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Abstract

The aim of the thesis is to work towards a many-valued logic over a com-
mutative unital quantale and, at the same time, towards a generalisation of
coalgebraic logic enriched over a commutative unital quantale Ω. This is done
by noticing that the contravariant powerset adjunction can be generalised to
categories enriched over a commutative unital quantale. From here we define
categorical algebras for the monad generated by this adjunction. We finish by
showing that these categorical algebras are algebras over Set with operations
and equations, and show that in some cases we can restrict the arity of those
operations to be finite.
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Chapter 1

Introduction

1.1 Motivation

One can answer in a multitude of ways to the question “what is logic?”.
Logic was for a long time a philosophical subject. It only became a branch
of mathematics in 1847, when George Boole defined Boolean algebras in his
book “The Mathematical Analysis of Logic”. The idea that one can treat a
logic as just a set with some operations and equations had a huge impact, as
one could create new logical systems by just adding/deleting operations or
equations.

This type of logical system, including propositional, intuitionistic, modal logic
etc., has been studied ever since. Changing the signature is not the only way
one can define new logical systems; another way is to change the set of truth
values. This is motivated by the fact that there are statements which are
neither true nor false or do not have a clear truth value. A good example of
a statement which is neither true nor false is the liar paradox:“this sentence
is a lie”. On the other hand the statement “this person is tall” has no clear
truth value, as we do not have clear boundary for tall persons. Thus a new
branch of mathematical logic was needed to formalise statements which had
no clear true or false value. This new branch, now called many valued logic,
was pioneered at the beginning of the nineteenth century by  Lukasiewicz and
Post. For a more detailed history on many valued logics see [25].

In all the above logics the number of truth values varies, from two to infinity,
but there is always an order relation given by implication. Thus a natural
question appears: what would happen if we added more structure on the
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set of truth values? For example what would happen if we added a metric
structure. The first paper in this direction is written by Lawvere [18]. Also
we would like to keep the extra structure on algebras.

This relates with the growing interest in coalgebras enriched over posets or,
more generally, enriched over a commutative quantale, see Rutten [28] and
Worrell [38]. In particular, the question of the existence of a coalgebraic logic
in this setting has been asked in [2].

1.2 Coalgebraic logic

In the non-enriched situation we start with a functor T ∶ Set //Set and ask for
a logic that allows us to completely describe T -coalgebras up to bisimilarity.

More specifically, we would like to ensure strong expressivity in the sense that
for any property p ⊆ X of any T -coalgebra (X,ξ) there is a formula φ such
that p coincides up to bisimilarity with the semantics [[φ]](X,ξ) of φ on (X,ξ).
Moreover, we would like to have completeness in the sense that if [[φ]](X,ξ) ⊆
[[φ]](X,ξ) then φ ≤ ψ in the initial algebra of formulas.

To achieve the above (ignoring size problems for the moment), the first step
is to let LA = [T ([A,2]),2] in

Setop

Lop

YY gg

[−,2]
⊺

Set
''

[−,2]

T

EE (1.1)

and to treat the initial L-algebra, if it exists, as the “Lindenbaum-algebra” of
T . This terminology is justified insofar as the adjoint transpose

δ ∶ L([−,2]) // [T−,2]

of the isomorphism LA // [T ([A,2]),2] allows us to define the semantics
[[]](X,ξ) with regard to a coalgebra (X,ξ) as the unique arrow from the initial
L-algebra ι ∶ LI // I as in

LI

L[[]]
(X,ξ)

��

ι // I

[[]]
(X,ξ)

��

L([X,2])
δX
// [TX,2]

[ξ,2]
// [X,2]

(1.2)
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But the reason why, at this stage, we cannot truly speak of ι ∶ LI // I as a
Lindenbaum algebra is that it lives in Setop and is not (yet) an algebra over
Set with elements and operations in the usual sense.

The second step, then, consists in using the well-known fact that [−,2] ∶
Setop // Set is monadic and, therefore, Setop is equivalent to a category of
algebras defined by operations and equations. In particular, we know that
Setop is equivalent to the category of complete atomic Boolean algebras,
which now allows us to consider (L, ι) as the Lindenbaum algebra of infinitary
T -logic.

In a third step, based on the adjunction

Setop ((

⊺ BAhh .

one investigates finitary logics for coalgebras, as in [16].

The aim of this thesis is to replace Set by the category Ω-Cat of cate-
gories enriched over Ω for a commutative quantale Ω. It is based on the
Ω-generalisations of the downset monad D and the upset monad U . We will
define algebras for operations ΣDU and equations EDU and will argue via (1.5),
Theorem 4.4.1, Theorem 4.3.6, and Theorem 5.2.5 that ⟨ΣDU ,EDU⟩-algebras
complete the table

Setop complete atomic Boolean algebras

Ω-Catop ⟨ΣDU ,EDU⟩-algebras

1.3 Basic examples of Ω-categories

Before we talk about methodology let us look at some interesting examples
categories enriched over a quantale.

1. 2 = ((2,≤),1,∧). Categories enriched over this are preorders, and 2-
functors are monotone maps.

2. [0,∞] = (([0,∞],≥R), 0,+) is a symmetric monoidal closed category. If
one denotes by −. the truncated minus then

[0,∞][r, s] = s−. r
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which is due to t+ r ≥R s ⇔ t ≥R s−. r, showing that ⋅ + r is left adjoint
to [r, ⋅]. For more details see [18]. Some examples of generalised metric
spaces are:

(a) [0,∞] itself.

(b) Consider the real numbers R with the metric given by R(a, b) =
if a ≤ b then 0 else a − b

(c) Any metric space.

3. Consider (([0,1],≥R),0,max). Then

[0,1](x, y) = if x ≥ y then 0 else y

We call a category enriched over [0,1] an ultra metric space, see [3].
Some examples are:

(a) [0,1] itself

(b) [0,1]op

(c) Let A∞ be the finite and infinite words over A. Define A∞(v,w) = 0
if v is a prefix of w and A∞(v,w) = 2−n otherwise where n ∈N is
the largest number such that vn = wn (where vn is the prefix of v
consisting of n letters from A).

1.4 Methodology and Thesis Outline

As we said above we take our inspiration from the fact that the complete
atomic Boolean algebras are the algebras for the monad given by the following
adjunction.

Setop

[−,2]⊣

��

[−,2]
≃ ,,

caBA
AT

ll

Set

[−,2]

JJ (1.3)
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where the functor [−, 2] is the inverse image powerset functor and the functor
AT is the functor that for any complete and atomic Boolean algebra A takes
its set of atoms, also known as join prime elements.
Using the enriched version of diagram (1.3),

Preop

[−,2]⊣

��

[−,2]
≃ ,,

caDL
AT

ll

Pre

[−,2]

JJ

one has a clear way to modify the set of truth values: replace 2 with a new set
Ω. Furthermore, using enriched category theory, one keeps the same structure
on models as the one on the set of truth values, for example if one chooses as
Ω = [0,∞] then one has a metric structure on the algebra.

According to [14], if Ω is small and has a symmetric monoidal closed structure,
and is complete and cocomplete then one has a dual adjunction:

D = [−,Ω] ⊣ U = [−,Ω] ∶ Ω-Cat //Ω-Catop, (1.4)

Observation 1.4.1. If a small category is complete and cocomplete then it
is a preorder. Thus one has the above adjunction if only if Ω is a quantale.
So from the start one needs to be in the context of categories enriched over
quantales.

We want to consider Ω-Catop as the category of algebras of a ‘Ω-Cat-logic’.

Since [−,Ω] ∶ Ω-Catop // Ω-Cat need not be monadic itself, we are going
to study instead its monadic closure. That is, we work with the category
Ω-CatDU of algebras for the monad DU . And as Ω-Catop is complete and
cocomplete then the comparison functor K ∶ Ω-Catop //Ω-CatDU has a left
adjoint, call it AT.

Ω-Catop
K

--

[−,Ω]
		

Ω-CatDU

AT

⊺mm

Ω-Cat

[−,Ω]

HH

⊣ (1.5)
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The whole process is described in the following diagram.

c-Ω-Cat

AT

{{

Ω-Catop

D=[−,Ω]
		

K

**

[−,Ω]
⊢

66

⊺ Ω-CatDU

≅
��

O/

__

AT

hh ⟨ΣDU ,EDU⟩-alg

		

Ω-Cat

U=[−,Ω] ⊣

II

D,U

EE Ω-CatDU

II

≅ ,,
CCD

≅
JJ

mm

(1.6)

where:

• c-Ω-Cat is the category with objects complete and cocomplete Ω-
categories and arrows limits and colimits preserving Ω-functors.

• D and U are the generalization of the upset and downset monads. On
objects DX = [Xop,Ω] and, UX = [X,Ω]op respectively. On an arrow
f ∶ X // Y ∈ Ω-Cat the monads D and U are given by the left Kan
extension LandX(dY ○ f) and the right Kan extension RanuX(uY ○ f),
respectively.

• Both Ω-CatDU and Ω-CatDU are the Eilenberg-Moore category of alge-
bras for the monad DU and the monad DU , respectively.

• CCD is the category whose objects are ccd algebras and arrows are
Ω-functors preserving all limits and colimits. An algebra (A,α) is ccd
if it is a D-algebra and if the structure map α has a left adjoint.

• ⟨ΣDU ,EDU⟩-alg is the category whose objects are set algebras with
operations ΣDU and equations EDU .

• AT ∶ c-Ω-Cat //Ω-Catop is defined on objects as AT(A) = At(A)op, where
At(A) is the full subcategory of A whose objects are atoms, where an
object a ∈ A is an atom if and only if the functor A(a,−) preserves all
colimits. On arrows see Section 3.2.2.
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• AT ∶ Ω-CatDU //Ω-Catop is defined on an algebra (A,α) as AT(A,α) =
At(A)op

Let us give a brief descrpition of this thesis. First we show that if Ω is a commu-
tative quantale, then one has the adjunction AT ⊣ [−,Ω] ∶ Ω-Catop //c-Ω-Cat.,
and then give sufficient and necessary conditions to restrict this adjunction
to an equivalence: ĀT ≃ ¯[−,Ω] ∶ ac-Ω-Cat // Ω-Catcc

op, where ac-Ω-Cat is
the full subcategory of atomic complete and cocomplete Ω-categories, and
Ω-Catcc is the subcategory of Cauchy complete Ω-categories. Furthermore we
show that the image of U = [−,Ω] ∶ Ω-Cat //Ω-Catop is in Ω-Catcc. Think-
ing of ac-Ω-Cat as a category of algebras we observe, that for an algebra
A ∈ c-Ω-Cat, one has two kinds of operations: weighted limits and weighted
colimits, which is analogous to what happens in the case of lattices, where

⋁ is a colimit and ⋀ is a limit. Obtaining the distributive law between
these two kinds of operations directly from this monad proved to be too
difficult, so for that we split the problem in two and we defined two monads,
(D, d, µ), (U , u, ν) ∶ Ω-Cat //Ω-Cat and a distributive law between them, and
shown that the composite monad DU is equal to the monad DU = [[−,Ω],Ω].
Furthermore, we give necessary and sufficient conditions in order for the com-
parison functor to be full and faithful and calculate its image. This approach,
to break the monad DU into two separate monads with a distributive law
and show that their composite is isomorphic to it, was used in the case Ω = 2
in [23] and it was also extended for quantaloid enriched categories in [32],
and also used to show some topological results in [12] and [36].

After this, we define algebras in the usual sense as a set with operations
and equations and show that these algebras are in fact the algebras for the
adjunction U ⊣D. We end by showing that one can define finitary versions
of the monads D and U , and show that for some classes of quantales there
exists a distributive law between them. We conclude by defining finitary set
algebras for these monads but not for their composite.

In the next paragraph we shall give the outline of the thesis.

In Chapter 2 we introduce the context and foundations of our work and
discuss related literature.

In Chapter 3 we want to generalise the equivalence between Setop and caBA
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Setop

[−,2]⊣

��

[−,2]
≃ ,,

caBA
AT

ll

Set

[−,2]

JJ

Thus we replace the adjunction [−, 2] ⊣ [−, 2] ∶ Set //Setop by [−,Ω] ⊣ [−,Ω] ∶
Ω-Cat //Ω-Catop and obtain the adjunction

Ω-Catop
[−,Ω]
⊺

--
c-Ω-Cat,

AT

mm

where c-Ω-Cat is the subcategory of Ω-Cat whose objects are complete and co-
complete Ω-categories and arrows are continuous and cocontinuous Ω-functors.
We then characterise the subcategories on which this adjunction restricts to
an equivalence

Ω-Catop
cc

[−,Ω]⊣

��

[−,Ω]
≃ --

ca-Ω-Cat
AT

mm

Ω-Cat

[−,Ω]

KK

where Ω-Catcc is the full subcategory of Cauchy complete Ω-categories, see
[18], and ca-Ω-Cat is the full subcategory of atomic complete and cocomplete
Ω-categories. Thus we obtain a generalised version of Setop ≃ caBA. We end
the chapter with an instantiation of these results to different Ω’s, and show
that in the case of Ω = 2 we obtain the same results as in the literature.

In Chapter 4, we start from the same diagram

Setop

[−,2]⊣

��

[−,2]
≃ ,,

caBA
AT

ll

Set

[−,2]

JJ
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but start from the fact that caBa is the category of algebras for the monad
[[−, 2], 2]. Note that presenting caBA with operations and equations gives us
(infinitary) propositional logic.

We want to obtain a presentation by, operations and equations of, [[−,Ω],Ω]-
algebras. For that, following [23], we introduce two monads

(D, d, µ), (U , u.ν) ∶ Ω-Cat //Ω-Cat,

where the functor D and U on objects is given by DX = [Xop,Ω] and
UX = [X,Ω]op, and on arrows is given by a left Kan and a right Kan
extension, respectively. The units d, u are the two Yoneda embeddings, and
multiplications are adjoints to units: µ ⊣ dD and uU ⊣ ν.
We then show that DU = [[−,Ω],Ω], not only as functors but also as monads.
This relies again on the fact that we are in the context of enriched categories
of quantales, and the fact that on arrows D and U are given by Kan extensions
thus they adjoints to D and U on arrows, see Proposition 2.4.2. The advantage
of spiting DU is that the algebras for D and U have a canonical form: their
structure map is an adjoints to their monad’s unit, and calculate a weighted
colimits and a weighted limits, respectively. We then show that the category of
Ω-CatDU is isomorphic to the category of completely distributive Ω-categories,
CCD, a generalization of constructive completely distributive lattices of [8].

Ω-Catop

[−,Ω]⊣

��

K
,,
CCD

AT

⊺mm

Ω-Cat

[−,Ω]

JJ

D,U

YY

We also connect the image of the comparison functor K = [−,Ω] with the
duality from the previous chapter. As in the previous chapter we will instanti-
ate these results to different Ω’s and show that in the case of Ω = 2 we obtain
same results as in the literature.

As the result of this section we know that ccds are algebras which have
weighted colimits and limits as operations and a distributive law connecting
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them. This still does not give us a logic for Ω-categories given by operations
and equations, a question we address in the next chapters.

In Chapter 5 In this chapter we have the main result of this thesis: a
description, of DU -algebras, by operations ΣDU and equations EDU . We start
by defining two type of algebras ⟨ΣD,ED⟩ and ⟨ΣU ,EU⟩ corresponding to D
and U , respectively.

The innovative aspect of this chapter is that a ⟨ΣD,ED⟩-algebra

(A, (v ⋆ −)(v∈Ω), (⊔
J

)(J cardinal))

is defined as Set-algebra, and from the equations we obtain an order relation
≤D, given by a ≤A b iff a ⊔ a′ = a′ and a Ω-category structure, given by

A(a, a′) =⋁{v ∈ Ω ∣ v ⋆ a ≤ a′}.

Similarly a ⟨ΣU ,EU⟩-algebra

(B, (v ⊳ −)(v∈Ω), (
l

J

)(J cardinal))

has an order structure ≤B given by b ≤U b′ iff b ⊓ b′ = b and a Ω-category
structure, given by

B(b, b′) =⋁{v ∈ Ω ∣ b ≤B v ⊳ b′}.

Now to have simultaneously a ⟨ΣD,ED⟩ and a ⟨ΣU ,EU⟩ algebra all we need
to do is to ensure that:

• the two structures are compatible, that is that the order relation and
the Ω-category structure generated by ED and EU are the equivalent.

• there exists a normal form, that is that there exists a way to ”distribute”
operations from ΣU over operations from ΣD. The desired distributivity
equation is deduced from the fact that DU -algebras are ccd

13



for any set J and any functions ϕ ∶ J //Ω and G ∶ J ×A //Ω

l

J

ϕ(j) ⊳ (⊔
A

G(j)(a) ⋆ a) =⊔
A

{ϕ, ↓G(−, a)} ⋆ a, (1.7)

where {ϕ, ↓G(−, a)} is a limit computed in Ω with ↓G(j) ∶ Aop //Ω

given by ↓G(j) = LaniG = ∫
b∈A

A(−, i(b))⊗G(j)(b) for i ∶ ∣A∣ //Aop

the object inclusion functor.

In Chapter 6, we introduce a finitary version of the monads D and U , and
show that for some cases of quantales there exist a distributive law between
them, thus allowing us to pursue the quest of a finitary logic.

In Chapter 7, we discuss future work, such as adding contravariant opera-
tions, like implication, and finishing the work on finitary monads. We would
also like to connect this framework with MV-algebras. Finally, we want to
apply the results of the thesis to coalgebraic logic over Ω-Cat.

1.5 Related work

In the following we will outline related work and how it interacts with the
present thesis. Before we continue we should say that all the results in this
thesis are a generalization of results known for preorders.

The results of Chapter 3 generalize the next two equivalences:

Setop ≃ ,,
caBAll

Preop ≃ ,,
CDLll

The results in Chapter 4 about the composite power monads are a generaliza-
tion of the work in Marmolejo et. al. [23]. The closest generalization of this
to ours is the work of Stubbe [32], where he proves that the double composite
monad is equal to the double power monad for quantaloid enriched categories.
In some aspects this result is slightly more general than the first result in
Chapter 4.

Another closely related work, but towards topology is the work of Hofmann
[12]. He is interested in generalising the know duality between topologic
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spaces and CCD, and generalise to approach spaces. He defines the category
of approach spaces, see [19] for more on approach spaces, and the categories
of cocomplete topological/approach spaces as those spaces X for which the
Yoneda embedding dx ∶X // [Xop,Ω] has a left adjoint, and the categories
of CDTop,CDApp as those spaces for which the left adjoint of the Yoneda
embedding has a further left adjoint as well. With those he proves the
following two adjunctions.

Topop --
CDTopll Appop --

CDAppll (1.8)

This adjunction is interesting, and is closely related to our work, via Cauchy
completeness, but it is in a direction orthogonal to ours.

The notion of a ccd category has been defined, as a category who’s Yoneda
embedding has a left adjoint and this left adjoint has a left adjoint as well, in
[8]. As this definition encapsulates the distributivity of colimits over limits,
the left adjoint preserves both limits and colimits, it makes sense to be used
in many interesting works, such as [23], [32], and [17].

The category of distributive complete Ω-lattices of Lai and Zhang [17] coincides
with what we denote CCD in Definition 4.3.2. Compared to their work, we
add the argument of how to obtain CCD from the monad [[−,Ω],Ω] and we
show that the CCD is isomorphic to the category of (ordinary, set-based)
⟨ΣDU ,EDU⟩-algebras.

In Pu and Zhang [24] it is shown, amongst other things, that the category of
anti-symmetric CCD’s is monadic over Set, but the proof proceeds by Beck’s
monadicity theorem whereas we give the operations and equations ⟨ΣDU ,EDU⟩
explicitly.

The double powerset monad DU is investigated in detail, in the case Ω = 2,
by Vickers in [36, 33, 34, 35].

1.6 Publications

From the present work, the content, of chapters 4 and 5, is in the course of
being published, and has been presented at CMCS 2016 under the title ”On
the logic of generalised metric spaces” authors Octavian Babus and Alexander
Kurz.
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Chapter 2

Background

In this chapter we shall discuss the context in which we work and related
work.

2.1 Quantales and monoidal categories

We use commutative quantales because they are both examples of monoidal
categories and complete lattices, and as one would like an order relation on
the set of truth values, commutative unital quantales are the best candidates.

Definition 2.1.1. By a commutative unital quantale we understand a tuple
Ω = (Ω0, 1,⊗), where Ω0 is a complete lattice, ⊗ ∶ Ω×Ω //Ω is an associative
and commutative binary operation , which preserves all colimits in both
arguments, and and element 1 ∈ Ω0 such that 1⊗ x = x for all x ∈ Ω.

Definition 2.1.2. By a monoidal category we understand a tuple Ω =
(Ω0, I,⊗, (lx)x∈obΩ0 , (rx)x∈obΩ0 , (axyz)x,y,z∈obΩ0) where Ω0 is a category, I is
an object of Ω0, ⊗ ∶ Ω0 ×Ω0

//Ω0 is a bifunctor, and

• lx ∶ x // I ⊗ x and rx ∶ x // x⊗ I

• axyz ∶ (x⊗ y)⊗ z // x⊗ (y ⊗ z)
are natural isomorphisms such that the following diagrams commute

(x⊗ I)⊗ y a //

r⊗id
&&

x⊗ (I ⊗ y)

id⊗l
xx

x⊗ y

(2.1)
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((w ⊗ x)⊗ y)⊗ z a //

a⊗id
��

(w ⊗ x)⊗ (y ⊗ z) a // w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z a
// w ⊗ ((x⊗ y)⊗ z)

id⊗a
OO

(2.2)

Definition 2.1.3. A monoidal category is called symmetric if there exits a
natural transformation sxy ∶ x⊗ y // y ⊗ x such that the following diagrams
commute

x⊗ y sxy
//

idx⊗y
$$

y ⊗ x
syx

��

x⊗ y

(2.3)

I ⊗ x sIx //

lx ""

x⊗ I

rx
||

X

(2.4)

(x⊗ y)⊗ z axyz
//

sxy⊗idz
��

x⊗ (y ⊗ z)
sx(y⊗z)

// (y ⊗ z)⊗ x
ayzx

��

(y ⊗ x)⊗ z ayxz
// y ⊗ (x⊗ z)

idy⊗sxz
// y ⊗ (z ⊗ x)

(2.5)

Definition 2.1.4. A monoidal category Ω is called closed if the functor −⊗v
has a right adjoint for any v ∈ Ω.

Proposition 2.1.5. Any quantale is a symmetric monoidal closed category.

Proof. Let Q be a quantale. We have to show is that ⊗ ∶ Q ×Q //Q is a
functor, that is a monotone map.

So let p, q, r ∈ Q such that p ≤ q we have to show that r ⊗ p ≤ r ⊗ q and that
p⊗ r ≤ q ⊗ r, and as we are in a lattice this is equivalent to

(r ⊗ p) ∨ (r ⊗ q) = r ⊗ q
and

(p⊗ r) ∨ (q ⊗ r) = q ⊗ r,
but as we know that ⊗ preserves all colimits in both arguments and that
p ∨ q = q, both are true.

As ⊗ has a right adjoint Q is closed. Indeed, this is true since ⊗ preserves
colimits in both arguments and Q is cocomplete.
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Some example of commutative unital quantales and monoidal categories are:

Example 2.1.6. 1. 2 = ({0 ≤ 1},∧,1) is a unital commutative quantale.

2. [0,∞] = (([0,∞],≥R),+,0) is a unital commutative quantale.

3. Set = (Set,×,{∗}) is a monoidal category. But is not a quantale.

4. Consider (([0,1],≤),1, λx, y . max(0, x + y − 1)). Then

[0,1](x, y) = if x ≤ y then 1 else 1 − x + y

5. Consider (([0,1],≤),1,min). Then

[0,1](x, y) = if x ≤ y then 1 else y

6. Consider (([0,1],≤),1, ⋅) where x ⋅ y is the usual multiplication. Then

[0,1](x, y) = if x ≤ y then 1 else
y

x

For the rest of the thesis, whenever is appropriate, by a quantale we understand
a commutative unital quantale.

2.2 Enriched category theory

One could say that enriched category theory is a natural generalization of
category theory, in the sense that instead of having Hom-sets one has Hom-
objects. In the following Ω = (Ω0, I,⊗) is a monoidal category, with I the
unit of ⊗.

Definition 2.2.1. A Ω-category A consists of a set obA, a hom-object
A(a, b) ∈ Ω0, a composition law M = Ma,b,c ∶ A(b, c) ⊗ A(a, b) // A(a, c),
for each triple of objects, and an identity element ja ∶ I // A(a, a) for
each objects; subject to the associativity and unit axioms expressed by the
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commutativity of

(A(c, d)⊗A(b, c))⊗A(a, b) a //

M⊗1

��

A(c, d)⊗ (A(b, c)⊗A(a, b))

1⊗M

��

A(b, d)⊗A(a, b)

M

&&

A(c, d)⊗A(a, c)

M

xx

A(a, d)

A(b, b)⊗A(a, b) M // A(a, b) A(a, b)⊗A(a, a)Moo

I ⊗A(a, b)

jb⊗1

OO

l

88

A(a, b)⊗ I

1⊗ja

OO

r

ff

(2.6)

If there is no source of confusion for any Ω-category A we will write the set
of objects with just A.

Let us give some examples of enriched categories. All of these example,
but the first one, are quantale enriched categories. We put the
Set example in here to show that enriched categories theory is a
generalisation of ”normal” category theory. Most of these were also
stated in the introduction, also let us mention that if Ω is monoidal closed
then Ω is a self enriched category. Indeed, for any two objects v1, v2 of Ω we
have an object Ω(v1, v2) given by the right adjoint of − ⊗ v1.

Example 2.2.2. 1. Set = (Set,×, I) where I is the one element set. A
Set-category C is then formed by:

• a set called obC
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• for any two elements a, b ∈ obC, a set of arrows C(a, b) ∈ Set,

such that for all a, b, c, d ∈ obC we have

• an identity arrow ida ∶ I //A(a, a) ∀a ∈ obC
• composition of arrows ○ ∶ C(b, c) × C(a.b) // C(a, c)

such that for any f ∈ C(a, b), g ∈ C(b, c) and h ∈ C(c, d) we have

f ○ ida = f = idb ○ f

and
(h ○ g) ○ f = h ○ (g ○ f).

Thus a Set-enriched category is an ordinary (small) category in the
sense of [20].

2. 2 = (2 = {0 ≤ 1},1,∧). A 2-enriched category P is then formed by

• a set called P, and

• for any two elements a, b ∈ P an element P (a, b) of {0,1}.

If we write a ≤ b if P (a, b) = 1, then for all a, b, c, d ∈ P we have

• a ≤ a, and

• if a ≤ b and b ≤ c then a ≤ c.

As the two diagrams in Definition 2.2.1 do not introduce any more
equations, a 2-enriched category is a peorder.

3. [0,∞] = (([0,∞],≥R), 0,+) is a symmetric monoidal closed category. A
[0,∞]-category G is a

• set G, where

• for any two elements a, b of G we have a number G(a, b) ∈ [0,∞].

Furthermore, for all a, b, c ∈ G we have

• 0 ≥ G(a, a), thus G(a, a) = 0, and

• G(b, c) +G(a, b) ≥ G(a, c)
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As the two diagrams in Definition 2.2.1 do not introduce any more
equations a [0,∞]-enriched category is a generalized metric space. For
more details see [18].

4. Let Ω = (Ω0,1,⊗) be a unital commutative quantale, then a category
A enriched over Ω consists of a set A and together with a a function
A(−,−) ∶ A ×A //A such that for any a, b, c ∈ A we have 1 ≤ A(a, a)
and A(a, b)⊗A(b, c) ≤ A(a, c).

5. For any monoidal category Ω = (Ω0, I,⊗) if Ω0 has an initial object
⊥∈ Ω0 then any set A becomes an enriched category over Ω if we take
A(a, b) =⊥ for all ac-Ω-Cat, b ∈ obA. We call such enriched categories
discrete.

Definition 2.2.3. For any two Ω-categories A and B a Ω-functor is any map
F ∶ A //B such that for any two objects a, b of A there exists an arrow in Ω
Fa,b ∶ A(a, b) //B(Fa,Fb), such that the following diagrams commute

A(b, c)⊗A(a, b)

F⊗F

��

M // A(a, c)

F

��

B(Fb,Fc)⊗B(Fa,Fb)
M

// B(Fa,Fc)

(2.7)

A(a, a)

F

��

I

J
::

J $$

B(Fa,Fa)

(2.8)

Before we calculate what this means in the examples we gave above, let us
also define what a natural transformation is.

Definition 2.2.4. Let F,G ∶ A //B be two Ω-functors, then a Ω-natural
transformation η ∶ F // G is an A-indexed family of arrows in Ω I ↦
B(F (A),G(a)) satisfying the following diagram:
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I ⊗A(a, b) // B(Fa,Ga)⊗B(Fa,Fb)

))

A(a, b)

88

&&

B(Fa,Fb)

A(a, b)⊗ I // B(Ga,Gb)⊗B(Ta,Sa)

55

(2.9)

In general Ω-naturality is not equivalent to “normal” naturality, but if the
functor V = Ω0(I,−) ∶ Ω0

//Set is faithful then the two notions are equivalent.
For more details see [14, Chapter 1.3].

Now let us go with these definitions through our examples. We shall also
compare the notion of Ω-natural transformation with the usual one.

Example 2.2.5. 1. Let C,D be two (small) categories. Then a Set-functor
F ∶ A // B is a map F ∶ obC // obD such that for any two objects
a, b ∈ obC we have a function F ∶ C(a, b) //D(Fa,Fb) such that for any
f ∈ A(a, b) and g ∈ A(b, c) we have

F (g ○ f) = F (g) ○ F (f)

and
F (ida) = idFa.

Thus a Set-functor is functor in the usual sense.

Let F,G ∶ C // D be two functors. Then a Set-enriched natural
transformation, η ∶ F //G is a obC-indexed family of arrows in Set,
ηa ∶ I //D(F (a),G(a)) for all a ∈ obC. As for Set, I = {∗}, we have
that ηa is equivalent to an arrow ηa ∶ F (a) //G(a). The diagram 2.9
tells us that for every two objects a, b of C and any h ∶ a // b one has

ηb ○ F (h) = G(h) ○ ηa.

Thus, η is a natural transformation in the usual sense.

2. Let P,Q be two preorders. Then a 2-functor is a map F ∶ P //Q such
that for any p, q ∈ P such that p ≤P q we have that F (p) ≤Q F (q). Thus
a 2-functor is a monotone map.

22



Let F,G ∶ P //Q be two monotone maps then a 2-enriched natural
transformation η ∶ F //G is an obP -indexed family of arrows in {0 ≤ 1},
ηa ∶ 1 //Q(F (p),G(p)). That means that there is a 2-enriched natural
transformation between F and G if and only if for all p ∈ P we have

F (p) ≤ G(p).

Thus a natural transformation between two monotone maps, is a point-
wise order between the two maps.

3. Let A,B be two generalized metric spaces then a [0,∞]-functor is a
map F ∶ A //B such that A(a, b) ≥R B(F (a), F (b)) for all a, b ∈ A. For
the rest of this thesis these kind of maps will be called non-expanding.

Let F,G ∶ A //B be two non-expanding maps, then there is a [0,∞]-
enriched natural transformation between them if and only for all a ∈ A
we have B(F (a),G(a)) = 0.

4. Let Ω = (Q,1,⊗) be a unital commutative quantale, and let A,B be
two Ω-categories then a Ω-functor F ∶ A // B is a map such that
A(a, b) ≤ B(F (a), F (b)) for all objects a, b of A.

Let F,G ∶ A // B be two Ω-functors then η ∶ F // G is a natural
transformation if for any a ∈ A there exits ηa ∶ I // B(F (a),G(a)),
that is I ≤ B(F (a),G(a)).

Remark 2.2.6. Every quantale-enriched category A has also a preorder
structure given by

a ≤ b⇔ I ≤ A(a, b).
Indeed, this relation is reflexive as we have

I ≤ A(a, a),

and it is transitive as we have

I = I ⊗ I ≤ A(b, c)⊗A(a, b) ≤ A(a, c).

Thus, a natural transformation between two quantale-enriched functors exists
if an only if one of the two functors is pointwise bigger than the other one in
the order given above.
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2.3 Constructions on enriched categories

For the rest of this thesis we will suppose that Ω is a commutative unital
quantale, and all enriched categories are small.

2.3.1 Functor categories

Let A,B be two Ω-categories. We denote with [A,B] the category of functors
from A to B. Then, following [14, Chapter 2], [A,B] is a Ω-category with

[A,B](F,G) = ∫
a∈A

B(F (a),G(a)),

where ∫a∈A is the end of B(F−,G−) ∶ Aop ×A //Ω. As Ω is a quantale then
this end is simply a meet in Ω. Thus

[A,B](F,G) = ⋀
a∈A

B(F (a),G(a)).

For any Ω-category C we can define the contravariant functor [−,C] ∶
Ω-Cat //Ω-Catop given on objects by

A↦ [A,C],

and on an arrows F ∶ A //B by

[F,C](G) = G ○ F

for any G ∶ B //C.

2.3.2 Limits and Colimits

In this section we will discuss everything we need about weighted limits and
colimits, including formulas for them in Ω and how they look in categories
enriched over quantales. For the remainder of the thesis, by a limit or a
colimit, we understand a weighted one. Most of these notions are in [14,
Chapter 3]. Also note that because Ω is a quantale all isomorphisms are
equalities, thus instead of ≅ we will write = in all of the following equations.
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Definition 2.3.1. Let K,A be two Ω-categories, and let ψ ∶ K // Ω and
F ∶K //A be two Ω-functors, then we call the limit of F weighted by ψ the
representing object {ψ,F} of

A(a,{ψ,F}) = [K,Ω](ψ,A(a,F−)) (2.10)

with counit µ ∶ ψ //A({ψ,F}, F−). Dually, a colimit for ϕ ∶Kop //Ω and
F ∶K // V is the representing object ϕ ⋆ F of

A(ϕ ⋆ F,a) = [Kop,Ω](ϕ,A(F−, a)) (2.11)

with counit µ ∶ ϕ //A(F−, ϕ ⋆ F ).

Let us give some examples of limits and colimits.

Example 2.3.2. 1. Let Ω = 2, and let K = {∗} be a category with one
object, and as K =Kop we can do both limits and colimits for all the
examples below. ψ ∶K // 2 and F ∶K // 2 given by

• ψ(∗) = 0 and F (∗) = 1. Then we have that {ψ,F} is the object of
2 such that

2(a,{ψ,F}) = 2(0,2(a,1)) = 1, ∀a ∈ 2

thus {ψ,F} = 1.

On the other hand the colimit is given by

2(ψ ⋆ F,a) = 2(0,2(1, a)) = 1, ∀a ∈ 2

thus ψ ⋆ F = 0.

• ψ(∗) = 0 and F (∗) = 0. Once again we have

2(a,{ψ,F}) = 2(0,2(a,1)) = 1, ∀a ∈ 2

with {ψ,F} again being 1. The colimit is again given by ψ ⋆F = 0.

• ψ(∗) = 1 and F (∗) = 1 Using the adjunction − ∧ a ⊣ 2(a,−) we
have

2(a,{ψ,F}) = 2(1,2(a,1)) = 2(1 ∧ a,1) = 2(a,1),

thus we have {ψ,F} = 1. On the other hand the colimit is given by

2(ψ ⋆ F,a) = 2(ψ,2(F,a)) = 2(1 ∧ 1, a) = 2(1, a),

thus ψ ⋆ F = 1.
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• ψ(∗) = 1 and F (∗) = 0. In the same way as above we have

2(a,{ψ,F}) = 2(ψ,2(a,F )) = 2(ψ ∧ a,F ) = 2(a,F )

thus {ψ,F} = F = 0, and

2(ψ ⋆ F,a) = 2(ψ,2(F,a)) = 2(ψ ∧ F,a) = 2(0, a)

thus ψ ⋆ F = 0.

Thus, if Ω = 2 and K is a singleton set, we have that ψ ⋆F = ψ ∧F and
{ψ,F} = 2(ψ,F ).

2. As in the previous example let Ω = 2 and let K = {∗}, but let A be any
poset. Let F ∶K //A be any monotone map. Abusing notation let us
write F (∗) as F. Now let ψ ∶K //Ω be any map given by:

• ψ(∗) = 0.

A(a,{ψ,F}) = 2(ψ,A(a,F )) = 1,

and
A(ψ ⋆ F,a) = 2(ψ,A(F,a)) = 1.

Thus {ψ,F} = 1, and respectively ψ ⋆ F = 0.

• ψ(∗) = 1.

A(a,{ψ,F}) = 2(ψ,A(a,F )) = A(a,F ),
and

A(ψ ⋆ F,a) = 2(ψ,A(F,a)) = A(F,a).
Thus we have ψ ⋆ F = ψ ⋆ F = F.

3. Again let Ω = 2, and A and K be any two posets. Also let ψ ∶K //Ω,
ϕ ∶Kop //Ω and F ∶K //A be three monotone maps. We then have

A(a,{ψ,F}) = [K,2](ψ,A(a,F−)) = ⋀
k∈K

2(ψ(k),A(a,F (k))).

26



We want to calculate the right hand side, so we make a case distinction
according to the value of ψ(k). Thus we partition K as K = K1 ∪K2

where K1 = {k ∈ K ∣ ψ(k) = 0} and K2 = {k ∈ K ∣ ψ(k) = 1}. With this
notation the right hand side becomes

⋀
k∈K

2(ψ(k),A(a,F (k)))

= ⋀
k∈K1

2(ψ(k),A(a,F (k))) ∧ ⋀
k∈K2

2(ψ(k),A(a,F (k)))

= ⋀
k∈K1

2(0,A(a,F (k))) ∧ ⋀
k∈K2

2(1,A(a,F (k)))

= ⋀
k∈K1

1 ∧ ⋀
k∈K2

A(a,F (k))

= ⋀
k∈K2

A(a,F (k))

= A(a, ⋀
k∈K2

F (k)).

Thus {ψ,F} = ⋀k∈K{F (k) ∣ ψ(k) = 1}.

In a similar way one has that ϕ ⋆ F = ⋁k∈K{F (k) ∣ ϕ(k) = 1}.

So in the case of posets the weight only chooses which elements should
be taken into consideration and which should be ignored.

4. Let Ω = [0,∞]. The limits and colimits of general metric spaces have
been studied in a series of articles by Rutten, see [29] and [27]. We shall
give some examples.

• Firstly let us look at K = {∗} and ψ,F ∶ K //Ω. Using the fact
that ⊗ is commutative and that it is a left adjoint to Ω(a,−), we
obtain:

Ω(a,{ψ,F}) = Ω(ψ,Ω(a,F )) = Ω(ψ ⊗ a,F ) = Ω(a,Ω(ψ,F )).

thus {ψ,F} = Ω(ψ,F ) = F −. ψ.

On the other hand we have

Ω(ψ ⋆ F,a) = Ω(ψ,Ω(F,a)) = Ω(ψ ⊗ a).

Thus ψ ⋆ F = ψ ⊗ F = ψ + F.
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• Let K be a discrete Ω-category, as in 5, and let ψ ∶K //Ω be given
by ψ(k) = I for all k ∈ K. Also let G ∶ K //Ω be any Ω-functor.
Then as K is discrete we have both {ψ,G} and ψ ⋆G. Let us look
at what these are.

Ω(v,{ψ,G}) = [K,Ω]Ω(ψ,Ω(v,G))
= ⋀
k∈K

Ω(ψ(k)⊗ a,G(k)

= ⋀
k∈K

Ω(I ⊗ a,G(k))

= ⋀
k∈K

Ω(v,G(k))

= sup
k∈K

(G(k)−. v)

= (sup
k∈K

G(k))−. v

= Ω(v, sup
k∈K

G(k))

= Ω(v, ⋀
k∈K

G)

and

Ω(ψ ⋆G,v) = [K,Ω]Ω(ψ,Ω(G,v))
= ⋀
k∈K

Ω(ψ ⊗GK,v)

= sup
k∈K

v −. Gk

= v −. inf
k∈K

Gk

= Ω(inf
k∈K

Gk, v)

= Ω(⋁
k∈K

Gk, v)

Thus unweighted limits and colimits have the same value as the
non enriched limits and colimits.

5. Now let Ω be any symmetric monoidal closed category, and let A be
any Ω-category. For any functor F ∶ A // A and any object a of A
the special colimit A(−, a) ⋆ F is equal to F (a). Indeed, using Yoneda
lemmma, see [14, Chapter 1.7], we have

A(A(−, a) ⋆ F, b) = [Aop,Ω](A(−, a),A(F−, b)) = A(F (a), b).
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We also have the dual property for limits {A(a,−), F} = F (a). Indeed
we have

A(b,{A(a,−), F}) = [A,V ](A(a,−),A(b,F−)) = A(b,F (a)).

Let K be the one object Ω-category. Colimits over it are called tensor product
and limits over it are called cotensor product. The naming comes from the
value of these limits in Ω. Limits and colimits where the weight is constant
I, the tensor’s unit, are called ends and, respectively, coends. Following [14,
Chapter 3.10] if a Ω-cateogory has both cotensor products and ends, and
tensor products and coends, then it has all small limits, and respectively all
small colimits.

As we have seen above limits and colimits in Ω have a special form, and are
given by:

{ψ,F} = [K,Ω](ψ,F ) = ⋀
k∈K

Ω(ψ(k), F (k)), (2.12)

and
ϕ ⋆G = ⋁

k∈K
ϕ(k)⊗G(k) (2.13)

for any Ω-category K and any Ω-functors, ψ,F,G ∶K //Ω and ϕ ∶Kop //Ω.

Indeed we have

Ω(v,{ψ,F}) = [K,Ω](ψ,Ω(v,F ))
= ⋀
k∈K

Ω(ψ(k),Ω(v(, F (k))

= ⋀
k∈K

Ω(v ⊗ ψ(k), F (k))

= ⋀
k∈K

Ω(v,Ω(ψ(k), F (k)))

= Ω(v, ⋀
k∈K

Ω(ψ(k), F (k)))

= Ω(v, [K,Ω](ψ,F ))

and
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Ω(ϕ ⋆G,v) = [K,Ω](ϕ,Ω(G,v))
= ⋀
k∈K

Ω(ϕ(k)⊗G(k), v)

= ⋀
k∈K

Ωop(v,ϕ(k)⊗G(k))

= Ωop(v, ⋁
k∈K

ϕ(k)⊗G(k))

= Ω(⋁
k∈K

ϕ(k)⊗G(k), v)

where by ⋁k∈K we understand ⋀k∈K in Ωop.

2.3.3 The indexing category can be discrete

These results are inspired by limits and colimits in posets. It is a known fact
that for posets all limits and all colimits are generated by discrete indexing
categories. We will show that this is true also for categories enriched over
quantales. Intuitively this happens because limits and colimits are given in
terms of limits in the quantale, and the quantale itself is a poset.

Before we continue let us recall what we mean by a discrete Ω-category and
discrete Ω-functors.

Definition 2.3.3. A Ω-category A is called discrete if A(a, b) =⊥ for any two
objects a, b of A, where ⊥ is the initial object of Ω. For any two Ω-categories
A,B a Ω-functor F ∶ A //B is called discrete if A is discrete.

One can see that any set A is a discrete Ω-category, and if A is discrete then
every map F ∶ A //B is a Ω-functor.

With this definition one has

Proposition 2.3.4. Let K,A be any two Ω-categories and let ψ ∶K //Ω and
F ∶K //A be any two Ω functors. Then the limit {ψ,F} is equal to a limit
{ψ′, F ′}, where ψ′ ∶ K ′ //Ω and F ′ ∶ K ′ //A are two discrete Ω-functors.
The same statement holds for colimits.

Proof. Define K ′ = obK. By k we will understand an object of K and the
same object of K ′. Define ψ′ ∶K ′ //Ω and F ∶K ′ //Ω as

ψ′(k) = ψ(k) and F ′(k) = F (k).
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Let us show that {ψ′, F ′} = {ψ,F}.

A(a,{ψ′, F ′}) = [K ′,Ω](ψ′,A(a,F ′−))
= ⋀
k∈K′

Ω(ψ′(k),A(a,F ′(k))

= ⋀
k∈K

Ω(ψ(k),A(a,F (k))

= [K,Ω](ψ,A(a,F−))
= A(a,{ψ,F})

Also because Ω is a quantale, thus a poset, the counit µ ∶ ψ //A({ψ,F}, F−)
is equivalent to ψ(k) ≤ A({ψ,F}, F (k)) for all k ∈K thus we have the “same”
counit µ′ ∶ ψ′ //A({ψ′, F ′}, F ′−).

Thus for the rest of the thesis, whenever convenient, we will assume that
limits and colimits are discrete.

Remark 2.3.5. The fact that weighted limits and colimits can be discrete
means that we can treat them as operations, this will be relevant in Chapter
5.

2.3.4 Iteration of finite limits

Again looking at posets, if one wants to calculate a finite limit or colimit then
one only needs to to know how to calculate the limit/colimit of two elements.
Again this property is due to limits/colimits being calculated via limits in Ω,
which is a poset.

Definition 2.3.6. We call a limit {ψ,F} binary if the discrete index category
has two objects.

So let us assume we know how to calculate the binary limit {ψ,F} for any
ψ ∶ 2 //Ω and F ∶ 2 //A, where 2 is the discrete Ω-category with two objects
and A is any Ω-category. Now

Proposition 2.3.7. Let K be any finite discrete Ω-category, whose cardinality
is greater or equal to two, and let α ∶ K //Ω and G ∶ K //A be any two
discrete Ω-functors. Then the limit {α,G} can be calculated with binary limits.
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Proof. Let us do induction on the cardinality of K. If the K ′s cardinality is
2then we have nothing to show. So let us suppose we have this property for
cardinality smaller than n and let us prove it for n. So let K be a set such
that ∣K ∣ = n.

Choose an object k of K, and define K ′ =K ∖ {k} that is the set K without
the element k. Define α′ ∶K ′ //Ω and G′ ∶K ′ //A as

α′(k′) = α(k′) and G′(k′) = G(k′)∀k′ ∈K ′.

Also define ψ ∶ {1,2} //Ω and F ∶ {1,2} //A as

ψ(1) = α(k), ψ(2) = I,F (1) = G(k), F (2) = {α′,G′}.

If we show that
{ψ,F} = {α,G},

using the induction principle we have finished.

A(a,{ψ,F}) = [2,Ω](ψ,A(a,F−))
= Ω(ψ(1),A(a,F (1))) ∧Ω(ψ(2),A(a,F (2)))
= Ω(α(k),A(a,F (k))) ∧Ω(I,A(a,{α′.G′}))
= Ω(α(k),A(a,F (k))) ∧A(a,{α′.G′})
= Ω(α(k),A(a,F (k))) ∧ [K ′,Ω](α′,A(a,G′−))
= Ω(α(k),A(a,F (k))) ∧ ⋀

k′∈K′
Ω(α′(k′),A(a,G′(k′)))

= Ω(α(k),A(a,F (k))) ∧ ⋀
k′∈K′

Ω(α′(k′),A(a,G′(k′))))

= ⋀
k∈K

Ω(α(k),A(a,F (k)))

= ⋀
k∈K

Ω(α(k),A(a,F (k)))

= A(a,{α,G}).

2.3.5 Distribution of finite limits over finite colimits in
the quantale Ω

In the previous two subsection we have showed some results regarding limits
and colimits in categories enriched over commutative unital quantales, now
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we will show a result about limits and colimits in the quantale Ω, viewed as a
self enriched category.

Let Ω = (Ω0, I,⊗) be a commutative unital quantale. Let K be a finite set,
and for each k ∈ K let Kk be a finite set as well. Now let ψ ∶ K // Ω be
any Ω-functor, and for each k ∈ K let ϕk,Gk ∶ Kk

//Ω be two Ω-functors.
Let G ∶ K // V be the Ω-functor given by G(k) = ϕk ⋆Gk. Then one can
construct the following limit

{ψ,G}.
We want to express this limit as a colimit.

Remark 2.3.8. One can define such a limit only because we assume that
K and each Kk are sets, so our reduction of limits and colimits to discrete
Ω-categories is important and necessary.

Before that let us fix some concepts.

Definition 2.3.9. For any set K and any K-tuple of sets Kk we call a choice
function, f any function f ∶K // ⊕k∈K Kk such that f(k) ∈Kk. The set of
choice functions is called Σ = {f ∶K // ⊕k∈K Kk ∣ f choice function}.
Remark 2.3.10. Let us note that the choice functions are needed in order
to keep the colimit finite.

Now define φ,F ∶ Σ // Ω given by φ(f) = I and F (f) = {ψ,Ff} where
Ff ∶K //Ω is given by Ff(k) = ϕk(f(k))⊗Gk(f(k)).
Proposition 2.3.11. With the above notations, if Ω has a total order we
have

{ψ,G} = φ ⋆ F

Proof. We have to show that

⋀
k∈K

ψ(k) ⋔ ⋁
k′∈Kk

ϕk(k′)⊗Gk(k′) = ⋁
f∈Σ

⋀
k∈K

ψ(k) ⋔ (ϕk(f(k))⊗Gk(f(k)))

As each Kk is finite and the order on Ω is total then the colimit ⋁k′∈Kk ϕk(k′)⊗
Gk(k′) is reached, in the sense that there exists an element, denoted by κk,
of Kk such that

ϕk(κk)⊗Gk(κk) = ⋁
k′∈Kk

ϕk(k′)⊗Gk(k′).
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Define the choice function fκ ∶K // ⊕k∈K Kk as fκ(k) = κk. Now obviously
we have

⋀
k∈K

ψ(k) ⋔ ⋁
k′∈Kk

ϕ(k)⊗Gk(k′) = ⋀
k∈K

ψ(k) ⋔ ϕk(κk)⊗Gk(κk)

= ⋀
k∈K

ψ(k) ⋔ ϕk(fκ(k))⊗Gk(fκ(k))

≤ ⋁
f∈Σ

⋀
k∈K

ψ(k) ⋔ (ϕk(f(k))⊗Gk(f(k)))

For the other direction we have to show that for any choice function f we
have

⋀
k∈K

ψ(k) ⋔ (ϕk(f(k))⊗Gk(f(k))) ≤ ⋀
k∈K

ψ(k) ⋔ ϕk(fκ(k))⊗Gk(fκ(k)).

From our definition of fκ we have that for every choice function f and every
k ∈ K we have ϕk(f(k)) ⊗Gk(f(k)) ≤ ϕk(fκ(k)) ⊗Gk(fκ(k)), and as ⋔ is
monotone on the right argument we have

ψ(k) ⋔ ϕk(f(k))⊗Gk(f(k)) ≤ ψ(k) ⋔ ϕk(fκ(k))⊗Gk(fκ(k)).

2.4 Kan extensions

Complete atomic boolean algebras are the algebras for the double powerset
monad. The contravariant powerset functor is a special case of the functor
[−,C] ∶ Ω-Cat // Ω-Catop defined in Subsection 2.3.1. In this section we
will define and state some properties of the left and right adjoints, if they
exist, of the functor [F,C] for any V -categories A,B,C and any Ω-functor
F ∶ A //B.

Let A,B,C be any two Ω-categories and let F ∶ A //C be any functor. Then
we have the following two functors: F̃ ∶ A // [Cop,Ω] and F̂ ∶ Aop // [C,Ω]
given by F̃ (a) = C(−, F (a)) and F̂ (a) = C(F (a),−).

Definition 2.4.1. For any three Ω-categories A,B,C and any two Ω-functors
F ∶ A //C and G ∶ A //B we define the left Kan extension of G along F ,
denoted by LanFG, to be the colimit F̂ ⋆G = C(F−,−)⋆G, if it exists. Dually
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we define the right Kan extension, to be the limit {F̃ ,G} = {C(−, F−),G}, if
it exists.

C
LanFG // B

A

F

OO

G

⇑

>> (2.14)

C
RanFG

⇓
// B

A

F

OO

G

>> (2.15)

So if B is complete then the right Kan extension exists and if B is cocomplete
then the left one exists. Now let us show that, if they exist, these extensions
are adjoints to the precomposition.

Proposition 2.4.2. For any three Ω-categories A,B,C and any Ω-functor
F ∶ A //C then the left Kan extension along F is the left adjoint of [F,B],
if it exists. Dually the right Kan extension along F is the right adjoint of
[F,B], if it exists.

Proof. Let us look at the following diagram

[C,B] −○F // [A,B]

LanF−
⊺ff

RanF−
⊺xx

A
F

// C

(2.16)
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Let G ∶ A //B and H ∶ C //B. Then we have

[C,B](LanFG,H) = [C,B](C(F−,−) ⋆G,H)
= ⋀
c∈C

B(C(F−, c) ⋆G,H(c))

= ⋀
c∈C

{C(F−, c),B(G−,H(c))}

= ⋀
c∈C
⋀
a∈A

C(F (a), c) ⋔ B(G(a),H(c))

= ⋀
a∈A
⋀
c∈A

C(F (a), c) ⋔ B(G(a),H(c))

= ⋀
a∈A

[C,Ω](C(F (a),−),B(G(a),H−))

= ⋀
a∈A

B(G(a),H(F (a)))

= [A,B](G,H ○ F )

Thus LanF− ⊣ − ○ F.
On the other hand we have

[C,B](H,RanFG) = [C,B](H,{C(−, F−),G})
= ⋀
c∈C

B(H(c),{C(c,F−),G})

= ⋀
c∈C
⋀
a∈A

C(c,F (a)) ⋔ B(H(c),G(a))

= ⋀
a∈A
⋀
c∈C

C(c,F (a)) ⋔ B(H(c),G(a))

= ⋀
a∈A

[Cop,Ω](C(−, F (a)),B(H−,G(a)))

= ⋀
a∈A

B(H(F (a)),G(a))

= [A,B](H ○ F,G)

Proposition 2.4.3. For any two functors F ∶ A // C and G ∶ A //B, if
the left or right Kan extension exists, the following statements are true

1. One has natural transformations α ∶ G //(LanFG)○F and β ∶ (RanFG)○
F //G, and furthermore these are isomorphisms if and only if F is
full and faithful.
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2. For any other functor H ∶ C //B such that there exists η ∶ G //H ○F
there exists a unique η′ ∶ LanFG //H such that η′ ○ α = η

Proof. Let us prove the first statement.

Let F ∶ A //C and G ∶ A //B be two Ω-functors and let us suppose the
left Kan extension of G along F exists. Then

(LanFG) ○ F = (C(F−,−) ⋆G) ○ F
= C(F−, F ) ⋆G.

Now let us show that for every a in A we have an arrow in Ω

αa ∶ I //B(G(a),C(F−, F (a)) ⋆G)).

But that is just the following composition

I //C(F,F ) //B(G,C(F,F ) ⋆G)
where the left arrow is the identity arrow and the right arrow is the counit of
the colimit C(F−, F ) ⋆G.
We still have to show that α is an isomorphism if and only if F is full and
faithful.

The map f ∶ dA //C(F−, F ) ∶ A // [Aop,Ω] is an isomorphism if and only if
F is fully faithful. Now using the fact that G ≅ (dA−)⋆G and that α = (f−)⋆G
we have that α is an isomorphism if F is fully faithful. To show the converse
take B = Ω and G = A(a,−) then we have (LanFG)○F = C(F−, F )⋆A(a,−) =
C(F−, F (a)) thus α is an isomorphism.

Let us prove the second statement.
Let us assume that there exists H ∶ C //B such that there exists η ∶ G //H○F .

C

H

""

LanFG

⇑
// B

A

F

OO

G

⇑

>> (2.17)
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We have
[A,B](G,H ○ F ) = [C,B](LanFG,H)

In the following let us give some example of Kan extensions.

Example 2.4.4. 1. LetA,B be any two Ω-categories, and let dA ∶ A //[Aop,Ω]
be the Yoneda embedding, then for any map F ∶ A //B we have

LandAF = − ⋆ F ∶ [Aop,Ω] //B,

and
LanFdA = B(F−,−) ∶ B // [Aop,Ω].

Indeed, for any ϕ ∶ Aop //Ω, we have

(LandAF )(ϕ) = ⋁
a∈A

[Aop,Ω](A(−, a), ϕ)⊗ F (a) = ⋁
a∈A

ϕ(a)⊗ F (a),

and for any b ∈ B, we have

(LanFdA)(b) = ⋁
a∈A

B(F (a), b)⊗A(−, a) = B(F−, b).

2.5 Density

Definition 2.5.1. Let C,D be two Ω- categories and let F ∶ C // D be a
Ω-functor. We say that F is dense if every object of d of D is exhibited as

D = D(F−,D) ⋆ F,

by id ∶ D(F−, d) //D(F−, d).

Following [14, Chapter 5] there are other equivalent, definitions, of a dense
functor.

Proposition 2.5.2. Let F ∶ C //D be a functor. The next statements are
equivalent.

1. The functor F is dense.
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2. The functor F̃ ∶ D // [Cop,Ω] given by F̃ (d) = D(F−, d) is full and
faithful.

3. For any Ω-category B, the restriction to A −Cocts[D,B] of the functor
[F,1] ∶ [D,B] // [C,B] is fully faithful, where by A − Cocts[D,B] we
understand the full subcategory of [D,B] of those functors who preserve
all A-indexed colimits.

4. For any two objects C,D of D the map

F̃ ∶ D(C,D) // [Cop,Ω](D(F−,C),D(F−,D))

is an isomorphism.

5. The identity id ∶ F // idD ○ F exhibits idD as LanFF.

6. Some isomorphism φ ∶ F // idD ○ F exhibits idD as LanFF.

We shall not prove it here. One can find a proof in [14, Chapter 5].

Example 2.5.3. Let X be any Ω-category then the Yoneda embedding
dX ∶X // [Xop,Ω] is dense. In oder to show that dX is dense ϕ ∶Xop //Ω
and x ∈ X we have to show that LandX dX(ϕ)(x) ≅ ϕ(X). Using example
2.4.4 we have that LandX dX = [Xop,Ω](dX ,−). Thus (LandX dX)(ϕ)(x) =
[Xop,Ω](X(−, x), ϕ) = ϕ(x).

Proposition 2.5.4. Let A,B be two categories and let G ∶ A // C be any
Ω-functor, such that the left Kan extension LandAG exists. Then LandAG
preserves all colimits in [Aop,Ω].

Proof. As LandAG = −⋆G for any other colimit ϕ⋆F ∶ Aop //Ω Using Fubini
theorem, see [14, 3.23], we have that

(LandAG)(ϕ ⋆ F ) = (ϕ ⋆ F ) ⋆G = ϕ ⋆ (F − ⋆G).
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2.6 Monads and KZ-doctrines

In the following we will give some definitions about monads, and some results
about a special class of monads called KZ-doctrines. For more on monads
see [20], and for KZ-doctrines see [15] and [22].

Definition 2.6.1. A monad (M,η,µ) in a category X consists of an end-
ofunctor M ∶ X // X and two natural transformations η ∶ 1 //M and
µ ∶MM //M which make the next two diagrams commute:

DDD
µD //

Dµ

��

DD

µ

��

D
ηD //

1

!!

DD

µ

��

D
Dη

oo

1

}}

DD µ
// D D

(2.18)

Now let U = (U,u,n), D = (D,d,m) be two monads. What does one need for
DU to be a monad as well? First thing one would need is a multiplication:
µDU ∶ DUDU //DU. If one has a natural transformation δ ∶ UD //DU
then we could define µDU as n ○mUU ○DδU. Of course this has to satisfy
a couple of commutative diagrams. And it has been shown in [1] that the
composite of two monads is again a monad if there exists a distributive law
between them, like below.

Definition 2.6.2. Let U = (U,u,n), D = (D,d,m) be two monads, then a
distributive law of U over D is any natural transformation r ∶ UD ⇒ DU
satisfying Beck’s axioms, as presented in [1]

U

Ud

��

dU

��

UDD

Um

��

rD // DUD
Dr // DDU

mU

��

UD r
// DU UD r

// DU

D

uD

ZZ

Du

DD

UUD

nD

OO

Ur
// UDU

rU
// DUU

Dn

OO

(2.19)
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The notion of KZ-doctrines dates all the way back to mid sixties, and is
due to Kock and Zoberlein. The following proposition gives three different
descriptions the first one is due to [15] and the other ones are due to [22]. We
would like to emphasise that the two notions are equivalent because we work
in a quantale enriched setting, otherwise some of these concepst would hold
up to isomorphism.

Proposition 2.6.3. For any 2-category C, a functor D ∶ C // C is a KZ-
doctrine if it satisfies any of the following equivalent conditions:

1. Natural transformations d ∶ 1 //D,m ∶DD //D and for each C ∈ C,
a 2-cell λC ∶ Dd // dD, natural in C, satisfying the following four
equations:

D0 d is two sided unit for m, that is m ○Dd =m ○ dD = id
D1 λC ○ dC is an identity 2-cell

D2 mC ○ λC is an identity 2-cell

D3 mC ○DmC ○ λTC is an identity 2-cell

2. For the functor D there exists natural transformations d ∶ 1⇒ D and
m ∶ DD // D such that the following forms a fully faithful adjoint
string Dd ⊣ m ⊣ dD. By a fully faithful adjoint string we understand
an adjunction string F ⊣ G ⊣H where the unit of the first adjunction
and the counit of the second one are isomorphisms.

3. The functor D is a monad D = (D,d,m) which stisfies the following
adjunctions Dd ⊣m ⊣ dD.

Proof. A complete proof of the equivalence between the first two properties
can be found in [15] and in [22]. In here we will only give a sketch.

1⇒ 2

We have to construct ηDd⊣m ∶ Id //m ○Dd, εDd⊣m ∶ Dd ○m // 1, ηm⊣dD ∶
1 //dD ○m, and εm⊣dD ∶m○dD //1. From D we get both ηDd⊣m and εm⊣dD,
so we only have to construct the other two. Let us look at the next diagram
which follows from the naturality of d:
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DD
dDD //

m

��

DDD

Dm

��

D
dD

// DD

(2.20)

thus Dm ○ dDD = dD ○ m and has λD ∶ DdD // dDD one has DmλD ∶
Dm ○DdD //Dm ○ dDD, and as Dm ○DdD = Id then one has

DmλD ∶ Id //Dd ○m

Now if we apply the naturality of m one has the next diagram:

DD
m //

DdD

��

D

dD

��

DDD
mD

// DD

(2.21)

thus dD ○m = mD ○DdD and as mDλD ∶ mD ○DdD //mD ○ dDD and
mD ○ dDD = Id one has

mDλD ∶Dd ○m // Id.

2⇒ 1
Uses diagram pasting and can be found in [22]

2⇔ 3
We have to show the commutativity of diagrams (2.18). The triangular
diagrams are valid from the fully faithful adjoint string condition. To obtain
the square we have to expand it.

DDD
Id //

mD

��

DDD
Dm // DD

m

��

DD

dDD

BB

m
// D

dD

DD

Id
// D

(2.22)
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The following proposition is due to [15], and it holds in the full generality of
two categories. This result can be said to be one of the defining property of
KZ-doctrines.

Proposition 2.6.4. Let M = (M,η,µ) be any KZ-doctrine, then A = (A,α)
is a M -algebra if and only if the structure map α is a left adjoint of ηM . Dually
for any co-KZ-doctrine N = (N, ζ, ν) a tuple B = (B,β) is a N-algebra if
and only if β is a right adjoint of ζ.

As a corollary we have that a distributive law between KZ-doctrines, if exist,
is unique. This result can be found in [23] where it is proved in the context
of Ω = 2.

Corollary 2.6.5. If D or U is either KZ(co)-doctrines then there is at most
one distributive laws r ∶ UD //DU.

The next result also comes from [23] where it is proved for Ω = 2, but the
proof remains the same as they work in any 3-category where 3-cells form a
poset. Also one has to note that to prove this result one needs exactly that
isomorphism of natural transformations implies equality.

Proposition 2.6.6. For monads D and U and a natural transformation
r ∶ UD //DU :

1. If (D,d,µ) is KZ and (U,u, ν) is either KZ or co-KZ then r ∶ UD //DU
is a distributive law if it satisfies r ○Ud = dU and r ○ uD ≤Du;

2. If (U,u, ν) is co-KZ and (D,d,µ) is either KZ or co-KZ then r ∶
UD //DU is a distributive law if it satisfies r○uD =Du and r○Ud ≤ dU.

Proof. In order for r to be a distributive law we need to show the comutativity
of diagrams (2.19).
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U

Ud

��

dU

��

UDD

Um

��

rD // DUD
Dr // DDU

mU

��

UD r
// DU UD r

// DU

D

uD

ZZ

Du

DD

UUD

nD

OO

Ur
// UDU

rU
// DUU

Dn

OO

From the assumption r ○Ud = dU and the naturality of d, and respectively r,
the outside of the next two diagrams commute:

UDD

Um

��

rD // DUD
Dr // DDU

mU

��

UD

UdD ⊢

@@

r
//

dUD

AA

DU

dDU

^^

(2.23)

and

UDD

Um

��

rD // DUD
Dr // DDU

mU

��

UD

UDd

@@

r
// DU.

DdU⊣

^^

DUd

]]

(2.24)

Thus we have

dDU ○ r =Dr ○ rD ○UdD, (2.25)

and

DdU ○ r =Dr ○ rD ○UDd. (2.26)

Now post-composing (2.25) with mU and that the counit of m ⊣ dD is an
isomorphism we have

mU ○Dr ○ rD ○UdD =mU ○ dDU ○ r = r,
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and now pre-composing this equation with Um we obtain

mU ○Dr ○ rD ○UdD ○Um = r ○Um.

From here using the unit of m ⊣ dD we obtain

mU ○Dr ○ rD ≤ r ○Um (2.27)

Now post-composing (2.26) with mU , and using that the unit of Dd ⊣m is
an isomorphism we have

mU ○Dr ○ rD ○UDd =mU ○DdU ○ r = r,

and now pre-composing this equation with Um we obtain

mU ○Dr ○ rD ○UDd ○Um = r ○Um.

From here using the counit of Dd ⊣m we obtain

r ○Um ≤mU ○Dr ○ rD (2.28)

Thus from D a KZ-doctrine and r○Ud = dU one obtains r○Um =mU○Dr○rD.
Now let us show that assuming r ○ uD ≤Du we have r ○ uD =Du.

DU

DUd

��

DdU

��

1DU

&&

D
Dd

⇓
++

dD
33

Du

66

uD

((

DD
DuD // DUD

Dr // DDu
mU // DU

UD

dUD

OO

r
// DU

dDU

OO

1DU

BB (2.29)

From the naturality of u we have

DuD ○Dd =DUd ○Du,

and post-composing with Dr one gets

Dr ○DuD ○Dd =Dr ○DUd ○Du =DdU ○Du,
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and post-composing with mU , one obtains

mU ○Dr ○DuD ○Dd =mU ○DdU ○Du =Du.

From the naturality of d we have

DuD ○ dD = dUD ○ uD,

and now post-composing with Dr and using the naturality of r one has

Dr ○DuD ○ dD =Dr ○ dUD ○ uD = dDU ○ r ○ uD,

and post-composing with mU, one obtains

mU ○Dr ○DuD ○ dD =mU ○ dDU ○ r ○ uD = r ○ uD.

Now as D is a KZ-doctrine we have Dd ≤ dD thus we have Du ≤ r ○ uD.
To conclude the proof we still have to show that r ○Dm = mD ○ Ur ○ rU ,
which follows from U being a KZ or co-KZ-doctrine and r ○ uD =Du.
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Chapter 3

Duality and logic

As we said in the introduction we are interested in a many valued logic which
has extra structure on the set of truth values, for example a metric distance.
Before we continue let us remind the reader that clasical propositional logic is
a boolean algebra. Thus we want to generalize the notion of Boolean algebras
to a many valued setting. To do that we are using a categorical approach.
First we will restate the known fact that the category of complete atomic
boolean algebras is equivalent to the cagegory of algebras for the double
powerset monad, see [21]. Second we will show that this adjunction can be
generalised.

3.1 Double powerset monad and boolean al-

gebras

We want to characterise Boolean algebras, or at least complete atomic boolean
algebras, as the algebras for a monad.

Set
[−,2]

,,
Setop

[−.2]
⊥ll (3.1)

This is a monadic adjunction so we know that Setop is isomorphic to the
category of algebras, so if we show that Setop ≃ caBA then we are done.
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Setop
P=[−,2]

,,

[−,2]

��

caBA
AT

≃ll

Set

[−,2] ⊣

JJ (3.2)

We will show this equivalence in four steps.

The first step will be to show that a complete atomic Boolean algebra B is
isomorphic to the powerset of some set X. Let us recall what we understand
by a complete atomic boolean algebra.

Definition 3.1.1. For a boolean algebra B we call a ∈ B an atom if a is join
prime, that is (if a ≤ b ∨ c then either a ≤ b or a ≤ c). Another way to express
that a is join prime is to say that B(a,−) preserves colimits.

Definition 3.1.2. A Boolean algebra (B,∨,∧,¬, 0, 1) is complete if the lattice
(B,∨,∧,0,1) is complete, and is atomic if every element of B is a join of
atoms.

Let B be a complete atomic boolean algebra, and let X be the set of atoms.
Let us show that B is isomorphic to P(X).
We will show that the function F ∶ B //P(X) given by

F (b) = {a ∈ B ∣ a ≤ b}

is an isomorphism.
We have F (b) = {b} if and only if b is an atom. Indeed as any element b of
B is a join of atoms, we have that b is above all the atoms that generate it,
thus F (b) = {a ∈X ∣ a ≤ b} = {b} if and only if b is an atom.
Let us show that F is a morphism of boolean algebras.

¬: We have to show that F (¬b) = ¬F (b) for all b ∈ B, that is equivalent to
F (b) and F (¬b) being complements in P(X). Let us show that

F (¬b) ∪ F (b) =X and F (¬b) ∩ F (b) = φ.

As we have F (b) ∪ F (¬b) ⊆ X we only have to show that X ⊆ F (b) ∪
F (¬b). For any atom a we have a ≤ 1 = a ≤ (b ∨ ¬b). Therefore either
a ≤ b or a ≤ ¬b thus a ∈ F (b) ∪ F (¬b).
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Now suppose that there exists a ∈ F (b) and a ∈ F (¬b) then a ≤ b and
a ≤ ¬b thus a ≤ (b ∧ ¬b) = 0 which is impossible as a is an atom. Thus
we have

F (¬b) =X − F (b) = ¬F (b).

∨: Let b, c be any two elements of B then we have

F (b ∨ c) = {a ∈X ∣ a ≤ (b ∨ c)} = {a ∈X ∣ a ≤ b or a ≤ c} = F (b) ∪ F (c).

1: As we have 1 = ⋁{a ∈X} then

F (1) = F (∨{a ∈ x}) = ∪a∈XF (a) = ∪a∈X{a} =X.

0: This is obvious as we have 0 = ¬1

∧: This is also obvious as we have a ∧ b = ¬(¬a ∨ ¬b).

We still have to show that F is an isomorphism, so that that F is injective
and surjective. Let b, c ∈ B such that F (b) = F (c), but B being atomic means
that every element is the join of all the atoms below it, thus we have

b =⋁{a ∈ F (b)} =⋁{a ∈ F (c)} = c.

Thus F is injective.

Now let us show that F is surjective. Let Y be any subset of X and let us
show that there exists y ∈ B such that F (y) = Y. As B is complete then the
join ⋁{a ∈ Y } exists, and let us take y = ⋁{a ∈ Y }. Now we have

F (y) = F (⋁{a ∈ Y }) =⋃{F (a) ∣ a ∈ Y } = {{a} ∣ a ∈ Y } = Y.

Thus we have shown the following proposition:

Proposition 3.1.3. Any complete atomic boolean algebra is isomorphic to
the powerset of its set of atoms.

The second step is to show that for any set X the set of atoms of P(X) is
isomorphic to X.

So let X be any set and let S ∈ P(X) be an atom. Then for every other
two subsets S1, S2 of X such that S ⊆ S1 ∪ S2 we have S ⊆ S1 or S ⊆ S2, now
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obviously S has to be a singleton, otherwise choose S1, S2 to be a partition of
S. Thus the set of atoms of P(X) is indeed isomorphic to X.

The third and final step is to show that this equivalence is functorial we have
to show that for every morphism of boolean algebras f ∶ A //B we have a
map AT(f) ∶ At(B) // At(a) and furthermore P(AT(f)) = f , and for every
map of sets g ∶X // Y we have AT(P(g)) = g.
Let f ∶ A // B be a boolean algebra morphism, then f has a left adjoint
g ∶ B //A given by

g(b) = ∧{a ∣ b ≤ f(a)}.
Let us show that if b ∈ B is an atom then so is g(b), so let a1, a2 ∈ A such that

g(b) ≤ a1 ∨ a2,

then using the adjunction and that f is a boolean algebras morphism we have

b ≤ f(a1) ∨ f(a2).

As b is an atom then we have

b ≤ f(a1) or b ≤ f(a2),

but that means that g(b) ≤ a1 or g(b) ≤ a2. Thus we define AT(f) = g ∣At(B)

Let us check that P(AT(f)) = f. Let us look at the following diagram:

A
f

//

AT

��

B

AT

��

At(A)

P

��

At(B)AT(f)
oo

P

��

P(At(A))
P(AT(f))

// P(At(B))

(3.3)

Let S ∈ P(At(A)) and let us take s = ⋁{a ∈ S}. As we have shown that
P(AT(A))(s) = S, in order to show that f = P(AT(f)) all we have to prove
is that P(AT(f))(S) = f(s) = ∨{f(a) ∣ a ∈ S}.
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We have P(AT(f))(S) = S ○AT(f) = {b ∈ AT(B) ∣ ∃a ∈ S, b ≤ f(a)}.
Now, as B is atomic, we have ∨{b ∈ AT(B) ∣ ∃a ∈ S, b ≤ f(a)} = f(s).
Let X,Y be two sets and let g ∶X // Y be any function. Let us show that
AT(P(g)) = g. Let S ∈ P(Y ) then P(g)(S) = S○g = {A ⊆X ∣ ∃x ∈ A.g(x) ∈ S}
we have AT(P(g)){x} as the intersection of all those sets containing {g(x)}
thus AT(P(g)){x} = {g(x)} thus g = AT(P(g)).
So we have shown that complete atomic boolean algebras are the algebras
for the double powerset monad. So one can say that propositional logic is
given by the double powerset monad. If we move to enriched category theory
we have a similar situation, in the sense, that again we have the adjunction
[−,2] ⊣ [−,2] ∶ Pre // Preop and we also have a nice representation for Preop

as the category of completely distributive atomic lattices. Thus one can say
that in order to define a new logic we can change this monad, in the sense
that instead of functoring into 2 we can functor into a commutative unital
quantale. Of course this will not cover all many-valued logics, but only those
for which the set of truth values is a quantale.

3.2 Enriched adjuction and duality

Now following [14, Chapter 1.5], for Ω a quantale, we have the following
adjunction

Proposition 3.2.1. U = [−,Ω] ∶ Ω-Cat //Ω-Catop is a left adjoint of
D = [−,Ω] ∶ Ω-Catop //Ω-Cat.

Proof. Ω-Catop([X,Ω], Y ) ≅ Ω-Cat(Y, [X,Ω]) ≅ Ω-Cat(X, [Y,Ω]).

So the first step in describing the logic for Ω is to find a category c-Ω-Cat
equivalent or at least adjoint to Ω-Catop. Why adjoint? Because every
adjunction can be restricted to an equivalence.

Definition 3.2.2. We call c-Ω-Cat the subcategory of Ω-Cat whose objects
are complete and cocomplete Ω-categories and whose arrows are limits and
colimits preserving Ω-functors.

Now let us define the two functors P ∶ Ω-Catop //c-Ω-Cat and AT ∶ c-Ω-Cat //Ω-Catop.
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3.2.1 The right adjoint P = [−,Ω]
Proposition 3.2.3. The functor Ω-category [X,Ω] is complete and cocom-
plete and [f,Ω] ∶ [X,Ω] // [Y,Ω] preserves all weighted limits and colimits,
for all X,Y ∈ Ω-Catop and for all f ∈ Ω-Catop(X,Y ) .

Proof. In functor categories weighted limits and colimits are defined point-
wise, see [14, Chapter 3.3]. Since Ω is complete and cocomplete then so is
[X,Ω].
One still has to prove that [f,Ω] ∶ [X,Ω] // [Y,Ω] preserves limits. Consider
the following limit {φ,G} ∈ [X,Ω], given by: G ∶K //[X,Ω] and φ ∶K //Ω.
G gives rise to G′ ∶K ⊗X //Ω thus {φ,G}A = {φ,G′(−,A)}.

Now

[f,Ω]({φ,G})(y) (1)= {φ,G}(f(y))
(2)= {φ,G′(−, f(y))}
(3)= {φ, [f,Ω] ○G(−)(y)}
(4)= {φ, [f,Ω] ○G}(y),

where step (1) is the definition of [f,Ω], step (2) is the definition of a limit
in a functor category, see [14, Chapter 3.3], step (3) is moving back from G′

to G and step (4) is again the definition.

The functor [f,Ω] ∶ [X,Ω] // [Y,Ω] preserves colimits. Consider a colimit
in [X,Ω]. Let G ∶ K // [X,Ω] and φ ∶ Kop // Ω. G gives rise to G′ ∶
K ⊗X //ΩṪhen (φ ⋆G)(A) = φ ⋆G′(−,A).

[f,Ω](φ ⋆G)(y) (1)= (φ ⋆G)(f(y))
(2)= φ ⋆G′(−, f(y))
(3)= φ ⋆ ([f,Ω] ○G(−))(y)
(4)= (φ ⋆ [f,Ω] ○G)(y),

where step (1) is the definition of [f,Ω], step (2) is the definition of a colimit
in a functor category, step (3) is moving back from G’ to G and step (4) is
again the definition.
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3.2.2 The left adjoint AT

As in the case of complete atomic Boolean algebras the functor AT will take
a complete and cocomplete Ω-category A to the full subcategory of atoms.

Definition 3.2.4. An atom in a category C is an object C ∈ C such that
C(C,−) preserves all weighted colimits. Then At(C) is the full subcategory of
C whose objects are atoms.

Example 3.2.5. 1. In posets, atoms are known as completely prime ele-
ments. In a completely distributive lattice, being an atom is equivalent
to being join-irreducible.

2. The category [0,∞] seen as a generalized metric space has only one
atom 0. Indeed, suppose we have another atom a ∈ [0,∞] such that
a ≥ 0, then choose v, b ∈ [0,∞] such that v + b > a, and v < v + b − a, and
b < a. Then we have [0,∞](a, v + b) = v + b − a > v = v + [0,∞](a, b).

3. Let [Xop,Ω] be a functor category, then using the Yoneda lemma
and the definition of a colimit in a functor category, see [14, Chapter
3.3], one has that any representable is an atom. Moreover (see [14,
Chapter 5.5]) one has that [Xop,Ω] ≃ [At(X)op,Ω]. In general one has
X ⊆ At([Xop,Ω]).

4. For any category X, rewriting the definition of an atom in terms of
distributors and using that [Xop,Ω] is complete and cocomplete, an
element f ∈ [Xop,Ω] is an atom if the distributor [Xop,Ω](f,−) has a
right adjoint. This connects atoms and Cauchy completeness [18].

Let c-Ω-Cat be the category defined in Definition 3.2.2. Now for all objects
A ∈ c-Ω-Cat define

AT(A) = At(A)op.

In order to define AT on arrows we need some additional results.

Lemma 3.2.6. For any H ∶ A //B in c-Ω-Cat, there exists a left adjoint
L ∶ B //A in Ω-Cat.

Proof. Using the result : “ A functor T ∶ C // B has a left adjoint if and
only if RanT idC exists and is preserved by T . Then the left adjoint S is
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RanT id, and the counit ε ∶ ST // id of the Kan extension is the counit of the
adjunction”, found in [14, Chapter 4.8], we have that H has a left adjoint.

Indeed, as A is complete, the right Kan extension RanH1A = {B(b,H−), idA}
exists, and as H preserves all weighted limits, it also preserves this limit.

Lemma 3.2.7. For all A,B ∈ c-Ω-Cat, H ∶ A //B, L the left adjoint of H
and iA ∶ At(A) //A and iB ∶ At(B) //B the atom inclusion functors, there
exists f ∶ At(B) //At(A) such that L ○ iB = iA ○ f .

Proof. Define f = L ○ idB. We have to show that the codomain of L ○ idB is
At(A).
Let b ∈ At(B). Then L(iB(b)) ∈ At(A) means that A(L(iB(b)),−) preserves
all colimits, so let ϕ ⋆G be a colimit in A.

A(L(iB(b)), ϕ ⋆G) ≅ B(iB(b),H(ϕ ⋆G))
≅ B(iB(b), ϕ ⋆HG)
≅ ϕ ⋆B(iB(b),HG)
≅ ϕ ⋆A(L(iB(b)),G).

If C and D are categories then for every functor F ∶ C //D we also have a
functor F op ∶ Cop //Dop such that F op(C) = F (C) for all C ∈ C.
So AT(H) = f op as defined in the previous lemma. Also this defines a functor
because composition of adjoints is a again an adjoint.

3.2.3 The adjunction AT ⊣ [−,Ω]
Theorem 3.2.8. For any X ∈ Ω-Cat and A ∈ c-Ω-Cat, we have the isomor-
phism of categories Ω-Cat(Xop,At(A))op ≅ c-Ω-Cat(A, [X,Ω]), furthermore
it is natural in both arguments.

Proof. Let X ∈ Ω-Cat and A ∈ c-Ω-Cat.

We have to define

φXA ∶ Ω-Cat(Xop,At(A))op // c-Ω-Cat(A, [X,Ω])
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and
φ−1
XA ∶ c-Ω-Cat(A, [X,Ω]) //Ω-Cat(Xop,At(A))op

and after that we have to show that φXA and φ−1
XA form an isomorphism of

categories.

First define φXA on objects. For all h ∶X○ //At(A) define

φXA(h) = A(h−,−) ∶ A // [X,Ω].

We have to show that φXA(h) is in c-Ω-Cat, which is equivalent to saying that
A(h−,−) preserves all weighted limits and colimits. Preservation of limits is
shown in [14, Chapter3.2], and as h− is an atom and atoms preserve colimits
(see Definition 3.2.4), A(h−,−) also preserves weighted colimits.

Now define φ−1
XA on objects. Let H ∶ A // [X,Ω] and let L ∶ [X,Ω] //A be

its left adjoint, and also let (dX)op ∶Xop // [X,Ω], (dX)op(x) =X(x,−) be
the Yoneda embedding.

A
H

⊥ 11 [X,Ω]
L

ss

At(A)

iA

OO

Xop

(dX)op

OO

h
oo

(3.4)

We have to define h ∶ Xop //At(A) such that iA ○ h = L ○ Y. Then we will
take φ−1

XA(H) = h.

Define h = L ○Y . Now we have to show that (L ○Y )(x) ∈ At(A) for all x ∈X.
So let x ∈ X. We have to show that A(L(X(x,−),−) preserves all colimits.
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Thus let ϕ ⋆G be a colimit in A. Then

A(L(X(x,−), ϕ ⋆G)
(1)
≅ [X,Ω](X(x,−),H(ϕ ⋆G))
(2)
≅ [X,Ω](X(x,−), ϕ ⋆HG)
(3)
≅ (ϕ ⋆HG)(x)
(4)= ϕ ⋆HG(−)(x)
(5)
≅ ϕ ⋆ [X,Ω](X(x,−),HG)
(6)
≅ ϕ ⋆A((L ○ Y )(x),G),

where step (1) is due to L ⊣ H adjunction, step (2) is due to H preserving
weighted colimits, step (3) is due to Yoneda lemma, step (4) is due to the
definition of a weighted colimit in functor category, step (5) is again due to
Yoneda lemma and step (6) is again due to L ⊣H adjunction.

Now we will show that φXA and φ−1
XA are inverse functions on objects.

First we have to show (φXA ○φ−1
XA)(H) =H and as φXA(φ−1

XA(H)) = A(h−,−)
we just have to prove A(h−,−) =H.

A(h(x), a) (1)= A(iA(h(x)), a)
(2)= A(L(X(x,−), a)
(3)= [X,Ω](X(x,−),H(a))
(4)
≅ H(a)(x),

where step (1) follows from iA(a′) = a′ for all a′ ∈ A, step (2) is due to the
commutativity of diagram (3.4), step (3) is due to the L ⊣H adjunction and
final step (4) is due to Yoneda lemma.

Now we have to show (φ−1
XA ○ φXA)(h) = h, and with L the left adjoint of

A(h−,−) we just have to show L ○ Y = h. Using the fact that L ⊣ A(h−,−)
and again Yoneda lemma, we get the following isomorphism:

A(L(X(x,−)), a) ≅ [X,Ω](X(x,−),A(h−, a))) ≅ A(h(x), a).

As the above isomorphism is natural in its second argument we can apply
Yoneda lemma to [A,Ω](A(L(X(x,−)),−),A(h(x),−) and get

[A,Ω](A(L(X(x,−)),−),A(h(x),−) ≅ A(h(x), L(X(x,−))).
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As on the left hand side we only have isomorphisms, on the right hand side
we also have only isomorphisms. Also as we are working in quantale enriched
categories we have that L ○ Y = h.
Until now we have defined φXA and φ−1

XA on objects, and in order to have
functors we one still has to define them on arrows, and for that one could use
the concept of conjugate natural transformation, defined in [20, Chapter 4.7] .

Definition 3.2.9. Given two adjunctions,

(L1,R1, ϕ1, η1, ε1), and (L2,R2, ϕ2, η2, ε2) ∶X //A

between the same two categories, two natural transformations

α ∶ L1 ⇒ L2, β ∶ R2 ⇒ R1

are said to be conjugate (for the given adjunctions) when the diagram

A(L2x, a) ≅
ϕ2

//

(αx)∗=A(αx,a)

��

X(x,R2a)

(βa)∗=X(x,βa)

��

A(L1x, a) ≅
ϕ1

// X(x,R1a)

commutes for every pair of objects x ∈X,a ∈ A.

Why should one use conjugate natural transformations here? Because given
α ∶ L1 ⇒ L2 there exists a unique β ∶ R2 ⇒ R1 such that the pair (α,β)
is conjugate, and dually given β we have a unique α (see [20, Chapter 4.7,
Theorem 2]).

As we use the adjunction from (3.4) to define φ−1
XA on objects we will use

conjugate natural transformation to define it on arrows. So let H1,H2 ∶
A // [X,Ω] and β ∶H1 ⇒H2, and let L1 ⊣H1, and L2 ⊣H2. Then we have
a unique α ∶ L2 ⇒ L1 which is conjugate to β. So φ−1

XA(β) = α ○ Y .

Now for φXA let h1, h2 ∶X○ //At(A) and α ∶ h1 ⇒ h2, and let L1 ⊣ A(h1−,−)
and L2 ⊣ A(h2−,−). As we proved above, L1 ○ Y = h1, and L2 ○ Y = h2 thus
iA○α ∶ L1○Y ⇒ L2○Y is a natural transformation. We want to find ᾱ ∶ L1 ⇒ L2
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and, as (iA ○ α)x ∶ I //A(L1(X(x,−)), L2(X(x,−))), let ᾱX(x,−) = (iA ○ α)x.
We still have to define it on every ϕ ∈ [X,Ω]. Now

A(L1ϕ(x), L2ϕ(x))
(1)
≅ A(L1(ϕ ⋆ Y )(x), L2(ϕ ⋆ Y )(x))
(2)
≅ A(ϕ ⋆L1Y (x), ϕ ⋆L2Y (x))
(3)
≅ {ϕ,A(L1Y (x), ϕ ⋆L2Y (x))}
(4)
≅ {ϕ,ϕ ⋆A(L1Y (x), L2Y (x))},

where step (1) is due to ϕ ≅ ϕ ⋆ Y see [14, Chapter 3.3], step (2) is due
to preservation of colimits by left adjoints, step (3) follows from the fact
that the hom functor changes colimits on first position into limits outside
and step (4) follows from the fact that atoms preserves colimits and LY
is an atom. As we require Ω(I,−) ∶ Ω // Set to be faithful, a Ω-natural
transformation is equivalent to a “normal” natural transformation, so now
we can define ᾱ as a “normal” natural transformation and thus as we have
defined a natural transformation from L2 to L1, we have completely defined
a Ω-natural transformation from L2 to L1. Let β be the conjugate natural
transformation for ᾱ, then φXA(α) = β. Now obviously φXA and φ−1

XA are also

inverse one to another on arrows.

We still have to show that φXA is natural in first argument and pseudonatural
in the second one.

The naturality in the first argument is equivalent to the commutativity of
diagram (3.5).

Given g ∶Xop // Y op in Ω-Cat, there exists a unique gop ∶X // Y in Ω-Cat
such that gop(x) = g(x).

Ω-Cat(Y op,At(A))op φY A //

Ω-Cat(g,At(A))

��

c-Ω-Cat(A, [Y,Ω])

c-Ω-Cat(A,[gop,Ω])

��

Ω-Cat(Xop,At(A))op
φXA

// c-Ω-Cat(A, [X,Ω])

(3.5)

Let h ∶ Y op //At(A) then h ○ g ∶Xop //At(A), so we get

(φY A ○Ω-Cat(g,At(A)))(h) = A(h ○ g−,−)
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and also

c-Ω-Cat(A, [gop,Ω]) ○ φXA(h) = A(h−,−) ○ g = A(h ○ g−,−).

Thus the diagram is commutative.

The naturality in second argument is equivalent to the commutativity up to
isomorphism of the diagram (3.6).

Let f ∶ A //C in c-Ω-Cat and f̄ its left adjoint, thus according to 3.2.7 we
have f̄ ○ iC ∶ At(C) //At(A) .

Ω-Cat(Xop,At(C))op φXC //

Ω-Cat(X,f̄○iC)

��

c-Ω-Cat(C, [X,Ω])

c-Ω-Cat(f,[X,Ω])

��

Ω-Cat(Xop,At(A))op
φXA

// c-Ω-Cat(A, [X,Ω])

(3.6)

Let h ∶Xop //At(C). Then on the bottom side we get

A(f̄ ○ iC ○ h−,−)
and on the top side

C(h−, f−),
which are isomorphic under the adjunction of f̄ ⊣ f and iC being just an
inclusion functor. And as we are in a quantale enriched category, isomorphism
of functors is equality.

Now, as a corollary, we obtain the following adjunction.

Theorem 3.2.10. The functor AT ∶ c-Ω-Cat //Ω-Catop is a left adjoint of
P ∶ Ω-Catop // c-Ω-Cat.

Proof. LetX ∈ Ω-Cat andA ∈ c-Ω-Cat. We have to show that Ω-Catop(ATA,X) ≅
c-Ω-Cat(A,PX) which is equivalent to Ω-Cat(X,At(A)op) ≅ c-Ω-Cat(A, [X,Ω]),
and as Ω-Cat(X,At(A)op) ≅ Ω-Cat(X○,At(A))op see [14, 2.28], we just have
to prove that there is a natural isomorphism in both arguments, between the
next categories

Ω-Cat(Xop,At(A))op ≅ c-Ω-Cat(A, [X,Ω]).
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3.3 Reducing AT ⊣ P to a duality

We want to reduce the adjunction AT ⊣ P to an equivalence, by restricting
the objects in Ω-Catop and c-Ω-Cat. And we also want the reduction to be
correct, in the sense that the subcategory of Ω-Cat is in the image of [−,Ω].

Ω-Catop

P

⊥ 11 c-Ω-Cat
AT

qq

Ω-Catcc
op

iΩ-Catcc

OO

P̄

≃ 11 ac-Ω-Cat
AT

qq
ĀT

qq

iac-Ω-Cat

OO (3.7)

Following [14, Chapter 5] we define:

Definition 3.3.1. We say that a category X ∈ Ω-Cat is Cauchy Complete if
X ≅ At([X,Ω])op. Furthermore we call Ω-Catcc the full subcategory of Ω-Cat
of those Cauchy complete Ω-categories.

Remark 3.3.2. 1. Let Ω = [0,∞] and let Q and R be the rational and
real numbers, respectively, with the usual Euclidean metric. Then the
map in H ∶ [Q,Ω] // [R,Ω] given by H(f)(r) = limn f(qn) where (qn)
is a Cauchy sequence with limit r, is in Ω-CatDU and cannot be restricted
to a map At(H) ∶ R //Q. So Cauchy completeness is necessary.

2. Any poset is Cauchy complete, see [26].

3. In a functor category [Xop,Ω], an element f ∈ [X,Ω] is an atom if the
distributor f∗ ∶ 1 // [X,Ω] given by [X,Ω](f,−) is a left adjoint. Thus
one has that the category of atoms At([Xop,Ω]) is the Cauchy closure
of X.

4. As shown in [18], a generalised metric spaceX is isomorphic to At([Xop,Ω])
if it is Cauchy complete in the usual sense of metric spaces.

5. For any category X we have that [Xop,Ω] ≃ [(At([Xop,Ω]op,Ω], thus
K is full if and only if At([Xop,Ω]) ≅X
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Cauchy completeness has been studied intensely in the last decades, so
I apologise for any reference I have forgotten. For a survey on Cauchy
completeness see [5] and for more on it see [30], [37], [13] and [26].

Definition 3.3.3. We call a Ω-category X atomic if the atom’s inclusion
functor, ı ∶ At(X) //X, is dense. The full subcategory of c-Ω-Cat whose
objects are atomic complete and cocomplete Ω-categories is called ac-Ω-Cat.

Now let us show that, with these restrictions, the functors AT and P are
correctly defined and that they indeed form an equivalence.

First step. Let us show that for every Ω-category X the functor category
[X,Ω] is atomic. But that follows from the fact that the Yoneda embedding
is a dense functor, see Example 2.5.3, and that the representables are atoms.

The rest follows from the next two results.

Lemma 3.3.4. If A is cocomplete and the atom-inclusion functor iA ∶
At(A) //A is dense then A ≅ [At(A)op,Ω].

Proof. Let A ∈ c-Ω-Cat be such that i ∶ At(A) // A is dense. According
to Proposition 2.5.2 if i is dense then ĩ ∶ A // [At(A)op,Ω], defined by
ĩa = A(i−, a), is fully faithful. So we just have to show that it is essentially
surjective. Let H ∶ At(A)op //Ω. As A is cocomplete, H ⋆ i exists. Then

ĩ(H ⋆ i) ≅H ⋆ ĩi ≅H ⋆ dAt(A) ≅H.

Thus ĩ is essentially surjective and so A ≅ [At(A)op,Ω].

Thus we have AT(A) ≅ ATPAT(A) for all A ∈ A.
Thus P̄ = P ∣Ω-Catcc and ĀT = AT∣ac-Ω-Cat are correctly defined, and they form
an equivalence.

As, for any Ω-category X we have that [X,Ω] is complete, thus Cauchy
complete, the image of U = [−,Ω] ∶ Ω-Cat //Ω-Catop is in Ω-Catcc

op. Thus
the adjunction D = [−,Ω] ⊣ U = [−,Ω] ∶ Ω-Cat //Ω-Catop can be restricted
to D = [−,Ω] ⊣ U = [−,Ω] ∶ Ω-Cat //Ω-Catcc

op. Thus the above restriction is
useful and ac-Ω-Cat is still a category of algebras.
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3.4 Applications and conclusions

First let us show that our results instantiate to known results in the case
Ω = 2.

First of all, following [26] any poset is Cauchy complete, so 2−Catccop = 2-
Catop. The objects of ac-Ω-Cat are complete and cocomplete atomic posets.
We have showed (in item 3 of Example 2.3.2) that, for posets, weighted limits
and colimits are meets, and respectively joins. For a poset P an atom a ∈ P
is any element such that

a ≤ (p ∨ q)⇒ a ≤ p or a ≤ q.

Thus the objects of ac-Ω-Cat are atomic complete lattices. Now, if every
element in an atomic lattice is a join of atoms then the lattice is completely
distributive. For finite lattices we obtain Birkhoff’s theorem of representation
of finite lattices. Which states “Any finite distributive lattice L is isomorphic
to the lattice of lower sets of the partial order of the join-irreducible elements
of L”, see [10].

For Ω = [0,∞] we obtain a duality between cauchy complete generalised
metric spaces and atomic complete and cocomplete generalised metric spaces.
Unlike the situation for posets, not all generalised metric spaces are Cauchy
Complete, see [18]. The objects of ac-Ω-Cat are atomic complete and co-
complete generalised metric spaces, but unlike the case of posets one still
needs the weights, thus the algebras for [0,∞] are some sort of generalised
lattices, where the operations are all weighted limits and weighted colimits.
So the form of our algebras complicates drastically and it will be presented
in chapter 5.

So in this chapter we have showed that Ω-Catop is an adjunct category to the
category c-Ω-Cat, whose objects are complete and cocomplete Ω-categories
and arrows are continuous and cocontinous Ω-functors, and that, if we restrict
to Cauchy complete Ω-categories on one side, and to atomic complete and
cocomplete Ω-categories on the other side, we have an equivalence. Still our
work is not done, we still have to check whether this adjunction is monadic,
and express the algebras for [[−,Ω],Ω] with operations and equations.

This will be done in the next chapters.
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Chapter 4

Monads and algebras

As we said at the end of the previous chapter, obtaining a description with
operations of equations for the DU = [[−,Ω],Ω]-algebras is still our main
interest. One could see that these algebras are have limits and colimits as
operations, but obtaining a ”syntactic” equation for distributivity is not easy.
Thus we decided to apply “divide et impera” in the sense that we will define
two monads, and show that their composite is [[−,Ω],Ω]. This technique is
inspired by [23], [32],[33].

4.1 Monads

The aim of this section is to describe two monads D,U ∶ Ω-Cat // Ω-Cat
such that DU = DU , where U = [−,Ω] ∶ Ω-Cat //Ω-Catcc

op and D = [−,Ω] ∶
Ω-Catcc

op // Ω-Cat are the two adjoints we defined in 3.2. Furthermore,
(D, d, µ) will be a KZ-doctrine, and (U , u, ν) will be a co-KZ-doctrine,
which in turn will help us to describe the distributive law relating them. This
section is inspired from [23] and [32].

Recall that for any category X, one has two Yoneda embeddings dX ∶
X // [Xop,Ω] given by x ↦ X(−, x) and uX ∶ X // [X,Ω]op given by
x↦X(x,−).
On objects, D maps X to [Xop,Ω] and on arrows it constructs the left Kan
extension along Yoneda, while U maps an object X to [X,Ω]op and on an
arrow to the right Kan extension along Yoneda. Thus for any f ∶ X // Y
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in Ω-Cat, let Df be defined as LandXdY ○ f = LandXY (−, f), and let Uf be
defined as RandXuY ○ f = RandXY (f,−) as in:

DX Df=
LandX (dY ○f)

// DY UX Uf=
RanuX (uY ○f)

// UY

X

dx

OO

f
// Y

dY

OO

X

uX

OO

f
// Y

uY

OO

(4.1)

Writing down the formula for left and right Kan extensions, see [14, Chapter
4.2], we obtain for ϕ ∶Xop // V and ψ ∶X //Ω

Df(ϕ) = LandX(dY ○ f)(ϕ)
= ⋁
x∈X

[Xop,Ω](X(−, x), ϕ)⊗ Y (−, f(x))

= ⋁
x∈X

ϕ(x)⊗ Y (−, f(x)) = ϕ ⋆ (dY ○ f),

and

Uf(ψ) = RanuX(uY ○ f)(ψ)
= ⋀
x∈X
UX(ψ,X(x,−)) ⋔ Y (f(x),−)

= ⋀
x∈X

ψ(x) ⋔ Y (f(x),−).

But considering that we calculate this end in [Y,Ω]op, in [Y,Ω] it becomes

Uf(ψ) = ⋁
x∈X

ψ(x)⊗ Y (f(x),−) = ψ ⋆ (uY ○ f)

From the universal property of Kan extensions one obtains

Proposition 4.1.1. There exist natural transformations λ ∶ Dd // dD and
δ ∶ uU // Uu .

Proof. The map Dd is a left Kan extension of dD ○ d along d and as we have
dD ○ d = dD ○ d, then from the universality property of the left Kan extension
one has a unique natural transformation λ ∶ Dd // dD.
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DX
DdX
λ↑ 22

dDX
,, DX

X

dX

OO

dX
// DX

dDX

OO (4.2)

Same argument holds for δ but for right Kan extensions.

We want D to be a KZ-doctrine, so the multiplication µ ∶ DD //D has to be
a left adjoint of dD. As dD preserves all limits and the right Kan extension of
idD along dD exists, using [14, Theorem 4.81], we know that the left adjoint
of dD exists and is expressed by RandD idD. Dually, the right adjoint of uU
exists and is expressed by LanuU idU .

DD µ

RandD id
// D UU ν=

LanuU idU
// U

D

dD

OO

idD

==

U

uU

OO

idU

>>

(4.3)

µG = ⋀
ϕ∈DX

DDX(G,DX(−, ϕ)) ⋔ ϕ νF = ⋀
ψ∈UX

[UX,Ω](G,uU(ψ)) ⋔ ψ

(4.4)
Furthermore as dD and uU are full and faithful, thus one has µ ○ dD = idD,
and ,respectively ν ○ uU = idU . Following Proposition 2.6.3 to show that D is
a KZ-doctrine we just have to prove that µ ○Dd = idD as well. To prove that
we know that µ is a left adjoint so it preserves left Kan extensions: so

µX ○DdX = µX ○LandX(dDX ○ dX)
= LandX(µX ○DdX ○ dX)
= LandX(idDX ○ d)
= LandXdX
= idDX .
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DX DdX // DDX µ
// DX

X

dX

OO

dX
// DX

dDX

OO

1

BB

(4.5)

In a similar way one shows that ν ○Uu = idU , so U is a co-KZ-doctrine. Thus
we have provn the following:

Proposition 4.1.2. (D, d, µ) is a KZ-doctrine and (U , u, ν) is a co-KZ
doctrine.

4.2 Distributive laws

In the previous section we have constructed two monads, but for their com-
posite to be a monad one needs a distributive law between them.
Verifying that a natural transformation is indeed a distributive law may not
be easy, but thanks to [23], for KZ-doctrines, we just have to check the
conditions of Proposition 2.6.6. To construct D and U , we have used Kan
extensions, thus it make sense that a distributive law between them is a Kan
extension as well. Looking at the left hand side of Diagram 2.19, and as both
uD and Ud are full and faithful, a Kan extension along any of them would
make that triangle commute, so intuitively, it should make no difference from
which triangle one starts. So if one calculates all four Kan extensions one
obtains that:

1. rrD = RanuDDu = UD(Du,−)

2. rlU = LanUd dU = UD(Ud,−)

3. rlD = LanuDDu = UD(dD ○ d,−) ⋆ dU ○ u

4. rrU = RanUddU = {UD(−,Ud), dU}

Now as for any X and any ϕ ∈ DX and any ψ ∈ UX one has DuX(ϕ)(ψ) =
UdX(ϕ)(ψ) it follows RanuDDu = LanUd dU .

Proposition 4.2.1. The natural transformation r = RanuDDu = LanUd dU ∶
UD //DU is a distributive law between D and U .
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Proof. First let us calculate all of the Kan extensions we defined above, and
then show that two equal ones satisfy the conditions of Proposition 2.6.6.

rlDG = (LanuDXDuX)G
= (LanuDX(LandX(dUX ○ uX)))G
= LanuDX○dX(dUX ○ uX)G
= ⋁
x∈X
UDX(uDX ○ dX(x),G)⊗ dUX ○ uX(x)

= ⋁
x∈X

[DX,Ω]op(DX(X(−, x),−),G)⊗ UX(−,X(x,−))

= ⋁
x∈X

[DX,Ω](G,DX(X(−, x),−))⊗ [X,Ω](X(x,−),−)

rrDG = RanuDDuG =
= ⋀
ϕ∈DX

UDX(G,uDXϕ) ⋔ DuXϕ

= ⋀
ϕ∈DX

[DX,Ω](DX(ϕ,−),G) ⋔ DuXϕ

= ⋀
ϕ∈DX

Gϕ ⋔ DuXϕ

= [DX,Ω](G,DuX)
= UDX(DuX,G)

rlUG = (LanUdXdUX)G
= ⋁
ψ∈UX

UDX(UdXψ,G)⊗ UX(−, ψ)

= UDX(UdX,G)
rrUG = (RanUdXdUX)G

= ⋀
ψ∈UX

UDX(G,UdXψ) ⋔ UX(−, ψ)

= ⋀
ψ∈UX

[DX,Ω](UdXψ,G) ⋔ [X,Ω](ψ,−)

DuX ∶ DX //DUX, let ϕ ∈ DX

ϕ ∋ DX DuX // DUX

X

dX

OO

uX
// UX

dUX

OO
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DuXϕ = ⋁
x∈X
DX(X(−, x), ϕ)⊗ dUX ○ uX(x)

= ⋁
x∈X

ϕ(x)⊗ [X,Ω](X(x,−),−)

UdX ∶ UX // UDX, let ψ ∈ UX

ψ ∋ UX UdX // UDX

X

uX

OO

dX
// DX

uDX

OO

UdXψ = ⋀
x∈X
UX(ψ,X(x,−)) ⋔ uDX ○ dX(x)

= ⋀
x∈X

ψ(x) ⋔ DX(X(−, x),−)
op= ⋁

x∈X
ψ(x)⊗DX(X(−, x),−)

Thus the two Kan extensions are equal. As uD and Ud are full and faithful
we obtain the commutativity of the two triangles, so we only need to show
the inequalities from Proposition 2.6.6.
Let ϕ ∈ DX, then we have

rlU ○ uDX(ϕ) = rlU(DX(ϕ,−)
= UDX(UdX,DX(ϕ,−))
= [DX,Ω](DX(ϕ,−),UdX)
= UdX(ϕ)
= ⋁
x∈X

ϕ(x)⊗DX(X(−, x),−)

= DuX(ϕ).

Let ψ,ψ′ be objects of UX, then we have to show that

rrD ○ Udx(ψ)(ψ′) ≤ dUX(ψ)(ψ′).
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rrD ○ UdX(ψ) = UDX(DuX,UdX(ψ))
= [DX,Ω](UdX(ψ),DuX)
= [DX,Ω](⋁

x∈X
ψ(x)⊗DX(X(−, x),−),DuX)

= ⋀
x∈X

ψ(x) ⋔ [DX,Ω](DX(X(−, x),−),DuX)

= ⋀
x∈X

ψ(x) ⋔ DuX(X(−, x))

= [X,Ω](ψ,DuX ○ dX)
= [X,Ω](ψ, dUX ○ uX)
= UX(dUX ○ uX,ψ),

thus applied to ψ′ we have

rrD ○ UdX(ψ)(ψ′) = UX(dUX ○ uX(ψ′), ψ)
= [X,Ω](ψ,UX(ψ′, uX))
= [X,Ω](ψ, [X,Ω](uX,ψ′))
= [X,Ω](ψ,ψ′)
= UX(ψ′, ψ)
= dUx(ψ)(ψ′).

So r is indeed a distributive law.

In a similar way one has a distributive law

l = RanDu uD = LandU Ud ∶ DU // UD,

given by l = DU(−,Du).

Proposition 4.2.2. The natural transformation l defined above is a left
adjoint to r.

Proof. Let X be any Ω-category, and let G be any object in UDX and F any
object in DUX then we have to show

[DX,V ](G,DUX(F,DuX, )) ≅ [UXop,Ω](F,UDX(UdX,G)) (4.6)

We have:
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[DX,Ω](G,DUX(F,Dux) =⋀
ϕ
G(ϕ) ⋔ DUX(F,DuX(ϕ))

=⋀
ϕ
G(ϕ) ⋔⋀

ψ

F (ψ) ⋔ DuX(ϕ)(ψ),

and

[UXop,Ω](F,UDX(UdX,G)) = [UXop,Ω](F, [DX,Ω](G,UdX))
= [[X,Ω], V ](F,⋀

ϕ
G(ϕ) ⋔ UdX(ϕ))

=⋀
ϕ
G(ϕ) ⋔ [[X,Ω], V ](F,UdX(ϕ))

=⋀
ϕ
G(ϕ) ⋔⋀

ψ

F (ψ) ⋔ UdX(ϕ)(ψ).

And as UdX(ϕ)(ψ) = DuX(ϕ)(ψ) we obtain what we wanted.

4.3 Algebras

In this section we will discuss the algebras generated by the two monads
defined above and their composites. As D is a KZ-doctrine, following [15],
a D-algebra A is a tuple A = (A,α) such that α ∶ DA //A is a left adjoint
to dA, and since U is a co-KZ-doctrine a U-algebra B is a tuple B = (B,β)
such that β ∶ UB //B is a right adjoint to uB.

Proposition 4.3.1. The carrier A of a D-algebra A = (A,αA) is co-complete,
and the carrier C of an U-algebra C = (C,βC) is complete. Moreover,
f ∶ (A,αA) //(B,αB) is D-morphism if and only if f preserves all weighted
colimits. Dually a map g ∶ (C,βC) // (D,βD) is a U-morphism if and only
if it preserves all weighted limits.

Proof. We will only prove it for U , the proof for D is similar. Let (C,βC) be
a U-algebra. To prove that C is complete let ψ ∶ K //Ω and F ∶ K //C
be any two functors. We have to show that the limit {ψ,F} exists in
C. As UC is complete, the limit {ψ,uC ○ F} exists and as as α preserves
limits so does α({ψ,uC ○ F} in C. And as we have α ○ uC = idC , the limit
{ψ,F} = {ψ,α ○ uC ○ F} = α{ψ,uC ○ F} exists in C.
As f ∶ (C,βC) // (D,βD) is a U -morphism the following diagram commutes:
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UC
Uf
++

βC ⊢

��

UD

βD ⊢

��

−○f
⊺kk

C

uC

TT

f
// D

uD

TT

(4.7)

As the functors Uf, βA, and βB are right adjoints they preserve all limits, and,
as every element of UA is a canonical limit of representables the continuity of
f is equivalent to the commutativity of the diagram.

The following transfers the notion of constructive complete distributivity of
[8] from 2 to a commutative quantale Ω.

Definition 4.3.2. A D algebra (A,α) is called ccd if the structure map α has
a left adjoint. We denote with CCD the subcategory of D-alg whose objects
are ccd and the arrows are limits and colimits preserving functors. Dually, a
U -algebra for which the structure map has a right adjoint is called opccd, we
denote with opCCD the subcategory of U -alg whose objects are opccd algebras
and arrows are limit and colimit preserving functors.

The terminology is justified by the following:

Example 4.3.3. In the case Ω = 2, a poset A equipped with a D-algebra
structure α is a join semi-lattice. Moreover, A is ccd in the sense of the
definition above iff it is constructive completely distributive in the usual
order-theoretic sense.

Remark 4.3.4. Note that this definition for complete distributivity is used
in many other places such as [12] and in the context of quantoloid enriched
categories in [31], and in the setting of quantale enriched categories in [17].

Definition 4.3.5. A DU-algebra is a U-algebra (A,β) which has a D-
structure α ∶ DA //A such that α is a U -homomorphism, i.e. the following
diagram commutes:

UDA rA //

Uα

��

DUA Dβ
// DA

α

��

UA
β

// A

(4.8)
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For any two Ω-CatDU (A,αA, βA) and (B,αB, βB) a DU -morphism from A to
B is a map f ∶ A //B such that it is simultaneously D and U morphism.

As the structure map α of a ccd-algebra (A,α) is both a left and a right
adjoint then the carrier A is complete and cocomplete.

Theorem 4.3.6. Ω-CatDU ≅ CCD, and Ω-CatUD ≅ opCCD.

Proof. We shall only prove the first isomorphism, the second one being similar.
Let (A,α,β) be a DU -algebra.

The functor α has a left adjoint if and only if the right Kan extension of
1DA along α exists, and is preserved by α. As DA is complete the right Kan
extension exists, so we just have to show that α preserves it. Let us take

δ(a) ∶= RanαidDA = {A(a,α−), idDA}.

As (A,α,β) is a DU-algebra, and lA ⊣ rA and the functor U is a right
Kan extension on arrows, diagram (4.8) becomes:

UDA
rA

⊥ 22

Uα
&&

DUA
Dβ
⊥ 22

lA
rr DA

α

��

DuA
rr

UA
β

⊥ 33

−○α
⊥

ff

A
uA

rr

dA⊣

^^

δ ⊣

@@

(4.9)

Now for each a ∈ A let us look at the following limit in UDA, given by
A(a,α−) ∶ DA //Ω and lA ○DuA ∶ DA // UDA ∶

{A(a,α−), lA ○DuA}.

The natural transformations r and l are distributive laws so they satisfy
diagram (2.19), thus we have

rA ○ uDA = DuA and rA ○ uDA = DuA,

and respectively

lA ○DuA = uDA, and lA ○ dUA = UdA.
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Thus we obtain:
Dβ ○ rA ○ lA ○DuA = idDA.

So we have:

α{A(−, α−), idDA} = α{A(−, α−),Dβ ○ rA ○ lA ○DuA}
= α ○Dβ ○ rA{A(−, α−), lA ○DuA}
= β ○ Uα{A(−, α−), lA ○DuA}
= {A(−, α−), β ○ Uα ○ lA ○DuA}
= {A(−, α−), α ○Dβ ○ rA ○ lA ○DuA}
= {A(−, α−), α}

Thus α has a left adjoint.

Now let (A,α) be, ccd. Then A is complete, so the left Kan extension of idA
along uA exists. Call β ∶= LanuAidA. As uA ∶ A // UA preserves colimits, β
is a right adjoint of uA.
We still need to show the commutativity of diagram (4.8), so let us look at
the following diagram:

UDA
rA

⊥ 22

Uα
&&

DUA
lA

rr

Dβ
⊥ 22 DA

α ⊢

��

DuA
rr

uDA

vv

UA
β

⊥ 33

Uδ
⊥

ff

dUA

OO

A
uA

rr

δ

TT

(4.10)

Then using the naturality of u and that lA ○DuA = uDA, one has Uδ ○ uA =
lA ○DuA ○ δ. And considering that Uδ ○ uA ⊣ β ○ Uα and that lA ○DuA ○ δ ⊣
α ○Dβ ○ rA, we conclude that β ○ Uα = α ○Dβ ○ rA
To finish the proof we have to show that (A,β) is a U-algebra, which is
equivalent to the commutativity of the following diagrams, where ν is the
multiplication of U .
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UUA
νA

⊺ 22

Uβ ⊣

��

UA
UuA

rr

β ⊣

��

A
uA //

idA

!!

UA

β

��

UA
β

⊺ 33

UuA

TT

A

uA

TT

uA
rr A

(4.11)

As both β○νA and β○Uβ have the same right adjoint, we have β○νA ≅ β○Uβ,
and as we are quantale enriched setting, isomorphism of arrows means equality.
Thus we have shown that (A,β) is indeed a U -algebra.

As we require maps in CCD to preserve limits and colimits, and DU -morphisms
also preserve limits and colimits, we have nothing left to show.

Whereas naturally occurring metric spaces, such as Euclidean spaces, are
typically not ccd, it is the case that spaces of many-valued predicates over
metric spaces are ccd:

Example 4.3.7. For any X in Ω-Cat,

1. (DX,µX) is ccd.

2. (UX,νX) is opccd.

In the following let us show that the structure map for D-algebras calculates
colimits and the structure map for U -algebras calculates limits.

Proposition 4.3.8. Let A be a Ω-category and α ∶ DA //A with α ⊣ dA.
Then α(G) = G ⋆ idA and α = LandA idA. Moreover, α ○ dA = idA. Let B
be a Ω-category and β ∶ UB //B with uB ⊣ β. Then β(F ) = {F, idB} and
β = RanuB idB. Moreover, β ○ uB = idB.

Proof. To show α(G) = G ⋆ idA we calculate

A(G⋆1A, a) = {G,A(−, a)} = DA(G,A(−.a))) = DA(G,dA(a)) = A(α(G), a)

for all a ∈ A and G ∈ DA. Moreover

LandA idA(G) = ⋁
a∈A

DA(A(−, a),G)⊗ a = ⋁
a∈A

Ga⊗ a = G ⋆ idA (4.12)

Finally, as dA is fully faithful we have LandA idA ○ dA = idA thus α ○ dA =
idA.
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4.4 DU is equivalent to [[−,Ω],Ω]
In this section we will connect DU with the double dualisation monad DU ,
and construct a left adjoint AT of the comparison functor K.

Theorem 4.4.1. For any commutative quantale Ω, the composite monad
DU is equivalent to the monad generated by the adjunction [−,Ω] ⊣ [−,Ω] ∶
Ω-Cat //Ω-Catop.

Proof. This theorem is proved in the case Ω = 2 in [23], and in the case of
quanloid enriched categories in [32]. We will give a proof in the setting of
quantale enriched categories.
The first step is to prove that DU =DU as functors. Let X,Y be Ω-categories
and let f ∶X // Y be a Ω-functor.
Then: DUX = [([X,Ω]op)op,Ω] = [[X,Ω],Ω] = DUX. Now on arrows, as
U is given by a right Kan extension, we have that Uf ⊣ Uf and as D is a
2-functor we have

DUf ⊣D(Uf).
As D on arrows is given by a left Kan extension we have that

D(Uf) ⊣D(Uf).

Thus as both have the same right adjoint we have

DUf =DUF.

To show that the two monads are equivalent we have to show that the unit and
the multiplication of both monads are the same. We have ηX ∶X //[[X,Ω],Ω]
given by ηX(x)(T ) = T (x). But we also have

dU ○ u(x)(T ) = UX(T,u(x)) = [X,Ω](X(x,−), T ) = T (x)

and as dU ○ u is the unit of DU we have shown the two units are equal.
The multiplication of DU is given by µDU =DεU . Now again one has ε = Du○d
so εU = uD ○D so we have DuDU ○DdU = DεU ⊣DεU .
Following [1] the multiplication of DU is given by

µν ○DrU = Dν ○ µUU ○DrU .

We have that
Dν ○ µUU ○DrU
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has a left adjoint given by

DlU ○DdUU ○DuU .

So to finish we have to show that

DuDU ○DdU = DlU ○DdUU ○DuU .

But that is true from the naturality of u and l ○ dU = Ud.

4.5 The comparison functor Ω-Catop → Ω-CatDU

Following [20], let the comparison functor K ∶ Ω-Catop //Ω-CatDU be given by
KX = (X,DεX), for the adjunction U ⊣D. As Ω-Catop is cocomplete, K has
a left adjoint. Let us recall that a DU -algebra is a complete and cocomplete
category, and a DU -algebra morphism is continuous and cocontinuous functor,
thus it makes sense for its left adjoint to be a version of the functor AT defined
in the previous chapter. First recall how we defined AT there.

We define a functor AT ∶ Ω-CatDU // Ω-Catop on objects as AT(A,α,β) =
(At(A))op. In order to define AT on maps we needed the following results.

Lemma 4.5.1. For any H ∶ A //B in Ω-CatDU , there exists a left adjoint
L ∶ B //A in Ω-Cat.

Lemma 4.5.2. For all A,B ∈ c-Ω-Cat and H ∶ A //B with left adjoint L,
there exists f ∶ At(B) //At(A) such that L○iB = iA○f , where iA ∶ At(A) //A
and iB ∶ At(B) //B are the atom-inclusion maps.

We can now define AT(H) = f op with f as in the lemma. This defines a
functor because composition of adjoints is again an adjoint. With these we
can show that

Theorem 4.5.3. The functor AT ∶ Ω-CatDU //Ω-Catop is a left adjoint of
K ∶ Ω-Catop //Ω-CatDU .

Proof. Let X ∈ Ω-Cat and A ∈ Ω-CatDU . We have to show that

Ω-Catop(AT(A),X) ≅ Ω-CatDU(A,KX)

which is equivalent to

Ω-Cat(X,At(A)op) ≅ Ω-CatDU(A, [X,Ω]),
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and as
Ω-Cat(X,At(A)op) ≅ Ω-Cat(Xop,At(A))op

( see [14, 2.28]) we have to prove that there is a natural isomorphism

Ω-Cat(Xop,At(A))op ≅ Ω-CatDU(A, [X,Ω]) ≅ c-Ω-Cat(A, [X,Ω]),

which is Theorem 3.2.8.

After having constructed a left adjoint AT of K, we next ask when Ω-Catop

is a full reflective subcategory of Ω-CatDU , that is, we ask when K is fully
faithful. We also want to characterise the image of K.

4.5.1 A fully faithfulness of the comparison and its im-
age

In the case of Ω = 2 the comparison K is fully faithful, but this is not true
for all commutative quantales Ω. In this subsection, we give necessary and
sufficient conditions for K to be fully faithful and describe its image.

For that let us prove the following.

Proposition 4.5.4. 1. The order x ≤ y⇔ Ω(x, y) ≥ e is the order of Ω.

2. [X,Ω] is anti-symmetric for any Ω-category X.

3. [X,Y ] is anti-symmetric iff Y is anti-symmetric.

Proof. First statement follows from the definition of Ω(v,−) as the right
adjoint of − ⊗ v for all v ∈ Ω. Let v,w ∈ Ω such that e ≤ Ω(v,w) then using
the adjunction we have e⊗ v ≤ w thus v ≤ w in the poset Ω.

The second statement follows from the third one, so we shall only prove the
third statement. “⇐ ” Suppose that [X,Y ] is not anti-symmetric, then there
exists g1 /= g2 ∶X // Y such that

e ≤ [X,Y ](g1, g2) and e ≤ [X,Y ](g2, g1).

Because e ≤ ⋀x∈X Y (g1(x), g2(x)) and e ≤ ⋀x∈X Y (g2(x), g1(x)) is equivalent
to e ≤ Y (g1(x), g2(x)) and e ≤ Y (g2(x), g1(x)) for all x ∈X and because Y is
anti-symmetric we obtain that

g1 = g2.
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”⇒ ” Take X to be a single element Ω-category.

Using Proposition 4.5.4 we notice that K is faithful on Ω-Catop(X,Y ) if
and only if X is anti-symmetric. Indeed, if X is not anti-symmetric let
g1, g2 ∶ Y //X be two distinct equivalent maps. Then as Ω is we have that
Kg1 =Kg2.

For K to be full we need that for any two categories X,Y ∈ Ω-Cat and every
map H ∶ KX //KY there exists a map h ∶ Y //X such that Kh = H.
Using the adjunction, we have K ○AT(H) =H so if one can make sure that
At(KX) ≅X and At(KY ) ≅ Y then the functor K will be full. For that we
need the following definition [18, 13]. means.

Definition 4.5.5. We say that X ∈ Ω-Cat is Cauchy complete if X ≃
At([X,Ω])op. We denote by Ω-Catcc the full subcategory of Ω-Cat spanned
by the antisymmetric Cauchy complete categories.

As Ω is complete and cocomplete, and anti-symmetric the image of U ∶
Ω-Cat //Ω-Catop is in Ω-Catcc

op, so in fact we only need that K is full and
faithful on Ω-Catcc

op, as seen in the next theorem.

Theorem 4.5.6. The comparison functor for the adjunction [−,Ω] ⊣ [−,Ω] ∶
Ω-Cat //Ω-Catcc

op is full and faithful.

To characterise what the image of K is, we use the description of full reflective
subcategories by orthogonality, see [4, Chapter 5.4]. As in the previous
chapter, see 3.3, we will show that the condition a DU -algebra has to satisfy
to be in the image of K is to be atomic.

Theorem 4.5.7. An algebra A in Ω-CatDU is isomorphic to an algebra in
the image of K if and only if it is atomic.

Proof. We shall use orthogonality [4, Chapter 5.4]. First let us take X in
Ω-Catop and show that it is atomic. Let us denote by θ ∶ id //KAT the
unit of the adjunction AT ⊣K. From orthogonality we obtain that for every
B ∈ Ω-CatDU and any f ∶ B //X we have a unique factorisation through θB,
so let us take B =X and f = idX . There exists a g ∶ [Atop(X),Ω] //X such
that g preserves limits and colimits and such that g ○ θX = idX . Thus, for
every x ∈X one has

g(θX(x)) = x.
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Now θX(x) = X(−, x) ∶ Atop(X) //Ω and as every presheaf is a colimit of
representables one has

X(−, x) =X(−, x) ⋆ dAt(X).

Thus

x = g(X(−, x)) = g(X(−, x) ⋆ dAt(X))
= g( ⋁

x′∈At(X)
X(x′, x)⊗At(X)(−, x′)) = ⋁

x′∈At(X)
X(x′, x)⊗ g(At(X)(−, x′)))

= ⋁
x′∈At(X)

X(x′, x)⊗ g(X(−, x′))) = ⋁
x′∈At(X)

X(x′, x)⊗ x′))

=X(iX−, x) ⋆ iX

Thus as iX ∶ At(X) //X is dense, X is atomic.

The converse follows from Lemma 3.3.4 as X ≅ [Atop(X),Ω] = D(At(X)),
which is ccd.

4.6 The special case of Ω ≅ Ωop

In the case Ω = 2, we have opCCD = CCD (since the dual of a completely
distributive lattice is a completely distributive lattice). But this is not true for
general Ω. Here we show that DU -algebras and UD-algebras can be identified
if Ω ≅ Ωop in Ω-Cat.

The following two propositions are due to [8] in the case Ω = 2.

Proposition 4.6.1. Let A,B be any two complete and cocomplete categories,
then B is ccd if A is ccd and we have one of the following:

B %% ⊥
i2

99

99 ⊥
i1

%%

Apoo B // i // A
⊥
p1

yy

⊥
p2

ee (4.13)

Proof. Let us show that B is CCD using the first property.

Let us define αB ∶ DB //B with αB = p ○ αA ○Di2, and δB ∶ B //DB with
δB = p ○ δA ○Di1 as in the following diagram
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DB
Di1
⊥ ''

Di2
88

αB

��

DA

αA

��

Dp⊥
oo

−○i2
⊥

[[

B

i1

⊥ %%

i2

99

dB⊣

WW

δB ⊣

GG

Ap
⊥

oo

dA⊣

WW

δA ⊣

GG (4.14)

then we have δB ⊣ αB ⊣ (− ○ i2) ○ dA ○ i2. Thus all we have to show is that

dB = (− ○ i2) ○ dA ○ i2.

As i2 is an embedding for any two objects of B, b and b′ we have

((− ○ i2) ○ dA ○ i2)(b)(b′) = ((− ○ i2) ○A(−, i2(b))(b′)
= A(i2(b′), i2(b))
= B(b′, b)
= dB(b)(b′).

Proposition 4.6.2. If Ω ≅ Ωop for any Ω-category A, if A is ccd then Aop is
also ccd.

Proof. As Ω ≅ Ωop, for any X we have [Xop,Ω] ≅ [X,Ω]op, see [14, 2.28]. Now
as A is CCD we have the following:

A %%
⊥
dA

88

99 ⊥
δA

''

DAαAoo

and if we apply the 2-functor ()op ∶ Ω-Cat //Ω-Cat on it we obtain
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Aop
'' ⊥

dop
A

55

77 ⊥
δop
A

))

(DA)opαop
A

oo

and as (DA) ≅D(Aop) and D(Aop) is CCD from Proposition 4.6.1 we deduce
Aop is also CCD.

Corollary 4.6.3. If Ω ≅ Ωop as Ω-categories then Ω-CatDU ≅ Ω-CatUD.

Proof. If A is ccd then Aop is opccd, so Aop is simultaneously ccd and opccd.

Remark 4.6.4. That a DU-algebra is a UD-algebra means that the dis-
tributive laws l ∶ DU // UD and r ∶ UD //DU imply each other, which is
well-known in lattice theory.

Example 4.6.5.

1. [0,1] ≅ [0,1]op means that [0,1] has a DU structure as well an UD
structure.

2. [0,∞] ≇ [0,∞]op. Indeed, suppose for a contradiction that we have such
an isomorphism ϕ ∶ Ωop //Ω in Ω-Cat. Then for all a, b ∈ Ω one has
Ω(a, b) = Ω(ϕ(b), ϕ(a)). Taking a = 0, it follows from ϕ(0) =∞ that we
have b =∞−. ϕ(b) for all b ∈ Ω, but this is not possible.

4.7 Conclusions

In this chapter we have a categorical answer for the question ” what are the
algebras for the monad [[−,Ω],Ω]”.

Setop complete atomic Boolean algebra

Ω-Catop CCD

More precisely, we have seen that the subcategory Ω-Catcc
op of Cauchy com-

plete Ω-categories is equationally definable in the abstract categorical sense
that it is an orthogonal subcategory of the monadic category CCD.

Recall that a D-algebra (A,α) is ccd if α has a left adjoint, or, equivalently,
if it preserves all weighted limits. So let J be an indexing category and let
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ψ ∶ J //Ω and F ∶ J //DA be two maps, and let {ψ,F} be their limit. That
α preserves it means:

α({ψ,F}) = {ψ,α(F ))} (4.15)

Written with ends and coends and taking in consideration what it means to
be a limit in a functor category, see [14, Chapter 3], one has:

⋁
a∈A

(⋀
j∈J
ψ(j) ⋔ F (j)(a))⊗ a = ⋀

j∈J
ψ(j) ⋔ (⋁

a∈A
F (j)(a)⊗ a) (4.16)

Dually a U -algebra (B,β) is opccd if its structure map β is a left adjoint, that
is, if β preserves all weighted colimits:

Proposition 4.7.1. The U-algebra (B,β) is opccd if and only if for any K
and ϕ ∶ Jop //Ω and C ∶ J // UB we have

{{ϕ,Cop}, idB} = {ϕ,{Cop, idB}} (4.17)

In the example below, Ω in items 1, 2 and 4 is completely distributive as
a Ω-category, because Ω = D(1). Item 3 shows a metric space which is
complete and cocomplete as a Ω-category but is not completely distributive
as a Ω-category.

Still this does not define a logic in the usual sense, as an algebra on a set
given by operations and equations. So in the following chapters we will give a
description of D,U , and DU -algebras as sets with operations and equations.
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Chapter 5

Variety of algebras

In this chapter we will take the algebras for the monads: D,U , and DU and
construct algebras over sets with operations and equations.

In the next section by a representative of any cardinal K we understand any
set K whose number of elements is K. For any finite cardinal N one can
think of the representative N as the subset N = {1,2,3, ..,N} ⊂ N. Let us
denote by K the class of all cardinals. For any two cardinals K1,K2 ∈ K by
the direct sum of K1 and K2, denoted by K1 ⊕K2 we understand any set
whose number of elements is equal to K1 +K2. For example if the set K1 is a
representative for K1 and the set K2 is a representative for K2 then the direct
sum K1 ⊕K2 is a representative for K1⊕K2. For any set A and any cardinal
K by AK we understand the direct product of ΠKA times, or equivalently if
K is a representative for K we understand the set of all functions [K,A]. In
the context of this chapter we will not distinguish from a cardinal and its
representative set. Also if the cardinal K1,K2 are finite then the representative
set for K1 ⊕K2 is the set {1,2, ...,K1,K1 + 1,K1 + 2, ...,K1 +K2} ⊂ N.

5.1 Syntactic D-algebras and U-algebras

Definition 5.1.1. By a ⟨ΣD,ED⟩-algebra we understand a set A together
with a family of unary operations (v ⋆ )v∈Ω ∶ A // A indexed by Ω, and
a family of operations ⊔K ∶ AK // A, where K ranges over all cardinals,
satisfying the following 6 axioms. Dually the notions of a ⟨ΣU ,EU⟩-algebra is
given by a set B together with a family of unary operations (v ⊳ )v∈Ω ∶ B //B
and for each cardinal K an operation

d
K ∶ BK //B satisfying the following
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6 axioms:

1. I ⋆ − = idA I ⊳ = idA

2. For all a ∈ A, b ∈ B and v,w ∈ Ω

v ⋆ (w ⋆a) = (v⊗w)⋆a v ⊳ (w ⊳ b) = (v⊗w) ⊳ b

Ω ×Ω ×A idΩ× ⋆
//

⊗×idA

��

Ω ×A

⋆

��

Ω ×Ω ×B idΩ× ⊳
//

⊗×idB

��

Ω ×B

⊳

��

Ω ×A ⋆
// A Ω ×B ⊳

// B

3. For all v ∈ Ω and ak ∈ [K,A], bk ∈ [K,B]

v ⋆⊔K ak = ⊔K(v ⋆ ak) v ⊳
d
K bk =

d
K(v ⊳ bk)

Ω ×AK

∆×idKA

��

idΩ×⊔K // Ω ×A

⋆

��

Ω ×BK

∆×idKB

��

idΩ×
d
K // Ω ×B

⊳

��

ΩK ×AK
( ⋆ )K

// AK ⊔K
// A ΩK ×BK

( ⊳ )K
// BK d

K

// B

4. For all a ∈ A, b ∈ B and vk ∈ [K,Ω]

(⋁K vk) ⋆ a = ⊔K(vK ⋆ a) (⋁K vk) ⊳ b =
d
K(vK ⊳ b)

ΩK ×A

idKA ×∆

��

(⋁K)×idA
// Ω ×A

⋆

��

ΩK ×B

idKB×∆

��

(⋁K)×idB
// Ω ×B

⊳

��

ΩK ×AK
( ⋆ )K

// AK ⊔K
// A ΩK ×BK

( ⊳ )K
// BK d

K

// B
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5. For a set K and function J ∶K // Set let us denote with J̄ =∐k∈K Jk.
For each k ∈K let ak ∶ J(k) //A and let a ∶ J̄ //A be the map induced
by the coproduct. For each k ∈K let bk ∶ J(k) //B and let b ∶ J̄ //B
be the map induced by the coproduct.

⊔K(⊔Jk ak) = ⊔J̄ a
d
K(

d
Jk bk) =

d
J̄ b

Πk∈KAJ(k)
Πk∈K ⊔J(k)

//

⊔ ¯JK

&&

AK

⊔K

��

Πk∈KBJ(k)
Πk∈K

d
J(k)

//

d
¯JK

&&

BK

d
K

��

A B

6. For all a ∈ A and b ∈ B

⊔K ∆a = a
d
K ∆b = b

AK
⊔K // A BK

d
K // B

A

∆

OO

idA

>>

B

∆

OO

idB

==

7. For any two cardinals J,K and any bijective function f ∶ J //K one
has

⊔J ○Af = ⊔K
d
J ○Af =

d
K

J

f

��

AJ
⊔J // A BJ

d
J // B

K1 AK

Af

OO

⊔K

>>

BK

Bf

OO

d
K

>>
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Before we continue let us fix some notations. If the cardinal K is 2 then
we will denote ⊔K = ⊔ and

d
K = ⊓, furthermore these will be used in infix

position. For any cardinal K by an element aK of AK we understand any
function aK ∶ K // A. If K is finite aK can be represented as a tuple
aK = (a1, a2, ..., ak) where k = ∣K ∣.

Example 5.1.2. 1. For any quantale Ω, the Ω-category Ω is a ⟨ΣD,ED⟩-
algebra, with ⊔ given by ⋁ and v ⋆ − given by v ⊗ −. The fact that
this satisfies all the axioms is trivial. In a similar way Ω is also a
⟨ΣU ,EU⟩-algebra with

d
given by ⋀ and v ⊳ − given by Ω(v,−).

2. Any cococmplete Ω-category A is a ⟨ΣD,ED⟩-algebra. For any v ∈ Ω
and a ∈ A we define v ⋆ a as the colimit of a weighted by v. And for
every cardinal K and any aK ∈ AK we define ⊔K aK as the colimit of
aK weighted by constant Ω-functor IK ∶K //Ω given by IK(k) = I for
all k ∈K. That is equivalent to saying that ⊔K is a coend.

3. Any complete Ω-category A is a ⟨ΣU ,EU⟩–algebra

4. For any quantale Ω and any Ω-category X the functor category [X,Ω]
is a ⟨ΣD,ED⟩-algebra and the functor category [X,Ω]op is a ⟨ΣU ,EU⟩-
algebra. If Ω ≅ Ωop then any functor category is both a ⟨ΣD,ED⟩ and a
⟨ΣU ,EU⟩-algebra.

Let A be a ⟨ΣD,ED⟩-algebra, then if we only look at axioms 5, 6, 7,
(A, (⊔K)(K∈K)) is a ⋁-semi-lattice. Then it makes sense that A has an
order relation given by a ≤ b⇔ a ⊔ b = b. For more details on this one can
check any book on lattice theory, for example [10]. With this order one has
the following proposition:

Proposition 5.1.3. Let J,K be any two cardinals and let f ∶ J //K be any
function, then one has:

⊔J ○Af ≤ ⊔K
d
J ○Af ≥

d
K
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J

f

��

AJ
⊔J //

��

A BJ

d
J //

U] B

K AK

Af

OO

⊔K

FF

BK

Bf

OO

d
K

FF

Proof. Before we start the proof let us prove some preliminaries results.
For each cardinal K and each aK ∈ [K,A] the value of ⊔K aK does not
depend on duplicates in aK . That is if there exists k1, k2 ∈ K such that
aK(k1) = aK(k2) then if we note with K ′ =K − {k1}, and K ′′ =K − {k2}, and
aK′ ∶K ′ //A, and aK′′ ∶K ′′ //A given by aK′(k) = aK(k) for all k ∈K ′ and
aK′′(k) = aK(k) for all k ∈K ′′ then one has

⊔
K

aK =⊔
K′
aK′ =⊔

K′′
aK′′ .

For simplicity let us suppose that those are the only duplicates in aK . There
exists a bijection on K, call it s ∶K //K, which sorts aK in the sense that if
we think K to be ordered then As(aK) is a monotone map. The way one can
construct this bijection is simple: first we sort aK keeping track of the initial
position, define s(k) as the initial place of aK(k). This is indeed a bijection,
as the sorting just permutes the element of aK . We have

⊔
K

aK =⊔
K

As(aK),

where the duplicate elements are ”next” to each other, thus we can apply
Axioms 5 to ”split” K into the partition K = J ⊕2⊕J ′ such that 2 represents
the two equal values of aK . Then we have
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⊔
K

aK =⊔
K

As(aK)

=⊔
3

(⊔
J

aJ , aK(k1) ⊔ aK(k2),⊔
J ′
)

=⊔
3

(⊔
J

aJ , aK(k1),⊔
J ′
aJ ′)

=⊔
3

(⊔
J

aJ , aK(k2),⊔
J ′
aJ ′)

=⊔
K′′
As

′′

aK′′

=⊔
K′
As

′

aK′ ,

where s′ ∶K ′ //K ′ and s′′ ∶K ′′ //K ′′ are two sorting bijections on aK′ , and
respectively, on aK′′ .
Let aK be any tuple in AK such that aK has no duplicates. We have to show
that

⊔
J

Af(aK) ⊔⊔
K

aK =⊔
K

aK .

Now let us calculate the left hand side:

⊔
J

Af(aK) ⊔⊔
K

aK
A5= ⊔

J⊕K
Af(aK)⊕ aK

g= ⊔
J⊕K

Ag(Af(aK)⊕ aK)

A5= ⊔
K

(⊔
K1

aK1 ,⊔
K2

aK2 , ..)

A6= ⊔
K

(ak1 , ak2 , ..)

=⊔
K

aK

Where g ∶ J ⊕ K // J ⊕ K is a bijective function which sorts the tuple
Af(aK)⊕aK . Now we choose to split J ⊕K into a partition J ⊕K = ⊕k∈KKk,
where each Ag(Af(aK)⊕ aK) on Kk is constant, furthermore it is maximally
constant, in the sense that we cannot add any more elements to Kk.

As any ⟨ΣD,ED⟩-algebra A has a preorder structure on it, given by a ≤ b⇔
a⊔ b = b, one can ask if A also has a Ω-category structure. The same question
can be asked for ⟨ΣU ,EU⟩-algebras. The answer for both questions is yes and
is given by the following.
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Proposition 5.1.4. Any ⟨ΣD,ED⟩-algebra A has a Ω category structure given
by

A(a, b) =⋁{v ∈ Ω ∣ (v ⋆ a) ≤ b},
for any a, b ∈ A. Also any ⟨ΣU ,EU⟩-algebra B has a Ω-category structure given
by

B(b, b′) =⋁{v ∈ Ω ∣ b ≤ (v ⊳ b′)},
for any b, b′ ∈ B.

Proof. In order to show that A is a Ω-category then we have to show that for
any a, b, c ∈ A one has I ≤ A(a, a) and A(a, b)⊗A(b, c) ≤ A(a, c).
Now using axiom 1 and axiom 6 one has I ⋆ a ⊔ a = a ⊔ a = a, which means
that I ⋆ a ≤ a and as we take a join in Ω we have

I ≤⋁{v ∈ Ω ∣ v ⋆ a ≤ a} = A(a, a).

Now let v and v′ be such that (v ⋆ a) ≤ b and (v′ ⋆ b) ≤ c, which by definition
is equivalent to (v ⋆ a)⊔ b = b and (v′ ⋆ b)⊔ c = c. Replacing b in last equation
with (v ⋆ a) ⊔ b one obtains:

c = (v′ ⋆ (v ⋆ a ⊔ b)) ⊔ c
= ((v′ ⋆ (v ⋆ a)) ⊔ (v′ ⋆ b)) ⊔ c
= (((v′ ⊗ v) ⋆ a) ⊔ (v′ ⋆ b)) ⊔ c
= ((v′ ⊗ v) ⋆ a) ⊔ ((v′ ⋆ b) ⊔ c)
= ((v ⊗ v′) ⋆ a) ⊔ c

Thus one has ((v ⊗ v′) ⋆ a) ≤ c. Using that ⊗ preserves colimits, that is ⋁, in
both arguments one obtains:

A(a, b)⊗A(b, c) =⋁{v ∈ Ω ∣ (v ⋆ a) ≤ b}⊗⋁{v′ ∈ Ω ∣ (v′ ⋆ b) ≤ c}
=⋁⋁{v ∈ Ω ∣ (v ⋆ a) ≤ b}⊗ {v′ ∈ Ω ∣ (v′ ⋆ b) ≤ c}
=⋁⋁{v, v′ ∈ Ω ∣ ((v ⊗ v′) ⋆ a) ≤ c}
≤⋁{v ∈ Ω ∣ (v ⋆ a) ≤ c}
= A(a, c)

The proof for B is similar, and relies again on the fact that ⊗ preserves
colimits.

89



One could ask why we do not define A(a, b) as that v ∈ Ω such that v ⋆ a = b,
and the answer is because ⋆ is not injective in general. For that let us look
again at Ω = [0,∞], and let us note that w ⋆∞ =∞ for all w ∈ Ω, thus there
is no unique w ∈ Ω to define [0,∞](∞,∞).

Example 5.1.5. Let us look at Ω = (([0,∞] ≥),0,+). Define v ⋆ a = v + a
and ⊔K(v1, ..., vk) = infR(v1, ..vk), thus Ω is a ⟨ΣD,ED⟩-algebra. Let us check
that the Ω-category structure given by Proposition 5.1.4 is the usual one. Let
a, b ∈ [0,∞], then one has

{v ∈ Ω ∣ v + a ≥R b} = {v ∈ Ω ∣ v ≥R b − a}
Now obviously [0,∞](a, b) = b−. a = inf{v ∈ Ω ∣ v ≥R b − a} = ⋁{v ∈ Ω ∣ v ≥R
b − a}. Also let us note that ⋀{v ∈ Ω ∣ v ≥R b − a} =∞

One has two equivalent definitions of a semi-lattice, one using operations and
equations, and one saying that a semi-lattice is a complete/cocomplete poset.
One could ask if this is true for ⟨ΣD,ED⟩/⟨ΣU ,EU⟩- algebras. The answer is
yes and it is given by the next theorem.

Theorem 5.1.6. Let A be a ⟨ΣD,ED⟩-algebra and B a ⟨ΣU ,EU⟩-algebra, then
one has the following statements:

1. For any v ∈ Ω and a, b ∈ A we have A(v ⋆ a, b) = Ω(v,A(a, b)). Thus
v ⋆ a is the colimit of a weighted by v.

2. The operation ⊔K is a coend, in the sense that for any cardinal K one
has A(⊔K ak, b) = ⋀k∈K A(ak, b).

3. For any v ∈ Ω and a, b ∈ B we have B(a, v ⊳ b) = Ω(v,A(a, b)). Thus
v ⊳ b is the limit of b weighted by v.

4. The operation
d
K is an end, in the sense that for any cardinal K one

has B(a,
d
K bk) = ⋀k∈K B(a, bk).

Proof. 1. For any a, b ∈ A and v ∈ Ω we have

Ω(v,A(a, b)) =⋁{w ∈ Ω ∣ v ⊗w ≤⋁{v′ ∈ Ω ∣ v′ ⋆ a ≤ b}},

and using Axiom 2,

A(v ⋆ a, b) =⋁{v′ ∈ Ω ∣ v′ ⋆ (v ⋆ a) ≤ b} =⋁{v′ ∈ Ω ∣ (v′ ⊗ v) ⋆ a ≤ b}.
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We have to prove that every element in the first join is smaller than one
element in the second one and that every element of the second join is
also smaller than an element in the first one.

So let v′ ∈ Ω such that (v′ ⊗ v) ⋆ a ≤ b then obviously v ⊗ v′ ≤ ⋁{w ∈ Ω ∣
w ⋆ a ≤ b}.

For the other direction let w ∈ Ω such that v ⊗w ≤ ⋁{v′ ∈ Ω ∣ v′ ⋆ a ≤ b},
and let us note v̄ = ⋁{v′ ∈ Ω ∣ v′ ⋆ a ≤ b}. As Ω is cocomplete then
v̄ ⋆ a ≤ b and using that ⋆ is monotone we have

(v ⊗w) ⋆ a ≤ v̄ ⋆ a ≤ b

thus v ⊗w ∈ {v′ ∈ Ω ∣ v′ ⋆ a ≤ b}.

2. To show that A(⊔K ak, b) = ⋀k∈K A(ak, b) one has to prove that

⋁{v ∈ Ω ∣ v ⋆ (⊔
K

ak) ≤ b} = ⋀
k∈K

⋁{v ∈ Ω ∣ v ⋆ ak ≤ b},

for any cardinal K and any tuple (a1, .., ak) in AK .

For direction ” ≤ ” follows from, for all k ∈K, and for all v ∈ Ω such that
v ⋆ (⊔K ak) ≤ b we have v ⋆ ak ≤ b. Indeed using axioms 5 and 6 one has:

(v ⋆ ak) ⊔ b = (v ⋆ ak) ⊔ ((v ⋆⊔
K

ak) ⊔ b)

= (v ⋆ ak) ⊔ ((⊔
K

(v ⋆ ak)) ⊔ b)

=⊔
K

(v ⋆ a) ⊔ b

= b

So one has ⋁{v ∈ Ω ∣ v ⋆ (⊔K ak) ≤ b} ≤ ⋀k∈K ⋁{v ∈ Ω ∣ v ⋆ ak ≤ b}.

Now to show the other inequality let us observe that for any v ∈ Ω such
that v ⋆ ak ≤ b for all k ∈K then one also has v ⋆ (⊔K ak) ≤ b.

Thus any ⟨ΣD,ED⟩-algebra is co-complete as a Ω-category, and any ⟨ΣU ,EU⟩-
algebra is complete as a Ω-category.
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Definition 5.1.7. For any two universal D-algebras (A, (v ⋆A )v∈Ω,⊔AK) and
(B, (v ⋆B )v∈Ω,⊔BK), a map f ∶ A // B is a morphism if f preserves all
operations, that is if the following diagrams commute:

A
v⋆A //

f

��

A

f

��

AK
⊔AK //

fK

��

A

f

��

B
v⋆B

// B BK

⊔BK
// B

(5.1)

Theorem 5.1.8. The category ⟨ΣD,ED⟩-alg of ⟨ΣD,ED⟩-algebras and their
morphisms is isomorphic to the category of D-algebras, and the category
of ⟨ΣU ,EU⟩-algebras and their morphisms is isomorphic to the category of
U-algebras.

Proof. In order to prove the first statement let us define two functors, and
show they are inverse to each other.

⟨ΣD,ED⟩-alg

P

''

D-alg

Q

≅
gg

(5.2)

Let (A, (v ⋆ )v∈Ω, (⊔K)K) be a ⟨ΣD,ED⟩-algebra, define α ∶ DA //A by

α(ϕ) =⊔
∣A∣
ϕ(a) ⋆ a, ∀ϕ ∈ DA.

We have to show that α is a Ω-functor and that it is a left adjoint to dA.
Indeed let ψ,ϕ ∈ DA, we have to check that

DA(ϕ,ψ) ≤ A(α(ϕ), α(ψ)) =⋁{v ∈ Ω ∣ v ⋆ (⊔
∣A∣
ϕ(a) ⋆ a) ≤⊔

∣A∣
ψ(b) ⋆ b}.

It is enough to show that DA(ϕ,ψ) ⋆ (⊔∣A∣ϕ(a) ⋆ a) ≤ ⊔∣A∣ψ(b) ⋆ b. Using
Axioms 3 and 2 one rewrites the left hand as

⊔
∣A∣

((DA(ϕ,ψ)⊗ ϕ(a)) ⋆ a) ≤⊔
∣A∣
ψ(a) ⋆ a.
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And as ∀a ∈ A we have DA(ϕ,ψ)⊗ ϕ(a) ≤ ψ(a) the above inequality is true.
Thus α is a Ω-functor.

In order for (A,α) to be a D-algebra we need to show is that α ⊣ dA, but
that follows from Theorem 5.1.6 items 1 and 2.
Let f ∶ A //B be a morphism of ⟨ΣD,ED⟩-algebras, then as f preserves all
operations f preserves colimits, thus f is also a morphism of D-algebras.

Define
P ((A, (v ⋆ )v∈Ω, (⊔

K

)K) = (A,α),

and
P (f) = f.

Let (A,α) be a D-algebra then A is cocomplete. Let K = {∗} be a singleton
set. For any v ∈ Ω and a ∈ A let ϕ ∶ Kop // Ω and F ∶ K // Ω be two
Ω-functors such that ϕ(∗) = v and F (∗) = a then define

v ⋆ a = ϕ ⋆ F.

Now for any cardinal K let K be a discrete Ω-category of cardinal K. For
any element aK of AK define

⊔
K

aK = IK ⋆ aK ,

where IK ∶ Kop // Ω is the constant Ω-functor given by IK(k) = I for all
k ∈K.

In order for Q(A,α) = (A, (v ⋆ −)v∈Ω, (⊔K)K cardinal) to be a ⟨ΣD,ED⟩-
algebra, one needs to check the axioms of Definition 5.1.1.

1. Let a, b ∈ A then one has A(I ⋆ a, b) = Ω(I.A(a.b)) = A(a, b) thus
I ⋆ a = a.

2. Let a, b ∈ A and v,w ∈ Ω then one has

A(v ⋆ (w ⋆ a), b) = Ω(v,A(w ⋆ a, b))
= Ω(v,Ω(w,A(a, b)))
= Ω(v ⊗w,A(a, b))
= A((v ⊗w) ⋆ a, b).

thus v ⋆ (w ⋆ a) = (v ⊗w) ⋆ a.
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3. Let K be any cardinal and ak ∈ AK , and b ∈ A and v ∈ Ω. Then A(v ⋆
⊔K ak, b) = Ω(v,A(⊔K ak, b)) = Ω(v,⋀k∈K A(ak, b)) = ⋀k∈K Ω(v,A(ak, b)) =
⋀k∈K A(v ⋆ ak, b) = A(⊔K(v ⋆ ak), b).

4. Let K be any cardinal and a, b ∈ A and vk ∈ ΩK . Then A((⋁K vk)⋆a, b) =
Ω(⋁K vk,A(a, b)) = ⋁K A(ak ⋆ a, b) = A(⊔K(ak ⋆ a), b).

5. Follows from the fact that in Ω conical limits are associative. Again
this is true because Ω is a quantale.

6. Let K be any cardinal and a, b be elements of A, then one has:

A(⊔
K

∆a, b) = A(IK ⋆∆a, b)

= [Kop,Ω](IK,A(∆a, b))
= ⋀
k∈K

Ω(IK(k),A(∆a(k), b))

= ⋀
k∈K

Ω(I,A(a, b))

= ⋀
k∈K

A(a, b)

= A(a, b).

Thus ⊔K ∆a = a.

7. Let J,K be two cardinals and f ∶ J //K a bijective function, and
aK ∈ AK , and b ∈ A. One has:

A(⊔
J

Af(aK), b) = A(IJ ⋆Af(aK), b)

= ⋀
j∈J
A(Af(aK)(j), b)

and

A(⊔
K

aK , b) = ⋀
k∈K

A(aK(k), b).

All we have to show is that

⋀
j∈J
A(Af(aK)(j), b) = ⋀

k∈K
A(aK(k), b).
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Now we have to show that this is indeed an isomorphism. If we start with a
⟨ΣD,ED⟩-algebra A then as we define colimits via it’s operations and then
we define the operations via colimits we have nothing to show, but if we start
with a D-algebra B we have to show that the Ω-category structure given by
B being a ⟨ΣD,ED⟩-algebra is the same as the original Ω-category structure.
So let (B,αB) be a D-algebra and let (B, (v ⋆ −)v∈Ω, (⊔K = ⋁K)K cardinal) be
it’s corresponding ⟨ΣD,ED⟩-algebra. Let us note with B⊔(a, b) = ⋁{v ∈ Ω ∣
v ⋆ a ≤ b}. We have to show that B(a, b) = B(a, b)⊔, which this is equivalent
to

v ⋆ a ≤ b⇔ v ≤ B(a, b).
But that is the definition of a colimit.
The fact that the structure map is the same follows from direct calculation.

5.2 Syntactic DU-algebras

In order to make the definition of a ⟨ΣDU ,EDU⟩-algebra more readable we
need some preliminary results.

Lemma 5.2.1. Let (A, (v⋆−)(v∈Ω), (⊔K)K) be a ⟨ΣD,ED⟩-algebra and (A, (v ⊳
−)(v∈Ω), (

d
K)K) be a ⟨ΣU ,EU⟩-algebra. In particular A is a meet-semi lattice

and join semi-lattice, so the order given by these is compatible if and only if
we have the following two absorption axioms:

1. a ⊓ (a ⊔ b) = a for all a, b ∈ A

2. a ⊔ (a ⊓ b) = a for all a, b ∈ A

Definition 5.2.2. By a distributive ⟨ΣDU ,EDU⟩-algebra we understand, a set
A together with two unary family of operations (v ⋆−)(v∈Ω) ∶ A //A and (v ⊳
−)(v∈Ω) ∶ A //A, and for each cardinal K two K-arity operations ⊔K ∶ AK //A
and

d
K ∶ AK //A, such that (A, (v ⋆ −)(v∈Ω), (⊔K)K) is a ⟨ΣD,ED⟩-algebra

and (A, (v ⊳ −)(v∈Ω), (
d
K)K) is a ⟨ΣU ,EU⟩-algebra satisfying the following

equations:

1. a ⊓ (a ⊔ b) = a for all a, b ∈ A

2. a ⊔ (a ⊓ b) = a for all a, b ∈ A

3. for any v ∈ Ω and any a, b ∈ A one has (v ⋆ a) ≤ b⇔ a ≤ (v ⊳ b)
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4. for any cardinal K and any ϕ ∶K //Ω and G ∶K ×A //Ω

l

K

ϕ(k) ⊳ (⊔
A

G(k)(a) ⋆ a) =⊔
A

f(a) ⋆ a, (5.3)

where f ∶ A // Ω is given by f(a) = ⋀k∈K ϕ(k) ⋔↓ G(k)(a) where

↓ G(k) ∶ Aop //Ω is given by ↓ G(k) = LaniG = ∫
b∈A

A(−, b)⊗G(k)(b)
where i ∶∣ A ∣ //Aop is the object inclusion functor.

Remark 5.2.3. 1. One can say that the distributive axiom still needs
some work, in the sense that it is not entirely syntactic but the same is
true about the complete distributivity axiom which uses choice functions.
Furthermore the distribuive law written like that is a normal form axiom,
and it comes from the fact that DU-algebras are CCD, thus they are
D-algebras. So it makes sense that all terms to be written only using
operations from ⟨ΣD,ED⟩.

2. Let us not that the equivalence CCD ≅ Ω-CatDU plays a crucial role in
the above definition, equation (5.3) is exactly the ccd property.

3. One needs to calculate f using the closure of G. Indeed, let us look at
the following example:

Let P be the following poset P = {0 ≤ 1 ≤ 2 ≤ 3}, and let K = {1, 2} be a
two elements set. Then let ψ ∶K // 2 and G ∶K ×P // 2 be given by
ψ(1) = ψ(2) = 1 and G(1)(0,1,2,3) = (0,1,0,1) and G(2)(0,1,2,3) =
(1,0,1,0).

Using infix notation we have
l

K

ϕ(k) ⊳ (⊔
A

G(k)(a) ⋆ a) = (1 ⊳⊔
P

(0,1,0,1)) ⊓ (1 ⊳⊔(1,0,1,0))

= (1 ⊳ 3) ⊔ (1 ⊳ 2)
= 2

and on the other side we have

f(0) = ψ(0) ⋔ G(0)(0) ∧ ψ(1) ⋔ G(1)(0) = 0,

f(1) = ψ(0) ⋔ G(0)(1) ∧ ψ(1) ⋔ G(1)(1)) = 0,
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f(2) = ψ(0) ⋔ G(0)(2) ∧ ψ(1) ⋔ G(1)(2) = 0,

f(3) = ψ(0) ⋔ G(0)(3) ∧ ψ(1) ⋔ G(1)(3) = 0.

Thus we have ⊔a∈P f(a) ⋆ a = 0 which is clearly different than the other
side.

Now if we would have taken the up closure, ↓ G, of G in the calculation
of f then f(1) = f(2) = 1 thus we would have had ⊔a∈P f(a) ⋆ a = 2.

4. As it was shown in [8], and we will reprove it below, in the case Ω = 2
our distributivity law is equivalent to the usual distributive law using
choice functions.

Let Ω = 2, then any completely distributive lattice is a distributive
⟨ΣDU ,EDU⟩-algebra and any distributive ⟨ΣDU ,EDU⟩-algebra is a com-
pletely distributive lattice.

Let L be a completely distributive lattice, then for any L ∈ P(L) we
have

{⋀{⋁S ∣ S ∈ L}} =⋁{⋀{T (s) ∣ S ∈ L} ∣ T choice function}. (5.4)

Let L ∈ DL then we have

⋂L = {⋀{T (s) ∣ S ∈ L} ∣ T choice function}.

Indeed, let x ∈ ⋂L then x is in S for all S in L. Now let T be
the choice function that for any S takes x, then ⋀T (S) = x thus
x ∈ {⋀{T (s) ∣ S ∈ L} ∣ T choice function}. For the other direction let
x ∈ {⋀{T (s) ∣ S ∈ L} ∣ T choice function}, then there exists a choice
function T such that x = ⋀{T (S) ∣ S ∈ L} and as each set S is down
closed then x ∈ S thus x ∈ ∩L,

For every L ∈ PL we have

∩{↓ S ∣ S ∈ L} =↓ {∧{T (S) ∣ T ∣ S ∈ L} choice function}

Let x ∈ {∧{T (S) ∣ T ∣ S ∈ L} choice function} then for each S ∈ L we
have x ≤ T (S) thus x ∈↓ S for each S so x ∈ ∩{↓ S ∣ S ∈ L}. Now le
x ∈ ∩{↓ S ∣ S ∈ L} thus for each S there exists ys ∈ S such that x ≤ yS.
Now define T (S) = yS. Thus x ∈↓ {∧{T (S) ∣ T ∣ S ∈ L} choice function}.
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Proposition 5.2.4. The Ω-category structure given by A being a ⟨ΣD,ED⟩-
algebra and a ⟨ΣU ,EU⟩-algebra are compatible, that is for all a, b ∈ A we have

⋁{v ∈ Ω ∣ v ⋆ a ≤⊔ b} = ⋁{v ∈ Ω ∣ a ≤⊓ v ⊳ b}

Proof. With the absortion rules defined above one shows that the order given
by ⊔ is equivalent with the order given by ⊓.
Let a, b be elements of A, then one has A⊔(a, b) = ⋁{v ∈ Ω ∣ v ⋆ a ≤⊔ b} and
A⊓(a, b) = ⋁{v ∣ a ≤⊓ v ⊳ b}, but as the order is the same and using Axiom 3,
then one has A⊔(a, b) = A⊓(a, b).

Now let us show that ⟨ΣDU ,EDU⟩ algebras are indeed DU -algebras.

Theorem 5.2.5. The category of distributive ⟨ΣDU ,EDU⟩-algebras is isomor-
phic to the category of DU-algebras.

Proof. Let (A,α,β) be a DU-algebra, let us show that (A, (v ⋆ −)v∈Ω, (v ⊳
−)v∈Ω, (⊔K = ⋁K)K , (

d
K = ⋀K)K) is a distributive ⟨ΣDU ,EDU⟩-algebra.

We have to check the axioms of definitions 5.2.2, anything else has been
checked for ⟨ΣD,ED⟩ and ⟨ΣU ,EU⟩-algebras.

The axiom v⋆ ≤ b ⇔ a ≤ v ⊳ b follows from A(v ⋆ a, b) = Ω(v,A(a, b)) =
A(a, v ⊳ b).
First the idempotention rules. Let a, b in A and let us show that

A(−, a) ⊔ ((A(−, a) ⊓A(−, b)) = A(−, a)

and
A(−, a) ⊓ ((A(−, a) ⊔A(−, b)) = A(−, a).

That means that for any c ∈ A one has A(c, a)⊔ ((A(c, a)⊓A(c, b)) = A(c, a),
and its counterpart, but this is true as Ω is a lattice. Now as α preserves
all weighted limits and colimits, in particular the special ones from above,
one has a = α(A(−, a)) = α(A(−, a) ⊔ ((A(−, a) ⊓A(−, b))) = a ⊔ (a ⊓ b) and
its counterpart. Thus A satisfies the idempotence axioms.

As α has a left, we have the following distributivity rule : for any cardinal K
and any two Ω-functors ϕ ∶K //Ω and G ∶K ×Aop //Ω we have

⊔
A

f(a) ⋆ a =
l

K

ϕ(k) ⊳ (⊔
A

G(k)(a) ⋆ a), (5.5)
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where f ∶ A // Ω is given by f(a) = ⋀k∈K ϕ(k) ⋔ G(k)(a) But to have a
⟨ΣDU ,EDU⟩-algebra one needs to have the above distributive law for any map
F ∶K × ∣A∣ //Ω not only for Ω-functors. So let F ∶K × ∣A∣ //Ω be such a
map and let ϕ ∶K //Ω be a weight map.

For any k ∈K one has the ↓ F (k) ∶ Aop //Ω given by

↓ F (k) = LaniF (k) = ⋁
b∈A

A(−, b)⊗ F (k)(b) (5.6)

where i ∶ ∣A∣ //Aop is the object inclusion functor.

Let us show that ⋁a∈AF (k)(a)⊗ a = ⋁a∈A ↓ F (k)(a)⊗ a.

⋁
a∈A
↓ F (k)(a)⊗ a = ⋁

a∈A
(⋁
b∈A

A(a, b)⊗ F (k)(b))⊗ a

= ⋁
a∈A
⋁
b∈A

A(a, b)⊗ F (k)(b)⊗ a

= ⋁
b∈A

F (k)(b)⊗ ⋁
a∈A

A(a, b)⊗ a

= ⋁
b∈A

F (k)(b)⊗ b

Now ↓ F is a Ω functor then we can apply the above distributive law:

l

K

ϕ(k) ⊳ (⊔
A

F (k)(a) ⋆ a) =
l

K

ϕ(k) ⊳ (⊔
A

↓ F (k)(a) ⋆ a)

=⊔
A

f(a) ⋆ a

where f(a) = ⋀k∈K ϕ(k) ⋔↓ F (k)(a).
Thus A satisfies axiom (5.3).

Let A be a distributive ⟨ΣDU ,EDU⟩-algebra, then A is a DU -algebra. Indeed
using axiom (5.3) one obtains that the structure map α ∶ DA //A given by
αϕ = ⊔a∈Aϕ(a) ⋆ a has a left adjoint.

5.3 Applications and conclusion

First of all let us recall that in the case of Ω = 2, ⟨ΣD,ED⟩-algebras are ∨-
semi-lattices. Indeed, that is true as we have showed that ⟨ΣD,ED⟩-algebras
are D-algebras.
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For any other quantale Ω, we have the the propositional Ω-logic is given by
⟨ΣDU ,EDU⟩-algebras. That means that our logic language is given by:

L ∶ p ∣ v ⋆ − ∣ v ⊳ − ∣ ⊔ ∣
l
.

Where p are atomic propositions and v ⋆−, v ⊳ −,⊔, and
d

are the operations
defined in 5.1.1 satisfying the axioms from 5.1.1 and 5.2.2.

For example let us look at the final stream coalgebra on the metric space
R, given by the functor F ∶ Set // Set given by F (X) = R ×X. Then the
elements of the final coalgebra are infinite streams a ∶ N //R. So one can
ask: what is the distance between two streams, or if one stream is smaller
than another one or if the join of two streams is smaller than another one, or
even if a stream is a finite join of streams.

Now let us instantiate these syntactic algebras to different quantales. Also
let us recall that for any Ω-category A one has operations v ⋆ −, and v ⊳ −,
satisfying equations 1-3 from Definition 5.1.1 if an only if A has singleton
weighted colimits, and respectively, weighted limits, where by singleton we
mean that the index category has just one object. Thus if we recall Example
2.3.2 we have:

Example 5.3.1.

First of all Ω = 2. Let P be a set such that for any cardinal K we have
operations ⊔K and

d
, and for each p ∈ P we have 0 ⋆ p =⊥, 1 ⋆ p = p, 0 ⊳

p = ⊺, 1 ⊳ p = p, where ⊥=
d
P idP and ⊺ = ⊔ idP , where idP is the identity

function on P. Furthermore if these operations satisfy the equations from
Definition 5.1.1 then P is a ⟨ΣD,ED⟩-algebra and a ⟨ΣU ,EU⟩-algebra. In order
for P to be a ⟨ΣDU ,EDU⟩-algebra then P has to satisfy equation (5.3), which
in item 4 of remark 5.2.3 was shown to be equivalent to P being completely
distributive.

Example 5.3.2. In the case of Ω = [0,∞] weights play a crucial role [29,
Section 4]. Instead of only being allowed to take joins, we now also have
operations v⋆−, that is, v+−), which allow us to add a constant v ∈ Ω to each
element one takes the join over. Without this additional expressive power
it would be impossible to express the notion of Cauchy limit as given in [29,
Section 4]. For example, let us take a Cauchy sequence s ∶ N // [0,∞] such
that limn�∞ sn = 1 and such that there exists n ∈ N such that sn = 0. Then
without having the weights, that is, without the operations v + −, the colimit,
as it was just an infinum, would be 0.
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Example 5.3.3.

1. For Ω = 2, a D-algebra is a DU-algebra if for all K, ψ ∶ K // 2, and
S ∶K //DA we have (4.16) becomes

⋁{a ∣ a ∈ ∩S} = ∩{⋁{a ∈ F ∣F ∈ S}},

which is equivalent to complete distributivity [8].

2. Let Ω = [0,∞] and consider (Ω, α, β) as a DU-algebra. For any G ∶
Ωop //Ω and any F ∶ Ω //Ω we have

α(G) = G ⋆ idΩ = inf
v∈Ω

G(v) + v,

β(F ) = {F, idΩ} = sup
v∈Ω

a−. F (a).

The distributive law on [0,∞] is instantiated to: For any category K
and any ψ ∶K //Ω, F ∶K // [Ωop,Ω] and ϕ ∶ Ωop //Ω we have

inf
v∈Ω

(sup
k∈K

F (k)(v)−. ψ(k)) + v = sup
k∈K

(inf
v∈Ω

F (k)(v) + v)−. ψ(k) (5.7)

3. Let Ω = [0,∞] and R = R ∪ {−∞,∞} be the real numbers with the
metric R(a, b) = if a ≤ b then 0 else a − b. R(−∞, a) = 0, R(a,−∞) =
∞, R(∞, a) =∞, R(a,∞) = 0, R(∞,∞) = 0, R(∞,−∞) =∞, R(−∞,∞) =
0. Tensor and cotensor are defined by R(v⊗ r, s) = Ω(v,R(r, s)) and by
R(r, v ⋔ s) = Ω(v,R(r, s)). It follows v ⊗ r = r − v and v ⋔ r = v + r for
any v ∈ [0,∞] and r ∈ R. But is it not a DU -algebra, since in

sup
r∈R

r − (inf
k∈K

ψ(k) + F (k)(r)) = inf
k∈K

ψ(k) + (sup
r∈R

r − F (k)(r)) (5.8)

with K = {∗} and ψ(∗) =∞, the left hand side is 0 while the right hand
side is ∞.

4. For [0,1], we will look again only at [0,1] as an algebra, so let α
and β be again the structure maps. And let G ∶ [0,1]op // [0,1] and
F ∶ [0,1] // [0,1] be two maps then.

α(G) = G ⋆ idΩ = inf
r∈[0,1]

max(G(r), r),
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β(F ) = {F, idΩ} = sup
r∈[0,1]

[0,1](F (r), r) = sup
r∈[0,1]

{r ≥ F (r)}

The distributive law on [0, 1] is instantiated to: For any category K and
any ψ ∶K // [0,1], F ∶K // [[0,1]op, [0,1]], and ϕ ∶ [0,1]op // [0,1]
we have

inf
v∈Ω

max((sup
k∈K

[0,1](ψ(k), F (k)(v)), v) = sup
k∈K

[0,1](ψ(k), inf
v∈Ω

max(F (k)(v), v))
(5.9)
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Chapter 6

Finitary ⟨ΣD,ED⟩ and
⟨ΣU ,EU⟩-algebras

In this section we will inspect the subclass of ⟨ΣD,ED⟩, respectively ⟨ΣU ,EU⟩-
algebras, where the arity of ⊔ and

d
is finite. We will define the finitary

monads, and show that in some cases there exists a distributive law between
them.

6.1 Finitary monads

Let X be any Ω-category and let us define with DfX the full subcategory of
DX whose objects are finite colimits of representables, and with UfX the full
subcategory of UX whose objects are finite limits of representables. Thus
(UfX)op is the full subcategory of [X,Ω] whose objects are finite colimits of
representables.

We define Df on arrows as the restriction and corestriction of D on arrows.
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DX Dh
LandX (dY ○h)

// DY

DfX
Dfh

(Df)∣DfX

//
?�

OO

DfY
?�

OO

X

dX

OO

h
// Y

dY

OO

(6.1)

Following 2.5.4 we have that LandXdY ○ h preserves all colimits, thus Df is
defined correctly.

Proposition 6.1.1. There exists a natural transformation λ ∶ Dfd // dDf

Proof. This follows from the definition of Df on arrows. Let X be any
Ω-category then we have

DfX
DfdX

⇑ 11

dDfX
-- DfDfX

X

dX

OO

dX
// DfX

dDf

OO
(6.2)

Indeed as DfdX = LandX (dDfX ○ dX) and dDfX ○ dX = dDfX ○ dX we have
a unique natural transformation λ ∶ DfdX // dDfX.

Proposition 6.1.2. The functor Df is a KZ-doctrine.

Proof. As we already have λ ∶ Dfd //dDf , using 2.6.3 all we have to do is define
a natural transformation µ ∶ DfDf

//Df such that µ ○ dDf = µ ○Dfd = idDf
.

Let X be any Ω-category and let us define µX ∶ DfDfX //DfX as

µX(F ) = F ⋆ idDfX . (6.3)

We have to show that this is correctly defined, in the sense that µX(F ) is a
finite colimit of representables for any F ∈ DfDfX. For that let F ∈ DfDfX,
then F is a finite colimit of reperesentables so let ϕ ⋆G be its representation,
where ϕ ∶ Kop // Ω is a weight and G ∶ K // DfDfX if given by Gk =
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DfX(−, gk) where gk is an object of DfX. Every gk is a finite colimit of
representables ϕk ⋆Dk, where for every k ∈ K we have ϕk ∶ Kk

// Ω and
Dk ∶Kk

//DfX given by Dk(k′) =X(−, xkk′) for some xkk′ ∈X. Thus µF is
given by

µX(F ) = F ⋆ idDfX

= (ϕ ⋆G) ⋆ idDfX

= ϕ ⋆ (G − ⋆idDfX)
= ⋁
k∈K

ϕ(k)⊗ (G(k) ⋆ idDfX)

= ⋁
k∈K

ϕ(k)⊗ (DfX(−, gk) ⋆ idDfX)

(1)= ⋁
k∈K

ϕ(k)⊗ gk

= ⋁
k∈K

ϕ(k)⊗ ( ⋁
k′∈Kk

ϕk(k′)⊗X(−, xkk′))

= ⋁
k∈K

⋁
k′∈Kk

ϕ(k)⊗ ϕk(k′)⊗X(−, xkk′)

where step (1) follows from item 5 of Example 2.3.2.

And as K and each Kk is finite the above colimit is finite, thus µ is correctly
defined.

Using again item 5 of Example 2.3.2 one obtains µX ○ dDfX = idDfX .

In order to prove µX ○ DfdX = idDfx it is enough to show that µ ⊣ dDfX.
Indeed as dX is a dense functor and µ preserves left Kan extensions, we have

idDfX = LandX dX

= LandX (µX ○ dDfX ○ dX)
= µX ○ LandX (dDfX ○ dX)
= µX ○DfdX

Df
DfdX //

idDfX

LandX dX=

&&

DfDfX
µX

// DfX

X

dX

OO

dX
// DfX

dDfX

OO

idDfX

;;
(6.4)
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To prove µX ⊣ dDfX, let F ∈ DfDfX and ϕ ∈ DfX.

DfX(µXF,ϕ) = DfX(F ⋆ idDfX , ϕ)
= {F,DfX(idDfX , ϕ)}
= DfDfX(F,DfX(−, ϕ))

Thus (Df , µ, d) is a KZ-doctrine.

In a similar way one shows that Uf is a co-KZ-doctrine.

Remark 6.1.3. Unlike the functor category DX, its subcategory DfX is
not complete in general, not even for finite limits. Indeed, let us look at the
following examples.

Example 6.1.4. 1. First let us show that even for preorders, for some
Ω-categories X, DfX is not complete. So let Ω = 2, and let X be
any infinite discrete poset, then DfX has no top element. Indeed, if it
existed the top element of DfX would be X, but all elements of DfX
are finite colimits of representables that is all elements of DfX are finite
subsets of X.

2. Now let Ω = (([0,∞] ≥),0,+)

Let N∗ be the set of positive natural numbers {1, 2, ...} with the following
metric

N∗(n,m) = 1

m
−. 1

n
.

Let us show that in general v ⋔ N∗(−, n) is not in DfN∗. Let n be any
natural number, and let v ∈ [0,∞] such that v < 1

n . We will show that
v ⋔ N∗(−, n) cannot be represented by a finite colimit of representables.

As we have v < n then there exists m > n such that v ≤ N∗(m,n) thus
for all n′ > n we have

v ⋔ N∗(n′, n) > 0

indeed let m = ∧{a ∈ N∗ ∣ a ≥ n
1−nv} that is the smallest natural number

greater than n
1−nv . Now let K ′ = N/{1,2,3, ..,m − 1} that is the set of
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natural numbers greater than m, and for each k ∈ K ′ define ak = v ⋔
N∗(k,n) then obviously we have

v ⋔ N∗(−, n) = inf
k∈K′

ak ⊗N∗(−, k).

We have to show that for each k′ > k we have

ak +N∗(k′, k) > ak′

and that
ak′ > ak.

The first follows from

(v ⋔ N∗(k,n)) +N∗(k′, k) > v ⋔ N∗(k′, n)

but as v < N∗(k,n) we have

(v ⋔ N∗(k,n)) +N∗(k′, k) = v ⋔ (N∗(k,n) +N∗(k′, k)) > v ⋔ N∗(k′, n).

The second follows from the monotonicity of ak = k−n−nkv
nk .

Let us show that one cannot express v ⋔ N∗(−, n) as a finite colimit
of representables. Let us suppose that there exists a finite set K and
ϕ ∶K //Ω and g ∶K //N∗ such that

v ⋔ N∗(−, n) = inf
k∈K

ϕ(k)⊗N∗(−, g(k)).

Using the results from above we have that for each k ∈ K we have
ϕ(k) = ag(k) and again using the results from above we have that if for
all m ≥ ∨{g(k) ∣ k ∈K} we have

inf
k∈K

ϕ(k)⊗N∗(m,g(k)) > v ⋔ N∗(m,n).

Thus for every natural number n the limits of the form v ⋔ N∗(−, n)
where v < 1

n cannot be represented by a finite colimit of representables.
Thus Df N∗ is not complete under finite limits.

107



We know that for some quantales, like 2, if the poset X is finitely complete
then DfX is also finitely complete. So let us give some sufficient conditions
for DfX to be finitely complete.

Proposition 6.1.5. If Ω = (Ω0,⊺,∧) is a quantale where ⊗ is ∧ and the order
is total and X is finitely complete then DfX is finitely complete as well.

Proof. Because the tensor is a limit, and for any a ∈ Ω the co-tensor (a ⋔ −)
is a right adjoint, the co-tensor a ⋔ − preserves the tensor. That is for any
a, b, c ∈ Ω we have

a ⋔ (b ∧ c) = (a ⋔ b) ∧ (a ⋔ c).
Now let K be any finite set and let ψ ∶ K //Ω and G ∶ K //DfX be any
two Ω-functors. As, for each k ∈K, G(k) is a finite colimit of representables,
let it be represented by G(k) = ϕk ⋆X(−, gk), where Kk is a finite set and
ϕk ∶Kk

//Ω and gk ∶Kk
//X are Ω-functors.

In the following let us write κ = ⊕k∈KKk. A choice function f is any any func-
tion f ∶K // κ, such that f(k) ∈Kk. Let Σ = {f ∶K // κ ∣ choice function}
be the set of all choice functions.

Let x be any element of X. With the notations from above we have:

{ψ,G}(x) = ⋀
k∈K

ψ(k) ⋔ ⋁
k′∈Kk

ϕk(k′) ∧X(x, gk(k′))

1= ⋁
f∈Σ

⋀
k∈K

ψ(k) ⋔ (ϕk(f(k)) ∧X(x, gk(f(k))))

2= ⋁
f∈Σ

⋀
k∈K

(ψ(k) ⋔ ϕk(f(k))) ∧ (ψ(k) ⋔X(x,xk(f(k))))

3= ⋁
f∈Σ

⋀
k∈K

(ψ(k) ⋔ ϕk(f(k))) ∧X(x,ψ(k) ⋔ xk(f(k)))

4= ⋁
f∈Σ

⋀
k∈K

(ψ(k) ⋔ ϕk(f(k))) ∧ ⋀
k∈K

X(x,ψ(k) ⋔ xk(f(k)))

5= ⋁
f∈Σ

(⋀
k∈K

ψ(k) ⋔ ϕk(f(k))) ∧X(x, ⋀
k∈K

ψ(k) ⋔ xk(f(k)))

where step 1 follows from Subsection 2.3.5, step 2 follows from ψ(k) ⋔ − being
a right adjoint and thus preserving limits, steps 3 and 5 follow from the fact
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that Yoneda embedding preserves limits and X is finitely complete, step 4
represents the fact that ∧ is commutative and associative.

Thus we have

{ψ,G} = ⋁
f∈Σ

(⋀
k∈K

ψ(k) ⋔ ϕk(f(k))) ∧X(−, ⋀
k∈K

ψ(k) ⋔ xk(f(k))).

Now, as K is finite, and each Kk is finite, then Σ is also finite and thus {ψ,G}
is a finite colimit of representables. Thus DfX is finitely complete.

6.1.1 The distributive law

We have two monads Df and Uf in order for their composite to be again a
monad we need a distributive law between them.

Proposition 6.1.6. If for any Ω-category X, DfUfX is complete under
all finite limits then the natural transformation δ ∶ UfDf

// DfUf given by
δ = UfDf(Df u,−) is correctly defined.

Proof. DfuX ∶ DfX //DfUfX is given by DfuX(ϕ) = ϕ⋆[X,Ω](X(?,−),−) =
⋁x∈X ϕ(x)⊗ [X,Ω](X(x,−),−).
Let X be any Ω-category and let F be an object in UfDfX. Then F is a
finite limit of representables, so let K be a finite discrete Ω-category and
ψ ∶K //Ω and G ∶K //DfX such that F = {ψ,DfX(G,−)}.

δX(F ) = UfDfX(Df uX,F )
= UfDfX(Df uX,{ψ,DfX(G,−)})
= {ψ,UfDfX(Df uX,DfX(G,−))}
= ⋀
k∈K

ψ(k) ⋔ UfDfX(DfuX,DfX(G(k),−))

= ⋀
k∈K

ψ(k) ⋔ [DfX,Ω](DfX(G(k),−),DfuX)

= ⋀
k∈K

ψ(k) ⋔ Df uX(G(k))

= ⋀
k∈K

ψ(k) ⋔ (G(k)⊗ [X,Ω](X(?,−),−))

But this is a finite limit, and as DfX is complete under finite limits it is in
DfX. Thus δ is correctly defined.
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As we have seen above in general one cannot expect DfUfX to be finitely
complete, but Proposition 6.1.5 gives us examples of quantales where this
happens.

Corollary 6.1.7. If Ω = (Ω0,⊺,∧) is a quantale where the tensor is the meet
and the order is total we have the distributive law δ = UfDf(Df u,−).
Proof. Indeed following Proposition 6.1.5 and using the fact that for any Ω-
category X, UfX is finitely complete we have that DfUfX is finitely complete.

6.1.2 Algebras for the finitary monads

As Df is a KZ-doctrine and and Uf is a co-KZ-doctrine, using Proposition
2.6.4, the structure map of these monads’ algebras is an adjoint to their
respective units. Thus one can calculate easily the structure map. As always
for any Ω-category A we we will write dA and uA for the two Yoneda embedings.
That is dA(a) = A(−, a) and uA(a) = A(a,−) for all a ∈ A.
So let (A,α) be a Df algebra, then α ⊣ dA.
Proposition 6.1.8. For any finitely Ω-category A, if the map α ∶ DfA //A
given by α(ϕ) = ϕ ⋆ idA exists, then it is a left adjoint to dA ∶ A //DfA.

Proof. We have to show that for any a ∈ A and ϕ ∈ DfA we have

A(α(ϕ), a) = DfA(ϕ, dAa). (6.5)

If we start with the left hand side we have

A(α(ϕ), a) 1= A(ϕ ⋆ ida, a)
2= {ϕ,A(idA, a)}
3= DA(ϕ,A(idA, a))
4= DfA(ϕ,A(−, a))
5= DfA(ϕ, dAa)

where step (1) is the definition of α, step (2) is the preservation of limits of
the Yoneda embedding, step (3) is the end formula of a limit in Ω, step (4)
follows from the fact that DfA is a full subcategory of DA, and that ϕ and
A(−, a) are objects of DfA, and step (5) is a rewriting.
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Now we know that the objects of Df are finite colimits of representables, and
that colimits involving representables have a special form. So let (A,α) be a
Df-algebra and let ϕ be any object of DfA. Then ϕ = ε ⋆A(−,G) where K is
a finite set and ε ∶Kop //Ω and G ∶K //A are Ω-functors.

α(ϕ) = ϕ ⋆ idA

= (ε ⋆A(−,G)) ⋆ idA

= ε ⋆ (A(−,G) ⋆ idA)
= ε ⋆G

Thus one can see that any Df- algebra (A,α) is finitely cocomplete. Further-
more, any finitely coccomplete Ω-category is a Df-algebra. Indeed, if A is
finitely cocomplete then α ∶ DfA //A given by α(ϕ) = ϕ ⋆ idA exists thus it
is a left adjoint to dA, and as such (A,α) is a Df-algebra.

Now let (B,β) be a Uf algebra. Then uA ⊣ β. In the same way like above we
have the following description of β.

Proposition 6.1.9. For any Ω-category B, if the map β ∶ UfB //B given
by β(ψ) = {ψ, idB} exists, then it is a right adjoint to uA ∶ A // UfA.

Proof. We need to prove that for any b ∈ B and ψ ∈ UfB we have

B(b, β(ψ)) = UfB(uB(b), ψ). (6.6)

Again with some calculations we obtain

B(b, β(ψ)) = B(b,{ψ, idB})
= {ψ,B(b, idB)}
= [B,Ω](ψ,uB(b))
= UB(uB(b), ψ)
= UfB(uB(b), ψ)

Again as, for any Uf-algebra (B,β), the objects of UfB are finite limits of
representables then β can be refined even more. So let ψ be represented by
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{ε,B(G,−)}, where K is a finite set and ε ∶K //Ω, and G ∶K //B are two
Ω-functors. We have

β(ψ) = {{ε,B(G,−)}, idB}
= {ε,B(G,−) ⋆ idB}
= {ε,G}

Thus as in the case of Df-algebras, a Uf-algebra is finitely complete, and a Ω-
category B is a Uf-algebra if and only if it is finitely complete.

Definition 6.1.10. A morphism between two Df-algbebras (A1, α1), (A2, α2)
is any Ω-functor h ∶ A1

//A2 such that α2 ○Dfh = h ○ α1.

Unfortunately in the case of DfUf-algebras we could not show that they are
ccd. This is mainly due to the fact that DfA is not complete in general, and
thus one could not show easily the existence of the left adjoint from being a
DfUf-algebra.

6.2 Syntactic Df and Uf-algebras

In the following we want to give a description with operations and equations
of Df and Uf-algebras. As Df and Uf are finite version of D, and respectively D,
then one can think of these algebras as ⟨ΣD,ED⟩ and ⟨ΣU ,EU⟩-algebras where
we restrict the cardinal of ⊔ and

d
to finite. Also because of the iteration of

finite limits, see Subsection 2.3.4, it is enough to restrict the cardinal of ⊔,
and respectively

d
, to two, thus making them binary operations.

Definition 6.2.1. By a ⟨ΣDf
,EDf

⟩-algebra we understand a set A together
with a family of unary operations (v ⋆ )v∈Ω ∶ A //A indexed by Ω, and a
binary operation ⊔ ∶ A×A //A, satisfying the following 6 axioms. Dually the
notions of a ⟨ΣUf ,EU f⟩-algebra is given by a set B together with a family of
unary operations (v ⊳ )v∈Ω ∶ B //B and a binary operation ⊓K ∶ B ×B //B
satisfying the following 6 axioms. In the following both ⊔ and ⊓ will be
written in infix notation.

1. I ⋆ − = idA I ⊳ = idA
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2. For all a ∈ A, b ∈ B and v,w ∈ Ω

v ⋆ (w ⋆a) = (v⊗w)⋆a v ⊳ (w ⊳ b) = (v⊗w) ⊳ b

Ω ×Ω ×A idΩ× ⋆
//

⊗×idA

��

Ω ×A

⋆

��

Ω ×Ω ×B idΩ× ⊳
//

⊗×idB

��

Ω ×B

⊳

��

Ω ×A ⋆
// A Ω ×B ⊳

// B

3. For all v ∈ Ω and a1, a2 ∈ A, b1, b2 ∈ B

v ⋆ (a1 ⊔ a2) = (v ⋆ a1) ⊔ (v ⋆ a2) v ⊳ (b1 ⊓ b2) = (v ⊳ b1) ⊓ (v ⊳ b2)

Ω ×A ×A

∆×idA×idA

��

idΩ×⊔ // Ω ×A

⋆

��

Ω ×B ×B

∆×idB×idB

��

idΩ×⊓ // Ω ×B

⊳

��

Ω2 ×A2
( ⋆ )×( ⋆ )

// A ×A ⊔
// A Ω2 ×B2

( ⊳ )×( ⊳ )
// B ×B ⊓

// B

4. For all a ∈ A, b ∈ B and vk ∈ [K,Ω]

(⋁K vk) ⋆ a = ⊔(vK ⋆ a) (⋁K vk) ⊳ b = ⊓(vK ⊳ b)

ΩK ×A

idKA ×∆

��

(⋁K)×idA
// Ω ×A

⋆

��

ΩK ×B

idKB×∆

��

(⋁K)×idB
// Ω ×B

⊳

��

ΩK ×AK
( ⋆ )K

// AK ⊔
// A ΩK ×BK

( ⊳ )K
// BK

⊓
// B

5. For all a1, a2, a3 ∈ A and b1, b2, b3 ∈ B we have

(a1 ⊔ a2) ⊔ a3 = a1 ⊔ (a2 ⊔ a3) (b1 ⊔ b2) ⊔ b3 = b1 ⊔ (b2 ⊔ b3)

113



A ×A ×A ⊔×idA //

idB×⊔

��

A ×A

⊔

��

B ×B ×B ⊓×idB //

idB×⊓

��

B ×B

⊓

��

A ×A ⊔
// A B ×B ⊓

// B

6. For all a ∈ A and b ∈ B
a ⊔ a = a b ⊓ b = b

A ×A ⊔ // A B ×B ⊓ // B

A

∆

OO

idA

<<

B

∆

OO

idB

<<

7. For all a1, a2 ∈ A and b1, b2 ∈ B we have

a1 ⊔ a2 = a2 ⊔ a1 b1 ⊓ b2 = b2 ⊓ b1

A ×A

⊔

##

TA // A ×A

⊔

��

B ×B

⊓

##

TB // B ×B

⊓

��

A B

where TA ∶ A×A //A×A and TB ∶ B×B //B×B are twists isomorphism.

As in all the proofs of Section 5.1 we never used any cardinality arguments
all the proofs we have done there transport immediately here. Thus we will
not restate them. We have that ⟨ΣDf

,EDf
⟩-algebras and ⟨ΣUf ,EU f⟩-algebras

are Ω-categories, and they are finitely cocomplete, and respectively finitely
complete. Furthemore they are Df , and respectively Uf-algebras.

Also let us note that finitary does not necessarily mean finite, for example the
poset Q of rational numbers is an example of a finitary lattice, but it is not a
lattice which admits arbitrarily large joins. Indeed, we have that every real
number is a colimit of all the rational numbers smaller than it, so if Q would
admit arbitrarily large joins then all irrational numbers should be part of Q.
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6.2.1 Conclusion

So in this Chapter we have showed that the monads D and U restrict to
finitary versions Df , and respectively Uf , and that in some cases there exists
a distributive law between them. We have also defined finitary version of
the algebras ⟨ΣD,ED⟩, and respectively ⟨ΣU ,EU⟩, but not of ⟨ΣDU ,EDU⟩-
algebras. That is because in the definition of ⟨ΣDU ,EDU⟩-algebras we defined
the distributive law (5.3) using the fact that DU-algebras are ccd. But we
do not have the same description of DfUf-algebras. Thus the definition DfUf-
algebras as algebras given on a set with operations and equations still needs
work.

The reason why at this moment we have not defined a finitary version of
⟨ΣDU ,EDU⟩-algebras is because, DfUf-algebras are not ccd, and thus we could
not find an equation like (5.3).
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Chapter 7

Conclusions and future work

We have shown in Theorem 5.2.5 that for any commutative quantale Ω the
category Ω-Cat of Ω-categories, or, in other words, the category of Ω-valued
generalised metric spaces, is isomorphic to a category of algebras for operations
and equation in the usual sense, if we admit operations of infinite unbounded
arity.

Moreover, due to the duality underlying our approach, these operations have
a logical interpretation and the equations can be seen as logical axioms.

The value of Theorem 5.2.5 resides not only in its statement but even more
so in how we proved it: We didn’t guess ⟨ΣDU ,EDU⟩ and then proved the
theorem, but we derived ⟨ΣDU ,EDU⟩ in a systematic fashion from the functor
[−,Ω]. We started from the aim to derive the logic of Ω-valued predicates,
that is, the logic given implicitly by the structure of the categories [X,Ω].
To extract this logical structure, we considered [X,Ω] as algebras for the
monad induced by [−,Ω]. We then employed a result linking that monad to
the ‘semi-lattice’ monads D and U . The algebraic structure of these monads
computes limits and colimits and an equational description of these was given
as ⟨ΣDU ,EDU⟩.
It lies in the nature of this method that the logic ⟨ΣDU ,EDU⟩ we derived from
Ω is not purely syntactic but still depends on Ω. The operations are infinitary
and the laws contain side conditions depending on Ω. We can think of Ω as
an oracle that we need to consult in our reasoning. Restricting to particular,
syntactically given Ω and then describing ⟨ΣDU ,EDU⟩ fully syntactically, so
that consulting the oracle can be replaced by asking an automated theorem
prover, is a task of future research.
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We have defined algebras on a set with operations and equations that are
equivalent to the algebras for the composite monad DU , and even restricted
them to a finitary version, so we have an answer to the question: what is the
logic of a quantale Ω. Now there are many ways we can continue this research.
Let us walk through some of them.

As we mentioned in the conclusion of the previous chapter until now we could
not define algebras on a set with operations and equations for the monad
DfUf , so this is the first thing we want to investigate.

We defined algebras on a set with operations and equations so one would like
to build some algebraic constructions on it, like subalgebras, and maybe some
generalization of filters and ideals. Of course from a categorical point of view
filters and ideals are just objects of the sheaf and presheaf categories, but
still would be nice to define them syntactically.

If we have a distributive law between the monads Df and Uf that means that
DfUf is a monad and even more for any Ω-category X we have

DfUfX = [[X,Ω]f ,Ω]f ,

where by [X,Ω]f we mean the subcategory of [X,Ω] whose objects are a
finite colimit of representables. Now one can ask if

[−,Ω]f ⊣ [−,Ω]f .

Having syntactic algebras we can add contravariant operations, such as
implication. In this sense we can try using frames, like in the work of [11],
[9] and then define operations like in [7]. For this we could use that every
bimodule α ∶X ∣ // Y generates a closure operator.

[Xop,Ω] ⊥ -- [Y,Ω]op
mm

X

α

>>

dX

OO

Y

``

uY

OO
(7.1)

Also we want to research the connection with MV -algebras, especially for
[0, 1]-algebras. For more on MV -algebras, see [6]. One has to notice that the
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signatures of our algebras and MV -algebras are different, in the sense that
MV -algebras have contravariant operations, this is one of the reason we want
to investigate the addition of contravariant operations to our setting.

On top of the equational logic given by ⟨ΣDU ,EDU⟩-algebras and the equational
calculus for the finitary algebras one would also like a proof calculus like
Gentzen systems, or Hilbert’s natural style deduction. For that I suppose
one could notice that the at the basis of all these systems lies an entailment
relation and one could replace this relation by a bimodule.

In [2] the authors studied the coalgebraic logic for enriched categories. That is
in (1.1) they replaced Set by Ω-Cat, and showed that , under some conditions,
modalities can still be defined.

Ω-Catop

Lop

YY hh

[−,Ω]
⊺

uu

[−,Ω]

Ω-Cat

T

EE

Now we can improve these results by replacing Ω-Catop with Ω-CatDU , and
thus adding modal operators on top of our propositional logic.

Ω-CatDU

Lop

YY hh

[−,Ω]
⊺

tt
[−,Ω]

Ω-Cat

T

EE

Thus there is still a lot of work to be done in this area, and we hope this is
just the beginning.
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