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Abstract

Biological networks: a thermodynamical approach
Yohann Grondin

Many real systems can be represented by networks, that is a set of nodes connected to 
each other. The study of these systems as such has proven extremely useful as it gives 
access to a series of parameters that characterise their non-trivial architecture. This ar
chitecture is the product of many factors from the evolutionary mechanisms that shape 
the system during its growth to the functional dynamics on a shorter time scale. Gain
ing knowledge on the architecture is then of importance but faces many challenges in 
particular in the study of biological networks.

The first challenge is in terms of the method used to generate networks as we need to 
adopt an approach that, we expect, would allow us to understand those constraints and 
forces that shape the network.

The second challenge is that of understanding the relationship between the architec
ture of the system and its dynamics and functionality.

The third challenge is to get access using suitable techniques to the network archi
tecture from expression data, such as mRNA abundances, for example.

We first show in this thesis that it is possible to generate networks from a thermody
namical viewpoint. This approach allows us to relate the architecture of network to some 
constraints. Furthermore, we show that some information on the structure resides in the 
non-randomness of the links between nodes. If we were to draw an analogy with tradi
tional thermodynamics, networks could be modelled in a first approximation as perfect 
gases.

On a dynamical network of our design, we show a dependence of the architecture on 
the distribution of the level of expression of the nodes. Surprisingly, the distribution of 
the periods of those networks is a power-law and independent of the underlying archi
tecture of the system. By comparing the data obtained from our model to experimental 
mRNA data we found a correlation between the degree of connectivity of genes and their 
level of abundance.

Finally, we show how we can apply a method used traditionally in image reconstruc
tion to inference of networks.
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Chapter 1
Introduction

We will start with a very simple model that any system can be described by a set of 

elements and a set of interactions, regardless of their detailed nature. Connecting these 

elements together on the basis that they are interacting yields a network in which the 

elements are called either nodes or vertices and the interactions are called either links or 

edges. Since the nature of the nodes and of the links does not need to be prescribed, a 

network is a versatile means by which to represent a system. Examples include social 

networks (Watts & Strogatz, 1998, Amaral et al. 2000, Newman 2001, Borner, Maru 

& Goldstone, 2004), communication networks such as the Internet (Barabasi & Albert, 

1999, Adamic 1999), biological networks (Jeong et al. 2000, Jeong et al. 2001, Guelzim 

et al. 2002), etc, which will be detailed throughout this chapter.

In term of size, we can think of networks as made up of an infinite number of nodes 

even though this will not be the case here. For the networks to be considered in this 

thesis the number of nodes will be of the order of a thousand.

By its definition, a network is a model representation of a system, whether it is ex

plicitly called a ‘model’ network or a ‘real’ network. However, we think that the term 

‘model’ network is more appropriate to systems that describe properties of real systems 

but are constructed without knowledge of where the interaction are exactly, while ‘real’ 

networks would correspond to networks constructed from known sets of interactions. 

An alternative way to construct networks is to use data measured from the system re

lated to the dynamical properties of the nodes, but not directly the interactions. This 

involves a process of reverse engineering which yields an ‘inferred’ network. There are 

many approaches to infer networks, using Bayesian networks (Friedman 2004) or mu

1



Introduction 1.1 Definition an d .

tual information (Liang, Fuhrman & Somogyi, 1998), including our own presented in 
chapter 6 .

The interest in describing systems in term of networks is to access information re

lated to the architecture and topology of the system. By extracting the parameters that 

characterise the architecture, it is possible, for example, to envisage the mechanisms 

of evolution that have led to it (Albert & Barabasi, 2002, Watts & Strogatz, 1998, van 

Noort, Snel & Huynen, 2004), and also to explain those mechanisms in term of con

straints as shown in chapter 2. A network model also permits us to study the dynamics 

of the system and identify how the network correlates with its behaviour, for exam

ple (Kauffman 1993, Yuan, Chen & Wang, 2004, Li et al. 2004a). To go further, and 

this is an old problem, understanding the network is a way forward into bridging the 

gap between the architecture of a system and its function. We shall be interested in the 

use of networks to describe and study biological systems and, in particular, the genetic 

regulatory networks (Guelzim et al. 2002, van Noort et al. 2004).

Though the architecture of genetic regulatory networks is being thoroughly inves

tigated (Guelzim et al. 2002), many questions, such as how they emerged and evolved 

remains to be answered (van Noort et al. 2004). In this thesis, we will give possible 

tracks to answer some of them.

In this chapter, we will introduce some of the parameters used to describe networks. 

We will present the major network models and describe their properties. We will then 

focus on biological networks and discuss the importance of the data in generating them. 

We will introduce the information entropy which will be used later. Finally, we discuss 

the plan of the rest of this thesis.

1.1 Definition and representation of networks.

A network is formally described by a graph, G , that is an ordered pair of disjoint sets 

(V, E)  where V  is the set of vertices Vi and E  is the set of edges e, (Bollobas 1979). 

Several matrices can be associated to a graph amongst which the adjacency matrix and 

the incidence matrix are the most important. The adjacency matrix, A, is an N  x N  

matrix whose elements ai3 are given by

(ijj — <
1 if ViVj e  E (G )\  

0 otherwise.

2



Introduction 1.1 Definition a n d .. .

bij =  <

where N  corresponds to the number of nodes. A network is said to be undirected if 

ciij = ciji that is i and j  cannot be distinguished from the link pairing them. On the 

contrary, in a directed network aij — is not necessarily true. In this case, node i is 
either the initial or terminal vertex connected to j , and j  either the terminal or initial 
vertex, respectively.

The incidence matrix, B,  of a graph is a N  x M  matrix whose elements are given
by

— 1, if Vi is the initial vertex of the edge e3\

1, if is the terminal vertex of the edge e3\

0 , otherwise,

where M  is the number of links in the network.

The degree of connectivity ki of node i is defined as the number of edges connected 

to it. In an undirected network where the adjacency matrix is symmetrical, the degree of

connectivity is given by ki = ai3 =  Ylj &ji- Conversely, in a directed network, for
which the adjacency matrix does not have to be symmetrical, it is possible to define a out

going degree, or out-degree, of connectivity, k ^ ^ ,  by considering only the initial vertices 

of node i, and an in-coming degree or in-degree, of connectivity, k i7hi, by considering 

only the terminal vertices of node i. The degree of node i will then be k t =  koutii +  kl1hl.

The two matrices are related to each other by the following expression (Bollobas 

1979)

B B l = D  -  A,

where B l is the transpose of B  and D  is the diagonal matrix whose elements da are the 

degree of connectivity ki of node i.

The mean degree of connectivity, k , is an important parameter of networks. It can be 

calculated either from the adjacency matrix such that,

k = N-'Y.aiv
id

or from the probability distribution such that,

k

where is the probability of finding a node of degree k. For a directed network, it 

is possible to define the mean connectivity of the in-degrees and out-degrees, as k —

3



Introduction 1.2 Parameters th a t.

k(yut +  kin and k ^ i  htn.

A sequence of edges non!, nxn2, . . . ,  n r_ i n r is a walk of length r. If the edges and 

the nodes are all distinct then this walk is called a path (Beineke & Wilson, 1997). A 

graph is connected if there is a path joining each pair of vertices of G. Conversely, the 

graph is disconnected. Every disconnected graph can be split into connected subgraphs 

called components. This notion of connectedness is important since we will be dealing 

with sparse graphs that are then more likely to be disconnected. However, in most cases, 

we will want to work with connected graphs. Finally, a graph is called k-regular if all 

the nodes have the same degree of connectivity k (Beineke & Wilson, 1997).

1.2 Parameters that characterise networks

Many parameters are used to characterise and define networks. Some of those parame

ters will be introduced here as they will be used throughout this thesis while some others, 

such as /^-complexity, will be introduced later on as part of the studies that will be pre

sented.

1.2.1 The distribution of the degree of connectivity

The probability distribution of the degree of connectivity of the nodes, also called the 

degree distribution, describes and characterises, though not completely, the global archi

tecture of networks. In an undirected network, it gives the probability pr that a node, 

chosen at random, has exactly a degree of connectivity r. In a directed network it is 

possible to extract the distribution of the out-degree and the in-degree as well of the 

total degree of the nodes. Various degree distribution give rise to various networks of 

extremely different architectures as we will see later.

1.2.2 Degree of clustering

The degree of clustering of a network, also referred to as the ‘clique’, is a statistical 

measure that provides information on the clustering of the neighbourhood of nodes. It 

is given by the clustering coefficient, C, which is the average over the network of the 

clustering coefficient of each of the nodes (Watts & Strogatz, 1998).

The clustering coefficient, Cj, of node i is calculated as the ratio of the number of 

links between nodes connected to z, to the number of possible links between all those

4
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Figure 1.1. The clustering coefficient, C, at a node A. There are 2 triangles formed 
from connected neighbours of A  (green) while 4 other triangles could be formed 

(red). The clustering coefficient is then C  =  1/3.

nodes connected to node i. As illustrated in figure 1.1, Ca is as well given by the fraction 
of the number of existing triangles that have for summit the node A  (green) to the number 
of possible ones from the nodes connected to A  (green and red).

The number of triangles at node i is obtained from the diagonal element (counted 
twice) of the cubed adjacency matrix of the network. The number of possible triangles 
is given by ki(ki — l)/2 . The clustering coefficient of all the network is then

I3]

c - N- 'Zm^Tr<'•’>

The clustering coefficient, C, of various networks is shown in table 1.1.

Note that this formula based on the adjacency matrix will not give identical results for 
directed and undirected networks. In the case of directed networks, it will be preferable 
to symmetrise the adjacency matrix.

1.2.3 Diameter and average path length of networks

The diameter, D , of a network is a global parameter defined as the longest of the shortest 
path, with the shortest path being the minimum path between two nodes. As an example, 
the diameter of the network shown in figure 1.2, is given by the green path. A measure 
related to the diameter is the average path length, < D  >, which is the average over all 
the shortest paths.

5



Introduction 1.2 Parameters that.

Network k C L 7 or 7*n/7out Ref.
World-Wide Web 5.46 - - 2.1 a
World-Wide Web - 0.11 3.1 - b

Movie actors 61 0.79 3.65 - c
Movie actors 113.43 - - 2.3 d

Co-authorship, PNAS 8.97 0.399 5.89 2.54 e
Co-authors hip, Medline 18.1 0.066 4.6 - f

Metabolic network, E. coli 7.4 _ 3.2* 2.2/2.1 9
Metabolic network, S. cerevisiae 6.8 - 3.3* 2.0/2.2 9

Protein network, S. cerevisiae 1.97 - - 2.4 h
Transcriptional network, S. cerevisiae 3.8 0.05** - - / ~  1 f

Table 1.1. Comparison between parameters of various real networks. The references 
are (a) (Barabasi & Albert, 1999), (b) (Adamic 1999), (c) (Watts & Strogatz, 1998), 
(d) (Amaral et al. 2000), (e) (Bomer et al. 2004), (f) (Newman 2001), (g) (Jeong 
et al. 2000), (h) (Jeong et al. 2001), (i) (Guelzim et al. 2002), *diameter, ^sem i-

clustering coefficient.

Figure 1.2. The diameter, D , of a network. It is the longest of the shortest paths 
which is represented in this picture by the green path. In this example D — 5.

Those two parameters are however very expensive to determine in term of comput
ing time. A simple brute force algorithm on a sparse network where the shortest path 
between two nodes is determined by crawling can be estimated to be about k<D>N 2 
complex. Another parameter, called the characteristic path length, L, has instead been 
introduced. This is the average of the shortest paths of randomly chosen pairs of nodes, 
selected a number of times so that this average converges. Even though this measure is 
not the diameter, it is characteristic of the network (Watts 1999). The characteristic path

6



Introduction 1.3 Various network models

length of several networks is shown in table 1.1.

1.2.4 Assortativity

The assortative behaviour, or assortativity, of a network is defined as the preference for 

nodes of large degrees of connectivity to be connected to each other. Conversely, the 

disassortative behaviour is defined as the preference for nodes of large degrees of con

nectivity to be connected to nodes of small degrees. It is measured by the assortative 

coefficient, r. To define r, let cXJ be the joint probability distribution of the degrees of 

the nodes at the ends of a randomly chosen link, not counting this link itself in the nodal 

degrees (Callaway et al. 2001). Then r, ( —1 < r <  1), is given by

r  ( x  l j ( e i j  ~  Q j Q j )

( Z k ^ q k - ( Z k kqk)2) '

where the normalised ‘remaining degree’ distribution (Callaway et al. 2000, Barabasi & 

Albert, 1999) is
( k  +  l ) p / t + i  

Qk = ^  .-------•

The coefficient r is positive for assortative networks and negative for disassortative ones. 

It has been measured that sociological networks are assortative that is nodes of large de

grees of connectivity are preferentially connected together whereas the Internet network 

and various biological networks are disassortative(Newman 2002).

1.3 Various network models

With only the set of parameters presented above, it is already possible to describe net

works with a variety of architectures and properties. The networks that will be described 

here, named after their authors, are very well known models and have been generalised 

in several ways. However, the naming of these generalisations, for example, may be 

misleading in relation to the properties of those networks. We will therefore try to define 

properly these networks and use adequate terms to name them, without entering a debate 

as to what is appropriate.

Along with the properties of model networks, we give relevant mechanisms, mostly 

intuitive, to generate them. According to these mechanisms, two contexts emerge: grow
ing systems, in which nodes are added, and non-growing ones. This difference will be

7



Introduction 1.3 Various network models

Figure 1.3. Comparison between two networks with different degree distributions. 
The network on the left has a degree distribution that follows a Poisson law and the 
network on the right has a degree distribution that follows a power-law. The degree 
distribution has a clear impact on the architecture of the networks. The graphs are 

drawn using Pajek software (Batagelj & Mrvar, 2003).

Figure 1.4. Comparison between two networks with different clustering coeffi
cients. The network on the left has a higher clustering coefficient than the network 
on the right yielding differences in the architecture. The graphs are drawn using the 

Pajek software (Batagelj & Mrvar, 2003).

relevant later on.

To give a glimpse on how variations of the numerous parameters that describe a 
network affect their architecture, we compare in figure 1.3 two networks with a different 
distribution of the degree of connectivity and in figure 1.4 two networks with a different 
clustering coefficient. The different organisation of the network architecture leads to 
clearly visible differences.

8



Introduction 1.3 Various network models

1.3.1 The Erdos and Renyi model

The Erdos and Renyi model gives rise to a category of network called random networks. 

Those networks are the cornerstone of network studies and are used as a reference to 

which other networks models can be compared. We will focus on the properties of 

graphs that will be of interest later.

Characteristics

One way to introduce this model is to start with the methods to generate it. For a network 

constituted of N  nodes, the first method consists in connecting n  pairs of nodes, chosen 

randomly from the N ( N  —1)/2 possible ones. Alternatively, each possible pairs of nodes 

are chosen independently and connected with a certain probability p, (0 < p < 1). In 

the later case, the degree of connectivity ki of a node i has binomial distribution with 

parameters N  — 1 and p such that

P{ki  = k) = C kN_ lPk( 1 -  p) N- ' - k, (1.2)

where pk is the probability to draw k links connecting a node i, (1 — p)N~l~k is the 

probability that the remaining N  — I — k  are not linked to node i and C ^ _ l is the number 

of ways to select the k nodes node i is connected to. Furthermore, if nodes i and j  are 

different, P(ki  = r) and P( kj  = s) are close to being independent random variables.

The degree distribution is determined from the probability that the random variable 

X k, that is the number of nodes of degree k, takes on a given value, P ( X k =  k).  Ac
cording to equation 1.2 , the expectation value of the number of nodes with degree k 

is
E ( X k) =  N P ( k i  = k) = Afc,

where
\ k = N C k, ^ p k( l - p f - l- k.

The distribution of the X k values, P ( X k =  k),  given by Bollobas (1985), approaches a 

Poisson distribution,

P ( X k = k) = e ~ ^ ^ (1.3)

Thus the number of nodes with degree k follows a Poisson distribution with mean 

value A*, for every fixed k. The Poisson distribution decays rapidly for large values 

of k, the standard deviation of the distribution being ak — A1/ 2. With a bit of sim

plification, Eq. 1.3 implies that X k does not diverge much from the approximate result

9
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0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0
0 2 4 6 8 10 12 14 16 18 20

D e g ree  of connectivity , r

FIGURE 1.5. Distribution of the degree of connectivity of a random network with
N  =  8000 nodes and a mean connectivity, k = 8.00. The distribution follows a

Poisson distribution centred on k.

X k  =  NP{ k i  =  k),  valid only if the nodes are independent (Albert & Barabasi, 2002). 
Thus to a good approximation the degree distribution of a random graph is the binomial 

distribution,

p ( k )  = c iN_lPk( i - Pyx-1-k,
which for large N  can be replaced by a Poisson distribution (figure 1.5),

„jy (pAQ*
k\ k\ '

with unique characteristic parameter k = p N,  that is the mean degree of connectivity 

defined earlier.

In random networks, the mean connectivity determines whether the network is con

nected or not such as

i. If k < 1, a typical graph is composed of isolated trees.

ii. If k > 1, a giant cluster appears.

iii. If k > ln(7V), almost every graph is totally connected.

10
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The generation of sparse random network may then yield disconnected networks.

The maximum degree of almost all random graphs has the same order of magnitude 

as the average degree. Thus, despite the fact that the position of the edges is random, a 

typical random graph is rather homogeneous, the majority of the nodes having roughly 

the same number of links (Albert & Barabasi, 2002).

Clustering coefficient

In a random network, the probability that two of the nearest neighbours of a node are 

connected is approximately equal to the probability that two randomly selected nodes 

are connected. As the number of links in a network is N k / 2 ,  the clustering coefficient is 

then, approximately,
N k / 2  k 

random ~  N ( N  -  l ) / 2  83 F

The clustering coefficient of sparse random networks is then very small.

Diameter

Considering a sparsely connected random network is spreading, that is, it has a small 

clustering coefficient, it is possible to estimate the diameter with a large probability. Let 

Ni be the number of nodes within a distance / from a node. We can write

W =  E  r„
i

where T* is the number of node at distance i. It can be approximated by

l 1L./ + 1 1
N, = V k ‘ = - -------- .

Equating Ni to the number of nodes N  in the network and taking the logarithm, we find 

that the diameter varies as

D cc  t a p

It has been shown, for k /  log N  > 2, that the range for which the diameters of these 

networks can vary is very small and concentrated around the value In N j  In k (Chung & 

Lu, 2001).
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Figure 1.6. Distribution of the degree of connectivity of a scale-free network with 
N  =  8000 nodes and k = 8.00. The distribution follows a power-law of slope

7 =  3.00.

1.3.2 The Barabasi and Albert model

The Barabasi and Albert model yields a different category of networks called scale-free 

networks. Their importance lies in the fact that many real networks tend to display the 

same properties, as shown during the last decade.

Characteristics

A network is said to be scale-free when the probability pr of having a node of degree r 
follows a power-law, such as

r ~ 7

where r t is the degree of connectivity of node i. Here, 7 is the characteristic parameter of 

the distribution as opposed to k  in random networks. The power-law distribution implies 

that there is a majority of nodes of low connectivity and a non-negligeable proportion 

of nodes with a high degree of connectivity, as compared to a random network with the 

same k. This change of distribution has a clear effect on the architecture of the network 

as illustrated in figure 1.3.

12
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Numerous real networks in various fields present degree distributions with power-law 

tails. There is, for example, the World Wide Web whose nodes are the pages and the links 

the hyperlinks between pages (Barabasi & Albert, 1999). There is also the actor-movie 

collaboration networks where actors, i.e. the nodes of the network, are connected to each 

other if they have played a part in a same movie (Amaral et al. 2000). There is the citation 

network where nodes are the papers and the links the citations therein (Redner 1998). 

Biological networks will be discussed later. Several parameters of these networks are 

compared in table 1. 1.

The original, simple method, based on intuitive mechanisms, to generate such net

works was introduced by Barabasi & Albert, (1999). It is derived from observations 

of real networks. A characteristic of real networks is that new elements are being con

tinuously added, for example new websites, actors, articles, etc. The other mechanism 

comes from the observation that more popular sites, actors, etc, are more likely to be ac

knowledged by receiving more links than others. Thus, the simple ingredients are those 

of the growth of networks and preferential attachment to the most popular nodes. The 

generative mechanism is then:

(i) A new node i with m  links is added to the network, starting from a core network.

(ii) The new node is preferentially attached to other well connected nodes such that 

the probability p that the new added node is attached to node i depends on the 

connectivity ki of that node. That is

This model yields in the stationary state a degree distribution pk oc k  7, with 7 =

2.9 ± 0 . 1  (figure 1.6).

Various analytical approaches (Barabasi & Albert, 1999, Barabasi, Albert & Jeong, 

1999, Dorogovtsev, Mendes & Samukhin, 2000, Krapivsky, Redner & Ley vraz, 2000) to 

the above mechanism, agreed on predicting that

(i) The degree ki of node z, introduced at ti increases with time, t, as

with (3 = 1/2. The age of a node in the network is then correlated to its degree of 

connectivity.

13
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(ii) The degree distribution varies asymptotically such as

P( k)  cx m 2k ~3.

The distribution reaches then a steady state and is independent of the degree of the 

introduced nodes, in agreement with the numerical results.

More refined models have been proposed to account for features not reproduced by 

this simple model. These include rewiring processes (Albert & Barabasi, 2000) and 

notions of attractiveness of nodes (Dorogovtsev, Mendes & Samukhin, 2000) which can 

account for the variation of 7 ( 1 <  7  <  3) observed in real networks as shown in 

table 1.1. We mention also the aging phenomenon (Dorogovtsev & Mendes, 2000) or 

the memory effect (Klemm & Egufluz, 2002b) which both attempt to decorrelate the age 

of the node and its probability of attracting more links, in agreement with the Internet 

network (Adamic & Huberman, 2000) or social networks, for example. But overall, it 

seems the essential condition for such networks to appear remains the asymptotic linear 

preferential attachment, whether it be directly implemented (Albert & Barabasi, 2002, 
Krapivsky et al. 2000) or it indirectly derives from other mechanisms (Klemm & Egufluz, 

2002b ) .

Clustering coefficient

It is shown numerically that the clustering coefficient of the Barabasi and Albert model 

decreases with the number of nodes as a power-law C  ~  TV-0  75. This is slower than 

the C — k N ~ l decay observed for random graphs. For a network with k =  4, there is 

a factor difference that increases with the size of the network (Albert & Barabasi, 2002) 
between the Barabasi and Albert model and the random one. The decay of C  has also 

been demonstrated analytically, but for large networks rather densely connected, as well 

as a weak dependence between the degree of connectivity of the nodes and C  (Fronczak, 

Fronczak & Holyst, 2003).

Average path length

The average path length of Barabasi and Albert networks is smaller than that of random 

networks for any number of nodes. This means that the different structural organisa

tion of the Barabasi and Albert model allows for a minimisation of the average path 

length. Numerically, it is shown that the average path length increases as In N.  While
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analytically proven to be the case for m  =  1, it differs slightly for m  >  2 (Albert & 
Barabasi, 2002, Bollobas & Riordan, 2004).

Note on the scale-free network term

Note that ‘scale-free’ networks were named based on the fact that they present a power- 

law distribution, and this is all that we will understand here by ‘scale-free’. The Barabasi 

and Albert network presents many characteristics apart from being scale-free as shown 

above. Note also that in the comparison between scale-free and random networks, we 

only compare properties related to the degree distribution. These restrictions seem ap

propriate in relation to the ongoing debate about scale-freeness, the interpretation of this 

property or even its definition (Keller 2005, Arita 2005).

1.3.3 The Watts and Strogatz model

The Watts and Strogatz model introduces the class of small-world networks. Distinct 

from the two previous models, this class of network is not related to its degree distribu

tion but rather to the clustering coefficient and the characteristic path length. Small-world 

networks are ubiquitous in the real world such as engineered networks, social networks 

or biological networks (Watts 1999) which, in the last case will be discussed in more 
detail below.

Characteristics

The term ‘small-world’ originates from the fact that on average two individuals in the 

world are not any further than 6 acquaintances from each other. This is also referred 

to as the phenomenon of six-degrees of separation and was introduced by the Milgram 

(1967) experiment.

Going back to networks, Watts & Strogatz, (1998) constructed networks with the 

following properties:

(i) The clustering coefficient is large, in comparison to a random network, for example; 

that is, the nodes are locally highly connected to each other.

(ii) The characteristic path length is small in comparison to an ordered network.
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Rwwnng

F ig u r e  1.7. Construction of a small-world network. As the links of a ring lattice 
(left) are rewired, the architecture of the changes to that of a random network (right). 

The small-world network occurs at an intermediate stage.

These networks were termed ‘small-world’ and this is the definition we are going to 
use here even though slightly different versions may exist (Kaufmann, Lehmann & Post, 
2005). As shown in table 1.1, many real networks present the small-world characteristics 
given above.

C onstruction m ethods

The typical mechanism introduced by Watts & Strogatz, (1998) to obtain such a network 
consists of the simple random rewiring of a fraction p of the links of a given network. 
The model starts, that is at fraction p = 0, with a fc-regular circular network of N  nodes 
as depicted on figure 1.7. This starting network is highly clustered, with

that is C —► 3/4 when p —► 0 and k —> oo in the limit N  »  k In N, and k even. On 
the other hand, at p = 1, all the links have been rewired and the resulting network should 
be random. The clustering coefficient is then much smaller with C  «  Crandom ~  k / N.

As shown in figure 1.8, there is a range of p for which the value of C remains high, 
whereas the value of L is close to that of random networks. The sharp decrease of L 
comes from the introduction of long-range edges, creating short-cuts and starts after a 
small fraction of the nodes have been rewired. To be slightly more precise, we can see
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FIGURE 1.8. Variation of the clustering coefficient, C, and characteristic path length,
L, as the fraction p of rewired links. The values C  and L  are normalised to their 
initial values. There is a range of p where C  remains high while L  is at about its 

lowest which characterises a small-world network.

about an 80% drop in the characteristic path length whereas the clustering coefficient 

drops only by about 5%.

Alternative models to generate small world networks exist. There are methods where 

links are added to randomly chosen pairs of nodes so as to reduce the characteristic 

path length without altering much the clustering coefficient (Newman & Watts, 1999a, 

Newman & Watts, 1999b). Another variant, (Kasturirangan 1999), consists in adding 

new nodes and connecting them randomly to the existing ones. Aside from probabilistic 

methods, there are deterministic networks, which allows an analytical description of their 

properties (Cornelias, Ozon & Peters, 2000, Zhang, Rong & Guo, 2005) as well as the 

construction of small-world networks of any node distribution (Cornelias & Sampels, 

2002). Other methods implying growth mechanisms can also yield networks that are 

scale-free and small-world (Klemm & Egufluz, 2002a).

All this shows that a class of small-world networks exists apart from the class of 

networks defined by their degree distribution, for example. This also indicates that small- 

world networks are not intermediates between regular and random networks as the first 

construction method described would suggest.
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1.3.4 Summary

As we are starting to see, networks present various architectural characteristics and prop

erties that combine to form complex systems. If different methods are capable of pro

ducing networks with various properties, those methods are also constraining a lot the 

final outcome so that generating networks of different degree distributions, for example, 

requires a complete change of approach. Furthermore, as intuitive as the methods are, 

they do not deliver an understanding of the natural constraints applied to the network so 

as to induce the proposed mechanisms.

1.4 Network models for biological systems

We have discussed so far the properties of model networks and given examples of real 

networks presenting identical properties. In this section we will focus on a more detailed 

description of biological networks. We will see how the description of biological sys

tems in term of networks is closely related to the type of data available and give some 

examples. We will then detail the type of data that will be used later in chapters 5 and 6 .

1.4.1 A variety of biological networks

There are many levels at which biological systems can be described but we will only 

discuss the molecular, and intra-cellular, level. The intra-cellular medium of a cell is 

composed of thousands of interacting molecules of various natures. This diversity al

lows for the formation and the description of various different networks. The possible 

elements considered here for the network are the DNA, the mRNA, the proteins and other 

intermediary metabolites. For the sake of modelling, we consider that those elements in

teract in the simplified manner as illustrated in figure 1.9. As shown, it is possible to 

define horizontal and vertical interactions between elements, which can be turned into 

several different networks. Note that apart from exemplifying the topology of these var

ious networks mentioned above, each model addresses a different issue.

The protein-protein network

The first of the possible networks is the protein-protein interactions network. Such a 

network is computed from experimental data obtained from many organisms such as the 

yeast Saccharomyces cerevisiae (Schwikowski, Uetz & Fields, 2000, Ito et al. 2001), the
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Figure 1.9. A simplified representation of interactions of a genetic network. The 
double arrows represent possible interactions among the various elements (genes, 

mRNAs, proteins) yielding many type of networks.

worm Caenorhabditis elegans (Li et al. 2004b) or the human (Rual et al. 2005). In this 

network, the nodes represent proteins whereas the links are the interactions between each 

proteins as measured by double-hybrid interaction experiments. It results in a static and 

undirected network which, like a map, states the possible interactions.

The main concern with networks drawn from double-hybrid data is the non-negligible 

proportion of false-positives as well as of false negatives (Schwikowski et al. 2000, Ito 

et al. 2001, Rual et al. 2005, Fields 2005). Relying only on those data may then be 

problematic in the absence of other parallel experiments to corroborate the results.

The main characteristics of these networks are a power-law distribution (Jeong et al. 

2001, Li et al. 2004b, Han et al. 2004, Rual et al. 2005), and a disassortative behaviour, 

that is a tendency for highly connected nodes to interact with less highly connected 
nodes (Maslov & Sneppen, 2002, Rual et al. 2005). The protein-protein interaction net

work of S. cerevisiae and C. elegans displays a high degree of clustering and a small 

characteristic path length (Wagner 2001) characteristic of small-world networks. On the 

other hand, the protein-protein interaction network in humans does not have a such a 

high degree of clustering (Rual et al. 2005).

Aside of its architectural interest, those networks are used to characterise proteins 

of unknown function by using the fact that proteins of analogous function should be 

connected.
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The metabolic network

The metabolic networks are composed mainly of the intermediary metabolites found in 

the energy metabolism and the molecule synthesis routes. There is no clear cut way that 

metabolic networks should be constructed. Most commonly though, the nodes represent 

the substrates or the products of metabolic reactions, which are connected if they are part 

of a biochemical reaction (Fell & Wagner, 2000, Wagner & Fell, 2001, Jeong et al. 2000, 

Ma & Zeng, 2003). Another possibility is to represent the metabolic reactions as the 
nodes and to connect any two of them if they share a substrate or a product (Wagner & 

Fell, 2001). Variations in the exact method to generate these networks yield both directed 
and undirected networks.

There are several interests in metabolic networks, the main one of which is to study 

evolution through the finding of modules, that are related to metabolic functions. The 

idea is to find a mechanism that could explain the observed structure and, in particu

lar this modular organisation of networks (Ravasz et al. 2002), which is also found in 

protein-protein interaction networks (Han et al. 2004).

It was reported that the metabolic network of E. coli has the property of a small- 

world network as well as a power-law distribution of the degree of connectivity of the 

nodes (Fell & Wagner, 2000, Wagner 2001, Raine & Norris, 2001). This result was 

extended to the other studied organisms (Jeong et al. 2000).

We mention that an alternative study in E. coli, in which the metabolites were con

nected only if they were exchanging carbon atoms, yields a different network (Arita 

2004). It is found that the corresponding network has a higher average path length, ques

tioning the small-world property of this representation of metabolic networks.

The genetic networks

The genetic networks are built from levels of expression of the genes which are given 

by the measure of mRNA abundance. The resulting network, depending of the type of 

data, will either be that of a static network or a dynamic one. We will refer to a dynamic 

network as a regulatory network.

The construction of a genetic network is not as straightforward as that of the protein- 

protein interaction networks in the sense that the mRNA abundance bears no direct in

formation on the interactions in the network. Various genetic networks can be generated 

amongst which are the co-expression networks and the transcriptional networks. The 

many ways to generate such networks from mRNA abundances are discussed later in
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chapter 6 . In these networks, the nodes represent the genes while the links might have 
various meaning. In the co-expression network, for example, nodes are connected to 

each other if the corresponding genes are co-expressed (van Noort et al. 2004). In tran

scriptional networks, the nodes are the genes which are connected if one is acting on the 

other via a transcription factor (Lee et al. 2002, Guelzim et al. 2002).

Genetic networks present the same features as the metabolic network (except for one 

study (Arita 2004)), and the protein-protein interaction networks. They have a power- 

law distribution of their degrees of connectivity and show the small-world property (van 

Noort et al. 2004). A more complex picture emerges when looking at the arriving and 

departing connectivity of the genes in S. cerevisiae and E. coli (Guelzim et al. 2002). The 

authors show that the arriving connectivity, defined by the number of transcription factors 

regulating a gene, is better fitted by an exponential distribution whereas the departing 

distribution, given by the number of genes a transcription factor can regulate, follows a 
power-law.

Alternative mechanisms to the one presented earlier have been suggested and mod
elled to account for the properties of the biological networks described here (Wagner 

2003, Chung et al. 2003, Teichmann & Babu, 2004, van Noort et al. 2004). Those mech

anisms are based on the similar concept of gene duplication.

1.4.2 Microarray technique

The nature of the data is an essential issue in the reconstruction and studies of biological 

networks. These data range from the measure of simple interactions which would allow 

the reconstruction of a static architecture, to measures of level of abundance of various 

cell constituents. The latter allow a reverse engineering procedure to reconstruct the 

architecture in a more or less static manner, depending on the data.

Amongst many data, mRNA levels of abundance play an important role. The mRNA 
abundance is a link between gene networks and protein networks in the sense that it 

reflects the genes expression and the regulation of the system. In that respect, mRNA 

level of abundance is a good mirror of cell dynamics.

A technique used to measure mRNA abundance is that of microarrays. It is very pop

ular and measures large scale gene expression. The principle of this technique, shown 

in figure 1.10, is to hybridise cDNA to an array of DNA probes. The cDNAs are syn

thesised from mRNAs which are extracted from an experimental sample and from a 

reference sample. Those cDNAs are then labelled separately with two different mark-
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FIGURE 1.10. Principle of two-colour microarray technique.

ers whether they belong to one sample or the other sample, which are typically Cy5, a 
red marker, and Cy3, a green marker. Both labelled cDNAs are put to hybridise on an 
array where DNA probes have been spotted. This hybridisation will eventually occur 
if there is a labelled cDNA fragment complementary to a DNA probe. The intensity of 
each marker is then measured on the spots and the relative expression of the correspond
ing gene calculated, which is related to the colour of a spot. Then, a red spot means 
that the corresponding gene is over-expressed in the experimental sample or, conversely, 
under-expressed in the reference sample. On the contrary, a green spot means that the 
corresponding gene is under-expressed in the experimental sample or, conversely, over
expressed in the reference sample. A yellow spot means that the corresponding gene is 
equally expressed in both samples.

The microarray technique does not give a quantitative value of mRNA in a cell but 
only the quantitative relative expression of genes. This technique allows work on a large 
scale which is a clear advantage when studying a whole system. In practice, there are 
many considerations relative to technical issues which require the data to be treated be
fore exploiting them. Those issues are mainly related to the measure of intensity of the 
spots, whether the spots are distinguishable from the background, whether the intensity 
is homogeneous between spots, etc, (Eisen & Brown, 1999, Nadon & Shoemaker, 2002). 
Furthermore, a comparative study showed, for example, that results may diverge be
tween commercial microarrays from different manufacturers (Kothapalli et al. 2002, Tan 
et al. 2003) as well as between custom-made microarrays (Jarvinen et al. 2004), or even
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between laboratories (Irizarry et al. 2005).

There are two mainstream experiments in which the microarray technique can be 

used for, that are:

(i) The factor experiments, in which the mRNA is extracted from cells grown under 

different environmental conditions. These can then either be compared to each 

other or to a reference set. These experiments generate data that are the gene ex

pression of an average population of cells and yield a static network. These ex

periments are important in revealing different parts of the genetic network and the 

extent to which it can adapt to various environments.

(ii) The time series experiments, in which the mRNAs are measured at different times 

during the cell cycle. The extracted mRNA is compared, here, to a reference pop

ulation. Those experiments involve a synchronisation step of the cell which is a 

non-trivial operation. From these time-series data, it is possible to extract dynami

cal information and hence to generate a regulatory network.

The synchronisation of a cell population is a crucial operation in obtaining exploitable 

time series data. Synchronisation methods include chemical, physical or thermal means, 

which block the cells of a population at a given stage of their cell cycle. Once all the 

cells are blocked, the blocking agent is removed so that the cells can carry on with 

their cycle but they are now synchronised. This synchronisation can last over a few 

cycles (Spellman et al. 1998). The fact that such synchronisation may not be achiev

able, as well as its relevance has been the subject of a vigorous debate (Cooper & 
Shedden, 2003), (Cooper 2004a), (Spellman & Sherlock, 2004b), (Cooper 2004b) and 

(Spellman & Sherlock, 2004a). However, without entering this debate, we believe that 

time series data obtained from various synchronisation methods are of great interest in 

studying the dynamics of genetic networks.

As for the fact that results from various microarray platforms may differ, we ac

knowledge that the synchronisation may not be perfect and can perturb the cell cycle. 

Nevertheless, such data obtained from S. cerevisiae and E. coli are used later in chap

ter 5 , when looking at general characteristics of real networks.

1.4.3 Summary

The trend in terms of architecture and topology in the biological networks mentioned 

above is to power-law distributions of the degree of connectivity as well a a small-world
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network property.

On a more general note, even though these results are widely accepted, some cau

tion is to be observed because different ways of building network can lead to various 

results (Arita 2004), and because of the enthusiasm in generalising conclusions (Arita 
2004, Keller 2005).

1.5 Properties associated to network

We have so far described properties of parameters associated to the networks. We will 

now describe some properties related to the functionality of the network which shows 

how the architecture and a range of parameters, are important in determining those prop

erties. We detail here some of them for their relevance to the architectural or dynamical 

part of the network we study.

1.5.1 Robustness and tolerance

The robustness is defined as the capacity of a network to resists ‘attacks’ while the tol

erance is the capacity to be tolerant to ‘errors’. Those attacks and errors take the form 

of the removal of nodes either by targeting certain categories or by a random process, 

respectively. This notion of robustness and tolerance is important for the functionality of 

a network since it is expected that a network that can maintain its structural integrity is 

more likely to maintain its functions.

Characterising the structural robustness of a network consists in determining for what 

fraction of removed nodes the systems falls apart. This breakdown process is measured 

by the size of the giant component of the network as well as the size of the components 

that are not part of the giant component.

It as been shown that different degree distribution (Albert, Jeong & Barabasi, 2000), 

variation of assortativity (Newman 2002, Xulvi-Brunet & Sokolov, 2005) or degree of 

clustering (Grondin & Raine, 2005) affect the robustness of networks.

The behaviour of networks under attacks or errors is very different. Under attack, 

which is the present cases are directed to highly connected nodes, there is a critical value 

of the fraction of nodes removed at which the giant component breaks down into smaller 

components. This critical value is smaller for the Barabasi and Albert networks than for 

the random ones, showing then a greater resilience of the latter. Similarly, for a network
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with a given degree distribution, the resilience is greater for those networks with a smaller 

clustering coefficient. Newman (2002) argues that the robustness to node removal is 

related to the assortative behaviour of the network. That is assortative networks present 
more resilience than disassortative ones.

The networks under error show a greater resilience than that under attack as the 

breakdown occurs at a larger fraction of removed nodes. The effect of different clus

tering coefficient is also visible, with networks with higher clustering coefficient being 

less robust (Grondin & Raine, 2005). Note that the effect of removal of nodes at ran

dom is similar to an ‘erosion’ phenomenon as the size of the giant component decreases 
almost linearly.

1.5.2 The spread of information, diseases,. . .

Another aspect of the functionality related to the architecture is the spread of information, 

perturbations, diseases, etc, on networks. It has been shown that the spreading time in 

favourable conditions was similar to the characteristic path length of the network (Watts 

& Strogatz, 1998). Networks with a small characteristic path length, including small 

worlds are then expected to spread perturbations faster. This has been suggested as one 

of the possible advantages for metabolic networks to be small-world as it would help to 

minimise the transition time of metabolic states (Wagner & Fell, 2001).

1.5.3 Structural motifs

At a more detailed level, specific architectural pattern of connections, or motifs, that are 

statistically significant compared to random networks can be found, in a directed graph. 

For instance, in the transcriptional regulation network of the yeast S. cerevisiae and of the 

bacterium E. coli the three node motif ‘feed-forward’ loop, shown on figure 1.11, appears 

more than 10 times the standard deviation than it would in a random network (Milo 

et al. 2002). A four-node motif called ‘bi-fan’ is also present in significant numbers in 

those networks.

Even though we mentioned earlier the fact that we were interested beyond this level 

of detail and despite the fact the this will not be treated in this thesis, those structural 

motifs may somehow be related to our studies for the two following reasons. First, we 
have seen that the clustering coefficient is a statistical parameter that gives information 

on the local structure. Similarly, it would be interesting to see whether those motifs could 

be described in term of a statistical parameter, and if so, how it could be integrated in our
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A B

FIGURE 1.11. Local structures. (A) the feed-forward loop motif and (B) the bi-fan
motif.

models. The second aspect is related to the dynamics as it is shown that specific motifs 
play a role in kinetic response to changes in the network (Shen-Orr et al. 2002). This
kinetic response may or not affect the overall behaviour of the system.

1.6 Various approaches in modelling the dynamics of (bi
ological) networks

We have so far described the architecture and properties of real or model networks. If we 
have mentioned that some networks could be dynamical, we have not mentioned yet how. 
There are actually several possibilities to model the dynamics of networks. However, the 
methods used will be more specifically dependent on the the system we are trying to 
model and the goal set with this model.

In chapters 4, 5 and 6, we will work with dynamical networks of a few thousand
nodes at the most. We therefore need to choose which dynamical framework will be the 
most appropriate so that it gives a good insight on the behaviour of the system and it is 
practical to handle while realistic. We present here some of the possible ways to model 
dynamical biological networks.

• Differential equation systems: For macroscopic systems we can model the popula
tions of interacting elements (protein, genes, etc.) as continuous variables chang
ing continuously in time, hence as a system of coupled differential equations. The 
main problem is to have a set of equations that is easy to handle and that gives
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results that can be interpreted biologically. The approach is appropriate for sys
tems with a relatively small number of constituents, each of which has sufficient 

abundance so that we can use average values and where stochastic effects can be 
ignored. With this approach, the parameters of the system, such as reaction rates 

for example, must be known exactly. This method, which can be used typically to 

treat systems of a few tens of elements, is not appropriate for our purpose though 

it has been used in modelling genetic networks (Chen et al. 2004).

•  Neural networks: Neural networks have proven themselves very efficient in al

lowing predictions from complex data, for example. However, when applied for 

example to genetic networks it is not clear how to extract physical or biological 

information from the results. For that reason this does not seem a good choice.

•  Boolean networks: The characteristic of boolean networks is that a node is defined 

by its two states that are labelled, arbitrarily, as ON or OFF. In these networks, the 

nodes are connected to each others according to a specified architecture and the 

dynamics is provided by boolean functions implemented by the nodes. A bench

mark boolean network in system biology is the NK-Boolean network introduced 

by Kauffman (1993). This model, which will be detailed in chapter 4, bears simi

larities to the networks we have designed to study genetic regulatory networks.

1.7 Entropy and theory of information

We introduce now briefly the information theory that to be used later in chapter 6 .

Information theory has been developed around the idea of the use of noisy channels 

and encoding of messages in such a way that it can be received and decoded with a 

reliability approaching 100 per cent. This theory, introduced by Shannon, (Shannon & 

Weaver, 1949) as a measure of uncertainty of the outcome of an event. Consider an 

event X  that can take a finite number of states N  whose probabilities are p \ , . . . ,  p,v with 

J2i Pi =  1- The Shannon entropy of such an event, H ( X ) ,  is defined as

N

H ( X )  =
i

A property of this function is that the uncertainty reaches a maximum for pi =  1/ N.  

This correlates to the Laplace’s principle of ‘insufficient reason’ that states that in the 

absence of any information, the occurrences of an event must be equiprobable.
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Similarly, the joint uncertainty of two events X  and Y  is defined as

H { X , Y )  = j ) lo g p (2' J ) ,  (1.4)
*7

while

H (X ) =  S p (* » 7 ’) logP(*)
*7

and

^ (y ) = X ^(ẑ ) 1ospO')’
ij

where p(z, j )  is the joint probability. In the case of the existence of correlations between 

events X  and Y,  the joint probability is expressed as

p ( h j )  =p( i \ j ) p ( j )  =p{j \ i )p{i ) ,

where p(i \ j )  is the conditional probability of having i knowing j  and p(j \ i )  the con
ditional probability of having j  knowing i. In this case, the joint entropy is expressed 

as

H { X ,  Y )  =  H ( X \ Y )  +  H ( Y )  = H ( Y \ X )  +  H { X ),

where H { X \ Y )  = 'Li,j p( i , j ) \ ogp{ i \ j )  and H { Y \ X )  =  E i j P i h j )  logp(j \ i )  are the 
conditional entropies corresponding to the uncertainty measure of X  knowing Y  and of 

Y  knowing A", respectively. Conversely, if there are no correlations between the two 

events that is they are independent, we havep(z, j )  = p{i)p(j),  hence H ( X \ Y )  — H ( X )  

and H ( Y \ X )  = H( Y ) .  In this specific case, Eq. 1.4 reaches a maximum so that,

H ( X , Y )  < H { X )  + H( Y ) .

This is an important results as it shows that if there are correlations between events X  

and Y,  the joint entropy will be less than the sum of the entropy of the individual events.

The mutual entropy, also called information (Adami 1999) or correlation entropy, 

between 2 sets of random variables X  and Y  is defined as

M ( X ,  Y )  = M (y , X )  = H { X )  -  H ( X \ Y ) ,

with A /(A , Y )  > 0 , the amount of information that X  and Y  contain about each other. 

M  = 0 implies X  and Y  are independent. It corresponds to the difference between the 

entropy if there were no correlations and its actual entropy. The mutual entropy expresses
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H(X)

H(Y)

H(X,Y)

M(X'Y)

FIGURE 1.12. Venn diagram representing the mutual information, M (X, y), shared 
by both entropies H( X)  and H(Y) .

then the information generated by the system. Finally, the joint entropy can be written 
as

H { X , Y)  = H( X)  +  H( Y)  -  M( X ,  Y) .  (1.5)

Thus, if correlation exists between A' and Y,  then by the knowledge of one of the events 
it is possible to extract knowledge about the other.

The concept is illustrated figure 1.12 by a Venn diagram where the intersection of the 
circles represents the mutual entropy and the envelope of both circles the joint entropy.

1.8 Outline of the thesis

In this thesis, we will study networks under three complementary approaches:

The first approach concerns the generation of networks. As mentioned earlier, the 
intuitive methods to construct networks fail to generate an understanding of the natural 
constraints yielding them. In chapter 2 we will develop a method to generate networks 
of any given degree distribution from a thermodynamical approach which allows a sta
tistical treatment of the system. We will show, explicitly, that with this single conceptual 
method it is possible to generate networks with various degree distribution.

We expect from the thermodynamical approach applied to networks to extract the 
macroscopical variable that describe them. However doing this requires a deeper under-
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macroscopical variable that describe them. However doing this requires a deeper under

standing of the relation of the nodes and the links to the architecture of the system. On 

this basis, we will try to extract important knowledge on the architecture of networks 

which could possibly lead to this macroscopic description. This work is presented in 
chapter 3.

For the second approach, we are interested in how the architecture can shape the 

behaviour of networks. In that respect, we will implement a simple dynamics. We will 

describe in chapter 4 this dynamical regulatory network and the properties that emerge 

from it.

The formulation of this simple dynamical model has a second application related 

to genetic regulatory networks. Then, in chapter 5 we will show, in a trial and error 

approach, how the behaviour of the network is influenced and perturbed by the addition 

of complementary rules and how it relates to real data. In parallel, we will look at the 

correlation between architecture and the behaviour of real networks.

In a third approach, presented in chapter 6 , we will start from generated expression 

data and try to infer the corresponding networks. The point will be here to see whether 

the data contain information on the structure of the network and whether it is enough 

to reconstruct it. The method used is that of maximum entropy, which will be adapted 

to this purpose. This method will involve knowledge gained from results of previous 
chapters. Compared to other methods, the maximum entropy approach will allow us to 

reconstruct bigger networks more rapidly. This method is illustrated by the reconstruc

tion of networks from simulated data.

Finally, we will summarise and conclude in chapter 7 the knowledge gained from the 

work presented here.
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Chapter 2
Networks as Constrained Thermodynamic 
Systems

2.1 Introduction

In this chapter we shall show that a thermodynamic approach allows us to construct net

works as a maximum entropy configuration of nodes subject to constraints. This is not 

only of technical interest since the constraint can be interpreted as a cost function, which 

in principle represents the cost in free energy of establishing the network. This is impor

tant as the form of the cost function implicitly contains information on the evolution of 

the network. We therefore expect this approach to illuminate the structure of networks 

with possible applications in metabolic, genetic and protein networks.

To construct a network with a given nodal distribution we need to derive the relevant 

constraints that will lead to the given distribution. Starting from a given arbitrary network 

we then numerically evolve the connections to maximise the entropy of the network, 

subject to constraints. The trick here is to find an evolutionary dynamics that respects 

the constraints. We shall show that such an approach can yield a network of any nodal 

distribution directly.

We first briefly introduce the maximum entropy principle as used in statistical me

chanics and then show how it applies to network reconstruction. We then illustrate the 

approach with an application to the simple case of exponential networks and then apply 

it to scale-free and a related class of networks following what Mandelbrot has called the 

‘simplified canonical’ distribution (Mandelbrot 1954, Vohradsky & Ramsden, 2001).
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2.2 Maximisation of the entropy subject to constraints

2.2.1 The entropy maximisation principle

The maximum entropy principle, introduced some 50 years ago by Jaynes (1957), makes 

the link between information theory and statistical mechanics. Though it is very well 

known, we briefly recall it here. This will provide clarity when it comes to a justification 

of our approach to constructing networks, while giving the clues to develop further a 
thermodynamics of networks.

In this approach, the entropy function is the main concept used to infer probability 
distributions, which arise as maxima of the entropy subject to certain constraints.

Consider discrete values Xi with corresponding probabilities pi which are not known, 
but for which the expectation value of the function, f ( x )  is known so that

n

< f ( x )  >= ^ 2 P i f ( x i)- (2 .1)
i=i

The probabilities are subject to the condition

E ft = 1. (2.2)
1 =  1

Solving exactly the probability distribution would require a set of n  independent equa

tions. However, this cannot be done here since the two expressions above provide the

only known information on the system. As guessing the missing information would be 

inappropriate, the problem is reduced to that of finding probability assignments which 

avoid bias while agreeing with whatever information is given.

The solution is provided by information theory which provides the unique and un

ambiguous criterion for the ‘amount of uncertainty’ represented by a discrete probability 

distribution. This positive quantity, which increases with increasing uncertainty, is

H(pi  ■ • •Pn) = - K  Y^Pi l npi ,  (2.3)
i

where K  is a positive constant (Shannon & Weaver, 1949). This expression corresponds 

to the expression of the entropy in statistical mechanics.

Then, the problem of inferences on the basis of partial information is solved by the 

probability distribution whose entropy is maximum subject to whatever is known. This
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is the only unbiased assignment possible and using another would be an arbitrary as
sumption. The maximisation of equation 2.3 subject to constraints 2.1 and 2.2 requires 

the introduction of Lagrangian multipliers A and p,  such that

d
— ~ { H  +  \ p t + i i p i f (x i )) =  0,
OPi

which results in
Pi =  e-w */!* .).

The Lagrangian multipliers are then identified using Eqs. 2.1 and 2.2, so that

< /O) >= ~ ^ lnz(p)

and

A = In Z(/i), 

where Z( p)  is the partition function, so that

Z ( p )  =

i

In statistical mechanics, this approach allows the identification of macroscopic pa

rameters such as temperature and free energy (Schrodinger 1952). In particular, all 

thermodynamical quantities can be calculated from the partition function and the entire 

macroscopic behaviour of matter at equilibrium can then be predicted by its evaluation.

A property of this method is that no possibility is ignored as positive weight is as

signed to every situation that is not absolutely excluded by the given information.

2.2.2 Application to network construction

We apply the maximum entropy principle to deduce networks of a given degree distribu

tion. Note that if our aim were simply to obtain a network exhibiting a specified degree 

distribution of nodes qr of each degree r we could proceed as follows. Take any net

work as starting point (say a random one) with a distribution pr =  pQr of node degrees. 

Furthermore take any cost function of a form that approaches a maximum as pr —> qr, 

for example — (P r  — Qr) 2 or the relative entropy — r P r  log (pr/q r)» and rewire the
network, changing pr, in such a way that the cost function is maximised. This is, of 

course, a straight forward approach if we are seeking only a specific nodal distribution.
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However, this is not the most relevant for our purpose since our aim is to express the 

network construction in thermodynamic terms.

The problem is here the reverse of the one presented above in section 2.2.1. In the 

present case, we know the probability distribution of the network we are aiming at but 

not the constraints associated to obtain it. The problem is then to find the constraints that 
correspond to a given degree distribution.

Consider a system of N  nodes with pr the probability to find a node of degree r. The 

point entropy of the network, ft, associated to the nodal distribution is given by Eq. 2.3, 
that is (up to a constant)

ft =  -  5 IP r lo g p r, (2.4)
r

with
n r

V r = N '
and where n r is the number of nodes of degree r. Suppose C(pr) is the constraint, yet 

unknown, associated with the system. The maximisation of the entropy such that C( p r) 
remains constant is solved by introducing the Lagrangian multiplier, (5. The expression 

to maximise is then

n - , 3 C ( p r). (2.5)

One can verify that this is achieved if

C{pr) = (2 .6)
r

with Y1 $Pr = 0 where pr are the probabilities to be ‘found’, and pr =  qr is the required 
solution. Thus, from expression 2.6 and knowing the probability distribution we can di

rectly deduce the appropriate constraint. In other language, the cost function mentioned 

earlier is — ft +  (3C. (To avoid confusion note that the point we are making here is not

the form of the result of Eq. 2.6, which is in any case essentially just the relative entropy

again, but that this form allows us to use the standard thermodynamical methods).

In this context, the distribution of probability, dependent on the constraint is of the 

form
a  d C

qr oc e ^ dpr. (2.7)

Finally, the form of the partition function will then be, up to a constant,

Z(13) =  ' ^ e ~ l3C(r’r),
r
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or, generalised to many constraint

Z(/3) =  Y  e~i3'Ci{Pr).
i , r

Thus, for any degree distribution of a network, the approach shows there exist an asso

ciated constraint and a corresponding partition function. This method needs now to be 
turned into a suitable algorithm.

2.3 Application to the construction of exponential net
works

2.3.1 General implementation of the method

In order to justify later a thermodynamic interpretation of network properties, we need 

to respect the following required conditions when applying the method described above:

(i). The size of the network is constant.

(ii). The entropy subject to the constraint needs to be maximised to find the most prob

able nodal distribution associated to the given constraint.

(iii). The constraint needs to be maintained constant so as to satisfy the use of the La

grangian multiplier (3.

The crux here is to show that the last condition can be satisfied, that is that one can find 

a mechanism that preserves any given constraint. In particular, we show that it can be 

satisfied exactly when generating an exponential network.

The networks are generated in a non-growing context, that is the number of nodes, N , 
remains constant over the evolution process. The starting network is arbitrarily chosen 

to be a random network (described in section 1.3.1), although any other class could be 

envisaged. The evolution from one network to another implies alteration of the degree 

of connectivity of the nodes, which can be achieved by mechanisms including rewiring, 

addition or removal of links. The way the modifications are carried out is an important 

step, since the variation of the degree of connectivity influences directly the constraint 

(Eq. 2.6). The mechanism is described in the next section.
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Once a modification mechanism is defined we apply it to the network and monitor 

how the entropy varies as a consequence. If it is increased, we accept the new network 

and continue. If it is not, then we accept the new configuration with probability

A ( f 1 - 0 C )
e — , (2 .8)

where a  is a constant set to improve the convergence of the process. The mechanism is 
continued until the constrained entropy is maximised.

Note that the similarity here to the Metropolis algorithm (Metropolis et al. 1953) is 

superficial only. We are not suggesting that the steady state properties of the network are 

determined by an average over this ensemble. Rather the approach is intended to prevent 
the network settling into a configuration with a shallow local maximum of entropy. Even 

so, the solution is not expected to be unique in those cases where the distribution of nodal 

degrees does not completely characterise the network. (For example, various different 

networks with the same scale-free node distribution are known (Krapivsky & Redner, 
2001).)

2.3.2 Mechanism for exponential network

We call exponential networks those networks for which the degrees of connectivity are 
distributed as

qr oc e _/3r.

Comparing with Eq. 2.7 gives the required constraint,

C(Pr) =  J 2 rPr- (2 -9 )

This simplifies considerably the modification mechanism since rpr = k- The condi
tion to maintain the constraint constant reduces then into the keeping degree of connec

tivity constant, that is to say, to conserve the number of links. Maintaining the number 

of links is relatively straightforward using just a rewiring process (figure 2 .1), that is:

(i). Randomly pick a node i.

(ii). Randomly choose a node, say j , of degree r, that is connected to i and disconnect 

it from j .  On removing one connection from node j ,  the constraint N C  varies by

A ( N Pr) =  - 1 ,
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FIGURE 2.1. Simple rewiring mechanism from node j  to node / where node i is the
central node.

for the loss of a node of degree r, and by

A(A'pr_i) =  +1.

for the gain a node of degree r — 1. The overall variation of the constraint for the 

lost of a connection at a node of degree r, A _, is then

A_ =  r A ( N p r) +  (r -  l)A (A rp r_i) =  - 1

(iii). Randomly pick a node, say I of degree s, that is not already connected to node i.

(iv). Connect node i to /. On connecting node I, the system looses a node of degree s 

and gains a node of degree s +  1. As above, the overall variation of the constraint 

for the gain of a connection at a node of degree s, A+, is

A+ =  r A ( N p s) +  (s +  l ) A ( N p s+1) = +1

Hence the total variation for the rewiring process is

N A C  =  A_ +  A + =  0

and the constraint is maintain constant exactly. Note that here, the constraint is directly 

controlled by the rewiring mechanism and that only the entropy needs to be maximised.
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2.3.3 Numerical simulation

We make the following general remarks and requirement on the choice of the parameters 

for the numerical simulation.

i. The only adjustable parameter of importance is a , in Eq. 2.8, which determines how 

a new configuration is accepted although it decreases the entropy. Its appropriate 

value for the construction of the expected network is unknown beforehand. It needs 

then to be determined by varying it over a wide range of values.

ii. The number of nodes is chosen to give networks large enough to represent an infinite 

network over a wide enough range of node classes, yet to still give a reasonable 
computing time.

iii. The mean degree of connectivity of the original network is not here an important 

parameter. The only requirement is for the starting network not to be disconnected. 

This condition will be maintained throughout the simulation.

We proceed to the simulation starting from a random network of 5000 nodes that 

is generated according to the method given in section 1.3.1. The mean connectivity is 

fixed at k = 10 which ensures a connected network (section 1.3.1). In the simulations, 

the rewirings are carried out until the value of the entropy, calculated according Eq. 2.4, 
reaches a plateau.

We give in figure 2.2 the variation of the entropy for various values of a  as the random 

network evolves towards the exponential one. The constraint is not shown since in this 

case it is kept constant by construction. The results in figure 2.2 show that the entropy 

increases as the rewiring proceeds for low values of a  until it reaches a plateau. At that 

stage the network is expected to have converged and the structure should not be affected 

by further rewirings. The figure shows also that the values at which the entropy plateaus 

depends upon a , with the highest value reached for a  <  1CT6. Note that a  —> 0 is also 

effective but implies that only the modifications that increase the entropy are accepted.

We show in figure 2.3 the degree distribution of the nodes obtained at maximum 

entropy for values of a  used in figure 2.2. It shows that the degree distribution of the 

network for a  = 10-6 is exponential. This result validates the method and the approach 

to generate exponential networks. The figure demonstrates also the importance of a cor

rect a.  For values of a  greater than 10-6  the degree distribution of the networks departs 

from an exponential towards the distribution of a random network. The convergence of
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Figure 2.2. Variation of the entropy of the network during the maximisation pro

cess. Each curve corresponds to the entropy at different values of a , where a  =  10-3 

for (a), a  =  10-4 for (b), a  =  10~5 for (c) and a  — 10-6 for (d). The smaller a  the 

higher the value that the entropy converges to.

the entropy towards a plateau is not enough on its own as the plateau has to reach the 

highest possible value.

The distribution of the connection probabilities between nodes of degree r  and s is 

shown in figure 2.4. We did not provide any constraint on the way the nodes should 

connect to each other depending on their degrees. Note that there is apparently a large 

probability for nodes of high degree to be connected together. This arises because of the 

way the figure has been constructed and results simply because the high degree nodes 

have more connections. Most of the connections obviously involve low degree nodes 

because those of high degree are exponentially small in number.

2.4 Generalisation to more complex networks

2.4.1 Alteration of the mechanism

For exponential networks the procedure to maintain the constraint constant is straight

forward, but for other networks the constraint function is somewhat more complicated.
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FIGURE 2.3. The degree distribution of the nodes for various values of a.  The dis
tribution (a) corresponds to the degree distribution of the starting random network. 
Distributions (b), (c) and (d) give the degree distribution of the networks at the end 
of the maximisation process for a  =  10-4, 10-5 and 10-6, respectively. The distri

bution (d) decays exponentially.

□ tntr** t

Figure 2.4. Distribution of the connection probability in an exponentially con
nected network between nodes of degree r  and s.
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It involves the modification of the previous algorithm since the maintenance of the con
straint cannot be directly embedded into the evolution mechanism. The previous model 

is actually a simplified approach to the maximum entropy method applied to networks. 

For instance, in the exponential case, the parameter (3 in Eq 2.6 is not explicitly included. 

The consequence is the absence of explicit constraint on the slope of the expected dis
tribution (Eq 2.7). It does not appear clearly in the previous model that the value of the 

constraint is linked to the value of the Lagrange multiplier in the final network. What 

is important in the simulation is the actual form of the constraint which depends on the 

final distribution. The exact value of the constraint associated to the final network is not 

known beforehand and cannot be expected to be the one of the starting network. There

fore, we cannot require that the constraint be constant in the early stages of the iterations, 

but only that it converge to a constant value appropriate to the value of (3 and the degree 

distribution chosen. In practice, even at later stages, we do not attempt to keep the con

straint exactly constant at each evolutionary step, but only on average over a number of 

steps.

The simple rewiring mechanism turns out to be inefficient and not flexible enough to 

maintain the constraint in general. Instead, we implement a new evolution mechanism 

that includes addition and removal of links as follow: A pair of nodes, say z, j ,  is selected 

randomly. If this pair is connected then the link is removed with probability (1 — Prs), 
where r and s are the degrees of nodes i and j ,  respectively. As before, the removal of 

one connection will decrease the constraint by

A_ =  A _ (r) +  A _(s)

where A_( r )  is the variation of the constraint by the disconnection from node i and 

A_(s )  is the variation of the constraint by the disconnection from node j .  The variation 

of the constraint for such event occurs with probability

Q( 1 -  Prs),

where Q is the overall probability that a randomly chosen pair of nodes in the network is 

linked. It is given by
2 n

q = W ^T Y
where n  is the number of links. Similarly, if the nodes i and j  are not connected then 

we connect them with probability (1 — P rs). Such event varies the constraint by A + and
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occurs with probability

(1 -  Q )Prs-

These probabilities are introduced to exert control over the variation of the constraint. 

The probability Prs is calculated at each stage in order to ensure that the constraint 

evolves toward a constant value according to the following condition:

Q{ 1 -  Prs)A_ +  (1 -  Q )PrsA + =  0. (2.10)

That is
p  . = _______ 9A - _______

Q A _ - ( 1 - Q ) A + ’

With this condition the constraint evolves toward a stable value. As before, modifications 
leading to completely disconnected nodes are not accepted and any node has to be con

nected to a unique network. In practice, the choice of the probabilities Prs is not unique 

and an appropriate fixed probability for each kind of modification (removal, addition) 

can also lead to a constant value of the constraint.

The decision on keeping the new configuration of the network after its modification

is the one indicated in section 2.3.1. In the rest of this chapter, we will implement those

modifications to the construction of scale-free and Mandelbrot networks.

2.4.2 Application to scale-free networks

By definition the degree distribution of a scale free network follows a power law

qr oc r -/3. (2 .11)

According to expression 2.7 this implies that the constraint be set as

C{Pr) = ^ ZPr l ogr .  (2.12)
r

The expression to be maximised is consequently

ft -  (3C(pr) =  -  ^ p r logpr -  P Y lP r  l° g r  (2-13)
r  r

The variable (3 is this time a parameter of the simulation and corresponds to the slope of 

the degree distribution of the network once Eq 2.13 is maximised.

The same considerations as before apply for the values of N  and k. For the purpose of
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FIGURE 2.5. Variation o f  the constraint, C( pr), as defined by Eq. 2.12, reaching a 
plateau during the m axim isation  process.
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Figure 2.6. Degree distribution of the nodes obtained numerically (crosses) com
pared to the expected theoretical distribution (line) for a scale free network. The 

theoretical distribution is set to have (3 =  2.5.

consistency, we chose the same values in section 2.3.3 that are N  =  5000 and k — 10.0 

for starting random networks. In the following simulation we fix (3 = 2.5, which is
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chosen arbitrarily to illustrate the method.

Since the evolution mechanism has been modified the appropriate value for a  has to 

be determined as previously. It turns out, as before, that a  =  10~6 gives expected results 

and that a  —► 0 is as well effective. We set a  = 10-6  for the following simulations.

Figure 2.5 shows that the value of the constraint reaches a plateau and stabilises after 
a certain time. Even though we do not expect the value to remain exactly constant we do 

not expect it to vary significantly had we pursued the maximisation further.

The degree distribution of the network at the end of the simulation is given in fig

ure 2.6. As shown on the graph, the degree distribution follows a power law with a slope 

close to the expected (3 = 2.5. There is a cut-off at nodes of high connectivity (low 

probability), which is a reflection of the finite size of the network.

Note that until the finite size effects set in at high connectivity the method gives 

results that are highly reproducible with little scatter about the power law distribution. 

The simulation has also been tried for various values of (3 giving every time a degree 

distribution with a slope closed to the expected value.

2.4.3 Application to Mandelbrot networks

The Mandelbrot network is a generalised version of the scale free network. It is so named 

because its degree distribution follows the Mandelbrot law, also called the simplified 

canonical law (Mandelbrot 1954). This law is defined as

1
Pr oc  -------—.

(r +  p Y

The parameters are referred to as the diversity, p, and the inverse information tempera

ture, (3.

The new constraint C(r)  is a generalisation of expression 2.11 (and consequently so 

is the corresponding expression for entropy) and is given by

C ( r ) =  $ ^ l o g ( r  +  p). (2.14)
r

The variable p is then included as a parameter of the model.

The starting networks used in the following simulation are the ones previously de

fined in sections 2.3.3 and 2.4.2. As previously, an appropriate value of a  needs to be set 

so as to reach a maximised value of the entropy subject to the constraint. Apart from the
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Figure 2.7. Variation of the constraint, C(Pr), as defined by Eq. 2.14, reaching a 
plateau during the maximisation process.
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ical distribution is set to have (3 = 3.0 and p =  10.0.
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change of the expression of the constraint, the model is not modified. We then assume 

there is no need to change parameter a  which is then set as in the previous section to 

a  =  1 C T 6 .

We present in figure 2.7 the variation of constraint obtained with the parameters 

= 3 and p = 10. The constraint at this stage varies around a constant value of the order 
of unity with an amplitude of ± 2 .5 .10-4 and can therefore be considered as constant.

The degree distribution of the network at the end of the simulation is given in fig

ure 2.8. The distribution fits the simplified canonical law very well except for nodes of 
high degree, where again the effects of finite network size come into play.

Finally, we repeated the simulations for various values of parameters (3 and p which 
give networks in very good agreement with what was expected.

2.5 Summary

We have shown in this chapter that a thermodynamical approach allows us to construct 

networks of, virtually, any given degree distribution. This shows that the construction 

of networks may not rely only on intuitive mechanisms but may also involve a standard 

thermodynamical formalism. The obvious advantage of this approach is that it opens 

new ways of understanding network evolution.

This approach allows us to treat networks as thermodynamical systems. In the work 
presented above, the use of point entropy to infer the networks assumes we neglect the 

correlation between degrees of connectivity. The issue is now to see whether we can 

make a better thermodynamical description of the network and what knowledge to gain 

from this. This is presented in the next chapter.
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Chapter 3
Towards a thermodynamical description 
of networks

3.1 Introduction

We have seen in the previous chapter that a thermodynamical approach enables us to 

generate networks of given degree distribution (at equilibrium). The method in itself is 
not enough to allow a complete thermodynamical description of the networks. A deeper 

investigation of the parameters and properties of those networks is needed if we are to 

extract the relevant information that will give rise to such a complete description.

Our approach allows us to think of networks in term of thermodynamics and hence in 

terms of the information provided by the entropy function. In such terms, the networks 

generated so far are not completely analogous to perfect gases, because the probability 

of a connection between nodes of given degrees is not independent of the degree.

In this chapter, we show first the existence of correlations in the connections of the 

nodes and estimate the effect of this on the network entropy which differs from random 

by a relatively small amount {i.e. that in this sense the connections are close to random). 

We then discuss how this thermodynamical approach might be presented in terms of 

intensive and extensive variables of networks. We suggest that a useful description might 

involve an intensive measure of ‘complexity’ of a network through what we call the (3- 
complexity parameter and we give two examples. We expect this type of analysis of the 

networks to provide us with the macroscopic variables appropriate to life, even though 

this goal seems still remote.
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3.2 The non-randomness of the connections

We have so far assumed that the entropy (disorder) of the networks under consideration is 

contained solely in the distribution of the connectivity of the nodes (the ‘point’ entropy). 

This is equivalent to assuming that the nodes are randomly connected in the sense that 

the probability of a link between nodes of degrees r and s is independent of r and s. This 

is not the case: in both scale-free and (hence) Mandelbrot networks correlations exist 
between nodes (Albert & Barabasi, 2002). We need to show that this can be neglected 

in a first approximation and an analogy with a gas might be illuminating. In a perfect 

gas the molecules are independent so the energy (and entropy) is proportional to the 

number density of particles. This is analogous to a network with independent links. 

In an imperfect gas the particles are correlated and the energy is associated not just 
with the particles, but also with their interactions. This is like a network with any non- 

random distribution of links. The correlations contribute to the order and hence should 

be included in the entropy.

We show, in the following, the existence of those correlations by calculating two 

different and complementary entropy ratios. The first one compares the point entropy of 

the network to the entropy when taking into account the links, whereas the second one 

compares the link entropy of a network to an entropy ignoring correlations.

3.2.1 First approach

In this approach, we compare the value of the model entropy — £  7ir log n r associated 
with the degree distribution of the nodes (the ‘point’ entropy) with the true statistical 

entropy of the network, taking into account correlations between the connections of the 

nodes.

Let n rs be the number of nodes of degree r that are connected to nodes of degree 

s. The probability of finding a connection between a node of degree r and a randomly 

selected node of degree s is n rs/ n s. If the connections were made randomly this prob

ability is independent of the degree of the node to which the connection is made, so we 

should have
Tlrs Tlrp

Tls Tip

for any s and p. This is, equivalently,
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from which we deduce that n rs ex n s, hence, by symmetry n rs oc n rn s and finally, for 
uncorrelated networks,

n rs = Q n rn s. (3.1)

where Q =  k / N  is approximately the average probability that a randomly chosen pair 

of nodes is connected (taking N ( N  — 1) «  N 2 for large N ).

Let now S L be the entropy related to the links n rs such as

^   ̂^rs log 7lrsi 
r,s

which, according to Eq. 3.1, becomes for uncorrelated networks

S l =  51  Q n rns log Q n rn s.
r,s

This can then be expressed in term of the point entropy such as

S L =  2 N Q  ^ 2  n r log n r +  2 N 2Q log Q.
r

Hence the ratio
2JiQ E r , s  n rs log Tlrs ~  f  log Q

—      ,
log Tlr

corresponds to the entropy contributed by the links compared to that of the nodes. This 

ratio, which depends on the size and mean connectivity of the network, is equal to unity 

for random, that is uncorrelated networks and smaller than unity for any other networks.

We show in figure 3.1 the variation of the ratio R l for exponential networks of var

ious mean degree of connectivity. The figure shows that for exponential networks, the 

ratio is not unity but slightly less, which means that, in exponential networks, the links 

are connected close to randomly.

3.2.2 Second approach

In this second approach, very similar to the first one, we compare the entropy related to 

the links in a network to the entropy expected in an uncorrelated network. The difference 

is that this time we do not consider the point entropy.

The probability P(s)  of finding a connection to a node of degree s, is given by



Towards a thermodynamical description of networks 3.2 The non-randomness of.

0.965

0.955

0 .945

0 .935

0 .925
12 14

M ean connectivity

18 20

Figure 3.1. Ratio, R L, of the entropy contributed by the nodes to that of the links 
plotted against the mean connectivity for exponential networks. This ratio is 1 for

random networks.

where n s is the number of nodes of degree s and k£ the degree of connectivity of nodes 
of degree r. If there are no correlations between the degrees of connectivity, then

P (r , s )  = P (r )P (s ) (3.3)

where P(r,  s) is the probability that a link joins nodes of degree r and s which is given 
by

(3.4)r>r \ 2nrsP{r, s)
N k

with n rs the number of links between nodes of degree r and s. Let Q rs denote the 

probability that a pair of nodes of degree r and s are linked, so

^    2?7rs
Wrs N ( N  -  1) '

Using Eqs. 3.2, 3.3 and 3.4, if the links between nodes are uncorrelated

_  2 m rs n s _
^crs jvro/Tvr 1 \ 7 W  randomsN 2( N  — l ) k

We now look at the correlation in a network by computing the entropy per link rel-

50



Towards a thermodynamical description of networks 3.2 The non-randomness of.

0.998

0 .996

0.994

0 .992

S 0 .988

0.986

0.984

0.982

0 .978
8 10 

M ean connectivity

14 16

Figure 3.2. Ratio, R h ,  of the entropy for links independent of the nodal degrees 
to that of the dependent ones. The circles are for random networks, the triangles 
are for scale-free networks obtained using the Barabasi and Albert approach and the 

squares for the Mandelbrot networks. Each value is the average over 10 repeats.

ative to a random network. In any network a pair of nodes can either be linked, with 

probability Q rs, or not linked with probability 1 — Qrs. The mean entropy per pair of 

nodes is therefore

H L =  ~  ^  [ Q r 5 l o g Q rs +  ( 1  -  Q r s )  l o g  ( 1  -  Q r s ) } -

We expect the entropy of a network where nodes are randomly connected to each other 

to be higher than that of any other network. Thus the ratio

^2pair  [ Q r s  l o g  Q rs T" (1 Q r s )  log (1 Q r s ) ]

Ylpni r  [Qrandom  l o g  Q ra n do m  T  ( 1  Q r a n d o m )  l o g  ( 1  Q ra n d om ) ]

will be unity for independent linkage and less than unity for dependant links.

For a random network the numerically computed quantity R h is close to that ex

pected (so the ratio is close to unity) thus verifying our procedures. Figure 3.2 shows the 
calculation of the ratio for the Mandelbrot networks that we have constructed above. It 

is clear that part of the entropy resides in the non-randomness of the links.
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3.2.3 Summary

Our conclusion is that to a first approximation the macroscopic properties of these net

works can be obtained from an entropy function related to the node distribution. The fact 
that the entropy is not entirely contained in the node distribution means that there will be 

more than one local maximum of the full entropy function for a given node distribution, 

corresponding to different correlations (Krapivsky & Redner, 2001).

Note that our model is the opposite of Ising-like models of interacting nodes where 
the energy (and entropy) is associated entirely with the interactions of nodes. Our model 
leads to the desired connectivity distributions in chapter 2 (compare (Berg & Lassig, 

2002)).

3.3 Intensive and Extensive variables

The cost function plays the role of an internal energy, which can be changed in two ways: 

by rewiring (adding heat) which will change the node distribution, or by growth of the 

network without changing the node distribution (doing work):

SC  =  — (3~l log n rSnr — (3~l n r (51og n r. (3.5)

The first term on the right is just the change in entropy of the nodes (multiplied by (3~l ). 

The second term on the right represents, in some sense, the cost per node associated with 

varying the external parameters. The external parameter might be, for example, the total 

number of nodes, or the total number of connections; for each choice, X ,  there will be 

an associated intensive variable, x, defined by 3.5

The thermodynamic approach therefore provides a natural characterisation of the 

macroscopic variables associated with any network. In a sense this is the end of the story, 

but we would clearly like to acquire an intuitive feeling for the nature of the macroscopic 

variables associated with a network, just as we derive an intuitive understanding of the 

pressure of a gas or the magnetisation of a medium.
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3.4 Network Complexity

In this section we consider the case for a quantity X  as a measure of the complexity of a 
network, related to what we have called /3-complexity (Raine & Norris, 2002).

A number of approaches to defining the complexity of networks have been proposed. 

In graph theory the complexity is derived from the properties of the spanning trees. Struc

tural complexity (Crutchfield 1994) can be defined in terms of the number of parameters 
required to define the network. Edge complexity (Watts 1999) has been defined in terms 

of the variability of the second shortest path between nodes. What all of these definitions 

have in common, and in contrast to the notion of algorithmic complexity in computer 

science, is that both ordered systems and random ones have zero complexity.

We have proposed a rather different approach to network complexity, which arises 

from the following consideration. Another feature that random and ordered networks 
have in common is that the entropy per node is independent of the number of nodes. This 

can be paraphrased by saying that local information is sufficient to determine the large 

scale structure of the graphs. We want the notion of complexity to capture the extent to 

which this fails to be the case. Thus this aspect of the complexity of a graph is encoded in 

the relation between the distributions of nodes linked by one connection, two connections 

and so on. Random graphs and ordered graphs remain random and ordered under these 

‘renormalisation’ transformations. Similarly, exponential graphs and scale-free graphs 

remain approximately exponential or scale-free respectively under these transformations. 

This suggests that the complexity of such graphs can be captured by any pair of links in 

this chain of connections. In other words, the complexity of networks of this form can 

be expressed by a single parameter. For example, we can concentrate on the first and last 

links in the chain, namely the clustering coefficient C  and the characteristic path length 

L  (Watts 1999).

To investigate this we consider networks from an algebraic point of view in term of 

their adjacency matrix, A,  as presented in section 1.1. The square of such a matrix will 

give the number of different paths of length 2 between nodes of index i and j ,  the cubic 

matrix, the number of different paths of length 3, etc. The resulting matrix, rewritten by 

replacing all non-zero values with 1, and diagonal values with zero, gives the adjacency 

matrix of the second neighbours, third neighbours, etc.

We are interested in the diagonal terms of the product matrices. The trace of the 
successive products of degree n  gives a hierarchy of coefficients Tn. For example, the 

trace of the squared adjacency matrix is related to the mean connectivity of the network
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Figure 3.3. The ratio of clustering coefficient to average path length of the small- 
world network of Watts and Strogatz (Watts 1999) behaves as a complexity param

eter. The coefficients are scaled to 1 for p = 0.

such as

=  =  (3.6)

and the trace of the cubed adjacency matrix is related to the clustering coefficient and we 

have T3 =  C, according to Eq. 1.1. The number of these coefficients that provide new 

information on the network structure is of order of the network diameter L, defined in 

section 1.2.3, after which every node is connected to almost every other node. In some 

sense therefore this transformation illustrates the extent to which the local properties of 

a network are reflected in its global properties.

The degree of clustering in relation to the network diameter, C /L , is small for both 

random and ordered networks and larger otherwise as, for example, for the small world 

networks of Watts and Strogatz (Watts & Strogatz, 1998) as shown in figure 3.3. It shows 

the parameter C / L  does have the property of a complexity parameter, which has been 

called the /5-complexity of a network (Raine et al. 2003).
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F ig u re  3.4. Plot of C / L  against the slope of the degree distribution for various 
exponential networks. The best fit shows that C / L  oc (3~3.

3.4.1 Exponential network

For the exponential network we show the average value of C / L  as a function of the slope 

of the degree distribution in figure 3.4. In terms of the parameter (3 the curve is fitted 

fairly closely by C / L  oc fi~3. If we interpret (3 as an inverse temperature then this says 

that the complexity decreases with decreasing temperature. This is to be expected since 

for small [3 the distribution of the degrees of the nodes spreads more with the majority of 

the nodes being of degree <1/(3.  Equivalently, the ‘cost’ per node, as measured by the 

value of the constraint, decreases with (3.

We now want to compare this with the thermodynamic definition of network com

plexity, which, according to our hypothesis above, will be of the form

, • ( d C \  complexity oc I 7̂ -  I

where X  is an appropriate external parameter. In view of the renormalisation steps dis

cussed above, and the fact that the characteristic length L  is of the order of the number 

of steps required to make a complete network, a natural choice for X  is X  =  L, i.e. 
the complexity of a network is the change in cost per unit change in ‘volume’ (where 

‘volume’ is here one-dimensional). For the exponential network this gives a complexity

55



Towards a thermodynamical description of networks 3.4 Network Complexity

0 .006

0 .005
+

0.004

A

£3 0 .003
+ 'v

0.002

0.001

0
1.5 2 2.5 3

S lope  of th e  distribution

3.5 4 4.5

FIGURE 3.5. The value C/L plotted against the slope of the distribution for the 
Mandelbrot networks constructed as described in section 2.4.3.

oc (31. Thus we should have

in order to get a /^-complexity of (3 3.

3.4.2 Mandelbrot network

We show in figure 3.5 the run of /^-complexity over the slope (3 of the degree distribution 

for the Mandelbrot networks constructed by our thermodynamic method in chapter 2. 

Note that steeper slopes correspond to fewer highly connected nodes and a lower value 

of C /L ; this is consistent with the interpretation of (3 as a measure of complexity.

3.4.3 Effect of the ‘ renormalisation ’ transformation

To investigate this further we have looked at the nodal distribution for the iterated adja

cency matrix, that is of the renormalisation transformation cited above. For this, we have 

constructed the sequence of adjacency matrices for several classes of networks. We give

(3 — complexity - (3
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F i g u r e  3.6. Degree distribution of nodes for several network classes calculated 
from their respective cubic adjacency matrix, (a) Random network, (b) scale free 
network, (c) Mandelbrot network. The noise has been reduced by binning the data.

in figure 3.6 the degree distribution function corresponding to these. For networks of a 

few thousand nodes the successive distributions soon become noisy, so we have taken 
running averages over adjacent degrees on each side of a given one.

For each class, the degree distribution functions are of approximately the same shape 

as the original, aside from the fact that the transformations affect the mean degree of 

connectivity. This denotes, from a statistical point of view, an approximate invariance 

of the structure of the network connectivity. Eventually this sequence must come to an 

end because after sufficient iterations (approximately the diameter of the network) every 

node is connected to every other. The /^-complexity must therefore change along this 

sequence. The difficulty of seeing this change above the noise in the initial iterations is 

clearly related to the difficulty of constructing networks with different complexity.

The degree distribution however, does not fix the /3-complexity of a network. This 

is known experimentally from the fact that the Barabasi and Albert construction yields 

a scale-free network that is not a small world, while small world scale free networks, 

such as yeast co-expression networks and hierarchical networks are known and can be 
modelled (see van Noort et al. (2004), Ravasz & Barabasi, (2003) and references therein). 

This can be demonstrated in the network we constructed by varying, for example, the 

clustering parameter, C. This can be carried out by a simple mechanism of cross-rewiring 

two pairs of nodes. That is, choose node i connected to node j  and node k connected to
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node I with the condition there is no link between pair i, I or pair k, j .  Then rewire node 

i to node I and node k  to node j .  This process ensures an alteration of the clustering 

coefficient without modifying the degree distribution of the network.

Random cross-rewiring is carried out over a number of steps greater than N .k  on 
Mandelbrot networks generated according the method described in section 2.4.3. Dur

ing the process, the maximum and the minimum C  are recorded and the ratio R  =  

Cmax/Cmin taken. Over several occurrences of that process of generation and cross

rewiring we obtain a ratio <  R  >=  1.65 ±  0.16. That is, at identical degree distribution 

and assuming the characteristic path length did not vary significantly during the cross

rewiring, the /3-complexity can vary significantly. We have also witnessed large varia
tions of clustering coefficient when constructing highly clustered networks (Grondin & 
Raine, 2005).

3.5 The equation of state

In the context of the thermodynamic approach to the construction of networks we see 
how the slope ft is not only analogous to a ‘temperature’ but plays exactly the role of a 

Lagrange parameter multiplying the ‘energy’ constraint. It is then a matter of computa

tion to determine the other thermodynamic functions of the state of the network from the 

entropy. It is in fact a general result that any constraint of the form =  constant

leads to the perfect gas law whatever the form of e(r). We can show this as follows.

Let pr be the probability that a node has r links and let the ‘energy’ at a node be e(r). 
Then the nodal (point) free energy of a network of N  nodes is given by

F
T7 =  - ^ P r l o g P r  ~  P Y P r e(r ) - a Y ^ P v

Maximising the free energy as usual leads to

n r =  ^ e (_/Jt(r)), (3.7)

where the partition function Z  is defined by Z  = X) For a perfect gas in a volume

V  this has the form z V . We now derive the equation of state. Define the internal energy 
as

U =  ' Y  e(r)nr .
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Using 3.7 and the definition of Z, the entropy S  = J2Pr logPr becomes

Thus

^ = | E f W e - '3t<r) =  - |  +  |  log

From this, using Z =  zV ,  we can find

5

N  1
0 V

Thus, for the network, the crucial point is to define the volume in such a way that Z  =  

zV.  To do this, let M  be the total number of links. Then

with this identification V  ^  L  in contrast of what we suggested above.

It is clear that this gives us the ‘perfect gas’ approximation to the equation of state of 

the network because, by using the node entropy, we are failing to take into account the 

interaction between the nodes. To obtain a deeper relationship between network entropy 

and thermodynamics we should have to use an entropy that includes the correlations 
between nodes, for example leading to a class of networks of a fixed complexity.

The thermodynamic approach allows us to characterise the macroscopic variables of 
a network, and, hence, by extension, of any system that can be described in network 

terms. In particular, therefore, the approach holds out the possibility of a macroscopic 
characterisation of living systems.

In the development of the thermodynamics of material systems in thermal equilib

rium the experimental facts were discovered first and the underlying microscopic de
scription only later. In the theory of networks we start from the microscopic viewpoint

and hence

if we take V  — N / M  = k 1. The result is independent of the form of e(r). However,

3.6 Summary
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and face the challenge of trying to derive macroscopic variables to characterise network 

properties in a useful way.

The fact that we now have a thermodynamic view of networks should enable us to 

develop such a macroscopic characterisation based on the entropy function. In networks 
where most of the entropy is contained in the distribution of the degrees of the nodes 

we expect that an approximate macroscopic description will involve a small number 

of global variables. We have speculated that in general the macroscopic variables will 

include a parameter describing in some way the complexity of the networks.
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Chapter 4
Dynamical network model

4.1 Introduction

In the previous chapter, our approach to networks was merely structural. However, this 

is not sufficient when applied to real systems and in particular to the genetic regulatory 

network we are interested in. Focussing only on the architecture of systems ignores 
the relationship that may exist between architecture and function. If we are looking 

at constraints that shape the architecture of the system as mentioned earlier, then the 

function and the behaviour of the system are certainly part of them and ought to be 

considered.

Prior to the identification of those constraints, we need to study and understand the 

relationship of the architecture of networks to their function and behaviour. Indeed, the 

behaviour of the system is expected to influence and to be influenced by the architecture 

of the system. Some of the aspects of this relationship have been invoked in chapter 1 

but what we want is actually to relate it to real networks.

Modelling adequately a network requires therefore a dynamics as well as an architec

ture, which we are going to implement. As seen previously, networks emerge as complex 

systems solely from the architectural point of view. Therefore, in order to draw a clear 

understanding from the relationship between architecture and behaviour, we want the dy

namics to be simple. Furthermore, in order to be comparable to biological systems, and 
genetic regulatory networks in particular, we want the network to express its dynamics 

through some production function.
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We will present in this chapter a model related to the dynamics we want to implement. 

We will then introduce our model and detail its properties under various changes of the 

parameters that define it. We shall see that our model presents a variety of behaviours of 

fixed point, periodic and chaotic phases. A striking result is the unexpected distribution 

of period, independent of the architecture. We show also the direct effect the architecture 

has on the distribution of abundance related to the production function associated to the 
system.

4.2 The NK-Boolean  networks

NA-Boolean networks (Kauffman 1993) are directed networks whose essential param

eters are the number of nodes, N,  the number of links a node connects to, K ,  and a bias 

parameter, P,  which will not be discussed here. A Boolean network is a dynamical sys

tem in which the nodes are defined by a two-state variable that takes the values 0 , (off) 

or 1, (on). Each node is regulated by K  other nodes that correspond to its inputs. The 

state of a node at a time t is given by a Boolean function, such as and, or, etc, and whose 

variables are the state of its the input nodes at time t — 1. All the nodes are updated 
together at each time step.

The ensemble of states at a given time defines the configuration of the network with a 

maximum of 2N different configurations, where N  is the number of nodes. The sequence 

of configurations from one time to another represents the trajectory of the network in 

the configuration space. Even if the number of configurations becomes rapidly very 

large as N  increases, its number remains finite for a finite network. As time goes on, 

a configuration will eventually appear twice and, since the network is deterministic, the 
trajectory will loop on itself. The network has reached an attractor with all trajectories 

leading to it forming its basin of attraction. A network with non-external inputs from the 

system is considered autonomous and the attractor in which it will fall will be dependent 

on the initial state of the nodes in the system.

There can be many attractors for a network and it is suggested that those many at

tractors could be the many cell types if the networks were those of genetic regulators 

but also represent the immune states in the case of immune networks, etc (see Kauffman 

(1993) and references therein).

The study of Boolean networks where the nodes are connected at random and the 

functions are connected at random shows that as K  decreases from N  to \, the system 

goes from a chaotic behaviour to a crystallised one with the phase transition occurring
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at K  =  2. Relevant features of Boolean networks for our work, with respect to K  are 

presented here (Kauffman 1993).

For N  > K  > 5

It is shown that the median number of configurations in an attractor, that is its length, 

scales approximately as 2N. Furthermore, the behaviour of the network shows a sensi
tivity to initial conditions and since the length of the attractor increases exponentially 

with N,  the system is defined as chaotic. It is also estimated that the number of attractors 

is of the order of N .  Finally, another interesting feature is the non-uniformity of the size 
of the basin of attraction, with few enormous basins with large attractors and many small 

basins with small attractors.

For K  = 2

The behaviour of the network undergoes a change of regime as K  —► 2. For K  =  2, 

numerical simulations show that the median cycle length as well as the number of cycles 

scale as N 1̂ 2. The attractors represent then a much smaller fraction of the configuration 

space compared to networks with K  > 5. It is noticed also that the distribution cycle is 

skewed compared to a Gaussian distribution, when plotted as the logarithm of the cycle 

length, and that few attractors have very long cycles. Furthermore, the system is stable to 

minimal transient perturbations and when a change of attractor occurs, the new attractor 

is in the neighbourhood of the departing one. Finally, not all the nodes have a variable 

state and about 70% of the nodes remain in a fixed on or off state.

For K  = I

For K  = 1, the system falls into disconnected components. But, despite the disconnec

tions, the network shows a dynamics where loops exist, and the overall behaviour of the 

network is then the product of the isolated components.

4.3 Setting up the model

We introduce in the next section our non-autonomous dynamical network model. In 

terms of dynamics alone, this model presents similarities to that of the Boolean networks
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that have just been presented above. A production function has been associated with the 

dynamics of the network so as to model levels of expression at the nodes.

4.3.1 Architecture and representation of the network

We consider a directed network where the nodes, representing a production machinery 

of control elements, are associated with a binary state. The production at a node is 

state dependent such that it is producing a control element if it is ON and not producing 
anything if it is OFF. The state of a node is dependent on the other nodes that it is 

controlled by and may vary with time. A directed link represents the control interaction 

from a node to another and can have either a positive effect (contributing to turning a 

node ON) or negative effect (contributing to turning a node OFF) on the production at 

the controlled node. The positive or negative interactions are fixed once and for all in 

a simulation. In practical terms, the networks are first built with only positive links. 

A proportion of those links is then reassigned at random as negative and we label this 

proportion fi.

The configuration at time t of the network is given by the states of all the nodes at 

that time. It is represented by vector S(t)  whose components, Si(t) are

0, if node i is OFF;
=

1, if node i is ON.

The network itself, is represented by the matrix A  whose elements ai3 are

0 , if there is no link from the node j  to the node i\

(iij =  \ 1, if node j  is connected and directed to node i and acts as an inducer on i\

— 1, if node j  is connected and directed to node i and acts as a repressor on i.

In terms of architecture, we focus only on the distribution of the degree of con

nectivity and we ignore other architectural features. We will use networks with degree 
distribution that follow either Poisson distributions or power-laws. The interesting point 

here is that, as the networks are directed, it is possible to make the distinction between 

the incoming and outgoing degree distribution. This will be of interest later in chapter 5
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4.3.2 Dynamics

The state of a node is determined according to a simple dynamical rule, which could be 

viewed as a majority rule, that we call also the balance, of its incoming links. In simple 

terms, if there are more positive interactions incoming than negative ones, the node will 
be ON. Otherwise, it will be OFF. The extra condition is here that only nodes that are 

ON can exert a control over other nodes. Finally, a node i will be ON at t if

where ba is a preset level acting as a bias of activation and Sj is the state of the node. The 

node will be OFF otherwise.

4.3.3 External input

We have defined so far the network and its dynamics. We need now to give initial con

ditions; there are many ways to do this. What we want though is a network whose 
behaviour would be dependent on an environment with the possibility that changes in 

this environment affect the network. A simple approach implies that the network is per

manently affected by the environment as long as this is not modified. A proportion of 

nodes is then set to receive permanent external inputs, which can be seen as many addi

tional links integrating the influence of that environment in which the network is located. 

Those external inputs are given in the vector e as

where e is a value high enough to ensure that the corresponding node receives a sufficient 
induction to remain ON whatever its upstream controls might be. Its actual value is not 

important.

In a biological experiment, our network, with some of its nodes receiving extra in

puts, would correspond to a continuous culture where the medium defines the growth 

conditions and where the supplied nutrients, hormones, etc, are not a limiting factor. The 
simplification in our model is that the state of these input nodes is never dependent on 

any of their upstream controls, i.e. the set of incoming links connecting them.

The networks are first generated with undirected links, that is ai3 = a3i. A direction

^ 2 a l3s3(t -  1) > ba, (4.1)
j

0 , if node i does not receive external inputs;

e, if node i receives external inputs,
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is then set to the link by setting element to zero with a probability p and ciji to zero 

with probability (1 — p). As a consequence, three sorts of nodes emerge, which are:

•  The nodes without incoming links:

A node without incoming links does not receive any control signal and is then set 

OFF by default. In the present case, the average number of nodes without incoming 

links, < I  > , is given by
<  I  > =  J 2 n iPik‘- ' \

i

where n* is the number of nodes of degree of connectivity k{. Thus, for a given 

network architecture, increasing the mean connectivity decreases the probability of 
finding a node without incoming links. Likewise, diminishing k sees the number 

of those nodes increasing, which is intuitive. Furthermore, changing the degree 
distribution of the nodes will have also consequences on <  I  > . Finally, these 

nodes can only be ON if they are chosen as input nodes.

•  The nodes without outgoing links:

These nodes do not influence the behaviour of other parts of the network as they 

have no nodes to control. Setting them as input nodes has a null effect on the 

dynamics of the network. Similarly, the average number of nodes without outgoing 

nodes, <  O > , is

<  O >=  U ~ p ) {kl~l) ■
i

•  The nodes with incoming and outgoing links:

These nodes have no need to be set as an input to play an active control part in the 

network, but there is no restriction in assigning them.

There are several possibilities for the nodes on which to apply the external inputs. It 
could be on all the nodes without incoming links since otherwise they would not play an 

active role in the network. It could as well be on a random subset of those nodes. This 

is a more sensible way if one expects to study how the system behaves under variation 

of external inputs, etc. Certainly, the number of nodes without incoming links varies a 

lot between networks of different given degree distribution and may, in some cases, be 
very small. Focussing only on those nodes is then not sufficient if one expects to study 

how the system behaves under variation of this set of external input nodes. We choose to 

set external input on a random subset of all the nodes whatever the above category they 

belong to. The proportion of input nodes is designated by 77.
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4.3.4 The production function

The rate of production at a ON node is some positive function of the balance at that 

node, and the level of product at t is related to the state of the nodes at t — 1. As the time 
stepping in the model is discrete, the value of the abundance of node i at one time step is 
equal to the value of the rate of production of that node at that time. This assumes that 

the product disappears, for any reason, after one time step.

The abundance at all the nodes at time t is given by the vector P(t)  where the com
ponent pi(t) is the abundance at t of the element produced at node i. The abundance is
given by the relation

P ( * + l )  =  A .S(t), (4.2)

with S(t) the vector, introduced earlier, giving the configuration of the network at t, with 

components

0, if Pi(t) +  e.{ +  bp <  0 ;

1, if Pi(t) -(- -j- bp >  0 .

where bp is the bias of production or base level and the same for all nodes. A biological 

interpretation of the production function is given later in chapter 5.3.

A node that is OFF not only does not exert controls on any other nodes but also has a 
zero production. Then, if all the nodes controlling a given node i have a null production, 

none of those nodes will exert control on node i. This node i will be OFF by default.

Many categories of nodes can be described with respect to the state of their produc

tion during the simulation.

S i ( t )  =

(i). There are the nodes that receive no controls throughout the simulation and are OFF 

by default. They are not considered as an active part of the system though they may 

become active under some changes of external inputs. By defining N a the number 

of active nodes, the number of inactive nodes is N  — N a.

(ii). With respect to the state of the nodes, there are the nodes that can be constantly 

ON or constantly OFF and the nodes that display a variable pattern of ON and OFF 

states. The number of nodes of variable state are expressed by N s.

(iii). With respect to the level of abundance of the nodes, there are the nodes with a 

constant production and those with a variable production. Note that nodes of con

stant state ON can nonetheless have a variable production. The nodes of variable 

production are given by N v
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a b c 
o o o  
1 0  0 
0 1 0  
1 1 0
0 0 1 
1 0  1 
O i l  
1 1 1

•X = a o r b

-►X = a and b and c

FIGURE 4.1. Representation of an example of control at a node. The truth table 
gives the update of the state of node X  according the dynamics of our model as well 

as the corresponding Boolean function.

Note that since there are active and inactive nodes, it is meaningful to recalculate values 
such as the mean degree of connectivity or the proportion of negative links of the network 
made of the active nodes. This will be used below.

4.3.5 Is this model a Boolean network?

Our model is that of a Boolean network with respect to the state of the nodes but not in 
term of its dynamics, and this despite the fact that Boolean functions could eventually 
be used instead. It is indeed possible to express the dynamics given by Eqs. 4.1 and 4.2 
with Boolean functions, but this would be somewhat masochistic. Actually, Boolean 
functions can be used in computing many problems, including this one, but the fact of 
not using them is a matter of convenience with regards to the problem treated.

The peculiarities that make the use of Boolean functions inadequate are that the nodes 
that are OFF have no effect on the network, that the state of the node is the sum of the 
nodes ON that control it and that of the negative links. As a consequence, the writing of a 
Boolean function at a node becomes more and more complex as the number of regulator 
adds up to the regulated node, as illustrated in figure 4.1. The point we are making is 
that, if the dynamics of our networks can be modelled by a boolean function, it is of a 
very special case, one just readily described in Booleans terms.
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4.3.6 The simulation

At the beginning of the simulation, all the nodes are set OFF. A proportion rj of nodes 

is selected at random, with equiprobability, to receive an external input. The state of 

each node is then updated and its corresponding production is calculated. This step is 
repeated until a period is found after a transient phase, or if the maximum number of set 

time steps is reached. The configuration of the network at t is given by S(t)  and is fully 
determined by the configuration at t — 1. The period is therefore given by the number of 

steps between two equal configurations.

4.4 Results

In this section we are going to study the effects of the parameters of the networks on the 
behaviour as well as the production of the network. We shall first look at the effect of / i  

and 77 on the different categories of nodes and the periodicity of the network whenever 

possible. We will also see the effect of two different degree distributions. Note that in 

the following, the parameters of the model ba and bp are set to 0. Unless stated otherwise, 

the maximum time step is set to 30,000, with networks of 2000 nodes and a small mean 

connectivity of k = 4.0 as we are interested in sparse networks.

4.4.1 Variation of the different categories of nodes

The simulations show that the behaviour of the network can be classified into three dis

tinct phases with respect to the periodicity and depending upon the parameter /.l (see 

figure 4.2): these are the static phase, the periodic phase and the chaotic phase.

Static phase: This phase corresponds to a case where the network reaches a fixed 

point configuration after the transient period. This occurs for small and large fractions of 

negative links, typically at a values of (i such that ^  <  0.20 or n  >  0.85 This phase can 

also obviously be referred to as periodic with a period of 1.

Periodic phase: The configurations of the network show that the network reaches a 

cyclic attractor. More precisely, only a subset of the nodes displays a periodic pattern as 

shown in figure 4.2. The size of this subset as well as the length of the period varies with 

respect to /i.

Chaotic phase: In a large finite network, the number of possible configuration is 

enormous (2N) yet finite. Even for small N  finding the periodicity of the network could
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F i g u r e  4 .2 . Distribution of the variable nodes according to the proportion of neg
ative links, ii. < Nv/ N a > is the average ratio of the number of nodes of variable 
production N v to the number of nodes connected to the network Na. There are 500 
realisations of the network for each value of fi. There are no variable nodes for the 
values of /i such that fi <  0.20 and ^  >  0.85 and a variable number of these nodes

fo r0 .2 0 < //< 0 .8 5 .

be too time consuming. In these cases we assume that, if the network were infinite, such 
periodicity would not be present. This is the chaotic phase.

In term of the proportion of the different categories of nodes, no differences can be 
observed whether the degree distribution of the nodes follow a Poisson distribution or a 
power-law.

4.4.2 Period distribution

We are interested in the distribution of period of the networks for various values of pa
rameters and various architecture. This implicitly involves that we select so that the 
network is likely to be periodic. The period is measured for a given network with a given 
set of external inputs. Since the number of possible sets of external inputs as well as the 
number of configurations a network can go through are huge, we can only proceed to a 
sampling of periods. This is done by changing the set of external inputs, leaving the rest 
of the network unchanged.
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Note that the period cannot always be found in a reasonable time. The search is 
then stopped after a given number of steps has been reached. This limit is variable 

and adjusted according to considerations such has the size of the network or the mean 

connectivity.

The measurement of the period is realised as follows. A period is identified when 
two identical configurations are recorded. However, looking for those two configurations 

amongst all configurations a network goes through during a simulation is exhausting in 

terms of computing time. Instead, we decide to create an aggregate value that is a single 

number representing a global state of the network at a given time. This value aggregates 
parameters such as the state of the nodes, the production of the nodes, etc, at a given 

time. The exact form of how this aggregate is calculated is however not important. The 

point is that this aggregate value is time dependent and presents maxima. Then, each 
time two identical maxima are found, the corresponding configurations are compared, 

which tell us whether a period has been reached.

A problem that arises is to discriminate between attractors of identical periods. This 

cannot be done exactly even though there are circumstances that allows to remove du

plicate attractors from the sampling. For example, the number of nodes of variable pro

duction during a cycle is known. Therefore two attractors with an identical period but 

with a different number of nodes of variable production are considered different. Other 
parameters such as the mean connectivity or the proportion of negative links are also 

used. However, we are only sure that two attractors of identical period are different in 

the limit of the parameters we use.

We look first at the effect of the architecture on the period distribution. For this, 

we compare a randomly generated network having a Poisson distribution to a scale-free 

network. The figure 4.3 shows that the period distributions for those networks are two 

very similar power-laws. The distribution of periods is therefore independent of the 

architecture of the network, and since no difference can be noticed, we work, in the 

following, with only random networks.

We look then at the effect of the size of the network on the period distribution. Fig

ure 4.4 shows that again the distributions are power-laws and that no distinction can be 

made between networks of various sizes.

We are also interested in the effect of the variation of the proportion of negative links, 

shown in figure 4.5. This time we can see a difference in the slope of the distribution as 
/ 1 varies: the probability of finding a network with a higher period increases with / i .  This 

confirms that when fi —► 0.5 the network tends to be chaotic.
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Figure 4.3. Distribution of period for random networks and scale-free networks. 
The period r  is the length of the cyclic attractor. The networks are generated with 
500 realisations using a maximum of 30,000 time steps to identify a period. The

distributions are power-laws.
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FIGURE 4.4. Distribution of periods for random networks for different sizes of the 
network, with /x =  0.35 and k = 8.0. The distributions decay as power-laws.
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FIGURE 4.5. Distribution of periods for random networks with different proportion 
of negative links, with N  = 1000 and k = 8.0. The distributions decay as power-

laws.

There is also an effect of the mean connectivity on the period distribution as shown in 
figure 4.6, with distributions of decreasing slopes as k increases. This is to be expected as 
a larger number of links increases the probability of forming loops and therefore greater 
possibilities for bigger periods. However, we are not suggesting here that the length of a 
cycle is only the matter of the combination of individual cycles, since large cycles with 
length equal to prime numbers have been identified.

Note that for random networks, the transient phase to reach an attractor is relatively 
short for short cycles and long for long ones. This would suggest, similarly to the N K -  
boolean network, that small attractors have small basins of attraction while large attrac
tors have large basins of attraction. However, even if large cycles present large basins 
of attraction, the probability to find such attractors would remain low compare to short 
ones, due to the overwhelming quantity of the latter.
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FIGURE 4.6. Distribution o f  periods for random networks for different mean con
nectivity, with N  = 1000 and fi = 0.35. The distributions decay as power-laws of

various slope.

4.4.3 The distribution of abundance reflects the architecture of the 
network

When it comes to plotting the distribution of abundance, which is equivalent to the in
stantaneous production, there are several choices possible, with the distribution of nodes 
Na and nodes N v being the most relevant for our purpose.

We are primarily interested in the distribution of abundance of periodic networks as 
the static phase, in which each node is constantly expressed, is not particularly relevant 
to the many cells that undergo major variations in gene expression. We show in fig
ures 4.7 and 4.8 the distribution of abundance for a scale-free and a random network. 
The distribution of abundance depends in the first instance on the dynamics of the sys
tem. However, our results show that, even in the time-dependent case, it reflects also 
the architecture of the underlying network: the distribution is power-law for a scale-free 
network and presents an exponential tail for random networks.

By scaling these data so that the mean abundance is shifted to zero, and the standard 
deviation is rescaled to one, we display the number of nodes at any one time that have 
their product at a particular level of abundance relative to their means. This rescaling,

<k>=5 +
<k>=8 X 

«*-«15 *

*»
*>Ol >0< *X »
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FIGURE 4.7. Distribution of abundance for a scale-free network over a period r  — 94 
time steps. The number of nodes with abundance, A  (x-axis), at a given time is 
N v. The distribution of abundance is represented every 7 time steps beginning from 
the time of identification of a periodic phase. The tail of the distribution follows a

power-law.
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Figure 4.8. Distribution of abundance for a random network over a period r =  104 
cycles. The number of nodes with abundance, A  (x-axis), at a given time is N v. The 
distribution of abundance is represented every 8 time steps beginning from the time 

of identification of a periodic phase. The distribution is not a power-law.
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FIGURE 4.9. Re-scaled distribution of abundance for a scale-free network over a 
period. This network has a period r  =  94 cycles. The number of nodes with re
scaled abundance, A  (x-axis), at a given time is Nv. The distribution of abundance is 
represented every 7 time steps beginning from the time of identification of a periodic

phase.

shown in figure 4.9 for a scale-free network, is bimodal.

Numerous simulations show that the normalised data can be of various types: uni- 
modal, bimodal and sometime trimodal. This can be explained by the form of the varia
tion of the level of production. For instance, if the products are found at their mean level 
of abundance, the normalised data will peak at zero and the spread of the function will 
represent the amplitude of the fluctuation. Similarly, if the products are found mainly 
around two different levels of abundance, the normalised data will show as a bimodal 
with the spread at the peaks showing the amplitude variation around the two levels of 
abundance. In all cases, the height of the peak is related to the length of time at which 
the products can be found at a given level.

4.5 Summary

The very simple model we have constructed presents an interestingly rich behaviour. Our 
model presents similarities to the N K -Boolean network in that there are three regimes at 
which the network can exist; static or crystallised, periodic and chaotic. The difference
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lies in the fact that in the ./V if-Boolean model, the transition between regimes is achieved 

by varying the degree K  while in our model this is done by varying the fraction of 

inhibitors.

The behaviour of the network appears to be independent of the structure. Not only 

is the fraction of negative links at which periodicity appears about identical in both ran
dom and scale-free networks, but also the distributions of periods for both networks are 
similar.

The other striking result is that the distributions of periods follow a power-law. The 

slope of those distributions is affected by changes in the mean connectivity and the frac

tion of negative links. The results suggest also that, qualitatively, the size of the basin 
of attraction is related to the size of the attractor. It has been shown elsewhere that 

directed networks grown with preferential attachment and fitted with Boolean dynam

ics, presented a power-law distribution of the cycle lengths (Yuan et al. 2004). The 
authors show that such behaviour is insensitive to the parameter K  and is similar to 

the A^/C-Boolean network of Kauffman (1993) for K  = 2. Furthermore, results using 
a non-growing network model, similar to ours, show that the sizes of the basins of at

traction, for its fixed-points attractors, are distributed as a power-law (Li et al. 2004a). 

This was found for a small (N  = 20) autonomous network. A general picture seems to 

emerge from all these results that the power-law distribution of the length of attractors, 
and seemingly of the sizes of basins of attraction, are universal. It is not however pos

sible to argue whether this distribution of periods is relevant to a critical phase as it has 
been suggested (Kauffman 1993, Yuan et al. 2004). It is, nevertheless, certain that this 

characteristic is central and should be considered if we are to compare the attractors of 

the networks to cell types or immune states, etc.

Finally, we have shown that the distribution of abundance is related, in our model, 
to the architecture of the network. Thus, random networks yield random distributions of 

abundance while scale-free architectures yield power-law distributions of abundance.
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Chapter 5
Modelling functions of genetic regulatory 
networks

5.1 Introduction

In this chapter, the idea is to use relevant biological data sets to determine general features 

of genetic regulatory networks. In that respect, gene expression data are a good mirror 
of the dynamics of regulation in cells. It is expected that integrating those data into a 
network of interactions would give insight into the correlation between the regulatory 

functions of the system and its architecture. Such a network can be generated, provided 
the data exist, for any cell type. Therefore, using networks for different cell types should 

allow us to reveal some of their common features.

We use time series mRNA data over the cell cycle from microarray experiments (see 

section 1.4.2 for details). The interest of cell cycle data lies also in its universality as op
posed to other non-dynamical sets which relate more to some environmental conditions 

or adaptative processes. The main approach we will have here is to look at the distri

bution of the mRNA abundances over the time series. Our aim is to obtain a network 

model that is able to reproduce these results. We are not interested in the fine details of 

their dynamics but rather in what simple but global elements are needed in reproducing 
the general form of the results.

We take in this chapter two examples of organisms for which time series mRNA 

data are available. We first look at the main characteristics of the distribution of mRNA 

abundances in comparison to our model. We then try to improve our model so as to
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reproduce better the data and look at its limitations. In parallel, we identify the correla

tions between parts of the structure of the transcriptional network and the mRNA level 

of abundance. We show such a correlation between the out degree of connectivity and 

the level of abundance which directs us to modify our model.

5.2 Messenger RNA abundance

We present in the following the distribution of mRNA abundance measured during the 

cell-cycle of two organisms, namely Saccharomyces cerevisiae and Caulobacter crescen- 
tus. Since the organisms used and the physiological conditions from which the mRNA 

measurement have been carried out are different, we are more interested in the general 

features that characterise those distributions rather than in the specific details.

5.2.1 Saccharomyces cerevisiae

The yeast Saccharomyces cerevisiae is the model organism for the study of eukaryotic 

cells. It has a number of genes estimated at about 6200 with a typical cell-cycle, in 

standard growth conditions, that lasts for about 90 minutes. Several mRNA time series 

microarray experiment sets are available (Spellman et al. 1998, Cho et al. 1998). They 

use various chemical and physical methods to synchronise the population of cells from 

which the data are extracted. In the following we will be using data taken from the Spell

man et al. (1998) experiments. For instance we will use the datasets from populations 

synchronised by elutriation and by the a-factor.

In those experiments, growth conditions like the temperature and the source of carbon 

or the time point of the cell cycle at which the populations are arrested vary. Furthermore, 

two different yeast strain backgrounds were used. As a consequence, the growth rate and 

the synchronicities between the two sets were different. For instance, cells were synchro

nised during one cell cycle by elutriation, and during two cell cycles by a-factor. From 

those datasets, the authors have identified about 800 genes being cell cycle dependent.

The elutriation experiment

The elutriation method is a physical means of synchronisation. It is based on cell size 

discrimination by isolating the smallest ones which are typically at the beginning of the
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FIGURE 5.1. Distribution of mRNA abundance of S. cerevisiae over the first cell 
cycle following the synchronisation by elutriation. The number of genes of mRNA 
abundance, A  (x-axis), is given by Ng. The mRNA abundance is relative to an 
unsynchronised reference population. Each distribution consists of 763 genes out 
of the 800 genes identified as cell cycle regulated. The right hand side of these

distributions follow a power-law.

cell cycle (G1 phase) (Spellman & Sherlock, 2004b). In the present case, the cells main
tained the synchronisation during one cell cycle that lasted 390 minutes. It resulted in 
14 time points measurements yielding as many mRNA abundance distributions. Those 
distributions, for only the genes identified as cell cycle dependent, are presented in fig
ure 5.1. The large variability between the distributions at each time is only an effect of 
the tail mainly below the abundance point of ~  0.9. The large standard deviation of the 
decaying tail is only an effect of the logarithm scale.

This appears more clearly on figure 5.2 where we show the distributions averaged 
over time during the synchronised period and the standard deviation at each level of 
abundance. The averaged distribution with the normalised standard deviation is shown in 
figure A.3 of the appendix. The decaying part of the averaged distribution is exponential 
with a power-law tail. This is confirmed when looking independently at the distributions 
recorded at each time, with the exception of four of them at time t = 90 min, t =  150 
min, t =  180 min and t = 240 min. Those graphs are shown in figures A.l and A.2 in 
the appendix.

By scaling these data so that the mean abundance of mRNA is shifted to zero, and the
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FIGURE 5.2. Distribution of mRNA abundance of S. cerevisiae averaged over the cell cycle fol
lowing the synchronisation by elutriation. The number of genes of mRNA abundance, A  (x-axis), 
is given by Ng. The mRNA abundance is relative to an unsynchronised reference population. The 
distribution consists of 763 genes identified as cell cycle regulated. The right hand side of these

distributions follow a power-law
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FIGURE 5.3. Re-scaled distribution of relative mRNA abundance of S. cerevisiae over the first 
cell cycle following the synchronisation by elutriation. The number of genes of normalised mRNA 
abundance (x-axis) is given by N g. The data are re-scaled so that the abundance of a gene over the 

time series is centred to 0 and its standard deviation is 1.
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FIGURE 5.4. Distribution of mRNA abundance, of S. cerevisiae over the first cell cycle following 
the synchronisation by a-factor. The number of genes of mRNA abundance, A  (x-axis), is given by 
N g. The mRNA abundance is relative to an unsynchronised reference population. Each distribution 
consists of 763 genes out of the 800 genes identified as cell cycle regulated. The right hand side of

these distributions follow a power-law.

standard deviation is rescaled to unity, we display the number of genes at any one time 

that have particular rates of expression relative to their means (figure 5.3). This allows 
us to see in which state a gene is most likely to be found if the sampling is done in equal 

time intervals. The main characteristic of these curves is their apparent complex time 

dependency with a unimodal distribution centred on 0 , except for the ones at t  — 0 min 
and t  = 30 min.

The a-factor experiment

The a-factor is a pheromone that arrests cells at the beginning of the cell cycle (G1 
phase) (Marsh, Neiman & Herskowitz, 1991). In the present experiments, the cells have 

been synchronised during two cell-cycles over 119 minutes corresponding then to cycles 

of shorter period, compared to the elutriation experiments. This resulted in 18 time 

series data from which the cell cycle dependent genes were extracted. The corresponding 

mRNA abundance distributions are presented in figure 5.4. The figure has the same 
characteristics as in the elutriation case, with the large variability of the tails being again 

an effect of the logarithm scale. The abundance distribution averaged over time and the 

standard deviation at each level of abundance is shown in figure 5.5 and the averaged
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FIGURE 5.5. Distribution of mRNA abundance, of S. cerevisiae over the first cell cycle following 
the synchronisation by a-factor. The number of genes of mRNA abundance, A  (x-axis), is given by 
N g. The mRNA abundance is relative to an unsynchronised reference population. Each distribution 
consists of 763 genes out of the 800 genes identified as cell cycle regulated. The right hand side of

these distributions follow a power-law.
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FIGURE 5.6. Re-scaled distribution of mRNA abundance, of S. cerevisiae over the first cell cycle 
following the synchronisation by a-factor. The number of genes of mRNA abundance, A  (x-axis), 
is given by N g. The mRNA abundance is relative to an unsynchronised reference population. Each 

distribution consists of 763 genes out of the 800 genes identified as cell cycle regulated.
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FIGURE 5 .7 . Distribution of mRNA abundance of C. crescentus over a cell cycle of 
the genes identified as cell-cycle dependent. The mRNA abundance is relative to a 
mixed and unsynchronised reference population. All the genes with missing data in 
the time series have been removed. Only 422 genes remain after this selection. The

distribution follows a power-law.

abundance distribution with normalised standard deviation is given in figure A.7 in the 
appendix. The decaying part of this averaged distribution follows a power-law. The 
distributions at each time point are shown independently in figures A.4, A.5 and A .6 in 
the appendix.

The plot of the renormalised data in figure 5.6 presents also the same characteristics 
as the elutriation data, that is a complex time dependence with a unimodal distribution 
centred on 0 .

5.2.2 Caulobacter crescentus

The bacterium Caulobacter crescentus has the peculiarity that it divides asymmetrically 
during the cell cycle. A stalk cell gives two daughter cells: a stalk and a swarmer cell 
whose functions and structures are different from each other. The genome of C. crescen
tus is smaller than that of S. cerevisiae with only about 3800 genes (Nierman et al. 2001). 
A typical division cycle in standard growth conditions lasts for about 130 min.

We use here the mRNA time-series data from Laub et al. (2000) in which the pop-
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FIGURE 5.8. Distribution of mRNA abundance of C. crescentus over a cell cycle. 
The mRNA abundance is relative to a mixed and unsynchronised reference popula
tion. All the genes with missing data in the time series have been removed. Only 

1593 genes remain after this selection. The distribution follows a power-law.

ulation of cells is synchronised using physical means (Quon, Marczynski & Shapiro, 
1996, Evinger & Agabian, 1977). From those experiments, the authors have identified 
553 genes out of the 2,966 tested to be cell cycle dependent. Of these 553 genes, only 
422 present a complete time series, and only those will be considered in the following as 
cell-cycle related genes.

As previously, we plot the distribution of mRNA abundance of the cell cycle de
pendent genes at various recorded times (figure 5.7). The form of the distributions is 
different from that observed for S. cerevisiae as it does not present an increasing part at 
low abundances values. The tails of the distributions are power-laws of invariant slopes. 
However, these characteristics are not specific to the cell-cycle dependent genes and are 
found when all the genes are considered. Similarly, we plot in figure 5.8 the distribution 
of mRNA abundance of all the genes whose mRNA abundance values are known over 
the measured period, that is 1593 genes. Those distributions have a power-law tail of 
invariant slope.

We show in figures 5.9 and 5.10 the normalised distribution of mRNA abundance 
for the cell cycle related genes and the 1593 genes, respectively. Both the distributions 
present the same main characteristics of a complex time dependency with unimodal dis-
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F ig u r e  5.9. Re-scaled distribution of mRNA abundance of C. crescentus over a 
cell cycle for the genes of identified as cell-cycle dependent. The number of genes 
of re-scaled mRNA abundance (x-axis) is given by N g. The data are rescaled in the

same way as in figure 5.3.
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FIGURE 5.10. Re-scaled distribution of mRNA abundance of C. crescentus over 
a cell cycle for 1593 genes. The number of genes of re-scaled mRNA abundance 

(x-axis) is given by Ng. The data are rescaled in the same way as in figure 5.3.
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tributions centred on 0. Furthermore, the distributions at t — 0 minute, in both cases, are 
of a remarkably different form. This is all comparable with what is shown in the case of 

S. cerevisiae.

5.2.3 Summary

Since we are interested in global features of the two systems presented here, we will 
retain and focus on features that appear to be common. Thus, the genetic networks of 

both C. crescentus and S. cerevisiae show, to some extent, the same dynamics. They 

share a power-law distribution of relatively invariant slope for the mRNA abundance 

over a cycle for the cell cycle related genes. In the case of C. crescentus, not only is the 

distribution of the abundance of the cell cycle genes a power-law, but so also is that of 

most of the genes. Finally, the normalised data show in both cases an apparent complex 
time dependence for the normalised distributions of their mRNA abundances, as well as 

unimodal distributions centred on 0 .

5.3 Can a simple model reproduce biological data?

The question we ask is that whether a minimal set of conditions and rules can constrain 
the model to reproduce what has been described above, and what information it provides 
on the system. For that purpose the network introduced in chapter 4 is an appropriate 

start. In this network, the elements influence each other in a simple manner and yet it 

is able to display a range of complex behaviours. Note that we are not interested in fine 

tuning the parameters of the system in order to fit detailed data and the approach we are 

taking here would be inappropriate in that respect.

In term of architecture, we choose here to work in this section with scale-free net

works, instead of the more general Mandelbrot networks, since the slope of the power- 

law is the only characteristic parameter, which renders the identification of such distri

bution easier.

5.3.1 Reduction of complex network into a simple model

Going from a biological system to a model requires a number of simplifications given 
that we are looking at a minimal system able to reproduce observed characteristics. We 

make then the following assumptions and simplifications:
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i. The triplet gene-mRNA-protein is reduced to the couple ‘gene’-product which is 
equivalent to assuming a linear dependence between mRNA and protein. There 

are many ways to represent such a network where ‘genes’ and products are two 

distinct elements. But, since there is a unique link between a ‘gene’ and its product, 

the product element can be abstracted from the network, leaving only the ‘gene’. A 
node of the network represents then a control element at a certain level of abundance 

in which the sequence of event from gene to protein is abstracted. This element 

corresponds to a node of the network.

ii. A node exerting a control over another node is referred to as a regulator. Conversely, 

a node on which control is exerted is referred to as the regulated. This control is 
represented by the links. In our model, regulators can either have a positive or a 

negative effect, that is as activator or inhibitor, respectively.

iii. We assume the regulation function and the production function introduced in sec

tion 4.3. Furthermore, at a more general level, there is often no correlation be

tween the measured abundance of an mRNA and that of the protein it encodes (Gygi 
et al. 1999) (Greenbaum, Jansen & Gerstein, 2002). This may be due to the different 

half-lives of mRNA - as a result of post-transcriptional processes, which we there

fore include in our model (see 5.3.3). Note that our networks are constructed to test 

hypotheses about network behaviour rather than being trained like neural networks 

to output particular data.

iv. The abundance of the product tells whether a node has been activated and more im

portantly, at what level. This abundance is given in absolute quantities as opposed to 

the relative abundance of mRNA data from microarray measurements. However, we 

are not interested by a quantitative one to one comparison of the level of expression 
between real and simulated data as it would require fine tuning of the parameters of 

the model which is not the focus of this study.

v. The system is defined with the same parameters as in chapter 4.

Using an etymology inherited from biological systems to define the elements of our 

network does not turn it into a biological system. We are not trying here to model the 

biological system in its exact form. However, we are looking for mechanisms, rules, etc, 

as simple as they can be to relate, somehow, to what is known about the architecture of 

the network and to what is observed of the dynamics of the network.

In contrast to some similar cases of linear systems, the rate of synthesis at a node 

does not depend on the quantity of the regulators or of time dependent functions (Chen
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et al. 2004), but upon the coupling of the regulators. We make this simplification because 

the alternative model is more complicated but not necessarily biologically more realistic.

The use of time-series data constrains the network to a range of /i corresponding to 
periodic behaviour, that is 0.3 < n  <  0.7. We have seen in chapter 4 that the distribution 

of production was directly related to the architecture. According to this, the observed 
distribution of decaying power-law tails is dependent on a power-law architecture. This 

draws a direct relationship between architecture and dynamics. For the next section we 

will then consider the networks to be scale-free.

However, this model cannot account for the complex time dependence. Nor it can 

account for the unimodality shown by the normalised distribution of real data as shown 
above in section 5.2. We go through several hypotheses in order to try to improve the 
model by considering desynchronisation phenomenon, taking into account action delays 

and degradations of products. We consider independently those phenomena.

The proportion of input nodes is set to 0.05 of the total nodes and \i is set to 0.4, 
unless stated otherwise. Networks of N  = 2000 nodes are used, that is about 33% of the 

S. cerevisiae network and about 53% of a the C. crescentus network (67% of the tested 

genes). Furthermore, a feature of genetic networks is believed to be the low number 
of links involved in direct transcriptional regulation (Guelzim et al. 2002). The mean 

in-coming and out-going connectivities of the networks are set to 3.

5.3.2 Desynchronisation of the population

The hypothesis is here that the complex time dependence is introduced by dephasing the 
population.

A perfectly synchronised population is equivalent to simulating only one network. 
The desynchrony of population is introduced in the model by averaging the production 
at any one time over a number of time steps, or what we call a desynchronisation window. 

The window is defined from 1 to the period of the network, r, that is from a perfectly 

synchronised population to a population where the abundance of a product is its average 

abundance. In practice, the sum of the production over the window is chosen instead of 

the average, which differs only by a multiplicative constant. This has no consequence on 
the interpretation of the result but it increases the resolution of the distribution. This is 

due to the fact that the distribution spreads linearly on a wider range of abundance.

We present in figure 5.11 the distribution of abundance for a window of 2 that rep

resents a desynchronisation of only about 2%, for a scale-free network. Thus, a slight
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FIGURE 5.11.  Distribution of abundance for a desynchronised scale-free network. 
This is for the same network as in figure 4.7. The number of nodes with abundance,

A  (x-axis), is given by N v. The desynchronisation is for 2 time steps.

desynchronisation is enough to render the illusion of complex time dependence. This can 
also be seen in figure 5.12 which corresponds to normalised data. As the desynchroni
sation increases, the tail of the distribution of abundance becomes an exponential (figure 
not shown). This is consistent, as the more desynchronised the population, the more ran
dom the distribution (the mRNA abundance is then characterised by an averaged value).

5.3.3 Delays and degradation

We investigate here the effect of synthesis and degradation kinetics of the regulator on 
the behaviour of the network and the distribution of regulator. The mRNA and protein 
half-lives in a cell are not uniform and their quantities present in a cell depends on the 
rate of both synthesis and degradation. Those rates may vary according the variation of 
the events, and their kinetics, such as splicing, transcription initiation, mRNA transport, 
translation initiation, post-translational modifications, etc. The consequence may be, for 
example, that gene a exerts indirect control over gene b although (i) gene a is no longer 
activated or (ii) its corresponding mRNA has been degraded, since the protein it encodes 
may continue to be active over several time steps. We consider both cases independently.
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F ig u r e  5.12. Re-scaled distribution o f  abundance for a desynchronised scale-free 
network. This is for the same network as in figure 4.7. The data are re-scaled in the 

same way as in figures section 5.2. The desynchronisation is for 2 time steps.

Regulator lifetime

The degradation rate is indirectly taken into account by including a lifetime parameter, 
I. The quantity of a regulator produced at time t is summed to its quantity produced at 
t , t  — 1 , . . . ,  t — I and disappears thereafter. Thus at t the abundance of regulator i is
£ ' =0 P , ( i - j ) .

The distribution of abundance is expected to vary in two ways following the modifi
cation of the model. The first one is the stretch of the distribution over the abundance. 
The second one is that the abundance of the nodes of constant level of expression will lie 
at values Z, 2Z,__

As an example, we plot in figure 5.13 the distribution of abundance for I =  3 chosen 
at an arbitrary time. Despite focussing only on the nodes of variable level of expression, 
the distribution shows outliers at level of abundance 3 ,6 , . . . .  This shows that the level 
of expression of the nodes fluctuates but most of the time is spent at a given level. All in 
all, this does not account for what is observed.
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Figure 5.13. Distribution of abundance of the node of variable level of expression 
for a delay I = 3 for a scale-free network. The points of abundance 3, 6 , . . .  outlie

the distribution.

Delay of action

Delay of action is a general term to regroup any mechanism that delays the action of a 
regulator on its targets. The regulation in biological system is complex and many long 

steps may be necessary before a regulatory signal may be effective. To that effect, we in

troduce delays between the production and effect of a regulator that are implemented by 

inserting a series of delay nodes in between two originally connected nodes (figure 5.14). 
The number of delay nodes corresponds to the delay time of activation, t d. Each delay 

node will be activated one at a time if the regulator is ON. When all the delay nodes in 

between two given nodes are activated, the effect of the regulatory node is exerted on the 
regulated node. This occurs then at a time td after the regulator is activated.

In the simulations, we randomly introduce delay nodes so that the average number is 

< td >. We find that the delay does not affect the distribution if < td > is small, but 

completely destabilises the network, which loses its periodicity, if it is large. The later 
can be thought of as showing that the introduction of random delays naturally destabilises 

the period; there is no more cohesion in the behaviour of the network and different parts 
of it can not be synchronised any longer.
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FIGURE 5.14. The delay between nodes A  and B  is modelled by introducing delay 
nodes i and j  between them. Node B is not controlled anymore by the state of A  at

t  — 1 but its state at t — 3.

5.4 Architectural misfit

It is now clear the architecture of the network is important in determining the distribution 
of abundance. We here test to what extent this is true by generating networks with 
different in and out distributions. This is done by first generating the matrix A  for a scale- 
free network and subsequently randomising either its rows or its columns. This yields 
networks where one degree distribution is scale-free and the other follows a Poisson 
distribution.

The figures 5.15 and 5.16 show that in the context we have defined, only the networks 
with incoming power-law distribution are able to yield a distribution of abundance that 
follows a power-law. In the case where the distribution of the incoming links is random, 
the distribution of abundance is exponential. This is in total contradiction with observa
tions of transcriptional networks (Guelzim et al. 2002). For S. cerevisiae and E. coli, the 
distribution of the nodes of the incoming links appears to be exponential, whereas the 
distribution of the out-going links appears to follow a power-law.

There is a clear inconsistency of the in and out distribution at the nodes between 
the biological system and the model. In the context of the model, the abundance of the 
network is related to the distribution of the incoming links. The problem is that of turning 
an exponential distribution into a power-law distribution. There are two possible ways 
that might achieve this: by modifying either the regulatory mechanism or the production 
functions at the node that were given in section 4.3.
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F i g u r e  5.15. Distribution of abundance, A, for a scale-free network with a random 
distribution of its outgoing links and a power-law distribution of its incoming links. 

The distributions decay as a power-law.
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F i g u r e  5.16. Distribution of abundance, A, for a scale-free network with a random 
distribution of its incoming links and a power-law distribution of its outgoing links.
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5.4.1 Stochasticity

There are two options to to try to reconciliate the structure of the network and the distri

bution of abundance. The first one consists in modifying the function of production given 

by Eq. 4.2 so that the exponential distribution of abundance is turned into a power-law. 
The second route, which is the one chosen here, is to modify the regulation mechanism.

The model is modified so as to replace the deterministic mechanism of regulation by 
a stochastic one. Some biological arguments could be in favour of such modification. 

For example, the small quantities of mRNAs may alter the process of regulation while 
another argument may arise from spatial considerations. Indeed, nodes that are spatially 

close to each other (Kepes 2004) may be regulated, while they may not be otherwise.

The stochasticity is implemented in the original model, that is without the consider

ation of delays and lifetime, as such:

(i). The number of nodes that a given node can regulate is given by its out-going 

connectivity. A random number of these links will then be selected to be regulators 

of the nodes they are connected to and the others will be ignored, that is they will 

not have a regulatory role.

(ii). The links to be regulators are reselected at each time.

All the rest of the model is as described in section 4.3. To counter-balance the fact that 

the introduction of stochastic dynamics lowers the levels of abundance, we record the 

abundance of a node over a window of time.

The networks used for these simulations have a Poisson distribution of the in-degrees 
of connectivity and a power-law distribution for the out-degrees. The fraction of negative 

links is fixed at /i =  0 .0 , which would yield a static network with the deterministic 

dynamics. We illustrate the result of the simulations with one network.

The main consequence on the dynamic of the network is that the fixed-point attrac

tor disappears and no other attractor is reached. As a result, the nodes cannot be dis
tinguished according the categories mentioned earlier and therefore, all the nodes are 

considered for the distribution of abundance, which is shown in figure 5.17. The de

caying part of the distribution of abundance follows an exponential, with a fat tail that 

stretches across high levels of abundance. The fact that the network display nodes with 
high degree of abundance is positive, even though the distribution remains exponential.

95



Modelling functions of genetic regulatory networks 5.5 Identification o f .

0.1

0 01

0001

0 50 100 150 200 250

F i g u r e  5.17. Distribution of abundance for a stochastic dynamics.

5.5 Identification of correlation between node expression 
and number of controls

We investigate in the following the effect of changing the function of production. In 
the original model, the production is related to the distribution of incoming links. Since 

the expected distribution of abundance follows a power-law as does the distribution of 

the out-degree, a simple and straightforward way would be to relate the distribution of 

abundance to the distribution of out-degrees. However, doing this would be a major 

conceptual shift. In the former, the abundance is related to the number of regulators 
while, in the later, the abundance of a node is related to the number of nodes it can 

regulate.

In the biological network of a cell, this reduces to showing that the correlations be
tween the mRNA expression data and the architecture of the genetic regulatory network 

can be used to construct a model regulatory network that could simulate the qualitative 

features of the observed one. This, including autonomous periodicity and power law 
abundance distributions, we now proceed to do. For that we look at correlations between 

nodes expression and the number of controls in Escherichia coli.
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5.5.1 The E . coli data

We have on one hand the in and out degree of connectivity of the genes of E. coli obtained 

from the RegulonDb database (Salgado et al. 2004). The data there connects transcription 

factors, (TFs), to genes and according to it, genes fall into two categories: whether or 
not they have a non-zero out-going degree of connectivity. The first one corresponds to 

the transcription factors where both degree of connectivities are greater or equal to zero. 
The second one corresponds to the regulated genes which do not have out-going links, 

that is out degrees of connectivity.

On the other hand, the mRNA data are obtained from micro-arrays experiments 

(Allen et al. 2003) for E. coli grown in normal growth conditions. Those data are avail

able from the ASAP database (Glasner et al. 2003). The set of experiments has been 

repeated up to 10 times and the mRNA abundances used here correspond to the aver
aged abundances over all experiments. Knowing the degree of the nodes and the relative 
level of expression of the genes, we are able to extract potential correlations between 

in-degree of connectivity and mRNA abundance and between out-degree of connectivity 

and mRNA abundance.

In-degree correlation

We look first for a correlation between the in-degree distribution of the genes and the 

averaged mRNA abundances for those genes. We show in figure 5.18 the data for the ex

pected correlation between in-degree and the averaged mRNA abundance corresponding 

to the genes of that degree. The error bars are the standard deviation of the mRNA abun
dances found for each in-degree. No correlation is present. However, the large scatter 

of mRNA production for each degree suggests that the average is probably not a correct 
parameter to look at and that the degree abundance is not randomly distributed around a 

mean. For that, we look at the mRNA abundance for each in-degree separately. We find 

a very interesting picture: as seen in figure 5.19, where there are sufficient data to exhibit 
a trend, each of the distributions shows a power law tail.

Furthermore, the power law is the same for each in-degree (figure A .8 in appendix A). 

Thus, for a given in-degree of connectivity, there are many mRNAs produced in low 
quantity and few at higher. This behaviour is independent of the degree and confirms the 
lack of correlation.
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F i g u r e  5.18. Averaged relative mRNA abundance measured in E. coli versus the 
in-coming degree of connectivity of the corresponding genes.

Out-degree correlation

We proceed as above with this time only the genes of the first category, that is kout > 0. 
Since for E . coli the out-degree follows a power-law (Guelzim et al. 2002) and we are 

dealing with fewer genes, we expect the distribution of mRNA abundance per out-degree 

to be more noisy. We show in figure 5.20 a correlation plot between the out-degree and 

the averaged mRNA abundance for that degree. Compared to figure 5.18, the standard 
deviations are much smaller here. For out-degrees less than ~  10, no correlation is 

noticeable in the log-linear plot. However, for the other genes, it looks like a trend 

emerges: the higher the degree, the higher the abundance. Overall, the data are best 
fitted by a linear curve, showing a linear dependence between abundance and out-going 

degree of connectivity.

Note that there are insufficient data for each nodal degree to look effectively at the 

distribution of mRNA for each out-degree.

Finally we look whether there are some correlations between the out-degree of the 
transcription factors and the abundance of the level of expression of the genes those 

transcription factors regulate. This is plotted in figure 5.21, which shows no evident 
correlation.
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F i g u r e  5.19. Distribution of mRNA abundance in E. coli for various in-coming de
grees of connectivity such as (top left) in-coming degree of 1, (top right) in-coming 
degree of 2, (middle left) in-coming degree of 3, (middle right) in-coming degree of 
4,(bottom left) in-coming degree of 5 and (bottom right in-coming degree of 6 . The

distributions decay as power-laws.
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Figure 5.20. Averaged relative mRNA abundance measured in E. coli versus the 
out-going degree of connectivity of the corresponding genes. The distribution is best 

fitted by a linear function y = ax  +  b with a «  14 and b «  591.
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Figure 5.21. Averaged relative mRNA abundance measured in E. coli versus the 
out-going degree of connectivity of the transcription factor regulating the corre

sponding genes.
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5.5.2 Simulation

Network model

From the original model, we modify the function of production at a node, given by 
Eq. 4.2, so as to take into account the correlation between the out-degree and regulator. 

The new production function at node i becomes

Pi(t +  1) =  s» (t)X ]laj*l>
j

with a,ij an element of the adjacency matrix A, and the elements pi and s* as given in 
section 4.3.4. The rest of the model is defined as follows.

(1). In accordance with the data we assume a Poisson distribution of the in-coming de
grees of connectivity and a power-law distribution of the out-going degrees of con

nectivity.

(2). In the data some nodes are connected to links of dual control that is they can be 

positive and negative. For simplicity we ignore these in the model: such links are 

arbitrarily assigned to be either positive or negative with equal probability.

(3). The proportion of negative links is taken as 0.4.

(4). Mean degree of connectivity k is taken as 8 , with kin — k ^ t  — 4.

(5). The model has 1500 nodes in line with the data.

Note that the mean degree of connectivity and the proportion of negative links are those 

specified in the construction of the network. The actual parameters of the connected 
network may vary from simulation to simulation, because a variable subset of nodes 

remains unconnected in the construction process.

Note also that in our model, the abundance of the regulator is given by its exact value, 

that is the real abundance. On the contrary for E. coli, the mRNA abundance corresponds 

to a value relative to a standard population.

Results

We are interested in having a periodic network whose period is big enough so that the 

distributions are not approximated by the fixed-point attractor. However, the probability
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FIGURE 5.22. Distribution of level of abundance of the nodes of the simulated 
network. The distribution decays as a power-law.

Figure 5.23. Averaged distribution of the abundance versus the in-coming degree 
of connectivity of the corresponding nodes in the simulated network.

of finding a network with a large period is low since the probability of finding a network 
of a given period decays as a power-law, as shown in section 4.4.2. We present the
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F i g u r e  5.24. Distribution of abundance for a given in-coming degree of connec
tivity such as (top left) in-coming degree of 1, (top right) in-coming degree of 2 , 
(middle left) in-coming degree of 3, (middle right) in-coming degree of 4,(bottom 
left) in-coming degree of 5 and (bottom right in-coming degree of 6 . The distribu

tions decay as power-laws..
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Figure 5.25. Averaged distribution of the abundance versus the out-going degree of 
connectivity of the corresponding nodes in the simulated network. The distribution 

is best fitted by a linear function y = ax +  b with a m  0.1 and b m —0.1

resulting mRNA abundances for a network with period 32. About 87 per cent of the 
nodes are active, of which about 25 per cent have periodic production rates.

We show in figure 5.22 the distribution of abundance of the regulator. Each graph 

gives the distribution at a different time during one period.

All the active genes are taken into account, that is those of variable production rate 

and those of constant production rate. The tail of the distribution follows a power-law. 
Very slight variations from one time to another are noticeable.

As for E. coli, we check how in and out-degrees correlate to the abundance of regula
tors in the model. Figure 5.23 shows correlation data between in-degree and the averaged 

abundance of regulator at that degree. Similar to the E coli experimental data, there is 

no noticeable correlation between degree and abundance. In this case again, the standard 

deviation for each value is high, and the distributions of the regulators show power-law 
tails.

We show in figure 5.24 the distribution of abundance for each of the in-degree of 

connectivity. The figures are similar to the one observed earlier from the E coli dataset.

Finally, figure 5.25 shows correlation data between out-degree and the averaged 

abundance of regulator at that degree. The correlation appears clearly on this figure
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and is linear. Thus, the higher the out-degree of connectivity, the higher the abundance. 

This figure looks similar to the corresponding graph in E coli, where for small out-degree 
of connectivity the increase in abundance is relatively small and for higher degrees, the 

increase is much larger.

5.6 Summary

In this chapter we have approached the problem of linking what is known of the topology 
of genetic regulatory network and functional observation made of it. From a simple 
network but yet with complex behaviour we have seen that is was possible to reproduce 

features of the measured data.

We have seen that desynchronisation of the network may be a cause of the observed 

complex time dependence between time-series. This reinforces the idea that the synchro

nisation of a cell population cannot be accurate.

Other effects like those of lifetime dependence or of elapse time activity on the be
haviour are important phenomena to take into account. However, they do not seem to 

play a major role at this scale.

Note that a possible explanation for the unimodality of the normalised distribution of 
abundance of mRNA for S. cerevisiae and C. crescentus could be sought in the way the 
cell cycle dependent patterns of expression are extracted. In the C. crescentus dataset for 

example, the identification is done using a Discrete Transform Analysis.

But the most important point was the inconsistency of the in and out distribution 

at the nodes between the biological system and the model. False assumptions about 

the architecture of a regulatory network, particularly about the probability distribution 

of the numbers of links per node and the form of the node function, can nevertheless 
yield networks that give accurate simulations of the mRNA abundance data. From this, 

a regulatory network cannot be inferred from a time series of mRNA abundance data 
alone.

We have shown that the experimental data for the mRNA abundance and genetic reg
ulation in E. coli show no correlation between the number of regulators of a gene and 

the corresponding mRNA abundance. There is, on the contrary, a distinct correlation 
between the number of genes regulated and the mRNA abundance. It is perhaps unex

pected that we should find such correlation, since this appears to require genes to ‘fulfil 

their duty’ by producing more transcription factor the more controls require it. While
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strange at first sight (how does a gene know how many others it regulates?) this might 
be expected on evolutionary grounds, namely that mutations can be beneficial only if the 

structures already exist to take advantage of them. Others say, mutations can only be 
exploited if the controls exist, and so we shall let the data speak for themselves.

Our simulation of a simple regulatory model taking into account the correct correla
tion assumption allows us to reproduce, at least qualitatively, the observed data on the 

distribution of mRNA abundances. The model uses realistic parameters derived from the 
E. coli network, namely the same proportion of negative links, the same mean connec

tivity and the same dependence of mRNA production on out-going links. (We can show 
that connecting the abundance with the incoming distribution does not work.) These 
properties alone, and not the intimate details of the regulatory network, are sufficient to 

reproduce the qualitative features of the measured mRNA abundances in E. coli.
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Chapter 6
Maximum entropy reconstruction of 
networks

6.1 Introduction

High throughput experiments have generated a large amount of data on genetic expres

sion. The fact is that those data do not contain explicitly the interactions between ele
ments of the systems they originate from. However, it is assumed that those data should 

contain information on the underlying structure and topology of the system. Inferring 

the network related to the data is achievable by a process of reverse engineering which 
differs from all the methods presented so far.

Reverse engineering a network from genetic expression is not however a simple task. 

Ideally it would be if the technology was not limiting in generating enough data and in 
providing powerful machines to treat them. This is not the case however and numerous 

methods have been proposed to infer networks on the basis that there is not enough data 

to reconstruct them directly and exactly. In the field of astronomy, amongst many others, 
the method of the maximum entropy has been proven efficient for reconstructing images 

from noisy and partial data. We apply here this method to the reconstruction of genetic 

regulatory networks since it occurs in the same context of partial and noisy data.

In this chapter, we will first present the relevant methods of genetic network inference 
based on mutual information and Bayesian network theories. We will then introduce the 

maximum entropy method in its most traditional way and see how it can be applied 

to the reconstruction of genetic regulatory networks. Finally, we will benchmark this
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method by reconstructing the structure of known networks from simulated datasets. Re

sults show that reconstructed networks present a similar structure to the expected one. 

This also shows the extent to which the data contain information on the structure of 
the underlying network. Compared to other methods, the maximum entropy method is 

capable of reconstructing relatively large scale networks in a relatively short time.

6.2 Methods to infer networks from data

Several methods have been developed to infer the structure of biological networks from 

mRNA data. These methods differ in that some of them only yield the architecture of the 
network, providing the correlation between nodes or the causal relationships, whereas 

some others may in addition provide the regulatory functions associated to the nodes. Of 
course, for the latter case, the function relates to the dynamical context of the network, 

that is whether it is a discretised or a continuous model, that is Boolean or based on 

differential equations. Here, we will only focus on the former.

Varied as the methods are, and in particular the more refined ones, they present the 

common characteristic of using prior knowledge of the system. This is a very important 

step, since it reduces the complexity of the problem by constraining the space of possi
ble solutions. The other important notion that emerges from those various models is the 
trade-off, in order not to bias the results, between making appropriate assumptions on 

the system and the use of algorithms making a neutral use of the data. In that respect, 

the example of the reconstruction of transcriptional co-regulatory networks is a good il

lustration. In this case, the general assumption on the system is that of the similarity of 
the pattern of expression of genes that are co-regulated by the same transcription factor. 
The measure of expression of the elements of the network is the relative mRNA abun

dances obtained from micro-array experiments, and the identification of similar patterns 

is carried out via clustering algorithms. It turns out that the result of that clustering is 

highly dependent on the algorithms used (D’haeseleer, Liang & Somogyi, 2000) and 

therefore is not ‘neutral’. Nothing can then distinguish them beforehand except, to some 
extent, the prior knowledge on the system. Furthermore, the assumption bases the co

regulation on one sort of mechanism while many others, such as combined co-regulation 

for example, could be considered.

The inference of other genetic networks is far more complex than that of co-regulated 
genes. We will present here the main methods used to infer networks on which the latest 

up-to-date methods are based. The first of those methods is related to the use of mutual
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information to reconstruct genetic networks as Boolean networks. The second one is 
that of Bayesian networks. This method assumes nothing about the regulatory functions 

associated to the nodes and considers only probabilities of interaction between elements 

of the network. Finally, we present an alternative method that infers genetic networks, 
as Boolean networks, from perturbed genetic expression.

6.2.1 Mutual information

In this method, the genetic network is represented by a Boolean network where the nodes 
are the genes and the links represent the functional interactions between genes. Of course 

in this case, the regulatory functions of the genes are implicitly assumed to be Boolean.

The method relies on state transition and temporal response of gene expression pat
terns to perturbations and changes. It is based on the use of mutual information, M, 
defined in section 1.7, which is used to extract relationships between input and output 
states of the nodes in the Boolean network (Liang et al. 1998). In such networks, the 

input state of node i, X {, is completely determined by the output state of one node j , Y j ,  
if

M( X i , Y j )  =  H{Xi ) ,  

or equivalently, according to Eq. 1.5, if

H ( X U Yj) =  H(Yj ) .

If it is not completely determined by the output state of node j  then correlations involving 

2 output nodes are sought. This is repeated, up to N  — 1 output nodes, until the input 

state of node i is completely determined by the output states of k  nodes, that is

H ( X i , Yj , . . . , Y j+k) =  H( Yj , . . . , Y j+k).

This gives the minimal number of regulators and characterises the existence of k links, 

from the corresponding nodes, to node i. The representation of those entropies in a Venn 

diagram would give the overlapping of each of the ensembles X it and Y j , . . . ,  Yj+k.

The directionality of the links, in the present case, is determined from the causal 

relationship between the state of the nodes which is given by the temporal response 

and not from the expression for mutual information which is symmetrical. In any case, 
correlation alone is not enough to determine the causal relationship between variables 

as X  acting on Y  and Y  acting on X  are equivalent in that respect. Another way to
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determine causal links between nodes, aside of using time series, is to proceed through 
perturbation experiments as explained later.

The quantity of data required for such methods is very high for large networks as 

for a Boolean network, all possible 2N input-output pairs need to be known. The num
ber of data needed decreases when constraints are introduced, for example on the mean 
connectivity. This is an important consideration since the quality of the reconstruction 
depends on it (D’haeseleer et al. 2000).

Other algorithms using mutual information have been proposed (Akutsu, Miyano 

& Kuhara, 2000b), including one inferring Boolean networks from noisy data (Akutsu, 

Miyano & Kuhara, 2000a).

6.2.2 Bayesian networks

Another way to infer the structure of gene regulatory networks is to consider the prob

abilistic model of Bayesian networks. This approach is based on the idea that if the 
expression level of a gene a is regulated by genes b and c, the expression level of a is 
then the joint activity levels of b and c (Friedman 2004). As before, the directed links 

represent the direct dependencies between the nodes. This approach does not require the 
formulation of assumptions on the underlying mechanisms of interaction or regulation 
between the nodes.

In a Bayesian network, each of the expression levels is considered as a random vari
able X{ of level X{. The network itself is defined as the representation of a joint probabil
ity distribution of all the random variables of interest, that is the measured variables and 

the other adequate variables (Friedman et al. 2000). The joint distribution of the network 
is represented as the product of conditional probabilities. For a random variable Xi ,  the 

associated conditional probability is given by P(Xi\Ui), where Ui is the set of variables 

called the parents of Xi.  This corresponds to the nodes directly controlling Xi.  For the 
complete network, the joint probability is then

p ( x u . . . , x N) = n p ( x i |c/i),
i

which requires an acyclic network and assumes variables Xi  are independent of their 
non-descendants, given their parents. It is assumed that only the value of the parents in

fluences its descendant. Indirect relationships between variables are therefore considered 
also as direct which may, in return, have an effect on the architecture of the network. The

110



Maximum entropy reconstruction of networks 6.2 Methods to infer.

F i g u r e  6.1. Directed network.

causal relationship parent-descendant arises again from temporal data or from perturba
tion experiments, and the resulting network is in this case directed. Take for example the 
network in figure 6.1. The relation between the joint probability of the complete network 
and the conditional probabilities associated to the nodes is given by

P(A,  B , C, D, E) =  P( A) P{B) P(C\A , B)P{D\B)P(E\C) .

The inference of the architecture of the network is done via a learning process using a 
training data set.

In the present case, the variables are the mRNA expression levels which can be used 
as is or discretised in order to account for non-linear dependencies. Reconstructing net
works of thousands of genes requires a huge number of expression profiles. For instance, 
reconstructing a network of 35 genes with binary states, where each of the genes is con
trolled by a maximum number of four other genes, requires a number of the order of 
20,000 expression profiles (Le, Bahl & Ungar, 2004). Reconstructing networks of thou
sands of genes is then a challenge relative to the quantity of data available.

In general and in practice, many different instances of the reconstructed network may 
satisfy the data. This variety of solutions is also reinforced by the use of a dataset smaller 
than required. It is then necessary to use specific methods, based on scoring functions, 
to discriminate between those different solutions. In the latter case, the reconstruction 
may present a certain sensitivity to the dataset used to infer the network (Friedman & 
Roller, 2003). This adds to the problem of evaluating the correct solution. On the other 
hand, prior knowledge of the network structure, from a literature search for example, 
significantly reduces the amount of data required and then narrows the space of possible 
solutions (Le et al. 2004). But in general, the number of solutions grows exponentially

111



Maximum entropy reconstruction of networks 6.2 Methods to infer.

with the size of the network.

Amongst the many solutions, the chosen one is considered to be the most likely 
one, given the scoring function. However, simple algorithms yield equally high scoring 

solutions of different structures and sampling of the many solutions is preferred. The 
idea behind sampling is that if the solution networks appear to be different in details, 
strong correlations within their structure may be represented over all the networks. Those 

special features are then extracted and what is called the posterior probability, P ( f \D ) ,  
is measured. This is the Bayesian score which corresponds to how likely the feature /  

appears to be considering the data D.

There are other methods to infer the structure of networks from expression data and 
other probabilistic models to represent them (Friedman 2004). Other methods mix dif
ferent approaches (Li et al. 2005) including, for example, the use of Bayesian and mutual 

information methods which has been recently proposed (Li & Chan, 2004).

6.2.3 Inference from perturbation strategy experiments

As seen above, the data used in inferring networks is a major issue. A complementary 

approach to improve the reconstructed network is to use perturbation strategy experi

ments. Those perturbations, by changing the level of expression of genes by either direct 

interventions onto the genes or by less direct routes, should help to distinguish between 

equivalent classes of networks, for example. This implies the reconstruction of static 
networks as the effect of perturbations that are measured at steady state expression level 

of the genes.

Finally, there is an inference technique based solely on perturbation experiments 

(Ideker, Thorsson & Karp, 2000). In this method, the states of the genes are represented 
in a matrix, E,  where element is the Boolean state of gene j  in the perturbation ex

periment i. The interactions between genes are determined as follows. For a given gene 

j ,  all pairs of permutation experiments (k, I) where ^  eij are selected. For each of 

those pairs, the set Ski of the genes that are in different states are extracted and, a minimal 

subset is identified so as to contain at least one gene present in all of the Ski sets. The 
function at node j  is then identified according to the data from E  directly. All possible 

subsets are considered as possible regulators and further perturbation experiments are 
required to discriminate between them.

However, the range of possible perturbations is wide and the problem for such an 
approach is the selection of the perturbations so as to benefit the inference of the network.
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In the present case, the next perturbation to be carried out is the one that maximises the 

entropy, or information, of the experiment matrix.

This perturbation strategy has been also approached in the context of Bayesian net

works. One of the techniques used to find the useful perturbations is to determine which 
perturbed element is going to split the equivalence class into many subclasses of equiva

lent size (Poumara & Wemisch, 2004).

6.2.4 Summary

We have seen the importance of a sufficient amount of data to infer network structure. 
Typically, the methods of network inference are adequate to reconstruct small network 
structures. But even in these cases, those methods may yield many solutions that satisfy 

the data. Furthermore, the solutions turn out to correspond to different networks. In 

addition, the method of discrimination between solutions varies from one method of 
inference to another which, despite their apparent pertinence, may be somewhat arbitrary.

6.3 The maximum entropy method

The maximum entropy method is used in the reconstruction of images from imperfect 

data and has been proven successful in various fields. It is used, for example, in astron
omy to reconstruct images using gravitational lenses or in biology for the reconstruction 

of microscopy images, etc (Buck & Macaulay, 1991). This method applies to cases 

where there are not enough data to reconstruct exactly the image. A simple fitting pro
cess, for example, would lead to many possible solutions and leave us with the problem 

of deciding which one is the correct one. In the maximum entropy method, this is taken 
care of by the maximisation of the entropy ensuring that the reconstructed image is the 
most probable image given the data.

The lack of data is also the fate in genetic regulatory networks inference, as men

tioned earlier, with the identical problem of discriminating between the many solutions. 
It would be therefore of interest to apply the maximum entropy method to the recon

struction of such networks, that would be here equivalent to the reconstructed image. 

In this section, we first present the classical maximum entropy method used in image 
reconstruction. We then show how to adapt this method in the context of inferring the 

structure of networks.
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6.3.1 Traditional maximum entropy method

The image of an object seen through some equipment, with Gaussian noise, can be ex

pressed as
D  =  R . f  +  cr.n, (6.1)

where D  are the acquired data from the image f ,  R  is the effect of the equipment on 
the image, also called the point spread function, a  is the noise standard deviation and n 
is a random number drawn from a standard normal distribution. The aim of the method 

is to reconstruct the image in the case that there are not enough data to do it exactly. 
The problem is then to look at the most probable image that reproduces the data, which 
turns out to be equivalent to maximising the entropy of the system, here the image, while 

diminishing the \ 2 of the fit to the given data. We present here, in more details, the 
principle of the historical maximum entropy method as used in image reconstruction.

The principle behind image reconstruction derives from the Bayes’ theorem which 
states that

= PU)P(D\f)
U l  1 P ( D )  

with the probabilities described as follows:

•  P( f )  corresponds to the prior probability, that is the probability distribution as

signed to image /  before acquiring data. It plays an important part in this context 
of reconstruction where not enough data are available to reconstruct exactly the 
image.

•  P ( D \ f )  is called the likelihood, that is the conditional probability to acquire the 
particular data D  given the image / .  It is dependent on the equipment used to 

acquire the data as well as on some noise which is related to imprecision in the 
measure of data D.

•  P (D )  corresponds to the evidence and is considered in this case as a scaling con
stant.

•  P ( f \ D )  is the probability we are looking for. Indeed, since we want an image 

that is the best reconstruction, we are looking for the most probable one. This 
probability quantifies then the inference about the image.

The prior probability is related to the entropy, S,  of the image as

P( f )  OC e x s .
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If the difference between the measured data and reconstructed one is non zero, it is due 
to noise. In the case the noise has a Gaussian distribution, that is n  drawn from a unit 

normal distribution, the likelihood varies, using Eq. 6 .1, as

P ( D \ f )  ex e~^x\

The probability we are looking for, P ( f \ D ) ,  varies then as

P ( f \ D )  oc e x s ~ i x\  

and finding the most probable image is then equivalent to maximising expression

From here, the approach is very similar to the one used before in chapter 2 that consists, 
in part, in the maximisation of the entropy associated to the system. There are several 

ways to introduce the maximum entropy method for image reconstruction but we will 
present here the one relevant to our purpose.

The overall method consists in minimising the Lagrangian function Q = \ . S  -  X2 
where A is the Lagrangian parameter.

The entropy, 5 , of an image is defined as

where p* is the probability to find an object (pixel) of intensity /* such that pi =  - .
l^j JJ

The log in the expression requires the positivity of the intensity, which arises as prior 
information on the system.

Let h be the default distribution of probabilities when there are no constraints associ

ated to the entropy, so that when the entropy is maximised we have p{ — hi. The entropy 
function can then be expressed as

The statistic between the reconstructed image and the real data is given by the x 2 
function so that

-  L 2- 2

S ( f )  = ~ Y , P i (6 .2)
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where D'  are the simulated data compare to the observed ones, D. The function to 

maximised is then

A . S( f )  -  xV) =  - A  X> log £  -  E  ( D ~ g ' )2,
1 i

which, regarding its nature and the size of the problem, is done iteratively (Skilling & 

Bryan, 1984).

6.3.2 Application to network reconstruction

The attributes of the networks we want to infer are similar to the ones discussed in chap
ter 4. It has nodes connected to each other by directed links. A links can be either an 
activator or an inhibitor. As before, the network is described by its adjacency matrix, say 

A  of elements where

+ 1, if there is an activator directed link connecting node j to node i

ciij = — 1, if there is an inhibitor directed link connecting node j to node i

0 , if there are no directed links connecting node j to node i

Knowing the image reconstruction method by maximum entropy, we apply it to net
work reconstruction. We describe in this section how the method is adapted to network 

reconstruction and how the model is implemented.

An analogy can be made between image and network reconstruction in such a way: 
the nodes of the network to be reconstructed correspond to the pixels of the image. The 

level of abundance of the product of the nodes, that is mRNA in the case of genetic 

networks, is analogous to the intensity of the pixels. In the same way, the production 

function at a node is similar to the point spread function mentioned earlier. And finally 

the noise accounts for all the possible imprecision that may arise, from the regulatory 

mechanisms themselves in the case of real systems, but also from the acquisition tech

niques, for example. (However, in the present model, imprecision noise from regulatory 

mechanisms is not implemented). In a general form, the relation between network and 

data can be expressed as
D  — g (0 )  +  cr.n,

where D  corresponds to the data, g is the production function, O is the matrix represent

ing the original network, a  is the noise standard deviation and n is a random number 

drawn from a standard normal distribution.
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Similar to the image reconstruction, what we seek here is the reconstruction of a 
network that gives the best fit to the measured data by maximising the entropy, S,  of the 

system while minimising the x 2, that is maximising the Lagrangian function

Q = \ . S -  x 2, (6.3)

with A a Lagrangian multiplier.

Maximisation process

The elements of the adjacency matrix of the network we want to reconstruct are chosen 
from a set of values { — 1,0,1}. A straight forward way to maximise the function Q, 
(Eq. 6.3), is to use a Monte Carlo like process. The general algorithm to the reconstruc

tion of the network is described as follows. An adjacency matrix A  is first generated at 
random and the data D'  are calculated using a function g such that

D'  =  g(A).

The value Q0 of Q is then calculated from the entropy function S  and from x 2, which 
are given explicitly below. An element of the matrix A  is then modified and the data 
D'  corresponding to the new network are recalculated as well as the new value Qn. 
The modification of A  is then accepted if Qn > Q0, and accepted with a probability

Q n - Q o
< e <* if not, where a  is a hyper-parameter analogous to a temperature. The new 

configuration is rejected otherwise. The modification process of the adjacency matrix A  

and its acceptance or rejection is carried out until Q converges to a maximum.

Function of production

The production function that gives the level of abundance of the element produced at 

each time step, g, is at the heart of the dynamics of the networks and determines the 

behaviour of the system. This function needs first to be defined in order to provide an 

explicit expression for x 2, which depends on it. In the following, we assume that the 
function g associated with the network to be reconstructed is known.

As an illustration of the reconstruction method, we choose the function to be, ar
bitrarily, a simplified version of the one previously introduced in section 4.3.4. In this 
version, the level of expression does not depend on the state of the nodes but only on 

the in-coming degrees of connectivity of the nodes. The level of expression of node i at
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t +  1, di(t +  1), is dependent on the abundance vector d(t) such that

d{[t T  1) 'y  ̂Qjjdj(t), 
j

where are the elements of the adjacency matrix O of the network. The production 

function is then

g{0)  = 0.d(t) .

from which it is possible to build a time series of data d(t0), d(t i ) , . . . ,  d(tn).

The other difference with the simulations in chapters 4 and 5 is that here, the elements 
in the matrix of the network representing the incoming links are normalised so that their 

sum is unity. The exact production function we use is then

di{t +  1) = (6-4)
j 2̂ 1 On

This normalisation step prevents the time series level of abundance from ‘exploding’ 
after a few time steps. This, however does not alter the fact that links are still either 

activating (a^ > 0) or inhibiting (a^ < 0).

Expression for x2

Consider the set { d ( t 0), d ( t i ) , . . . ,  d ( t n ) }  of the measured data from the unknown net

work represented by adjacency matrix O and the set { d ' ( t i ) ,  d ' ( t 2) , . . . ,  d ' ( t n ) }  of data 
obtained from an arbitrary network represented by its adjacency matrix A  such that

di(t i )  =  °)’
j  1̂ 1 ail

and

d'i(h) =
j  zZl Oil

with d ' ( t  +  1) =  d ( t  +  1) for A  = O, for example. The difference that arises between 

datasets measured from network O or generated from network A  is given by \ 2 so that

2 ^  ( d , ( t )  -  d j ( t ) ) *

x i=fr= t

where x 2 —j► 0 when A  approaches a solution. This solution is the most probable but 

may not be O.

118



Maximum entropy reconstruction of networks 6.3 The maximum entropy.

Entropy function

As shown in chapters 2 and 3, there are many ways to account for the entropy of a 

network. The general simple form of the entropy, which we recall here, is, up to a 

constant

S  =  - J 2 P i \ o g P i -  (6.5)
i

The issue is then to define the probabilities pi so as to serve adequately the reconstruction 

method. In the case of the reconstruction of networks, there are many possibilities, 
depending on what we wish to reconstruct.

In the traditional use of the maximum entropy method in image reconstruction, what 
is reconstructed of the image is the intensity /* of the pixels, and the probability pi is 

then defined as the probability of finding a pixel of intensity i. By analogy to a network, 
the adjacency matrix could be seen as an image where each of its elements is a pixel. 
In the simple case of our adjacency matrix A,  there would be three levels of intensity 

corresponding to the three possible elements: —1, 0 and +1. The probability pi used 
in Eq. 6.5 is then of finding a negative a positive or no link at all, and the reconstructed 

network would have the most probable proportion of negative links and the most probable 
mean degree of connectivity given the data.

Conversely to images, the network architecture can be defined from a variety of 
probability distributions amongst which is the distribution of the degree of connectiv

ity, defined earlier. In the present case, this is the most appropriate choice as we want 
to reconstruct the architecture of the network from information contained in expression 

data and that we know, from the production function we use, the data should bear such 

information. Furthermore, since the networks are directed the probability pi will be that 

of finding a node of in-coming degree i. Other possible probability distributions related 

to the architecture could also be used, such as the one that relates to the degree of clus
tering of the nodes or of other coefficient T*, as given in section 3.4, where distributions 
of probability could be extracted.

We assign also a default probability distribution q to Eq. 6.5 such that the entropy 
function becomes

S  = — ^  ̂  log —. (6 .6)
i *

If the data bear no information at all on the architecture with respect to the probability 
P i ,  the entropy S  will be maximum for p =  q. Any departure of p from q will indicate 

there is some information on the architecture of the network contained in the data. A
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reasonable assumption is to set qi exponentially distributed so that Eq. 6.5 becomes

S  = - ' £ P i  l o g p f b p >
i

where k is the prior mean connectivity that has then to be assigned beforehand.

6.3.3 The simulation

We realise a series of simulations to illustrate and validate the method, in which the 

measured data time series is generated from the known adjacency matrix O. The simpli

fication we made on the production function g has the consequence on the dynamics that 
the abundance vectors fall rapidly into a fixed point. This does not allow a great flexibil
ity for testing the effects on the size of the sample data adequate for the reconstruction 
of the network.

A workaround is to generate data from various initial data vectors d ^  (to) , . . . ,  (to) 
so that the measured data set, using matrix O, is d ^ ( t i ) , . . . ,  S n\ t i )  while the data set 

generated from the inferred network A  is d ! ^ (£i ) , . . . ,  d ! ^ ( t \ ) .  This allows us to further 
simplify the model so as to speed up the simulation.

The maximisation process requires us to modify an element a*j of the network and 
thereafter to recalculate the effect of that modification on the data. Replacing element 

dij = x  by element =  y affects only data d ^ \ t \ )  and only those data need to be 

recalculated. This simplification can be pushed a little bit further. Let rji be the number 
of in-coming links at node i before the modification so that

Vi ^  j  > 
j

and 77' the number of in-coming links at node i after the modification, that is

v'i = m -  W +  \y\-

Following the modification, only the values d\(t) are modified. Let us label the values 
after modification with a double prime. We have



Maximum entropy reconstruction of networks 6.4 Results

that is, with Eq. 6.4

d"{k){ t+  1)
Vi

Thus, during the process of maximisation of Q one need only update a number of data 
corresponding to the number of time measurements which would be the square of the 

number of nodes in the network otherwise.

Finally, the function to maximise is

In this section, we first illustrate the maximum entropy method for the reconstruction 

of networks using a data set generated from a known network. In the following, the

struction is based on. The networks we use to generate the data have different degree 

distributions and it is this particular property of the network we are interested in recon
structing. We then look at the effect of the size of the generated dataset in order to show, 

qualitatively, the effect of under and over sampling the system we want to reconstruct. 
This effect should show up as a departure of the reconstructed degree distribution from 
the function q in Eq. 6 .6 .

6.4.1 Determination of a  and A

Before proceeding, we need to determine the range of values for which parameters a  and 

A yield a result where x 2 is minimised while S  is maximised. This is done by doing a 
gross screening over a wide range of values for the reconstruction of a small network of 

30 nodes. Figures 6.2 and 6.3 gives the values of \ 2 and $■> respectively, after a large 
simulation time step so that they are considered to have converged. The value of x 2 
is relatively small for 102 <  a  < 1014 and 10-14 <  A < H T 1. However, it is not 
guaranteed that any set of values within those ranges will yield the solution of maximum 

Q and not a solution corresponding to a local maximum. However, this issue relates 
mainly with the algorithm we use, and in an attempt to reach the best solution, we allow 

ourselves to change parameters a  and A within the proposed range during the simulation

y -  ( 4 })(t0) -  d[b)( t i ))2
^ /t-2

6.4 Results

generated data are also referred to as the ‘measured’ data as it would be what the recon-
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so as to improve the result. We assume that the range of parameters is valid for the rest of 
the simulation, and in the results presented below the value of the parameter a  is chosen 

in the range [101,106] and the value of parameter A is chosen in the range [10~10, 1].

6.4.2 Reconstruction of the degree of connectivity

In this section, we apply the maximum entropy method to the reconstruction of a random 

and a power-law network. Both networks have N  = 100 nodes, k = 8.0 and a proportion 
of negative links ii = 0.0. We have generated 500 data points which are used as the 

‘measured’ data set to reconstruct the network.

Random network

The random network used to generate the set of data is constructed as described in chap
ter 1.

We show in figure 6.4 the variation of \ 2 and S  during the reconstruction process. 
The value of \ 2 which has to be minimised decreases as expected. Conversely, the value 
of S  decreases while we are looking to maximise it. This is easily explained by the 

fact that the reconstruction of the network starts from a random network for which the 

entropy is maximal. The entropy of the final reconstructed network has therefore to be 

less or equal to that of the initial network. The scatter plot of the reconstructed data 

versus the ‘measured’ ones presented in figure 6.5 show that the reconstructed data are 
close to the ‘measured’ ones.

The reconstructed in-coming degree distribution has a form similar to that of the 
original one as shown in figure 6 .6 .

Power-law network

The power-law network used to generate the set of data is constructed using the Barabasi 
and Albert method as described in chapter 1.

We show in figure 6.7 the variation of S  and \ 2 during the reconstruction process, 
and in figure 6.8 the scatter plot of the reconstructed data versus the ‘measured’ data 
for the random network. The figures present the same characteristics as in the case of 

the random network: both variables x 2 and S  converge and the scatter plot shows that 
even if the data are not reconstructed exactly, they are close to the original ones. The
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Figure 6.4. Variation of x 2 (top) and of the entropy (bottom) during the maximi
sation process. The data used to reconstruct the network have been generated from

a random network.
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Figure 6.5. Scatter plot of the reconstructed data versus the original ‘measured’ 
data generated from a random network.
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Figure 6.6. Comparison of the in-coming degree distribution between the original 
random network and the reconstructed network.
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F ig u r e  6.9. Comparison of the in-coming degree distribution between the original 
scale-free network and the reconstructed network.

reconstructed in-coming degree distribution has a form similar to that of the original one
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Figure 6.10. Scatter plot of the reconstructed data versus the original data for 30
data points.

as shown in figure 6.9.

6.4.3 Size of the sample

We look at the effect the size of the data sample has on the reconstruction of networks. 
We are particularly interested in identifying under and over sampling effects. For this we 

use a small size network of 30 nodes.

We show first in figures 6.10, 6.11 and 6.12 the scatter plot of the reconstructed data 

versus the ‘measured’ ones for 60, 150 and 450 data points to reconstruct, respectively. 

The x 2 value increases as the number of data points to reconstruct increases which is 
shown as a bigger scattering of the points as the number of data points increases.

We show in figures 6.13, 6.14 and 6.15 the in-coming degree distribution of the re

constructed network compared to the original one using a sample size of 60, 150 and 450 
data points, respectively.

For a small size sample, the reconstructed in-coming degree distribution departs from 
the original one. As the size of the sample increases, the degree distribution gets closer to 
the original distribution. About 150 data points are sufficient to reconstruct the network 
as more data do not give any more information.
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Figure 6.11. Scatter plot of the reconstructed data versus the original data for 150
data points.
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Figure 6.12. Scatter plot of the reconstructed data versus the original data for 450
data points.
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F ig u r e  6.14. Comparison of the in-coming degree distribution between the original 
network and the reconstructed network for 150 data points.
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Figure 6.15. Comparison of the in-coming degree distribution between the original 
network and the reconstructed network for 450 data points.

6.5 Conclusion

We have shown in this chapter that the maximum entropy method applied to network 
reconstruction gives promising results and could be used to reconstruct networks from 

genetic regulatory data. It is an interesting method since it is based on the assumption 

that the best network to reconstruct the data is the most likely. In genetic network re
construction, one needs also to assume the expression function at the nodes which may 

not be known beforehand and this is where arbitrariness comes in the model. However, 
we have seen in chapter 5 that a correlation could be found between elements of the 
architecture we are interested in and the level of abundance of the corresponding genes.

Reconstruction of networks is the first interest of the method when the function that 

relates the architecture to some structural aspects of the network is known. But this 
method could be also use to test specific functions provided the architecture of the system 
and its level of abundance is known.

In the method presented here, we have assumed our total ignorance of the detailed 
structure of the network to be reconstructed. In biology this is not always the case and 
some parts of genetic networks of certain systems are known. This information could 

be implemented as prior knowledge on the network so as to gain a more detailed recon-
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struction.
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Chapter 7
Conclusion

In this thesis, we have approached the study of networks from many aspects.

In chapter 2 we have developed a method to generate networks from any given degree 
distribution using a thermodynamical approach which allowed a statistical treatment of 

the system. This method has then been successfully applied to the construction of net
works with various degree distributions.

In chapter 3 we have shown that information was contained in the non-randomness 
of the links between nodes and that, in a first approximation, the connections between 

nodes could be that of a random network.

In chapter 4, we have implemented a simple dynamics on networks so as to look at the 
effect of the architecture on the behaviour of the system. We have shown that our simple 
dynamics could yield networks of complex behaviour. We have found numerically that 

the distribution of periods of those networks is power-law regardless of their architecture. 
However, in the context of genetic regulation the architecture is important in determining 
the distribution of the level of expression of the nodes.

In chapter 5, we have compared the data obtained from our network model to mRNA 

data expression obtained from microarray experiments. We have shown that the dynam
ics implemented on the model was not sufficient to explain the time dependent complex
ity of the data. The mere alteration of the dynamics in the light of biological mechanisms 
has not been proven successful. We have shown, however, the existence of correlation 
between the out-degree of connectivity and the level of abundance in E. coli, which was 
then implemented in the model.
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Conclusion

Finally in chapter 6 , we have adapted the maximum entropy technique used to recon

struct imperfect images to the inference of networks. We have been able to reconstruct 
the degree distribution of model regulatory networks from data expression.
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Appendix A
Supplementary figures

We give here the supplementary figures related to chapter 5.
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give the standard deviation over the average.
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time points from t =  112 to t =  119min. The cell population was synchronised
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