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Abstract. We consider the problem of preprocessing N points in 2D,
each endowed with a priority, to answer the following queries: given
a axis-parallel rectangle, determine the point with the largest prior-
ity in the rectangle. Using the ideas of the effective entropy of range
maxima queries and succinct indices for range maxima queries, we ob-
tain a structure that uses O(N) words and answers the above query in
O(lgN lg lgN) time. This a direct improvement of Chazelle’s result from
1985 [10] for this problem – Chazelle required O(N/ε) words to answer
queries in O((lgN)1+ε) time for any constant ε > 0.

1 Introduction

Range searching is one of the most fundamental problems in computer science
with important applications in areas such as computational geometry, databases
and string processing. The input is a set of N points in general position in Rd
(we focus on the case d = 2), where each point is associated with satellite data,
and an aggregation function defined on the satellite data. We wish to prepro-
cess the input to answer queries of the following form efficiently: given any 2D
axis-aligned rectangle R, return the value of the aggregation function on the
satellite data of all points in R. Researchers have considered range searching
with respect to diverse aggregation functions such as emptiness checking, count-
ing, reporting, minimum/maximum, etc. [10, 12, 17]. In this paper, we consider
the problem of range maximum searching (the minimum variant is symmetric),
where the satellite data associated with each point is a numerical priority, and
the aggregation function is “arg max”, i.e., we want to report the point with the
maximum priority in the given query rectangle. This aggregation function is the
canonical one to study, among those that do not admit inverses [10].

Our primary concern is to obtain linear-space data structures, namely those
that occupy O(N) words, and we seek to minimize query time subject to this con-
straint. The space usage is a fundamental concern in geometric data structures
due to very large data volumes; indeed, space usage is a main reason why range
searching data structures like quadtrees, which have poor worst-case query per-
formance, are preferred in many practical applications over data structures such

? Work done while Farzan was employed by, and Raman was visiting, MPI.



Citation Size (in words) Query time

Chazelle’88 [10] O(N lgεN) O(lgN)

Chan et al.’10 [8] O(N lgεN) O(lg lgN)

Karpinski et al.’09 [15] O
(
N(lg lgN)O(1)

)
O
(
(lg lgN)2

)
Chazelle’88 [10] O(N lg lgN) O(lgN lg lgN)

Chazelle’88 [10] O
(
1
ε
N
)

O
(
lg1+εN

)
NEW O(N) O(lgN lg lgN)

Table 1. Space/time tradeoffs for 2D range maximum searching in the word RAM.

as range trees, which have asymptotically optimal query performance. Space effi-
cient solutions to range searching date to the work of Chazelle [10] over a quarter
century ago, and Nekrich [18] gives a nice survey of much of this work. Recently
there has been a flurry of activity on various aspects of space-efficient range re-
porting, and for some aggregation functions there has even been attention given
to the constant term within the space usage [5, 18].

We now formalize the problem studied by our paper, as well as those of [10, 8,
15]. We assume input points are in rank space: the x-coordinates of the n points
are {0, . . . , N − 1} = [N ], and the y-coordinates are given by a permutation
υ : [N ] → [N ], such that the points are (i, υ(i)) for i = 0, . . . , N − 1. The
priorities of the points are given by another permutation π such that π(i) is the
priority of the point (i, υ(i)). The reduction to rank space can be performed in
O(lgN) time with a linear space structure even if the original and query points
are points in R2 [12, 10]. The query rectangle is specifed by two points from
[N ] × [N ] and includes the boundaries (see Fig. 1(R)). Analogous to previous
work, we also assume the word-RAM model with word size Θ(lgN) bits4.

Range maximum searching is a well-studied problem (Table 1). Chazelle [10]
gave a few space/time tradeoffs covering a broad spectrum. To the best of our
knowledge, the solution with the lowest query time that uses only O(N) words is
that of Chazelle [10], who gave a data structure of size O( 1

εN) words with query

time O(lg1+εN) for any fixed ε > 0. More recent results on the range maximum
problem are as follows. Karpinski et al. [15] studied the problem of 3D five-sided
range emptiness queries which is closely related to range maximum searching in
2D. As observed in [8], their solution yields a query time of (lg lgN)O(1) with an
index of size N(lg lgN)O(1) words. Chan et al. [8] currently give the best query
time of O(lg lgN), but this is at the expense of using O(N lgεN) words, for any
fixed ε > 0. However, there has been no improvement in the running time for
linear-space data structures. In this paper, we improve Chazelle’s long-standing
result by giving a data structure of O(N) words and reducing the query time
from polylogarithmic to “almost” logarithmic, namely, O(lgN lg lgN).

Although our primary focus is on 4-sided queries, which specify a rectangle
that is bounded from all sides, we also need to consider 2-sided and 3-sided

4 lg x = log2x
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Fig. 1. 2-sided and 4-sided range maximum queries. The numbers with the points
represent their priorities, and the unshaded points are the answers.

queries, which are “open” on two and one side respectively (thus a 2-sided query
is specified by a single point (i, j)—see Fig. 1(L)—and a 3-sided query by two
points (i, j) and (k, l) where either i = k or j = l). Our solution recursively
divides the points into horizontal and vertical slabs, and a query rectangle is
decomposed into smaller 2-sided, 3-sided, and 4-sided queries. A key intermediate
result is the data structure for 2-sided queries. The 2-sided sub-problems are
partitioned into smaller sub-problems, which are stored in a “compressed” format
that is “decompressed” at query time. The “compression” uses the idea that to
answer 2-sided range maxima queries on a problem of size m, one need not store
the entire total order of priorities using Θ(m lgm) bits: O(m) bits suffice, i.e., the
effective entropy [13] of 2-sided queries is low. This does not help immediately,
since Θ(m lgm) bits are needed to store the coordinates of the points comprising
these sub-problems. To overcome this bottleneck, the data structures for these
sub-problems are succinct indices [2]: they do not store the coordinates, and
instead obtain them from a global data structure during “decompression”. We
solve 3-sided and 4-sided subqueries by recursion, or by using succinct indices for
range maximum queries on matrices [20, 6]. When recursing, we cannot afford
the space required to store the structures for rank space reduction for each such
subproblem: a further key idea is to use a single global structure to achieve this.

By reusing ideas from this 2-sided result, we obtain two stand-alone results on
succinct indices for 2-sided range maxima queries. We show that given N points
in rank space, together with priorities, it is possible to answer 2-sided range
maxima queries in just O(N) additional bits (i.e excluding point coordinate in-
formation) in (lgN)O(1) time, assuming the index can access point coordinates
via an orthogonal range reporting [12, 8] queries. This result has been recently
used in a context where the input is a low-discrepancy point set whose coordi-
nates need not be stored at all, and can be generated “on the fly”. A different
index for the permuted-point model of Bose et al. [4] uses O(N) additional bits
and answers 2-sided range maxima queries in only O(lg lgN) time.

The paper is organized as follows. We first describe some building blocks used
in Section 2. Section 3 is devoted to our main result, and Section 4 describes
the succinct index results. Many proofs have been omitted from this extended
abstract and may be found in [11].



2 Preliminaries

In order to support mapping between recursive sub-problems, we use the fol-
lowing primitives on a set S of N points in rank space. A range counting query
reports the number of points within a query rectangle:

Lemma 1 ([14]). Given a set of N points in rank space in two dimensions,
there is a data structure with O(N) words of space that supports range counting
queries in O(lgN/ lg lgN) time.

A range reporting structure supports the operation of listing the coordinates of
all points within a query rectangle. We use the following consequence of a result
of Chan et al. [8]:

Lemma 2 ([8]). Given a set of N points in rank space in two dimensions,
there is a data structure with O(N) words of space that supports range reporting

queries in O
(

(1 + k) lg1/3N
)

time where k is the number of points reported.

The range selection problem is as follows: given an input array A of size N , to
preprocess it so that given a query (i, j, k), with 1 ≤ i ≤ j ≤ N , we return
an index i1 such that A[i1] is the k-th smallest of the elements in the subarray
A[i], A[i+ 1], . . . , A[j].

Lemma 3 ([7]). Given an array of size N , there is a data structure with O(N)
words of space that supports range selection queries in O(lgN/ lg lgN) time.

3 The data structure

In this section we show our main result:

Theorem 1. Given N points in two-dimensional rank space, and their prior-
ities, there is a data structure that occupies O(N) words of space and answers
range maximum queries in O(lgN lg lgN) time.

We first give an overview of the data structure. We begin by storing all the
points (using their input coordinates) once each in the structures of Lemmas 1
and 2. We also store an instance of the data structure of Lemma 3 once each
for the arrays X and Y , where X[i] = ν(i) and Y [i] = ν−1(i) for i ∈ N (X
stores the y-coordinates of the points in order of increasing x-coordinate, and Y
the x-coordinates in order of increasing y-coordinate). These four “global” data
structures use O(N) words of space in all.

We recursively decompose the problem à la Afshani et al. [1]. Let n be the
recursive problem size (initially n = N). Given a problem of size n, we divide
the problem into n/k mutually disjoint horizontal slabs of size n by k, and n/k
mutually disjoint vertical slabs of size k by n. A horizontal and vertical slab
intersect in a square of size k×k. We recurse on each horizontal or vertical slab:
observe that each horizontal or vertical slab has exactly k points in it, and is
treated as a problem of size k—i.e. it is logically comprised of two permutations



υ and π on [k] (Fig. 2(L); Sec. 3.1). Given a slab in a problem of size n containing
k points, we need to map coordinates in the slab (which in one dimension will
be from [n]) down to [k]× [k] in order to view the slab as a problem of size k—
and back again. This mapping is not explicitly stored, and is achieved through
slab-rank and slab-select operations (Sec. 3.2).

The given query rectangle is decomposed into a number of disjoint recur-
sive 2-sided, 3-sided and 4-sided queries. In addition to queries that reach slabs
at the bottom of the recursion, many other queries do not generate further re-
cursive problems. Such queries are called terminal, and the problems (or data
structures) that involve answering terminal queries are also called terminal. Each
terminal query produces some candidate points: the set of all candidate points
must contain the final answer. To achieve the space bound, we require that all
terminal problems of size n—except those at the bottom of the recursion—use
space O(n

√
lg n) bits (Sec. 3.1). Terminal 3- and 4-sided problems are handled

by the results of [20, 6]. Terminal 2-sided problems reduce the range maximum
query to planar point location, but the space bound precludes an explicit rep-
resentation. Instead, the data structures are succinct indices—the points that
comprise them are accessed by means of queries to a single global data structure.
Using the key insight that O(n) bits suffice to encode the priority information
needed to answer 2-sided queries in a problem of size n (Sec. 3.3), we store
parts of the planar sub-division in the recursive problems in a compressed form,
relevant parts of which are recomputed at query time (Sec. 3.4).

3.1 A recursive formulation and its space usage

The recursive structure is as follows. Let L = lgN , and consider a recursive
problem of size n (at the top level n = N). We assume wlog that N and n are
powers of 2, as are a number of expressions which represent the size of recursive
problems (if not, replace real-valued parameters x ≥ 1 by 2blg xc or 2dlg xe without
affecting the asymptotic complexity). Unless we have reached the bottom of the
recursion, we partition the input range [n] × [n] into mutually disjoint vertical
slabs of width k =

√
nL and also into mutually disjoint horizontal slabs of height

k =
√
nL, which intersect in O(n/L) k × k squares. We need to answer 2-sided,

3-sided or 4-sided queries on this problem, which we do as follows (see Fig. 2(R)):

– A 2-sided query is terminal and generates one candidate.
– A 3-sided query results in at most one recursive 3-sided query on a slab,

plus up to three terminal problems, each generating one candidate: at most
two 2-sided queries on slabs, and at most one square-aligned 3-sided query
(a square-aligned query exactly covers a rectangular sub-array of squares).

– A 4-sided query either results in a recursive 4-sided query on a slab or results
at most one square-aligned 4-sided query (generating one candidate), plus
up to four recursive 3-sided queries in slabs.

Since each 3-sided query only generates one recursive 3-sided query, O(r) =
O(lg lgN) recursive problems are solved generating O(r) candidates.

The data structures associated with the current recursive problem are:
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Fig. 2. The recursive decomposition of the input (L) and queries (R). In (R) shaded
problems are terminal problems.

– for problems at the bottom of the recursion, we store an instance of Chazelle’s
data structure which usesO(n lg n) bits of space and has query timeO

(
(lg n)2

)
.

– For 2-sided queries (which are terminal) in non-terminal problems we use
the data structure with space usage O(n

√
lg n) bits described in Sec. 3.4.

– For 3- and 4-sided square-aligned queries, we store an n/k×n/k matrix that
contains the (top-level) coordinates and priority of the maximum point (if
any) in each square. This matrix uses O(n/L · L) = O(n) bits. We then use
the data structure of [20, 6] for answering 2D range maximum queries on the
elements in the above matrix; this also uses O(n) bits.

Finally, each recursive problem has O(lgN) = O(L) bits of “header” in-
formation, containing, e.g., the bounding box of the problem in the top-level
coordinate system. Ignoring the header information, the space usage is given by:

S(n) = 2
√
n/LS(

√
nL) +O(n

√
lg n),

which after r levels of recursion becomes:

S(N) = 2r
N1−1/2r

L1−1/2r S(N1/2rL1−1/2r ) +O

(
2rN

√
lg(N1/2rL1−1/2r )

)
.

The recursion is terminated for the first level r where 2r ≥ lgN/ lg lgN . At this
level, the problems are of size O

(
(lgN)2

)
and Ω

(
(lgN)1.5

)
and the second term

in the space usage becomes O(N lgN) bits. Applying S(n) = O(n lg n) for the
base case, we see that the first term is O((lgN/ lg lgN) ·N · lg lgN) = O(N lgN)
bits, and the space used by the header information is indeed negligible.

3.2 The slab-rank and slab-select problems

The input to each recursive problem of size n is given in local coordinates (i.e.
from [n]× [n]). Upon decomposing the query to this problem, we need to solve
the following slab-rank problem (with a symmetric variant for vertical slabs):

Given a point p = (i∗, j∗) in top-level coordinates, which is mapped
to (i, j) in a recursive problem of size n, such that (i, j) that lies in a
horizontal slab of size n×k, map (i, j) to the appropriate position (i′, j′)
in the size k problem represented by this slab.



We formalize the “inverse” slab-select problem as follows:

Given a rectangle R in the coordinate system of a recursive problem,
return the top-level coordinates of all points that lie within R.

The following lemma assumes and builds upon the four “global” data structures
mentioned after the statement to Theorem 1 (proof omitted):

Lemma 4. The slab-rank problem can be solved in O(lgN/ lg lgN) time, and
the slab-select problem in O(lgN/ lg lgN) time as well, provided that R contains
at most O

(√
lgN

)
points.

3.3 Encoding 2-sided queries

We now show that to answer 2-sided range maxima queries at point q (RMQ(q)
hereafter), a linear number of bits suffice to encode priority information:

Lemma 5. Given a set S of n points from R2 and relative priorities given as
a permutation π on [n], the query RMQ(q) can be reduced to point location of
q in a collection of at most n horizontal semi-open line segments, whose left
endpoints are points from S, and whose right endpoints have x-coordinate equal
to the x-coordinate of some point from S. Further, given at most 3n bits of extra
information, the collection of line segments can be reconstructed from S.

Proof. Assume the points are in general position and that the 2-sided query is
open to the top and left. Associate each point p = (x(p), y(p)) ∈ S with a hor-
izontal semi-open line of influence, possibly of length zero, whose left endpoint
(included in the line) is p itself, and is denoted by Inf (p), and contains all points
q such that y(q) = y(p), x(q) ≥ x(p) and RMQ(q) = p. It can be seen that (see
e.g. [16]) the answer to RMQ(q) for any q ∈ R2 can be obtained by shooting a
vertical ray upward from q until the first line Inf (p) is encountered; the answer
to RMQ(q) is then p (if no line is encountered then there is no point in the
2-sided region specified by q). See Fig. 3 for an example.

The set Inf (S) = {Inf (p)|p ∈ S} can be computed by sweeping a vertical line
from left to right. At any given position x = t of the sweep line, the sweep line will
intersect Inf (S′) for some set S′ (initially S′ = ∅). If S′ = pi1 , . . . , pir such that
y(pi1) > . . . > y(pir ) then it follows that π(i1) < . . . < π(ir) (the current lines of
influence taken from top to bottom represent points with increasing priorities).
Upon reaching the next point ps such that y(pij ) < y(ps) < y(pij+1

), either (i)
π(s) < π(ij)—in this case Inf (ps) is empty—or (ii) π(k) > π(ij). In the latter
case, it may be that π(k) > π(ij+1), . . . π(ij+k) for some k ≥ 0, which would
mean that Inf (pij+1), . . . , Inf (pij+k

) are terminated, with their right endpoints
being x(ps). To construct Inf (S), therefore, only O(n) bits of information are
needed: for each point, one bit is needed to indicate whether case (i) or (ii) holds,
and in the latter case, the value of k needs to be stored. However, k can be stored
in unary using k + 1 bits, and the total value of k, over the course of the entire
sweep, is at most n, giving a total of at most 3n bits5 ut
5 A tight bound of n lg 5 + o(n) ∼ 2.33n bits can be shown [11].
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Fig. 3. (Left) Example for Lemma 5. The horizontal lines are the lines of influence.
Vertical dotted lines show where a point has terminated the line of influence of another
point. The arrow shows how point location in the lines of influence answers the 2-sided
query with lower right hand corner at q, returning the point with priority 7. (Right)
We select the thick lines of influence, and create a vertical decomposition of all lines
of influence shown by vertical dashed lines. One of the regions obtained is highlighted.

3.4 Data structures for 2-sided queries

In this section we show the following lemma. The given 2-sided problem of size
n is viewed as a point location problem among O(n) horizontal line segments as
in Lemma 5. As the space available is only O(n

√
lg n) bits, we use an implicit

representation of the problem, using and building upon the four “global” data
structures mentioned after the statement to Theorem 1.

Lemma 6. Given a recursive sub-problem of size n, we can answer 2-sided
queries on this problem in O(lgN) time using O(n

√
lg n) bits of space.

We begin with an overview. We first create Inf (T ), and choose a parameter
λ =
√

lg n. We then select a set of points T ′ ⊆ T with the following properties:
(a) |T ′| = O(n/λ); (b) the vertical decomposition, whereby we shoot vertical
rays upward and downward from each endpoint of each segment in Inf (T ′) until
they hit another segment, of the plane induced by Inf (T ′)6 decomposes the
plane into O(n/λ) rectangular regions each of which has at most O(λ) points
from T and parts of line segments from Inf (T ) in it (see Fig. 3(R)). T ′ always
exists and can be found by plane sweep [3, Section 3],[9, Section 4.3]. We store a
standard point location data structure, called the skeleton, on T ′: this requires
O((n/λ) lg n) = O

(
n
√

lg n
)

bits. We also store O(λ) bits of information with each
region (including the O(λ)-bit encoding of priority information from Lemma 5).

Given a query point q, we first perform a point location query on the skeleton
to determine the region R in which q lies. We now need to solve the original point
location problem within R, and perform a slab-select to determine the points

6 Note that the extent of a line segment in Inf (T ′) is defined, as originally, wrt points
in T , and not wrt the points in T ′.



of T that lie within this region. This, together with the priority information,
allows us to partially—but not fully, since lines of influence may originate from
outside R—reconstruct the point location problem within R. To handle lines of
influence starting outside R, we do a binary search with O(lg λ) steps, each step
including a a slab-select, giving the claimed bound. The details are as follows.

Preprocessing. Let R be any region, and let Left(R) (Right(R)) be the set of
line segments from Inf (T ) that intersect the left (right) boundaries of R, and
let P (R) be the set of points from T in R. We store the following data for R:

1. For each line segment ` ∈ Left(R), ordered top-to down by y-axis, a bit
that indicates whether the right endpoint of ` is in R or not; similarly for
` ∈ Right(R), a bit indicating whether ` begins in R or not.

2. If the left boundary of R is adjacent to other regions R1, R2, . . . (taken
from top to bottom) and li ≥ 0 represents the number of line segments
from Left(R) that also intersect Ri, then we store a bit-string 0l110l21 . . .. A
similar bit-string is stored for the right boundary of R.

3. For each point in P (R) and each line segment in Left(R), a bit-string of
length |P (R)| + |Left(R)| whose i-th bit indicates whether the i-th largest
y-coordinate in P (R) ∪ Left(R) is from P (R) or L(R).

4. Suppose that a line segment ` = Inf (p) for some p ∈ T crosses m ≥ λ
regions. Then, in every λth region that ` crosses, we explicitly store the
region containing p, and p’s local coordinates.

5. Finally, for each point p ∈ P (R), we store the sequence of bits from Lemma 5,
which indicates whether p has a non-empty Inf (p) and if so, for how many
lines from Left(R) ∪ Inf (P (R)), p is a right endpoint (p cannot be a right
endpoint of any other line in Inf (T ), by the construction of the skeleton).

The purpose of (1) and (2) is to trace a line segment ` as it crosses multiple
regions: if ` crosses from a region R′ to a region R′′ on its right, then given its
position in Right(R′), we can deduce its position in Left(R′′). Using (4), after
tracing ` = Inf (p) through ≤ λ regions, we will discover (at least) the region
containing p. The skeleton takes O(n

√
lg n) bits, so we now add up the space

used by (1)-(5). By construction, |Left(R)|, |Right(R)| and |P (R)|, summed over
all regions R, is O(n). The space bound for (1) and (3) is therefore O(n) bits.
The number of 1s in the bit string of (3), summed over all regions, is O(n/λ), as
there are O(n/λ) regions and the graph which indicates adjacency of regions is
planar; the number of 0s is O(n) as before. The space used by (4) is O(n

√
lg n)

bits again, as for every O(
√

lg n) portions of line segments in the regions we store
O(lg n) bits. Finally, the space used for (5) is O(n) bits by Lemma 5.

Query algorithm. Given a query point q in a sub-problem of size n (assume that
we have q’s local and top-level coordinates), we answer RMQ(q) as follows:

(a) Do a planar point location in the skeleton, and find a region R in which the
point q lies. Perform slab-select on R to get P (R).



(b) As we know how many segments from Left(R) lie vertically between any pair
of points in P (R), when we are given the data in (5) above, we are able to
determine whether the x-coordinate of a given point p in P (R) is the right
endpoint of a line from either Left(R) or Inf (P (R)). Thus, we have enough
information to determine Inf (p) for all p ∈ P (R) (at least until the right
boundary of R). Furthermore, for each line in Left(R) that terminates in R,
we also know (the top-level coordinates of) its right endpoint.

(c) Using the top-level coordinates of q, we determine the nearest segment from
Inf (P (R)) that is above q.

(d) Using the top-level coordinates of q we also find the set of segments from
Left(R) whose right endpoints are not to the left of q. Let this set be Left∗(R).
We now determine the nearest segment from Left∗(R) that is above q. Un-
fortunately, although |Left∗(R)| = O(λ), since the segments in Left∗(R)
originate in points outside R, we do not have their y-coordinates. Hence, we
need to perform the following binary search on Left∗(R):

(d1) Take the line segment ` ∈ Left∗(R) with median y-coordinate, and sup-
pose that ` = Inf (p). The first task is to find the region Rp containing
p, as follows. Use (2) to determine which of the adjacent regions of R `
intersects, say this is R′. If ` ends in R′, or R′ = Rp and we are done.
Otherwise, use (1) to locate ` in Left(R′) and continue.

(d2) Once we have found Rp, we perform a slab-select on R′ to determine
P (Rp), and sort P (Rp) by y-axis. Then we perform (c) above on P (Rp),
thus determining which points of P (Rp) have lines of influence that reach
the right boundary of Rp. Using this we can now determine the (top-
level) coordinates of p.

(d3) We compare the top-level y-coordinates of p and q and recurse.
(e) We take the lower of the lines found in (d) and (e) and use it to return a

candidate. Observe that we have the top-level coordinates of this candidate.

We now derive the time complexity of a 2-sided query. Step (a) takes O(lg n)
for the point location, and O(lgN/ lg lgN) for the slab-select. Step (b) can
be done in O(lg n) = O(lgN) time by running the plane sweep algorithm of
Lemma 5 (recall that |P (R)| = O(

√
lg n)—a quadratic algorithm will suffice).

Step (c) likewise can be done by a simple plane sweep in O(lg n) time. Step (d1)
is iterated at most O(

√
lg n) times before Rp is found since every λ-th region

intersected by ` contains information about p. Each iteration of (d1) takes O(1)
time: operations on the bit-strings are done either by table lookup if the bit-
string is short (O(λ) bits), or else using rank and select operations [19], if the
bit string is long (as e.g. the bit-string in (2) may be) – these entirely standard
tricks are not described in detail. Step (d2) takes O(lgN/ lg lgN) time as before.
Steps (d1)-(d3) are performed O(lg λ) = O(lg lgN) times, so this takes O(lgN)
time overall. Step (e) is trivial. We have thus shown Lemma 6.

3.5 Putting things together

Section 3.1 shows that our data structure occupies O(N) words. The domi-
nant term in the running time is due to solving O(lg lgN) 2-sided queries using



Lemma 6, taking O(lgN lg lgN) time. The O(lg lgN) square-aligned queries are
solved in O(1) time each. The O(1) problems at the bottom of the recursion are
solved in O((lg lgN)2) time. We scan all O(lg lgN) candidates to find the answer
(any candidates given in local coordinates are converted to top-level coordinates
in O(lgN/ lg lgN) time each, or O(lgN) time overall). This proves Theorem 1.

4 Succinct indices for 2-sided queries

We now consider succinct indices for 2-sided range maxima queries over N points
in rank space. Our results are stand-alone variants of Lemma 6 and reuse its
structure (proofs can be found in [11]). The indices encode the priority informa-
tion, but not the point coordinates, which are assumed to be accessible in one of
two ways. First, we consider the case where points are reported through an or-
thogonal range reporting query, such that a query that results in k points being
reported takes T (N, k) time (assume that T (N,O(k)) = O(T (N, k))). Then:

Lemma 7. Let λ ≥ 2 be some parameter. There is a succinct index of size
O(N+(N lgN)/λ)) bits such that 2-sided range maxima queries can be answered
in O(lgN + lg λ(λ+ T (N,λ)) time.

In the permuted-point model of [4], the point coordinates are stored in read-
only memory, and the i-th point (according to an ordering specified by the data
structure) can be accessed in O(1) time. We can show:

Lemma 8. There is a succinct index of N lg 5+o(N) = 2.33N +o(N) bits such
that 2-sided range maxima queries can be answered in O(lg lgN) time in the
permuted-point model.

5 Conclusions

We have introduced a new approach to producing space-efficient data structures
for orthogonal range queries, and have applied our approach to give the first
linear-space data structure for 2D range maxima that improves upon Chazelle’s
1985 linear-space data structure. It would be interesting to try to obtain (say)
O(lg lgN) running time as in [8] in linear space, or to apply these ideas to related
problems such as top-k queries.
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