors thank Giulio Viola, Andrew Kylander-Clark, and an anonymous reviewer for
191	helpful and constructive comments.
192	REFERENCES CITED
193	Coogan, L.A., Parrish, R.R., and Roberts, N.M., 2016, Early hydrothermal carbon uptake
194	by the upper oceanic crust: Insight from in situ U-Pb dating: Geology, v. 44, p. 147-
195	150, doi:10.1130/G37212.1.
196	Doré, A.G., Lundin, E.R., Kusznir, N.J., and Pascal, C., 2008, Potential mechanisms for
197	the genesis of Cenozoic domal structures on the NE Atlantic margin: Pros, cons and
198	some new ideas, in Johnson, H., Doré, A.G., Gatliff, R.W., Holdsworth, R., Lundin,
199	E.R., and Ritchie, J.D., eds., The Nature and Origin of Compression in Passive
200	Margins: Geological Society, London, Special Publication 306, p. 1–26,
201	doi:10.1144/SP306.1.
202	Ellis, D., and Stoker, M.S., 2014, The Faroe-Shetland Basin: A regional perspective from
203	the Paleocene to the present day and its relationship to the opening of the North
204	Atlantic Ocean, in Cannon, S.J.C., and Ellis, D., eds., Hydrocarbon exploration to

205	exploitation west of Shetlands: Geological Society, London, Special Publication 397,
206	p. 11–31.
207	Gaina, C., Gernigon, L., and Ball, P., 2009, Palaeocene-Recent plate boundaries in the
208	NE Atlantic and the formation of the Jan Mayen microcontinent: Journal of the
209	Geological Society, v. 166, p. 601–616, doi:10.1144/0016-76492008-112.
210	Gernigon, L., Gaina, C., Olesen, O., Ball, P.J., Péron-Pinvidic, G., and Yamasaki, T.,
211	2012, The Norway Basin revisited: From continental breakup to spreading ridge
212	extinction: Marine and Petroleum Geology, v. 35, p. 1–19,
213	doi:10.1016/j.marpetgeo.2012.02.015.
214	Jolley, D.W., and Bell, B.R., 2002, The evolution of the North Atlantic Igneous Province
215	and the opening of the NE Atlantic rift, in Jolley, D.W., and Bell, B.R., eds., The
216	North Atlantic Igneous Province: Stratigraphy, Tectonic, Volcanic and Magmatic
217	Processes: Geological Society, London, Special Publication 197, p. 1–13,
218	doi:10.1144/GSL.SP.2002.197.01.01.
219	Li, Q., Parrish, R.R., Horstwood, M.S.A., and McArthur, J.M., 2014, U-Pb dating of
220	cements in Mesozoic ammonites: Chemical Geology, v. 376, p. 76-83,
221	doi:10.1016/j.chemgeo.2014.03.020 (erratum available at
222	http://dx.doi.org/10.1016/j.chemgeo.2014.07.005).
223	Lundin, E.R., 2002, Atlantic-Arctic seafloor spreading history, in Eide, E.A. ed.,
224	BATLAS - Mid Norway plate reconstructions atlas with global and Atlantic
225	perspectives: Geological Survey of Norway, p. 40-47.

226	Lundin, E.R., and Doré, A.G., 1997, A tectonic model for the Norwegian passive margin
227	with implications for the NE Atlantic: Early Cretaceous to break-up: Journal of the
228	Geological Society, v. 154, p. 545–550, doi:10.1144/gsjgs.154.3.0545.
229	Moy, D.J., and Imber, J., 2009, A critical analysis of the structure and tectonic
230	significance of rift-oblique lineaments ('transfer zones') in the Mesozoic-Cenozoic
231	succession of the Faroe-Shetland Basin, NE Atlantic margin: Journal of the
232	Geological Society, v. 166, p. 831–844, doi:10.1144/0016-76492009-010.
233	Nuriel, P., Rosenbaum, G., Zhao, J.X., Feng, Y., Golding, S.D., Villemant, B., and
234	Weinberger, R., 2012, U-Th dating of striated fault planes: Geology, v. 40, p. 647-
235	650, doi:10.1130/G32970.1.
236	Petit, J.P., Wibberley, C.A., and Ruiz, G., 1999, Crack-seal', slip: a new fault valve
237	mechanism?: Journal of Structural Geology, v. 21, p. 1199-1207,
238	doi:10.1016/S0191-8141(99)00038-3.
239	Potts, G.J., and Reddy, S.M., 1999, Construction and systematic assessment of relative
240	deformation histories: Journal of Structural Geology, v. 21, p. 1245–1253,
241	doi:10.1016/S0191-8141(99)00036-X.
242	Rasbury, E.T., and Cole, J.M., 2009, Directly dating geologic events: U-Pb dating of
243	carbonates: Reviews of Geophysics, v. 47, p. RG3001, doi:10.1029/2007RG000246.
244	Sibson, R.H., 1986, Brecciation processes in fault zones: inferences from earthquake
245	rupturing. Pure and Applied Geophysics, v. 124, p.159-175.
246	Uysal, I.T., Feng, Y.X., Zhao, J.X., Bolhar, R., Işik, V., Baublys, K.A., Yago, A., and
247	Golding, S.D., 2011, Seismic cycles recorded in late Quaternary calcite veins:

248	Geochronological, geochemical and microstructural evidence: Earth and Planetary
249	Science Letters, v. 303, p. 84–96, doi:10.1016/j.epsl.2010.12.039.
250	Walker, R.J., Holdsworth, R.E., Imber, J., and Ellis, D., 2011a, Onshore evidence for
251	progressive changes in rifting directions during continental break-up in the NE
252	Atlantic: Journal of the Geological Society, v. 168, p. 27-48, doi:10.1144/0016-
253	76492010-021.
254	Walker, R.J., Holdsworth, R.E., Imber, J., and Ellis, D., 2011b, The development of
255	cavities and clastic infills along fault-related fractures in Tertiary basalts on the NE
256	Atlantic margin: Journal of Structural Geology, v. 33, p. 92–106,
257	doi:10.1016/j.jsg.2010.12.001.
258	Walker, R.J., Holdsworth, R.E., Imber, J., and Ellis, D., 2012, Faults, fault rocks and
259	fractures in flood basalt provinces: A case study from the Faroe Islands, NE Atlantic
260	Margin: Geological Society of America Bulletin, v. 124, p. 1382–1393,
261	doi:10.1130/B30512.1.
262	Walker, R.J., Holdsworth, R.E., Armitage, P.J., and Faulkner, D.R., 2013, Fault zone
263	permeability structure in basalts: Geology, v. 41, p. 59-62, doi:10.1130/G33508.1
264	
265	FIGURE CAPTIONS
266	
267	Figure 1. Simplified structural elements map for the Faroe Islands, NE Atlantic
268	margin. A: The East Greenland and European conjugate margin, showing sea floor
269	magnetochrons, main rift basin ages, and major lineaments. Map was compiled using:
270	basin ages from Lundin and Doré (1997); oceanic magnetic anomalies from Gaina et al.

271	(2009); Iceland stratigraphic ages from Doré et al. (2008). B: Hillshaded topographic and
272	bathymetric map of the northern Faroe Islands. Lower hemisphere stereographic
273	projections for idealized fault orientations and paleostress axis calculations for Sets 1, 2,
274	and 3 (summarized from Walker et al., 2011a; see text for explanation).
275	
276	Figure 2. Calcite geochronology sample method and analysis. A: Example of a Set 2
277	crack seal vein. (B): Calcite sample showing area for elemental maps (crosses for
278	reference in C-F). C-F: Elemental maps for U, Pb, Mn, and V respectively, for the dated
279	region.
280	
281	Figure 3. Tera-Wasserburg Concordia plots showing $^{238}\mathrm{U}$ / $^{206}\mathrm{Pb}$ versus $^{207}\mathrm{Pb}$ / $^{206}\mathrm{Pb}$.
282	Samples are ordered top-left to bottom-right from oldest to youngest, excluding
283	uncertainty ranges.
284	
285	Figure 4. A: Summary of U-Pb calcite ages in the Faroe Islands, including relative
286	timings of oceanic spreading (after Doré et al., 2008; see text for details). Set 3 sample
287	names are shown in italics. B-C: Maps showing the distribution of ages with respect to
288	mapped structures in the Faroe Islands.
289	
290	¹ GSA Data Repository item 2015xxx, xxxxxxxx, is available online at
291	www.geosociety.org/pubs/ft2015.htm, or on request from editing@geosociety.org or
292	Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.