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Abstract

The Infrared Atmosperhic Sounding Interferometer (IASI) provides significant
impact to numerical weather prediction systems despite current assimilation schemes
using less than 2% of the channels. The current system does not achieve the inform-
ation content predicted by earlier theoretical studies and results presented here show
that the information content could be doubled if the full spectrum were exploited.
There is potential to improve the vertical resolution of the humidity analysis and
the stratospheric temperature in particular.

This thesis explores principal component (PC) compression and radiance recon-
struction to compress the spectrum by over 90% whilst retaining almost the full
information content. Theoretical calculations are shown that indicate PC scores and
reconstructed radiances achieve close to the maximum information content, making
them promising approaches for better exploitation of IASI. However, care must be
taken because neglected error terms and matrix conditioning are problematic due to
the way the information in the compressed observations is coupled in the vertical.
New methods for choosing reconstructed radiance channels for assimilation are de-
veloped and tested, generating channel selections suitable for implementation in the
Met Office operational system.

The final section is concerned with the interaction between the observation in-
formation and the background error covariance matrix. This matrix can only ever
be estimated, which causes the analysis to be suboptimal. If the differences between
true and assumed errors are large enough, the analysis may be degraded relative
to the background. Guarding against exaggeration of background errors is there-
fore important, and for water vapour in particular, spurious vertical structures in
the stratosphere must be avoided. Increasing the spectral coverage increases the
information content and reduces exposure to analysis degradation. This result is
encouraging because it means that there is no greater risk to the analysis if more
spectral information is provided, paving the way for assimilation of reconstructed
radiances.
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Glossary of new terms introduced in this
thesis

Chapter 6
Raw radiance

A fully calibrated “level 1c” radiance spectrum. This is the spectrum as measured
by the instrument, but subject to ground-processing that renders it usable for
assimilation or retrieval. Note that this is not a new term but it is not widely used
other than by those who work on PC-compressed radiance spectra. It is used to
distinguish the original observation from the reconstructed radiance spectrum.

Reconstructed radiance
A radiance spectrum that has been reconstituted from a truncated set of PC
scores, such that it retains most of the signal and with most of the noise discarded.
Note that this is not a new term, but it is not widely used other than by those
who work on PC-compressed radiance spectra.

Suboptimal-in-H
This refers to a calculation using the linear analysis equations, or a variational
analysis such as 1D- or 4D-Var that uses a forward model Jacobian matrix, H,
that is known to be incorrect. In this thesis, this scenario specifically refers to the
use of a raw radiance Jacobian for the assimilation of reconstructed radiances.

Suboptimal-in-H-and-R
This refers to a calculation using the linear analysis equations, or a variational
analysis such as 1D- or 4D-Var that uses a forward model Jacobian matrix, H,
that is known to be incorrect, and where the observation error covariance mat-
rix, R, is not adjusted to take account of this extra forward model error. In
this thesis, this scenario specifically refers to the assimilation of reconstructed
radiances using a raw radiance Jacobian coupled with an observation error co-
variance matrix for reconstructed radiances that does not take reconstruction
error into account.

Chapter 7
Double difference covariance matrix

Alternative formulation of the observational method of Hollingsworth and Lön-
nberg (1986) as described in Cameron and Eyre (2008), used to estimate an
observation error covariance matrix from observation–background statistics.
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Chapter 10
Suboptimal-in-B

This refers to a calculation using the linear analysis equations, or a variational
analysis such as 1D- or 4D-Var that uses a background error covariance matrix,
BA, that is known to be incorrectly formulated relative to the true covariance
matrix, BT .

Danger Zone
This refers to the region of background – analysis error space for the suboptimal-
in-B scenario where the analysis error is larger than the background error. This
generally occurs where the assumed background error variance is 2–4 times larger
than the true variance.
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General mathematical terms
1/2 Superscript representing matrix square root.
−1 Superscript representing matrix inverse.
−I Generalised inverse of a non-square matrix.
T Superscript representing matrix transpose.
Tr Trace of a matrix.
|X| The vertical lines denote the determinant of a matrix.
I The identity matrix.

Chapter 3
A Analysis error covariance matrix.
B Background error covariance matrix.
B 4-dimensional background error covariance matrix (the underscore de-

notes the time dimension).
do Departure of observations from the best guess atmospheric state, the

underline representing the distribution of the vector in the time dimen-
sion.

H(x) Forward model converting the atmospheric state, x, to a model equi-
valent observation.

H Forward model Jacobian matrix.
K Kalman gain matrix; the weights given to the observations in the op-

timal analysis.
M NWP model including trajectory in time.
M Jacobian of full NWP model.
M 4D Jacobian of full NWP model including trajectory in time.
M̃ Perturbation forecast linear model.
MoistCov Background error covariance matrix calculated from an ensemble of

forecast states and using a new moisture control variable designed to
eliminate increments in the stratosphere.

NMC Background error covariance matrix calculated with the NMC method
(Parrish and Derber, 1992).

qt Total water, i.e. including liquid, vapour and ice phases.
q Water vapour mass mixing ratio.
R Observation error covariance matrix.
S Simplification operator mapping from full NWP model to perturbation

forecast model state.
T Variable transform mapping from perturbation forecast model variables

to 4D-Var control vector variables that are uncorrelated.
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Th The horizontal transform mapping from model grid points to spectral
functions.

Tv The vertical transform that maps from model levels to uncorrelated
vertical modes.

Tp The parameter transform that maps from forecast variables such as
potential temperature and wind to 4D-Var uncorrelated variables such
as stream function and ageostrophic pressure.

U Variable transform mapping from 4D-Var control vector variables that
are uncorrelated to perturbation forecast model variables.

Uh The horizontal transform mapping from spectral functions to model
grid points.

Uv The vertical transform that maps from uncorrelated vertical modes to
model levels.

Up The parameter transform that maps from 4D-Var uncorrelated variables
such as stream function and ageostrophic pressure to forecast variables
such as potential temperature and wind.

v 4D-Var control vector, equivalent to δw after the T transform has been
applied.

vb The subscript b indicates the background (short-range forecast a priori)
v vector.

w Simplified model state vector on a given iteration, equivalent to x after
the application of the simplification operator, S.

wb Background (a priori) simplified model state vector.
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δw Perturbation forecast model state vector, equal to the perturbation of
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x 4D NWP model atmospheric state, with the underline character incor-
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xb Background state: typically a 6-hour forecast for an NWP model used

as prior information in a variational scheme.
xa Analysis state: the optimal combination of the background state with

the observations sought by a variational scheme.
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xb at the start of minimisation.
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δx As δx, but with the underline character incorporating a time dimension
to the vector.

δxb Background perturbation: the difference of the best guess state on a
given iteration of variational analysis from the background state. Used
in incremental formulations of 3D- and 4D-Var.

y Forward modelled top of atmosphere radiance generated from the NWP
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yo Observed top of atmosphere radiance as measured by IASI.
y As y, but the underline character emphasises the distribution of obser-

vations in time by incorporating a time dimension.

Chapter 6
C Covariance matrix representing variability of an observed radiance cli-

matology (departures from a mean radiance).
Hobs(x) Forward model for raw radiances.
H̃(x) Forward model for reconstructed radiances.
H̃ Jacobian of forward model for reconstructed radiances.
Hpc(x) Forward model for principal component scores.
L Matrix of eigenvectors of C, the radiance climatology.
Lp Truncated matrix of eigenvectors, retaining only the leading vectors.
Ls Truncated matrix of eigenvectors, retaining only the leading vectors for
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n Number of channels in the raw radiance spectrum.
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N Assumed instrument noise of observed radiances.
Ñ Assumed instrument noise of reconstructed radiances.
p Number of retained principal component scores.
p Vector of truncated principal component scores.
P Principal component score selection matrix that discards lower order

PCs.
Φ Extra forward model error (or reconstruction error) resulting from the

use of a raw radiance forward model with reconstructed radiances as a
consequence of discarding true, forward modelable atmospheric signal
in the truncated PC set.

Rpc Observation error covariance matrix for PC scores.
R̃ Observation error for reconstructed radiances.
R̃′ In the Suboptimal-in-H system, the observation error for reconstructed

radiances taking into account additional error from the use of a raw
radiance forward model.

S Channel selection matrix that defines which channels are reconstructed
from principal component scores.

ym Climatological mean observed radiance.
yobs Observed top of atmosphere radiance.
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yt Top of atmosphere radiance that is generated by the true atmospheric

state.
ỹt Top of atmosphere radiance that is generated by the true atmospheric

state filtered to reconstructed radiance space.
δỹ′ Observation increment in the Suboptimal-in-H assimilation where a re-

constructed radiance is assimilated with a raw radiance forward model.
δỹ′fm In the suboptimal-in-H assimilation where a reconstructed radiance is

assimilated with a raw radiance forward model, the departure of the
forward modelled observation from the true reconstructed radiance.
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diance spectrum.

Chapter 7
REC Observation error covariance matrix derived using the double difference

method, equivalent to the observational method of Hollingsworth and
Lönnberg (1986), from IASI observations and ECMWF analyses inter-
polated to observation time.

RHL Observation error covariance matrix derived using the double difference
method, equivalent to the observational method of Hollingsworth and
Lönnberg (1986), from IASI observations and Met Office forecasts in-
terpolated to observation time.

Chapter 8
Hpc Jacobian of principal component forward model.

Chapter 10
Aopt(BA) In the suboptimal-in-B analysis, the optimal linear analysis covariance

that would have resulted had BA been the true background covariance.
Aopt(BT ) In the suboptimal-in-B analysis, the optimal linear analysis covariance

that would have resulted had BT been accurately specified.
A(B) In the suboptimal-in-B analysis, the suboptimal linear analysis covari-

ance that results when BA is used in the analysis but is not equal to
the true background covariance, BT .

BT In the suboptimal-in-B analysis, the true background error covariance
matrix.

BA In the suboptimal-in-B analysis, the assumed background error covari-
ance matrix.

B′ A hypothetical background error covariance matrix with the same ei-
genvectors as BA, but with eigenvalues set to those of the diagonal of
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the projection of BT onto the eigenvectors of BA.
Bd In the scalar suboptimal-in-B analysis for a given BA, the value of

BT below which the true analysis error will be higher than the true
background error.

KBA
In the suboptimal-in-B analysis, the Kalman gain matrix calculated
with the assumed background error, BA.

Λ Matrix of eigenvalues of the assumed background error covariance mat-
rix

V Matrix of eigenvectors of the assumed background error covariance mat-
rix

Appendix D
δỹobs In the suboptimal-in-H assimilation where a reconstructed radiance is

assimilated with a raw radiance forward model, the departure of the
reconstructed radiance observation from the true raw radiance.
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Chapter 1

Introduction

1.1 Observations in numerical weather prediction
Numerical weather prediction (NWP) is often described as an initial value prob-
lem: the forecast is produced by propagating forwards the estimated state of the
atmosphere using dynamical and physical equations. The accuracy of the forecast is
therefore dependent on the accuracy of the initial atmospheric state. NWP centres
use observational data to construct the initial state via data assimilation (DA).
DA is the science of combining observations with prior information to produce a
statistically optimal estimate of the true state.

The observations assimilated into NWP models are usually a combination of: ra-
diosonde ascents, measuring profiles of temperature and relative humidity; aircraft,
ship, land surface and buoy observations of parameters such as wind, temperature,
humidity and surface pressure; and satellite observations of temperature, humid-
ity, wind and in some cases precipitation. The World Meteorological Organisation
(WMO) aims to coordinate the development and provision of this ground and space-
based collection of meteorological observations via its WMO Integrated Global Ob-
serving System (WIGOS) programme. Satellite observations are a critical part of
the WIGOS, providing global coverage several times a day of key atmospheric and
surface variables. The so-called conventional data from surface, ship and aircraft
observations are usually limited to populous areas and routes, plus a few limited
remote sites.

1.2 Satellite observations in NWP
An overview of the main types of satellite observations used in NWP is given by
Collard et al. (2011). Satellite sounding data have been assimilated in operational
NWP systems since the 1980s (e.g. Gadd et al., 1995). Over time, satellite data
have come to form the majority of the data assimilated, with data volumes in-
creasing rapidly year-on-year, but they also provide the largest proportion of the
short-range forecast impact (Cardinali, 2009). The increase in forecast skill in the
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Figure 1.1: The evolution of forecast skill in time for ECMWF forecasts, as represented by
500 hPa Anomaly Correlation scores. A score of 100% is ideal. Shown in blue, red, green and
yellow are forecast lead times of 3, 5, 7 and 10 days respectively. The thick lines represent the
northern hemisphere (NH) score, and the thin lines the southern hemisphere (SH). Thus it can
be seen that in the 1980s the SH forecasts were considerably worse than the NH, but for the 3
day forecasts this gap had closed to almost nothing by 2001. The effects of data assimilation
are reduced with increasing forecast lead time. This figure was previously published in Collard
et al. (2011).

southern hemisphere – for which there are fewer conventional data – relative to the
northern hemisphere (shown for ECMWF1 in figure 1.1), has been attributed by
authors such as Simmons and Hollingsworth (2002) and Rabier (2005) mostly to
the impact of satellite observations, from results such as those shown in figure 1.2.
With their global coverage and information on the vertical structure of temperature
and humidity, satellite sounders are generally considered to give the most forecast
impact of any observation type (Joo et al., 2013).

Unlike radiosondes, satellite sounding instruments do not provide direct meas-
urements of atmospheric components, but rather they are sensitive to radiation
emitted and reflected by components of the earth’s atmosphere and surface (scat-
tering processes are not generally important at infrared wavelengths). A radiative
transfer forward and inverse model is required to relate the atmospheric state to the
measurements and vice versa.

Much of the signal in the infrared (IR) part of the electromagnetic spectrum
1the European Centre for Medium-Range Weather Forecasts
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Figure 1.2: The impact of removing respectively aircraft, radiosonde and satellite observations
on ECMWF 200mbar vector wind forecast error from the full data assimilation. This figure is
based on results from Kelly and Thépaut (2007) and was previously published in Collard et al.
(2011).

comes from emission by carbon dioxide and water vapour. Carbon dioxide is well-
mixed in the atmosphere and so the strength of emission by CO2 molecules can
be used to infer information about the atmospheric temperature. Thus channels
that measure close to the spectral frequencies of CO2 absorption lines are generally
referred to as temperature sounding channels. Emission by H2O molecules in the
water vapour band means that close to H2O absorption lines the measurements
are sensitive to the atmospheric water vapour burden. In the window region, where
there is little absorption and emission from atmospheric components, the radiance
measurement is sensitive to the surface emissivity and temperature, and weakly
sensitive to water vapour via continuum contributions. Figure 1.3 illustrates how,
away from the window region, a sounding observation is the sum of emission terms
from each layer of the atmosphere. For cloudy fields of view, much of the spectrum
becomes sensitive to the emission by the surface of the cloud. Correct treatment of
cloudy fields of view is an area of active research, as mentioned in section 2.3.

1.2.1 Hyperspectral sounders

Each channel of an IR sounder has a response to the atmospheric radiation similar
to that shown in figure 1.3. The level that contributes most to the observed signal
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Figure 1.3: An illustration of how an observation made by a sounding instrument is composed
of emission terms from each layer of the atmosphere. The greatest part of the signal comes from
the region where the emission from the larger number of molecules lower in the atmosphere is
balanced by the lower absorption by the atmosphere above the emitting layer. The level that
contributes most to the observed signal depends on the absorption of the atmosphere at the
wavelength considered. This figure was previously published in Collard et al. (2011).
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– the weighting function peak – varies depending on the frequency at which the
channel measures. Close to a strong absorption line, the few molecules that exist
in the upper atmosphere will be enough to saturate the measurement with their
emission. Further from an absorption line the greater mass lower in the atmosphere
will dominate the emission (even though the signal will be attenuated by absorption
in the upper atmosphere). A family of measurements at different frequencies will
thus provide information from different parts of the atmospheric column. The more
measurements at different frequencies, the greater the potential for extracting fine
vertical scale information on the atmsopheric column.

In the last ten years hyperspectral or advanced IR sounders have been launched,
such as the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmo-
spheric InfraRed Sounder (AIRS), that have thousands of high-specral-resolution
channels. The previous generation of IR sounders, such as the High-resolution In-
frared Radiation Sounder (HIRS) had only 20 broad channels spanning up to 30 cm−1.
Figure 1.4 compares the weighting functions of the HIRS temperature sounding
channels with those of the IASI longwave CO2 band. The increased spectral resol-
ution of IASI provides greater vertical resolution because there are many measure-
ments with overlapping weighting functions that span the atmospheric column.

Radiance measurements are usually expressed as top of atmosphere brightness
temperatures for assimilation into NWP models. Figure 1.5 shows a typical bright-
ness temperature spectrum measured by IASI. The range from 645 to 770 cm−1 is
often referred to as the longwave CO2 band, and the region between approximately
1200 and 2000 cm−1 as the water vapour band. The window region, where there
are few strong CO2 or H2O absorption lines, is between 800 and 1100 cm−1. The
region beyond 2200 cm−1 is often referred to as the shortwave infrared in the NWP
community.

Joo et al. (2013) showed that in the Met Office global assimilation, IASI provides
half of the impact of the whole Metop-A satellite, which in turn provides 25% of
the total impact of all observations, more than any other platform or conventional
observation type. Although it is already one of the most important observations
within the assimilation system, IASI might still be under-used because only a few
hundred isolated channels are currently assimilated. This thesis aims to improve
access within the Met Office assimilation scheme to the information contained in
each IASI observation, with particular emphasis on vertical structure information.
The thesis focusses on clear sky assimilation.

The equations of the data assimilation schemes used operationally at the Met
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Figure 1.4: Comparison of HIRS and IASI band 1 weighting functions, with colours being
used simply to differentiate between channels. The weighting function shows the contribution
from each layer of the atmosphere in the vertical to the overal measurement. It is defined as
the derivative of the atmospheric transmittance (tau) with respect to height (z)
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Figure 1.5: A typical IASI brightness temperature spectrum. Marked with red stars are the
operationally assimilated channels from the VAR selection (see appendix E and section 4.3 for
information on this channel selection).
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Office and in this thesis are described in chapter 3. DA schemes are usually based
on optimal estimation theory (e.g. Rodgers, 2000). The analysis generated will only
be optimal if all assumptions made in the underlying theory hold true. Fundamental
to an optimal analysis is that the background and observation error covariance stat-
istics are well-characterised. Until the 1990s, it was common to assilimate column
retrievals of satellite-derived temperature and humidity, but this method relies upon
accurate knowledge of the error characteristics of these retrievals. In some cases re-
trievals may be incestuous if the same weather forecasting model is used to provide
prior information to the retrieval and to the assimilation system, or may have in-
consistencies because of differing assumptions, for example in surface temperature.
In recent times, almost all NWP centres assimilate the radiances directly, using the
radiative transfer model as part of the data assimilation code. Since the operational
use of advanced data assimilation techniques such as 4-Dimensional Variational As-
similation (4D-Var), satellite radiance data from sounding instruments have become
an increasingly important part of the observing system. The error characteristics
of the brightness temperature data still need to be known, but they are generally
less complex and there is minimal danger of correlation between observation and
background errors.

Of equal importance in establishing the correct weighting of observations and
background to produce an optimal analysis is the background error covariance mat-
rix. The form of this is generally estimated using a procedure such as the so-called
National Meteorological Center (NMC) method (Parrish and Derber, 1992) or via
the use of an ensemble forecasting system (e.g. Fisher, 2003). These methods are
usually used to produce a statistical estimate of the error in the background state;
because the true atmospheric state is not known, background errors can only ever
be approximated and may be significantly different from the true errors.

1.3 The purpose and structure of this thesis
Hyperspectral sounders provide huge volumes of data, with a large amount of re-
dundancy between channels. It is not possible for computational reasons to assimilate
all the channels, neither is it desirable because of the inefficiency of extracting a few
tens of pieces of NWP information from several thousand channels. The purpose of
this thesis is to establish the information content of IASI within the current assim-
ilation system with particular reference to vertical structure, and then investigate
how the information could be extracted from the observations more efficiently, so
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that the maximum information can be extracted with the minimum computational
effort. The focus is on clear sky situations.

One way this could be done is via principal component (PC) compression, where
the observations are projected onto orthogonal vectors, and sorted by eigenvalue. The
components with the lowest eigenvalues generally show no coherent spatial pattern
and contain most of the random measurement error. These can be removed leaving
the atmospheric signal represented in only a few hundred scores. The use of PC
scores requires new methods to deal with cloudy atmospheres. Current assimilation
schemes for hyperspectral sounders use channels above a diagnosed cloud top, for
which the effects of the cloud below can be sufficiently well modelled by a simple
grey cloud assumption. This technique does not work well with PC scores, as each
component is sensitive to most of the atmospheric column, whereas the original
channels have much more localised weighting functions.

An alternative technique is to reconstruct the noise-reduced spectrum from the
PC scores: theory shows that it should be possible to find a set of these reconstructed
radiances that contain the same information content as the set of PC scores from
which they were calculated, and in the same number of channels as PC scores. The
specific aim of this thesis is to investigate the potential of reconstructed radiances in
a clear sky assimilation setting, and to find a set of reconstructed radiance channels
with the maximum possible information content to be used in an operational setting.

A further aim is to investigate the potential effects of an incorrectly specified
background error covariance structure. One possible outcome of this suboptimal
system is that the analysis may have larger errors than the true background error.
The final part of this thesis investigates whether increasing the weight given to the
observations by presenting them in a more information-dense format increases the
likelihood of degrading the analysis, or on the contrary provides some protection.

Chapter 2 presents the IASI instrument, its use in NWP, and main areas of
current research that will enable better use of the instrument. Chapter 3 presents the
equations of data assimilation, and discusses the main features of the implementation
of 4D-Var at the Met Office, including the background error term. The optimal
1D linear analysis and experimental 1D-Var framework used in the thesis are then
described.

Chapter 4 assesses the information content of the current assimilation system,
using an adjoint-based technique to establish the pattern of information delivered
by the observations. Information content measures are then used to determine how
much extra information it may be possible to extract from the observations over the
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current channel selection. Chapter 5 then predicts the impact of the assimilation of
the current IASI channel selection using optimal analysis equations, and compares
the prediction with the performance in a 1D-Var simulation experiment.

The next four chapters discuss principal component compression and radiance
reconstruction. Chapter 6 introduces the theory and discusses the characteristics of
the reconstructed radiance observation error covariance matrix. The extra errors in-
troduced by assimilating reconstructed radiances with a raw radiance forward model
are presented. Chapter 7 describes a method for selecting channels appropriate for
use with reconstructed radiances, and shows the estimation of the observation error
covariance matrix, which is a necessary precursor, using the observational method
of Hollingsworth and Lönnberg (1986). Chapter 8 then compares the information
content of several different channel selections produced using this method and the
mathematical stability of the resultant observation error covariances. Chapter 9
tests the use of reconstructed radiances and principal component scores in a 1D-Var
simulation framework.

Chapter 10 demonstrates the effect of misspecified background error on the ana-
lysis, and examines whether the use of more spectral information is likely to make the
analysis more or less robust to this misspecification. Finally, chapter 11 presents the
conclusions of this thesis and examines ways in which the work could be extended.
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Chapter 2

The Infrared Atmospheric Sounding
Interferometer

IASI is the first operational IR interferometer on a weather satellite, providing in-
formation on atmospheric temperature, water vapour content, ozone and trace gas
concentrations. It is mounted on EUMETSAT’s1 polar orbiting satellites, the first
of which (Metop-A) was launched in October 2006 and the second (Metop-B) in
September 2012. The final IASI instrument is planned to be launched on Metop-C
in 2018. The observations from IASI are used operationally at the Met Office to
improve the knowledge of temperature and water vapour. Section 2.1 describes the
Metop satellite, and section 2.2 describes the IASI instrument and its observations
in more detail. Section 2.3 describes the current status of the science of IASI as-
similation at the Met Office and other operational NWP centres, and section 2.4
highlights some important future instruments that will potentially benefit from the
work carried out in this thesis.

2.1 The Metop satellites
The Metop satellites form Europe’s contribution to the Initial Joint Polar System
(IJPS) – a collaboration between EUMETSAT and the US National Oceanic and
Atmospheric Administration (NOAA). The IJPS provides operational global cov-
erage of critical meteorological observations via low-earth orbiting satellites in two
sun-synchronous orbital planes. Metop-B provides coverage in the morning orbit,
with a local equator crossing time of 09:30 for the descending node. The afternoon
orbit is served by NOAA satellites, with the current operational satellite being the
Suomi-NPP satellite. Coverage is extended by providing data from older satellites
that are still functioning, such as Metop-A and NOAA-19.

IASI is one of eight meteorological instruments on board Metop; the other in-
struments are shown in table 2.1. Of these, the microwave and infrared sounding
radiometers (AMSU, MHS and HIRS), the ASCAT scatterometer, and radio oc-

1the European Organisation for the Exploitation of Meteorological Satellites
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Instrument Name Instrument Type Main Purpose

IASI Infrared Atmospheric
Sounding Interferometer

IR interferometer Atmospheric temperature
and humidity profiles; trace
gases

AMSU Advanced Microwave
Sounding Unit

Microwave
radiometer

Atmospheric temperature

MHS Microwave Humidity
Sounder

Microwave
radiometer

Atmospheric humidity

HIRS High-resolution InfraRed
Sounder

IR radiometer Upper tropospheric and
stratospheric temperature;
tropospheric humidity

GRAS Global Navigation
Satellite System (GNSS)
Receiver for Atmospheric
Sounding

Radio Occultation
receiver

Upper-atmosphere
temperature and humidity

ASCAT Advanced
SCATterometer

Pulsed radar Ocean surface windspeed
and direction

GOME-2 Global Ozone Monitoring
Experiment-2

Nadir Ultraviolet/
Visible
Spectrometer

Ozone

AVHRR Advanced Very High
Resolution Radiometer

IR/Visible imager Sea surface temperature;
Cloud and surface
properties

Table 2.1: The meteorological instruments on the Metop satellite platforms. More details of
the instruments can be found in Klaes et al. (2007).

cultation (GRAS) observations are assimilated operationally into the Met Office
analysis. The visible and infrared imagery provided by the AVHRR instrument is
used by forecasters, but also forms an important part of the ground-segment pro-
cessing of IASI data as described in section 2.2.

2.2 The IASI Instrument
The primary purpose of IASI is to provide high-resolution atmospheric sounding in-
formation. Mission accuracy requirements were stated as 1K in the free troposphere
for temperature and 10% for humidity, for a vertical resolution of 1 km (Chalon
et al., 2001). The instrument capabilities allowed pre-launch specification of trace
gas total column products for CO2, O2, N2O, CO and CH4.

The IASI instrument (Siméoni et al., 1997) was developed by the Centre Na-
tional d’Études Spatiales (CNES) in cooperation with EUMETSAT, and was built
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Figure 2.1: Diagram of the IASI instrument. This figure was previously published in Hilton
et al. (2012a).

by ThalesAleniaSpace. It is a nadir-viewing cross-track scanning Michelson inter-
ferometer which covers the range 645–2760 cm−1 (3.8–15.5 µm ) with 8461 spectral
samples (usually referred to as channels) at 0.25 cm−1 intervals. Figure 2.1 is a dia-
gram of the IASI instrument. It is the first operational instrument of its kind.

The instrument’s scan geometry relative to the path of the satellite is shown in
figure 2.2. IASI has a total of 30 ground fields of regard (FOR) per scan. One FOR
measures a 25 km by 25 km area containing a 2×2 array of footprints (often referred
to as pixels), each of which is circular with a 12 km diameter at nadir. The spectrum
is measured in three wavelength bands each of which has a separate detector, with
approximate coverage as follows: Band 1 – longwave CO2 and window regions; Band
2 – water vapour band; Band 3 – shortwave.

The raw measurements obtained by the instrument are interferograms which are
processed to radiometrically calibrated spectra on board the satellite using two cal-
ibration views, which can be identified on figure 2.1 as the first Cold Space (CS1)
view and the internal Black Body (BB) view. The observations are further processed
by the EUMETSAT ground segment, to deliver 8461 apodised radiances (known as
the Level 1c or L1c product) to the end user. The apodisation function renders a
Gaussian instrument spectral response function (SRF) of half-width 0.5 cm−1. The
advantage of the apodisation function is to remove long-range lobes from the sinc
function of the inverted interferogram, improving signal to noise ratio and simpli-
fying radiative transfer, but at the expense of widening the main spectral response
of each measurement. This introduces significant correlation to adjacent channels
because the SRF half-width is twice that of the spectral sampling interval. Most
NWP centres try to avoid these correlations by picking sparse channel selections
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Figure 2.2: Illustration of the scan geometry of the IASI instrument, showing the four footprints
within each of 15 fields of regard either side of the path of the satellite. This figure was
previously published in Hilton et al. (2012a).

that avoid adjacent channels where possible.
The radiometric noise performance, in terms of noise-equivalent brightness tem-

perature at 280K is close to 0.16K for most of the tropospheric temperature sound-
ing channels of the longwave CO2 band and 0.1–0.12K for much of the water vapour
band, which equates to 0.16K and 0.2–0.4K respectively at standard scene tem-
perature. As described in section 1.1, the high spectral resolution provides channels
with highly overlapping response to changes in the atmospheric profile, and the large
number of these overlapping channels results in higher resolution profile information
than is possible with instruments with fewer channels.

The IASI interferometer has an associated imager, the Integrated Imaging Sub-
system (IIS), which is used to co-register the interferometer footprints with Metop’s
Advanced Very High Resolution Radiometer (AVHRR) imager. Provided with the
IASI radiances is information derived from the AVHRR observations within each
IASI pixel, which helps to characterize the heterogeneity of the scene, including the
cloud fraction. This information can be used to help with data selection (thinning),
and is used at the Met Office to select one out of four pixels corresponding to the
most homogeneous scene for storage and onward processing.

The IASI instrument characteristics, performance and major scientific achieve-
ments delivered with its data are reviewed in Hilton et al. (2012a). In brief, the
stability, good radiometric calibration and characterisation of IASI have resulted in
an instrument ideally suited to NWP, where reliable data is of great importance.
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The instrument has proved to have greater capabilities than expected in the field of
atmospheric chemistry, and its data will form a valuable part of the climate record.
The current status of the use of IASI for NWP is described in the next section.

2.3 The use of IASI in NWP
IASI radiances, generally expressed as brightness temperatures, are assimilated op-
erationally at the majority of worldwide NWP forecast centres with advanced data
assimilation schemes such as 4D-Var. IASI retrievals are used by several nowcast-
ing (very short-range forecasting) applications. The large number of channels, high
spectral resolution and low radiometric noise of IASI mean that much more inform-
ation about the atmospheric structure is available than from previous operational
sounders (Prunet et al., 1998; Collard, 1998). With improvements in the vertical res-
olution of forecasting models, the higher resolution information from IASI spectra
is becoming increasingly important.

2.3.1 The status of operational assimilation schemes

Tests of the performance of IASI within forecasting systems have shown positive
impact at least as great as for any previously introduced new instrument (Hilton
et al., 2009a; Collard and McNally, 2009; Hilton et al., 2009c). Strong impacts
have been found on geopotential height and mean sea-level pressure, among other
variables, out to 5-6 days forecast lead time. The impact scores in global models have
been particularly impressive because IASI is assimilated into a system which at the
time was already very well observed by sounding data, with 10 microwave and 5
additional infrared sounders. IASI observations are increasingly used in limited area
models, and have shown positive impact, including on forecasts of precipitation, in
convective-scale models with 1.5–2.5 km horizontal resolution (Guidard et al., 2010).

Current operational assimilation schemes for IASI are conservative. They use up
to only 200 channels, carefully chosen from the spectrum to maximize the inform-
ation content of the observations, using methods such as those of Collard (2007).
Operational timing constraints mean that assimilating many more channels is too
computationally expensive. Chapter 4 discusses the information content of such a
channel selection versus the full spectrum. Observations are also typically thinned
out to minimise correlations of their errors in the horizontal domain. At the Met
Office, one observation in four (the most homogeneous pixel from each field of re-
gard) is processed via a 1D-Var scheme for quality control and retrieval of quantities
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required in radiative transfer but not available in 4D-Var. After the 1D-Var step,
further thinning takes place to reduce the observation density to 1 observation per
80 km in the extra-tropics and 1 observation per 154 km in the tropics.

Most centres assimilate channels where the effect of cloud in the field of view
can be simulated using a simple cloud model. A common technique is to assimilate
channels with weighting functions that peak above a diagnosed cloud top, and at
the Met Office, channels with less than 10% of their contribution from below the
cloud top are used (Pavelin et al., 2008). Research is ongoing into more advanced
use of cloud affected radiances that would allow IASI to influence analyses of cloud
ice water and liquid water; early results show promise (Martinet et al., 2013).

Observations are typically assimilated over the sea surface by all centres, but
treatement over sea ice and land surfaces vary. The Met Office scheme uses data over
land, with spectral surface emissivity components and skin temperature retrieved
during a 1D-Var pre-processing step (Pavelin and Candy, 2013). This is only done at
night time because land surface temperatures are too much in error during the day to
allow reasonable forward modelling of observations. Observations are not assimilated
over sea ice. At ECMWF and Météo-France, observations are assimilated over sea
ice but not over land.

Water vapour

The assimilation of most sources of satellite sounding data usually has little effect
on humidity profiles in the boundary layer or on fine vertical structures. There
are numerous factors which make assimilation of humidity information difficult,
such as: ambiguity arising from water vapor channel sensitity to both temperature
and humidity; non-linearity of the radiance response to the amount of water vapor
present; and high spatial variability of the water vapor concentration. These issues
make it a challenge for linear assimilation algorithms to handle the observations
correctly if the model state is too far from the true atmospheric state.

At present, only a few (<40) IASI channels sensitive to water vapour molecules
can generally be assimilated in NWP systems before the fit of the model to other
observations and the numerical stability of the assimilation algorithm suffers (res-
ulting in non-convergence or giving physically unrealistic values). To enable their
assimilation, humidity sounding channels are usually assumed to have much larger
errors than can be attributed to the instrument noise, and this restricts their im-
pact on the humidity profile. The initial assimilation experiments for IASI in 2007
showed that the 31 water vapour channels provided only a 17% increase in impact
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versus observations when added to the 107 temperature sounding channels. How-
ever, recent results at the Met Office with the Cross-track Infrared Sounder (CrIS)
on Suomi-NPP, an instrument producing similar data to IASI, have been more pos-
itive. Adding 44 water vapour channels to a baseline of 85 temperature sounding
channels trebled the impact of CrIS when verified against conventional observations
(Smith et al., 2015) (although it should be noted that the overall impact from IASI
was much greater than that seen in the CrIS experiments). It is likely that incorrect
observation error covariance matrices play an important part in the problems with
assimilation of water vapour assimilation. This is discussed further in 2.3.2.

Ozone

Many NWP models now contain limited modelling of ozone for air quality fore-
casting, improved upper atmosphere winds through correlations with atmospheric
dynamics, and improved radiative heating rates. Ozone is also important to the as-
similation system, as many infrared channels that could be used for temperature
sounding are weakly affected by the gas. Han and McNally (2010) report on the
assimilation of IASI channels at the frequencies of strong ozone absorption lines.
IASI observations, which have the advantage that they can be used to estimate
ozone quantities at night, were found to have as strong an impact on the system
as dedicated visible and ultra-violet ozone instruments, and the assimilation of the
IASI ozone channels greatly improved the fit to stratospheric temperature sounding
channels. Ozone is not an active variable in the Met Office 4D-Var at the present
time.

2.3.2 Observation errors

One of the major conclusions of the 2009 ECMWF/EUMETSAT NWP-SAF “Work-
shop on the Assimilation of IASI in NWP” was that observation errors for hyper-
spectral sounders are not well characterised, and that it was not clear that they can
be estimated with sufficient accuracy to ensure an optimal analysis (Garand et al.,
2009). However, Bormann et al. (2010) and Stewart (2010) began to address ways
of estimating the form of the observation error covariance structure for satellite ra-
diances and its influence on the optimality of the NWP analysis. In 2013, during
the course of this thesis, the Met Office implemented a diagnosed error covariance
matrix for IASI assimilation Weston et al. (2014). The new error covariance mat-
rix gave more weight to the observations because the diagonal no longer required
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inflation to compensate for missing off-diagonal elements, yielding positive forecast
benefit. This implementation paves the way for the assimilation of reconstructed ra-
diance observations, which have a highly non-diagonal instrument noise covariance
structure.

2.3.3 Current areas of research for IASI assimilation in NWP

There are four main areas of research being pursued by NWP centres at the present
time relating to the assimilation of IASI observations:

• Extracting more information from the spectrum
• Improving assimilation in cloudy areas
• Increasing data coverage over non-sea surfaces
• Using the data in high-resolution limited area models

Extracting more information from the spectrum

This thesis addresses the first of these areas of research: how can we use more inform-
ation from the IASI spectrum, improving vertical resolution, without significantly
increasing computational costs. Although the IASI spectrum contains far fewer than
8461 pieces of information because of strong correlations in the spectral response
of many channels, by using less than 2% of the spectrum, as in current channel
selections, the information content is reduced (see chapter 4). (It should be noted
that even if there were 8461 pieces of information, unless the NWP profile consisted
of 8461 uncorrelated variables and each channel was entirely independent, we could
not hope to extract all of the information from the observation anyway.)

Principal component analysis (PCA) has received a great deal of attention as
a means for compression of hyperspectral data and in NWP-related retrieval al-
gorithms (e.g. Aires et al., 2002; Antonelli et al., 2004; Liu et al., 2007; Masiello
et al., 2012). The theory is explained fully in chapter 6, but in summary PCA ex-
ploits the redundancy of information in a data set by performing a transformation
to a new, uncorrelated set of variables (the PCs) where the first PC represents the
spectral feature with the most variance, the second PC represents the feature with
the second most variance and so on. Retaining just the first few hundred components
preserves the majority of the spectral information, and the remaining components,
consisting mostly of random instrument noise, may be discarded without significant
loss for many applications. There are difficulties in the practical use of PCs (Collard
et al., 2010), but their limited use has been demonstrated in an operational context
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at ECMWF (Matricardi and McNally, 2014). This technique is explored briefly in
chapter 9. An alternative is to reconstruct radiances from the PC scores, theoret-
ically retaining the information content of the PCs themselves, but in a format for
which quality control is easier to approach. This approach is explored in chapters 6
to 9.

Critical to maximising the information content will be to handle the error cor-
relations between the channels correctly and thus the assimilation of compressed
radiances relies heavily on the recent advances in this area both at the Met Office
(Weston et al., 2014) and at ECMWF (Bormann et al., 2010) using observation-
forecast and observation-analysis differences to derive diagnostic error covariance
matrices.

Improving assimilation in cloudy areas

Cloudy data assimilation is currently only reliable in cases where a single layer
grey cloud is a good approximation. The ability to analyse complex multi-layer
cloud situations correctly is an active area of research. Work is also ongoing to
develop more advanced schemes to make better use of cloud-affected data (e.g.
Stengel et al., 2010; Guidard et al., 2010), but significant progress in this area is
reliant upon developments in data assimilation schemes, radiative transfer models
and NWP models themselves. Recent work by Martinet et al. (2013) has shown
an encouraging start to the use of IASI observations to provide information to the
assimilation system on hydrometeor profiles (in this case cloud liquid water and
cloud ice) by adding in channels additional to the basic channel selection that help
to differentiate these quantities. Ensemble data assimilation techniques may provide
new opportunities to develop cloudy assimilation schemes.

Increasing data coverage over non-sea surfaces and using the data in
high-resolution limited area models

Current data usage in the polar regions and large parts of the northern hemisphere
is still rather low, owing to lack of knowledge of the surface properties over land and
sea ice; progress in this area is being aided by the development of surface emissivity
atlases.

The majority of NWP centres run limited area models (LAMs) covering their
own country in greater detail than is possible in the global model. These LAMs
usually contain a significant proportion of land points, so improving knowledge of
non-sea surface properties is important to be able to use the observations effect-
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ively. However, there are other significant challenges in using satellite data in these
models, for example: the tops of the models are often much lower than is necessary
to accurately forward model the observations; the model grid size is considerably
smaller than the observation footprint and the data assimilation systems may have
fundamental differences that filter out information on scales to which the instrument
is sensitive.

2.4 IASI-NG, MTG-IRS and other future
instruments

IASI was the first operational hyperspectral infrared sounder. The newer CrIS instru-
ment is technologically similar, although it has broader spectral response functions
and lacks full spectral coverage, so the data volumes are somewhat smaller than for
IASI. The implementation of CrIS in NWP leans heavily on experience with IASI,
which in turn followed experience with the research instrument AIRS (a grating
spectrometer, but providing similar data to IASI and CrIS). It is important that
we learn to maximise our use of these data over the next few years, because future
instruments benefitting from technological advances will provide opportunities for
new science, but present even greater challenges to NWP systems in terms of data
volumes.

The EPS satellite programme currently has two Metop satellites in space, and
the third and final satellite, Metop-C, will be launched in 2018. EUMETSAT are in
the process of commissioning the EPS-Second Generation (EPS-SG) satellites, which
will follow on from 2021. One of the crucial instruments for the EPS-SG satellite
series will be a follow-on instrument to IASI, known as IASI-Next Generation (IASI-
NG). The instrument specifications for IASI-NG require a factor of 2 increase in
spectral resolution, and a factor of 2–4 increase in radiometric resolution. The main
driving application for the increase in spectral resolution is atmospheric chemistry,
as the new instrument will allow better definition of absorption lines, and thus better
detection of weakly absorbing trace gas species.

For NWP, the major advancement will be in the improvement in radiometric
noise, giving greater weight to the observations in the analysis if they are used
correctly. There may be some further improvements from the increased spectral
resolution, but since the CO2 and H2O lines are already well-resolved by IASI,
this is likely to be a second-order improvement. On the other hand, the halving
of the spectral resolution will result in a doubling of the number of channels. If
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we were to continue with the way in which we use the IASI spectrum, this would
mean assimilating around 1% of the channels, and a significant loss of spectral
information. It is therefore vital that we use IASI to learn how to condense the
spectral information into a form which can be handled computationally by NWP
systems.

EUMETSAT also have a geostationary satellite programme, and the development
of the next generation of geostationary satellites, Meteosat Third Generation (MTG)
is also under way. The satellites will have on board an infrared interferometer, the
Infrared Sounder (IRS). Whilst lower in spectral resolution than IASI and without
full spectral coverage, the IRS will generate vast data volumes (2500 spectra per
second compared with 15 for IASI). It is already planned to use PCs to compress
the spectra in order to reduce data volumes for dissemination, so understanding the
implications of this process through experience with IASI will help to plan for the
use of IRS data from 2020 onwards.

The US Satellite programme has undergone significant changes over the last
ten years, and reorganisations and changes in funding allocation have resulted in
significant delays to the Joint Polar Satellite Systems (JPSS) satellite program. The
Suomi-NPP satellite has now become the first operational satellite of the JPSS
series, and the future JPSS satellites also carry CrIS. It is anticipated that post-
JPSS satellites will also carry hyperspectral IR sounders of similar specification to
IASI-NG.

The Chinese Meteorological Agency’s satellite programme is advancing at a great
rate, and the FY-3D polar orbiting satellite, to be launched in 2015 will carry an IR
interferometer. In addition the FY-4 satellite series, of which the first is due to be
launched in 2016 will likely carry the first operational IR interferometer in geosta-
tionary orbit. The Russian meteorological satellite agency, RosHydroMet also plan
to put interferometers into polar and geostationary orbit within the next five years.
The World Meteorological Organisation’s “Vision for the Global Observing System
in 2025” calls for a hyperspectral IR sounder on each of a ring of six geostationary
satellites, and on polar orbiting satellites in three sun-synchronous orbits.

2.5 Summary
IASI and other hyperspectral sounders have been shown to provide significant impact
to NWP. The current assimilation schemes are conservative and by improving access
to data over land and sea ice and in cloudy conditions, we may begin to exploit
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the observations more fully. There are further gains to be made by using more
of the observed spectrum: current assimilation schemes use less than 2% of the
channels. The work presented in this thesis addresses the exploitation of the spectral
information from IASI.

It is clear that hyperspectral infrared sounders will form an important part of
the observing system for NWP in the coming decades. It is therefore important that
we begin to make significant progress in exploiting these observations to extract the
maximum benefit from their assimilation in the most efficient manner possible.
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Chapter 3

Data Assimilation

As described in chapter 1, observations play a critical role in the production of NWP
forecasts. The role of data assimilation is to find the best possible representation of
the atmosphere from which to start the forecast runs, combining observations with
prior information (the background). This statistically optimal estimate is referred
to as the analysis, and in global DA is usually calculated four times a day with
six-hour batches of observations. The NWP model is run forward from the analysis
to produce forecast products and also the background state for the next DA cycle.

The background is a short-range forecast of the three-dimensional atmospheric
state represented on some kind of grid; for global NWP models, a 6 hour forecast is
usual. The background is usually already a very good estimate of the atmospheric
state and contains a weighted average of information from observations gathered
over approximately the previous three to ten days (Fisher and Auvinen, 2011; Fisher
et al., 2006). Data assimilation is more than an exercise in interpolation, because the
model state is already fairly accurate and the observations have errors associated
with them. Large data gaps may exist (for example over sparsely populated land
masses and in polar regions) and it is necessary for the analysis to be a smooth field
without any gaps or abrupt changes in properties. Furthermore, the variables that
make up the atmospheric state are not independent from each other, but instead are
related by the equations of atmospheric physics, and these relationships must hold
in the analysis.

One of the most common DA techniques used in operational meteorology is
variational analysis (Var), which is the current formulation of the Met Office data
assimilation system and will be discussed in the next section. An alternative family of
methods based on approximating the Kalman filter (Kalman, 1960) with ensemble-
based forecasting systems (the Ensemble Kalman Filter, or EnKF, described by
Evensen, 2007) have become more prevalent in recent times. Most NWP centres,
including the Met Office, are now moving towards combining EnKF based systems
with Var: a review of these methods will be given in section 3.7.
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3.1 Variational assimilation theory
A good background to variational assimilation is given in Daley (1991) and Kalnay
(2003), in which all of the equations presented in this section are fully derived
starting from Bayesian statistics. Much of data assimilation theory is the same as
retrieval theory and the equations of DA are related to those presented in Rodgers
(2000), but the notation of Ide et al. (1997) is generally used for DA.

The analysis state sought by the DA algorithm is an optimally weighted average
of the background and observations. The basis for both Var and the Kalman filter
approach is Bayesian statistics and conditional probability. The Var scheme finds the
maximum a posteriori (MAP) solution, in other words the most likely representation
of the state of the atmosphere given the observation and the prior information
(background). If x is the state of the atmosphere, and superscripts b and a define
the background and analysis respectively, the probability density function (pdf) of
the analysis (referred to as the posterior pdf, P a), given the observations is:

P a(x|yo) ∝ P (yo|x)P b(x) (3.1)

where yo are the observations and P b is the pdf of the prior state, i.e. the background.
Full derivations are given in the standard texts, but assuming that the pdfs can be
modelled by a mean and covariance (it is usual to assume a Gaussian distribution),
the probability can be evaluated as follows:

P a(x|yo) ∝ e−
1
2 (x−xb)TB−1(x−xb)− 1

2 (y−yo)TR−1(y−yo) (3.2)

where y is the model prediction of the observation. The weights given to the in-
formation contained in the prior state (the background) and in the observations
are inversely proportional to the error covariance in those quantities, respectively
B and R, much as in a simple least squares fit. The maximum likelihood solution
is equivalent to the minimum variance solution under the assumption of Gaussian
errors.

Var finds the most likely state of the atmosphere to fit these conditions by min-
imising a cost function, J , that is the logarithm of equation 3.2:

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(y− yo)TR−1(y− yo) (3.3)
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3.2 3D-Var
3D-Var finds the global atmospheric state that best fits the full set of observations
simultaneously. Although still in use for operational NWP, usually for cost reasons
and especially for convective scale model configurations, the main disadvantage of
3D-Var is that although observations are spread out in time throughout the assim-
ilation window, the background errors, B, are fixed at analysis time, usually the
mid-point of the assimilation window. Also, the model equivalent observations, y,
are calculated from a model state at the analysis time (unless the incremental for-
mulation described in section 3.4 is used). 4D-Var (section 3.3) is preferred because
it extends the equations to take account of the model trajectory over the assimil-
ation time window and evolves B along this trajectory. The equations of 3D-Var
provide the starting point, and are particularly relevant to this thesis because they
also describe the single column equivalent, or 1D-Var, which is used in this work
(section 3.8).

In order to calculate the observation departures, y−yo, the model state x needs
to be interpolated to the observation location. For many observation types the ob-
servation is not directly sensitive to model variables and a forward model, H(x), is
needed to carry out these operations:

y = H(x) (3.4)

For satellite radiances this incorporates a radiative transfer model such as RTTOV
(Saunders et al., 2010). The cost function, equation 3.3, is now written:

J(x) = 1
2(x− xb)TB−1(x− xb) + 1

2(H(x)− yo)TR−1(H(x)− yo) (3.5)

The left-hand term of equation 3.5 is known as the background penalty, J b, and
the right hand term is the observation penalty, Jo. The solution is found by iterating
numerically towards the minimum of the cost function using the gradient, which is
zero at the minimum:

∇xJ(x) = B−1(x− xb) + HTR−1(H(x)− yo) (3.6)

where H is the gradient of the observation operator, H(x).
A numerical iterative method is used to approach the minimum of the cost

function. A conjugate gradient method (Fisher, 1997) is currently used in global
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4D-Var at the Met Office, and the quasi-newtonian L-BFGS1 method is used in the
UK variable resolution (UKV) configuration 3D-Var: these are described in Payne
(2007). This enables the assimilation problem to cope with a degree of non-linearity,
as H can be recalculated during the descent. If the forward model is linear such that

H(x) = H(xb) + H(x− xb) (3.7)

and assuming the variational algorithm iterates to the optimal (minimum variance)
solution, an expression for the analysis, xa, can be obtained by setting equation 3.6
equal to 0:

xa = xb + K(yo −H(xb)) (3.8)

where:

K = (B−1 + HTR−1H)−1HTR−1 (3.9)

K is the optimum weight matrix, also known as the Kalman gain, and can be
equivalently formulated:

(B−1 + HTR−1H)−1HTR−1 = BHT(R + HBHT )−1 (3.10)

The analysis error of the linear minimum variance formulation is given by:

A = (I−KH)B(I−KH)T + KRKT (3.11)
= (I−KH)B

A can also be derived using the following formula, which demonstrates clearly that
A is equivalent to the result of a least-squares fit between two parameters:

A−1 = B−1 + HTR−1H (3.12)

The equations The 3.8 to 3.12 are of little practical use for a full NWP model
with a billion degrees of freedom because the matrix manipulation is impossible for
a system of that size (see section 3.5.2), but are often used in analysis of 1D-Var
problems. Section 3.8 describes how they are used in chapters 5, 8 and 10 to examine
the impact of IASI observations in various 1D-Var configurations, as a predictor for

1limited memory Broyden-Fletcher-Goldfarb-Shanno
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behaviour in 4D-Var.

3.3 4D-Var
The 3D-Var cost function, equation 3.5, and its gradient, equation 3.6, can be exten-
ded to take account of the evolution of the modelled atmospheric state throughout
the assimilation window. The background and analysis are typically defined at the
start of the assimilation window, time t0, but the observation departures are calcu-
lated at the time of the observation by propagating the latest guess, xt0, with the
NWP model, M :

x = M(xt0) (3.13)

The underline symbol is used to incorporate a time dimension into the vector to
denote a 4D field. Extending H(x) slightly to include a time interpolation because
the model state is usually sampled at intervals throughout the time window, the
cost function now becomes:

J(xt0) = 1
2(xt0 − xbt0)TB−1(xt0 − xbt0) + 1

2(H(x)− yo)TR−1(H(x)− yo) (3.14)

Note that the underline symbol is also added to the observation vectors, to make
it clear the the observations are spread through the assimilation window. The cost
function gradient now becomes:

∇xt0J(xt0) = B−1(xt0 − xbt0) + MTHTR−1(H(x)− yo) (3.15)

where M is the gradient of the model,M , and MT represents its adjoint. The adjoint
is used to evolve the weights given to the observations backwards in time to generate
increments at the start of the assimilation window and thus calculate the analysis
at t0.

Although the subscript t0 is used in equations 3.14 and 3.15 to indicate the start
of the assimilation window, from this point on the subscript will mostly be omitted
for brevity.
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3.4 Incremental 4D-Var
In practice, NWP centres adopt a formulation known as incremental 4D-Var. Rather
than solving for the full atmospheric state, the solution is found for the departure
of the analysis state from the background, in other words, for a model perturbation.
The behaviour of this perturbation is assumed to be linear for small departures,
and its evolution in time is represented by a linear model. A full derivation of this
approach, also known as statistical 4D-Var, is given in Lorenc (2003). The main
features of the approach are summarised below.

For deterministic 4D-Var, time evolution is accounted for by the NWP model
and, in theory, this should be used with its full adjoint to evolve the pdf of the
background state in time through the assimilation window. This is not at all prac-
tical, and so in general a linear model is used in 4D-Var to evolve the perturbations.
This is usually a linearised approximation of the full NWP model known as the
tangent linear model, and is generally run at a lower resolution than the full NWP
model. The model is linearised about a series of short range forecasts from the full
NWP model, known as linearisation states, distributed throughout the assimilation
window, which act as coefficients for the tangent linear model.

The equations of incremental variational analysis are equivalent to those presen-
ted in section 3.3, but are now expressed as a function of model perturbations away
from xg, where the superscript g indicates that this state is our current best guess of
the atmospheric state. The perturbation is written δx = x−xg (defined at the start
of the assimilation window), along with the background increment, δxb = xb − xg,
and equation 3.5 is rewritten:

J(δx) = 1
2(δx−δxb)TB−1(δx−δxb)+ 1

2(H(xg)+Hδx−yo)TR−1(H(xg)+Hδx−yo)
(3.16)

and

∇δxJ(δx) = B−1(δx− δxb) + MTHTR−1(H(xg) + Hδx− yo) (3.17)

Note that the gradient or Jacobian of the forward model, H, is used to propagate
the increment here, along with adjoint of M, the tangent linear model. At the start
of the minimisation, xg is normally equal to xb. It is updated following an outer loop
cycle, as explained in the next section.
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3.4.1 Inner and outer loops

Incremental 4D-Var only finds a solution within the bounds of the linear model
used to propagate the increments. It is possible to allow for some non-linearity in
the progress towards the analysis by re-linearising the tangent linear model every
few iterations. The minimisation of the cost function is performed via the linear
inner loop but an outer loop can be run, where xg is recalculated by running the
full NWP model from the updated model state calculated at the end of the inner
loop, i.e.

xg = M(xgt0) (3.18)

Rather than recalculating the observation departure from the current state for
every iteration of the inner loop, the observation departure from the guess, do, is
usually calculated before the inner loop:

do = yo −H(xg) (3.19)

During the inner loop, the tangent linear model is then used to propagate only the
increment forward through the assimilation window:

δx = M(δxt0) (3.20)

and this is acted upon by the forward model Jacobian to give the observation penalty,
Jo, and its gradient:

Jo(δx) = 1
2(Hδx− do)TR−1(Hδx− do) (3.21)

and

∇δxJ
o(δx) = MTHTR−1(Hδx− do) (3.22)

The incremental formulation can also be applied to 3D-Var. This enables better
use of the observations, as equation 3.19 can be used to provide the first guess at
the appropriate time (this system is thus known as 3D-Var FGAT).

3.4.2 Theoretical justification for incremental 4D-Var

Lorenc and Payne (2007) provide a theoretical justification for incremental 4D-
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Var in its own right, rather than being simply an approximation to deterministic
4D-Var. The deterministic equations presented in section 3.3 find the most likely
solution to a linear approximation to the full problem, because the model error
evolution and observation operator evolution are assumed to be linear. In reality,
even though the starting assumption is that the background errors are Gaussian,
the model is non-linear, so the final pdf is non-Gaussian and the most likely solution
will not be the best solution by any mathematical definition. In the incremental
implementation, the mean of the background error pdf is evolved using the full non-
linear model, and the linear model provides the best estimate of the variation about
this mean. The incremental 4D-Var analysis thus finds the most likely solution (i.e.
the mode) of a simplified pdf, but with the correct mean. Because the final pdf
remains Gaussian, the mode of the analysis error pdf is also the mean. Furthermore,
the linear approximation can be designed to filter the analysis to include only scales
that behave close to linearly. The Met Office implementation of 4D-Var does this
using a linear model of reduced complexity, as described in section 3.5.

3.18 to 3.21 show that in incremental 4D-Var the linear model is only used for
calculating the analysis corrections to the current guess, but not in the evaluation
of the full guess trajectory. The linear model can be seen as a way of propagating
the background pdf into four dimensions. In other words, the time evolution of the
atmospheric state is calculated using the full model, whilst only the evolution of the
error covariances uses the linear model.

Propagating the error covariances using a model means that the analysis is con-
strained by the relationships that are contained within the model: this is known as
using the model as a strong constraint on the solution. If model error is incorporated
into the equations, the solution is no longer required to fit the model exactly, and the
formulation is known as weak constraint. However, model error is very poorly un-
derstood, and in practice grows slowly enough over the six hour assimilation window
that it is usually neglected.

3.5 The Met Office 4D-Var
This section describes the way in which incremental 4D-Var is implemented at the
Met Office. There are a few key differences relative to other centres, which are
described in sections 3.5.1 and 3.5.2. Section 3.5.3 then describes the control variable
transform that in turn explains how the background errors are modelled in the
operational system.
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3.5.1 Inner and outer loops, and the observation operator

Most NWP centres formulate the inner loop as described in 3.19 to 3.22. At the
Met Office, the inner loop incorporates a non-linear observation operator, to give
the following Jo and gradient terms:

Jo(δx) = 1
2(H(δx + xg)− yo)TR−1(H(δx + xg)− yo) (3.23)

and

∇δxJ
o(δx) = MTHTR−1(H(δx + xg)− yo) (3.24)

Although this increases the cost of the inner loop slightly because the non-linear
observation operator must be used, an inner inner loop (or quadratic loop) provides
cost savings by retaining a linear observation operator for ten iterations before re-
calculating H and the observation departures.

The Met Office 4D-Var has no outer loop, so xg and xg are not updated following
the inner loop. Thus xg = xb throughout the minimisation.

3.5.2 The perturbation forecast model

Instead of a tangent linear approximation to the full model, a new simplified linear
model with lower resolution and reduced complexity is used, known as the perturb-
ation forecast (PF) model. Incremental 4D-Var already has cost advantages because
the perturbuation can be calculated at a lower resolution than is required for the full
model state (Courtier et al., 1994; Lorenc et al., 2000). The less complex PF model
provides further cost savings: minimisation problems may be reduced because, as
described in section 3.4.2, the PF model is designed to filter the analysis increments
to only those modes and scales that behave close to linearly. Furthermore, as will be
described in section 3.6.1, the background errors are only sampled and approxim-
ated, and so there is little justification in using a full high resolutionM to propagate
this approximate B. The linear PF model is denoted M̃ to show that it is not the
Jacobian of M

The reduced complexity of the PF model mean that the analysis increments are
not calculated for the same atmospheric variables that are used in the full NWP
model. A simplification operator, S, is defined, which interpolates to the lower res-
olution and maps full model variables into the PF model state. An example of this
mapping is in the construction of the total humidity variable, qt, from the full model’s
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specific humidity, cloud liquid water and cloud ice water variables. This approach
avoids having to model the cross-correlation terms between the different humidity
components in the B matrix.

The vector y is calculated from the model state at the start of the assimilation
window, xt0, by the following series of operations:

y = H(L(M(xt0)) + S−I(L̃M̃δw)) (3.25)

In this equation, L is a horizontal and time interpolation operator from the full
model to the observation positions, and L̃ is the equivalent PF operator for the
model perturbations. S−I , known as the incrementing operator, is the generalised
inverse of S. Using the simplification operator S, equation 3.16 is rewritten in terms
of the simplified state vector w:

J(δw) = 1
2(δw− δwb)TB−1(δw− δwb) + 1

2(y− yo)TR−1(y− yo) (3.26)

where

δwb = wb −wg = S(xb)− S(xg) ' Sδxb (3.27)

and S is the tangent linear of the operator S evaluated at xg and B is defined for the
PF model background state. δw is equivalently formulated for the current iteration
using x in place of xb.

In practice, it is not possible to manipulate, or even hold in memory, the full
4D error covariance, B, in equation 3.26. Furthermore, it would not be possible
to calculate, as the model would need to be run more than 108 times to generate
sufficient statistics to represent the full matrix. If it were possible to have a full 4D
B, its structure would have to reflect the coupling of fields at different time steps
that occurs through the model equations as states which do not fit these coupling
relationships are very unlikely. Given that these relationships cannot be represented
statistically, the practical approach taken is to constrain the solution using the model
itself: the 4D state used in equation 3.25 above, M̃δw0, is constrained by the form
of M̃, and the background error covariance is represented as M̃BM̃T, using the PF
model as a strong constraint on the solution.
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3.5.3 The 4D-Var control vector

The control vector is the vector of quantities for which the Var system is finding
a solution. In 1D-Var retrieval applications, the control vector is usually the state
vector x, composed of atmospheric variables. In the case of retrievals from satellite
data, the variables in the state vector are often the same as, or similar to, those
required for input to the radiative transfer equation. For example, one may retrieve
a profile of temperatures, and humidity mass mixing ratios, or in the case of trace gas
constituent analysis, the temperature and humidity may be assumed to be already
known, and the state vector may consist of a profile or total column amount of
the relevant gas. This approach is reasonable since, for single column retrievals, the
complete state vector is rarely more than a couple of hundred elements long.

In 3D- or 4D-Var, where a solution is sought for the whole globe, the state
vector can easily be 108 elements long, and this number is increasing all the time
with improved resolution models. As mentioned in the previous section, it is not
possible to specify a full error covariance matrix for a state vector this large. The
solution is to reduce the complexity of the analysis problem. The simplification
operator, S, goes some way to achieving this, but the PF model variables are still
highly correlated and the dimensionality is still too large. To reduce the analysis
problem to a manageable size, linear variable transforms are used to construct a
control vector whose elements are uncorrelated, vastly reducing the computation
required to solve the variational analysis equations.

Rather than minimise the cost function of δw, a control vector v is used, whose
elements are uncorrelated. The control vector is mapped into PF model perturbation
space by the use of the control variable transform matrix, U, where UUT = B:

δw = Uv (3.28)

In this usage, B is not really a matrix, but is essentially a set of statistics that define
relationships between observed short-range forecast errors, which are used as coef-
ficients for the U transform. The transformed 4D-var cost function (equation 3.26)
can now be rewritten:

J(v) = 1
2(Uv−Uvb)T(UUT)−1(Uv−Uvb) + 1

2(y− yo)TR−1(y− yo)

= 1
2(v− vb)TUT(UUT)−1U(v− vb) + 1

2(y− yo)TR−1(y− yo) (3.29)

Since UT(UUT)−1U = I, each element of v is both uncorrelated and has unit



3. DATA ASSIMILATION 33

Control Variables

(Ψ', Χ', pA', μ')

Vertical Modes

Grid Points

v

Control Variables

(Ψ', Χ', pA', μ')

Vertical Modes

Horizontal Spectra

δw

PF Model Variables

(θ', qt', u', v', ρ', p')

Model Levels

Grid Points

Horizontal 

Transform

Uh

Th

Parameter 

Transform

Up

Tp

Vertical 

Transform

Uv

Tv

Figure 3.1: Diagramatic representation of the control variable transforms used in the Met
Office 4D-Var

variance (although it is worth noting that this transform is a model, and the be-
haviour of δw is not perfectly represented). This further simplifies equation 3.29 to
give

J(v) = 1
2(v− vb)T(v− vb) + 1

2(y− yo)TR−1(y− yo) (3.30)

and the J b term now needs no matrix multiplication steps.
The U transform, and its adjoint, UT are used in the minimisation, but in order

to calculate v and vb, the reverse transform, mapping PF model perturbations into
control vector space, is needed. The reverse transform is represented by the matrix
T, which is the left inverse of U, i.e. TU = I:

v = Tδw (3.31)

The control variable transform is currently under review, but the present oper-
ational scheme is split into three steps. In order of operation on U these are: the
horizontal transform Uh, which maps from model grid points onto horizontal spec-
tra; the vertical transform Uv, which maps from model levels to empirical vertical
modes; and Up, the parameter transform which maps from control variables to PF
model variables:

δw = Uv = UpUvUhv (3.32)
v = Tδw = ThTvTpδw (3.33)

This is summarised graphically in figure 3.1, and the three steps of the control
variable transforms are explained in more detail below. The transforms are most
easily described in terms of their T forms.
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The parameter transform, Tp

Tp takes correlated PF model variable increments, δw, that we wish to analyse in
4D-Var, and transforms them to the non-correlated control vector space, v. The
control vector is defined through physical understanding of atmospheric processes
to yield a set of variables which are independent. The transform is also designed so
that the analysis finds the best solution for the balanced portion of the atmosphere;
unbalanced features that do not obey the dynamical relations specified in the PF
model, such as increases in cloud amount coinciding with a reduction in humidity
will be both poorly modelled and unobserved. Unconstrained increments such as
this would lead to an ill-conditioned solution, and it is best to omit these from the
analysis.

The PF model variables are the three components of the wind field u′, v′ and w′,
potential temperature θ′, density ρ′, pressure p′, and total humidity q′t (combining
water vapour, cloud liquid water and cloud ice), where the primes indicate that the
quantities are perturbations rather than full model fields. The uncorrelated control
vector variables are streamfunction and velocity potential, ψ′ and χ′ respectively,
which are a function of u′ and v′; unbalanced pressure, pA′, which depends upon u′,
v′, θ′, q′t, ρ′ and p′; and a humidity analysis variable, µ′, which is a function of p′, θ′

and q′t. This transform can be summarised

(u′, v′, θ′, ρ′, p′, q′t)⇒ (ψ′, χ′, pA′, µ′)

Once the parameter transform has taken place, the background error covariance
matrix, Bv, is block diagonal. The control vector is now uncorrelated between vari-
ables, but each variable has vertical and horizontal correlations across the PF model
grid.

The vertical transform, Tv

For each state vector variable, the vertical transform is estimated using statistical
techniques from zonally and seasonally averaged model states, compiled either from
30h-6h forecast differences (the NMC method; Parrish and Derber, 1992) or using a
collection of model states from an ensemble prediction system (Piccolo, 2011). The
vertical transform projects from model levels onto vertical modes for each control
variable. This is similar to an eigenvector analysis, except that the modes are defined
such that atmospheric layers are given weights by a diagonal inner product matrix,
P. This is partly because the model levels are not evenly distributed in pressure
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Figure 3.2: Schematic diagrams representing the general form of the diagonal of the inner
product matrices used to weight the vertical levels in the analysis

space, and using eigenvectors of Bv would give unsatisfactory weight to thicker
layers. Instead the inner product is applied as follows:

B′v = P1/2BvPT/2 (3.34)

The vertical modes are defined by F, the matrix of eigenvectors of Bv, and their
associated eigenvalues Λ, within the inner product space of P:

B′v = FΛFT (3.35)

The form of the inner product matrix varies depending on the control variable.
Figure 3.2(a) illustrates the form of the inner product used for ψ and χ, which is
related to ∆p; figure 3.2(b) illustrates the inner product for pA, related to ∆p/p; and
figure 3.2(c) for µ.

The inner products and vertical modes are defined globally. In other words, the
same structures are represented whether at the pole or at the equator. However, the
variance associated with each mode (i.e. Λ in equation 3.35) varies latitudinally in
5◦ boxes, which allows for some variability in the vertical correlations of Bv.



3. DATA ASSIMILATION 36

The horizontal transform, Th

The horizontal transform for each vertical mode of each state vector variable maps
from model grid point space into horizontal spectral functions. The spectral func-
tions are orthogonal, much as the decomposition used in the vertical transform. The
horizontal transform removes correlations between grid points for each vertical error
mode. The spectral functions also allow the increments to be filtered, to remove
very small scales in the horizontal at the poles where model grid points are very
closely spaced. This is analogous to removing unbalanced variables that are poorly
modelled and unobserved via the parameter transform.

3.6 Some assumptions that are made in variational
analysis

3.6.1 The error covariance terms

Finding the optimal solution to 4D-Var depends upon the background and observa-
tion errors being correctly defined. These are important assumptions, the impact of
which are explored in this thesis in the context of IASI assimilation.

The background error term

The background error term is extremely important in the above equations. Although
the optimum weights are dependent on both observation and background error, it is
the background error term which acts as a filter on the analysis increment. The ana-
lysis increment can only occur in the model subspace spanned by B. Daley (1991)
describes B as “the most important element in the interpolation algorithm”, adding
that “to a large extent the form of this matrix governs the resulting objective ana-
lysis”. This is often explained by looking at the right-hand formula for the analysis
gain matrix defined in equation 3.10 and pointing out that, in the matrix multi-
plication, B is the last term to act as an operator on the observation increment,
projecting it onto the directions spanned by the background error covariance. The
importance of B in defining the form of the analysis is evident when comparing the
results of different retrieval schemes (Hilton et al., 2009a).

Where the model is insensitive to perturbations in the atmospheric structure, this
is known as null space (the observations may have their own null space if they are
insensitive, or there is ambiguity in their sensitivity, to atmospheric perturbations).
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Components in the near-null space have assumed background errors so low that it
is not possible to make increments in those directions directly, although in strong-
constraint 4D-Var, the behaviour in one variable can be forced to follow another
(e.g. the model can generate wind increments from a temperature observation). The
subspace spanned by B may not be optimal for the use of high-vertical resolution
observations. For example, if there is a mismatch in the scales of the observation
and of the background error, information from the observation may be unable to
influence the analysis.

As described in sections 3.5.2 and 3.5.3, the background error term, although
represented by its matrix form B, is in fact a set of coefficients for a series of opera-
tions to project the atmospheric state onto a control vector of variables uncorrelated
in state, horizontal and vertical space. Operational data assimilation is a challen-
ging area of work, because the stable running of the forecast model is of paramount
importance and so any modifications made to its initial state must be smooth and
realistic within the bounds of the model parameterisations. The performance of the
DA system itself is also fundamental, with computational time constraints and prac-
tical considerations often playing a part in specifying aspects of the system. One of
the greatest challenges in DA is to constrain the form of the transforming opera-
tions to represent the true errors in the background state, whilst maintaining stable
performance of the forecast model.

One of the major difficulties is to incorporate flow-dependence into the B term.
Until 2010, most NWP centres with 4D-Var schemes used a climatological set of
statistics to represent the error covariance, calculated using the NMC method or
an ensemble formulation, as described in section 3.5.3. Since then there has been a
gradual shift towards the use of ensemble forecasting methods, which allow incor-
poration of uncertainty in the present atmospheric state into the covariance model
(see section 3.7). Even so, with current computing power, ensembles are small and
these dynamically produced error terms are undersampled. Thus, the process of es-
timation of the background error, and our inability to properly model its synoptic
evolution mean that the B term will inevitably be misspecified. If the errors are
misspecified, the analysis will no longer be optimal, since it can only follow the
estimated B. Chapter 10 investigates the possible effects of an incorrect B on the
impact of IASI data (whilst assuming that the observation errors, R, are correct,
and that the forward model Jacobian H is accurate).
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The observation error term

The general question of well-characterised observation errors has received attention
in the past from Watts and McNally (1988) and more recently, in the context of
IASI assimilation, from Bormann et al. (2010) and Stewart (2010). This thesis does
not explore the general question of misspecified observation errors.

However, it is concerned with how to select IASI data from the full spectrum to
maximise impact whilst maintaining a robust and stable solution. The two methods
of increasing the information content explored in this thesis are principal component
analysis and reconstructed radiances (chapter 6). In chapters 8 and 9, it becomes
apparent that the correct definition of the R matrix for IASI is particularly im-
portant to exploit these assimilation techniques because they rely on interchannel
correlations to provide enhanced information content.

3.6.2 Other assumptions

The equations of 3D- and 4D-Var also rely on other assumptions, the most important
of which are summarised below.

• The background and observations have Gaussian errors: Although this
assumption is usually stated, it is not essential for the variational equations
(and in fact is not used in the assimilation of scatterometer data at the Met
Office). If the background and observation pdfs are Gaussian, and with linear
M and H(x), the posterior pdf will also be Gaussian so the most likely solution
will also be the minimum variance solution. With non-Gaussian errors and
non-linear models, the most likely solution can still be found, but it may not
be the best one.

• The background and observation errors are uncorrelated: Typically
this assumption is valid, since the observations are made independently of
the NWP model. However, this assumption may not hold if the observation
is converted into model variables prior to assimilation with the help of the
model itself. An example of this would be the assimilation of a one-dimensional
retrieval from a satellite observation using the NWP model as a priori.

• The background and observations are unbiased relative to the truth:
This assumption is generally not valid, and is the source of some not incon-
siderable problems in data assimiltion. Background biases are certainly not
zero – an example of diagnosis of upper tropospheric humidity bias in the Met
Office and ECMWF models is given by Hilton et al. (2012b) – but creating a
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large analysis increment can often cause numerical problems with the forecast
model, which may reach an unstable state or simply not run. Observation bi-
ases may result from the instrument design, and from systematic errors in the
forward model, such as errors in the spectroscopic parameters used in radiative
transfer models. It is usually assumed that it is straightforward to remove such
biases (see, for example Daley, 1991), but it is often far from easy! In practice,
efforts are made, through regression modelling, to minimise the bias between
the background and the observation, but this may result in model biases being
corrected out of the observations. Furthermore, regional residual biases may
remain even if the global bias is close to zero. Dee (2005) discusses handling
of bias in data assimilation.

• The evolution of the full model error pdfs is close to linear: It is
assumed that the cost function is close enough to linear locally that the op-
timal solution (the mean) is in fact the most likely (the mode; to be found by
Var). The variational analysis system can deal with some non-linearity, as the
algorithm iterates towards the optimal solution, but if the problem is too non-
linear the system may struggle to reach convergence, and may find instead a
local minimum. The most likely solution may also cease to be the best solution
as the mean and mode diverge.

Practical application of the variational assimilation equations is often made con-
siderably easier by some further assumptions, such as:

• The observations have errors that are uncorrelated spatially: This is
achieved in practice by thinning the observation data so that there is typically
no more than one observation per model grid box. In vertical coordinates, the
assumption that all channels of a given satellite observation are uncorrelated is
not valid, as there may be significant correlations arising from the instrument
design, incorrect assumptions in the forward model which affect all or a subset
of channels, or because multiple channels are sensitive to the same features
which do not form part of the NWP model such as trace gas concentrations, or
sub-grid scale features – the latter are known as errors of representation. Most
NWP centres, including the Met Office, have moved, or are moving toward the
use of error correlations in the vertical (e.g. Weston et al., 2014).

• The background errors may be assumed to be vertically and hori-
zontally separable: Some formulations of background error covariance as-
sume that correlations in the vertical coordinate are independent of correl-
ations in the horizontal coordinate. This separability assumption is neither
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valid, nor desirable. This assumption does not form part of the Met Office
global covariance formulation.

• The background errors are homogeneous and isotropic: It is also usu-
ally assumed that errors in the horizontal domain are isotropic, and take
no account of variations in meteorological conditions, such as the presence
of weather fronts. This is addressed by ensemble-based and hybrid DA ap-
proaches, which are discussed in section 3.7.

There are also some aspects of the assimilation process that lead to problems for
the use of indirect measurements such as satellite data. For instance, not all of the
required variables to which satellite measurements are sensitive are part of the state
vector, x. Important examples of this are skin temperature and surface emissivity,
which affect the determination of lower atmospheric temperature and humidity from
satellite radiances and are not known to a sufficient degree of accuracy from the
NWP model itself or ancillary data. Also, at the present time, many NWP centres
are using cloud-affected radiances in their assimilation systems, and required cloud
properties may not be available to a sufficient degree of accuracy from the model,
and may not even form part of x. At the Met Office, the practical measure used in
these cases is to run a 1D-Var retrieval for each observation prior to assimilation, and
to hold the retrieved variables (skin temperature, surface emissivity, cloud fraction,
cloud top pressure, etc) as a fixed constraint within 4D-Var.

3.7 The use of ensembles in data assimilation
The most well-known of the family of ensemble DA methods is the EnKF, a Monte-
carlo approximation to the Kalman Filter. The Kalman filter uses the same analysis
equations as 4D-Var, but rather than using the cost function and a descent algorithm
to approach the optimum solution, the Kalman Filter calculates the weights (equa-
tion 3.10) directly, and in order to generate B for the next cycle, the analysis error,
A is propagated forward in time. The Kalman filter is a series of matrix multiplic-
ations, and therefore assumes a linear system. The Extended Kalman Filter does
allow a non-linear model, but it is impossible to propagate A in this way for a global
NWP model because of the size of the problem. If the outer loop of incremental 4D-
Var converged, it would give a solution equivalent to that of the Extended Kalman
Filter (although in practice this does not happen; in particular the Met Office does
not run an outer loop). The Ensemble Kalman Filter removes the need for the ex-
plicit propagation of A, by using an ensemble to estimate the uncertainty in the
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forecast, and hence B, at succesive timesteps.
Many centres already run ensemble-based forecast systems, such as the Ensemble

Transform Kalman Filter (ETKF) known as MOGREPS that is run at the Met
Office (Bowler et al., 2008). Ensembles of forecasts provide a measure of forecast
uncertainty that is both useful to weather forecasters and to the data assimilation
system, where it provides an estimate of the background error that reflects the
atmospheric state of the particular forecast cycle.

Although the ETKF uses observations to control the ensemble spread, it is not
optimised for data assimilation: for example, the localisation and filtering may need
to be improved (Bowler et al., 2013). However, several techniques are possible to
combine this flow-dependent background error into the data assimilation system so
as to make the best possible use of observations. The main options for ensemble
DA methods are summarised in this section. A comparison between 4D-Var and
ensemble techniques is provided by Fairbairn et al. (2014).

The ensemble generates a measure of error that is valid for the atmospheric state
at that particular cycle, rather than being a climatological average. The error term
also differs from that used in 4D-Var in that, where 4D-Var explicitly evolves the
3D background pdf B using the PF model M̃, the ensemble 4D B is generated by
sampling the variance of the forecast ensemble at timesteps through the assimilation
window. Note that a background error matrix generated by an ensemble is usually
denoted Pb, but here B is used to emphasise that it is an alternative representation
of background error, and 4D in nature.

The main challenge in using an ensemble to define background errors is that the
ensembles are very small (only a few tens of members) and the covariance structure
remains extremely under-determined. A technique called localisation is required to
improve conditioning of the problem and to suppress spurious long-range correlations
by restricting the influence of increments to a local area. Many implementations will
also combine the flow-dependent background errors with the climatological errors
used in traditional 4D-Var to provide stability.

3.7.1 4D-Ensemble Var (4DEnVar)

Of the ensemble techniques, 4DEnVar is probably the most popular technique at the
present time as it is quite affordable in terms of computing cost. The United States
National Centre for Environmental Prediction (NCEP) and Environment Canada
are two centres that are moving over to this scheme at the time of writing.

4D-Ensemble Var is a variational solver like 4D-Var, but rather than solving
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for a control vector comprising variables related to the atmospheric state, the cost
function represents the fit of the ensemble members (generated by the ETKF, for
example) to the observations, given the errors in each, where the forecast errors, B,
are defined by the ensemble spread. The control vector consists of a series of weights,
often referred to as alphas, α.

B contains a time dimension and because the ensemble trajectories are already
defined for the whole time window, there is no need for a model like M̃ to propag-
ate the atmospheric state. This makes 4DEnVar more similar to a 3D-Var problem
in terms of computational cost. B here is the representation of the errors as that
used in the Ensemble Kalman filter; the difference between the methods is that the
variational algorithm uses a background state that comes from a previous determ-
inistic analysis, whereas the ETKF retains and propagates all ensemble members
independently. The localisation method is also different between the two techniques,
and is theoretically more correct for 4DEnVar (Fairbairn, 2014).

4DEnVar generally outperforms 4D-Var with a climatological B in toy model
experiments because the flow-dependent background error allows better use of the
observations (Fairbairn et al., 2014). However, if the ensemble size is small, severe
localisation is required, which degrades the time correlations in the background error
covariance.

4DEnVar generates a single (deterministic) analysis, to which perturbations are
then applied, for example by the ETKF system, to generate a new ensemble for the
next forecast step.

3.7.2 Ensemble data assimilation (EDA)

4DEnVar generates a single analysis, but it is also possible to generate an ensemble
of analyses. EDA techniques calculate an analysis for each ensemble member in
turn, and then use, for example, the ensemble mean in the place of a deterministic
forecast. ECMWF run an ensemble of 4D-Vars, i.e. a full 4D-Var for each ensemble
member, which is very expensive and only a small ensemble can be run.

Another possibility is to run an ensemble of 4DEnVars. This DA method is self-
sufficient, since each ensemble member is propagated forward, and thus the DA and
ensemble systems are combined.
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3.7.3 Hybrid DA

The term Hybrid DA refers to combining the flow-dependent B generated by an
ensemble of forecasts with a climatological B. The advantage of this is that B is
better specified than B, but B can provide information about the current atmo-
spheric state. Both Hybrid 4D-Var and Hybrid 4DEnVar are possible.

In Hybrid 4D-Var, the ensemble is used to specify errors of the day (EOTD)
at the start of the assimilation window, and these are combined with the static
climatological B. M̃ is then used to propagate the hybrid covariance. This technique
is currently operational at the Met Office (Clayton et al., 2012), with the covariances
used in the ratio 80:50 static:EOTD, so that the total error is increased to counteract
the problems with localisation caused by small ensemble size.

In Hybrid 4DEnVar, the climatological B is simply assumed to be constant
throughout the assmiliation window and is added to B. It is found that the propaga-
tion of B by the PF model means that Hybrid 4D-Var generally outperforms Hybrid
4DEnVar (Fairbairn, 2014) and is likely to do so until a large enough ensemble can
be run to reduce dependence on B.

3.8 A 1D-Var approximation to 4D-Var
1D-Var is often used in independent retrieval schemes, which seek to determine a
separate atmospheric profile from each observation in turn. These retrievals can
be used in nowcasting applications or as a priori in further retrieval schemes, for
example for trace gas concentrations. The results presented in this thesis involve the
use of a 1D-Var analogue to 4D-Var. New ways of using observations can be coded
quickly into a 1D-Var framework to allow testing of various options. Furthermore,
the Met Office operational DA scheme uses a 1D-Var preprocessor for all radiance
observations prior to assimilation in 4D-Var, primarily as a method of quality control
and to derive estimates of certain quantities which are not solved for by the 4D-Var
scheme, such as skin temperature and emissivity. The code used in this thesis is that
of the NWPSAF2-Met Office 1D-Var (Weston et al., 2013) version 3.4 from 2010.

The 1D-Var system has an obvious difference from the full DA scheme, in that the
information is spread in the vertical but not the horizontal. Nadir satellite sounding
is fundamentally a vertical problem, and the work presented here is concerned mainly
with exploiting correlations between channels in the same field of view and in the

2NWP Satellite Applications Facility. A EUMETSAT-funded project to promote the use of
satellite data in NWP
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implied vertical correlations in the temperature and water vapour profiles, so the
1D-Var analogue is a useful tool for this work.

One difference between retrieval schemes and DA is that the former often have
a single climatological state as the background, or at best use regression techniques
to choose from amongst a set of climatological profiles. The relative skill of the prior
information is a major difference between NWP and most independent retrieval
schemes using satellite data, and is demonstrated in Hilton et al. (2009a). It is
therefore important when using a 1D-Var retrieval as an analogue of 4D-Var to
make the systems as similar as possible. This is achieved here by:

• Using atmospheric columns taken from the Met Office Unified Model (UM)
operational global forecasts as background states for the 1D-Var.

• Performing the 1D-Var on height-based model levels rather than the standard
43 levels used in the operational 1D-Var preprocessor. The UM model levels
are described and plotted in appendix A.

• Using a technique called covariance sampling to match the 1D B matrix to
the static B used in 4D-Var. This is described in section 3.8.1. Although it
is not easy to recode the 1D-Var to use the same uncorrelated control vector
variables as 4D-Var, the covariance sampling method captures the behaviour
in state space that is implied by the U transform (section 3.5.3).

3.8.1 Covariance sampling

For 1D-Var experiments, an approximation to the 4D-Var error covariance matrix
is required. This is achieved by a process called covariance sampling, similar to
that described in Andersson et al. (2000). A set of locations spread over a wide
geographic region is used to sample the covariance structure. At each location, a
vector the size of the control vector for that location is generated whose elements
are determined by a Gaussian distribution with zero mean and unit variance. These
vectors are then transformed using the full T-transform, which maps the vectors
from control vector space to PF model variables. The average of the outer products
of these vectors tends to a 1-dimensional representation of the transforms, and hence
the implied covariance structure of the PF model variables. The 1D matrix can be
further transformed from θ and qt to T and ln(q) which are the standard variables
used in the Met Office 1D-Var preprocessor.

The T-transform is slightly dependent on the linearisation state (for example,
through the inner product matrix), so a different cycle would not give an identical
representation of B. However, the variations are slight when aggregating many
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samples and not much seasonal dependency of the 1D covariance statistics has been
seen.

For this thesis, covariance sampling was used to generate 1D B matrices using
100 000 pseudo-observations from 500 locations across the northern hemisphere from
two sets of climatological 4D-Var background error statistics: those that were opera-
tional in September 2010 and those that were operational in March 2012. These will
be referred to respectively as NMC and MoistCov. The NMC covariances were,
as the name implies, derived using the NMC method, and the water vapour is repres-
ented as a total humidity, combining cloud liquid water, cloud ice water and water
vapour. The MoistCov covariances were derived using an ensemble of model states
(Piccolo, 2011), with water vapour represented via a new non-linear total humidity
control variable, described in Ingleby et al. (2013), designed to take better account
of the amount of water vapour present at each vertical level in the atmosphere. The
NMC and MoistCov matrices for temperature and the natural logarithm of total
water mass mixing ratio, ln(qt), are shown in figure 3.3. The NMC matrices have
slightly longer correlation length scales and higher variances. In both cases, there
are no cross-correlation terms between T and qt calculated. When these matrices are
used, both here and in operational applications, it is assumed that the covariance
structure for water vapour mass mixing ratio, q, is equal to that of qt.

These are just two possible representations of the sampled forecast errors, and
the differences between them may provide some indication of the likely level of error
in the estimation of the B matrix used for operational assimilation. For technical
reasons, it did not prove possible to sample the errors of the day relative to the
static climatological covariances.

In order to understand the scales on which information is being extracted from
IASI observations, it is first necessary to examine the scales to which the analysis is
sensitive. One way to investigate the vertical scales is to examine the eigenvectors of
the matrices. The eigenvectors have no true physical meaning, as they are sensitive
to purely mathematical aspects of the representation, such as whether the humidity
varibale is relative humidity or a mass mixing ratio. However, they are broadly
consistent with the concept of the vertical transform applied within the Met Office
4D-Var. The orthogonality of the eigenvectors also means that one can split the
system into mutually independent components for which a scalar analysis may be
considered more directly applicable. An eigenvector decomposition is used to explore
the vertical scales of the optimal linear analysis in following chapters.

The first 20 eigenvectors for temperature and humidity ranked by eigenvalue are
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Figure 3.3: The background error covariance structures used in this thesis.
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shown in Appendix B for the MoistCov matrix, and in Appendix C for the NMC
matrix. The first 20 humidity vectors for MoistCov form a well-behaved family
of functions, with increasing vertical structure – this is not always the case, and
shows that this matrix increasingly filters out structures in the analysis increment
with shorter and shorter vertical length-scales (this is equivalent to saying that
they are well-known by the model). For the NMC matrix, this is also broadly the
case, but this family is punctuated by vectors with large stratospheric components.
These features are spurious artifacts, and do not apply in the 4D-Var analysis as the
increments for humidity are set to zero above the tropopause. The fact that these
artifacts are not present for the MoistCov matrix is a result of the new humidity
control variable. For temperature, we do not see increasing structure with decreasing
eigenvalue for either matrix, and in both cases the first few vectors seem to consist
mostly of stratospheric or surface structures.

3.8.2 Minimisation

The Met Office global 4D-Var algorithm uses a conjugate gradient descent method,
as described in section 5 of Fisher (1997). The NWPSAF-Met Office 1D-Var uses
Newtonian or Gauss-Newton minimisation, which can be equivalently formulated in
two ways, the first of which (equation 3.36) is more efficient if the observation vector
is longer than the state vector (for example, a 1D analysis from a hyperspectral
sounder such as IASI), and the second (equation 3.37) is more efficient if the state
vector is longer (for example, a 1D analysis from a microwave sounder such as
AMSU). The state for iteration i+ 1 is calculated as follows:

xi+1 = xb + (B−1 + HT
i R−1Hi)−1HT

i R−1(yo −H(xi)) + Hi(xi − xb)) (3.36)
= xb + BHT

i (R + HiBHT
i )−1(yo −H(xi)) + Hi(xi − xb)) (3.37)

Newtonian iteration is a quadratic solver and, in cases where the cost function is
poorly represented by a quadratic surface, may struggle to find the optimal solu-
tion. Other iteration algorithms exist which can be useful for more non-linear prob-
lems: one such solver, also implemented in the NWPSAF-Met Office 1D-Var, is
the Levenberg-Marquardt algorithm (Levenberg, 1944), which incorporates an ad-
ditional factor γ into the first term in round brackets in equation 3.36:

xi+1 = xb+((1+γ)B−1 +HT
i R−1Hi)−1HT

i R−1(yo−H(xi))+Hi(xi−xb)) (3.38)
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The Levenberg-Marquardt technique is often used in 1D-Var solvers where cloud
variables are analysed. Cloud analysis is inherently non-linear because the presence
of cloud in the field of view has a very strong effect on the weighting function peaks
of satellite observations, and because cloud liquid and ice do not vary smoothly
across all values of humidity mass mixing ratio, but instead form suddenly once
saturation is reached.

3.8.3 Experimental set-up for this thesis

Unless otherwise stated, in this thesis all optimal linear analysis calculations and
1D-Var experiments use the following settings:

• A control vector consisting of 70 fixed-height levels of temperature and 70
levels of ln(q) from the surface to 80km is used. See below for a note on the
treatment of surface variables

• The MoistCov matrix is used as B, to define the relationship between the
elements of the control vector.

• The R matrix consists of diagonal instrument noise provided by EUMETSAT
(Hultberg, 2009), being the same noise profile used in normalisation for the
disseminated IASI PC Score Level 1c product.

• RTTOV-10 (Saunders et al., 2010) is used for all radiative transfer modelling,
to calculate Jacobians and simulated observations. Coefficients are Version
9 LBLRTM on 101 levels. Interpolation from 70 levels is performed inside
RTTOV. Sea surface emissivity is calculated by RTTOV.

In addition, the NWPSAF 1D-Var is used with the following experimental set-up:
• A set of 4348 profiles over sea were used, covering all latitudes and taken from

a regular spacing of model grid-points were extracted from the Met Office
global model from a forecast cycle on 15th March 2011. These profiles were
used as truth. No cloud liquid or ice water was included - the analyses are all
clear-sky only.

• Simulated background profiles were calculated from the true profiles by adding
a random perturbation of each eigenvector of the B matrix taken from a normal
distribution with zero mean and a standard deviation equal to the squareroot
of the eigenvalue.

• Simulated true clear-sky observations were calculated from the true profiles
using RTTOV-10.
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• Simulated noisy observations were calculated from the true observations by
adding a normally distributed random perturbation consistent with the in-
strument noise (or other error covariance as specified in the individual exper-
iments).

• Any PC compression and radiance reconstruction was done after the addition
of noise.

• The 1D-Var used Newtonian minimisation (equation 3.37) and was allowed
up to ten iterations to reach convergence, which is determined by the cost
function changing by no more than 1% on a given iteration. If the 1D-Var is
still not converged after ten iterations, the retrieved profile is rejected from
subsequent analysis.

For optimal linear analysis calculations, single profile results are for the US
Standard Atmosphere. Results presented for multiple profiles include seven addi-
tional atmospheric profiles from the 4348 Met Office model profile set above, dis-
tributed across different latitudes.

Surface variable analysis

Early results were produced for two control vectors: one with the 70 level profiles of
temperature and ln(q) only; and one including skin temperature, surface air tem-
perature and humidity, and surface pressure. The former is more representative of
the 4D-Var control vector, and the latter is the same as the control vector used in
the operational 1D-Var preprocessor. In the case of the expanded control vector,
the error variances of the extra variables, and the correlations between the surface
variables and the atmospheric profiles were the same for bothMoistCov andNMC
matrices.

It was found that the inclusion of the surface variables had little effect on the
performance of the analysis for the rest of the profile, as long as the errors in the
quantities were correctly defined. In other words, the analysis for the temperature
and water vapour profiles was very similar in either of the following two situations:

• The surface variables in the background profile were given errors consistent
with the extended B matrix, and the control vector contained surface variables.

• The surface variables in the background profile were the same as in the true
profile, and the control vector omitted the surface variables.

Where background error was added to the surface variables but they were not ana-
lysed, the results for the rest of the atmospheric profile were found to be substantially
in error. In section 10.3 the 1D-Var experiment did analyse surface variables, but
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in the rest of the thesis they were omitted from the control vector because this is
more consistent with the 4D-Var system that the 1D-Var experiments are designed
to represent.
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Chapter 4

Measuring the information provided to the
assimilation system by IASI

The aim of this thesis is to increase the amount of information extracted from the
IASI observations: to do this it is necessary to understand the impact the observa-
tions have within the current assimilation system, and to define measures by which
changes to the observation processing can be assessed to see whether they improve
access to the information contained in the spectra.

When IASI was launched, pre-operational trials showed that it gives very good
impact on the NWP forecasts as a whole (Hilton et al., 2009a; Collard and McNally,
2009). These trials measure the impact over broad forecast measures, and at the Met
Office the quantity used is the “NWP index” which is a weighted average of skill
scores measured against persistence for variables that are of interest to its main
customers. The trials showed that IASI gave impact at least as great as that of any
other new observing system (Hilton et al., 2012a). However, the broad-brush forecast
impact scores do not provide detailed information and cannot tell us whether there
are, for example, parts of the spectrum that are not being fully exploited.

The next section introduces a method, Forecast Sensitivity to Observations
(FSO) that has become popular in the last few years to examine the impact of ob-
servations within the variational analysis system. FSO is then used in section 4.1.1
to examine the impact of individual IASI channels within the Met Office 4D-Var.

Section 4.2 then introduces some traditional measures of information content that
can be used within the context of a 1D-Var system to compare different schemes
and predict the likely impact of changes to IASI usage on the full 4D-Var system.

4.1 Forecast sensitivity to observations
The FSO measure is designed to demonstrate the impact of individual observations
within the Met Office 4D-Var assimilation system on global forecast errors out to
24 hours. It uses an integrated quantity, known as an energy norm, which combines
information on potential temperature, pressure, wind and humidity errors, to meas-
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ure the impact of each observation. Based on a system developed by Baker and
Daley (2000), the Met Office FSO system is described in full by Lorenc and Mar-
riott (2013). FSO calculates the change in energy norm resulting from the forecast
difference at 24 hours from a prior state with and without assimilated observations
(i.e. the analysis and background respectively). This is propagated back to analysis
time, resulting in the sensitivity of the forecast error to the analysis increment from
the combined set of observations. The adjoint of the Perturbation Forecast model
is then used to partition this change in energy norm between observations, based
on the weights given to, and the magnitude of each observation increment. As such,
the FSO is integral to 4D-Var, and relies on the use of the linear PF model – thus
it does not represent the true impact of the observations on the forecast produced
by the non-linear model. It also assesses the impact of an observing system on one
individual forecast, rather than the cumulative effect of assimilating observations
over successive forecast cycles (Gelaro and Zhu, 2009). However, it is a useful tool
to examine in some detail the performance of different observations relative to each
other.

FSO is powerful because the individual impacts can be aggregated in numerous
different ways, such that the impact of total observing system (e.g. ATOVS, radio-
sondes), or groups of observing systems (e.g. satellite sounders) can be measured,
along with the impact of satellite platforms (e.g. Metop-A), separate satellite instru-
ments, or even observations over different surface types. Joo et al. (2013) used the
FSO system to examine the impact of satellite observations within the Met Office
Global 4D-Var system, and showed that satellite observations accounted for 64%
of the total impact of all observations; that Metop-A had the largest impact of any
satellite platform; and that IASI provided 49% of the impact of Metop-A. FSO can
also be used to separate the impact from each individual channel, and it is this
aspect that is of interest here.

New FSO results are shown in section 4.1.1 that present the impact of each IASI
channel over a range of energy norms, to diagnose how the pattern of impact relates
to the principal sensitivity of each channel. The standard energy norm used at the
Met Office includes humidity fields (a moist energy norm) and combines model levels
from the surface up to 150hPa. Impact can also be examined using a dry energy
norm, where the impact on humidity fields is removed from the total. Both energy
norms are examined here. In addition to the standard vertical range, three additional
ranges have been added:

• Lower Troposphere: from 1000–4000m, comprising model levels 12–23



4. MEASURING THE INFORMATION PROVIDED TO THE ASSIMILATION
SYSTEM BY IASI 53

• Mid Troposphere: from 4000–8000m, comprising model levels 24–33
• Upper Troposphere/Lower Stratosphere (UTLS): from 8000–20 000m, com-

prising model levels 34–52

4.1.1 IASI FSO by channel

The main interest in the FSO metric within this thesis is to examine the relative
impacts of the IASI channels, and to see how the pattern of impact changes with
height in the atmosphere. In this section, the impact of each of the assimilated chan-
nels of IASI (the VAR channel selection, see appendix E) on Metop-A is measured
over the period January 31st 2012 to March 18th 2012. The channel numbering is
based on the position of each channel within the 314 channels defined by Collard
(2007, see appendix E), referred to in this thesis as the Collard set. The results
presented are the mean impact per sounding, which is the change in the energy
norm on assimilation of a given IASI channel over the full set of observations used
in 4D-Var. A negative value is a reduction in the energy norm, and means that the
observations are beneficial.

Figures 4.1(a) and 4.1(b)) present the results over the standard pressure range for
moist and dry norms respectively, figures 4.2(a) and 4.2(b) for the lower troposphere,
figures 4.3(a) and 4.3(b) for the mid-troposphere, and figures 4.4(a) and 4.4(b) for
the upper-troposphere/lower-stratosphere (UTLS). All of the plots have the same
range on the x-axis. The plots are arranged such that the channels are in order of
weighting function peak, with those high in the atmosphere first. Channels labelled
in blue are temperature sounding channels, those in green are window channels, and
those in red are water vapour channels. The first column in the figures therefore
shows temperature sounding channels, starting at the top in the stratosphere and
moving down in peak height. The middle column shows mid tropospheric channels
at the top, starting with those that peak around 400hPa, and moving down the
atmosphere to the window channels. The third column has more window channels
at the top, and then water vapour channels, starting with the highest peaking and
moving down through the atmosphere. The black lines at the end of the bars indicate
the standard error. This is small, because the sample size is very large. However, it
takes no account of any systematic bias in the calculation of the energy norm, or any
errors correlated between observations, so should be considered an underestimate
(Richard Marriott, pers. comm.).

Comparing figure 4.1(a) and (b), the impact of the higher-peaking temperature
sounding channels is unaffected by the choice of energy norm, but the window chan-
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nels and water vapour channels have much more impact when measured by a moist
norm. This demonstrates that the water vapour channels’ impact is mostly on the
humidity fields; this is the expected result but was not a given as the assimilation
of AIRS water vapour channels did little to improve humidity forecasts at ECMWF
(Collard and McNally, 2009). The window channels also show a much greater impact
on the moist energy norm. Skin and surface air temperature do not form part of the
4D-Var analysis, and the impact of these channels is measured via their contribution
to the analysed column as a whole: most of these channels are sensitive to the water
vapour continuum, and some are near the frequencies of weak water vapour lines.
They are thus sensitive to water vapour in the lower atmosphere, and so have greater
impact on a moist energy norm. However, the relative impact scores of observations
sensitive to lower atmospheric water vapour is believed to be less reliable than those
of observations sensitive higher in the atmosphere, because the PF model is used
to measure the impact, and the behaviour of water vapour in the boundary layer is
not well captured in the linear model (Lorenc and Marriott, 2013).

This pattern of impact is even clearer in the plots for the lower troposphere
(figures 4.2(a) and 4.2(b)). Comparing these plots with the other height ranges, it
seems that most of the impact of IASI is on the lower troposphere, and in particular
the window and water vapour channels seem to have a large effect on the moist
energy norm. A few channels even show a tiny negative impact when measured on
the dry energy norm.

In the mid troposphere (figures 4.3(a) and 4.3(b)) and UTLS (figures 4.4(a)
and 4.4(b)), the impact of the window channels is much smaller. The water vapour
channels again show more impact with the moist energy norm, and the higher peak-
ing channels have more impact in the mid troposphere than the lower troposphere.
They have very little impact in the UTLS, as expected given the low concentrations
of atmospheric water vapour. The exception are channels 215, 221, 251, 259, 261, and
263, (corresponding to instrument channel numbers 3168, 3248, 3506, 3577, 3582,
3589) which have more impact in the UTLS than lower in the atmosphere. These
are curious channels with strangely shaped Jacobians without well-defined peaks,
and with very long tails into the stratosphere. These channels have just as much
impact when measured by the dry energy norm.

For temperature sounding channels, the choice of norm makes little difference
to the impact of the higher peaking channels (in the first column of the plots) but
the lower tropospheric channels show more impact with a moist norm. The pattern
of impact is as expected: moving higher through the atmosphere, the impact of the
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lower-peaking channels reduces and that of the higher-peaking channels increases.
The results presented here indicate that IASI observations are mostly having the

expected pattern of impact based on the main sensitivity of the channels: the water
vapour channels have an impact on the moisture fields, the temperature sounding
channels have an impact on the dry fields, and moving up through the atmosphere
the impact of the lower-peaking channels decreases and that of the higher-peaking
channels increases. This suggests that there is no major deficiency in the IASI as-
similation that could be addressed leading to quick gains in the observation impact.
Instead, this thesis will focus on the addition of extra information by increasing the
spectral coverage presented to the assimilation system.

4.2 Traditional information content measures
In this thesis, different aspects of the assimilation system are explored using a 1D-
Var framework. Before running relatively expensive full 1D-Var experiments, it is
useful to predict the performance of a fully linear system. In order to assess the
relative performance of these systems, and the amount of information provided to
the analysis by the IASI spectra, it is necessary to define some quantitative measure
by which they can be compared.

Rodgers (2000) provides a chapter on error characterisation for the optimal es-
timation problem. It is customary to assess different retrieval schemes against each
other using information content measures, generally by comparing the retrieval er-
rors with the background errors. In operational DA, the term analysis is used instead
of retrieval, and will also be adopted in this thesis. The quantity that is most gen-
erally used is DFS (degrees of freedom for signal). This can be calculated in various
ways, but one of its simple forms is:

DFS = Tr(I−AB−1) (4.1)

Another common measure is the Shannon information content (SIC), a measure of
the entropy of the system. In this type of application, it is usual to calculate the SIC
difference between the analysis and background states. Again, this can be calculated
via several different equations, but one of the simplest is:

SIC = −1
2 ln |AB−1| (4.2)
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Figure 4.1: Impact of IASI channels from the VAR selection, surface to 150 hPa. Channels are
in order of weighting function peak, with those high in the atmosphere first. Channels labelled
in blue are temperature sounding channels, those in green are window channels, and those in
red are water vapour channels. The black lines indicate the standard error.
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Figure 4.2: Impact of IASI channels from the VAR selection, lower troposphere. Channels are
in order of weighting function peak, with those high in the atmosphere first. Channels labelled
in blue are temperature sounding channels, those in green are window channels, and those in
red are water vapour channels. The black lines indicate the standard error.
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Figure 4.3: Impact of IASI channels from the VAR selection, mid troposphere. Channels are
in order of weighting function peak, with those high in the atmosphere first. Channels labelled
in blue are temperature sounding channels, those in green are window channels, and those in
red are water vapour channels. The black lines indicate the standard error.



4. MEASURING THE INFORMATION PROVIDED TO THE ASSIMILATION
SYSTEM BY IASI 59

-6•10-6 -4•10-6 -2•10-6 0
Mean impact per sounding [J/kg]

 

 

 

 

 

004
006
009
027
030
032
034
037
042
002
039
044
047
049
051
053
054
055
056
061
063
066
057
060
089
058
064
059
062
067
069
065
068
070
071
072
073
091
074
078
088
075
076
079
087
077

Upper Troposphere Lower Stratosphere Moist

-6•10-6 -4•10-6 -2•10-6 0
Mean impact per sounding [J/kg]

 

 

 

 

 

080
082
083
086
094
095
084
099
101
102
085
110
081
092
096
097
103
104
107
109
111
123
106
113
117
098
100
112
108
093
105
119
124
121
114
115
116
118
120
122
125
126
127
128
130
131

Upper Troposphere Lower Stratosphere Moist

-6•10-6 -4•10-6 -2•10-6 0
Mean impact per sounding [J/kg]

 

 

 

 

 

132
134
135
136
137
139
140
143
145
146
163
164
165
167
263
221
259
215
261
251
195
189
196
202
176
179
183
184
185
186
200
201
178
272
273
275
274
276
270
271
277
170
171
278
279
280

Upper Troposphere Lower Stratosphere Moist

(a) Moist Energy Norm

-6•10-6 -4•10-6 -2•10-6 0
Mean impact per sounding [J/kg]

 

 

 

 

 

004
006
009
027
030
032
034
037
042
002
039
044
047
049
051
053
054
055
056
061
063
066
057
060
089
058
064
059
062
067
069
065
068
070
071
072
073
091
074
078
088
075
076
079
087
077

Upper Troposphere Lower Stratosphere Dry

-6•10-6 -4•10-6 -2•10-6 0
Mean impact per sounding [J/kg]

 

 

 

 

 

080
082
083
086
094
095
084
099
101
102
085
110
081
092
096
097
103
104
107
109
111
123
106
113
117
098
100
112
108
093
105
119
124
121
114
115
116
118
120
122
125
126
127
128
130
131

Upper Troposphere Lower Stratosphere Dry

-6•10-6 -4•10-6 -2•10-6 0
Mean impact per sounding [J/kg]

 

 

 

 

 

132
134
135
136
137
139
140
143
145
146
163
164
165
167
263
221
259
215
261
251
195
189
196
202
176
179
183
184
185
186
200
201
178
272
273
275
274
276
270
271
277
170
171
278
279
280

Upper Troposphere Lower Stratosphere Dry

(b) Dry Energy Norm

Figure 4.4: Impact of IASI channels from the VAR selection, upper troposphere/lower stra-
tosphere. Channels are in order of weighting function peak, with those high in the atmosphere
first. Channels labelled in blue are temperature sounding channels, those in green are window
channels, and those in red are water vapour channels. The black lines indicate the standard
error.
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It is customary to rescale SIC to Base 2, as in information theory this then gives
the number of pieces of information in bits. This rescaling has not been done here
as it does not affect the comparison of one system relative to another – it is purely a
division by ln (2). Another quantity used by Rodgers (2000) is the number of meas-
urements of the analysed components made to better than observation error. This
quantity is estimated from a singular value decomposition (SVD) of the normalised
forward model Jacobian matrix, H̃:

H̃ = R−
1
2 HB

1
2 (4.3)

Singular vectors with magnitudes greater than about 1 represent measurements in
analysed space made to better than observation error.

These techniques all assess the number of independent pieces of information
contained within the analysis. They can never represent all aspects of the behaviour
of even an optimal linear retrieval, as they condense a multi-dimensional process
down into just one number. It can be useful, therefore, for a column analysis, to
examine also the averaging kernels, a set of vectors given by KH, which represent
the response of each level of the analysis to the observation.

Furthermore, it is important to note that it is not uncommon to see these in-
formation content measures presented as fundamental properties of the retrieval as
a whole, whereas they really tell us about the amount by which the observations
have improved the information content over the background. Thus it can be seen
that DFS is often quite low for a retrieval starting from a forecast from a state-
of-the-art NWP model, whereas a retrieval using the same observation but with
a climatological background profile would seem to contain more information. This
is problematic when comparing completely different schemes, but when comparing
different settings within the same assimilation scheme, we are indeed interested in
how much information the observation is providing to the analysis, and not how
much information the analysis holds overall.

Further analysis of averaging kernels can be similarly misleading: Rodgers (2000)
states that where the sum under the curve of the averaging kernel is close to 1, an
“accurate retrieval” is performed for those atmospheric levels. However, during the
detailed case study analysis of several retrieval schemes performed by Hilton et al.
(2009b), it was seen that this was usually the case for smooth retrievals from clima-
tological backgrounds, and almost never the case for retrievals based on good quality
forecast backgrounds. This quantity is also really examining how much information
comes from the observation rather than the background, although the shape and



4. MEASURING THE INFORMATION PROVIDED TO THE ASSIMILATION
SYSTEM BY IASI 61

spread of the averaging kernels is to a large extent governed by B. The width of
averaging kernels is another quantity that may be examined, but this is regarded as
somewhat unhelpful for the analysis system under examination: many of the IASI
channels have broad weighting functions and each averaging kernel vector rarely has
a single peak, often crossing the zero line. Whilst well-defined peaks would be a
desirable property of a perfect analysis, it must be recognised that these long tails
are a feature of the system, and so instead the aim is for evenness of spacing of
information in the vertical.

Other measures of information content exist, such as the relative entropy of
Xu et al. (2009). They state that although an observation that agrees with the
background exactly still provides information (it affects the spread of the system
by reducing uncertainty), it does not tell us something new. The portion of an
observation we are really interested in is that which cannot be predicted by the
background. They discuss the measurement of surprise in an analysis, and show
how this can be measured using relative entropy. In fact, this idea is also reflected
in FSO, because the impact of each observation is dependent on both the weight
given to it, and on the observation increment: observations that agree perfectly with
the background and thus have an increment of zero have no impact by the FSO
measure (Gelaro and Zhu, 2009). However, relative entropy is a combination of SIC
and DFS, and so is closely related to the more traditional measures and will not be
considered further.

The three information content measures proposed by Rodgers (2000), i.e. DFS,
SIC and number of significant measurements, are examined in the next section for
an optimal linear 1D system representative of the Met Office analysis. These results
provide a measure of the information content currently extracted from IASI, and
the expected gains possible with more spectral coverage. They provide a starting
point against which the experiments in subsequent chapters can be compared.

4.3 Optimal linear analysis for the 1D assimilation
of IASI

Prunet et al. (1998) and Collard (1998) both estimated the information content of an
optimal linear IASI retrieval on 40 vertical levels using the full spectrum assuming
no forward model error, and with a 1D B matrix from the ECMWF model at the
time, to be about 20 (note that Collard uses DFS while Prunet uses a significant
eigenvalue method to assess information content).
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The results presented here assess the information content using the 1D B mat-
rices, NMC and MoistCov, presented in section 3.8.1, which are representative
of the current Met Office 4D-Var formulation. The analysis is performed on the
70 unified model levels, using RTTOV-10 (Saunders et al., 2010) as the forward
model, and assuming diagonal instrument noise only, as provided by EUMETSAT
(Hultberg, 2009). Different channel sets are investigated, all of which are detailed in
appendix E (by convention throughout this thesis, italics will be used to identify a
channel set):
A The full IASI spectrum
B Collard: 314 channels from Collard (2007)
C OPS : 183 channel subset of the 314 that are used in the Met Office 1D-Var

preprocessor
D VAR: 138 channel subset of the 314 that are assimilated in the Met Office

4D-Var
E Band1 : 1997 channels that represent the whole of IASI Band 1
F PCs: 290 principal component scores consistent with the EUMETSAT PC

score Level 1c IASI product that represent the whole of the spectrum
PC compression is described in chapter 6 and was mentioned briefly in chapter 2.
This is the current method of choice for dissemination of compressed IASI spectra
and is planned for MTG-IRS in the future. It is the premise of this thesis that PC
compression is a useful tool to recreate the information content of the full spectrum
using a compressed representation that is easier to handle in the assimilation system
because the R and H matrices are of a manageable size.

Figure 4.5 shows the values of the information content measures described above
for this set of optimal linear analyses. Column A shows the information content
for the use of the full spectrum, and the other columns are for the subsets of the
spectrum as defined above and in the figure caption. The three information content
measures are numerically different, as expected, but all show the same pattern of
variation with B matrix and channels used, and so there is little to choose between
them in terms of a definitive measure to apply to test systems.

For each of the channel sets, slightly more information is extracted from the
observations using the NMC matrix, because of its higher variances. Increasing the
number of channels assimilated in general increases the information content (though
see below on the use of Band 1). These plots demonstrate four important points for
the aims of this thesis:

1. Column A: The full spectrum still gives a DFS of approximately 20, as pre-
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dicted by Collard (1998) and Prunet et al. (1998). This is surprising, since
the finer vertical structure of the current analysis system might be expected
to allow the extraction of a greater level of information from the data. The
model errors have also reduced over the last fifteen years.

2. Column D: The VAR channel selection that is currently assimilated has an
information content of less than 50% of that of the full spectrum, whichever
measure is chosen (DFS ∼8). There is significant opportunity for increasing
the information content of the IASI assimilation system.

3. Column E: Band1 has a lower information content than the Collard selection
(Column B), despite containing more channels. This is because Band1 only
covers the longwave CO2 band and therefore has little water vapour informa-
tion, whereas the Collard set was chosen to maximise information content for
NWP applications. Comparing Band1 with the full spectrum (Column A), we
can estimate that approximately 50% of the information content comes from
the longwave CO2 band. This shows that there is significant potential for the
extraction of information from the water vapour band, which is only lightly
used in the OPS and VAR channel selections.

4. Column F: The 290 PCs from the full spectrum contain the vast majority of
the information content of the full spectrum, indicating that the use of PCs
might be a way to condense the full spectral information into a more man-
ageable quantity of measurements. This technique, and the related radiance
reconstruction, is explored in this thesis in chapters 6 to 9.

Chapter 10 will discuss the fact that the analysis is in fact not optimal, because
the B matrix is misspecified. The linear equations are expanded to calculate a sub-
optimal analysis error. Since the ‘number of measurements’ metric does not use the
analysis error in its calculation, it is not suitable for assessing the performance of a
suboptimal assimilation system. For this reason, it will be disregarded from here on
since it gives similar results to the other measures for the optimal system. There is
little to choose between DFS and SIC - they both show similar effects of increasing
the spectral coverage. DFS will be used in following chapters of this thesis because
of its heritage in channel selection methods, such as that of Collard (2007).

Figure 4.6 displays the rows of the averaging kernel matrices for the full spec-
trum and the VAR channel selection plotted against model level. It is clear from
the distribution of averaging kernel peaks that the full spectrum provides a better
vertical coverage and that more information is extracted from the observations. Of
particular note is the improvements in both vertical resolution and sensitivity from
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Figure 4.5: Information content measures for analyses with different number of channels
assimilated: A=Full Spectrum; B=314 Collard Channel Set; C=183 OPS Channel Set; D=138
VAR Channel Set; E=1997 Band1 Channels, F=290 PCs from full spectrum. All channel
sets are detailed in appendix E. The red columns calculate the information content measure
assuming B = MoistCov and the blue columns assuming B = NMC.
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model level 30 upwards. There is also improved sensitivity to both temperature and
water vapour in the lowest five model levels (although there is no corresponding
improvement in vertical resolution). In fact the VAR channel selection is complet-
ley insensitive to water vapour in the lowest levels of the atmosphere. Figure 4.6
therefore implies that increasing the spectral coverage should improve the analysis
throughout the model column, but that the greatest gains should be expected in
the stratospheric temperature, and in the lowest model levels. The potential for im-
pact on the stratospheric temperature is important, because there are relatively few
observations assimilated that provide information at the top of the model column.

4.4 Summary
This chapter has explored the information content of IASI in the Met Office assim-
ilation system. New FSO results that split the forecast impact into different regions
in the vertical suggest that IASI is generally having the expected effect within the
assimilation system. Water vapour and window channels provide information to the
humidity fields, while temperature channels contribute mostly to potential temper-
ature and wind fields. Higher peaking channels have impact high in the atmosphere,
while lower peaking channels contribute more information to the lower and mid
troposphere. This suggests that there are no obvious deficits that need correcting,
and that to improve the amount of information extracted from IASI, other than
by reducing observation errors through a more accurate forward operator, the best
approach is to increase the spectral coverage presented to the 4D-Var analysis.

Information content measures have been investigated as tools to predict perform-
ance within a 1D-Var system. The DFS and SIC measures behave similarly, and DFS
is chosen as the measure by which to examine the behaviour of improved 1D-Var
systems in later chapters. The optimal linear equations have been used to assess the
performance of an IASI analysis of temperature and water vapour profiles with two
different B matrices and several different combinations of channel selection.

Increasing the number of channels assimilated improves the information content
of the optimal analysis. The assimilation of the full spectrum from IASI, with no
forward model or representativeness errors, would be expected to yield a DFS of
approximately 20 (in line with previous estimates), of which approximately 50%
comes from the longwave CO2 band. The currently assimilated VAR channel selec-
tion provides less than half that information content (DFS ∼8). There is significant
scope to extract more information from the observations if the full spectrum can be
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Figure 4.6: Comparison of averaging kernels for analysis using the VAR channel selection
and using the full spectrum. R contains instrument noise only. Optimal analysis where B
=MoistCov. Plotted against model level.
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exploited.
The averaging kernels show that using the full spectrum should allow the as-

similation system to access information about temperature and water vapour in
the boundary layer, that is not present in the averaging kernels of the analysis
from the current channel selection. The use of the full spectrum improves sensit-
ivity throughout the atmospheric column, and increases the vertical resolution in
the stratosphere. This increase in resolution and sensitivity in the stratosphere is of
particular intrerest to NWP because there are relatively few observations sensitive
to stratospheric temperature assimilated.

The results presented in this chapter justify the motivation for this thesis: IASI
can provide much more information to the assimilation system if the full spectrum
is used. Since it is not possible to assimilate 8461 channels, to make the most of
IASI, a way must be found to compress this information into a form that can be
assimilated.
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Chapter 5

The behaviour of an optimal 1D-Var analysis

This chapter describes the behaviour of an optimal 1D system in line with the
experimental set-up described in section 3.8.3. These results, which use the VAR
4D-Var channel selection and climatological B, are presented as a baseline against
which results in subsequent chapters can be compared.

The results presented here are for the somewhat unrealistic scenario of an R
matrix consisting of instrument noise only. This simulated environment allows us
to see the maximum benefit that IASI could contribute to an atmospheric analysis
if a perfect forward model existed and there were no errors of representation. It
is particularly useful for the methods explored in this thesis, because calculations
in principal component and reconstructed radiance space are more straightforward
without other error terms (see chapter 6). Also, the covariance structure of the other
major sources of error – radiative transfer and representation – is not well known
for the full spectrum, as will be discussed further in chapter 7.

5.1 Optimal linear analysis
This section presents more detailed results of linear optimal estimation analysis
using the VAR channels for the 1D-Var set-up presented in section 3.8.3 that is used
throughout this thesis. The results are presented in a new way, proposed by Eyre and
Hilton (2013). The analysis error covariance, A, is projected onto the eigenvectors
of the B matrix allowing the exploration of which scales in the vertical are being
influenced by the assimilation of IASI data. The quantity plotted is the square root
of the diagonal of VAVT where V comes from an eigenvector decomposition of the
background error term, i.e. B = VΛVT. The value plotted for B is the square root
of the eigenvalue (Λ).

The analysis error is calculated using equation 3.11, and assuming instrument
noise only, using the B matrix MoistCov. The profile used to generate the forward
model Jacobian matrix, H, is the US Standard Atmosphere. As well as the eigen-
vector projection, the results are also presented in vertical profile form, with the
standard deviation analysis error (the square root of the diagonal of the A matrix)
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compared against the equivalent background error for temperature and humidity.
Note that although B is diagonal when projected onto its own eigenvectors, A is

not because the observations are not localised in either profile or eigenvector space,
and ‘see’ a combination of all the vectors. This is demonstrated by projecting all
components of the optimal inverse analysis equation (equation 3.11) onto V, the
matrix of eigenvectors of B.

VTA−1V = VTB−1V + VTHTR−1HV (5.1)
= Λ−1 + VTHTR−1HV

The term in B−1 collapses to diagonal matrix Λ−1, but because the term in R−1 does
not, the matrix VTA−1V has non-zero correlations. By examining the diagonal of
this matrix, the reduction in the variances of each mode caused by the assimilation
of IASI observations can be shown.

Figure 5.1 compares the analysis using the VAR channel selection and back-
ground errors in profile space. There is a small reduction of around 0.1K in the
tropospheric temperature errors but up to 0.1 ln(q) units through the tropospheric
water vapour profile. Figure 5.2 shows the same errors in the eigenvector space of
the MoistCov matrix. The errors in the directions of the first five to six humidity
eigenvectors are improved with lower errors in the analysis. Examination of the ei-
genvectors shown in figure B.3, indicates that these vectors represent wavelengths
of up to 7 km. Approximately seven temperature vectors show improved errors, and
figure B.1 shows that these vectors have mostly tropospheric features; those with
large stratospheric contributions are not greatly affected. The DFS for the whole
analysis is 7.3, split almost equally between temperature and humidity. These im-
provements fall well short of the impact predicted by pre-launch studies (Collard,
1998; Prunet et al., 1998).

Figures 5.3 and 5.4 are equivalent to figures 5.1 and 5.2 but present the results
for the use of the full spectrum. The improvements are much more substantial. In
particular, the temperature vectors that have strong stratospheric components are
now improved as well, and humidity vectors are improved out to 10–12 vectors,
now influencing features with wavelengths of up to 3 km. The DFS for the analysis
is 18.7 (this is plotted as the red bar in Column A of figure 4.5(a), of which 10.4
comes from the temperature analysis. These results show that there is still much
more information to be captured from IASI than is possible with the VAR channel
selection.
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Figure 5.1: Comparison of linear optimal estimation analysis and background errors in profile
space, for the assimilation of VAR channels with instrument noise only, where B = MoistCov.
The analysis error is shown in red and the background error in black.
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Figure 5.2: Comparison of linear optimal estimation analysis and background errors in the
eigenvector space of B, for the assimilation of VAR channels with instrument noise only,
where B = MoistCov. The analysis error is shown in red and the background error in black.
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Figure 5.3: Comparison of linear optimal estimation analysis and background errors in
profile space, for the assimilation of the full spectrum with instrument noise only, where
B = MoistCov. The analysis error is shown in red and the background error in black.
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Figure 5.4: Comparison of linear optimal estimation analysis and background errors in the
eigenvector space of B, for the assimilation of the full spectrum with instrument noise only,
where B = MoistCov. The analysis error is shown in red and the background error in black.
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Figure 5.5: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
optimal analysis where background errors are calculated using the B matrix MoistCov. VAR
channels. R contains instrument noise only.

5.2 Optimal 1D-Var
Section 5.1 has established, using the optimal estimation equations, how we might
expect a 1D-Var linear analysis to perform if allowed to iterate to convergence.
In practice, there are some non-linearities that affect the results, so this section
examines the behaviour of a full 1D-Var. The set-up, as described in section 3.8.3,
is equivalent to the optimal linear system used in the previous section. Again, the
VAR channel selection is used for observations with only instrument noise added,
and with background errors from MoistCov. In addition, results are presented for
NMC background errors because the non-linearity effect is clearer.

Figure 5.5 shows the mean and standard deviation of retrievals and backgrounds
against the true profiles. In terms of standard deviation, the optimal analysis per-
forms similarly to the predictions of the linear equations, with up to 0.1K improve-
ments in the retrieval error over the MoistCov background error in temperature
and 0.08 ln(q) units.

Figure 5.6 shows the equivalent for the NMC matrix (note the different scale on
the x-axis). Here, because the background error is larger, the gains over the back-
ground are somewhat larger: up to 0.2K in the troposphere and in the 40 to 60 km
region of the temperature profile, and approximately 0.2 ln(q) units in the tropo-
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Figure 5.6: Standard deviation of (Background–Truth) and (Analysis–Truth) for optimal ana-
lysis where background errors are calculated using the B matrix NMC. VAR channels. R
contains instrument noise only. The statistics are derived from 4348 observations, thus the
standard error for the water vapour profile between 5 and 15 km is approximately 0.006.

spheric water vapour profile. This is also in line with the linear equations (not
shown).

What linear theory does not predict is that the retrieved water vapour profile
is biased relative to the background profile by approximately 0.05 ln(q) units with
the NMC background errors. This is a consequence of non-linearity bias, described
in Eyre and Collard (1999): although neither the observations nor the background
errors in ln(q) are biased relative to the truth, the radiance response to the errors
in ln(q) is non-linear, resulting in a bias in radiance space between the observations
and the background. Figure 5.7 shows the mean and standard deviation of the
observation departures from the background and analysis for the NMC background
errors. The background bias is the black dashed line, which is approximately zero
from 645–700 cm−1, but in the water vapour band can be nearly 0.5K, much larger
than the assumed observation errors. The analysis bias is the red dashed line: the
analysed profiles are not biased with respect to the observations – the red dashed
line is close to zero across the spectrum – but the non-linearity bias has resulted in
a bias between the analysis and the truth in profile space.

Clearly, the introduction of a bias in the analysis is undesirable in an operational
assimilation system. In practice, however, observations are bias-corrected before as-
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Figure 5.7: Mean (dashed) and ±standard deviation (solid) of (Observation–Background) in
black and (Observation–Analysis) in red, expressed as radiances for 1D-Var with B = NMC.
Also shown in blue is the assumed observation error. Only the channels used in the retrieval
(VAR selection) are plotted.

similation, and Section 5.2.1 explores what happens in a 1D-Var when the non-
linearity bias is corrected before assimilation. It has not been investigated whether
an attempt to estimate the covariance of the non-linearity error and combine it into
the R matrix would help to mitigate this problem.

5.2.1 Bias correction of the non-linearity bias

In the 4D-Var assimilation system, Observation–Background (O–B) statistics are
monitored and are used to generate bias correction coefficients to try to ensure
that the observations and background remain unbiased. The scheme of Harris and
Kelly (2001) that is used operationally uses model-based predictors (e.g. 850–300hPa
thickness) to which the calculated coefficients are applied to generate a bias correc-
tion for each channel of each observation. In the Met Office 4D-Var, there are no
model bias terms. Thus, biases are assumed to be part of the observation, regard-
less of whether they are instrumental in origin. The non-linearity bias demonstrated
above is one such example.

The effect of bias correcting away the non-linearity bias is investigated with an
optimal 1D-Var experiment using B = NMC, with observations that have been
bias-corrected by the subtraction of the average non-linearity bias (i.e. the dashed
black line in figure 5.7). This represents a simpler bias correction than is applied
in practice but the principles are similar, in that the applied correction renders the
average O–B statistics unbiased, as shown in figure 5.8.

Figure 5.9 shows the statistics of the analysed profiles. The water vapour analysis
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Figure 5.8: Mean (dashed) and ±standard deviation (solid) of (Observation–Background) in
black and (Observation–Analysis) in red, expressed as radiances for 1D-Var with B = NMC.
Observations are bias corrected using the values of the Observation–Background bias shown
as the black dashed line in figure 5.7. Also shown in blue is the assumed observation error.
Only the channels used in the retrieval (VAR selection) are plotted

bias is now slightly reduced, although it oscillates from positive to negative. However,
the temperature analysis is now biased with respect to the true profiles by about
0.15K from the ground up to about 7 km. This is also undesirable. The analysis
remains unbiased in radiance space.

It is not clear how this behaviour could be addressed in the operational system,
but the observation errors used in 4D-Var are very different from those used here,
being diagnosed quantities including forward model and representation errors, and
so it is not clear whether this issue is important in the real system.

5.3 Summary
This chapter provides a baseline against which the results in subsequent chapters
can be compared. Linear optimal estimation results are shown in profile space and
in the eigenvector space of the background error covariance matrix. The results of
the linear optimal estimation are then verified using a simulated 1D-Var experiment.
The 1D-Var analysis is improved over the background in terms of standard deviation
by amounts consistent with the optimal prediction, but a bias is introduced into the
water vapour analysis because of non-linearity errors, demonstrating the importance
of the assumption of linearity in the optimal analysis equations of section 3.2.

Assuming B = MoistCov, with the VAR channel selection the analysis is im-
proved by around 0.1K in the troposphere for temperature and 0.08 ln(q) units (a
relative improvement of approximately 25%) in humidity. About five or six eigen-
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Figure 5.9: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for op-
timal analysis where background errors are calculated using the B matrix NMC. Observations
are bias corrected using Figure 5.7 before the 1D-Var. VAR channels. R contains instrument
noise only. The statistics are derived from 4348 observations, thus the standard error for the
water vapour profile between 5 and 15 km is approximately 0.006 and for temperature in the
lower troposphere is approximately 0.0075.
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vectors of B in each case show improvement, representing vectors with wavelengths
of up to 7 km in humidity, much lower than the vertical resolution predicted from
the instrument specification, and vectors with mostly tropospheric features for tem-
perature. The DFS for the whole analysis is 7.3, split almost equally between tem-
perature and humidity, which falls well short of the impact predicted by pre-launch
studies. The optimal estimation equations predict that much more impact could be
gained from IASI if the full spectrum could be assimilated, in particular smaller-
scale features in the vertical would be improved for the water vapour analysis, and
the stratospheric temperature analysis could also be improved.

Chapters 6 and 7 introduce principal component compression and reconstructed
radiances, two methods that might allow the practical assimilation of more spectral
information from IASI, without having to resort to using 8461 channels, which is
too expensive computationally. Chapters 8 and 9 then present linear optimal ana-
lysis and 1D-Var results for these two methods that should be compared with the
performance of the VAR channel selection as presented in this chapter.

The results presented in this chapter and in chapters 8 and 9 assume that the B
matrix is well known, but it was explained in section 3.6.1 that this term is neces-
sarily misspecified because of estimation and modelling. Chapter 10 investigates the
effect of a misspecified B matrix on the predicted behaviour of the IASI assimilation,
again building on the optimal results presented in this chapter.
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Chapter 6

Principal Component Compression and
Reconstructed Radiances: Theoretical
Development

Hyperspectral sounder spectra can be distributed and processed more efficiently
than in their raw form, by the use of principal component (PC) compression. Ei-
genvectors are taken from a covariance matrix of radiance climatology, and PC
scores for each observation are then computed for only the leading eigenvectors.
Thus the full spectrum of several thousand channels can be compressed into just a
few hundred PC scores. The eigenvectors that are discarded mostly contain random
measurement noise. The term reconstructed radiances refers to the truncated PC
score representation of the spectrum that has been converted back into radiances.
These radiances are similar to the raw spectrum, but the truncation reduces the
random noise in the measurements. However, errors that are spectrally correlated
in the original data, such as those arising from inadequate correction of detector
non-linearity, will be preserved by PC compression and the remaining signal has
errors that are significantly correlated between channels.

Figure 4.5 demonstrated that 290 PC scores were able to capture most of the
information in the 8461 channels of IASI, despite condensing each observation into
a much smaller number of observed quantities. This theoretical result makes the
technique worthy of further consideration. PC Scores are being investigated for as-
similation by several groups at the present time, with promising early results: for
example, ECMWF have demonstrated that 165 channels could be represented in-
stead by 20 PC Scores without significant differences in forecast accuracy (Matricardi
and McNally, 2014).

The main drawback of PC scores is that each eigenvector contains information
from throughout the atmospheric column. This makes it very difficult to use the parts
of the observation that are unaffected by cloud or surface temperature and emissivity,
limiting the use of the data to only those pixels where every part of the atmospheric
column can be well modelled, and every PC can be well forward-modelled. This
severely restricts usage of the data in cloudy conditions. Month-long trials at the Met
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Office in 2007 demonstrated that the inclusion of AIRS channels above cloud doubled
the impact of the data; we would not want to lose these important observations.

An alternative would be to assimilate reconstructed radiances. Collard et al.
(2010) describe reconstructed radiances in some detail, and present some early ex-
amples of their use in NWP systems. The main difference between reconstructed
radiances and the raw spectrum is the highly non-diagonal observation error cov-
ariance. The lack of evidence for any benefit in the assimilation of reconstructed
radiances in the early studies, coupled with the knowledge that error properties
differ, suggests that the channel selections in common use for raw radiances (e.g.
Collard, 2007), which were constructed under an assumption of uncorrelated errors,
are not appropriate for reconstructed radiances.

This chapter begins by outlining the calculation of PC scores and reconstructed
radiances and demonstrates their theoretical equivalence. There follows a discussion
about the structure of the reconstructed radiance error covariance matrix, which is
required for optimal retrieval or assimilation, and also influences the choice of recon-
structed radiance channels assimilated. The effect of using a raw radiance forward
model rather than a reconstructed radiance forward model is discussed, and it is
demonstrated that this leads to a scenario referred to as suboptimal-in-H, for which
the assimilation equations are presented and the error terms derived.

6.1 PC compression and reconstructed radiance
calculations

The mathematics of PC compression and reconstruction are well known, and have
been presented in papers such as Antonelli et al. (2004) and Collard et al. (2010),
but the practical consequences and treatment of error terms are not well described
in the literature. Chapter 7 introduces a method for making the best use of the
reconstructed radiance spectrum for assimilation or retrieval purposes. To this end,
the effects of the PC compression on the observation error covariance term must be
understood.

The method presented here for the calculation of PC scores are reconstructed is a
standard method, and it is the same as that used by EUMETSAT in the production
of their IASI Level 1c PC Score product (Hultberg, 2009).
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Let us first define:

n: number of channels in raw radiance observation (for the full IASI spectrum
8461; for bands 1 and 2, 5116)
p: number of retained PCs (for IASI bands 1, 2 and 3, respectively, 90, 120 and
80)
yobs: Raw observed radiance spectrum
N: Assumed instrument noise covariance matrix (size n× n)

Before compression, it is usual to subtract a climatological mean spectrum ym,
and to normalise the spectrum with an estimate of the instrument noise N1/2, to
give observation y:

y = N−1/2(yobs − ym) (6.1)

with assumed instrument noise:

N−1/2NN−1/2 = I (6.2)

The PC basis vectors are derived from C (size n×n), an observation climatology
consisting of many tens of thousands of normalised observed atmospheric spectra:

C = Cov(y) (6.3)

The PC vectors are the eigenvectors, L, of C:

C = LΛLT (6.4)

where Λ is the diagonal matrix of eigenvalues. Figure 6.1 shows the first three
principal components for IASI band 1, as used by EUMETSAT and in this thesis.

The PC vector basis is then truncated to compress the data and remove com-
ponents consisting mostly of random measurement noise. The truncation is based on
retaining only the first p vectors with the largest associated eigenvalues. Typically,
p would be of the order of 300 for an IASI spectrum; this is the number of vectors
used by EUMETSAT. The truncation, effected by the PC selection matrix P (size
n× p), results in a PC compression matrix, Lp (size n× p):

Lp = LP (6.5)
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Figure 6.1: The first three EUMETSAT principal components for Band 1
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from which we can generate p, the vector of PC scores of y:

p = LT
p y (6.6)

The assumed instrument noise covariance of the PC scores is thus

LT
p N−1/2NN−1/2Lp = I (6.7)

The noise-normalised reconstructed radiance spectrum deviation from the mean,
ỹ, is then calculated by pre-multiplying p by Lp:

ỹ = Lpp = LpLT
p y (6.8)

Thus, the full matrix transform that is used to convert from raw to reconstructed
normalised radiances is given by LpLT

p , which is also the assumed instrument noise
covariance for the full reconstructed radiance spectrum:

LpLT
p N−1/2NN−1/2LpLT

p = LpLT
p (6.9)

This matrix product is of size n × n, but its rank is at most p. In other words, if
the full spectrum is reconstructed (or, even, just more channels than there are PC
scores), the resulting matrix is rank deficient. This has consequences for the use of
reconstructed radiances in assimilation systems, as the instrument noise covariance
matrix, or indeed any observation error covariance matrix, projected into reconstruc-
ted radiance space will also be rank deficient, non-positive definite, and therefore
not invertible. In other words, only a maximum of p reconstructed channels may be
independent: any more are simply linear combinations of the first p reconstructed
channels. In practice, the rank is often lower, as will be explained in section 7.1.

In order to assimilate reconstructed radiances, we therefore need a channel se-
lection for assimilation of nass channels, where nass ≤ p. This channel selection can
be represented by a sparse matrix S (size nass × n). The normalised reconstructed
radiances are now defined:

ỹass = Lsp = SLpp = SLpLT
p y (6.10)

LsLT
p N−1/2NN−1/2LpLT

s = LsLT
s (6.11)

Such a channel selection matrix can equally be applied to raw radiances, and
usually is, for reasons of computational efficiency and mathematical stability. It is
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worth noting, however, that a channel selection of 300 raw radiance channels will
not embed as much information as the first 300 PC scores (compare, for example,
columns B and F in figure 4.5). To simplify the equations hereafter, the use of S will
be implicitly assumed and ỹ will be used as an abbreviation for ỹass, and y for Sy.
Chapter 7 describes work to construct this matrix S in such a way as to yield an
invertible error covariance matrix for a channel selection of reconstructed radiances
for use in NWP.

In practice, a complete reconstructed radiance vector, rather than a normalised
deviation from the mean, is assimilated:

ỹobs = N1/2(ỹ + ym) (6.12)

with assumed instrument error covariance

Ñ = N1/2LsLT
p N−1/2NN−1/2LpLT

s N1/2 = N1/2LsLT
s N1/2 (6.13)

However, for simplification of the equations, it is assumed in the rest of this chapter
that normalised measurement vectors y or ỹ are assimilated.

6.2 Retrieval in an optimal estimation framework
Optimal estimation theory is covered in chapter 3, but a comparison between raw and
reconstructed radiances, of the calculation of increments and the error terms involved
is a useful illustration of the application of the PC matrix transforms. In addition
to the vectors and matrices defined above, the assimilation system requires the use
of a forward model Hobs to compute a radiance, Hobs(x), from the atmospheric state
vector x. The forward modelled deviation from the mean climatological radiance,
H(x), is calculated straightforwardly as:

H(x) = Hobs(x)− ym (6.14)

Although it is possible to use a dedicated PC-based forward model for assimilation of
PCs or reconstructed radiances, it is also possible to construct the forward-modelled
reconstructed radiance H̃(x) using the same matrix transforms used to project the
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radiances themselves. Thus:

Hpc(x) = LT
pH(x) (6.15)

H̃(x) = LsLT
pH(x) (6.16)

The forward model carries an error, which can mostly be removed by bias correction,
but the residual is usually treated as a random error about the true radiance with
covariance F. It is also helpful to introduce an instrument error term about the true
radiance, E. In the case that the true instrument noise is used for noise normalization
of the raw radiance spectra prior to PC compression, E = I, and the reconstructed
radiance instrument noise simplifies to Ls LT

s as shown in equation 6.11. The total
error covariance matrix, taking account of instrument and forward model errors is,
as elsewhere, represented here by R.

Let yt be the normalised deviation of the true raw radiance vector from the
climatological observed mean spectrum. For optimal estimation with raw radiances,
the observation increments, δy, calculated during minimization, and their respective
error covariance, R, are given by:

δy = (y− yt) − (H(x)− yt) (6.17)
R = E + F (6.18)

The part of the cost function representing the fit of the current guess state to the
raw observation, Jo, can be written as:

Jo = (y−H(x))TR−1(y−H(x)) (6.19)

For optimal estimation with reconstructed radiances, the equivalent terms, δỹ
and R̃, are given by:

δỹ = (ỹ− ỹt) − (H̃(x)− ỹt) (6.20)
= LsLT

p ((y− yt) − (H(x)− yt))
and

R̃ = LsLT
p ELpLT

s + LsLT
p FLpLT

s (6.21)
= LsLT

p RLpLT
s

The part of the cost function representing the fit of the current guess state to the
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reconstructed radiance observation, J̃o, can be written as:

J̃o = ( LsLT
p (y−H(x)) )T( LsLT

p RLpLT
s )−1( LsLT

p (y−H(x)) ) (6.22)

6.2.1 Equivalence between PC assimilation and reconstructed
radiance assimilation

It can be demonstrated that the cost function for assimilation of reconstructed radi-
ances is identical to that of the PC assimilation under certain assumptions, following
Hultberg and August (2013). The only difference in the assimilation of reconstruc-
ted radiances is that an extra rotation through L is performed. The assumptions
required for this to hold are:

1. The forward models should be the same, i.e. H̃(x) = LsHpc(x).
2. The matrix LsLT

p RLpLT
s should be invertible and well-conditioned.

3. In order for the PC and reconstructed radiance systems to be equivalent, Ls

should be invertible in order that the central inverse matrix term in equa-
tion 6.22 can be split into the product of inverse matrices. Ls is only invertible
when square, hence the number of channels reconstructed should be exactly p.

Here, we take Hpc(x) = LT
pH(x). The Jo term for PC scores is then given by:

Jo_pc = ( LT
p (y−H(x)) )T( LT

p RLp )−1( LT
p (y−H(x)) ) (6.23)

Equation 6.22 can be rearranged to show the equivalence between J̃o and Jo_pc:

J̃o = ( LsLT
p (y−H(x)) )T ( LsLT

p RLpLT
s )−1 ( LsLT

p (y−H(x)) )
= ( LT

p (y−H(x)) )TLT
s ( LsLT

p RLpLT
s )−1 Ls( LT

p (y−H(x)) )
= ( LT

p (y−H(x)) )TLT
s L−T

s ( LT
p RLp )−1L−1

s Ls( LT
p (y−H(x)) )

the pairs of matrices in the middle thus cancel, leaving

= ( LT
p (y−H(x)) )T ( LT

p RLp )−1 ( LT
p (y−H(x)) )

= Jo_pc

This demonstrates that, theoretically at least, it should be possible to extract
the full information content of the PC scores, and thus approach the full content of
the IASI spectrum, from p reconstructed radiances, carefully chosen to ensure that
Ls is invertible.
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Figure 6.2: Jacobians for the US Standard atmosphere for the first ten band 1 EUMETSAT
PC scores

There are, however, important differences in the assimilation of PC scores and
reconstructed radiances, notably in their Jacobians. Figure 6.2 shows the Jacobians
of the first 10 EUMETSAT PC Scores. The forms are much less localised than
those of channel radiances, which has implication for assimilation in cloudy areas
because it is not possible to use methods like those of McNally and Watts (2003) or
Pavelin et al. (2008) to assimilate only parts of the spectrum insensitive to cloud.
Other PC compression schemes would lead to differently shaped Jacobians, but
the lack of localisation in the vertical is common to all currently used schemes. The
EUMETSAT PCs are constructed for each band separately: the picture is even more
complex if Bands 1 and 2 are combined within the same eigenvectors, as for the PC
forward model PC-RTTOV (Matricardi, 2010), as then the eigenvectors combine
channels principally sensitive to atmospheric temperature, surface properties and
water vapour. Reconstructed radiance Jacobians are very similar to raw radiance
Jacobians (see figures 8.1 and 8.2 in chapter 8).

6.2.2 Optimal linear analysis for PCs

Figures 6.3 and 6.4 present the optimal linear 1D analysis results for the assim-
ilation of PC scores from IASI, in line with the experimental set-up described in
section 3.8.3. The PC eigenvectors used are those of the EUMETSAT version 102
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Figure 6.3: Comparison of linear optimal estimation analysis and background errors in profile
space, for the assimilation of 290 PC scores with instrument noise only, where B = MoistCov.
The analysis error is shown in red and the background error in black.
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Figure 6.4: Comparison of linear optimal estimation analysis and background errors in the
eigenvector space of B, for the assimilation of 290 PC scores with instrument noise only,
where B = MoistCov. The analysis error is shown in red and the background error in black.

Level 1c IASI radiance product (Hultberg, 2009). This 1D analysis gives the value
of DFS that is plotted as Column F for the MoistCov matrix in figure 4.5.

Figure 6.3 should be compared with figures 5.1 and 5.3, and Figure 6.4 with
figures 5.2 and 5.4. The PC-compressed spectrum gives results that are virtually
identical to those from the full spectrum. In other words, the 290 orthogonal vectors
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contain almost exactly the same information on the vertical profile of temperature
and humidity as the original spectrum.

6.3 Development of the suboptimal-in-H
assimilation system for reconstructed radiances

This section introduces new equations to describe the error properties of reconstruc-
ted radiances assimilated with a raw radiance forward model, a scenario referred
to as suboptimal-in-H. This situation is likely to arise in the practical assimilation
of reconstructed radiances, because using H̃(x) = SLpLT

pH(x) is an inefficient way
to simulate reconstructed radiances since the full raw radiance spectrum needs to
be simulated in order to forward model just a few reconstructed channels. Whilst
PC-based forward models exist and are in use in several retrieval schemes at the
present time, none of these are currently set up to forward model the PC scores
disseminated by EUMETSAT. The relevant quantities could be calculated via an-
other set of PCs from such a forward model and a further matrix transformation.
This would still be more efficent than simulating the full raw spectrum, but those
working with PC forward models tend to be interested in assimilating PC scores
directly and the PC forward models available were considered insufficiently mature
to attempt this approach here. Instead, most existing assimilation systems are set
up to use traditional radiative transfer models simulating raw radiances. Experi-
ments with reconstructed radiance assimilation to date (e.g. Collard et al., 2010)
have therefore involved forward modelling the reconstructed radiances as though
they are raw radiances.

If the approach is taken to forward model raw radiances, an additional forward
model error term, Φ, is introduced, which, if taken into account, would give a theor-
etically optimal system, albeit one with a larger observation error term than would
exist if the reconstructed radiances were modelled directly. The following equations
show where this error term arises (equation 6.20 gives the equivalent optimal-in-H
estimation equation). It will be assumed (for reasons that will become apparent
in equation 6.30) that the full spectrum is reconstructed, even though in practice
this makes the instrument error term uninvertible. The primes indicate quantities
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defined for the suboptimal-in-H system.

δỹ′ = (ỹ− ỹt) − (H(x)− ỹt) (6.24)
= LpLT

p (y− yt) − (H(x)− LpLT
p yt))

and
R̃′ = LpLT

p ELpLT
p + F′ (6.25)

Let εfm be the forward model error, then:

H(x) = yt + εfm (6.26)

Substitute this into the right-hand term in equation 6.24, which gives the forward
modelled radiance departure from truth:

δỹ′fm = H(x)− LpLT
p yt (6.27)

= yt + εfm − LpLT
p yt

= (I− LpLT
p )yt + εfm

Using < · · · > to represent expectation over climatological conditions

F′ = < δỹ′fm δỹ′Tfm > (6.28)
= (I− LpLT

p ) < ytyT
t > (I− LpLT

p )T + F

= (I− LpLT
p ) < ytyT

t > (I− LpLT
p ) + F

= Φ + F

The same overall error terms arise if it is assumed that reconstructed radiances
are an imperfect representation of a true radiance spectrum, such that the true state
is yt rather than ỹt. This is shown in appendix D.

The important question for the assimilation system is, by how much is the error
on the observation increased with the use of an incorrect forward model? The amount
by which the error term differs given the use of a raw radiance forward model is given
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by:

∆R̃ = R̃′ − R̃ (6.29)
= ( LpLT

p ELT
p Lp + F + Φ ) − ( LpLT

p ELpLT
p + LpLT

p FLpLT
p )

= F + Φ− LpLT
p FLpLT

p

= Φ + ∆F

Equation 6.29 shows that the difference in error between the optimal-in-H and
suboptimal-in-H cases comes from two sources:

• In the case of a proper reconstructed radiance forward model the error term
F is actually filtered by Lp (equation 6.21), which has the effect of removing
forward model error in directions that cannot be observed in reconstructed
radiance space. That filtering does not take place if the incorrect forward
model is used.

• The term Φ must also be added to take account of the fact that the forward
model does not correctly model reconstructed radiances.

Φ arises because the artificial truncation process in LT
p means that a small portion of

atmospheric signal is rejected in the discarded eigenvectors. This is done because, for
the rejected components, the noise is high enough that the signal cannot be separated
from the noise with any certainty and so the eigenvalues in the radiance climatology
in these directions cannot be measured with low enough errors. In physical terms,
measurements in these directions do not tell us anything new, and the noise on the
measurement is great enough that there is a risk of adding noise into the analysis
instead of information (there is a good discussion on these matters in Twomey,
1996). Effectively, therefore, it could be said that these atmospheric signals are also
noise.

A particularly interesting aspect of ∆R̃ is that it is orthogonal to R̃: this can be
shown using the fact that the matrix LpLT

p is idempotent, which means that success-
ive additional multiplication by LpLT

p does not alter the result. This is demonstrated
by pre- and post-multiplying ∆R̃ by LpLT

p , substituting Y for < ytyT
t > in equa-

tion 6.28 and combining with equation 6.21:
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LpLT
p ∆R̃LpLT

p = LpLT
p (Φ + F− LpLT

p FLpLT
p ) LpLT

p (6.30)
= LpLT

p (I− LpLT
p )Y(I− LpLT

p )LpLT
p

+ LpLT
p (F− LpLT

p FLpLT
p )LpLT

p

= (LpLT
p − LpLT

p LpLT
p )Y(LpLT

p − LpLT
p LpLT

p )
+ (LpLT

p FLpLT
p − LpLT

p LpLT
p FLpLT

p LpLT
p )

= (LpLT
p − LpLT

p )Y(LpLT
p − LpLT

p )
+ (LpLT

p FLpLT
p − LpLT

p FLpLT
p )

= 0 + 0 (6.31)

This describes mathematically what can be understood logically: ∆R̃ arises be-
cause of the rejected principal components, which are, by definition, orthogonal to
the retained components. What is peculiar about this is that it means an increment
can be made in a direction that is not observable, purely because the forward model
is non-zero in that direction. This increment does not contain any information, be-
cause there is no observation of it. Essentially, the increment is just adding noise to
the solution, and ∆R̃ defines its statistical distribution.

An assessment of the magnitude of Φ would allow us to infer the quantity of
atmospheric signal discarded by the truncation process that can be forward modelled
(if it cannot be forward modelled, this error would be part of ∆F). In the case that
all PC scores are retained, there will be no discarded signal, and Φ will be zero, but
the minor directions will be observed with high noise. In a very poorly defined set
of PCs, Φ will be large, and much atmospheric signal will be discarded, but those
directions which are observed will be observed with low noise. In a well-constructed
PC set, the vast majority of atmospheric signal is preserved with confidence, and
this should yield a small Φ.

∆R̃ is a theoretical construct. There are various sources of error that contribute
to the R matrix that are described in section 7.1, not all of which are well known. It
therefore becomes necessary to use diagnosed observation error covariance matrices
(see section 7.2) rather than evaluating them explicitly. There is also no need to
explicitly evaluate Φ or ∆F: they will automatically be part of the total diagnosed
observation error covariance. However, in simulation experiments where we know the
error terms applied to the raw radiances exactly, neglecting ∆R̃ will underestimate
the observation error: this system is referred to as suboptimal-in-H-and-R.

∆R̃ may be important for channel selection. Because it arises through the neglect
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of terms that are orthogonal to the retained atmospheric signal, this additional error
is also orthogonal to the instrument noise covariance matrix, LpLT

p ELpLT
p . In theory,

therefore, it should raise the rank of the R̃ matrix, and paradoxically, this might
allow one to reconstruct more channels than PC scores: although ỹ for the additional
channels is merely a linear combination of the first p channels, δỹ′ is not a linear
combination because of the involvement of the forward model. This rather strange
theoretical outcome will be returned to later in section 7.2.2 where the rank of
diagnosed observation error covariance matrices is examined.

6.4 Summary
The theory for PC compression and reconstruction of the IASI spectrum has been
presented, and the theoretical equivalence of the optimal assimilation of PCs and
reconstructed radiances demonstrated under the assumption of a mathematically
well-conditioned reconstruction matrix. The importance of the rank of the recon-
structed radiance observation error covariance matrix was emphasised along with
the impact this has on the channel selection for reconstruced radiances.

Practical implementation of reconstructed radiances for assimilation is likely to
make use of raw radiance forward model Jacobians, and an extra error term, ∆R̃
is demonstrated. ∆R̃ is orthogonal to the instrument noise covariance matrix for
reconstructed radiances, and therefore has implications for the rank of the problem.
Neglect of this term renders the assimilation suboptimal-in-H-and-R. In practice,
however, the necessary use of a diagnosed error covariance matrix that reflects all
sources of error including ∆R̃ reduces the requirement to have an accurate estimate
of this quantity.

The next chapter presents a method for selecting channels for reconstructed
radiances, and shows how a diagnosed observation error covariance matrix can be
constructed for reconstructed radiances. The diagnosed observation error matrix and
an instrument noise covariance matrix for reconstructed radiances are then used to
generate several candidate channel selections. Chapter 8 examines the performance
of reconstructed radiances via linear analysis, and chapter 9 tests reconstructed
radiances and principal components in the 1D-Var.
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Chapter 7

A channel selection for Reconstructed
Radiances

As shown in chapter 6, reconstructed radiances have a different instrument error
covariance from raw radiances, as the PC compression process introduces significant
levels of correlation between channels and imposes mathematical constraints on the
R matrix. Because of this, channel selections in common use for raw radiances such
as the Collard selection (Collard, 2007, also see appendix E) are not optimal for
reconstructed radiances. This chapter follows the convention for this thesis that
italics will be used to indicate the name of a channel selection.

As stated in section 6.1, the number of channels chosen for assimilation should
not be greater than the number of retained PCs, p, or the error covariance matrix
for the reconstructed radiances will be non-positive definite. Even p reconstructed
radiances are not guaranteed to be independent: for example, the PCs used by
EUMETSAT are designed to contain as much information as possible from the
given spectral range without loss. It is preferable to use a channel selection tailored
to the application, and for NWP this would include avoiding channels sensitive to
trace gases about which we have no prior information. Some of the PCs, however,
will contain information about the variability of such species.

Say that pnwp eigenvectors contain information relevant to NWP, and pchem =
p− pnwp mainly represent the signals from the many minor chemical species present
in the atmosphere. If p reconstructed radiance channels were chosen avoiding parts
of the spectrum with trace gas sensitivity, it would not be possible to extract the
information on those gases contained within the PC scores with an acceptable de-
gree of error. However, the p channels would contain information from only pnwp PC
scores, and so p − pnwp of the reconstructed radiances would be linear combina-
tions of the other channels. If p reconstructed radiances are chosen for this tailored
channel selection, the resultant observation error covariance matrix will probably be
singular, and at best ill-conditioned (in other words the ratio of its largest to smal-
lest eigenvalues will be too high) and will produce mathematically unstable results
in some directions.
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Reconstructed Radiance Instrument Noise Covariance: Collard channels
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Figure 7.1: Reconstructed radiance instrument noise covariance matrix (LsLT
s ) for the Collard

channel selection. The lower left block is the band 1 channels and the upper right block is the
band 2 channels. Note the high degree of correlation within a band, but lack of correlation
between bands because the compression is performed for each band separately.

Despite these mathematical considerations, assimilation experiments with IASI
reconstructed radiances described in Collard et al. (2010) did use the Collard se-
lection. The Collard selection was generated for raw radiances, where there are no
constraints on the rank of the error covariance matrix (at least in terms of instrument
noise), and it contains too many channels in Band 1 for correct use of reconstructed
radiances. The channels were also chosen using a simplified diagonal R matrix, but
significant off-diagonal components are present for reconstructed radiances that may
affect the usefulness of the channels selected. The reconstructed radiance instrument
noise covariance matrix for the Collard selection is shown in figure 7.1. Note the high
degrees of correlation between channels in band 1 and recall that this matrix is not
positive definite.

Of course, there are significant off-diagonal components of the full error covari-
ance matrix for raw radiances also (e.g. Bormann et al., 2010; Garand et al., 2007),
which continue to be ignored in many assimilation and retrieval schemes but which
were implemented operationally at the Met Office in January 2013 during this thesis
study (Weston et al., 2014). As shown by Hilton and Collard (2009) and Collard
et al. (2010), it is quite possible to assimilate reconstructed radiances with the same
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subset of the Collard selection that is used operationally, using the same (incorrect,
diagonal) assumptions about the error covariance statistics and achieve a reasonable
result. However, the benefits of the noise-reduction inherent in the reconstructed ra-
diances will not be seen, and the observations cannot be assimilated with a realistic
observation error covariance.

7.1 New channel selection methods for
reconstructed radiances

The aim of this work is to propose a better way of using reconstructed radiances, en-
abling the assimilation scheme to extract more information from the observations. So
how should the channels for reconstruction and assimilation be chosen? One import-
ant constraint on the choice is that the retrieval process will have better numerical
stability if the resulting error covariance matrix has a low condition number. For
this reason, methods such as those of Collard (2007); Ventress and Dudhia (2013);
Migliorini et al. (2014) are unsuitable for this application because they do not re-
strict the final selection of the channels using the interchannel correlations, even
where channel correlations form part of the information content measure. Two new
approaches to performing a channel selection have been tested, that are described
in the following sections.

7.1.1 Method 1

This is a purely mathematical approach developed by Tim Hultberg at EUMETSAT
and described in Hultberg and August (2013). It selects channels by first computing
the dot product of each row of the Lp matrix with itself, to give a norm for each
row. The row (channel) with the largest norm is selected. The dot product of each
remaining row (channel) with the selected row is then computed, and this is used to
subtract the contribution of the chosen channel from each of the remaining channels
before the next channel is chosen; in other words, a channel which is highly correlated
with the previous channel will now have only a small extra contribution to make to
the eigenvector subspace spanned by the matrix Lp and is unlikely to be chosen. The
next channel chosen has the largest contribution to the subspace of Lp that remains
after selection of the first channel. The process is repeated until all p channels have
been selected. The channel selection is performed for each band independently, as
there are no interband correlations in Lp. The resulting channel selection from this
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method is used in Version 6 of the EUMETSAT Level 2 temperature and water
vapour retrieval products.

Method 1 is likely to result in a mathematically robust channel selection, with
a reasonably well-conditioned instrument noise covariance: in its basic form, it is
not tailored to any specific application, and we might reasonably expect the channel
selection to approach the full information content of the PC scores because the
process picks the most independent p channels. However, without taking into account
other sources of error that are components of the R matrix, such as forward model
error, it risks choosing channels that have little practical use for NWP. The chosen
channels may, for example, have a high degree of trace gas contamination, or a
large forward model error. For this thesis, the method was therefore modified to
minimise this risk by taking account of the full observation error term. Rather than
selecting the row of Lp with the largest norm, instead the row of LpLT

p R̃1/2 with
the largest dot product norm was selected, and channels were chosen from the two
bands simultaneously because of long-range error correlations. The modified method
was used by Tim Hultberg to generate channel selections from several R̃ matrices.

The resultant channel selections were tested to determine their sensitivity to
the observation error assumptions. Each of the channel selections were very similar,
indicating that the selection process is dominated by the structure of Lp.

7.1.2 Method 2

This is a new adaptation of a physically based approach, where the impact of each
channel on the assimilation/retrieval system is considered. It is similar to that em-
ployed by Collard (2007) to choose the channels for restricted bandwidth IASI dis-
semination, which in practice is also the basis for the channel selection assimilated at
most European weather centres, but uses the full observation error covariance mat-
rix, and additionally penalises the selection of a channel that raises the condition
number of the resultant error covariance matrix by more than a chosen threshold.
The details of the selection method will be given in section 7.3.2.

The second method requires the error covariance of the a priori/background
profile and as such the results will be tailored to a particular assimilation or retrieval
system. The resulting selection may provide more information to that system than
one chosen by Method 1, but it will not approach the full information content of
the PC scores (including trace gas information). It is expected that if p channels are
reconstructed, the resultant observation error covariance, R̃, will be rank deficient,
and that the number of usable reconstructed channels will be somewhat less than p.
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Various additions and modifications to the basic Method 2 have been tested, to
determine the robustness of the solution. Several of the resulting channel selections
are compared in the next chapter in terms of information content to determine which
ones merit further study.

7.1.3 Incremental channel selection methods

An incremental approach to channel selection, such as both Methods 1 and 2 employ,
is imposed upon us by the computational cost of testing all possible combinations
of 210 channels chosen from 5116 (the total number of channels in bands 1 and 2).
One issue with the incremental approach is that the exact choice of each channel
determines the progress of the selection from that point on; any tiny difference in
norm or DFS that may not be meaningful, or even the selection of the first of a
few channels with identical norm or DFS, will potentially result in a completely
different channel selection, albeit one with very similar information content overall.
Therefore, the method will produce an appropriate channel selection, but cannot
produce a single ‘best’ selection.

This chapter explores the two methods and possible modifications to the methods
that may generate a more robust channel selection. Other techniques and modific-
ations are possible, that may genereate equally valid selections as those presented
here.

7.2 Estimating an observation error covariance
matrix

Method 2, and the modified Method 1, require an observation error covariance term.
The observation error covariance matrix should ideally contain contributions from:

• instrument noise: This term takes into account apodisation functions and
the reconstruction process as outlined above.

• forward model error: Although forward model error is usually more cor-
rectly handled as a systematic error to be removed by bias correction, remain-
ing errors can be quite complex and are usually treated as a random error.

• reconstruction error: This error term is defined in section 6.3, in the case
that a raw radiance forward model is used.

• errors of representation: An additional source of mismatch between the
observation and its forward-modelled counterpart results from the finite grid
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of the model in question. NWP models are unable to capture detailed struc-
tures within a grid box that the observation is sensitive to. In single column
retrievals this term may be considered part of the background error, but in
NWP assmilation the term is generally regarded as an observation error.

It is not easy to construct such a matrix from its individual component terms as,
other than the instrument noise term, they are not well known. An alternative ap-
proach is therefore to estimate the quantity by examination of observation minus
forward-modelled radiance statistics. This section describes the method by which an
estimated error covariance matrix for bands 1 and 2 of IASI, to be used in Method
2 and the modified Method 1, to generate a channel selection of reconstructed radi-
ances for use in NWP. (Band 3 is not used at present as the channels are sensitive
to physical processes such as solar effects that are hard to forward model and that
limit the use of the channels in operational assimilation systems.)

Covariance estimation is currently used at the Met Office, ECWMF and other
national meteorological centres to define the R matrix used during assimilation for
various satellite data types. At most centres, although a full matrix may be dia-
gnosed, only the diagonal part is retained in the assimilation at the present time,
although this is an area of active research for many organisations. There are vari-
ous methods for estimating observation error covariances within NWP systems. The
most well known are those of Hollingsworth and Lönnberg (1986), using observa-
tion minus background (O–B) calculation statistics (background departures), and
of Desroziers et al. (2005). The latter is currently more widely used (e.g. at the Met
Office, ECMWF and Météo-France), but this technique requires observation minus
analysis (O–A) statistics, and assumes that all channels for which errors are estim-
ated are assimilated: we cannot assimilate 8461 IASI channels even in tests, so must
rely on the background departures only and are thus restricted to the first method.
Nevertheless, the two methods have been shown to give similar results by Bormann
et al. (2010).

7.2.1 The observational method of Hollingsworth and Lönnberg

The Hollingsworth and Lönnberg (1986) method estimates both observation and
background errors from background departure statistics. Also known as the obser-
vational method, this has been used by, among others, Garand et al. (2007), Bor-
mann and Bauer (2010) and Bormann et al. (2010) to calculate observation error
matrices for operational satellite sounders. The observational method is summarised
by Bouttier and Courtier (1999) who show that background departure covariance,
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c(p1, p2), between two observations at locations p1 and p2 is equal to:

c(p1, p2) = Rp1,p2 + Hp1BHT
p2 (7.1)

The observational method makes the assumptions that
• observation errors are random and uncorrelated between observations
• background errors vary only slowly with increasing separation between obser-

vation errors such that the error at zero separation can be extrapolated from
the error at small separation

• observation and background errors are uncorrelated with each other
Under these assumptions, if p1 = p2, the error covariance is the sum of observation
and background error terms in observation space. If p1 6= p2, then c(p1, p2) consists
only of errors that are correlated between observations, which can be attributed to
the background since the observation error is assumed to be spatially uncorrelated.
Subtracting the matrix defined at p1 6= p2 from the matrix at p1 = p2 therefore
yields the observation error covariance matrix.

The partitioning between background and observation error is not exact. Any
structure that is correlated across grid boxes would be treated as background error
by this process. Errors of representation are likely to be included within the ob-
servation error covariance matrix, as the structures seen by each observation that
are not observable to the NWP model are likely to be different for each footprint.
However, any errors of representation or radiative transfer errors that are correlated
with the atmospheric state, and therefore similar for adjacent observations, may
be subtracted. This is also the case for any observation errors that are correlated
between adjacent observations. Conversely, background errors that are uncorrelated
between adjacent observations will be mapped into the observation error term.

The following alternative notation was used by Cameron and Eyre (2008) to
describe the observational method as applied to radiance observations. Background
departures are calculated for pairs of observations at p1 and p2. If ∆i,p1 is the back-
ground departure for channel i of an observation at p1, and ∆j,p2 is the background
departure for channel j of an observation at p2:

Ri,j = Cov(∆i,p1,∆j,p2)|p1=p2 − Cov(∆i,p1,∆j,p2)|p16=p2 (7.2)

The same result can be arrived at by an alternative calculation

Ri,j = 1
2 Cov(∆i,p1 −∆i,p2,∆j,p1 −∆j,p2) (7.3)
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We shall refer to this alternative formulation as the double difference covariance.
The equivalence to the classical representation of the observational method can be
shown using the covariance identity:

Cov(A−B,C −D) = Cov(A,C)−Cov(A,D)−Cov(B,C) + Cov(B,D) (7.4)

to expand equation 7.2:

1
2 Cov(∆i,p1 −∆i,p2,∆j,p1 −∆j,p2)

= 1
2 Cov(∆i,p1,∆j,p1) + 1

2 Cov(∆i,p2,∆j,p2)−
1
2 Cov(∆i,p1,∆j,p2)− 1

2 Cov(∆i,p2,∆j,p1) (7.5)

= Cov(∆i,p1,∆j,p2)|p1=p2 − Cov(∆i,p1,∆j,p2)|p16=p2 (7.6)

In practice, for satellite data, it is very unlikely that there would be two independent
observations in the same location, i.e. at zero separation, so some method of estim-
ating the background error at zero separation is required. The method proposed by
Hollingsworth and Lönnberg (1986) and used by Garand et al. (2007) is to calculate
statistics in bins of increasing separation distance, and then extrapolate the trend
from larger separations (assumed to be spatially correlated background error) to
zero separation to find the background error component of the covariance at zero
separation. However, the choice of extrapolation function is somewhat arbitrary, and
so here, in common with Bormann et al. (2010) and Cameron and Eyre (2008), the
covariance statistics at the smallest possible separation distance are used as an es-
timate of B. Both of these previous studies used a 25 km separation distance, which
is the smallest practical distance within an NWP model where IASI observations
are thinned to one footprint in four prior to processing.

The final matrix, RHL, was constructed from observations at 25 km separation,
with background departures calculated within the Met Office operational 1D-Var
preprocessor using RTTOV-9 (Saunders et al., 2010) as the forward model. The
observations were used if deemed to be cloud-free on the basis of various cloud
detection tests (Hilton et al., 2009a). Approximately 16 000 observation pairs were
used, without bias correction.

As mentioned above, background errors that are uncorrelated between the paired
observations could be mapped into the resulting matrix: given that the observational
method relies on the subtraction of the errors at zero separation which has not been
done here, this remains a distinct possibility. Figure 7.2 compares the diagonal of
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Diagnosed Observation Error
Comparison between Met Office and ECMWF Double Difference Matrices
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Figure 7.2: Standard deviation of observation error from the RHL double difference matrix
– comparison against a double difference matrix calculated from observations against the
ECMWF analysis, REC .

the RHL matrix against a double difference matrix, REC , calculated from statistics
of IASI observations minus ECMWF analysis (Tim Hultberg, pers. comm.). As well
as using ECMWF analyses, REC differs from RHL in that it was constructed from
pairs of pixels 3 and 4 (at 12.5 km separation) rather than random pairs at 25 km.
Another difference is in quality control: REC was calculated from a dataset covering
only ±60° latitude and it is probable that the discarding of outlier observations (i.e.
when background departures are too high) was more stringent for these matrices; for
RHL observations were only rejected on gross differences, and on modest departures
for selected window channels as part of the cloud detection process.

RHL has a considerably higher error in the window region in particular. Since
forecast background errors are larger than analysis errors, this could suggest prob-
lems with partitioning the background departure information between observation
and background error terms: it is likely that some background error is incorporated
into RHL. On the other hand, the ECMWF analysis has assimilated information
from the IASI observations already, so one might expect the simulated radiance to
be tuned to the observations, thereby underestimating the observation error. The
shape of the plotted diagonal seems to show realistic physical structures: channels
with lower error are scattered through the window region, that resemble absorption
lines. Close to the centre of an absorption line, a channel is less sensitive to the
surface temperature than a true window channel would be. This suggests that it is
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indeed the surface temperature that is causing the very high errors in the window
region for RHL.

Although the two matrices are rather different, casting some doubt on the effect-
iveness of the method to generate a good observation error covariance matrix, the
matrix RHL is only for use in channel selection. For operational assimilation, once
the channel set has been determined, the Desroziers technique would be applied to
refine the R matrix prior to pre-operational trialling. The RHL matrix is used to
perform channel selections with Method 2 and modified Method 1 in section 7.3.

7.2.2 Mathematical stability of observation error covariances
for reconstructed radiances

The eigenvalues of estimated covariance matrices are likely to have much too large
a spread. There is a large body of literature in statistics – and in particular its
application to finance and biostatistics – pertaining to covariance estimation (e.g.
Daniels and Kass, 2001; Ledoit andWolf, 2004, 2012; Wang et al., 2012). It is usual to
apply what are known as shrinkage operations on estimated covariance eigenvalues,
usually combining the estimated matrix with a diagonal target matrix to reduce
the largest eigenvalues, and increase the smallest. The resultant matrix will have
more stable mathematical properties, and gives better results. This performance
advantage of the shrunk matrix stems from work by Charles Stein on the estimation
of sample means. A very nice summary of the effect of shrinkage is provided by
Efron and Morris (1977).

Twomey (1996) describes the effect of very small eigenvalues of a covariance
matrix: in general, these matrices are used in their inverse form, and the very small
eigenvalues become very large values in the inverse matrix: the analysis in these
directions is very unstable to small numerical differences. In fact, it may be better to
estimate R−1 directly, and perform the shrinkage operations on this instead (Wang
et al., 2012). No shrinkage has been performed on the estimated matrices used for
channel selection. However, such processes would be required on the R matrix for
the selected channels before operational assimilation, and a form of shrinkage is
investigated in chapter 9 in the context of suboptimal-in-H-and-R assimilation.

As discussed in section 6.1, the instrument noise covariance matrix for reconstruc-
ted radiances will have a rank equal to p. Section 6.3 discussed the extra forward
model error term, ∆R̃ that would result from using a raw radiance forward model
(as has been used here), which is orthogonal to the instrument noise covariance mat-
rix and may therefore increase the rank of the resultant R̃ matrix. It is therefore
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Figure 7.3: Eigenvalues of the covariance matrices calculated from different background pro-
files as detailed on the plots. Marked in light grey is the rank of the instrument noise covariance
matrix.

interesting to look at the eigenvalues of the diagnosed observation error matrices.
Figure 7.3 shows the eigenvalues of the RHL and REC double difference matrices.

For an instrument noise only covariance matrix, we would expect the eigenvalues to
drop to zero after the rank of the matrix had been reached, in this case after 210
values. In the case of the diagnosed matrices, the eigenvalues do drop off beyond
this point, but not so sharply. The matrix constructed using the ECMWF analysis,
REC , has slightly lower eigenvalues for each ranked position for the higher order
eigenvectors. This is a possible consequence of mapping more background error into
RHL, and the increased error across the window region.

There is a step in the profile of eigenvalues around 100–110. This is interesting
because the PC compression of bands 1 and 2 is done separately, so the instrument
noise is independent between the two bands. 90 PCs are retained for Band 1 and
120 for Band 2. The step is likely to be related to this separation of the compression
between the two bands, but its precise location corresponds precisely to neither of
the numbers of retained PCs in Band 1 or 2.

As stated earlier in this section, what really matters in terms of mathematical
stability is the condition number – the ratio of the largest to smallest eigenvalues.
A matrix with too large a condition number is known as ill-conditioned and will
be numerically unstable: the inverse matrix, which is the quantity required by most
retrieval or assimilation algorithms, will be poorly defined leading to a solution that
is also poorly defined. A maximum condition number of approximately 1× 106 is a
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rule of thumb often used to determine whether the matrix is invertible (although
for operational applications higher stability may be required). Figure 7.4 shows the
eigenvalues of the double difference matrices from the different background profiles
as a fraction of the leading eigenvalue in the respective matrix (this is the inverse of
the condition number). The grey horizontal line corresponds to a condition number
of 1× 106. If more channels are reconstructed than the rank indicated where the
plotted logarithmic eigenvalue ratio falls below −5, the inversion of the matrix will
likely be unstable. Figure 7.4(a) shows the ratios for the full matrix combining bands
1 and 2. The RHL matrix is much more poorly conditioned for any given number of
eigenvalues than the REC matrix, and the eigenvalue curve drops below the grey line
by only 110 channels. Both matrices behave similarly in terms of the matrix size at
which the eigenvalues drop successively. The RHL eigenvalues asymptote sharply to
a ratio of 1× 107 at about 225 values: this is likely to be related to the low precision
with which the values were written to file prior to plotting.

Figure 7.4(b) shows the eigenvalue ratios for the band 1 only covariance matrix.
The drop beyond eigenvalue 90 is sharp for all the matrices, although there is some
lag for RHL. This gives confidence that there is little error orthogonal to the instru-
ment error contained within the matrices, and that the extra reconstruction error,
Φ, is indeed small, and thus a raw radiance forward model is adequate for simulation
of reconstructed radiances for Band 1. Figure 7.4(c) shows the eigenvalue ratios for
a band 2 only covariance matrix. For REC , the results are similar to those for band
1, except that the drop off after 120 (the number of retained PCs for band 2) is not
quite so sharp. Forward model errors tend to be larger relative to the instrument
noise for water vapour sensitive regions of the spectrum and it is possible that this
is why there is a larger amount of error orthogonal to the instrument noise in the
band 2 matrix in comparison with the band 1 matrix. The slower tailing off of the
significant eigenvalues could imply that Φ is non-zero for the water vapour band, but
this could also be forward model error orthogonal to the instrument noise. For RHL,
the eigenvalue ratio drops below the grey line at only 60 or so; this indicates signific-
ant error correlations for band 2 channels, likely arising through representativeness
errors.

The band 1 matrix drops rapidly from the largest eigenvalue then flattens out
before dropping rapidly again after p eigenvalues, but the band 2 matrix has an
additional hump between 10 and 30 eigenvectors (this is less pronounced for RHL).
The presence of this hump seems related to the step in the bands 1 and 2 combined
matrix at around 100–110 (90 from band 1 plus 10–20 from Band 2), although its
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Channel

Selection
CO2 Window Ozone

Water

Vapour
Band 1 Band 2

Total

NChan

Lp-M1 39 66 10 95 90 120 210

RHL-M1 40 65 10 95 90 120 210

Collard 132 24 15 98 165 104 269

Table 7.1: Breakdown of the number of channels by principal sensitivity for the Method 1
channel selections. Comparison with the Collard selection for bands 1 and 2.

cause is not known.
In summary, the diagnosed error covariance matrices have eigenvalue structures

that reflect the fact they have been derived from reconstructed radiances. In other
words, the eigenvalues drop rapidly once the number of retained PCs is reached. They
do not drop immediately to zero; these matrices were estimated for a suboptimal-in-
H system that contains additional forward model error orthogonal to the retained
eigenvectors. Furthermore, they may contain background error that has not been
removed by the double-difference formulation: this seems to be the case especially
for the RHL matrix in the window region. This is unfortunate, because it is likely to
penalise the selection of window channels. The eigenvalue ratio plots suggest that it
will not be possible to choose more than approximately 100 channels using RHL if
the resultant R̃′ is to have a condition number of less than 1× 106.

7.3 Channel selections
Methods 1 and 2 were used to derive channel selections of up to a maximum of
210 channels from IASI bands 1 and 2 (210 being the number of retained principal
component scores and therefore the maximum number of independent reconstructed
radiance channels).

7.3.1 Method 1 channel selections

Two channel selections were generated using Method 1. The first is the EUMETSAT
v6 selection, using rows of Lp alone to choose channels. It will be referred to as
the Lp-M1 selection. The second is the modified Method 1 selection, referred to as
RHL-M1 , which uses rows of LpLT

p R1/2
HL. Table 7.1 shows the breakdown by principal

sensitivity of the Method 1 channel selections compared with the Collard selection
for reference.
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(a) Bands 1 and 2 combined

Ratio of Eigenvalues to Largest Eigenvalue  - Band1
Double Difference matrix intercomparison
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(b) Band 1 only

Ratio of Eigenvalues to Largest Eigenvalue  - Band2
Double Difference matrix intercomparison
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(c) Band 2 only

Figure 7.4: Ratio of eigenvalues of the covariance matrices to the leading eigenvalue. Compar-
ison between double difference matrices with different background sources. Also indicated by
a grey vertical line is the rank of the instrument noise covariance matrix. The grey horizontal
line marks a condition number of 106.
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The Method 1 selections are very similar in terms of distribution of channels by
principal sensitivity. The method generates a selection that has many fewer CO2

channels, and many more window channels than the Collard selection. This is of
concern for NWP applications: the main advantage of using reconstructed radiances
rather than assimilating PC scores is that they should be more useful in cloudy areas
in the common situation where the radiative transfer modelling of cloud effects, and
underlying NWP background information that the RT model depends upon, are in-
sufficiently accurate to allow a full cloudy assimilation. This is because, as discussed
in section 6.2.1, each of the PCs is sensitive to the full atmospheric column, whereas
the reconstructed radiances have more localised sensitivity, like normal radiances.
The most common way to deal with cloudy scenes is to assimilate channels that
peak above the cloud, and that are only weakly affected by the radiative signature
of the cloud (e.g. Pavelin et al., 2008). Completely clear scenes comprise only a very
small fraction of the total number of observations, say 5%. If the selection contains
too many window channels at the expense of channels that peak higher in the at-
mosphere, the majority of assimilated scenes will use very few channels indeed. In
contrast, over half of the Collard selection for bands 1 and 2 is comprised of CO2

channels used for temperature sounding of the troposphere and stratosphere.

7.3.2 Method 2 channel selections

The general principle of the method is to calculate, for each candidate channel,
the change in a chosen measure of information content that would result from its
inclusion, and to choose the channel with the greatest contribution. The chosen
measure of information content here is DFS, according to the equation:

DFS = Tr(I−AB−1) (7.7)

where

A = (B−1 + HTR̃′−1H)−1 (7.8)

Method 2 differs from the Rodgers method, and from Collard’s implementation of
this method, in two important regards. Firstly, method 2 employs a full calculation
of DFS and uses a full R̃′ matrix. The Rodgers method was a simplification to allow
efficient computation of incremental change in DFS in days when less computing
power was available, and assumes a diagonal R matrix. It is now feasible to use a
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non-diagonal matrix to perform a full calculation of DFS for each candidate channel,
and this is in fact essential for the selection of reconstructed radiance channels where
the interchannel error correlations are a fundamental feature even when there is no
radiative transfer or representativeness error. Collard also used extensive blacklisting
to rule out channels where the forward modelling was poor due to non-LTE1 effects,
known spectroscopy issues, and sensitivity to trace gases. A beneficial side-effect of
using R̃′ calculated from background departures should be that no blacklisting is
required prior to channel selection, as channels that are poorly modelled will have
high variances and are thus unlikely to be selected.

The second major difference is that the DFS measure is used in conjunction with
the condition number of the candidate R̃′ matrix. This method was constructed in
the light of early research on the selection of channels specifically for reconstructed
radiances by Collard (2012), where an attempt was made to penalise channels highly
correlated with those already selected. In this work, it was found that the condition
number of the resultant R̃ matrix was a critical issue, hence Method 2 does not
allow selection of channels where the condition number of the candidate R̃ rises too
high.

As with the Collard (2007) method, a collection of atmospheric profiles has been
chosen over which to calculate a combined DFS. Collard used six standard atmo-
spheres and two zenith angles. Several options have been investigated here, using
atmospheric profiles chosen from the Met Office 70 level dataset used in chapter 10,
but also including the US Standard Atmosphere. The baseline collection includes
seven atmospheric columns from different parts of the globe plus the US Standard
Atmosphere (eight profiles in total). Another collection then employed two zenith
angles (0° and 40°) for each atmosphere, making a total of sixteen atmospheric
columns.

Collard (2012) found that his reconstructed radiance channel selection had an
uneven distribution of weighting function peaks, such that the upper tropospheric
information was coming mostly from the tails of lower-peaking and higher-peaking
channels. This led to concern that for cloudy situations, where channels peaking
below cloud top are rejected, there would be few channels left to assimilate. Some
tests were therefore carried out to try to encourage the selection of channels that
would be useful under these circumstances. In addition to the baseline profiles, extra
profiles were added where “clouds” were introduced at particular levels: Jacobians
were zeroed below the cloud top, in order to ensure that channels were selected for

1local thermodynamic equilibrium
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their information content above the cloud layer. Three different profile sets were
used to take account of cloudy situations:

Cloudy A: In addition to the eight baseline atmospheres, three US Standard
Atmosphere profiles were added where a “cloud” was introduced at 800 hPa,
600hPa and 400hPa. No attempt to forward model the cloud was made; a clear
sky Jacobian was zeroed below each of the three given pressures. Eleven profiles
in total.
Cloudy B: In addition to the eight baseline atmospheres, a cloudy US Stand-
ard Atmopsheric profile Jacobian was simulated with a grey cloud with a cloud
fraction of 0.8 and a cloud top pressure of 500hPa. The Jacobian was then zeroed
below 500hPa. Nine profiles in total.
Cloudy C: In addition to the eight baseline atmospheres, six cloudy US Stand-
ard Atmopsheric profile Jacobians were simulated with grey clouds of cloud frac-
tions 0.2 and 0.8, and cloud top pressures of 800 hPa, 600hPa and 400hPa. The
Jacobian was then zeroed below the cloud top pressure. Fourteen profiles in total.
For a given iteration of the channel selection, the set of all channels already chosen

plus a candidate channel will be referred to as a candidate set in the explanation of
the method. The channel selection proceeded as follows:

1. The R̃′ matrix was generated for each candidate set. The eigenvalues of the
candidate R̃′ matrices were then used to calculate the condition number for
each candidate set.

2. The candidate set with the lowest condition number was identified.
3. Candidate sets with an R̃′ matrix whose condition number was greater than

a factor f times the lowest condition number were rejected.
4. The combined DFS over all of the atmospheric profiles in a given collection was

calculated for each remaining candidate set, using theMoistCov B matrix for
atmospheric temperature and humidity. Note that no surface variables were
included in the retrieval, in keeping with the general experimental set-up in
this thesis (section 3.8.3).

5. The candidate channel set with the highest DFS was then selected to incor-
porate the most information content rich channel for this iteration to the final
selection.

6. Channels were chosen until the resulting R̃′ became non-positive definite (i.e.
a maximum of 210 channels). Channels were chosen from within bands 1 and
2 simultaneously.

Several condition number factors f were tested: a factor of f = 1.0 results in the
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selection of the channel giving the best condition number, in other words the DFS
calculation is ignored. A factor of f = 100.0 means that very little weight is given
to the condition number of the resulting R̃′ matrix. A factor of f = 1.3 was chosen
to provide a reasonable balance between the DFS and condition number.

One further option was tested: Collard (2007) found that the Rodgers selection
method preferentially chose channels from band 2. These channels tend to have
sharply peaking tropospheric temperature Jacobians and the channels seemed to be
selected as much for the temperature information they carry as for their water vapour
sensitivity. Without channels insensitive to errors in the background water vapour
profile, the resulting channel selection is unable to unravel errors in temperature
from errors in water vapour. Collard’s solution to this was to allow selection only
from band 1 in the first instance, and then to allow selection from either band 1
or band 2. A new approach was taken here. Rather than blacklisting, the selection
of channels sensitive to water vapour errors in the NWP forecast was penalised by
adding an extra error term to the observation error covariance matrix projecting the
background forecast error for water vapour into observation space with the Jacobian:

R̃′wv = R̃′ + HwvBwvHT
wv (7.9)

The subscript wv indicates that only the water vapour part of the background error
is added to the observation error term. Up to 100 channels (being approximately
half the total available) were chosen using R̃′wv before reverting to R̃′ for selection
of the remaining channels. The use of the water vapour channel penalisation, and of
different condition number thresholds, were investigated using the baseline profile
set.

Table 7.2 defines a naming convention for each of the Method 2 channel selections
made, which can be cross-referenced to the channel lists themselves in appendix E,
and which will be used in subsequent tables and text. Table 7.3 provides a break-
down of the channels in each selection by principal sensitivity. The first notable
result is that only in the case where condition number alone was used to perform
the channel selection (condition number factor of 1.0; RHL-M2-8J-1.0 ) were 210
channels selected. This result reflects what was expected: if channels are chosen on
the basis of information content for a given application, the channel selection is
unable to represent the full set of PC scores. This should not be considered a negat-
ive feature of the channel selections: in order to perform acceptable compression of
every channel in the spectrum, some of the principal components must necessarily
represent spectral features that are of no interest to NWP.
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Channel Selection

Name
Jacobians

Condition Number

Factor

Water Vapour

Error

RHL-M2-8J-1.0 8 Clear 1.0

RHL-M2-8J-1.3 8 Clear 1.3

RHL-M2-8J-100.0 8 Clear 100.0

RHL-M2-8J2Z-1.3 8 Clear 2 Zen 1.3

RHL-M2-11J-1.3 11 Cloudy A 1.3

RHL-M2-9J-1.3 9 Cloudy B 1.3

RHL-M2-14J-1.3 14 Cloudy C 1.3

RHL-M2-8J-1.3-WVE 8 Clear 1.3 YES

Table 7.2: Naming convention for each of the Method 2 channel selections that will be used
throughout the text with their corresponding settings in the channel selection code. The name
takes the form RmatrixName-Method-JacobianSet-Factor-WVE where WVE will be added if
penalisation of selection of water vapour channels was carried out.

Channel Selection CO2 Window Ozone
Water

Vapour

Band

1

Band

2

Total

NChan

RHL-M2-8J-1.0 38 56 14 102 90 120 210

RHL-M2-8J-1.3 132 3 1 50 135 51 186

RHL-M2-8J-100.0 14 0 2 82 16 82 98

RHL-M2-8J2Z-1.3 109 13 5 51 127 51 178

RHL-M2-11J-1.3 38 0 2 144 40 144 184

RHL-M2-9J-1.3 44 1 4 159 49 159 208

RHL-M2-14J-1.3 32 0 1 136 33 136 169

RHL-M2-8J-1.3-WVE 143 2 2 36 147 36 183

Collard 132 24 15 98 165 104 269

Table 7.3: Breakdown of the number of channels in each selection by principal sensitivity for
the Method 2 channel selections and comparison with the Collard selection for bands 1 and 2.
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The next result of interest is that many of the channel selections contain more
than 90 channels from band 1. This indicates that errors orthogonal to the in-
strument noise are included in R̃′, and that correlations between bands 1 and 2
are being exploited in the channel selection. On the other hand, the preferential
selection of water vapour channels appears to occur with the cloudy atmospheric
collections (RHL-M2-11J-1.3 , RHL-M2-9J-1.3 , RHL-M2-14J-1.3 ), unless channels
sensitive to water vapour error are penalised (not shown).

The choice of channels sensitive to ozone can be seen to be effectively penalised by
the use of the DFS for NWP to select the channels: where DFS is ignored (condition
number factor of 1.0; RHL-M2-8J-1.0 ) 14 ozone-sensitive channels are chosen, but
when it is used (all other selections) fewer than five channels are selected in this
part of the spectrum.

One of the aims of the method, particularly by incorporating the cloudy profiles,
was to ensure that for cloudy conditions a reasonable number of channels remain
usable. It is therefore encouraging that some of the selections contain significantly
more longwave CO2 channels than the Method 1 channel selections. Conversely, of
some concern is that, with the exception of the condition number only selection, these
Method 2 channel selections contain very few channels in the window region, and
often no true window channels, which would hamper the use of the observations over
land where surface emissivity retrieval is required. This is likely to be a consequence
of two things: firstly the fact that emissivity was not included in the state vector for
the DFS calculation; and secondly, the particularly large observation errors ascribed
to the surface-sensitive channels. For an operational channel selection, it would be
desirable to rerun the channel selection including emissivity in the B matrix, in line
with the operational preprocessing step in the Met Office assimilation system.

Figure 7.5 compares several of the Method 2 channel selections in terms of their
distributions within the IASI spectrum: they vary considerably in spectral coverage,
but this alone is not sufficient to assess which channel selection is most useful for
NWP. The next chapter assesses the information content and mathematical stability
of the R matrix for each of the channel selections presented in this chapter.

7.4 Summary
Two new channel selection methods have been developed to select reconstructed
radiance channels for NWP. Method 1, which selects channels based on their contri-
bution to the retained eigenvectors used for PC compression, was originally used by
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210 Channels: Rmo, 8 Clear Jacs, Factor 1.0
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(a) RHL-M2-8J-1.0

186 Channels: Rmo, 8 Clear Jacs, Factor 1.3
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(b) RHL-M2-8J-1.3

178 Channels: Rmo, 8 Clear Jacs, 2 Zenith Angles, Factor 1.3
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(c) RHL-M2-8J2Z-1.3

183 Channels: Rmo, 8 Clear Jacs, Factor 1.3, plus WVE
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(d) RHL-M2-8J-1.3-WVE

208 Channels: Rmo, 9 Cloudy B Jacs, Factor 1.3
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(e) RHL-M2-9J-1.3

Figure 7.5: Method 2 channel selections plotted in red stars over a typical IASI brightness
temperature spectrum
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EUMETSAT to generate the channel selection used in their Level 2 processor. For
this thesis, to tailor it to an NWP application, it was modified to take account of ob-
servation errors. However, this modification did not result in a substantial difference
to the channel selection produced.

Method 2 is a new channel selection method based on information content, taking
full account of observation error covariances, and penalising the selection of a channel
that raises the condition number of the resultant R matrix. The method has been
used to explore the selection of channel sets for reconstructed radiances, which have
a high degree of error correlation between channels, by varying the inputs for the
channel selection process.

It was found that attempting to account for the possibility that a particular
channel might be cloud affected did not have a significant effect on the number of
long-wave CO2 channels chosen. Likewise, attempting to penalise the selection of
water vapour channels for their temperature information did not have a large effect
on the number of water vapour channels chosen. The variation of the factor by
which a channel was rejected because the resulting condition number of R was too
high did have an important effect on the resulting channel selection: in particular, if
condition number was not the main selection criterion it was not possible to choose
the same number of channels as PC scores for an NWP application.

The channel selections were compared with the Collard selection. The Lp-M1
and RHL-M1 selections have many more window channels and fewer long-wave CO2

channels than the Collard selection. The Collard selection has more long-wave CO2

channels and more window channels than the Method 2 selections. The Method 2
channel selections vary considerably in the spectral location of the channels chosen.

Both Methods 1 and 2 are sequential channel selection methods and are there-
fore not able to provide a definitive ‘best’ channel selection. In the next chapter,
the channel selections will be compared for their information content, and for the
properties of the resultant R matrix.
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Chapter 8

Optimal linear analysis for Reconstructed
Radiances

8.1 Comparison of channel selections through
information content and condition number

While the distribution of channels across the spectrum is interesting, it cannot tell
us which is the best channel selection: the 98 Method 2 channels with condition
number factor 100.0 (RHL-M2-8J-100.0 ) could contain more information than the
210 Lp-M1 channels. It is therefore useful to compare the DFS over a fixed set of
atmospheric profiles.

It is also crucial to examine the condition number of R̃′ for each selection as it is
an important measure of stability. In fact it is found that, for many of the channel
selections, the condition number can be well over 106 despite it being possible to
calculate an inverted matrix using the Cholesky decomposition routine used in the
channel selection code.

Table 8.1 shows the DFS calculated over the eight clear sky atmospheres used
as the baseline for the channel selections, with RHL used for the observation error.
The last four columns give a comparison of DFS using a restricted set of channels
up to the point where the condition number rises above 106. In many cases, up to
half the channels are not used. In some respects, this is a little misleading because
a condition number of 106 is arbitrary. In fact the R matrix used for operational
assimilation derived from the Desroziers method had a condition number of about
2000 in its raw form, but this was reduced to around 20 by strengthening the diagonal
for operational use (Weston et al., 2014). However, it provides another basis for
comparison.

Table 8.1 contains some interesting results. The most notable result is that,
as expected, the Method 1 channel selections have a much lower DFS than the
Method 2 selections, providing only around one third of the DFS of the highest
information content. They also result in an R̃′ with a lower condition number than
all the Method 2 selections apart from RHL-M2-8J-1.0 , as expected. Even when the
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Full Selection Max Condition Number 1× 106

Channel

Selection
NCh

Condition

Number
DFS

DFS

per

chan

NCh
Condition

Number
DFS

DFS

per

chan

Lp-M1 210 0.496× 107 84.3 0.40 153 0.8126× 106 69.3 0.45

RHL-M1 210 0.942× 107 85.5 0.41 135 0.9958× 106 60.1 0.44

RHL-M2-8J-1.0 210 0.669× 106 88.9 0.42 210 0.6694× 106 88.9 0.42

RHL-M2-8J-1.3 186 0.268× 1011 196.3 1.05 83 0.8665× 106 101.7 1.25

RHL-M2-8J-100.0 98 0.438× 1014 104.7 1.07 57 0.4315× 106 79.8 1.40

RHL-M2-8J2Z-1.3 178 0.520× 1011 178.8 1.00 81 0.7961× 106 98.2 1.21

RHL-M2-11J-1.3 184 0.849× 1011 174.8 0.94 97 0.9321× 106 103.0 1.06

RHL-M2-9J-1.3 208 0.757× 1012 195.0 0.94 105 0.9375× 106 106.2 1.01

RHL-M2-14J-1.3 169 0.479× 1011 161.1 0.95 95 0.8831× 106 100.5 1.06

RHL-M2-8J-1.3-WVE 183 0.130× 1011 207.1 1.13 76 0.9469× 106 91.5 1.20

Table 8.1: Condition number, DFS over 8 Jacobians, and DFS per channel for Method 1 and
Method 2 channel selections using RHL as the instrument noise covariance matrix. The left
hand set of columns use the maximum possible channel selection. The right hand columns use
the number of channels retained when the condition number is restricted to below 1× 106.
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channel selections are restricted to keep the condition number below 1× 106 there
are Method 2 channel selections that give a much higher DFS.

The relative information content of each of the channel selections is similar re-
gardless of whether the channel selections are restricted by keeping the condition
number below 1× 106 or not. Method 2 selections give better DFS than Method 1 ,
but the attempts to tailor the selection towards cloudy scenes or to avoid channels
sensitive to background errors in water vapour result in a similar DFS. The use of a
condition number threshold of 1.3 with Method 2 (RHL-M2-8J-1.3 ) seems to strike
a reasonable balance and the channel selection has a high overall DFS and also a
fairly high DFS per channel: the selection performs relatively well even when restric-
ted to less than half the total number of selected channels. Similarly RHL-M1 does
not perform any better than Lp-M1 , and the resultant R̃′ is less well conditioned.

Additional tests showed that the channel selections perform better when the
observation error term used to calculate the DFS subsequent to channel selec-
tion matches that used during the channel selection. If REC is used to calculate
DFS, channel selections made using REC perform better than the channel selections
presented here based on RHL (not shown). Conversely, channel selections based on
REC do not give as good results for DFS calculated using RHL as the RHL chan-
nel selections do (also not shown). This indicates a need for care when assimilating
reconstructed radiances: the best channel selection seems to be highly tuned to the
assumed errors.

Collard (2012) was concerned that, without an attempt to deal with cloudy
atmospheres in the channel selection process, the resultant channel selection would
be deficient when channels were restricted to those peaking above clouds. To test
this theory, the DFS was calculated over the eight cloudy scenes included in the
Cloudy C collection, but using the Pavelin et al. (2008) method of assimilating only
those channels for which less than 10% of the Jacobian falls below the cloud top
(note that the Jacobians are not zeroed below the cloud top for this calculation). The
results are shown in table 8.2. They are very similar to those presented in table 8.1:
the channel selections where cloudy conditions were explicitly modelled perform no
better than those based only on clear atmospheres.
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Channel Selection NCh DFS

DFS

per

chan

Lp-M1 210 54.4 0.26

RHL-M1 210 55.9 0.26

RHL-M2-8J-1.0 210 60.3 0.29

RHL-M2-8J-1.3 186 136.1 0.73

RHL-M2-8J-100.0 98 71.9 0.74

RHL-M2-8J2Z-1.3 178 125.5 0.71

RHL-M2-11J-1.3 184 117.9 0.64

RHL-M2-9J-1.3 208 132.1 0.64

RHL-M2-14J-1.3 169 111.2 0.66

RHL-M2-8J-1.3-WVE 183 141.1 0.77

Table 8.2: DFS over six cloudy Jacobians (those used in Cloudy C) and DFS per channel for
Method 1 and Method 2 channel selections using RHL as the observation error covariance
matrix.

8.2 A reconstructed radiance channel selection for
instrument noise only

The main aim of this thesis was to design a channel selection for reconstructed
radiances that contains almost the whole useful information content of the band
1 and 2 spectrum. In order to see whether the Method 1 or Method 2 selections
achieve this, the channel selections should ideally be compared to the DFS for the full
spectrum also. The problem is that the RHL matrix is calculated from reconstructed
radiance residuals, and is not invertible for the full spectrum. It is, therefore, not
possible to do a clean intercomparison of the new Method 2 reconstructed radiance
channels with the full raw radiance spectrum using this matrix. The Lp-M1 selection
can be tested because it is equally valid for instrument noise as any other error
covariance matrix.

As a general test of Method 2, channel selections were also made for the in-
strument noise covariance matrix projected into reconstructed radiance space, Ñ
(equation 6.13). The breakdown of the classification of the channels is shown in
table 8.3. The Ñ selections contain many more window channels than the Collard
selection, and are fairly similar in sensitivity breakdown to the Method 1 channel
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Channel

Selection
CO2 Window Ozone

Water

Vapour
Band 1 Band 2

Total

NChan

Ñ-M2-8J-1.0 21 68 19 102 90 120 210

Ñ-M2-8J-1.3 52 35 10 113 90 120 210

Collard 132 24 15 98 165 104 269

Table 8.3: Breakdown of the number of channels by principal sensitivity for the channel
selection using reconstructed instrument noise, Ñ. Comparison with Collard selection for bands
1 and 2.

selections (table 7.1). Without the inclusion of forward model error and errors of
representation, using DFS in the selection process by setting a threshold of 1.3 in
selection Ñ-M2-8J-1.3 (as opposed to 1.0, which just selects on condition number
giving channel selection Ñ-M2-8J-1.0 ) does not alter the distribution of channels as
much as it does when using RHL.

Table 8.4 compares the DFS of the new Ñ channel selections and the Lp-M1
channel selection with those of the full spectrum for bands 1 and 2, the 210 PC scores
themselves, and with the Collard and VAR channel selections. The DFS is calculated
over the eight atmospheric profiles used during the channel selection process. The
Ñ-M2-8J-1.3 channel selection has a similar performance to the Collard selection
for raw radiances (the H–N combination), at approximately two thirds of the DFS
of the full spectrum. The Ñ-M2-8J-1.0 selection has a much poorer information
content of only 89.1.

When exploiting the reconstructed radiances using H̃ and Ñ, all three recon-
structed radiance channel selections perform significantly better. Ñ-M2-8J-1.0 and
Lp-M1 both yield a DFS almost identical to that of the PC scores themselves. This
is the desired result: it is possible to produce the same DFS with a carefully chosen
set of reconstructed radiance channels as with the PC scores. The DFS for these
systems is close to, but slightly lower than the DFS for the full spectrum: it is not
surprising that some small quantity of information will be lost due to compression.

The Ñ-M2-8J-1.3 selection using H̃ and Ñ gives an information content of 162.6
in comparison with 160.9 for the full spectrum: this is slightly too high. One thing
to note, however, is that the condition number of Ñ is very high in this case. This
could cause mathematical instabilities when using iterative methods to arrive at a
solution in variational analysis and may also be the reason for the DFS being slightly
larger than expected. As described in section 7.2.2, poor conditioning is a problem,
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because a covariance matrix is used in inverse form. Small eigenvalues theoretically
represent observed quantities with small errors. However, if an observed quantity had
an eigenvalue of exactly zero, one would say that there is no independent informa-
tion about that quantity at all since it can be constructed as a linear combination
of the other observed quantities, and it should be dropped from the observation
vector (as discussed in Twomey, 1996). The problem arises where eigenvalues tend
towards zero and change from being very well observed quantities with small errors
to quantities about which there is no information at all. Because the R matrix is
used in inverse form, and because 1/x is a highly non-linear function tending to infin-
ity where x = 0, very small eigenvalues in the covariance matrix result in enormous
eigenvalues in the inverse matrix, generating very unstable solutions. In contrast,
for this idealistic scenario, the PC score covariance matrix is the identity matrix,
and therefore not susceptible to such problems. However, the condition number of
the matrix is not the final story: if it were, the answer to the question of whether to
assimilate reconstructed radiances or PCs would be clear cut. The results presented
in chapter 9 give a more complete picture of the differences and similarities of PC
and reconstructed radiance assimilation.

8.3 Suboptimal-in-H-and-R assimilation
Chapter 6 showed that the use of a raw radiance Jacobian during assimilation would
result in an extra error term, ∆R̃, that needs to be taken account of. This theoretical
outcome is confirmed by a linear analysis for a suboptimal-in-H-and-R system in
table 8.5, identified by the combination H–Ñ. There can never be more information
in any processed form of the observation than in the full raw spectrum, therefore,
as shown in table 8.4, the DFS for these instrument noise only systems should never
be higher than 160.9. It has also been shown that with the correct error profile and
Jacobian, a reconstructed radiance channel selection can be defined that yields a DFS
very similar to that of the full spectrum. However, if the DFS for the reconstructed
radiances is calculated using Ñ, but with raw radiance Jacobians H, the apparent
DFS is much higher than that for the full spectrum (table 8.5). The extra DFS
seems to result from the correlations in the Ñ matrix. Spurious correlations due
to ill-conditioning and neglected error terms can result in the addition of pseudo-
information, that in reality is not information, but forward model/reconstruction
error that has not been accounted for. The Ñ-M2-8J-1.3 channel selection seems to
suffer the most from this problem, and it is likely that this is because the R matrix
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Channel Selection NChan Jacobian
R

matrix
DFS

DFS

per chan

Condition

Number

Raw Radiance channel selections

VAR bands 1 and 2 127 H N 65.3 0.51 157.8

Collard 269 H N 105.5 0.39 179.8

Full Spectrum 5116 H N 160.9 0.03 429.4

Reconstructed radiance channel selections in raw radiance space

Lp-M1 210 H N 99.0 0.47 211.7

Ñ-M2-8J-1.0 210 H N 89.1 0.42 109.9

Ñ-M2-8J-1.3 210 H N 102.3 0.49 283.3

Reconstructed radiance channel selections in reconstructed radiance space

Lp-M1 210 H̃ Ñ 152.2 0.72 5.6× 104

Ñ-M2-8J-1.0 210 H̃ Ñ 152.3 0.73 4.5× 104

Ñ-M2-8J-1.3 210 H̃ Ñ 162.6 0.77 1.4× 108

PC Scores

210 PC Scores N/A Hpc I 152.2 N/A 1.0

Table 8.4: DFS and condition number comparison for the reconstructed radiance channel se-
lections chosen using instrument noise. DFS is calculated over eight clear atmospheric profiles,
using Jacobians and R as specified in the third and fourth columns.
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Channel

Selection
NChan Jacobian

R

matrix
DFS

DFS

per chan

Condition

Number

Lp-M1 210 H̃ Ñ 152.2 0.72 5.6× 104

Lp-M1 210 H Ñ 176.1 0.84 5.6× 104

Ñ-M2-8J-1.0 210 H̃ Ñ 152.3 0.73 4.5× 104

Ñ-M2-8J-1.0 210 H Ñ 181.3 0.86 4.5× 104

Ñ-M2-8J-1.3 210 H̃ Ñ 162.6 0.77 1.4× 108

Ñ-M2-8J-1.3 210 H Ñ 266.8 1.27 1.4× 108

Table 8.5: DFS and condition number comparison for the reconstructed radiance channel
selections using instrument noise. The results are compared for the use of the correct recon-
structed radiance Jacobian, and for the incorrect raw Jacobian. DFS is calculated over eight
clear atmospheric profiles, using Jacobians and R as specified in the third and fourth columns.

is less well conditioned for this selection. The Lp-M1 channel selection is the least
affected, but the differences in behaviour between Lp-M1 and Ñ-M2-8J-1.0 are not
thought to be significant.

The particularly interesting thing about this is that the raw and reconstructed
Jacobians appear almost identical to the naked eye and yet they result in completely
different averaging kernels (compare figure 8.1 with figure 8.2). Despite this, the
averaging kernels confirm that the H–Ñ suboptimal-in-H-and-R system has far
more information in the upper atmosphere than one might realistically expect for
IASI (compare figure 8.1 with figure 4.6(b) and figure 4.6(d) noting difference in the
horizontal scale).

8.3.1 Matrix conditioning

This result is important, because in the real assimilation system, we may not be able
to model H̃ and must instead use H, i.e. the system will be suboptimal-in-H. By
capturing the extra errors introduced using the observational method to estimate the
total error budget empirically, it is hoped that the system is not badly suboptimal-
in-R as well. Even so, the conditioning of the resultant R̃′ matrix is poor. The poor
conditioning is partly a result of the process of covariance estimation itself: large
eigenvalues are overestimated, and small ones are underestimated. Even in the case
of the idealised instrument noise only system, there is an element of estimation as
the PC eigenvectors themselves are estimated from a collection of IASI spectra.

As discussed in section 7.2.2, applications relying on covariance estimation, such
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Figure 8.1: Raw radiance Jacobians and averaging kernels calculated using these raw radiance
Jacobians and Ñ for the Ñ-M2-8J-1.3 channels for the US Standard Atmosphere
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Figure 8.2: Reconstructed radiance Jacobians and averaging kernels calculated using these
reconstructed Jacobians and Ñ for the Ñ-M2-8J-1.3 channels for the US Standard Atmosphere
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as finance and biostatistics, often employ a shrinkage methods to counteract the
problems inherent in the sampling during covariance estimation. There is no ex-
act method recommended for NWP applications, but various techniques can be
explored. An extreme form of shrinkage is to strengthen the diagonal of the mat-
rix relative to the off-diagonal elements incrementally until the condition number
reaches a desired threshold. An alternative is to manipulate the eigenvalues directly,
for example increasing the small ones until the threshold condition number is at-
tained. The introduction of a correlated error matrix at the Met Office, calculated
via the Desroziers et al. (2005) diagnostic, also relied on such methods to improve
the stability of the minimisation in 4D-Var (Weston et al., 2014). It is thus of interest
to see whether such processes are capable of improving the numerical stability of
the Ñ matrix, without reducing the information content of the system to too great
an extent.

Table 8.6 shows the effects of strengthening the diagonal, either by adding in-
crements equal to the smallest eigenvalue to the diagonal (rows marked DiagAdj),
or by increasing the small eigenvalues themselves (row marked EigAdj) until the
condition number is reduced to the degree shown in the final column. The effect on
the squareroot of the diagonal of the matrix in each case is shown in figure 8.3. The
biggest changes are in band 2, and in the DiagAdj20 case the diagonal is inflated
above the level of instrument noise. The DFS can easily be brought down to a level
where the pseudo-information appears to have been eliminated. This can also be
seen in the averaging kernels, which are now more similar to those of the H̃–Ñ sys-
tem (figure 8.4), albeit smoother at the top of the profile and with less sensitivity in
the bottom levels. (In fact it is likely that the poor conditioning of Ñ in the optimal
scenario has resulted in some pseudo-information at the top of the profile.) However,
aggressive strengthening of the diagonal reduces the DFS to a level consistent with
the raw radiances (table 8.4). On the other hand, figure 8.5 compares the predicted
analysis performance of the suboptimal and optimal systems, and the results with
the suboptimal-in-H-DiagAdj20 system are in fact similar to the optimal assimila-
tion of reconstructed radiances.

Collard et al. (2010) showed that if the diagonal of the error covariance matrix
is used for reconstructed radiances rather than the full matrix, the analysis can be
degraded relative to the background. The results presented here suggest that the
precise nature of the covariance structure is also important: it is no good providing
off-diagonal elements that are not correct, as this too will endanger the quality of
the analysis. In fact, it seems better to damp down these incorrect correlations via
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Jacobian R matrix DFS
DFS

per chan

Condition

Number

H Ñ 266.8 1.27 1.4× 108

H Ñ DiagAdj1000 141.5 0.67 530

H Ñ DiagAdj100 123.7 0.59 67

H Ñ DiagAdj20 108.5 0.52 18

H Ñ EigAdj100 132.0 0.63 91

Table 8.6: DFS and condition number comparison for the suboptimal-in-H-andR assimilation
of the Ñ-M2-8J-1.3 reconstructed radiance channel selection demonstrating the effect of re-
conditioning the R matrix. DFS is caclulated over 8 clear atmospheric profiles, using Jacobians
and R as specified in the third and fourth columns. Explanations of the R terms are given in
the text.
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Figure 8.3: The effect of DiagAdj shrinkage operations on the Ñ matrix. Plotted in green
is the shrunk matrix, in red is the Ñ matrix and in black is the N raw radiance instrument
noise. The plotted quantity is the square root of the diagonal of the matrix, i.e. the standard
deviation of the assumed noise.
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Figure 8.4: Raw radiance Jacobians and averaging kernels calculated using these raw Jacobians
and Ñ DiagAdj20 for the Ñ-M2-8J-1.3 channels for the US Standard Atmosphere
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Figure 8.5: The effect of adjusting the diagonal of the reconstructed radiance instrument
noise covariance matrix LpL

T
pLpL

T
p on a supoptimal-in-H-and-R retrieval using 210 channels,

compared with the optimal retrieval where H̃(x) is used for the jacobian instead of H(x)
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Figure 8.6: Linear analysis predicted retrieval errors relative to background error for the RHL-
M2-8J-1.3 channel selection, for R matrices before and after shrinkage.

shrinkage, and bring the matrix closer to the diagonal. This is, perhaps, counterin-
tuitive, but the DiagAdj method used here increases the variance at the same time
as making the matrix more diagonally-dominant. This increase in variance helps to
prevent the overweighting of the observations that Collard demonstrated.

If the same DiagAdj shrinkage procedure is performed with the R̃′ derived from
the observational method for the 186 channel selection, DFS reduces from 196 to a
more realistic 131 if the condition number is reduced from 2.7× 1010 to 6.9× 105.
The effect on predicted linear retrieval performance is shown in figure 8.6. Again,
the improvements of the temperature retrieval in the stratosphere appear to have
been reduced to a more reasonable level by the shrinkage procedure. The next step
is to test whether the shrinkage methods explored here provide a practical solution
to allow assimilation in a suboptimal-in-H-and-R context. The next chapter tests
this using 1D-Var.

8.4 Summary
The channel selections generated for operational implementation of reconstructed
radiances at the Met Office assuming an observation error covariance matrix of RHL

were compared for information content over eight atmospheres. This is a simple test
to select the most promising channel selections for further investigation, rather than
a method for selecting one single ‘best’ channel selection. The Method 2 selections
result in an NWP system with higher overall DFS than the Method 1 selections.

Tailoring the channel selection to NWP by choosing on the basis of DFS appears
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to provide a more information-rich channel selection in fewer channels than when
choosing on the basis of condition number of the R matrix alone. Most atmospheric
columns are cloudy, resulting in a rejection of low-peaking channels in 4D-Var with
the current assimilation scheme. Attempting to further tailor the selection to avoid
over-selection of low-peaking channels did not result in a selection that performed
better when tested on a range of cloudy atmospheres. For this reason, the channel
selection with a condition number threshold of 1.3 but no further modifications,
RHL-M2-8J-1.3 , is preferred because it is a simpler method, and the resultant se-
lection has plenty of channels in the CO2 band.

To test whether the reconstructed radiance channel selection method is capable
of finding channels that represent the full information content of the observation,
further channel selections were made assuming instrument noise only. DFS calcula-
tions show that the reconstructed radiance assimilation is capable of providing the
full information content of the 210 PC scores, close to that of the full spectrum, but
the R matrix is not well-conditioned, risking the addition of pseudo-information to
the retrieval and an unstable minimisation.

The suboptimal-in-H-and-R system has been explored. The misspecification of
R leads to an apparent DFS that is higher than the DFS for the full spectrum
and is therefore erroneous. Two methods of shrinkage of the R matrix have been
explored, as a possible practical measure that can be used to correct for the missing
reconstruction error. The methods of shrinkage explored here do help to remove
pseudo-information that is not present in the full spectrum, but in order to be
effective the DFS is reduced considerably.

The performance of reconstructed radiances will be tested against raw radiances
and against the assimilation of PC scores in a simulated 1D-Var experiment in the
next chapter.



131

Chapter 9

Comparison of PC and reconstructed
radiance assimilation using a 1D-Var

In table 8.4 it was demonstrated that reconstructed radiances theoretically provide
a very similar information content to PC scores in an optimal linear assimilation.
This theory is now tested using simulated 1D-Var experiments, where the effects of
nonlinearities in the response of the radiance to changes in atmospheric profile can
be tested. First, an instrument noise only system is used to compare the assimilation
of reconstructed radiances, using channel selection Ñ-M2-8J-1.3 , with that of PC
scores. Then the preferred channel selection for operational implementation derived
assuming the RHL observation error covariance matrix, RHL-M2-8J-1.3 , is tested.

The same 4348 UM profiles on 70 levels that were described in section 3.8.3 were
used to construct the experiment, and the background profiles were simulated by
adding noise consistent with the MoistCov B matrix.

9.1 Instrument noise only 1D-Var

9.1.1 Reconstructed radiance assimilation

Simulated true radiances computed with RTTOV-10 were converted to simulated
observations by the addition of noise consistent with the noise profile used for nor-
malisation by the EUMETSAT PC compression. This choice was made because it
simplifies the calculation of the R matrix, and because the 210 channel selection
was produced from this noise profile. The observations were then converted into PC
scores using the EUMETSAT PC compression process, and then converted back
to reconstructed radiances. The 210 Ñ-M2-8J-1.3 channels, selected using Method
2 on the basis of reconstructed EUMETSAT instrument noise (Ñ) and a condition
number threshold of 1.3 (see table 8.3 and appendix E), were tested in a suboptimal-
in-H-and-R 1D-Var simulated system.

The first result from these experiments is that assimilating reconstructed ra-
diances assuming Ñ with raw radiance jacobians, i.e. without taking account of
the additional forward model error ∆R̃, does not work: the 1D-Var does not con-
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Figure 9.1: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4348 observations. Reconstructed radiance Jacobians and Ñ for the 210 reconstructed radiance
channels.

verge. It is not easy to calculate ∆R̃, but empirically shrinking the observation error
covariance matrix by strengthening the diagonal as tested with linear analysis in sec-
tion 8.3.1 does work to improve the performance of the 1D-Var. With the matrices
DiagAdj100 and EigAdj100, the 1D-Var converges to a solution for most observa-
tions, but the results are very poor indeed, with the analysis generally further from
the truth than the background (not shown). The results with matrix DiagAdj20 are
much better, with the analysis error lower than the background error in terms of
standard deviation, but with large oscillating biases introduced into the analysis
(figure 9.1).

It is interesting to examine the profile increments calculated during minimisation.
Figure 9.2 shows the performance of the 1D-Var for three different observations. In
this figure, and similar ones that follow, the plotted lines show the difference between
a given profile and the true profile. The black line is the background departure from
truth, and the pink line is the background departure multiplied by the averaging
kernel. The pink line thus represents the best result achievable given a perfect linear
system and illustrates that the analysis cannot resolve every fluctuation because of
the null space of the averaging kernels. The other coloured lines are the departure
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of the profile on a given numbered iteration.
Arguably, in some cases the 1D-Var analysis actually captures some of the struc-

tures better than the linear results predict (for example between 40–60 km in fig-
ure 9.2(f)). However, it is clear that the suboptimal-in-H-and-R system allows large
oscillations to result that do not match the pattern of background error. The off-
diagonal elements of the R̃ matrix allow correlated and anti-correlated increments to
be generated throughout the profile, that are not properly filtered by the B matrix
because of the overweighting of the observations that results from ignoring the ∆R̃
error term. This is counteracted to some extent by downweighting the observations
by increasing the observation error variance.

In order to see whether there is any benefit from assimilating reconstructed ra-
diances over raw radiances, the same 210 channel selection was also tested in a
raw radiance assimilation system. The 1D-Var results in general confirm the lin-
ear analysis results presented in the DFS scores above: the same channel selection
presented as raw radiances produces an analysis with nearly identical performance to
the DiagAdj20 suboptimal-in-H-and-R reconstructed radiance analysis (figure 9.1)
in terms of standard deviation, but without the oscillating bias (figure 9.3). In other
words, in order to remove the oscillating bias completely, the reconstructed radiances
would probably need to be downweighted to the extent that there would be no clear
benefit to assimilating the reconstructed radiances over the raw observations.

The 1D-Var results for water vapour are similar to the prediction by the optimal
linear equations (compare figure 9.1 with figure 8.5), but the temperature analysis
performs less well than predicted. The results with the new channel selection are
much better than with the 4D-Var channel selection (figure 9.4), in agreement with
the DFS calculations shown in table 8.4.

9.1.2 PC score assimilation

Unfortunately, no radiative transfer code to directly model the EUMETSAT PC
scores currently exists, so a different set of PC eigenvectors is used instead. The
chosen eigenvector set is 200 vectors provided with the radiative transfer model
PC-RTTOV (Matricardi, 2010) to represent the full IASI spectrum based on 500
predictor channels (see appendix E). For the reconstructed radiance case, the noise
profile used for normalisation before compression is used to construct the R matrix;
for the PC case, the noise profile used in the PC-RTTOV compression is used. These
noise profiles are different, but not significantly so (figure 9.5). This set-up differs
from that used for reconstructed radiances, because information from all three bands
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(c) Ob 1158: DiagAdj100
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(d) Ob 1158: DiagAdj20
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(e) Ob 1353: DiagAdj100
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Figure 9.2: Minimisation process for observations 858, 1158 and 1353 for reconstructed ra-
diance assimilation with instrument noise only. The left column use the Ñ matrix modified to
DiagAdj100, and the right column to DiagAdj20. The plotted lines show the difference between
a given profile and the background profile. The black line is the background departure from
truth, and the pink line is the background departure multiplied by the averaging kernel. The
other coloured lines are the departure of the profile on a given numbered iteration.
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Figure 9.3: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4348 observations. Raw radiance Jacobians and N for the 210 reconstructed radiance channels
(i.e. the reconstructed radiance channels, but raw radiances assimilated.)

is assimilated, rather than only bands 1 and 2.
PC-RTTOV was used in a simulated optimal 1D-Var scenario using 4348 obser-

vations simulated using RTTOV-10 converted to 200 PC scores. In this case, the
instrument noise matrix used for assimilation was set to the values used for nor-
malisation of the radiances by PC-RTTOV itself: doing this means that when the
matrix is projected into PC space, it equals I, simplifying calculations considerably.
The results for the 4180 of these observations for which the 1D-Var converged are
shown in figure 9.6.

Whilst the standard deviations of the errors on the analysis are mostly lower than
the background errors (except at 72 km), the profiles show a pattern of oscillating
bias that was not present in the background. The most likely mechanism for this
is that the non-localised Jacobians generate increments on one level that are being
counteracted by increments in the opposite direction on adjacent levels. Perhaps the
most significant problem from an NWP perspective is a positive bias of 0.7K in the
temperature analysis in the UTLS region at 12–13 km (model levels 43–44).

These results can be compared to the assimilation of the 500 PC-RTTOV pre-
dictor channels: the forward modelled PC scores are linear combinations of the 500
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Figure 9.4: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4348 observations. Raw radiance Jacobians and N for the 138 4D-Var channels (i.e. raw
radiances assimilated.)
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Figure 9.5: IASI Instrument noise for bands 1 and 2, as assumed by the EUMETSAT PC
compression (black) and PC-RTTOV (red).
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Figure 9.6: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4180 of the total 4348 observations. PC-RTTOV PC Jacobians and R equal to the identity
matrix.

channel radiances, so the simulated observations for these 500 channels are expected
to contain the same information as the 200 PC scores. The results for the same 4180
observations can be seen in figure 9.7. The results in terms of improvement in stand-
ard deviation are reasonably consistent with those of the PC scores. The PC scores
are slightly better in some areas (e.g. for temperature between 40 and 60 km, but are
also less stable, for example the degradation of analysis relative to the background
at 72 km. There is no oscillating bias in the channel-based system as seen with the
PC scores, although there is a bias of −0.4K between 45–55 km that is unexplained.

The oscillating bias pattern in figure 9.6 is very similar to that seen for the
suboptimal-in-H-and-R assimilation of reconstructed radiances (figure 9.1). In that
case, the likely cause was overweighting of the observations due to neglect of the ad-
ditional error, ∆R̃, that would counteract the use of the raw radiance Jacobian term.
In this case, there should be no additional error of that kind that has been neglected.
However, this explanation for the problems with the reconstructed radiance assimil-
ation gives a clue for the cause of the oscillating bias in the PC assimilation: careful
checking of the experiment showed that the set up was indeed suboptimal-in-R.
There was a neglected error term: the observations were simulated with RTTOV-10
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Figure 9.7: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4180 of the total 4348 observations. PC-RTTOV Channel Jacobians for the 500 PC-RTTOV
predictor channel radiances, and R equal to LpL

T
pLpL

T
p for the PC-RTTOV noise.

rather than PC-RTTOV. This small discrepancy resulted in enough extra forward
model error that the oscillating bias resulted. When PC-RTTOV is used to simulate
the raw radiances before addition of error and conversion to PC scores, there is no
bias in the analysis (figure 9.8) and the temperature errors are greatly reduced. This
result is important, as it is a good test of what might be expected due to differences
between any forward model and the real world.

The similarity in behaviour here demonstrates near equivalence of the two sys-
tems. In both cases, small discrepancies in the R matrix result in oscillatory biases
in the analysis. In the case of PCs, the non-localised Jacobians mean that a small
increment at one level is compensated for by increments higher and lower in the
atmosphere. In the case of reconstructed radiances, the same result occurs through
the significantly non-zero correlation structure of the R matrix.

The suboptimal-in-R results are included here because they illustrate the point
made in the previous section: in this non-localised system, it is very important not
to underestimate the observation errors. If the observation errors are too low, the
background will be underweighted, and B will be unable to filter the oscillating
increments correctly. It is important to reiterate that this result applies to PC-
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Figure 9.8: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4180 of the total 4348 observations. PC-RTTOV PC Jacobians and R equal to the identity
matrix. Observations simulated with PC-RTTOV rather than RTTOV.

compressed radiances, whether in PC score form or reconstructed radiance form,
but not to raw radiances. The effects of overweighting the observations in a raw
radiance assimilation system are much less dramatic. This is likely to be because
the lower correlations and more localised jacobians mean that the system is unlikely
to generate increments with an oscillatory structure.

Empirical strengthening of the diagonal to counteract missing forward model
error

It was found that, for PCs also, the underweighting of the background can to some
extent be counteracted by strengthening the diagonal of the observation error cov-
ariance. An experiment to assimilate PC scores with instrument plus added forward
model error (but still missing the additional error from the use of RTTOV for simu-
lation and PC-RTTOV for assimilation), failed when the full error covariance matrix
was used. In this system, the R matrix is non-diagonal because the forward model
error does not normalise to I.

Figure 9.9 shows that when a diagonal R was used instead, the oscillations were
damped, but this improvement in bias came at the expense of the ability of the
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Figure 9.9: Minimisation process for observation 1158 for PC score assimilation with and
without RT error. The plotted lines show the difference between a given profile and the back-
ground profile. The black line is the background departure from truth, and the pink line is
the background departure multiplied by the averaging kernel. The other coloured lines are the
departure of the profile on a given numbered iteration.

observation to impart information to the analysis. In particular the temperature
analysis is now very similar to the background. Note that the lack of information in
the analysis is not a result of the inclusion of radiative transfer errors: the results
for the PC-RTTOV predictor channels were very similar with and without radiative
transfer errors included.

This result seems to contradict the findings of Collard, where using the diagonal
of the error covariance matrix made the analysis worse than the background in
parts of the profile. However, as will be shown in chapter 10, where a suboptimal-
in-B system is presented, suboptimality does not always result in a degradation of
the analysis relative to the background, but it does always result in a degradation
relative to an optimal analysis.

9.1.3 Reconstructed radiances or PC scores?

The results of the instrument noise only experiment show that the highly non-
diagonal nature of the reconstructed radiance R̃ matrix can cause problems in a
1D-Var where raw radiance Jacobians are used and this additional forward model
error is not accounted for. Where there is only instrument noise, principal component
assimilation with an exact forward model does not suffer from this problem. In
the real system, there is forward model error, and it is not exactly known, and
this apparent advantage of PC score assimilation is shown not to hold when the
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observation error term is not properly specified. In the case of incorrectly specified
R matrices, both systems result in oscillatory patterns of bias in the analysis.

It is possible that in a standalone 1D-Var retrieval system, starting from a cli-
matological background source, the precise specification of R̃ is less critical. In most
cases, the background errors would be larger, and there is less danger of under-
weighting real information that is contained in the background state. It is also likely
that problems with the assimilation have been exacerbated here by the very tight
definitions of error: an instrument noise only system is very unforgiving. Whilst it
is certainly true that care is needed when using these highly correlated data, stan-
dalone retrievals that use PC compressed data, such as the EUMETSAT v6 Level
2 temperature and humidity retrievals, can be shown to be very competitive with
raw radiance alternatives from sparse channel selections (Thomas August, personal
communication). This implies that PC compression and radiance reconstruction are
useful techniques to add information in an efficient manner over and above what
can be extracted from a sparse channel selection of raw radiances.

The experiments here are for clear-sky cases only. Assimilation of PC scores in
cloudy areas poses larger problems than assimilation of reconstructed radiances, be-
cause currently used methods of restricting the assimilation to channels that peak
above the cloud cannot be used with such non-localised response to the atmosphere.
Therefore reconstructed radiances, notwithstanding the problems inherent in spe-
cifying their observation error terms, represent a viable alternative.

9.2 Applicability of reconstructed radiance results to
the real assimilation system

The results of the previous section are somewhat disappointing in terms of the
likely benefit to be gained from assimilating reconstructed radiances or PC scores
into an NWP system. Whilst a fully optimal system shows significant benefit from
the noise reduction inherent in the compression scheme, it is clear that the R matrix
must be very well specified in order to achieve this result in practice. If R does not
properly take account of all sources of error in the system, the results can be very
bad indeed. In a real assimilation system, one cannot hope to model all sources of
error accurately, and estimating them well enough to prevent degradation to the
analysis is a rather daunting task. This is likely to be more critical in an NWP
system with very low background errors than in a retrieval with a climatological
first guess.
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Nevertheless, the RHL matrix estimated in chapter 7 by the observational method
is available, along with the channel selections made. It is, therefore, possible to look
at the results of a 1D-Var assuming that RHL is a good estimate of the true errors.
In this case, simulated true brightness temperatures were converted to simulated
observations by the addition of noise consistent with RHL stabilised by incremental
multiplication of the diagonal by a small factor until the condition number was re-
duced to 106. This set-up is a little different from those already examined, where
noise is added to a radiance profile rather than a brightness temperature profile. Ad-
ditionally, the observations were not explicitly converted to reconstructed radiance
space; rather it was assumed that the diagnosed RHL represents the departures of
the reconstructed brightness temperatures from the true brightness temperatures.

The results in this case are very promising: figure 9.10 shows the overall per-
formance of the 1D-Var with the RHL-M2-8J-1.3 channels, while figure 9.11 shows
the profile increments from this system for the same three observations as shown
in figure 9.2. The background errors are reduced considerably by this assimilation
system. In fact, the results of the 1D-Var are considerably better, for temperature
at least, than predicted by the optimal linear equations (compare figure 9.10 with
figure 8.6). The water vapour results agree better with the prediction. The reason
for this discrepancy has not been investigated yet, but it could indicate the pseudo-
information is being added to the analysis. However, the particularly encouraging
result is that no oscillating bias is seen in the solution. If RHL does represent the
observation errors to a reasonable level, these results are a good starting point for
further investigations in an operational context.

In terms of speed of minimisation, the number of iterations taken is greater on
average than for the instrument noise only systems; performance with the Levenberg-
Marquardt minimiser is better, in that only 22 of the observations failed to converge
in comparison with 732 for the Newtonian solver (figure 9.12), but the overall fit of
analysis to truth for converged observations were almost identical.

As mentioned at the start of this chapter, it is difficult to perform a meaning-
ful intercomparison with raw radiances for the RHL-M2-8J-1.3 channel selection,
because there is currently no raw radiance equivalent to R̃′. The only comparison
possible for the RHL system is to use the operational 4D-Var VAR channel selection
and Desroziers error covariance matrix. In a simulated 1D-Var context, this sys-
tem does not perform very well in terms of incorporating observational information
to the analysis (figure 9.13). The adjusted Desroziers matrix is very cautious, and
necessarily so as it is very dangerous to destabilise the operational 4D-Var. This
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Figure 9.10: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4348 observations. Raw brightness temperature Jacobians and the derived R matrix from the
observational method, for the RHL-M2-8J-1.3 channels chosen to work with this matrix.

serves as a reminder that the 1D-Var results for the new channel selection presented
in figure 9.10 are extremely optimistic: in the real assimilation system, the error
variances will almost certainly need to be increased significantly in order to reduce
the number of iterations required in 4D-Var to an acceptable level. Nevertheless,
it is a very good result that this empirical observation error covariance matrix and
new channel selection does not introduce an oscillating bias and seems to allow the
extraction of significant extra information from the observations.

9.3 Summary
The performance of an instrument noise only 1D-Var was assessed for a suboptimal-
in-H-and-R assimilation of reconstructed radiances. Without significant manipula-
tion of the R to counteract the missing error term that comes from using an incorrect
forward model, the 1D-Var performance is very poor with most observations fail-
ing to reach covergence. Shrinking the R matrix towards a diagonally-strengthened
matrix does allow an analysis to be calculated in most cases, but oscillating biases
are produced. The performance of a similar system is assessed for the assimilation
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Figure 9.11: Minimisation process for observations 858, 1158 and 1353 for RHL-M2-8J-1.3
channels assuming R =RHL. The plotted lines show the difference between a given profile
and the background profile. The black line is the background departure from truth, and the
pink line is the background departure multiplied by the averaging kernel. The other coloured
lines are the departure of the profile on a given numbered iteration.
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Figure 9.12: Number of iterations taken to convergence for the minimisation comparing
the RHL-M2-8J-1.3 channel selection with Newtonian and Levenberg-Marquardt minimisation
methods, and the VAR channel selection with Newtonian minimisation. The block of observa-
tions at 11 iterations for the Newtonian minimisation scheme in red have not converged (the
maximum number of iterations allowed is 10).

(a) Temperature (b) Water Vapour

Figure 9.13: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
4348 observations. Raw brightness temperature Jacobians and the Desroziers R matrix used
operationally for the 138 4D-Var channels.
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of PC scores. This system is quite well behaved as long as all sources of errors are
taken into account, but if there is a missing error term, similar oscillating biases
result.

The mechanism of production of the oscillating biases is slightly different in
each case: for reconstructed radiances it is spurious correlations that generate them,
whereas for PC score assimilation it is the non-localised nature of the Jacobians that
gives rise to such features. These results suggest that much care needs to be taken
when specifying error covariances for use with compressed spectra.

If the error terms are well-enough understood the PC 1D-Var performs well. The
preferred channel selection designed for operational implementation at the Met Of-
fice, RHL-M2-8J-1.3 , was also tested in a simulated 1D-Var environment, and gave
good results without any oscillating bias. Given that there are difficulties with as-
similating PC scores in cloudy areas, these results provide encouragement for further
testing of reconstructed radiances within the operational assimilation system.
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Chapter 10

Suboptimal-in-B Assimilation

The previous chapters have used idealised 1D-Var systems to investigate the impact
of using more of the IASI spectrum. In the experiments presented, it was assumed
that the background errors were well described. In reality, the process of estimation
of the background error, and our inability to properly model its synoptic evolution
(as described in chapter 3) mean that the B term will inevitably be misspecified.
Furthermore, although parts of the U variable transform (see section 3.5.3) vary
with latitude, the structure functions are defined globally, meaning that the error
covariance structure may not be correct regionally. Hybrid DA methods are now
used to include flow dependence into the formulation, but the analysis still relies
heavily on the static climatological covariance formulation. Given that the errors
are only estimated, they are inevitably misspecified, and the analysis will no longer
be optimal. This scenario is referred to as suboptimal-in-B. It is the properties of
the assumed B matrix that define the subspace in which analysis increments can be
made, even if the assumed B is not the same as the true B.

This chapter extends the linear analysis equations presented in section 3.2 to
include this suboptimality. Results are shown for a scalar case to identify regimes
in which the suboptimal-in-B analysis in fact has larger errors than the true back-
ground state. The suboptimal-in-B analysis is then discussed for IASI, firstly with
the VAR channel selection and then with the full spectrum. It is important to un-
derstand how robust our assimilation system is to errors in the specification of B.

10.1 Suboptimal linear analysis: the scalar case
3.8 to 3.12, the optimal analysis equations can be extended to take account of
misspecification of B. The subscript T now identifies the true background error
covariance, BT , and A identifies the assumed covariance matrix, BA. The extended
theory was presented in Eyre and Hilton (2013).

The optimal analysis error Aopt(BT ), where BT is known is given by:

Aopt(BT ) = (I−KH)BT (I−KH)T + KRKT (10.1)
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This is equivalent to equation 3.12. In the real DA system, the analysis weights of
equation 3.10, now denoted KBA

, are calculated using BA, so the true analysis error,
A, is:

A = (I−KBA
H)BT (I−KBA

H)T + KBA
RKT

BA
(10.2)

This equation is linear in BT , though non-linear in BA, which appears as part of
KBA

.
Equation 10.2 can be split into a component representing the expected optimal

analysis if BA were correct (i.e. Aopt(BA)), and a misspecification sensitivity com-
ponent:

A = (I−KBA
H)BA(I−KBA

H)T + KBA
RKT

BA︸ ︷︷ ︸
Aopt(BA)

+

(I−KBA
H)(BT −BA)(I−KBA

H)T︸ ︷︷ ︸
misspecification sensitivity

(10.3)

Note that Aopt(BA) is the quantity that would normally be calculated to predict
the performance of a retrieval or assimilation.

As a first step to understanding the sensitivity of the analysis system to misspe-
cification of the background error in general terms, a scalar system was examined,
with only one state variable, and one observation with H = I. For a fixed BA, B
and R were varied to test the sensitivity of A.

Figure 10.1(a) shows how the true, i.e. suboptimal, error A (in red), and Aopt(BT )
(in blue) vary over a range of BT . Aopt represents the analysis error that would have
been achievable if B were correctly specified. A is always bigger than Aopt, ex-
cept where BA = BT . When BA < BT , the observations are underweighted in the
analysis, and when BA > BT , useful background information is discarded by the
analysis. The black line marks A = BT , and a danger zone (Eyre and Hilton, 2013)
is defined where A > BT , in other words where the analysis is degraded through the
misspecification of BA which results in the underweighting of the background. The
danger zone is marked by the shaded area to the left of the vertical red dashed line.
The danger zone occurs for extreme values of BA > BT : the value of BT at which
the analysis enters the danger zone, Bd, is given by setting A = BT in equation 10.3.

Bd = RBA/(H2BA + 2R) (10.4)
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Figure 10.1: Properties of the suboptimal scalar analysis system. (a) shows how the suboptimal
analysis error (A in red) and the optimal analysis error (Aopt(BT ) in blue) vary with BT for
BA = 1.0 and R = 1.0. Where A is larger than BT (i.e. where it crosses the line A = BT )
the analysis enters the danger zone (marked in grey). The value of BT at which A enters the
danger zone is Bd, marked with a red dashed line. (b) shows how A (in red) varies with BA

for BT = 0.3 and R = 1.0. Again, the danger zone, where A > BT , is marked in grey, which
in this case occurs when BA > 0.87.
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Figure 10.2: Optimal and suboptimal maps of Degrees of Freedom for Signal (DFS) with
varying BT and R, for BA = 1. The black line on plot (b) represents the point at which the
analysis enters the danger zone: below this line the DFS becomes negative.

Figure 10.1(b) shows the same calculations but this time for a fixed BT = 0.3 with
varying BA. The suboptimal analysis is in the danger zone when BA is >0.87, in
this case about 3 times BT .

Figure 10.2 illustrates the effect of the suboptimal analysis on the information
content measures described in chapter 4, for the scalar system of figure 10.1(a) with
BA =1.0 and H =1.0. In the suboptimal case, it is necessary to decide whether to
calculate DFS relative to BA or BT (i.e. Tr (I−AB−1

A ) or Tr (I−AB−1
T )). It is more

relevant to calculate relative to BT : although BA filters the observation information,
it is BT that describes the true information content of the background forecast. This
suboptimal version of DFS becomes negative when the analysis enters the danger
zone. This is shown in figure 10.2(b), where the black line marks the variation of Bd

with BT and R.
This simple case illustrates that it is best for BA not to overestimate the variance

of BT for any given scalar quantity. This is perhaps counterintuitive, and Daley
(1991) states that “if a background is to be used in the objective analysis, it is wiser
to overestimate the expected background error variance than to underestimate it”
in order to avoid the case that, where BT >> R >> BA, “the analysis would
have been more accurate if the background had been completely ignored”. However,
completely ignoring the background is impossible in an under-determined problem
such as the analysis of a global NWP system as, even with perfect observations
the background would be required to fill in the gaps between them. In any case,
figure 10.2(b) shows that, regardless of the relative values of R and BA, it is always
possible for the analysis to be worse than the forecast background if BA >> BT
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unless R is vanishingly small. The black curve marking the danger zone flattens off
towards a value of BT = 0.5 quite quickly: for a reasonable range of R, if BA is
between 2 and 4 times larger than BT , the analysis will enter the danger zone. (It
seems unlikely that for a realistic application BA could overestimate BT by more
than 4 times but the analysis would still be in the danger zone if it were.)

10.2 Suboptimal linear analysis for Met Office
assimilation of IASI

Daley’s statement is from an era before NWP centres ran 4D-Var and models were
less accurate. Most DA experts would no longer aim to intentionally ‘err on the side
of caution’ in this manner (Andrew Lorenc, pers. comm.). It is certainly of interest,
however, to know whether the way in which BA is specified (e.g. MoistCov or
NMC) is likely to lead to a situation where the use of accurate observations can
degrade the analysis relative to the background. It is also important to understand
whether increasing the weight given to IASI observations by using more of the
spectrum – as is the aim of this thesis – or decreasing observation errors would
make this more or less likely to occur.

This section uses the suboptimal analysis equation 10.3 to examine the analysis
of a 1D temperature and humidity profile, for the assimilation of the 138 VAR
channel subset of IASI (appendix E), assuming the background error properties of
MoistCov and NMC.

10.2.1 Suboptimal analysis in eigenvector space

The prediction of whether the analysis will enter the danger zone for a scalar quant-
ity can be applied approximately to the full system, despite the significant vertical
correlations now present, if the eigenvector space of BA is used. This projection was
shown for the optimal analysis in figures 5.2 and 5.4. Eigenvector decomposition
renders modes in which the background errors are uncorrelated, and so the results
of the scalar analysis, in terms of the relationship between BA and BT and the like-
lihood of entering the danger zone, apply more directly to each mode. V defines the
orthogonal modes of BA, such that BA = VΛVT. The optimal and suboptimal ana-
lysis error can be projected onto these eigenvectors via pre- and post-multiplication
by V, and examination of the diagonal terms of the projected matrix shows in
which modes the analysis variance is improved over the background, and in which it
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is degraded. It is interesting to establish the number of eigenvectors that enter the
danger zone, as well as the extent to which the analysis is degraded, as any method
of increasing the overall information content should not decrease robustness toward
the misspecification of BA.

The eigenvectors for MoistCov and NMC were discussed in section 3.8.1 and
are shown in appendices B and C. The total number of eigenvectors is equal to
the number of levels, 70 each for temperature and water vapour, but not all of
those are significant. Where the associated eigenvalue of each mode is very small,
it is not possible for an observation to have much impact on the analysis in that
mode because the variational analysis assumes that the background error is very
low. Furthermore, IASI may not be sensitive to some of the spatial scales present
in the BA matrix. The normalised Jacobian method of Rodgers (2000) described in
section 4.2 can be adapted to look at each eigenvector of BA in turn. Single value
decomposition of the normalised Jacobian (equation 4.3), where BA is replaced by
each of its eigenvectors in turn, indicates that only approximately the lowest 30–35
ranked eigenvectors represent signals that are measurable by the full IASI spectrum
to within observation error. In fact, it would not be desirable for observations to
exert significant impact on the lower order eigenvectors, as they typically describe
small-scale features that are not so well captured by the statistical estimation of
B (Mike Cullen, pers. comm.). Only the first 35 eigenvectors are shown in the
plots that follow, and higher-order vectors entering the danger zone are considered
insignificant.

10.2.2 True and assumed B pairings

In order to investigate the suboptimal-in-B analysis, experimental pairings of BT

and BA are required. Given that BT is unknown, it is necessary to explore the
possible ways in which BA may be incorrectly defined. The two realisations of the
Met Office 4D-Var background errors, NMC and MoistCov are used to construct
these experimental pairings: the differences between these matrices represent the
actual changes of the covariance structure that were implemented over the course
of 18 months of development of the Met Office. We may therefore expect similar
changes over the coming years, and these changes may affect the way that IASI
observations provide information to the forecast system. We would hope that the
impact of IASI would not be unduly changed by altering the covariance statistics, so
it is important that the analysis is robust to these differences. However, it should be
noted that although the method of gathering the underlying data used to construct
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these matrices is different (i.e. NMC method vs ensemble of forecasts) and the
moisture control variable is different, these matrices are constructed with the same
covariance model and so the difference between them does not capture all aspects
of the differences between a modelled and true covariance pair.

MoistCov and NMC differ in terms of their correlation and variance compon-
ents (and consequently in their eigenvectors and eigenvalues). Various intermediate
scenarios are possible, for example where the variances are wrong but the correla-
tions correct and vice versa. Considered here is another intermediate, B′, which is
relevant to the question of whether the vertical scales of the background error are
correctly represented:

B′ = VMVT (10.5)

where M is a diagonal matrix equal to the diagonal elements of the matrix VTBTV,
recalling that V defines the eigenvector space of BA. In other words, BT is projected
onto the eigenvectors of BA and M represents the variances of BT associated with
each vector. The correlations between the vectors are ignored. If NMC is used to
define V, then B′ differs from NMC in that the variances associated with each
vector are different, and B′ differs from MoistCov in that the eigenvector structure
is different but the eigenvalues are the same. The correlation structure of MoistCov
compared with B′ (i.e. the part of BT that is ignored in constructing B′) is shown
in figure 10.3, where VTNMCcorrV, is plotted. Although there are non-zero off-
diagonal terms, the largest correlations are fairly local, suggesting that MoistCov
and NMC differ more in terms of their eigenvalues than their eigenvectors.

Four pairs of B and BA have been used to explore the range of possible suboptim-
ality scenarios using equation 10.3 and subsequent projection onto the eigenvectors
of BA:

Case 1: Incorrect variance; BT = MoistCov, BA = MoistCov with variance
×2
Case 2: Incorrect eigenvalues; BT = B′, BA = NMC
Case 3: Incorrect matrix; BT = MoistCov, BA = NMC
Case 4: Incorrect matrix; BT = NMC, BA = MoistCov
The suboptimal linear analysis equation 10.3 is used with the VAR channel

selection for each of these cases, using the set-up described in section 3.8.3 and used
in chapter 5, differing only in the inclusion of BA. As in chapter 5, the results are
presented in profile and in eigenvector space. In profile space, the analysis error minus
the true background error is plotted. Negative values represent an improvement over
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Figure 10.3: Correlations of the NMC B matrix projected onto the eigenvectors of theMoist-
Cov B matrix

the background and positive values a degradation (i.e. the danger zone is breached).
The optimal analysis, Aopt(BT ) always gives a negative difference.

In eigenvector space, the true background error and suboptimal analysis error are
projected onto the eigenvectors of BA, as it is this that defines the analysis modes
rather than BT . For the plots in eigenvector space (for example figure 10.4(b)),
where the suboptimal analysis line plots at a higher value of

√
λi than BT does, the

danger zone is breached: such vectors are marked with circles. It should be noted
that where the suboptimal analysis line plots exactly on top of BT , this represents
the case where the analysis equals the background; where the suboptimal analysis
is very close to the BT line, this does not indicate that the danger zone is close to
being breached, merely that there is not much information from the observations
for that vector.

Case 1: Incorrect variance; BT = MoistCov, BA = MoistCov with
variance ×2

In this case, the variance of BA is too high. Figure 10.4(a) shows the standard
deviation of the optimal analysis error, Aopt(BT ), minus the standard deviation of
BT in red, and the standard deviation of the suboptimal analysis, A, minus the
standard deviation of BT in black. The scalar analysis of figure 10.1 shows that
the danger zone may be breached where BA is at least 2–4 times larger than BT

(the value depends on the relative size of BA and R, and on H as well). Here, the
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Figure 10.4: Suboptimal analysis for temperature for Case 1 where BT = MoistCov and BA

has twice the variance of BT . VAR channels. R contains instrument noise only.

variances of BA are set to twice those of BT , and the danger zone is only breached
in the upper stratospheric part of the temperature profile, and at about 15 km. In
the lower atmosphere, the retrieval still improves upon the background, although by
a smaller amount than in the optimal case. The water vapour analysis error does
not enter the danger zone and is not shown.

When shown in the eigenvector space of BA (figure 10.4(b)), many vectors have
entered the danger zone: despite only a small portion of the retrieval in profile space
being degraded, the analysis is actually worse than the background across many
spatial scales in the vertical. Where the vectors contain a substantial component
from the stratosphere, they are likely to be in the danger zone, and where they are
primarily responsive to the lower atmosphere they are improved, in keeping with
what is seen in figure 10.4(a). The fact that all the variances of BA are greater than
those of B, but the retrieval is not degraded across the full profile (and in fact is
still improved near the surface) indicates the complex response of the retrieval to
the observation.

Case 2: Incorrect eigenvalues; BT = B′, BA = NMC

This matrix pairing is more interesting in terms of understanding the relative import-
ance of errors in structure and variance in BA. BT generally has smaller variances
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than BA, and its eigenvalues are also generally smaller, but the eigenvectors of the
two matrices are the same, so some aspects of the retrieval might be expected to
enter the danger zone. The results, shown in figure 10.5, demonstrate that only a few
temperature vectors are degraded, corresponding to strong stratospheric structures.
In the lower atmosphere the analysis is virtually indistinguishable from optimal. For
water vapour, the analysis enters the danger zone around the tropopause and in
the high stratosphere. Many vectors are slightly degraded (although by such a small
amount that the lines plot on top of each other for much of figure 10.5(d)). Those
that show significant degradation are vectors with large stratospheric components in
the NMC matrix. These components are not present in the MoistCov matrix, by
design, as it was features such as these that the new control variable was designed
to suppress (hence the marked dips in the eigenvalue spectrum of BT projected onto
BA). This issue is explored further in section 10.2.3.

Case 3: Incorrect matrix; BT = MoistCov, BA = NMC

In this case, the variances of BA are generally larger and some parts of the analysis
might reasonably be expected to enter the danger zone. Figure 10.6 shows this to
be the case. The results in profile space are very similar to those of Case 2, which
suggest that for this matrix pairing, the variance component is more influential than
mismatches in the vertical structure functions. Although the stratospheric water
vapour analysis is now even worse, in eigenvector space the water vapour retrieval
actually seems to fare slightly better. Despite the poor performance in parts of the
profile, approximately six eigenvectors each of temperature and water vapour still
benefit from the information in the IASI observations.

It is worth reiterating that BT is unknown. The expected performance of the
analysis system can only be measured using BA, i.e. by calculating Aopt(BA). It
is quite possible that the suboptimal assimilation actually performs better than
expected where BT is smaller than BA and Aopt(BT ) is therefore more accurate
than Aopt(BA). Suboptimal A falls somewhere between Aopt(BT ) and Aopt(BA),
and can therefore be more accurate than the projected performace of the system, i.e.
Aopt(BA). The problem is that it is the expected performance that is in error, and the
true forecast (with error BT ) may still be degraded by the data assimilation process.
This is illustrated in figure 10.7, which presents the same results as figure 10.6
but with additional lines showing Aopt(BA) and Aopt(BT ). For many of the leading
eigenvectors and for large parts of the profile, the suboptimal A is closer to Aopt(BT ),
and gives a better result than would have been predicted for this system based on
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Figure 10.5: Suboptimal analysis for Case 2 where BA =NMC and BT =B′ (see text for
details). VAR channels. R contains instrument noise only. In (a), and (b), Aopt(BT ) is in red
and suboptimal A in black. In (c), and (d) BT is in blue, A in green, and eigenvectors marked
with circles have entered the danger zone.



10. SUBOPTIMAL-IN-B ASSIMILATION 158

Temperature Analysis-Background Error

-0.4 -0.2 0.0 0.2 0.4
Difference in Standard Deviation of Error (K)

10

20

30

40

50

60

70

H
ei

gh
t (

km
)

Suboptimal

Optimal (B)

(a) Temperature - analysis error minus
background error

Water Vapour Analysis-Background Error

-0.4 -0.2 0.0 0.2 0.4
 Difference in Standard Deviation of Error (ln[g/kg])

10

20

30

40

50

60

70

H
ei

gh
t (

km
)

Suboptimal

Optimal (B)

(b) Water Vapour - analysis error
minus background error

Temperature

5 10 15 20 25 30 35
Eigenvector of BA in order of decreasing variance

0

1

2

3

4

√λ
i

Suboptimal Analysis

True Background

(c) Temperature - Analysis error and
true background error projected onto
eigenvectors of BA

Water Vapour

5 10 15 20 25 30 35
Eigenvector of BA in order of decreasing variance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

√λ
i

Suboptimal Analysis

True Background

(d) Water Vapour - Analysis error and
true background error projected onto
eigenvectors of BA

Figure 10.6: Suboptimal analysis for Case 3 where BA is NMC and B is MoistCov. VAR
channels. R contains instrument noise only. In (a), and (b), Aopt(BT ) is in red and suboptimal
A in black. In (c), and (d) BT is in blue, A in green, and eigenvectors marked with circles
have entered the danger zone.
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Figure 10.7: Comparison of the suboptimal analysis error A, and the optimal analysis errors
Aopt (BT ) and Aopt (BA) for temperature for the VAR channel selection with R containing
instrument noise only, for Case 3 where BA is NMC and BT is MoistCov. (a) is plotted in
the eigenvector space of BA and adds the background error terms BA and BT . (b) is in profile
space and shows the respective analysis errors minus BA, so that a negative value is a lower
error than BA and a positive value is a higher error than BA.

BA. For a few of the lower order eigenvectors, and in the lower stratosphere (12–
28 km), BA is in fact smaller than BT and the performance of suboptimal A, whilst
in this case not degrading the analysis relative to the true forecast error, gives a
performance that is worse than expected (i.e. the black line plots to the right of the
blue line in figure 10.7(b) for this height range).

Case 4: Incorrect matrix; BT =NMC, BA =MoistCov

When BT has variances generally larger than assumed, as is the case here, the
behaviour of the scalar system does not predict that the retrieval would enter the
danger zone. Figure 10.8 demonstrates that for this matrix pairing, the expectation
holds for most of the profile: although retrieval errors are clearly larger than optimal,
only the very top of the temperature profile and the water vapour profile around
the tropopause show any degradation, and to a smaller degree than for the reverse
matrix pairing shown in Case 3. There is no marked degradation to any significant
eigenvectors (vector 34 for temperature is the first to be affected). Eight temperature
vectors and six water vapour vectors show substantial improvement relative to the
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Figure 10.8: Suboptimal analysis for Case 4 where BA is MoistCov and BT is NMC. VAR
channels. R contains instrument noise only. In (a), and (b), Aopt(BT ) is in red and suboptimal
A in black. In (c), and (d) BT is in blue, A in green, and eigenvectors marked with circles
have entered the danger zone.

background.
Once one understands the suboptimal theory, one can perhaps predict where

there might be a risk of degrading the analysis, if the system’s true performance
does not match the expected performance. If the true system performs worse than
expected, there is also a risk that parts of the analysis will be degraded and the
covariance statistics should be retuned to make them smaller. If the analysis performs
better than expected, it is likely that the background errors may be too restrictive
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true performance (Suboptimal A minus BT in black) for the suboptimal analysis for Case 4
where BA is MoistCov and BT is NMC. VAR channels. R contains instrument noise only.

and that the observations are underweighted. Centres including ECMWF also use
forecast sensitivity to observations (FSO) type measures to determine whether the
relative balance between background and observation errors is correct (Daescu and
Langland, 2013, for example). Case 4 is an example of where, for substantial portions
of the profile, the suboptimal analysis is better than predicted by BA: figure 10.9
shows in blue the predicted improvement of the analysis, Aopt(BA), over the assumed
background error and in black the true improvement of the suboptimal analysis, A
over the true background error. In the real system it would not be possible to
calculate the ‘true’ performance in this manner, as we do not know BT ; furthermore
we do not know the true state of the atmosphere so cannot construct error terms by
comparing analyses against truth. Nevertheless, insight may be gained if the analysis
fit to observations is much better than expected. The improvements over background
would have been even greater if BA did not underestimate the background error, and
thus downweight the information from the observations. Of course, this would also
assume that the observation errors are well-known, and in reality they are subject
to nearly as much uncertainty as the background error statistics.

10.2.3 Stratospheric water vapour analysis

The fact that the problems with the suboptimal retrievals seem worst in the upper
reaches of the water vapour profile (e.g. Case 3) should perhaps not be a surprise. It
is well-known among satellite data assimilation researchers that attempting to assim-
ilate increased water vapour information, whether by reducing assumed observation
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errors, increasing the number of water vapour channels, or adding higher-peaking
water vapour channels can cause difficulties.

Although 4D-Var calculates analysis increments for all levels of the model for
qt, when the increments are applied, they are set to zero above a diagonosed tro-
popause. The danger zone behaviour for vectors that have a stratospheric water
vapour component in NMC is therefore not signficant in the context of the opera-
tional model. This behaviour can be replicated in the linear analysis calculation by
restricting the analysis to include only the lowest 38 levels (approximately 10 km)of
the water vapour profile. This technique is employed in calculation of the DFS for
the suboptimal system, in section 10.2.4.

The reduction of increments to zero above the tropopause restricts the influence
of these spurious stratospheric water vapour features, but this can lead to undesired
features (e.g. the drying of the upper troposphere as described in Hilton et al.,
2012b). The spurious stratospheric increments are not present with the new non-
linear moisture control variable now in place, but it would still seem sensible to
handle the assimilation of water vapour information fairly cautiously, particularly
in the UTLS. The reason for the conservative use of water vapour channels in the
operational implementation of IASI was because of minimisation problems in 4D-Var
when either high-peaking channels or reduced observation errors were used, and it
is possible that this was a consequence of increasing the exposure of the assimilation
system to the danger zone.

10.2.4 Increasing the spectral coverage

The main aim of this thesis is to establish a method of maximising the overall
information content of the analysis using IASI data, improving the extraction of
high-vertical resolution structure information from IASI. It is important that the
new analysis is no less robust to misspecification of BA.

Figure 10.10(a) shows the DFS for Case 3 (BT = MoistCov, BA = NMC), for
the same channel selections as shown in figure 4.5 (Full spectrum, Collard, OPS ,
VAR, Band1, PC scores). The suboptimal DFS is strongly negative, and in fact the
information content seems to be totally overwhelmed by the parts of the analysis
that have entered the danger zone, and in particular by the stratospheric water
vapour. Although the DFS measure has alerted us to the danger zone, it has ceased
to be a useful measure of information content.

Given that the problems with the stratospheric water vapour analysis are un-
important for the real assimilation system, as described in section 10.2.3, the DFS
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Figure 10.10: DFS for suboptimal analysis with different channel selections for Case 3 where
BA is NMC and BT is MoistCov. R is instrument noise only. Red bars represent optimal
DFS, and blue bars suboptimal. Note the y-axis scale in (a). A to F represent the same channel
selections as in figure 4.5

measure can instead be calculated for the lowest 38 levels of the water vapour profile
(corresponding to a height of 10.1 km). This measure is shown in figure 10.10(b).
The DFS calculation is now what one would expect. It can now be seen that the
suboptimal analysis is always worse than the optimal analysis by about 25–30%,
and that increasing the spectral coverage of the assimilated IASI data improves the
DFS of both optimal and suboptimal systems by approximately the same amount.
When danger zone behaviour is not dominant, the analysis is suboptimal but there is
no evidence to contradict the results in chapter 4 that improvements in information
content result from the addition of more channels.

On the other hand, examination of the DFS does not show whether increasing
the spectral coverage makes retrievals more robust to misspecification of BA. Fig-
ure 10.11 shows the Case 3 retrieval but using the whole spectrum instead of the
VAR channel selection, to be compared with figure 10.6. Comparison of parts (a)
of the figures shows that the use of the full spectrum hugely improves both optimal
and suboptimal retrieval errors, and restricts the danger zone to the topmost one
or two levels and the region between 35 and 43 km. In this respect one could say
that the use of more spectral information somewhat increases robustness to the
misspecification in BA.

For water vapour, the analysis is improved in the troposphere, but is more sig-
nificantly degraded in the stratosphere. Although this is not significant in terms of
the operational analysis, for reasons stated in section 10.2.3, it illustrates a general
point regarding danger zone behaviour that matches the DFS calculations plotted
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Figure 10.11: Suboptimal analysis for Case 3 where BA is NMC and B is MoistCov. The full
spectrum is used in the analysis. R contains instrument noise only. In (c), and (d) eigenvectors
marked with circles have entered the danger zone.

in figure 10.10(a). If the analysis is in the danger zone and more weight is given to
the observation information – in this case by increasing the number of water vapour
channels rather than by reducing the observation error – it is possible to make the
analysis even worse. This is not behaviour that is predicted by the simple scalar
system shown in figure 10.2(b) and reflects the complex response of the atmospheric
column to the IASI observation.

Figure 10.12 shows the Case 3 analysis for the 290 EUMETSAT PC scores



10. SUBOPTIMAL-IN-B ASSIMILATION 165

Temperature Analysis-Background Error

-0.4 -0.2 0.0 0.2 0.4
Difference in Standard Deviation of Error (K)

10

20

30

40

50

60

70

H
ei

gh
t (

km
)

Suboptimal

Optimal (B)

(a) Temperature - analysis error minus
background error

Water Vapour Analysis-Background Error

-0.4 -0.2 0.0 0.2 0.4
 Difference in Standard Deviation of Error (ln[g/kg])

10

20

30

40

50

60

70

H
ei

gh
t (

km
)

Suboptimal

Optimal (B)

(b) Water Vapour - analysis error
minus background error

Temperature

5 10 15 20 25 30 35
Eigenvector of BA in order of decreasing variance

0

1

2

3

4

√λ
i

Suboptimal Analysis

True Background

(c) Temperature - Analysis error and
true background error projected onto
eigenvectors of BA

Water Vapour

5 10 15 20 25 30 35
Eigenvector of BA in order of decreasing variance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

√λ
i

Suboptimal Analysis

True Background

(d) Water Vapour - Analysis error and
true background error projected onto
eigenvectors of BA

Figure 10.12: Suboptimal analysis for Case 3 where BA is NMC and BT is MoistCov.
290 PC scores are used in the analysis. Instrument noise is assumed to be the only source of
observation error. In (c), and (d) eigenvectors marked with circles have entered the danger
zone

(Hultberg, 2009). The results are almost identical to those for the full spectrum
(figure 10.11). This is encouraging as it means that the promising techniques of
data compression explored in previous chapters do not increase susceptibility to the
misspecification of B, at least as long as the R matrix is well specified.

Figure 10.13 shows the number of significant eigenvectors for temperature and
water vapour entering the danger zone for the same channel selections as figure 10.10.
The red bars correspond to Case 3 and the blue to Case 4.
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(a) Temperature
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Figure 10.13: Number of significant eigenvectors entering the danger zone for the suboptimal
analysis for different channel selections as in figure 4.5: A – full spectrum; B – Collard ; C
– OPS; D – VAR; E – Band1 ; F – 290 PC scores. The red columns are for Case 3 where
BT = MoistCov and BA = NMC and the blue columns are for Case 4 where BT = NMC
and BA = MoistCov.

For temperature, it seems to be the case that increasing the spectral coverage
does improve robustness to misspecification of background error (with this particular
pair of matrices), i.e. the number of vectors entering the danger zone decreases. It
is interesting to note that there does not seem to be much improvement beyond
the 183 OPS channel selection: the main difference between the OPS and VAR
channel selections is that the OPS selection contains channels peaking high in the
stratosphere. This might indicate that using more IASI data aloft would be a priority
to improve the analysis.

For water vapour, the situation is considerably more complex for Case 3, where
B = MoistCov and BA = NMC. Avoiding water vapour channels altogether
(Band1 ; Column E) means that one is less susceptible to entering the danger zone;
however, it also means that one has little chance of improving the model water
vapour fields. Beyond that it seems that as more water vapour information is added,
one is at greater risk of degrading the analysis. It is worth pointing out that this
plot does not take into account the removal of the increments in the stratosphere:
because the calculation is not in height space it is not so easy to remove a few levels
from the profile. However, the results for Case 4 are not affected, because there
are no spurious stratospheric features in BA for this scenario. In this case, there
seems to be little difference in danger zone behaviour between the different channel
selections.
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Figure 10.14: Mean and standard deviation of (Background–Truth) and (Analysis–Truth) for
1D-Var analysis where background errors are calculated using the BT matrix MoistCov but
BA is NMC (Case 3). VAR channels. R contains instrument noise only.

10.3 Suboptimal 1D-Var
This section investigates the behaviour of the sub-optimal 1D-Var, matching Case
3 of section 10.2, where B = MoistCov and BA = NMC, for the VAR channel
selection. Figure 10.14 compares the analysis and background errors for the 4348
profile set. The results are broadly similar to those predicted by the linear subop-
timal analysis equations, in that some parts of the profile, particularly in the high
stratosphere, are degraded through the misspecification of BA, and the tropospheric
profiles are improved by about 0.1K and up to 0.07 ln(q) units. However, the lin-
ear analysis implied a slightly better improvement in ln(q), and the 1D-Var results
are subject to radiance non-linearity error (see chapter 5), which manifests as an
analysis bias for water vapour.

In terms of danger zone degradations, they are slightly less severe than predicted,
other than in the 60 km region of the water vapour profile. No substantial subop-
timal behaviour is visible in the water vapour profile at the tropopause, and the
temperature profile at 40 km is only degraded by about 0.05K rather than the 0.2K
predicted. There is, however, a larger bias in retrieved temperature at the same
altitude.

The results presented in this section show that the suboptimal behaviour pre-
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dicted by theory is a real phenomenon. They confirm that linear analysis is a useful
tool to predict suboptimal behaviour in the full 1D-Var case, but care should be
taken when assessing the magnitude of the effects.

10.4 A discussion on observation errors
All of the calculations in the linear analysis, and all of the 1D-Var runs presented
in this thesis used a diagonal R matrix of level 1c instrument noise only, with no
attempts to add forward model error or representativeness error. This is clearly
unrealistic, and represents an idealised scenario. Although the main purpose of this
thesis is not to investigate changes to the observation error term, it is instructive
to see how the behaviour of the system changes under different, more realistic,
observation error assumptions.

Figure 10.15 shows the DFS for the optimal and suboptimal analyses for Case 4
for the VAR channel selection. The results are shown for Case 4 rather than Case 3,
because the latter suffer from the effects of the stratospheric water vapour analysis
seen in figure 10.10(a). Four settings are shown:

Inst: Diagonal level 1c instrument noise only, identical to the assumptions in
previous sections.
AddRT: Diagonal level 1c instrument noise, plus 0.2K radiative transfer error,
plus additional error relating to climatological variability of unmodelled trace
gases. This final term is negligible for the channel selection used in this study
RVar: The diagonal error covariance matrix used operationally in 4D-Var for
IASI assimilation until January 2013. Most tropospheric CO2 channels were
assimilated with 0.5K errors, window channels and stratospheric temperature
channels with 1K errors, and water vapour channels with 4K errors.
Deroz: A full error covariance matrix calculated using the Desroziers method
(Desroziers et al., 2005) from the operational 4D-Var system in 2011 (Weston,
2011). This matrix is used operationally for IASI assimilation in 4D-Var since
January 2013. As well as the introduction of inter-channel correlations, the Des-
roziers error standard deviations are generally slightly smaller than the AddRT
error standard deviations for temperature sounding channels (about 0.05K on
average), and somewhat larger for the water vapour sounding channels (about
0.4K).
Figure 10.15 shows that as the observation error increases, the DFS of the op-

timal retrieval is reduced, as expected. Although the Desroziers matrix has quite
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Figure 10.15: Comparison of DFS for optimal and suboptimal analysis, for the VAR channel
selection with different observation errors, for Case 3, where BT = MoistCov and BA =
NMC. Column labels are as follows: Inst: Instrument noise only; AddRT: Instrument noise plus
forward model error; Desroz: R matrix calculated using the Desroziers diagnostic, operational
at the Met Office since January 2013; RVar: R matrix used at the Met Office in 4D-Var prior
to January 2013. See text for further details. The Inst column is equivalent to column D in
figure 10.10(b)

small observation errors, for temperature at least, the DFS with this matrix is still
smaller than that with the AddRT error matrix: taking proper account of the error
correlations and the errors of representation in 4D-Var results in a relatively low
weight being give to the data overall. The results using the Desroziers matrix are
probably the best we can hope to achieve taking reasonable account of errors that
genuinely exist in the system. The old 4D-Var error assumptions (RVar) are clearly
more conservative, and the improvement in DFS seen here was reflected in modest
forecast impact when the Desroziers matrix was adopted (Weston et al., 2014).

Similarly to figure 10.10(a), the suboptimal results are worse than the optimal
results, and the degree to which they are worse is not greatly influenced by the
observation errors chosen.

Figure 10.16 shows the number of eigenvectors entering the danger zone for the
suboptimal analysis with each of these observation error scenarios for Cases 3 and
4. Here we see some evidence that reducing observation errors protects against the
number of significant modes entering the danger zone, which fits with the scalar
predictions of figure 10.2(b). Again, the results for water vapour for Case 3 (in red)
include the degradation to the spurious stratospheric modes, and should be treated
with caution. Note that this figure does not demonstrate the effect of reducing the
assumed observation errors, but rather that of reducing the true observation errors,
which would require improvements in, for example, radiative transfer modelling, or
in the vertical and horizontal resolutions of the model, to represent more closely the
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(b) Water Vapour

Figure 10.16: Number of eigenvectors entering the danger zone. The red columns are for
Case 3 where BT = MoistCov and BA = NMC and the blue columns are for Case 4 where
BT = NMC and BA = MoistCov.

volume of atmosphere to which the IASI data are sensitive.

10.5 Consequences for assimilation and retrieval
The results presented in this chapter suggest that guarding against exaggeration of
background errors is important, and that care should be taken in the construction
of background error terms for water vapour, and in particular to avoid the introduc-
tion of spurious vertical modes in the stratosphere. In an operational NWP setting,
there are numerous considerations regarding the construction of background error
terms, and it may not be possible to ensure that BA does not exaggerate BT in any
respect. The use of Hybrid DA systems is a definite step forward, and helps to define
a BA that is regionally rather than globally valid. An alternative approach being
investigated at Météo-France is to define different error distributions for different
synoptic conditions that have more homogeneous error properties, for example in
precipitating and non-precipitating areas (Thibaut Montmerle, personnal commu-
nication).

There are more obvious consequences for standalone 1D retrieval schemes where
background error terms can be tailored to the application. However, in general, the
background profiles used in standalone schemes are from a climatological source, and
there is little information in them that is likely to be lost through underweighting
the background. However, if background profiles can be defined regionally or come
from an NWP model, it is desirable to maintain realistic error distributions. It may
also be useful to examine the eigenvectors of any diagnosed BA to check for spurious
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modes that could be damped down.

10.6 Summary
The behaviour of the retrieval system in the case where BT is not known exactly
has been investigated by extending the linear analysis equations to take account of
differences between BT and BA. The behaviour of a scalar system is investigated,
and it is shown that the true analysis error, A, is larger than the error that would
be predicted if BT were correctly specified (Aopt(BT )). If BA is too large, in the
extreme case it is possible for the analysis to be worse than the background, and
this degradation is referred to as the danger zone.

The suboptimal analysis equations were then applied to a full column analysis of
temperature and water vapour. It was found that where BA is too large, the retrieved
profile may be degraded relative to the background profile, both in physical space
and in vertical eigenmode space. A degradation in a small vertical range can be
spread over numerous modes in the vertical.

A suboptimal version of the DFS calculation has been performed. This becomes
negative for a scalar system when the danger zone is breached. However, the beha-
viour of a full column analysis is more complex, and once a substantial breach of the
danger zone is made, the DFS becomes overwhelmed and is no longer a reasonable
indicator of information content. In terms of information content where the danger
zone is not a significant contribution, the suboptimal retrieval always has a lower
information content than the optimal, by about 25–30% in the cases investigated
here.

The danger zone behaviour has also been demonstrated using 1D-Var with the
VAR channel selection, confirming that linear analysis is a useful tool to predict per-
formance of a 1D-Var retrieval system, although the magnitude of the degradation
is somewhat smaller in a 1D-Var setting than is predicted by the linear equations.

The results presented in this chapter suggest that guarding against exaggeration
of background errors is important, and that care should be taken in the construction
of background error terms for water vapour, and in particular to avoid the introduc-
tion of spurious vertical modes in the stratosphere. Examination of the eigenvectors
of BA is a useful tool to investigate possible problems arising from spurious modes
of BA.

Increasing the weight to the observation by decreasing observation errors results
in an increase in DFS, both for the optimal and suboptimal analysis, and without
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stratospheric water vapour effects, reduced exposure to the danger zone. The effect
of incorrectly specified observation error has not been investigated here.

Increasing the spectral coverage reduces exposure to the danger zone for tem-
perature. For water vapour, once stratospheric effects are taken into account, an
increase in spectral coverage does not make a significant difference to the danger
zone behaviour for the matrix pairing of MoistCov and NMC. These results are
encouraging because it means that there is no greater risk to the analysis if more
spectral information is provided: this is demonstrated here for the full spectrum and
for the EUMETSAT PC scores.



173

Chapter 11

Conclusions

IASI and other hyperspectral sounders have been shown to provide significant impact
to NWP systems. However, current assimilation schemes use less than 2% of the
channels and results presented in this thesis show that it may be possible to double
the information content provided by IASI if the full spectrum were exploited. The
techniques of PC compression and radiance reconstruction have been explored, and
it has been shown that in an optimal linear assimilation, it is possible to extract
almost the full information content of the spectrum using data in a compressed form.

11.1 The performance of the current assimilation
scheme

Chapter 4 explored the information content of IASI in the current Met Office as-
similation system. New Forecast Sensitivity to Observations results that split the
impact into different regions in the vertical suggest that IASI is generally having
the expected effect within the assimilation system, with water vapour and window
channels providing information to the humidity fields, while temperature channels
contribute to potential temperature and wind fields. Higher peaking channels have
impact high in the atmosphere, while lower peaking channels contribute more in-
formation to the lower and mid troposphere. This suggests that there are no obvious
deficits that need correcting, and that to improve the amount of information extrac-
ted from IASI, other than by reducing observation errors through a more accurate
forward operator, the best approach is to increase the spectral coverage presented
to the 4D-Var analysis.

The optimal estimation equations predict that much more impact could be gained
from IASI if the full spectrum could be assimilated, in particular smaller-scale fea-
tures in the vertical would be improved for the water vapour analysis, and the
stratospheric temperature analysis could also be improved. Inspection of the aver-
aging kernels also suggests that more information could be provided to the lowest
levels of the atmosphere on both temperature and humidity.
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Chapter 5 compared theoretical linear optimal estimation results in profile space
and in the eigenvector space of the background error covariance matrix. The hu-
midity field is improved by around 0.08 ln(q) units at wavelengths of up to 7km.
Although the improvement is approximately 25% in terms of standard deviation,
the vertical resolution is much less than the instrument specification predicted. Ap-
proximately 7 temperature vectors are improved, with mostly tropospheric features.
The DFS for the whole analysis is 7.3, split almost equally between temperature and
humidity. These improvements fall well short of the impact predicted by pre-launch
studies (Collard, 1998; Prunet et al., 1998), and this assimilation scenario is already
somewhat unrealistic because the only source of error assumed is instrument noise.
The results of the linear optimal estimation were verified using a simulated 1D-Var
experiment, giving consistent results in terms of standard deviation, but demon-
strating the introduction of a bias in the water vapour analysis because of errors
resulting from non-linearity in the radiance response to changes in water vapour
amount.

11.2 Principal components and reconstructed
radiances

Chapters 6 and 7 introduced principal component (PC) compression and radiance
reconstruction. The importance of the rank of the reconstructed radiance observa-
tion error covariance matrix was emphasised, and the impact this has on the channel
selection for reconstruced radiances. Practical implementation of reconstructed radi-
ances for assimilation is likely to make use of raw radiance forward model Jacobians
(i.e. be suboptimal-in-H), and an extra error term, ∆R̃ was demonstrated. ∆R̃ is or-
thogonal to the instrument noise covariance matrix for reconstructed radiances, and
therefore has implications for the rank of the problem. Neglect of this term renders
the assimilation suboptimal-in-H-and-R. In practice, however, the necessary use of
a diagnosed error covariance matrix that reflects all sources of error including ∆R̃
reduces the requirement to have an accurate estimate of this quantity. One example
of such a diagnosed matrix, RHL, was presented, and it was found that the rank of
the matrix was close to the number of retained PCs.

Two new channel selection methods for reconstructed radiances were presented.
The first is a mathematical approach using the eigenvectors themselves to select the
most information-rich channels. The second is based on information content, taking
full account of observation error covariances, and penalising the selection of a channel
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that raises the condition number of the resultant R matrix. These methods have
been used to explore the selection of channel sets for reconstructed radiances, which
have a high degree of error correlation between channels, by varying the inputs for
the channel selection process. The new channel selections were compared with the
Collard selection for information content and matrix conditioning. It is not possible
to determine a definitive ‘best’ channel selection with such a simple test. However,
tailoring the channel selection to NWP by choosing on the basis of DFS appears
to provide a more information-rich channel selection in fewer channels than when
choosing on the basis of condition number of the R matrix alone or when using the
eigenvectors themselves.

To test whether the reconstructed radiance channel selection method is capable
of finding channels that represent the full information content of the observation,
further channel selections were made assuming instrument noise only. DFS calcula-
tions showed that the reconstructed radiance assimilation is capable of providing the
full information content of the 210 PC scores, close to that of the full spectrum, but
the R matrix is not well-conditioned, risking the addition of pseudo-information
to the retrieval and an unstable minimisation. Shrinkage has been explored as a
pragmatic way to modify the R matrix towards a diagonal to correct for this. This
technique was shown to reduce the pseudo-information and to stabilise the solution,
but as a consequence reduces the DFS considerably.

The performance of an instrument noise only 1D-Var, for both PC scores and
reconstructed radiances, was assessed for a Suboptimal-in-H-and-R assimilation of
reconstructed radiances. For reconstructed radiances, without significant manipula-
tion of the R to counteract the missing error term that comes from using an incorrect
forward model, the 1D-Var performance is very poor with most observations fail-
ing to reach covergence. Shrinking the R matrix towards a diagonally-strengthened
matrix does allow an analysis to be calculated in most cases, but oscillating biases
are produced. The performance of a similar system for PC scores is quite well be-
haved as long as all sources of error are taken into account, but if there is a missing
error term, similar oscillating biases result.

These results suggest that much care needs to be taken when specifying error
covariances for use with compressed spectra. It is likely that the tests performed in
this thesis exaggerated the effects of the misspecification of the R matrix because
the errors applied were so small.

The preferred channel selection designed for operational implementation at the
Met Office, RHL-M2-8J-1.3 , was also tested with the RHL error covariance matrix
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in a simulated 1D-Var environment, and ecouragingly gave good results without any
oscillating bias. If RHL does a reasonable job of representing the structure of the
inter-channel errors, this suggests that reconstructed radiances could be used in an
operational context and that further tests with real data are warranted.

11.3 Assimilation with a misspecified B matrix
The behaviour of the retrieval system in the case where B is not known exactly was
investigated by extending the linear analysis equations to take account of differences
between B and BA. The behaviour of a scalar system was investigated, and it was
shown that the true analysis error, A, is larger than the error that would be predicted
if BT were correctly specified. If BA is too large, in the extreme case it is possible
for the analysis to be worse than the background, and this degradation is referred
to as the danger zone.

The suboptimal analysis equations were then applied to a full column analysis
of temperature and water vapour. It was found that where BA is too large, the
retrieved profile may be degraded relative to the background profile, both in physical
space and in vertical eigenmode space. A degradation in a small vertical range can
be spread over numerous modes in the vertical. Where the danger zone is not a
significant contribution, the suboptimal retrieval always has a lower information
content than the optimal, by about 25–30% in the cases investigated here. The
danger zone behaviour was also demonstrated using 1D-Var with the VAR channel
selection, confirming that linear analysis is a useful tool to predict performance of
a 1D-Var retrieval system, although the magnitude of the degradation is somewhat
smaller in a 1D-Var setting than is predicted by the linear equations.

The results of chapter 10 suggest that guarding against exaggeration of back-
ground errors is important, and that care should be taken in the construction of
background error terms for water vapour, in particular to avoid the introduction
of spurious vertical modes in the stratosphere. Although this cannot always be
achieved, it is useful to know how the observations interact with the vertical struc-
tures in B, and confirms that work to improve the representation of background
error in NWP models by representing synoptic structure will be beneficial to the
assimilation of satellite observations that have broad sensitivities in the vertical.

Increasing the weight to the observation by decreasing observation errors results
in an increase in DFS, both for the optimal and suboptimal analysis, and without
stratospheric water vapour effects, reduced exposure to the danger zone. Increasing
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the spectral coverage reduces exposure to the danger zone for temperature. For water
vapour, once stratospheric effects are taken into account, an increase in spectral
coverage does not make a significant difference to the danger zone behaviour. This
result is encouraging because it means that there is no greater risk to the analysis
if more spectral information is provided by the observations.

11.4 Further work
The specific aims of this thesis were to investigate the relative performance of IASI
PC scores and reconstructed radiances in a clear sky assimilation setting, in terms
of information content and vertical structure, and to find a set of reconstructed
radiance channels with the maximimum information content possible that could be
used in an operational setting.

There are several ways in which this work should be extended:
Clear sky PC/reconstructed radiance comparison: The intercomparison
1D-Vars in this thesis assumed similar – but not identical –instrument noise pro-
files were the only source of error. It would be useful to rerun this intercomparison
with identical instrument noise and with addition of reasonable representation
and radiative transfer errors, as this would make the experiment more relevant
to assimilation in the real world.
Clear sky raw/reconstructed radiance comparison: A meaningful inter-
comparison between raw and reconstructed radiances was hampered by the lack
of a dataset of observation minus background statistics for the full spectrum of
raw radiances. It would be useful to gather this dataset to allow better diagnostics
for the reconstructed radiance system.
Cloudy assimilation: There is much work to be done on the assimilation of
cloud-affected PC score profiles, which is well beyond the scope of this thesis.
However, the assimilation of cloud-affected reconstructed radiances should be
tested, because it is possible that subtle changes in the error correlation structure
could be introduced by the spreading of cloud information between channels that
would affect cloud detection algorithms resulting in detrimental performance.
Operational implementation: One of the outputs of this thesis is a channel
selection for reconstructed radiances tuned to the Met Office assimilation scheme.
This channel selection should be tested in an operational context as soon as
possible.
Surface parameter retrieval: The results shown here were for the analysis
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of temperature and water vapour profiles only in order to mimic 4D-Var as
closely as possible. In the operational Met Office assimilation scheme a 1D-Var
pre-processor is used to perform a retrieval of skin temperature and surface
emissivity for use in 4D-Var, along with diagnosed cloud properties. The channel
selection for reconstructed radiances does not contain many window channels,
which could hamper the retrieval of emissivity. An alternative channel selection
should be devised including the retrieval of skin and surface parameters in the
DFS calculation.
The impact of PC score dissemination on PC score assimilation: One
of the main motivations for the use of reconstructed radiances is that data
providers such as EUMETSAT already disseminate PC-compressed radiances,
and this method of dissemination is the baseline for geostationary hyperspectral
sounders such as MTG-IRS. PC-based forward models typically do not cater
for the eigenvector basis used for dissemination (partly because these may be
changed with time, for example following unusual atmospheric events). Little
work has been done to date on the construction of standard PC scores for as-
similation from PC scores for dissemination (or their reconstructed radiances).
To be properly prepared for the arrival of these new instruments, it needs to be
verified that this additional projection would not cause any difficulties.
Dissemination of PC scores for future sounders: The baseline for hyper-
spectral sounders in geostationary orbit is that they will be disseminated in PC
score format. The use of PC-compressed data, whether as PC scores or recon-
structed radiances is therefore relevant to the wider remote sensing community.
Further research into the use of compressed data for other applications, such as
trace gas retrievals, is very important. Outside of an NWP context, it may not
be so easy to use diagnostic techniques to determine observation errors and the
implications of a suboptimal analysis should be investigated.
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Appendix A

The levels of the Met Office Unified Model

The Met Office Unified Model has 70 vertical levels in a staggered Charney-Phillips
grid with potential temperature, moisture and the vertical component of the wind
defined on one set of levels, and the horizontal wind components, pressure and
density defined on the half-levels in between. The levels are expressed as height, and
are terrain-following in the lower atmosphere. Figure A.1(a) shows the distribution of
the levels in height, and figure A.1(b) shows the staggering of levels in the Charney-
Phillips grid.



A. THE LEVELS OF THE MET OFFICE UNIFIED MODEL 181

(a) The vertical levels of the
UM

(b) The staggering of levels on the
Charney-Phillips grid

Figure A.1: Vertical levels of the Charney-Phillips grid in the version of the Met Office Unified
Model used in this thesis. Theta, moisture variables and the vertical wind component are
defined on the levels marked with dashes, and the horizontal wind components, pressure and
density are defined on the levels marked with dots.
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Appendix B

Eigenvectors of the MoistCov B matrix
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Figure B.1: Temperature eigenvectors 1–20 of the MoistCov B Matrix
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Figure B.2: Temperature eigenvectors 21–40 of the MoistCov B Matrix
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Figure B.3: Water vapour eigenvectors 1–20 of the MoistCov B Matrix



B. EIGENVECTORS OF THE MOISTCOV B MATRIX 185

Eigenvector  21

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80
H

ei
gh

t (
km

)
√λ i = 0.1355

Eigenvector  22

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1303

Eigenvector  23

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1250

Eigenvector  24

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1196

Eigenvector  25

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1145

Eigenvector  26

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1121

Eigenvector  27

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1065

Eigenvector  28

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1052

Eigenvector  29

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1039

Eigenvector  30

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.1011

Eigenvector  31

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0955

Eigenvector  32

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0914

Eigenvector  33

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0895

Eigenvector  34

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0877

Eigenvector  35

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0860

Eigenvector  36

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0819

Eigenvector  37

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0736

Eigenvector  38

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0731

Eigenvector  39

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0714

Eigenvector  40

-1.0 -0.5 0.0 0.5 1.0
0

20

40

60

80

H
ei

gh
t (

km
)

√λ i = 0.0682

Figure B.4: Water vapour eigenvectors 21–40 of the MoistCov B Matrix
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Appendix C

Eigenvectors of the NMC B matrix
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Figure C.1: Temperature eigenvectors 1–20 of the NMC B Matrix
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Figure C.2: Temperature eigenvectors 21–40 of the NMC B Matrix
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Figure C.3: Water vapour eigenvectors 1–20 of the NMC B Matrix
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Figure C.4: Water vapour eigenvectors 21–40 of the NMC B Matrix
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Appendix D

Derivation of the reconstruction error Φrec

This section repeats the derivation of the additional error, Φ, that results from
the use of a forward model that calculates raw radiances rather than reconstructed
radiances in section 6.3, but assuming that the true state is given by yt rather than
by ỹt. In this case, one would probably describe Φ as a reconstruction error, so we
will give it a subscript Φrec:

δỹ′ = (ỹ− yt) − (H(x)− yt) (D.1)
= (LpLT

p y− yt) − (H(x)− yt))
and
R̃′ = E′ + F (D.2)

Let εobs be the observation error (instrument noise), then:

y = yt + εobs (D.3)

The left-hand term in equation D.1 gives the reconstructed radiance departure from
truth:

δỹobs = (LpLT
p y− yt) (D.4)

= LpLT
p (yt + εobs)− yt

= (LpLT
p − I)yt + LpLT

p εobs

Using < · · · > to represent expectation over climatological conditions

F′ = < δỹobs δỹT
obs > (D.5)

= (LpLT
p − I) < ytyT

t > (LpLT
p − I)T + LpLT

p ELpLT
p

= Φrec + LpLT
p ELpLT

p

(D.6)

Note that Φrec in equation D.5 is the same as Φ of equation 6.28 (when the
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quadratic is multiplied out), and the total error budget is given by:

R̃′ = LpLT
p ELpLT

p + F + Φ (D.7)

This equivalence assumes that the forward modelled radiance and the observed
radiance are each given by an error fully characterised by the covariance matrix
about the same true radiance. Biases often exist between observed and forward
modelled radiances, but it is assumed that these biases are adequately corrected for
before assimilation.
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Appendix E

Channel Selections

E.1 The Collard channel selection
16 38 49 51 55 57 59 61 63 66 70 72
74 79 81 83 85 87 89 92 95 97 99 101
104 106 109 111 113 116 119 122 125 128 131 133
135 138 141 144 146 148 151 154 157 159 161 163
167 170 173 176 179 180 185 187 193 199 205 207
210 212 214 217 219 222 224 226 230 232 236 239
242 243 246 249 252 254 260 262 265 267 269 275
280 282 294 296 299 303 306 323 327 329 335 345
347 350 354 356 360 366 371 373 375 377 379 381
383 386 389 398 401 404 407 410 414 416 426 428
432 434 439 445 457 515 546 552 559 566 571 573
646 662 668 756 867 906 921 1027 1046 1121 1133 1191
1194 1271 1479 1509 1513 1521 1536 1574 1579 1585 1587 1626
1639 1643 1652 1658 1671 1786 1805 1884 1991 2019 2094 2119
2213 2239 2245 2271 2321 2398 2701 2741 2819 2889 2907 2910
2919 2939 2944 2948 2951 2958 2977 2985 2988 2991 2993 3002
3008 3014 3027 3029 3036 3047 3049 3053 3058 3064 3069 3087
3093 3098 3105 3107 3110 3127 3136 3151 3160 3165 3168 3175
3178 3207 3228 3244 3248 3252 3256 3263 3281 3303 3309 3312
3322 3339 3375 3378 3411 3438 3440 3442 3444 3446 3448 3450
3452 3454 3458 3467 3476 3484 3491 3497 3499 3504 3506 3509
3518 3522 3527 3540 3555 3575 3577 3580 3582 3586 3589 3599
3653 3658 3661 3943 4032 5130 5368 5371 5379 5381 5383 5397
5399 5401 5403 5405 5455 5480 5483 5485 5492 5502 5507 5509
5517 5558 5988 5992 5994 6003 6350 6463 6601 6962 6980 6982
6985 6987 6989 6991 6993 6995 6997 7267 7269 7424 7426 7428
7885 8007
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E.2 The OPS channel selection
16 38 49 51 55 57 59 61 63 66 70 72
74 79 81 83 85 87 89 95 97 99 101 104
106 109 111 113 116 119 122 125 128 131 133 135
138 141 144 146 148 151 154 157 159 161 163 167
170 173 176 179 180 185 187 193 199 205 207 210
212 214 217 219 222 224 226 230 232 236 239 242
243 246 249 252 254 260 262 265 267 269 275 280
282 294 296 299 303 306 323 327 329 335 345 347
350 354 356 360 366 371 373 375 377 379 381 383
386 389 398 401 404 407 410 414 416 426 428 432
434 439 445 457 515 546 552 566 571 573 646 662
668 756 867 906 921 1027 1046 1121 1133 1191 1194 1271
1786 1805 1884 1991 2019 2094 2119 2239 2245 2741 2889 2907
2944 2948 2951 2958 2988 3027 3029 3053 3058 3064 3168 3248
3506 3577 3582 3589 5130 5368 5371 5379 5381 5383 5397 5399
5401 5403 5405

E.3 The VAR channel selection
38 51 57 63 109 116 122 128 135 141 148 154
161 167 173 179 180 185 187 193 199 205 207 210
212 214 217 219 222 224 226 230 232 236 239 242
243 246 249 252 254 260 262 265 267 269 275 280
282 294 296 299 306 323 327 329 335 345 347 350
354 356 360 366 371 373 375 377 379 381 383 386
389 398 401 404 407 410 414 416 426 428 432 434
439 445 457 515 546 552 566 571 573 662 668 756
867 921 1027 1133 1194 1271 1805 1884 1991 2094 2239 2245
2741 2889 2907 2944 2948 2951 2958 2988 3027 3029 3053 3058
3064 3168 3248 3506 3577 3582 3589 5130 5368 5371 5379 5381
5383 5397 5399 5401 5403 5405
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E.4 The Method 1 channel selections for RHL

E.4.1 Original method (Lp-M1)

2 10 15 21 26 32 71 86 92 94 97 102
125 154 192 212 243 262 292 299 302 306 314 326
338 340 345 361 387 393 399 437 449 497 527 546
580 588 591 604 616 629 660 679 697 722 742 763
821 832 847 892 912 930 936 953 973 1005 1056 1073
1136 1219 1276 1290 1315 1374 1443 1479 1521 1539 1555 1560
1586 1594 1646 1668 1686 1696 1711 1730 1791 1828 1842 1860
1905 1951 1960 1964 1966 1991 2001 2007 2015 2020 2026 2034
2041 2053 2064 2070 2075 2082 2094 2132 2151 2157 2166 2168
2170 2187 2199 2217 2227 2238 2245 2261 2266 2268 2270 2272
2278 2291 2302 2306 2319 2323 2328 2332 2342 2359 2379 2399
2402 2411 2422 2426 2430 2439 2461 2468 2475 2486 2503 2509
2516 2536 2540 2550 2554 2557 2562 2585 2589 2617 2632 2640
2645 2647 2661 2675 2684 2692 2699 2708 2712 2716 2721 2724
2733 2746 2757 2763 2771 2777 2782 2802 2807 2814 2819 2821
2837 2861 2867 2870 2875 2879 2885 2888 2900 2907 2913 2917
2940 2947 2964 2971 2985 3002 3074 3111 3248 3252 3390 3412
3580 3817 4209 4533 4873 5021

E.4.2 Modified method (RHL-M1)

698 616 2 2001 16 10 92 832 21 72 588 94
32 339 97 387 936 399 1842 497 302 243 1219 1521
26 1966 299 313 2042 3014 1964 678 2034 2075 1596 292
87 1686 102 2027 578 358 2150 973 345 2010 2065 1290
558 953 2018 306 912 449 1586 2053 439 1951 547 1242
1661 326 3028 1991 1695 192 632 847 812 591 1904 1554
1712 125 930 2168 1276 1859 1005 1479 262 3244 526 2070
1960 1056 1730 2171 892 154 379 721 1560 1630 648 1931
2094 2211 394 1089 2746 2888 1539 763 2081 1373 2347 1802
232 1434 2717 2329 2404 2320 2270 2868 2378 1315 2134 2426
2724 3251 2685 2267 2341 2535 2227 2430 2589 2777 2246 2323
2814 881 2644 2675 2461 2278 2182 2800 2238 2486 2856 2411
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2273 2561 2806 2558 2157 2439 3098 2409 2699 2940 2750 2302
2571 2467 2649 2866 2733 2475 2399 5021 2764 2551 2832 2174
2617 2640 2878 2264 2721 2782 2632 3074 2306 2920 2860 3268
2907 2287 2766 2564 3002 2365 3580 2198 2692 3773 2913 2947
2445 2731 2757 2504 2219 2508 2971 2556 2984 4699 3435 2516
2900 2816 4565 2489 3201 5104

E.5 The Method 2 channel selections for RHL

E.5.1 Jacobians – 8 Clear; Threshold – 1.0. (RHL-M2-8J-1.0)

2 9 15 21 26 32 37 50 63 71 86 91
94 98 103 125 180 199 242 259 298 302 306 314
325 338 345 361 381 387 395 399 440 451 526 544
584 589 607 616 635 641 688 783 819 832 836 893
906 927 935 957 970 976 1007 1086 1120 1194 1270 1289
1351 1392 1424 1479 1502 1534 1539 1554 1560 1587 1589 1601
1621 1646 1662 1684 1686 1694 1712 1720 1761 1828 1844 1854
1906 1908 1925 1964 1965 1988 1998 2008 2018 2020 2031 2038
2041 2052 2067 2076 2082 2110 2119 2145 2186 2199 2212 2227
2266 2278 2324 2329 2342 2346 2370 2379 2398 2411 2454 2475
2497 2508 2515 2554 2562 2578 2589 2616 2640 2645 2646 2670
2683 2689 2714 2724 2729 2732 2745 2751 2771 2779 2801 2808
2861 2866 2873 2886 2893 2902 2921 2925 2948 2955 2977 3015
3058 3117 3247 3352 3449 3546 3715 3809 3826 3888 4032 4034
4037 4042 4121 4158 4203 4207 4209 4213 4245 4291 4326 4341
4359 4381 4426 4508 4588 4592 4605 4607 4620 4627 4691 4708
4740 4742 4770 4798 4803 4832 4890 4898 4938 4949 4957 4979
5003 5026 5035 5038 5093 5108

E.5.2 Jacobians – 8 Clear; Threshold – 1.3 (RHL-M2-8J-1.3)

1 2 13 14 16 17 18 19 22 23 24 25
34 37 40 41 42 44 50 56 67 68 69 71
72 77 87 88 89 90 91 92 93 94 95 96
97 100 101 102 109 111 120 121 124 125 126 127
129 130 132 137 138 139 140 141 143 144 145 155
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157 160 162 165 166 167 169 170 172 173 174 175
179 180 189 191 192 193 194 195 196 197 198 199
203 205 206 207 208 209 210 221 222 223 226 231
235 242 243 248 249 252 253 261 266 269 274 275
276 278 295 296 297 298 299 300 304 336 378 382
385 386 387 390 395 397 410 414 415 431 449 587
732 840 1587 2018 2270 2488 2507 2508 2509 2510 2612 2623
2636 2648 2654 2670 2672 2676 2689 2711 2733 2744 2760 2770
2819 2842 2919 2926 2927 2933 2959 3117 3194 3195 3196 3249
3327 3335 3410 3442 3452 3580 3601 3787 3829 3966 3972 3974
4008 4032 4635 5025 5048 5094

E.5.3 Jacobians – 8 Clear; Threshold – 100.0
(RHL-M2-8J-100.0)

5 18 19 21 92 94 100 135 136 144 173 190
217 224 418 1602 1616 2270 2323 2378 2455 2464 2465 2489
2499 2502 2507 2508 2509 2510 2511 2512 2606 2607 2630 2633
2652 2670 2671 2672 2676 2689 2706 2760 2818 2842 2843 2925
2928 2932 2933 2984 3008 3009 3021 3069 3070 3071 3072 3073
3074 3075 3117 3118 3134 3135 3143 3155 3161 3224 3264 3278
3301 3327 3423 3448 3488 3509 3523 3549 3553 3562 3584 3587
3588 3631 3662 3670 3765 3776 3779 3807 3815 3846 4635 4930
5067 5072 5073

E.5.4 Jacobians – 8 Clear 2 Zen; Threshold – 1.3
(RHL-M2-8J2Z-1.3)

1 2 5 16 29 31 32 34 35 36 37 38
46 47 48 60 62 64 70 71 72 73 83 84
86 87 89 90 91 92 93 94 95 96 98 99
100 101 103 105 107 108 109 118 119 120 124 130
137 139 142 143 147 149 150 152 155 156 157 159
162 166 173 176 181 183 184 189 193 199 213 214
215 216 225 231 235 247 248 249 252 253 263 274
275 284 296 300 303 317 320 324 330 334 351 355
379 384 385 389 390 397 402 454 505 507 520 548
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587 604 622 653 688 694 819 842 850 1097 1331 1403
1404 1531 1563 1576 1686 1941 1973 2437 2488 2496 2507 2508
2509 2510 2555 2569 2570 2572 2584 2634 2648 2654 2655 2670
2671 2672 2674 2675 2678 2733 2778 2933 2992 3004 3008 3117
3222 3247 3250 3252 3318 3462 3591 3780 3782 3972 4032 4037
4088 4162 4333 4352 4359 4560 4636 4798 4801 5047

E.5.5 Jacobians – 11 Cloudy A; Threshold – 1.3
(RHL-M2-11J-1.3)

1 6 10 16 26 37 57 59 70 71 73 87
88 89 92 95 96 97 99 100 101 102 132 135
136 138 168 172 174 178 191 194 199 203 228 278
296 440 1579 1650 2325 2462 2488 2494 2495 2498 2499 2500
2501 2502 2503 2506 2507 2508 2509 2510 2571 2584 2602 2606
2607 2608 2623 2636 2646 2649 2652 2654 2655 2656 2670 2671
2672 2675 2676 2677 2678 2679 2680 2689 2690 2691 2695 2697
2699 2700 2701 2702 2703 2710 2731 2760 2788 2816 2842 2843
2864 2873 2874 2926 2928 2933 2942 2947 2951 2954 2995 2996
2997 3009 3011 3012 3022 3023 3040 3047 3056 3082 3083 3090
3095 3123 3152 3197 3198 3208 3228 3229 3230 3231 3246 3247
3248 3249 3250 3251 3261 3262 3315 3318 3322 3324 3326 3327
3451 3452 3453 3460 3461 3469 3506 3508 3509 3524 3528 3537
3555 3562 3563 3580 3585 3588 3589 3590 3612 3621 3635 3671
3681 3726 3749 3806 3966 3996 4032 4043 4094 4150 4380 4514
4561 4674 4883 5101

E.5.6 Jacobians – 9 Cloudy B; Threshold – 1.3
(RHL-M2-9J-1.3)

8 9 10 11 12 16 26 30 37 54 55 57
71 83 84 88 89 90 91 92 93 94 95 96
97 101 103 105 113 134 138 141 171 178 180 189
192 199 202 220 278 296 304 431 612 1579 1609 1632
1637 2460 2461 2463 2464 2482 2486 2487 2492 2493 2495 2496
2500 2501 2502 2503 2505 2506 2507 2508 2509 2510 2511 2512
2568 2569 2570 2571 2572 2573 2574 2579 2583 2598 2636 2670
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2671 2672 2675 2676 2689 2690 2710 2712 2761 2768 2769 2771
2772 2787 2789 2818 2839 2840 2841 2842 2843 2864 2868 2872
2889 2896 2900 2913 2923 2924 2925 2928 2933 3002 3009 3013
3015 3044 3045 3097 3116 3120 3150 3157 3164 3168 3169 3229
3239 3244 3245 3246 3247 3248 3249 3250 3251 3255 3259 3291
3325 3326 3327 3328 3329 3334 3346 3349 3359 3362 3402 3407
3430 3459 3460 3461 3462 3463 3469 3470 3482 3488 3492 3494
3495 3506 3526 3528 3534 3537 3540 3570 3580 3583 3588 3597
3615 3621 3623 3681 3729 3742 3767 3768 3787 3808 3857 3966
3972 3979 4030 4032 4034 4099 4107 4342 4355 4465 4576 4640
4676 4784 5066 5101

E.5.7 Jacobians – 14 Cloudy C; Threshold – 1.3
(RHL-M2-14J-1.3)

1 11 17 38 63 70 71 73 78 88 90 91
92 93 96 101 103 116 117 123 124 125 126 170
180 192 193 205 243 293 381 430 1587 2459 2460 2461
2462 2468 2483 2505 2506 2507 2508 2509 2522 2570 2571 2576
2580 2583 2585 2606 2607 2628 2640 2670 2671 2672 2676 2679
2689 2690 2691 2692 2693 2694 2767 2787 2793 2855 2889 2925
2928 2933 3002 3008 3009 3011 3013 3021 3042 3053 3090 3096
3116 3121 3136 3144 3149 3157 3164 3168 3169 3170 3198 3229
3246 3247 3250 3251 3255 3283 3284 3287 3294 3300 3302 3308
3318 3319 3326 3327 3328 3329 3334 3365 3373 3374 3411 3419
3451 3461 3470 3502 3503 3504 3506 3509 3523 3550 3555 3563
3587 3588 3606 3617 3621 3645 3651 3658 3668 3670 3685 3723
3806 3850 3859 3923 3924 3945 3962 3991 3999 4028 4029 4030
4033 4160 4247 4248 4277 4289 4565 4571 4860 4865 4878 5054
5095

E.5.8 Jacobians – 8 Clear; Threshold – 1.3; Added Water
Vapour Error for 100 channels (RHL-M2-8J-1.3-WVE)

1 2 4 11 16 23 37 41 43 55 60 65
69 71 72 81 82 85 87 88 89 90 91 92
93 94 95 97 98 99 100 101 102 104 105 106
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107 108 112 118 119 121 125 126 128 129 130 131
132 133 137 138 139 141 143 145 157 158 159 161
163 164 166 169 170 171 172 176 177 180 181 182
183 184 186 187 188 189 190 191 192 194 195 196
198 199 200 202 205 216 217 218 219 220 221 228
238 240 241 243 244 245 246 247 248 249 250 251
252 265 266 268 274 276 277 278 280 281 294 295
296 297 298 301 306 309 328 335 336 337 338 339
340 341 342 343 387 388 389 392 401 403 415 440
654 839 1609 1619 2520 2637 2676 2830 2841 2905 2911 2928
2933 2945 2949 2952 2991 3008 3027 3169 3191 3207 3209 3396
3397 3398 3399 3400 3469 3653 3658 3757 4103 4223 4465 4509
4560 4742 4751 5073

E.6 The Method 2 channel selections for Ñ

E.6.1 Jacobians – 8 Clear; Threshold – 1.0 (Ñ-M2-8J-1.0)

93 107 133 159 195 210 215 248 273 282 317 323
370 408 428 479 503 519 543 560 568 638 666 703
715 728 768 770 786 823 858 883 885 921 948 985
1001 1032 1044 1075 1096 1097 1128 1134 1151 1199 1203 1228
1233 1238 1284 1294 1305 1321 1328 1348 1359 1371 1401 1415
1419 1440 1441 1449 1482 1490 1496 1519 1523 1541 1568 1610
1615 1627 1638 1655 1673 1698 1729 1749 1766 1774 1816 1839
1855 1894 1900 1919 1948 1976 1998 2012 2021 2027 2044 2054
2063 2070 2142 2159 2165 2177 2190 2204 2216 2243 2252 2257
2262 2265 2269 2272 2280 2293 2295 2298 2301 2313 2329 2334
2340 2347 2361 2367 2375 2380 2393 2407 2413 2418 2432 2442
2453 2456 2461 2467 2476 2484 2491 2504 2510 2518 2523 2526
2528 2536 2547 2555 2567 2579 2588 2601 2608 2618 2627 2643
2654 2661 2668 2695 2701 2716 2721 2726 2729 2733 2739 2744
2759 2764 2769 2779 2783 2796 2804 2821 2826 2835 2846 2849
2862 2869 2880 2902 2904 2915 2924 2938 2947 2977 2999 3001
3029 3056 3080 3087 3252 3353 3449 3570 3575 3611 3816 4190
4208 4528 4691 4700 4934 5099
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E.6.2 Jacobians – 8 Clear; Threshold – 1.3 (Ñ-M2-8J-1.3)

6 17 46 75 81 89 90 92 93 95 96 99
105 106 107 135 136 142 143 144 163 167 169 175
186 199 201 215 216 234 235 244 263 267 281 298
300 317 339 381 385 408 418 456 488 521 551 555
559 572 597 599 628 654 656 715 739 769 823 870
876 882 925 931 945 953 988 1056 1118 1304 1331 1367
1388 1441 1467 1496 1537 1580 1615 1638 1645 1648 1688 1719
1766 1824 1833 1894 1945 1971 2073 2146 2172 2200 2204 2214
2232 2273 2276 2282 2295 2298 2305 2314 2323 2349 2352 2353
2354 2355 2368 2369 2378 2381 2393 2397 2410 2412 2428 2442
2449 2451 2459 2494 2496 2505 2515 2528 2541 2557 2563 2571
2574 2584 2612 2616 2636 2638 2643 2656 2661 2667 2671 2675
2694 2695 2701 2712 2727 2733 2736 2738 2739 2740 2755 2760
2768 2771 2775 2806 2827 2830 2835 2856 2865 2872 2875 2881
2885 2896 2912 2935 2959 2979 2980 2982 2983 2994 3015 3017
3061 3064 3078 3094 3125 3126 3152 3201 3203 3257 3300 3309
3311 3335 3338 3350 3426 3445 3460 3504 3611 3634 3662 3673
3794 3943 3958 4005 4140 4699

E.7 The PC-RTTOV 500 predictor channels
8 69 98 114 118 124 135 138 142 152 161 162

165 174 176 179 181 182 184 186 187 188 197 200
206 209 214 220 225 226 237 240 241 246 251 252
254 263 265 270 272 274 277 281 289 301 302 303
307 309 311 323 324 325 339 340 345 346 365 369
392 394 398 405 415 416 440 441 442 480 496 497
505 561 578 587 600 616 617 654 721 732 1393 1416
1420 1453 1465 1474 1493 1503 1536 1566 1613 1646 1661 1719
2216 2220 2239 2258 2265 2266 2273 2283 2296 2309 2317 2319
2320 2322 2324 2342 2343 2391 2398 2399 2400 2401 2405 2409
2426 2427 2432 2440 2467 2479 2482 2483 2485 2493 2494 2497
2499 2503 2510 2511 2514 2516 2518 2520 2530 2533 2535 2544
2550 2554 2555 2557 2560 2563 2564 2565 2573 2579 2593 2595
2597 2608 2610 2613 2633 2636 2637 2642 2645 2649 2651 2653
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2661 2668 2673 2676 2677 2684 2686 2693 2694 2695 2697 2698
2699 2701 2702 2707 2710 2715 2720 2723 2726 2732 2746 2750
2751 2755 2760 2767 2781 2783 2786 2794 2801 2808 2811 2815
2820 2821 2822 2835 2836 2842 2865 2875 2886 2888 2890 2913
2914 2915 2919 2920 2923 2924 2926 2932 2955 2984 2998 2999
3000 3002 3017 3021 3025 3030 3052 3068 3078 3080 3097 3098
3101 3102 3105 3107 3110 3142 3149 3167 3169 3171 3245 3246
3247 3248 3249 3252 3253 3254 3256 3279 3284 3320 3325 3370
3371 3406 3416 3444 3445 3446 3448 3451 3452 3453 3459 3460
3487 3488 3502 3510 3542 3554 3566 3571 3576 3577 3579 3581
3621 3647 3648 3651 3661 3664 3679 3700 3740 3744 3767 3787
3795 3848 3861 3949 3972 3982 4020 4106 4123 4131 4140 4190
4204 4239 4340 4440 4478 4495 4606 4631 4641 4663 4677 4778
4797 4838 5035 5036 5102 5169 5370 5375 5382 5384 5386 5388
5389 5391 5393 5394 5402 5415 5416 5417 5418 5419 5420 5421
5422 5423 5435 5440 5485 5489 5491 5497 5528 5529 5530 5536
5547 5571 5574 5580 5581 5594 5620 5645 5648 5657 5664 5665
5666 5672 5681 5682 5683 5689 5696 5710 5711 5714 5716 5720
5722 5726 5732 5737 5738 5774 5782 5794 5810 5823 5824 5826
5829 5835 5845 5849 5882 5886 5887 5893 5899 5910 5932 5938
5955 5974 6030 6031 6056 6069 6106 6124 6179 6197 6222 6230
6238 6243 6257 6276 6338 6348 6369 6371 6378 6387 6396 6412
6420 6428 6446 6455 6461 6464 6472 6474 6476 6477 6488 6496
6500 6509 6512 6523 6531 6542 6551 6554 6564 6578 6581 6593
6596 6598 6602 6603 6604 6606 6624 6632 6655 6666 6667 6669
6674 6686 6687 6696 6710 6714 6717 6719 6723 6736 6745 6762
6765 6775 6804 6874 6875 6890 6913 6929 6972 7036 7102 7247
7416 7795 7808 7851 7909 8019 8301 8302
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