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MODERN DIGITAL SIGNAL PROCESSING TECHNIQUES
APPLIED TO DOPPLER ULTRASOUND

by

Paul Ivan John Keeton

ABSTRAC T  —  Doppler ultrasound is used clinically to detect stenosis in the carotid 
artery. The presence of stenosis may be identified by disturbed flow patterns distal to 
the stenosis which cause spectral broadening in the spectrum of the Doppler signal 
around peak systole. This thesis investigates the ability of the short-time Fourier 
transform (STFT) and the autoregressive (AR) spectral estimators to perform time- 
frequency analysis of the non-stationary Doppler signal. Quantitative analysis of the 
degree of spectral broadening was measured using the spectral broadening index 
(SBI). A real-time system was developed using a modem DSP board combined with 
an IBM PC-compatible computer to analyse the Doppler signal in real-time using the 
STFT and AR algorithms.

The spectral estimators were compared using simulated Doppler spectra 
contaminated with noise over a range of signal-to-noise ratios (SNRs) and also real 
clinical Doppler signals recorded from both healthy subjects and patients with varying 
degrees of stenosis. The SBI was calculated using the mean and maximum frequency 
envelopes which were extracted from the STFT and AR sonograms using a threshold 
at -6 dB of the maximum magnitude component of each individual spectrum. The 
results of the analysis show a strong correlation between the indices calculated using 
the FFT and AR algorithms. A qualitative improvement in both the appearance of the 
AR sonograms and the shape of the individual AR spectra was noticeable, however, 
the estimation of SBI for short data frames is not significantly improved using AR.

The final section of this thesis describes the wavelet transform (WT) and 
illustrates its application to Doppler ultrasound with two examples. Firstly, it is shown 
how wavelets can be used as an alternative to the STFT for the extraction of the time- 
frequency distribution of Doppler ultrasound signals. Secondly, wavelet-based 
adaptive filtering is implemented for the extraction of maximum blood velocity 
envelopes in the post processing of Doppler signals.



Glossary

ACS Autocorrelation sequence IDTFT Inverse DTFT

ADC Analogue-to-digital converter ISR Interrupt service routine

AR Autoregressive JTFA Joint time-frequency analysis

ARMA Autoregressive moving-average LSB Lower sideband

CCA Common carotid artery LSI Loughborough Sound Images

CFT Continuous Fourier transform MA Moving-average

CVA Cerebral vascular accident MRA Multiresolution analysis

CW Continuous wave PC Personal computer

CWT Continuous wavelet transform PI Pulsatility index

DAT Digital audio tape PRF Pulse repetition frequency

DFT Discrete Fourier transform PSD Power spectral density

DTFT Discrete-time Fourier transform PW Pulsed wave

DSP Digital signal processing RAM Random access memory

DWT Discrete wavelet transform RBC Red blood cell

ECA External carotid artery RI Resistance index

ECG Electrocardiogram SBI Spectral broadening index

EEG Electroencephalogram SNR Signal-to-noise ratio

FFT Fast Fourier transform SPTA Spatial-peak. temporal average

FT Fourier transform STFT Short-time Fourier transform

GUI Graphical user interface TIA Transient ischaemic attack

Hm Hamming USB Upper sideband

ICA Internal carotid artery WFT Windowed Fourier transform

ICFT Inverse CFT WT Wavelet transform

IDFT Inverse DFT



1. Introduction

The aim of this study was to investigate the use of alternative signal 

processing tools for the analysis of Doppler ultrasound signals. This thesis is divided 

into 3 main sections: Firstly, the spectrum analysis of real-time Doppler ultrasound 

signals is introduced with a view to producing a real-time system; secondly, a 

comparison of spectrum analysis tools is made to establish whether modem spectrum 

analysis tools can improve upon the commercially accepted Fourier techniques; 

finally, the potential of using wavelets is discussed to assess their application to either 

the spectrum analysis of the Doppler signal or the post-processing of the joint time- 

frequency decomposition.

In this chapter a brief description of the physiology of the cardiovascular 

system is given and the background to Doppler ultrasound is outlined. The remainder 

of the chapter provides a summary of the limitations of Doppler ultrasound and safety 

considerations associated with the exposure of patients to ultrasound. Chapter 2 

outlines the fundamentals of joint time-frequency analysis (JTFA) with particular 

emphasis on two spectrum analysis techniques, namely, the Fourier transform (FT) 

and autoregressive (AR) modelling, which have been used to analyse Doppler signals. 

Examples of JTFA using test signals are detailed and the results obtained using 

Fourier and AR modelling techniques are compared and contrasted. One of the 

important technical considerations for commercial systems is the implementation of 

real-time algorithms. This topic is addressed in chapter 3 and a real-time system using 

a commercial DSP board is developed. In chapter 4 the detection and diagnosis of 

stenosis using Doppler ultrasound is introduced. The relationships between the time- 

frequency profile of the received Doppler signal and the diagnosis of stenosis using 

qualitative and quantitative methods are discussed. The implementation of an off-line 

system for the JTFA of the Doppler signal and post-processing of the time-frequency 

profile for the quantitative analysis of stenosis using the ideas developed in the 

previous chapter is outlined in chapter 5. Chapter 6 examines the robustness of the 

signal processing tools to noise and the effect that noise has on the quantitative
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analysis of simulated Doppler signals. In chapter 7 the signal processing and post

processing algorithms that have been developed in the previous chapters are used to 

analyse real clinical data for both healthy individuals and patients with carotid disease. 

Chapter 8 introduces a relatively new signal processing tool that is being increasingly 

used in the biomedical field, namely, wavelet analysis. The potential of applying 

wavelets to Doppler ultrasound is addressed. Chapter 9 brings this study to a close and 

summarises the key-points that this research project has achieved and future 

extensions to the work that could be pursued.

1.1 The cardiovascular system

The cardiovascular system is a complex network of vessels that act as a 

transportation system to maintain homeostasis within the body. The cardiovascular 

system deteriorates with age and cardiovascular disorders are particularly prevalent in 

older age groups (>50 years). In the United States approximately 98 % of the 100 000 

fatalities each year from cerebral vascular accident (CVA), otherwise known as stroke, 

are over the age of 50 (Carola et a l, 1992). The deterioration of the cardiovascular 

system can be accelerated due a poor diet, lifestyle and a lack of general fitness. 

Numerous disorders are associated with the atherosclerosis and the general 

deterioration of the cardiovascular system, these include: thrombosis, embolism, 

transient ischaemic attacks (TIAs), stroke, aneurysms and haemorrhage. Hence, it is 

very important to be able to observe the condition of vessels in vivo and to detect the 

onset of cardiovascular disease. The ability to do this non-invasively using techniques 

such as Doppler ultrasound, which is the subject of this thesis, has obvious advantages 

over invasive techniques such as angiography. Therefore, the advancement of 

quantitative methods for detecting cardiovascular diseases using diagnostic vascular 

ultrasound is essential.

1.1.1 Blood flow

Blood is not a homogeneous liquid and therefore cannot be treated as a 

Newtonian fluid. Instead blood is a colloidal solution which consists of approximately

1-2
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55 % plasma and 45 % formed elements by volume, which include: erythrocytes (red 

blood cells); leukocytes (white blood cells) and thrombocytes (platelets). Plasma is 

normally around 90 % water, the remaining 10 % is made up from proteins and other 

trace chemicals. The red blood cells (RBCs) have a diameter of approximately 7 pm 

and constitute the major proportion by volume of the different formed elements within 

blood. Due to the non-uniform density of the RBCs within blood the haematocrit level 

varies from 36 % to 54 % (Evans et al., 1989)1.

1.1.2 Anatomy of the carotid branch

The main focus of this research is based on recordings made from the carotid 

branch, therefore, the following section gives a more in depth description of the 

anatomy of the carotid arteries and details the geometry of the vessels and typical 

velocity patterns that are expected in normal patients.

The carotid arteries are located in the neck, the left and the right common 

carotid arteries (CCAs) originate from the ascending aorta. The CCA has an average 

diameter of 6.2 mmf. The CCA bifurcates into the internal carotid artery (ICA) and 

the external carotid artery (ECA) at the upper part of the larynx. There are two sets of 

ICAs and ECAs originating from the left and right CCAs respectively. Immediately 

distal to the carotid bifurcation in the ICA is the carotid bulb. The carotid bulb at the 

bifurcation has a diameter of 6.2 mm+ which tapers into the ICA with a diameter of 

5.4 mmf. The ECA serves as the main blood supply to the face. The ICA is one of the 

main blood supplies to the brain along with the vertebral arteries, the ICA terminates 

at the ‘circle of Willis’ where it divides into the anterior and middle cerebral arteries.

Typically the CCA exhibits fully developed laminar flow with a flattened, 

symmetrical velocity profile, the normal maximum velocity at peak systole is of the 

order 0.4-1.2 ms’1§. The ICA has disturbed flow in the carotid bulb exhibiting flow 

separation, the velocity profile in the ICA is initially predominately plug flow with

f Measurements taken from subjects between 20-29 yrs, figures obtained from Reneman e t al. (1992). 
s Figures obtained from Hedrick et al. (1995).
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1 speak velocities of 0.6-1.0 ms* . The ECA has typical velocities in the range of 0.6-1.2 

ms*1§. Reverse flow is not characteristic of the carotid arteries except in the carotid 

bulb. The presence of reverse flow is indicative of an abnormality provided the 

recordings are taken from a site at least 3 cm from the carotid bulb (Reneman et al., 

1992).

1.2 Diagnostic vascular ultrasound

In 1959 Satomura demonstrated that the velocities of the RBCs within blood 

could be tracked non-invasively by identifying the Doppler shifts from a backscattered 

ultrasound signal (Satomura, 1959). The non-invasive system used to generate the 

ultrasound beam and detect the backscattered echoes is called a Doppler velocimeter. 

The probe transmits and receives an ultrasound beam (figure 1.1) via piezoelectric 

transducers. The exact configuration of the velocimeter depends upon whether 

continuous-wave (CW) or pulsed-wave (PW) ultrasound is used. CW and PW 

ultrasound are discussed in more detail later in this chapter.

Ultrasound transmission gel

Transmitted 
ultrasound beam 

Doppler shift)

ultrasound beam 
(Second Doppler shift)

Moving 
Red Blood cell

Figure 1.1 Simplified diagram illustrating the principles of Doppler ultrasound.

As already mentioned above the velocities of the RBCs can be tracked by 

extracting the Doppler shifts from the backscattered ultrasound signal. The beam is 

reflected or scattered as a result of acoustic impedance mismatches at boundaries 

between different surfaces within the body. The moving RBCs within a blood vessel 

backscatter the ultrasound beam and shift the frequency of the signal, this
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phenomenon is known as the Doppler effect and is described below. The ultrasound 

beam has finite dimensions and therefore the backscattered signal contains echoes 

from a population of moving RBCs (as well as other echoes, for example, from tissue 

boundaries and the vessel walls). The received ultrasound signal therefore contains a 

multitude of Doppler shifts which ideally represent the histogram of velocities present 

in the vessel at a particular instant in time.

The ultrasound beam is focused at a specific depth in order to maximise the 

magnitude of echoes from the area of interest. Nowadays positioning of the sample 

volume is facilitated with Duplex scanning which gives the ultrasonographer 

simultaneous imaging of the examination area and tracking of the changing velocity 

profile as a function of time. Modem ‘colour Doppler’ systems superimpose the blood 

velocity components onto the grey-scale image to show the flow in the vessel.

1.2.1 Doppler effect

The Doppler effect is the perceived change in frequency of a signal that has 

been emitted by a moving point source as observed by a receiver positioned relative to 

the source. This phenomenon can be explained using a simple example: Two 

stationary receivers are positioned at A and B, with a point source between A and B 

emitting wavefronts at a constant frequency /  as illustrated in figure 1.2. When the 

source is stationary each receiver is struck by wavefronts at a constant frequency /  

equal to the frequency of the source. If the source is moving towards A with a 

constant velocity v, then the wavefronts that reach A are closer together. As a result A 

perceives an increase in frequency as can be seen in figure 1.2. If the source is moving 

towards A then it is moving away from B, hence, B perceives a decrease in frequency 

since the wavefronts that reach B are further apart.

1-5
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A B

Stationary Source

A B

Source

Figure 1.2 The Doppler effect: Stationary source => No change in frequency; Source 

moving towards (A) at a constant velocity => (A) sees a positive Doppler shift (B) 

sees a negative Doppler shift.

The apparent change in frequency is known as a Doppler shift 4/z> The 

Doppler shift can be either positive or negative depending upon the relative motion of 

the source towards or away from the receiver respectively. The Doppler shift can be 

expressed using the well known Doppler equation [1.1]:

The same phenomenon is perceived if the source is stationary and the receiver 

is moving: if the receiver is moving towards the source then the receiver observes an 

increase in frequency; on the other hand, if the receiver is moving away from the 

source then a reduction in frequency will be observed. Therefore, in Doppler 

ultrasound their are two Doppler shifts: the first is caused by the Doppler velocimeter

D  ~
C

[ 1.1 ]
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acting as the source and the red blood cells acting as the targets; secondly, the 

ultrasound is scattered by the red blood cells in which case the red blood cells are 

acting as the source and the receiver is the Doppler velocimeter, this is illustrated in 

figure 1.1. The equation for Doppler ultrasound is a modified version of the original 

Doppler equation with a factor of two to account for the double Doppler shift [1.2]:

. - 2v f  cos 9  r i ~
4/zw  =    [ 1 - 2 ]

C

where: AfDU = change in frequency between transmitted ultrasound beam and received 

echo.

1.2.2 Continuous-wave and Pulsed-wave ultrasound

CW and PW ultrasound are the two types of systems used in diagnostic 

ultrasound. As its name suggests a CW ultrasound instrument emits a continuous 

ultrasound beam which is normally focused at a specific depth. The CW probe uses 

two transducers: one for transmitting the ultrasound and a separate transducer to 

receive the backscattered ultrasound. The PW ultrasound probe uses a single 

transducer which doubles up as the transmitter and receiver: the transducer emits a 

short ultrasound pulse and then waits for a period of time to receive the backscattered 

echoes. Using PW ultrasound it is possible to calculate the depth (/) of the target that 

reflected the ultrasound since the duration (t) between the emission of the ultrasound 

pulse and the reception of the echo can be controlled and the velocity of ultrasound (c) 

in tissue is known. Equation [1.3] shows the relationship between the depth of the 

target and the time taken to receive the echo. It is therefore possible to range gate the 

returning echoes so that only echoes from a specific depth are received, this helps to 

remove low frequency high intensity echoes from tissue boundaries and low 

frequency wall motion.
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Depth measurement is not possible with CW ultrasound due to the continuous 

ultrasound beam. The main problem with PW ultrasound is that the maximum 

Doppler shift that can be measured using PW ultrasound is restricted to half the pulse 

repetition frequency (PRF). The PRF is dictated by the depth of the ultrasound scan, 

therefore, as the PRF is reduced the range of blood velocities that can be measured 

unambiguously is restricted. CW systems do not suffer from this problem.

1.2.3 Limitations of Doppler ultrasound

Ideally the backscattered signal from a blood vessel will contain a multitude of 

Doppler shifts whose frequencies are directly proportional to the velocities of the 

population of moving targets (mainly RBCs) within the vessel. The spectral 

broadening of the backscattered signal is therefore a measure of the spread of 

velocities within the vessel. Researchers have attempted to use spectral broadening as 

a diagnostic tool for characterising the type of flow within the vessel and to use it for 

the clinical assessment of arterial disease (Blackshear et a l , 1979). There are a 

number of considerations, however, that are implicit in practical Doppler ultrasound 

systems that affect this ideal relationship between spectral broadening and the spread 

of velocities. These factors distort the true frequency spectrum which reduces the 

sensitivity of spectral broadening parameters derived from the spread of Doppler 

shifts (Jones, 1993).

The Doppler ultrasound examination by its nature is non-invasive therefore it 

is only possible to make an estimate of the angle between the axis of the ultrasound 

beam and the velocity vector. The relationship between the magnitude of the Doppler 

shift and the velocity of the RBC can only be estimated. The Doppler angle is usually 

taken as the orientation of the vessel with respect to the ultrasound beam which can be 

deduced with the aid of Duplex scanning. This is an inaccurate assumption about the 

velocity vectors within the vessel, since, even in normal patients axial flow is 

generally not present, instead the flow is usually helical (Beach and Phillips, 1992). If 

the flow is turbulent then the velocity vectors within the vessel will be moving in

1-8
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random directions and therefore it is impossible to get an exact relationship between 

velocity and frequency.

The width of the transducer is finite, therefore, the estimation of the velocity of 

a single target moving at a constant velocity through the ultrasound beam is subject to 

intrinsic spectral broadening due to the range of angles that are received by the 

Doppler velocimeter.

The velocity of ultrasound (c) in blood lies in the range 1540 - 1600 ms*1 

(Evans et a l, 1989)1. The accuracy of the velocity estimated from the magnitude of 

the Doppler shift is therefore limited since the exact speed of ultrasound at the point of 

scattering by the RBC is not known exactly. This gives an error of approximately up 

to 4 % depending upon the choice of c.

The constitution of blood is made up of formed particles suspended in plasma. 

The motion of these particles is not independent of one another and therefore the 

direction of motion is constantly changing as they collide with one another. This also 

causes spectral broadening.

Doppler ultrasound examinations are carried out using a range of beam widths. 

The insonation of the vessel is dependent upon the beam width and the intensity of the 

ultrasound across the cross-section of the beam. If the beam is non-uniform then there 

will be a bias in the relationship between the magnitude of the Doppler shifts and the 

velocities of the RBCs. A narrow beam is usually focused on the centre of the vessel 

to identify the maximum velocity components. Using this type of beam the flow near 

the vessel walls will not be well represented, therefore, a narrow beam will have a 

frequency spectrum that is fairly narrow and biased towards the major velocity 

components which are typically found in midstream. A wide ultrasound beam will 

insonate the whole vessel more uniformly allowing for an unbiased representation of 

all velocities across the vessel lumen. The problem with a wide beam is that it picks 

up strong low frequency components as a result of wall motion, known as 'wall 

thump’. A wide beam is also more likely to overlap another vessel.

1-9
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The beam width is finite, therefore, the backscattered Doppler shifts are 

affected by the movement of the individual RBCs through the beam. If a RBC is 

accelerating then the frequency estimate will be smeared further.

The ultrasound beam is emitted from the Doppler velocimeter and is focused 

at a specific depth within the body. The frequency of the ultrasound beam that can be 

used in the examination is dependent upon the location of the vessel, since the 

attenuation of the ultrasound signal increases with frequency.

1.2.4 Safety considerations

Non-invasive diagnosis has obvious advantages over other diagnostic 

techniques, nevertheless, the use of ultrasound has received much attention with 

regards to the safety of prolonged exposure to ultrasound. The considered acceptable

intensity (Jspta) ° f  ultrasound beams during a normal examination is about 100 mW
2 1 cm' (Hussey, 1975; Evans, 1989 ). Despite these guidelines modem pulsed Doppler

systems often far exceed these recommended power levels. Effects of prolonged

ultrasound exposure include heating, streaming and cavitation (McDicken, 1991). In a

controlled environment the heating effect can be used to benefit patients for example

in physiotherapy. In the case of neonatal monitoring, however, these effects are

obviously cause for concern.

1.3 Time-frequency profile of blood flow

The ideal time-frequency profile of the received Doppler signal is therefore 

proportional to the velocity of the population of targets moving within the vessel. The 

characteristic type of flow and the velocity of blood within a vessel depends upon the 

geometry of the vessel, the distance of the vessel from the heart and the physiology of 

the vessel, for example, the presence of valves. In some cases bi-directional flow is 

present (Gosling and King, 1974).

1-10
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1.4 Summary

This chapter has outlined the principles of Doppler ultrasound and discussed 

some its limitations and safety aspects. In the next chapter the focus is directed 

towards analysis of the raw Doppler signal using JTFA.
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2. Joint Time-Frequency Analysis

2.1 Introduction

The following chapter is intended to outline the theory behind the signal 

processing tools that are going to be implemented in the following chapters.

This text is not intended to give an exhaustive description of Fourier and 

autoregressive (AR) modelling techniques which have now been documented in 

numerous books (Marple, 1987; Oppenheim and Schafer, 1989). Instead a brief 

review of the key-points are summarised here, with a view to joint time-frequency 

implementation of these algorithms. The first section of this chapter explains why 

frequency analysis of the Doppler signal can provide an estimate of the velocity 

components within the vessel. This will be followed by a discussion of stationary and 

non-stationary signals. The next section looks at how the classical Fourier transform 

(FT) can be adapted to analyse both stationary and non-stationary signals. The last 

section of this chapter will discuss alternative modem signal processing tools such as 

AR modelling that have been developed in an attempt to improve upon the spectral 

matching ability and the resolution offered by the FT.

2.2 Spectrum analysis

In the time domain it is often difficult to interpret the data that is being 

collected. Identification of the frequency content of a signal is only possible for 

relatively simple signals and becomes impossible when several frequency components 

are present. The problem is compounded when the signal is masked by noise. It is 

often more convenient to transform the signal into the frequency domain to visualise 

its spectral content. In the case of Doppler ultrasound it is convenient to transform the 

Doppler signal into the frequency domain, since the velocities of the red blood cells 

(RBCs) are proportional to the Doppler shift frequencies as indicated by [2.1]. The
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vs  A/° c
2 /  cos 9

v CC A /c [ 2.1 ]

frequency spectrum of the Doppler signal ideally represents the histogram of the 

number of RBCs moving with a particular velocity as illustrated in figure 2.1.

Magnitude
oc

Number o f  RBCs

Vm ax
Frequency

oc

Velocity

Figure 2.1 Relationship between velocity profile and frequency spectrum.

2.2.1 Stationary and non-stationary signals

Stochastic signals can be categorised into two groups: stationary or non- 

stationary. A wide-sense stationary stochastic signal is one whose first and second 

order statistical moments are time invariant (Marple, 1987). If the signal has time 

varying frequency characteristics then it is considered to be non-stationary.

The next section describes the classical Fourier transform and then explains 

why the conventional FT cannot be used for analysing non-stationary signals. A brief 

explanation of how the FT can be modified to analyse non-stationary signals is given 

and the limitations and trade-offs are examined.

2.2.2 The Fourier transform

The continuous Fourier transform (CFT) [2.2] evaluates the magnitudes of an 

infinite number of complex sinusoids which can be used to model a signal x(t).

2-2
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Sinusoids are optimally localised in frequency and therefore the magnitude of the 

coefficients X(fi represent the contribution of each frequency to the overall signal. The 

function X(f) is therefore the frequency domain representation of the time signal. The

original time domain signal can be constructed using the inverse continuous Fourier

transform (ICFT) [2.3].

oo

* ( / ) =  \x(t)ex$(-j27 ift)d t [2.2]
-co

oo

X(t)= \X ( f)e x p ( j2 n fi)d f  [2 .3]
—00

where: x(t) = continuous-time function, X(j) = continuous-frequency function.

If the time domain signal is discretised at intervals of T  (where: f samp = 1/T) 

then the discrete version of the CFT is:

X { f )  = ^ x ( n T )  exp(-j2zfhT )
CO

M IT

x (nT) = jX ( f)e x p {2 ^ h T )c lf
- M I T

where: x(nT) = discrete-time series, X(j) = continuous-frequency function. Equation 

[2.4] is known as the discrete-time Fourier transform (DTFT). The discretisation of 

the time series forces periodicity of (1/T) in the frequency domain. The discrete-time 

signal can be obtained from the function X(j) using the inverse discrete-time Fourier 

transform (IDTFT) [2.5] by integrating over the period 1/T.

The CFT and the DTFT assume that the time domain signal is defined from -co 

to +00. In reality signals are not infinite, they have a definite start and finish point. If 

the signal is discretised then there are only a finite number of samples N. The discrete 

Fourier transform (DFT) [2.6] is a finite approximation to the DTFT, where the 

frequency domain is discretised as a result of the truncation of the time domain signal.

[2.4]

[2.5]
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where: x(nT) = discrete-time series, X(k/NT) = discrete-frequency series. The notation 

for the discrete-time and discrete-frequency series is often simplified to just x(n) and 

X(k), this notation will be used from this point onwards. The DFT is computed for 

harmonic sinusoids of frequency k/NT. The discretisation of the frequency domain 

implicitly assumes that the time signal is periodic outside the known N  discrete points. 

Since the frequency domain is periodic only a finite number of discrete orthogonal 

harmonics exist that can be used to describe the time domain signal. As a result of this 

implicit periodicity in the time domain pseudo discontinuities will exist at the 

boundaries of the period if the signal contains frequency components which are not 

exact multiples of 1/NT. These discontinuities manifest themselves as spectral leakage 

in the spectral estimate. The inverse discrete Fourier transform (IDFT) [2.7] can be 

used to generate the time domain signal from the discrete frequency coefficients.

The analysis of stationary signals using the DFT is straightforward assuming 

the signal is adequately sampled according to the Nyquist criterion (Oppenheim and 

Schafer, 1975). If the signal is non-stationary, however, then it is futile to analyse the 

whole signal in one go since this will not provide any information about how the 

signal’s frequency characteristics are changing with respect to time.

2.3 Joint time-frequency analysis

In order to obtain all the information about a non-stationary signal it is 

necessary to obtain not only the frequency information about the signal but also how 

the frequency content of the signal changes with respect to time. This is known as 

joint time-frequency analysis (JTFA).
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2.3.1 Short-time Fourier transform

To observe what is happening in a non-stationary signal it is necessary to 

divide the signal up into shorter sections by multiplying it by a windowing function. If 

the signal is truncated into short enough sections then it can be considered to be 

stationary within the window. It is then possible to apply the DFT to extract the 

frequency spectrum of the windowed signal. This modified DFT is called the short- 

time Fourier transform (STFT) or windowed Fourier transform (WFT) [2.8] and is 

reasonably good at localising the spectral content in time.

X (k ,n t,) = Y^x(n)w (n -  n0) expf ■■
v N

where: w(n) = windowing function. By sliding the window over the signal it is 

possible to identify how the frequency characteristics of the signal are changing with 

respect to time, this is illustrated in figure 2.2.

Slide window

time

Figure 2.2 Illustration of the application of a sliding-window to a non-stationary 

signal in order to perform the STFT.

There are a number of limitations that are implicit in the definition of the 

STFT. The STFT suffers from the same problems as the DFT with respect to spectral 

leakage due to discontinuities at the boundaries of the windowing function. As for the 

DFT the resolution of the STFT in the frequency domain is limited to 1/NT. When 

analysing highly non-stationary signals the number of data points that can be used to 

compute the STFT (N) is often small therefore the resulting frequency resolution is 

extremely poor. If only a few data points are available for the extraction of the

[ 2 .8 ]

2-5



Chapter 2 -  Joint Time-Frequency Analysis

frequency spectrum then the variance of the spectral estimate compared to the true 

underlying spectrum is going to be high. In this situation several estimates of the 

frequency spectrum should be averaged together to improve the spectral stability of 

the estimate.

2.3.2 Fast Fourier transform

X(0)

X(l)

x (l)» X(2)

x(3)* X(3)

X(0) x(0)

X(l) x(2)

X(2) x(l)

X(3) x(3)

X(0)

X(1)

X(2)

X(3)

Figure 2.3 Comparison of the relative complexity of decimated-in-time DFT and the 

4-point DFT.

The DFT can be solved using the computationally efficient fast Fourier 

transform (FFT) algorithm. The fast Fourier transform involves decimating the N- 

point DFT into a number of smaller DFT. In the limit the DFT can be simplified using 

radix-2 DFTs. The decimated DFT requires only (N/2)log2N  operations (which 

includes: 6 additions and 4 multiplications) to solve the coefficients compared to the 

original DFT which requires N  operations (Oppenheim and Schafer, 1989). The 

comparison between the complexity of the N-point DFT and the efficient FFT routine 

is shown in figure 2.3. Hence the FFT has been widely used commercially in real-time 

systems.

2-6



Chapter 2 -  Joint Time-Frequency Analysis

2.4 Joint time-frequency analysis using the ‘siiding-FFT’

The following section gives a review of the techniques that are available and 

illustrates the trade-offs that are required when performing time-frequency analysis 

using the STFT.

2.4.1 Stationary example

The first example consists of 4 sinusoids of different frequencies at 89, 202, 

212 and 392 Hz respectively. The ideal spectrum of the signal is shown in figure 2.4. 

The signal is sampled at 1024 Hz. The following section illustrates the methods that 

can be used to estimate the frequency spectrum.

0 60 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 2.4 Ideal normalised frequency spectrum of example 1 comprised of 4 

sinusoids at frequencies of 89, 202, 212 and 392 Hz.

2.4.1.1 Data Frame length

The signal was analysed using a single FFT. The length of the FFT was varied 

to contrast the different resolutions inherent in the choice of data frame length. The 

signal was analysed using a 1024, 512, 256, 128 and 64-point FFT. The data frame 

was isolated from the rest of the signal by multiplying the signal by a rectangular 

(boxcar) window [2.9]. Figure 2.5 shows the frequency spectrum obtained using each 

FFT.

w(n) = i, =0. ^ 2. - 1, 
2 2 

0, otherwise.
[2.9]
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4500
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3500

3000

2500

1500

500

100 0 250 300 350
Frequency (Hz)

500 150 200 250 300 350
Frequency (Hz)

(a) 1024-point FFT (b) 512-point FFT

1500 400

350

1000

cQ»CB2
150

500

100 150 200 250 300 350 400 450 500
Frequency (Hz)

100 150 200 250 300 350 400
Frequency (Hz)

500

(c) 256-point FFT (d) 128-point FFT

S  30

D 250 300 350 400
Frequency (Hz)

(e) 64-point FFT

Figure 2.5 FFT of example 1 signal containing 4 sinusoidal components at frequencies 

of 89, 202, 212 and 392 Hz.
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It can be seen from figure 2.5 that for the 1024-point FFT all the sinusoidal 

components are resolved exactly since all the components of the signal are exact 

multiples of 1/NT. The sampling frequency was 1024 Hz, therefore, the 1024-point 

FFT has a resolution of 1 Hz. The 512-point FFT has a resolution of 2 Hz in this case, 

hence, the FFT is unable to resolve the first sinusoidal (89 Hz) component exactly 

since it falls between two frequency bins. The FFT spreads the energy contained by 

this component to the neighbouring frequency bins this is known as spectral leakage. 

The spreading of the energy due to the 89 Hz sinusoidal component by spectral 

leakage reduces the magnitude of the peak so that it is smaller but more spread out 

than the other components in the signal. This makes it difficult to compare the relative 

magnitudes of the sinusoids. The resolution is still sufficient to successfully resolve 

the other components. The 256, 128 and 64-point FFTs have resolutions of 4, 8 and 16 

Hz respectively. As the resolution deteriorates then the ability of the FFT to resolve 

the sinusoidal components is also reduced. In the case of the 64-point FFT it is not 

able to resolve any of the sinusoids exactly and the resolution is so poor that the two 

close sinusoids of 202 and 212 Hz can no longer be distinguished from one another. 

When the FFT is computed from a small data frame then the information obtained 

from the spectral estimate can be ambiguous particularly if the underlying spectrum is 

unknown. To interpret the frequency estimate accurately it is necessary to know what 

is happening between the frequency bins available, this can be achieved using zero 

padding.

2.4.1.2 Zero padding

The number of frequency bins in the frequency domain is limited by the 

number of data points used to compute the FFT. If a more complete spectrum is 

required then it is possible to zero pad the windowed signal by introducing zeros to 

the end of the data frame before applying the FFT. The effect of the zeros is to 

interpolate between the frequency bins that were obtained from the N  points giving a 

more detailed observation of the frequency response. This results in smoothed spectral 

estimates due to the sin(f)/f frequency domain interpolation implicitly performed with 

zero-padding. Zero padding does not improve the resolution of the FFT it just fills in
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100 150 200 250 300 350
Frequency (Hz)

100 150 200 250 300 350 400 450 500
Frequency (Hz)

(a) 1024 data points (b) 512 data points

1200 350

300

250
800

200

2  150

100

200

■M. l i .  1 L - .4  i t . . .  -I______i_
100 150 200 250 300 350 400 450 500

Frequency (Hz)
100 150 200 300 350 400 450 500

Frequency (Hz)

(c) 256 data points (d) 128 data points

100 200 250 300 350 400
Frequency (Hz)

500

(e) 64 data points

Figure 2.6 1024-point FFT of example 1 with zero padded data frames.
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the gaps to give a more complete picture of the frequency response. If the frequency 

resolution is not good enough then a longer window is required, however, the length 

of the window should not compromise the stationarity of the signal.

From the first example it can clearly be seen that there is a lack of spectral 

information available when the FFT is computed using a smaller data frame. This 

leads to ambiguity about the location of the spectral peaks in the frequency spectrum. 

Zero padding can be used to interpolate between the existing frequency bins and fill in 

the gaps. Each of the examples were zero padded up to 1024 points (with the 

exception of the data frame that already contained 1024 data points). The 1024-point 

FFT was then applied to the zero padded signals, the results are illustrated in figure 

2 .6 .

It can be seen from figure 2.6 that zero padding provides a clearer picture as to 

the spectral content of the signal. It can also be seen that zero padding has not 

improved the resolution for the 64 point data frame, the 202 and 212 Hz sinusoidal 

components that could not be resolved using the 64-point FFT can still not be 

distinguished.

2.4.1.3 Anti-leakage windows

The windowing of the signal in time using the STFT creates discontinuities at 

the edge of the data frame if the signal components within the window are not 

multiples of 1/NT. These discontinuities can be minimised by modifying the shape of 

the window (Harris, 1976). The simplest window is the rectangular window [2.9]. 

Alternative window types such as the Hamming or Hanning anti-leakage windows 

have tapered shapes to minimise edge effects. The window weights the components 

inside the data frame to reduce the discontinuities at the edge of the data frame this 

has the effect of reducing spectral leakage in the frequency domain. The suppression 

of side lobes is traded off against an increase in the width of the principal lobe which 

has the effect of reducing spectral resolution.
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0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

(a) 1024 data points

(c) 256 data points

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

(b) 512 data points

400 100

350

400100 200 250 300
Frequency (Hz)

500 100 0 250 300 350 400
Frequency (Hz)

500

(d) 128 data points

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

(e) 64 data points

Figure 2.7 1024-point FFT with a Hamming anti-leakage window and zero padding.
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A Hamming anti-leakage window was applied to the signal to reduce the 

effects of spectral leakage for the 512, 256, 128 and 64-point data frames. The results 

are shown in figure 2.7.

It can be seen from figure 2.7 that the spectral leakage observed in figure 2.6 is 

suppressed by the application of the Hamming anti-leakage window. Figure 2.7 also 

shows the effect of the anti-leakage window on the resolution of the frequency 

spectrum: the two close peaks (202 and 212 Hz) that were totally separated using the 

128-point FFT, figure 2.6(d), are now only partially resolved due to the application of 

the Hamming window, figure 2.7(d).

2.4.2 Spectral instability

The estimate of the frequency spectrum using the STFT produces statistically 

unstable results when the number of data points used to compute the FFT is small.

1.2

.0.8

0.6

0.4

0.2

0.3 0.7 0.8
Normalised frequency

Figure 2.8 Normalised frequency response of filter used to generate example 2.

To illustrate spectral instability a second example is considered: The data is 

derived from a wide-band signal which was generated from white noise and shaped 

using a symmetrical filter as illustrated in figure 2.8. The wide-band signal was 

analysed using 256 point data frames and a Hamming window with zero padding up 

to 1024 points. The zero padded data frames were then analysed using a 1024-point 

FFT. The spectral instability of the frequency estimates can be appreciated from figure
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2.9 in which several estimates are superimposed. It is interesting to join the discrete 

bins together to compare the shapes of the estimated frequency spectrum with the 

ideal filter response illustrated in figure 2.8.

500 r

450

400

350

»  300

250

200

150

100

100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 2.9 Spectral instability of the STFT: Analysis of example 2.

2,4.2.1 Overlapping the data frames

The whole signal contains 1024 data points and in this case it is known that the 

signal is stationary. When implementing the 512, 256, 128 and 64-point FFTs there 

are a number of positions that the data frame can be placed in to obtain the number of 

data points that are required for each FFT. There are two ways in which the data can 

be processed: non-overlapping and overlapping data frames. The temporal resolution 

is given by the length of the data frame, N. The number of independent frequency 

spectra that can be computed is equal to L/N, where L is the number of data points in 

the digitised signal. For a particular size of data frame analysing the whole signal 

using non-overlapping data frames is the quickest method of processing all the data. 

In real-time applications where the computational time to collect and process the data 

are critical considerations non-overlapping data frames are often the most viable 

solution. This topic will be discussed in more detail in the next chapter. By 

overlapping the data frames it is possible to increase the number of frames. The 

maximum number of frames is given by L-(N-1) where the window is shifted by 1 

sample each time. By overlapping the frames the same data is being used to generate 

successive frequency estimates, therefore the consecutive data frames are linearly
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dependent. Sliding the frame over the signal means that all the time domain samples 

get to contribute equally to the overall spectral estimate, since if non-overlapping data 

frames are used and the samples at the boundaries of the data frames are weighted 

using anti-leakage windows then the frequency estimate will be biased. This is 

compensated for by overlapping the data frames which smoothes out the effects of the 

window producing a moving-average spectral estimate. For a Hanning anti-leakage 

window an overlap of 50 % is sufficient to produce unbiased consecutive frequency 

estimates (Welch, 1967). The first and last N-l samples at the boundaries of the signal 

cannot be equally weighted to estimate the frequency spectrum unless assumptions are 

made beyond the boundaries of the signal. These are known as edge-effects.

2.4.2.2 Spectral averaging

In an attempt to improve the spectral stability of the frequency estimate it is 

necessary to average together a number of frequency estimates. In this example the 

signal is stationary therefore it is possible to average together as many data frames as 

desired.

200

180

160

140

120

I.100

100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 2.10 Averaged frequency estimate of example 2 (16 frames).

The results show a much closer correlation to the ideal filter response shown in 

figure 2.8.
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2.4.3 Non-stationary example

When analysing stationary signals there is a degree of flexibility in the way 

that the data can be analysed. It is possible to choose the frame length; the degree of 

zero padding; the type of anti-leakage window and the amount of spectral averaging. 

If the signal is non-stationary then the problem becomes more difficult since the 

signal now needs to be resolved in both time and frequency. The solution is often a 

compromise between the resolution in the time and frequency domains. The next 

section illustrates these trade-offs using an example.

512

400

ac 30°

2  200

100

0 256 512 700 768 1024
Samples

Figure 2.11 Ideal sonogram for example 3 containing 4 sinusoids with frequencies of 

100, 200, 300 and 400 Hz separated in time, a non-linear chirp and an impulse at the 

700th sample.

The third example is a non-stationary signal (1024 data points) that is 

comprised of a non-linear chirp (sin(27tjt\ 4 separate non-overlapping sinusoids of 

100, 200, 300 and 400 Hz and an instantaneous spike at the 700th sample as shown in 

figure 2.11. The signal was analysed using a 1024-point FFT (figure 2.12) and then 

using a sliding 256-point FFT with data frames of 256, 128, 64 and 32 points. The 

data frames were multiplied by a Hamming anti-leakage window and zero padded up 

to 256 points. The window was moved by 1 sample each time, the results are 

illustrated in figure 2.13. In figure 2.13 the consecutive frames have been plotted in 

the form of a sonogram: horizontal axis is time; vertical axis is frequency; magnitude 

is plotted using an inverted grey-scale.
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Figure 2.12 1024-point FFT of example 3.

It is now apparent from figure 2.12 that the 1024-point FFT is no longer the 

best means of analysing the signal. The frequency spectrum produces an overall 

estimate of the frequency content of the signal but provides no information as to 

which frequency components were present at a particular instant in time. It is possible 

to identify the four sinusoidal components, however, the chirp and the instantaneous 

spike cannot be clearly identified.

The sliding 256-point FFT in figure 2.13 reveals the non-stationarity of the 

signal: the four sinusoids are well resolved in frequency, however, their temporal 

resolution is extremely poor. The STFT is unable to localise the start and finish of the 

sinusoidal components and consequently there is a large overlap between the finish of 

one sinusoid and the start of the next when it can be seen quite clearly from the ideal 

sonogram in figure 2.11 that the sinusoidal components are separated in time. In 

addition the resolution of the chirp is poor and the instantaneous spike is not well 

localised in time. The sliding 128 and 64-point FFTs improve the time-frequency 

profile of the chirp and the localisation of the spike in time, however, the resolution in 

the frequency domain has deteriorated and hence the sharp resolution of the four 

sinusoids is compromised as a result of the improvement in temporal resolution. The 

results obtained using the 32-point data frame typify the limited frequency resolution 

of the FFT when the data frame contains only a few data points. The sinusoidal
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components although practically separated in time are no longer concentrated in 

frequency along with the chirp. The benefits of a short data frame can be observed 

from the localisation of the instantaneous spike. This exemplifies the need for a trade

off in time and frequency resolution when using Fourier techniques.

1201 20

100100

a
£
I
i'

100 200 300 400 
Data frames

500 600 700 100 200 300 400 
Data frames

500
frames

600 700 800

(a) 256 data points (b) 128 data points

Date frames Data frames

(c) 64 data points (d) 32 data points

Figure 2.13 Sliding 256-FFT with zero padding. Window moved by 1 sample each 

time.

2.4.3.1 Spectral averaging o f non-stationary signals

In the case of the stationary example it was possible to average together a large 

number of spectra to improve the stability of the frequency estimate. In the case of 

non-stationary signals care must be taken when averaging spectra, since, if too many 

spectra are used then the total duration of the frames used to compute the averaged
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spectra may compromise the stationarity of the signal. In addition, averaging together 

several data frames helps improve the spectral stability of the underlying trends in the 

signal but transient events such as instantaneous spikes are flattened by the process of 

averaging.

120 120

100 1 00

£■
a.

200 400 500
Data frames

100 300 700 800
Data frames

(a) No averaging (b) Average 8 frames

(c) Average 32 frames 

Figure 2.14 Effects of spectral averaging on a non-stationary signal.

In figure 2.14 it can be seen that the effect of the averaging process reduces the 

magnitude of the frequency components which represent the instantaneous spike. Too 

much averaging leads to a reduction in the frame resolution and hence the smooth 

transition of the chirp as a function of time is lost. When 32 frames are averaged 

together the spike is hardly visible.
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2.4.4 Summary of Fourier techniques

This section has given a brief description of the continuous and discrete 

Fourier transform and outlined how the DFT could be modified to perform time- 

frequency analysis of non-stationary signals using the STFT. The next section looks at 

alternative spectrum analysis tools that have been developed and looks at the potential 

advantages of using these techniques over the commercially accepted STFT.

2.5 Modem spectrum analysis

In the second half of this chapter the emphasis is directed towards alternative 

spectral estimators to the conventional Fourier transform which have evolved during 

the last century. The main focus of this research is based on AR spectrum analysis, 

however, alternative JTFA algorithms are listed here for completeness. These include 

the Wigner-Ville distribution introduced in 1948 which exhibits excellent joint time- 

frequency characteristics since it is not restricted to a fixed window like the STFT. 

The main drawback of the Wigner-Ville distribution is the cross-term interference 

which manifests itself in the power spectrum. The reduction of cross-term interference 

has been the focus of much research since this time and adapted algorithms such as 

the Choi-Williams distribution, cone-shape distribution and signal-dependent time- 

frequency distribution have been developed to try and enhance the power spectrum. 

These JTFA algorithms fall into the general category of Cohen's class or bilinear joint 

time-frequency representations (Qian and Chen, 1996). These time-frequency 

distributions have been applied to Doppler ultrasound and compared with the 

performance of the STFT by Fan (1994)12, Smith et al. (1994), Guo et a l,  (1994) and 

Cardoso et al., (1996). Guo et al., (1994) concluded that both the Choi-Williams 

distribution and AR modelling can generate good time-frequency distributions of 

Doppler signals. In the next section the AR process is studied in more detail.

2.5.1 Autoregressive spectral analysis

Fourier techniques assume that the signal is periodic outside the data frame 

which is a fairly large assumption and in the case of most practical signals is
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unrealistic. AR spectral estimators are not so restrictive about the signal beyond the 

data frame. The only assumption is that the first and second order statistical properties 

of the signal remain constant outside the data frame (Marple, 1987). The AR system 

takes a generalised signal at the input u(n) and models the signal at the output x(n) as 

illustrated in figure 2.15.

u(n)

Figure 2.15 Model of the AR system.

The autoregressive model is a specific case of the more general autoregressive 

moving average model (ARMA). The general equation for ARMA models [2.10] is 

based on a causal digital filter that attempts to model a time sequence x(n) from a 

white noise input u(n), using a unique finite series of filter coefficients ak and bk. The 

number of coefficients used in the filter is denoted by q and p  for the non-recursive 

and recursive parts respectively.

q p
*[«] = k ] - ^ a kx[n-  k\ [ 2.10]

k=0 k=1

The system can be simplified in two ways, either an ‘all zero’ model is 

assumed leading to a moving average (MA) model or the ‘a //pole’ model is assumed 

which is called the AR model. The latter is of more interest to signal analysts since the 

solution of the AR coefficients can be found using a set of linear equations which are 

computationally easy to solve, whereas the MA and ARMA solutions are non-linear. 

This has led to much work in the field of AR modelling.

AR system
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The transfer function H(z) for an AR process is obtained by assuming an ‘all 

pole’ model, i.e. making all bk=0 except for b0= 1. The AR equation can then be 

simplified, rearranged and z-transformed to produce H(z) for the AR filter [2.11].

variance of the driving white noise input to the filter and T is the sampling period.

Two methods for the solution of the filter coefficients are examined: The first is based 

on the Yule-Walker equations which uses a biased estimate of the autocorrelation 

sequence (ACS) to find a solution; The second method is Burg’s algorithm (Kay and 

Marple, 1981) which calculates the coefficients directly from the data samples without 

estimating the ACS.

2.5.1.1 Yule- Walker AR coefficients

The autoregressive coefficients can be calculated using the Levinson-Durbin 

recursive algorithm [2.13 - 2.18] which provides an efficient solution to the Yule- 

Walker equations (Kay and Marple, 1981).

1 k = 0
where : bk =

0 0 < k < q
[ 2.11]

The AR power spectral density (PSD) is given by [2.12], where cr is the

2 [ 2.12]

1 + Yjak exp(-;2^r)

The PSD can therefore be estimated if a  and the coefficients ak are known.

[2 .13]

[2 .14]

where:

•/v ti—0
[ 2 . 15 ]
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Recurse up to the desired model order,/?:

au = -  * „ (* ) + A7*-!
k- 1

/■ [2 .16]

[2 .17]

<J [2 .18]

2.5.1.2 Burg’s AR coefficients

To compare the results obtained using the Yule-Walker coefficients it was 

decided to calculate Burg’s coefficients as well. The determination of Burg’s 

coefficients is evolved directly from the data frame and does not involve estimating 

the ACS (Kay and Marple, 1981). This provides an interesting comparison with the 

results obtained using the Yule-Walker algorithm and it is a good error checking 

method to make sure that both algorithms are working correctly.

2.5.1.3 Model order

There is an element of choice when implementing the AR algorithms since the 

choice of model order (p) is not fixed. The selection of model order is important and 

determines how accurately the system can model the output sequence x(n) (Akaike, 

1974). If the choice of p  is too low, then the system will not have enough poles to 

adequately model the signal. If the model order is too high then the system will be too 

biased towards the particular realisation of the process that it is modelling.

2.5.1.4 Estimating the power spectral density function

The coefficients can be used in two ways to extract the PSD of the signal: 

either the PSD can be calculated directly from the transfer function [2.12] or 

alternatively the PSD can be determined from the ACS [2.19]. It can be shown
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(Marple, 1987) that in the limit the PSD of the ACS is exactly equal to the PSD 

determined from the transfer function of the AR system.

00
PSDar( / )  = R x x ( n ) e x p ( - j 2 m k T ) [ 2.19 ]

W = -oo

The problem of limited resolution as encountered with the FFT can be 

overcome by using the AR PSD [2.12] or [2.19]. In order to compute the AR PSD 

using [2.19] it is necessary to extrapolate the ACS beyond the p  values obtained using 

the data sequence. This can be achieved using the principle of linear prediction [2.20]. 

It is not necessary to extrapolate the ACS to infinity since the ACS tends to zero and 

therefore the AR PSD can be approximated using a finite number of lags [2.21]. The 

approximated AR PSD [2.21] can be found by performing a fast Fourier transform on 

the extrapolated ACS which is computationally faster than evaluating [2.12].

A  P
Rxx (n) = - 2 ,  ak Rxx (n -  k ) for: \ri\ > p

k=1

A  M - l  a

PSD.ar ( f )  = T  £  R x x W e x p i - j l m k T )
n = -  M

2.5.2 Autoregressive modelling of a non-stationary signal

The non-stationary signal analysed using the STFT is analysed again here and 

the results are compared with those obtained using the STFT. The signal was analysed 

using data frames comprising 256, 128, 64 and 32 data-points. The data frames were 

processed using the Yule-Walker AR algorithm: The recursive Levinson-Durbin 

equations (p = 20) were used to calculate the AR coefficients based on a biased 

estimate of the ACS. The AR coefficients were used to extrapolate the ACS to 128 

points and the frequency spectrum was estimated using the FFT of the mirrored ACS. 

As for the STFT the signal was analysed by sliding the window over the signal by one 

sample each time, the results are illustrated in figure 2.16.

[ 2.20 ] 

[ 2 .2 1 ]
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Figure 2.16 AR model order 20, PSD obtained using [2.21] with M =  128. Window 

moved by 1 sample each time.

In figure 2.16 it can be seen that in all cases the frequency resolution is better 

than the resolution provided by the STFT. The temporal resolution of the AR is not 

significantly better than the STFT, but it is clear that the AR algorithm is able to 

produce better results for the short data frame.

2.6 Comparison of FFT and AR properties

It has been suggested that in some situations a parametric approach such as 

autoregressive modelling (AR) may be better than the FFT approach for analysing 

Doppler signals. Marple (1977) demonstrated the better spectral resolution of 

autoregressive (AR) and autoregressive moving average (ARMA) models compared 

to FFT by separating two sinusoids of similar frequency. Kitney and Giddens (1986) 

stressed the better performance on spectral tracking and spectral resolution of
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autoregressive (AR) spectral estimation when short frames are used. Kaluzynski

(1987) reported the advantages of using AR modelling for the analysis of pulsed 

Doppler signals especially for short data lengths. Vaitkus, Gobbold and Johnston

(1988) addressed the good spectral matching ability of the AR modelling approach 

compared to the FFT. They demonstrated that the FFT approach has the largest 

variance for all frequency values when compared to five other spectral estimation 

techniques at a signal-to-noise ratio of 20 dB with 20 realisations of 256 samples 

using a simulated stochastic stationary Doppler signal with a known theoretical 

spectrum as a reference test sequence. Autoregressive spectral estimation produces 

more stable spectra from short segments of data and also produces spectra that have 

good spectral matching ability, “closely approximating the theoretical spectrum with 

good statistical consistency” (Vaitkus, Cobbold and Johnston, 1988). David et al. 

(1991) tested three modem spectral estimation techniques, including AR, with the 

STFT approach and concluded that, provided that the model order is chosen 

appropriately, the modem techniques are superior to the traditional FFT-based 

approach.

The algorithms for performing AR are computationally more demanding than 

the FFT and real-time systems demand more computational power than that of a 

standard personal computer. Modem DSP boards combined with standard 

microcomputers allow a flexible software orientated approach to the implementation 

of real-time algorithms for analysing a wide range of signals. It has therefore been 

possible to implement more sophisticated ‘modem’ spectrum analysis tools over 

recent years for real-time applications such as Doppler ultrasound. In 1989 a real-time 

system based on AR for analysing Doppler ultrasound signals was described 

(Schlindwein and Evans, 1989).

2.7 Joint time-frequency analysis of the Doppler ultrasound signal

The techniques used so far have been applied to signals with known theoretical 

spectra. The conclusion of this chapter compares Fourier and autoregressive time- 

frequency analysis of the Doppler signal for a normal femoral artery.
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A single heartbeat was analysed to illustrate the trade-off between time and 

frequency resolution. The sampling frequency of the signal is 10.24 kHz. The signal 

was analysed using a data frame containing 256, 128, 64 and 32 data samples. The 

signal was analysed using: a 256-point FFT with appropriate zero padding and a 

Hamming window; the AR process was implemented using the Levinson-Durbin 

equations with p  = 12. The frequency spectrum was determined from the extrapolated 

(128-point) and mirrored ACS. The signal was analysed using a sliding-window with 

overlapping data frames. The window was moved along by 32 samples and then 

reapplied. The results are illustrated in figures 2.17 and 2.18 for the FFT and AR 

spectral estimators respectively.

120 5 20

100 100

5  60

100 150 200 
Data frames

250 300 350 100 150 200  
Data frames

250 300 350

(a) 256 data points (b) 128 data points

Data frames Data frames

(c) 64 data points (d) 32 data points

Figure 2.17 JTFA of a heartbeat recorded from the femoral artery; sliding 256-point 

FFT with Hamming window and zero padding. Window moved by 32 samples each 

time.
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Figure 2.18 JTFA of a single heartbeat recorded from the right femoral artery; AR 

model order 12, PSD obtained using [2.21] with M  = 128. Window moved by 32 

samples each time.

Figure 2.17 shows the time-frequency profile of the extracted Doppler shifts 

for the femoral artery using the straightforward FFT. It can be seen that the time 

resolution of the sonogram using the 256-point FFT, in this example, is sufficient to 

follow the changing trends in the Doppler shifts. Decreasing the size of the data frame 

further improves the time resolution but the frequency resolution deteriorates. In the 

case of the 32-point FFT the reduction in frequency resolution almost causes the 

Doppler shifts to spread over the entire frequency spectrum. The spectra obtained 

using the AR algorithms, illustrated in figure 2.18, are similar to those obtained using
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the STFT, with the exception that the frequency resolution of the AR spectra is visibly 

better than the equivalent STFT spectra. This is particularly apparent for the short data 

frames which will prove useful when analysing patients with diseased arteries where 

the flow becomes turbulent and the stationarity of the Doppler signal is reduced.

2.8 Summary

In this chapter the concept of joint time-frequency analysis has been introduced and 

different algorithms have been described that can be used to identify the varying 

frequency characteristics of the signal. The next chapter will look at the considerations 

for real-time implementation of some of these techniques and then go on to develop a 

real-time system.
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3. Real-time Analysis

3.1 Introduction

In this chapter the merits of real-time processing are introduced. This is 

followed by a discussion about the requirements of a real-time Doppler ultrasound 

system. The remainder of the chapter details the real-time system that has been 

implemented in this research.

3.2 Real-time processing

Real-time systems provide a convenient cost-effective tool for performing 

clinical examinations. Off-line processing creates economical and logistical problems: 

Additional man-hours are required to collect the data and then process the information 

following the examination. Storage of raw data introduces excessive disk space 

requirements which are expensive. Processed data normally requires much less 

storage space than the original signal. In addition, if a problem occurred during the 

examination that was not detected whilst recording and was only apparent during the 

post-processing of the data it would be necessary to repeat the examination. It is 

important that the ultrasonographer is able to confidently perform the examination to 

minimise costs and to avoid unnecessary inconvenience and stress to the patient. The 

recordings can be affected by the patients movements or breathing. Depending upon 

the insonation o f the vessel the recording may detect signals from neighbouring 

vessels. Examinations are facilitated nowadays by Duplex scanning which 

incorporates both a real-time B-mode imaging system and Doppler ultrasound system.

3.3 Real-time Doppler ultrasound using DSP32C

The initial part of the research was to set-up a system for real-time processing 

of Doppler ultrasound signals. The system was designed to compare the performance 

of modem signal processing techniques with the conventionally used fast Fourier 

transform (FFT). The limitations of the FFT have been underlined in the previous 

chapter and there is therefore a case for implementing alternative signal processing
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tools which are computationally more demanding but may offer improved resolution 

and spectral matching capabilities. With advances in DSP technology it is now 

feasible to implement these algorithms in real-time relatively cheaply. The system was 

designed using a PC-486 DX2 66 MHz combined with an AT&T DSP32C digital 

signal processing chip mounted on a Loughborough Sound Images (LSI) board (LSI, 

1991).

3.4 Requirements for a real-time Doppler ultrasound system

When designing a real-time system, the constraints that are put upon it are 

created by the physiological and practical conditions that the system will have to cope 

with and the output that is expected by the user.

3.4.1 Physiological conditions

The system should be able to track the velocities of the population of targets 

within the vessel as a function of time. Accurate extraction of Doppler shifts using 

current signal processing algorithms is extremely difficult since Doppler ultrasound 

signals are non-stationary, this is due to the pulsatile flow through the vessel. As was 

discussed in the previous chapter, to fully describe a non-stationary process it is 

necessary to analyse time frames that are shorter than the length of time over which 

the signal can be considered stationary. Typically blood flow can be considered 

stationary for short periods of time up to approximately 20 ms (Evans et al., 19891; 

Nichols and O’Rourke, 1990). The actual period of time depends upon the type of 

flow present in the vessel and may well be shorter than this if the flow is disturbed as 

a result of a stenosed vessel. If longer time frames are used then the sonogram will be 

smeared and the consecutive frames will not provide a detailed indication of how the 

velocities within the vessel are changing with respect to time. The minimum frame 

rate therefore needs to be 50 frames per second (fps). The restriction on the length of 

the data frame imposes a limit on the number of data points that can be used to 

estimate the frequency spectrum. Due to the statistical instability of the spectral 

estimator when analysing short data frames it is advised that several spectra should be
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averaged together (Welch, 1967). The overall length of time used to produce an 

average spectrum should comply with the stationarity of the signal. Averaging data 

frames is dependent upon the processing power of the signal processor.

The conditions under which a Doppler ultrasound scan is performed dictate the 

maximum likely Doppler shift frequencies that are going to be present in the 

spectrum, this is governed by the Doppler equation. By substituting maximum 

expected values into this equation and taking the maximum cosine of the angle to be 1 

(not possible in practice) the maximum Doppler shift is given by:

4/om.x * 2 ' V"1" 1 ~ 21 kHz [3.11
1580

where: = 2 m s'1 (blood velocity), = 8 MHz (ultrasound beam frequency). The

value calculated in [3.1] varies dramatically depending on the conditions under which 

the scan is performed, the vessel being studied and the degree of stenosis. 21 kHz is 

seen to be an extreme case and the maximum Doppler frequency may well be 

substantially smaller than this value. The frequencies of the demodulated Doppler 

shifts typically lie within the audio range < 20 kHz and can be listened to using 

headphones. As a result of this broad frequency range a clinical system should 

incorporate a variable sampling frequency (fsamp). For frequencies up to 21 kHz the 

sampling rate should be at least 42 kHz (i.e. twice the maximum Doppler frequency) 

to avoid aliasing. In order to facilitate interpretation of the sonogram it is convenient 

for the sonogram to be displayed with a fixed frame rate regardless off samp.

3.4.2 Practical constraints

In order to produce a useful real-time system it is necessary to analyse all the 

data that is passed to the DSP board. If the physiological requirements cannot be met 

with the current technology then the system is not going to yield satisfactory results.
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For real-time operation the most important criterion is that the system is able 

to process the data and display the results at the same rate as the data is being 

collected.

Based on the conditions laid out above, the next section describes the 

implementation of each stage of the real-time system. The system is divided into three 

sections pre-processing, processing and display.

3.4.3 Data

The data was stored on digital audio tapes (DAT) tapes with the forward and 

reverse signals on the left and right channels respectively.

3.5 Pre-processing - Heterodyne mixer

The heterodyne unit modulates the forward signal component, f(t), and the 

reverse signal component, r(t), onto a central adjustable heterodyne carrier frequency 

(/c). The options for the heterodyne frequency are 500 Hz and 1, 2, 4 and 8 kHz which 

can be selected using a switch on the unit. There is also the facility to adjust the gain 

to optimise the dynamic range of the output. The following section gives a graphical 

representation of the combination of the separate forward and reverse flow 

components into a single signal S(t). Figure 3.1 shows the frequency spectrum of the 

forward and reverse signals.
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Figure 3.1 Representative frequency spectra of the forward and reverse signals.

The forward and reverse signals are modulated by coc = ( 2 ^  as shown in 

figure 3.2. This generates signals with the forward and reverse flow modulated into 

the upper sideband (USB) and lower sideband (LSB) of each signal.

|f (co) |

-©I Frequency

>

>

> <

-® c  0 ©c r

Figure 3.2 Forward and reverse components modulated by the carrier frequency coc

The next stage is to remove the LSB of the forward signal and the USB of the 

reverse signal by high pass and low pass filtering respectively. The central carrier
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frequency is suppressed by means of careful selection of the cut-off point of the filters 

during filtering. The filtered signals are shown in figure 3.3.

—<0 ,
Frequency

Frequency

Figure 3.3 Filtered forward and reverse components with carrier frequency 

suppressed.

Following the filtering of the signals the two signals can be added together to 

generate a single signal as shown in figure 3.4. The signal S(t) contains the forward 

wave (coj) in the USB of the carrier frequency and the reverse wave (cor) in the LSB of 

the carrier frequency [ 3.2 ].

|s(g>) |

Frequency

Figure 3.4 Graphical combination of the forward and reverse flow components about a 

central heterodyne carrier frequency.

S(t) = Af cos(coct + coft + <j>f ) + Arcos(coct + a>Tt + <pr) [3.2]
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The value of the heterodyne frequency is passed directly to the parallel printer 

port of the computer by means of a 3-bit code. The details of this heterodyne unit are 

further discussed in a separate technical note (Schlindwein et a l , 1996).

3.6 Processing - Data acquisition & signal processing using the 

DSP32C

3.6.1 Variable sampling frequency

The combined analogue signal is digitised and processed using the DSP board. 

The signal is sampled using a 16-bit analogue-to-digital converter (ADC) with a 

programmable sampling frequency defined by the user. This enables the operator to 

optimise the range of the spectrum analyser to be adequate to display the maximum 

Doppler shifts in the signal. The sampling frequency of the ADC can be altered for 

5.12,10.24,20.48 or 40.96 kHz operation.

Since there is a variable sample rate then the data frame rate is going to vary 

also. One of the interesting qualities for the real-time system is to have a standardised 

output with respect to time. A frame rate of 80 fps was chosen which corresponds to a 

data frame length of 12.5 ms. There are two approaches for producing a standardised 

output with respect to time that is independent of sampling frequency and displays 

Doppler spectra at fixed time intervals: The first is the ‘sliding’ FFT, which uses the 

latest N samples, but updates the frames at every M (M<N) samples, while discarding 

the M oldest samples and including the newest M samples to the current frame, 

producing a sort of ‘moving-average’ of the spectra. The alternative is to have no 

overlap between data frames and to zero pad the short frames up to a standard size 

when a low sampling frequency is used. The latter approach has been used here 

because it produces spectra which use not more than 12.5 ms of data and because 

stationarity was a major concern.
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Spectra calculated by DSP (every 12.5ms)

10.24 kHz

20.48 kHz

40.96 kHz

Collection time of 256 samples

(a)
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*
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Figure 3.5 Comparison of the two approaches used to produce a standard frame rate at 

different sampling frequencies (a) Overlapping frames => number of samples = 256

(b) Non-overlapping frames => variable number of data samples.

Figure 3.5 shows the comparison between the two methods, the first method 

has the advantage that the spectral estimate is based on a reasonable size data frame 

for all sampling frequencies. In the case of the second method at low sampling
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frequencies the number of data points used to estimate the frequency spectrum 

becomes small and spectral instability is accentuated, but since the length of the data 

frame is shorter it has better temporal resolution.

3.6.2 Real-time data collection and processing

The data acquisition, processing and displaying of the results of a particular 

data frame takes place over the course of three data time frames. As the data is 

collected it is stored in an array. When the array is full a flag is set which indicates 

that the next set of data is ready to be processed. The flag is used as the timing 

mechanism for the whole system since when the array is full 12.5 ms have elapsed. 

The ADC begins filling a second array while the first set of data is being processed 

(figure 3.6). By the time that the second array is full the DSP board should have 

finished processing the first data frame and have put the results in a separate array 

which can be accessed by the computer for display. When the second array is full the 

ADC starts filling up the first array again, overwriting the original data, the DSP 

board then processes the new data and the computer reads the results of the analysis of 

the first set of data from the output array and displays the results on the screen. The 

output to the computer is controlled via a flag which is toggled in order to keep the 

plotting function in synchronisation with the DSP board. The flow chart for the real

time system is illustrated in figure 3.7 which shows the staggered processing of the 

data.

Array 1
ADC

Output

Array 2

Figure 3.6 Simultaneous data acquisition and processing.
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Sample

Process

Display

Figure 3.7 Flow chart

3.6.2.1 Simultaneous data acquisition and processing

As was mentioned in the previous section the DSP board must have finished 

processing a data frame before the next data frame becomes available otherwise data 

will be overwritten and the results will be corrupted. Since there is only one processor 

the processing of the data and the acquisition of the next data frame must share the 

processor time. The total time for collecting the new data and processing of the 

current data frame should be less than time taken to collect a single data frame (12.5 

ms). The data is collected via an interrupt service routine (ISR) which stores new 

samples in a buffer. The ISR interrupts the processing of the current data frame every 

T = l/fsamp seconds (see figure 3.8) and jumps to a subroutine which reads the next 

sample in from the ADC and stores it in the input array. The total processing time 

t̂otal is given by:

T,„tai = Tpnx + AT„r [ 3.3 ]

where: Tproc = processing time for frequency analysis of a data frame, N  = f samplframe’ 

Tisr = acquisition time of one sample. Therefore the total time available for processing 

is when Ttotal= Tframe = 12.5 ms.

T im e  >

Frame(n) (n+1) (n+2) (n+3)

(n-l) Frarae(n)
MililMlliiBlli

(n+1) (n+2)

(n-2) (n-l) Frame(n) (n+1)

of real-time system.
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TV™ = 12.5 ms

T « ►1 ....zn 1
Figure 3.8 Demonstrates the time taken to collect data samples at intervals of l/fsamp.

3.6.2.2 Data processing

The system was designed with the choice of two signal processing algorithms, 

the first was the FFT which used zero padding to produce a data frame of 256 samples 

(see Table 3.1) and a Hanning window to reduce spectral leakage. The autoregressive 

modelling algorithm used the efficient Levinson-Durbin equations to evaluate the 

autoregressive coefficients. The autoregressive coefficients were used to extrapolate 

the autocorrelation series (ACS) to 128 points and then the function was mirrored 

around zero to produce an even sequence of 256 lags. An FFT was then used to 

estimate the frequency spectrum from the extrapolated ACS. Therefore, both 

algorithms have the same resolution for a particular sampling frequency.

Table 3.1 - Number of samples collected within a 12.5 ms data frame. Degree of zero 

padding required to obtain frames of 256 data points and produce spectra with 128 

frequency bins.

Sampling f re q u e n c y /^  (Hz) Number of data points Zero padding
40960 512 -
20480 256 0
10240 128 128
5120 64 192

For the FFT algorithm when f samp is 5.12, 10.24 or 20.48 kHz all the data is 

used to estimate the frequency spectrum. When f samp is 40.96 kHz, it is possible to 

collect 512 new data samples within 12.5 ms. For the FFT algorithm a 256-point FFT 

is used to estimate the frequency spectra and therefore only the first half of the data 

frame is used, the remaining samples are discarded. In the case of the autoregressive
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algorithm all the data at all sampling frequencies is used to estimate the biased 

estimate of the ACS.

3.6.3 Development of the DSP32C real-time system

The LSI software package includes a ‘C’ compiler for development of 

programs in a high-level language. The compiler can be used to generate executable 

programs that can be downloaded and run on the DSP board. This has the advantage 

of reduced development time. The alternative is to implement the algorithms directly 

in DSP32C assembly language which is more complex. The assembly language 

routines have the advantage of speed and efficiency over the ‘C* compiler, which is an 

obvious advantage when considering real-time operation. The ‘C* compiler has the 

advantage of being a high-level language and therefore it is easier to write and adapt 

routines without too much effort. The next section looks at the relative efficiency of 

the two software development techniques and compares the sacrifice paid for in code 

efficiency for improved speed in the development phase.

3.6.3.1 ‘DSP32C assembly’ real-time FFT system vs. (C’ real-time FFT system

The performance of the program developed in ‘C’ was compared with a 

modified version of a spectrum analyser program written in DSP32C assembly 

language that was supplied with the DSP board by LSI. The program was modified to 

perform joint time-frequency analysis (JTFA) with the same time-frequency operation 

as the real-time system being developed in ‘C \ Both systems used data frames of 12.5 

ms with a Hanning anti-leakage window and zero padding up to a 256-point data 

frame. The frequency spectra were estimated using a 256-point FFT. The processing 

times for both systems were examined at each of the sampling frequencies. The 

execution times for each program are compared to contrast the speed of the two 

systems.
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The DSP32C has a clock frequency of 50 MHz* , with an instruction cycle 

time of 80 ns: . Within each instruction the DSP32C can perform 4 operations: a single 

read operation; two operand fetches and a single write to memory. Due to the 

pipelined architecture of the DSP32C the fetch-multiply-accumulate-write procedure 

is not performed in a single instruction but is in fact sequentially processed over 4 

instruction cycles. As a result in some cases wait states need to be inserted into the 

software in order for the appropriate memory address or register to have been updated, 

this effect is known as latency.

For a 12.5 ms data frame the DSP32C is able to perform 1.56E5 instructions 

(12.5E-3 -5- 80E-9). The library of functions available with the DSP32C provides 

optimised algorithms for performing an FFT. A single 256-point FFT (_rffta) requires 

5344* instructions and due to the latency effects 1612f wait states. The computational 

time required to perform the FFT can be calculated using:

T Ff t  =  ITin + W/fdock [ 3.4 ]

where: TFFT ~  Total time to perform FFT, I  = No. of instructions, Tin = Time to 

perform a single instruction (80 ns), W = No. of wait states, f dock -  DSP32C clock 

frequency (50 MHz). The total time required to perform the FFT is 0.460 ms which 

utilises approximately 3.7 % of the total time available. The total processing time is 

the accumulation of the time taken to acquire the next frame of the data via the ISR, 

process the current data frame and store the results in the output array. Hence, the 

overall processing time is between 6 % and 12 % of the total available time depending 

upon the sampling frequency as can be seen from figure 3.9. All the results in the next 

section are expressed as a percentage of this overall number of available operations.

* Figures taken from ‘Information Manual’ for the AT&T WE® DSP32C Digital Signal Processor. 
+ Figures taken from ‘Reference Manual’ for the AT&T WE® DSP32 and DSP32C - Application 
Software Library.
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Figure 3.9 Comparison of the overall performance at different sampling frequencies of 

the FFT spectrum analysers developed in ‘DSP32C assembly’ and ‘C \

Figure 3.9 compares the overall performance of the two systems for the 

processing of the data at each sampling frequency. It can be seen that the performance 

of the system developed in ‘assembly’ is much better than the equivalent system 

developed using the ‘C’ compiler. For a sampling frequency of 5.12 kHz the 

‘assembly’ system is approximately 3.5 times more efficient than the ‘C’ system at the 

same sampling frequency. Despite the improvement in performance obtained by using 

assembly over ‘C’ the programs developed in ‘C’ still only use less than 25 % of the 

available processing time at the highest desired sampling frequency (40.96 kHz). 

Therefore, there is scope to develop more sophisticated algorithms using ‘C’ and still 

maintain real-time operation.

■ "Assembly"
n  "n»

5.12 10.24 20.48 40.96

Sampling Frequency (kHz)
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Figure 3.10 Breakdown of overall processing times into data acquisition times and 

processing times at different sampling frequencies for (a) ‘DSP32C assembly’ (b) ‘C’ 

FFT spectrum analysers.
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Figure 3.10 provides a breakdown of the total available time to show the 

division in processing time between data collection and the processing of the data. 

The data acquisition time for the real-time system depends upon the choice of f samp. 

Table 3.1 shows the number of samples that can be collected within the 12.5 ms time 

frame with the different sampling frequencies. The data collection times for both 

systems are nearly identical since this part of the system was implemented using 

assembly in both cases in order to interact with the ADC. The processing time (Tproc) 

is practically independent of f samp with the exception of the different sizes of the anti

leakage window and zero padding both of which do not significantly contribute to the 

processing time. The total time (Ttotal) required to process the data and acquire the 

next data frame is therefore directly proportional to the sampling frequency.

3.6,3.2 Real-time FFT vs. AR spectrum analyser

The libraries developed for the DSP32C include efficient FFT routines which 

can directly be incorporated into the code. The AR algorithms are not included and 

therefore the development of these algorithms in assembly would require considerable 

effort. For this reason it was decided to develop the AR algorithms in ‘C \ The ‘C’ 

routines can be designed quickly without the need for a steep learning curve. The AR 

algorithms are computationally more complex than the FFT and therefore real-time 

implementation is more difficult. The following section compares the processing 

times required to compute the AR frequency spectrum compared to the FFT.

Figure 3.11 compares the relative total processing times for the FFT real-time 

system developed in ‘C’ and the AR real-time system (with model order 8, 10 and 

12). It can be seen that the total time required to process the current data frame and 

collect the next data frame is much greater for AR than the FFT. The processing time 

is also dependent upon the model order of the AR system. For 5.12, 10.24, 20.48 kHz 

it is possible to perform real-time analysis using the AR algorithms. At the maximum 

sampling frequency (40.96 kHz) real-time operation is compromised if a model order 

of 10 or 12 is used.
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Figure 3.11 Comparison of overall processing times at different sampling frequencies 

for the FFT and AR spectrum analysers developed in ‘C \
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Figure 3.12 Breakdown of the overall processing times into data acquisition times and 

processing times at different sampling frequencies for the AR spectrum analyser (with 

model order = 8).
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It is possible to perform real-time analysis using the AR algorithms with a 

model order of 8 at all sampling frequencies. Figure 3.12 shows the breakdown of the 

total processing time into the time taken for data acquisition and processing. As for 

the FFT, the data collection is linearly dependent upon f samp. The processing time 

however is dramatically affected by f samp due to the fact that the ACS is estimated 

from the data frame and therefore the time taken to estimate the ACS is also directly 

proportional to the data frame length.

The implementation of the AR algorithms in ‘C’ is therefore possible for low 

sampling frequencies up to the desired model order. Alternatively the signal can be 

analysed at the maximum frequency if a lower model order is used. It is evident that if 

a real-time system is going to be used that can be used at any sampling frequency 

without compromising the choice of model order, then it is necessary to develop some 

of the routines in assembly.

3.6.3.3 Plotting function

The PC must display the results in less than the time that it takes to acquire a 

single data frame. The plotting function that displays the information on the screen 

takes approximately 5.7 ms to plot a single line on the sonogram, this includes 

checking for requests by the user. The output of the frequency spectra to the screen is 

synchronised with the output of the DSP board via a flag which is updated each time 

the DSP board finishes processing a particular data frame. The output is displayed on 

the screen at a frame rate of 80 fps in the form of a sonogram.

3.7 Display - Graphical User Interface

The output was a graphical user interface (GUI) written in ‘C* to display the 

sonogram of the data in real-time and a facility for saving the results to disk for 

further processing was provided. The most common format for displaying the spectra 

is using a sonogram, this is a two dimensional plot with time along the x-axis and 

frequency along the y-axis, a 128-tone colour scale is used to represent the magnitude
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of the frequency components. The sonogram display on the PC shows 790 spectra on 

the screen at one time (corresponding to -10 s of continuous data), the amplitude is 

divided into 128 different colours. Figure 3.13 shows a screen capture of the real-time 

spectrum analyser.

DIGITAL SIGNAL PROCESSING OF BLOOD FLOU USING DOPPLER ULTRASOUND

5120

TINE (Seconds)

Figure 3.13 The output of the GUI displays the sonogram of a bi-directional Doppler 

signal processed using the real-time system described in this chapter together with the 

results of the heartbeat separation algorithm described in chapter 5. The grey-scale 

colour coding of the components in the sonogram is linear.

3.7.1 DSP algorithm

The user has the option of selecting the type of frequency analysis performed 

on the data, either FFT or AR and the sampling frequency prior to going on-line.
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3.7.2 Heterodyne carrier frequency

The heterodyne carrier frequency can be modified on-line by selecting the 

desired frequency on the heterodyne unit. The position of the heterodyne frequency is 

plotted on the screen as a line so that forward and reverse flow can be easily 

identified. The carrier frequency is continuously monitored via a direct link between 

the computer and the heterodyne mixer unit using the parallel printer port of the 

computer.

3.7.3 Gain control

There is also an on-line gain control which works independently to the gain on 

the heterodyne unit, it is used to adjust the amplitude of the spectra from the DSP 

board.

3.7.4 Threshold control

A manually adjustable threshold is used to reject low-level noise, to make 

identification of the important Doppler shift frequencies easier.

3.7.5 Recording facility

There is also the facility to record the data which is controlled by the user. The 

only limit on the amount of data that can be recorded is governed by the amount of 

random access memory (RAM) the host computer has available. In order to save the 

data a ‘4 Mb RAM disk’ was created which essentially works the same as a hard disk 

drive. The benefit of using this technique is that the access time for writing to the 

‘RAM disk’ is significantly faster than writing directly to a hard disk. When recording 

is stopped the data is transferred to the hard disk for future use. All data is stored 

including low level spectral components regardless of the threshold value at the time 

of recording, this was done to enable extensive testing to be carried out on the same 

data using various threshold values and thresholding techniques. The file includes a 6- 

byte header (described in Appendix 1), which indicates the signal processing
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technique used during recording, sampling rate and the heterodyne carrier frequency, 

for reproduction of the signal characteristics off-line.

3.8 Summary

So far in this thesis the text has described how digital signal processing tools 

such as the short-time Fourier transform and autoregressive modelling can be used to 

produce a time-frequency sonogram of the received Doppler echoes and a real-time 

system has been developed and its performance evaluated. In the next chapter 

cardiovascular disease is introduced and the way in which the joint time-frequency 

analysis of the Doppler signal can be used to detect and diagnose stenosis is described.
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4. Cardiovascular disease - Stenosis

4.1 Introduction

Time-frequency analysis of the received Doppler ultrasound signal is the first 

stage in the overall diagnosis of cardiovascular disease. In this chapter the background 

behind the pathogenesis of atherosclerosis is presented. This chapter is focused 

towards ways in which Doppler ultrasound can be used to detect the presence of 

stenosis based on the effects that a stenosis has on blood velocity components within 

the vessel. The second part of the chapter identifies ways in which the time-frequency
f

sonogram generated using the signal processing algorithms developed in the previous 

chapters can be analysed both qualitatively and quantitatively to diagnose and attempt 

to quantify a stenosis.

4.2 Stenosis

4.2.1 Mechanism for stenosis

The onset of atherosclerosis in the cardiovascular system is not uniform, some 

vessels are more prone to atherosclerosis than others for example the aorta, coronaries 

and carotids are primary sites for lesions to form. Lipid deposits accumulate at points 

in the vessel where stagnating flow is present for example bifurcations and bends in 

the vessel. There are a number of theories which attempt to explain the deposition of 

the lipids onto the endothelium which then act as a base for further lipid accumulation 

and calcification of the vessel: one theory is that the lesion is formed following injury 

to the endothelial surface of the vessel which then leaves the vessel vulnerable to 

atherosclerosis; another theory is that certain types of lipid are absorbed into the 

arterial wall for example cholesterol, thus, forming fatty deposits which can then act 

as a foundation for plaque formation (Bom, 1992).
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4.2.2 Effects of stenosis

The formation of a minor stenosis is not in itself a problem. The problems 

arise following secondary changes in the plaque or advanced calcification of the 

plaque so that it substantially or totally occludes the vessel lumen. Surgery on a 

stenosis is not generally considered until the diameter of the artery is reduced by more 

than 70 %. The results of the North American Symptomatic Carotid Endarterectomy 

Trial (NASCET) found that for stenosis greater than 70 % the best treatment was 

removal by carotid endarterectomy (Strandness, 1992).

Depending upon the shape of the stenosis, flow patterns are not dramatically 

affected by stenoses with less than 50 % reduction in diameter and are therefore 

difficult to detect (Reneman et al., 1992; Beach and Phillips, 1992). As the degree of 

stenosis increases the volume flow rate is reduced, in the case of the carotid artery the 

blood supply to the brain can be affected. If some of the stenosis detaches itself and 

finds its way to the brain, this can cause serious problems, since the vessels in the 

brain are much smaller and the debris from the stenosis can totally block the vessel 

(thrombosis) leading to a possible transient ischaemic attack (TIA) or more seriously a 

stroke (Strandness, 1992; Bom, 1992). Diagnosis of a significant stenosis (> 50 %) is 

fairly straight forward. It is important however to be able to differentiate between a 50 

- 70 % stenosis and a stenosis with greater than 70 % reduction in diameter, since this 

could mean the difference between treatment with a course of aspirin or surgery 

(Strandness, 1992).

4.2.3 Detection of stenosis

Stenoses affect the pattern of blood flow in the vessel. Proximal to a stenosis 

the velocity profile will be normal, the velocity profile will depend upon the geometry 

of the vessel. If the artery is straight and smooth proximal to the stenosis then the flow 

is likely to be fully-developed laminar flow. The cardiovascular system, however, is 

highly complex and is made up of tortuous vessels that bifurcate and bend, therefore, 

‘normal’ flow will depend upon the area of the cardiovascular system that is being 

studied. In the ICA for example the blood flow is predominately plug flow. At the
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stenosis an increase in velocity is expected as the blood is forced through a narrower 

cross-section. Distal to the stenosis the flow may be turbulent and large velocity 

gradients exist as the blood flow decelerates and returns to normal, the presence of 

turbulence and velocity gradients are the best indication that a stenosis is present 

(Jones, 1993). Further downstream the velocity profile returns to normal. Figure 4.1 

shows the changing velocity profiles through a stenosis, normal flow is considered to 

be parabolic, however, in many situations this will not be the case.

Figure 4.1 Changing velocity profile of blood flow across the vessel lumen as it is 

forced through a stenosis. ‘Normal’ flow is considered to be parabolic laminar flow in 

this example.

The type of flow detected using the Doppler velocimeter will depend upon the 

distance from the site of the stenosis to where the beam is insonating the vessel 

(Douville et al., 1985). It is easier to detect the turbulence immediately distal to the 

stenosis rather than trying to penetrate the hard plaque at the site of the stenosis which 

will attenuate the ultrasound. Therefore the diagnosis and the quantification of the 

severity of the stenosis using Doppler ultrasound is usually indicated by the 

turbulence downstream rather than the increase in velocity at the site.

4.2.4 Effects of stenosis on velocity profile

In a healthy artery the velocity profile is usually fairly narrow since there are 

only a few low frequency components due to velocity vectors near the vessel wall. 

This creates a window beneath the time-frequency profile of the blood velocity 

components in the sonogram as illustrated in figure 4.2. The turbulence detected using 

the Doppler velocimeter is represented by a broadening of the frequency spectrum
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around the systolic peak during the cardiac cycle. As the heart pumps the blood along 

the vessel there is maximum turbulence at this point. As the severity of the stenosis 

increases, the window in the sonogram below the velocity distribution is obliterated as 

low velocity components are also present (figure 4.2). If the stenosis causes eddy 

pools then there may even be a reverse flow component. The presence of a reverse 

flow component where it is not expected is a good indicator of stenosis (Evans et al., 

1989)1, provided that it is not due to another vessel that has been encompassed in the 

examination.

Figure 4.2 Effect of stenosis on the time-frequency profile (Hedrick et a l, 1996).

4.3 Qualitative analysis

The velocity profile during the course of the cardiac cycle is affected by the 

presence of stenosis and hence a qualitative assessment of the artery can be made 

based on the shape of the velocity profile. A number of features are used to assess the 

state of the artery, these include: spectral broadening, increased velocity at peak 

systole, diastolic flow and the presence of reverse flow. It is also possible for
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subjective estimates to be made based on listening to the Doppler shifts, since, 

typically the range of Doppler shift frequencies lie in the audio range. Based on 

experience it is possible to differentiate between the sounds made by normal and 

diseased carotid arteries (Evans et al., 1989)1.

4.4 Quantitative analysis

There are a large number of indices that have been developed to measure 

various features of the sonogram for the prediction of arterial disease (Rittgers et al., 

1983). Some of the more common indices include the spectral broadening index 

(SBI), pulsatility index (PI) (Gosling and King, 1974) and Pourcelot’s resistance 

index (Pourcelot, 1976). In this study for the quantification of stenosis the emphasis 

has been mainly on the classification of the degree of spectral broadening.

4.4.1 Spectral broadening index

The SBI has been used as the parameter traditionally associated with the
i

measurement of flow disturbances that occur with stenosis (Harward et a l,  1986 ’ ; 

Labs and Fitzgerald, 1992). Kaluzynski and Palko (1993) studied the behaviour of 

SBI as well as other indices with different conditions of spectral analysis for 

simulated signals. There are several definitions of SBI (Evans et al., 1989)1, the one 

used in this work is given by:

SBI = ~̂max ~ f mean 14 11
fJ max

where: = the maximum frequency component in the spectrum above a threshold

used to reject low level noise components and f mean = the mean frequency of the 

spectral components that exceed this threshold (Brown et al., 1982), figure 4.3 

illustrates the position off max and f mean.
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Figure 4.3 Determination o f f ^  andfmean from frequency spectrum.

If a high grade stenosis is affecting the flow pattern, then it is possible to have 

simultaneous forward and reverse flow components as a result of turbulence. In this 

study forward and reverse flow are combined to produce a single signal. If forward 

and reverse flow components are present simultaneously then [4.1] is not adequate 

since it is only suitable for establishing the spectral broadening of a single wide band 

lobe. In order to overcome this problem the reverse flow was eliminated from the 

calculation of SBI and only the forward flow components were used to determine the 

L e a n  envelope.

4.5 Summary

In this chapter the relationships between blood flow and the time-frequency sonogram 

and the effect that the presence of a stenosis has on the sonogram have been discussed. 

It has also been shown how the sonogram can be used to both qualitatively and 

quantitatively diagnose the condition of the vessel under observation. The next 

chapters develop these ideas and analyse the reliability of the spectrum analysis using 

both simulated and real data.
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5. Post-processing the Doppler ultrasound signal

5.1 Introduction

In the first part of this chapter an overview of the software that was 

implemented to perform the signal processing algorithms that were used throughout 

this research project is described. The second part of the chapter outlines the stages 

involved in preparing the time-frequency sonogram for clinical diagnosis. This 

involves the removal of background noise and separation of heartbeats.

5.1.1 Off-line digital signal processing

The real-time system has already been discussed in chapter 3, this was used to 

assess the potential for real-time implementation of autoregressive algorithms using a 

modem DSP board compared to the computationally efficient FFT-based algorithms 

which are used in commercial systems. An off-line signal processing program was 

also developed to allow extensive testing of different algorithms without the 

constraints of real-time processing. The system was developed in 4C’ and was 

designed to run on an IBM PC compatible computer. This allowed more flexibility in 

the design of the program than using the DSP32C as for the real-time system due to 

the restricted memory capacity on the DSP32C board. This system is used in the next 

two chapters for the analysis of simulated Doppler signals and real clinical data. A 

detailed breakdown of the operation of the computer-based spectrum analyser is given 

in Appendix 1.

5.2 Post-processing of the Doppler signal

5.2.1 Determination of frequency envelopes

The time-frequency sonogram obtained using any of the spectrum estimation 

techniques described above contains a large amount of information about the Doppler 

signal. In order to perform quantitative analysis of the results it is necessary to reduce 

the amount of information and pick out the features that can aid in the diagnosis of the
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state of the artery. One of the ways that this can be done is to determine frequency 

envelopes. In this research the maximum frequency ifmâ ) and the mean frequency 

(fmean) envelopes were used to calculate the spectral broadening of the Doppler signal. 

The envelopes were determined by calculating the mean and the maximum frequency 

components of an individual frequency spectrum above a certain threshold.

5,2.1.1 Implementation of the frequency envelopes

Envelope detection is achieved by determining f mirl, f mean and f ^  for each 

frequency spectrum in the sonogram. The point at which the magnitude of the 

frequency spectrum first exceeds the specified threshold value is defined as f min and 

the last time the frequency spectrum exceeds the threshold value is defined as f ^ .  

The mean frequency, f mean, is calculated based on the weighted average of the bins 

between f min and f ^  which are above the threshold [5.1]. These envelopes are 

calculated for the whole of the recorded signal and displayed on the screen.

2 K  •/.)
■ f —  «=!________  r  ̂ i i

where An = magnitude of frequency bin, fn = frequency bin, N = number of frequency 

bins.

5.2.1.2 Noise removal

The implementation of a suitable threshold is required to separate the true 

Doppler signal from the background noise. Noise is inherently present in the raw data 

signal since the Doppler velocimeter will detect and amplify any signals that it 

receives during the examination regardless of their origin. Secondly, artefacts which 

may be due to the spectrum analyser, for example, spectral leakage in the case of the 

FFT contribute to noise since these leakage terms mask the true Doppler signal. It is 

therefore necessary to apply a threshold to the sonogram to remove low-level noise 

components which could bias the results. Two types of threshold were examined:
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5.2.1.3 Global threshold
A global threshold was selected and applied to all the frequency spectra as

described by Gibbons et al. (1981). The selection of the threshold level is based upon 

a subjective study of the Doppler sonogram by the operator and is fixed for all spectra. 

Figure 5.1 illustrates the application of the threshold to reject low-level noise 

components. Automatic threshold detectors have been used to remove low-level noise 

(Evans et a l, 1989)2.

Figure 5.1 Simple threshold to reject low-level noise components.

5.2.1.4 Individual frequency spectrum threshold
This threshold is pre-defined and is measured with respect to the maximum

component of each individual frequency spectrum as can be seen in figure 5.2. 

Different levels of threshold were examined: -3, -6, -9, -12, -15 and -18 dB in relation

to the maximum magnitude component of the frequency spectrum (Harward et al.,
1 21986) ’ . The optimum threshold should be able to maximise the ability to reject noise 

but also retain as much of the Doppler signal as possible. Figure 5.3 shows the results

Threshold

Frequency (kHz)
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obtained using the different fixed threshold levels by superimposing the mean and 

maximum frequency envelopes on the FFT and AR sonograms.

<D

3
Ia

s

Figure 5.

By comparing the respective thresholds for the FFT and AR sonograms in 

figure 5.3, it can be seen that the AR threshold is more robust than that of the FFT. 

This is due to the qualitative improvement in the AR spectral estimates over the FFT. 

As the threshold is reduced the distance between the maximum and mean frequency 

envelopes increases this is due to the tapered distribution typically observed in 

Doppler spectra. It was decided to use the -6 dB threshold as this gave the most 

sensible trade-off between background noise and maximum retention of the Doppler 

signal for both algorithms.

Threshold

Frequency (kHz)

2 Implementation of the -6 dB threshold.
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(a) -3 dB FFT

(b) -3 dB AR

(c) -6 dB FFT

(d) -6 dB AR
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(e) -9 dB FFT
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(f) -9 dB AR
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(g) -12 dB FFT

(h) -12 dB AR

(i) -15 dB FFT

(j) -15 dB AR

S. - ’ V **>

(k) -18 dB FFT

(1) -18 dB AR

Figure 5.3 Mean and maximum frequency envelopes superimposed on sonograms 

calculated using FFT and AR, threshold determined as 3, 6, 9, 12, 15, 18 dB below the 

maximum component of the individual spectra.

5-6



Chapter 5 - Post-processing the Doppler ultrasound signal

5.2.2 Heartbeat separation

Once the frequency envelopes have been extracted the second stage is to filter 

the envelope signals to reduce the effects of spectral instability and then separate the 

heartbeats. Figure 5.4 shows the raw frequency envelopes extracted from a sonogram 

of the femoral artery. An automatic technique for heartbeat separation is described 

below. The purpose of this technique was to eliminate the need for additional 

parameters that were dependent on the patient being examined (Evans, 1988).

Figure 5.4 Raw f min, f mecm and f max frequency envelopes extracted from a sonogram of 

the femoral artery.

• The raw minimum, mean and maximum frequency envelopes were passed through 

a 5-point moving average filter to minimise the effects of spectral instability as 

illustrated in figure 5.5.

Figure 5.5 Filtered fmean and/TOax frequency envelopes.mean max

5-7



Chapter 5 - Post-processing the Doppler ultrasound signal

•  All local maxima in the envelope were located by searching for a positive 

followed by a negative gradient as shown in figure 5.6.

• The largest peak is obtained from the maxima determined in the previous stage and 

the difference between this maxima and the heterodyne frequency is evaluated. A 

66% threshold is used to reject peaks on the basis that they are not systolic 

maxima. These stages are illustrated in figure 5.6.

( 6%

Figure 5.6 Identification of the systolic peaks by applying a threshold to reject non- 

systolic maxima.

• Rejection of peaks that follow within 0.5 seconds of a systolic peak being 

identified. This prevents multiple peaks being identified within a single heartbeat.

• Once the systolic peaks for all the heartbeats have been identified the algorithm 

then differentiates backwards along the signal towards the onset of the systole to 

determine the foot of the heartbeat. The foot is identified as the point when the 

gradient goes to zero or inverts.
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Figure 5.7 Separation of the frequency envelopes into the individual heartbeats.

Figure 5.7 shows the ability of the automatic heartbeat separation algorithm to 

successfully separate the individual heartbeats. The overall performance of the 

algorithm was, however, limited when dealing with extremely noisy envelopes.

5.2.3 Determination of spectral broadening index

Following the separation of the heartbeats it is then possible to estimate the 

spectral broadening index (SBI). There are two approaches for producing an 

estimation of the average value of a parameter derived from the sonograms:

5.2.3.1 Averaging heartbeats

The first method involves averaging spectra from different heartbeats, and then 

calculating the SBI from the averaged spectrum.

5.2.3.2 Averaging parameters

The second method involves calculating the SBI from the individual spectra 

from a single heartbeat and then averaging the values obtained over a number of 

heartbeats.

It was decided to use the second method here to estimate the SBI in order to 

avoid the inherent difficulties of time alignment of the first technique and the 

possibility of smearing the averaged spectrum if the alignment is not perfect. The SBI
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was calculated at the systolic peak which is defined as being the maximum frequency 

component in the f max envelope.

To conclude this chapter the performance of the two types of threshold 

described earlier are compared.

5.2.4 Comparison o f the two types o f threshold

0.8
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I 04
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0

Figure 5.8 SBI & resistance index (RI) vs. threshold for an internal carotid artery.

It was found that the positioning of the global threshold was fairly ambiguous 

and a range of values exists over which the threshold could be chosen. It has been 

observed by Schlindwein et al (1994) that if a simple threshold is implemented then 

there is no obvious plateau on the SBI vs. threshold plot where the SBI can be 

considered constant. Figure 5.8 shows the SBI and the resistance index (RI) 

(Pourcelot, 1976) for a real Doppler signal, the signal was recorded from an internal 

carotid artery. It can be seen that there is a range of thresholds over which the value of 

RI is constant but the SBI is changing (RI has been included here to illustrate the 

range of thresholds over which the envelopes used to determine the diagnostic 

parameters fit the signal, i.e. the range of thresholds where noise is rejected with

Threshold too low:
Envelope affected by Envelope fits Threshold too high:
noise. data. Envelope no longer fits the Doppler spectra.

■RI

■■■

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
Threshold
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minimal loss of the true Doppler signal). The reason why there is no plateau for SBI is 

due to the trends in the mean and maximum frequency envelopes: As the threshold is 

increased, f max decreases and f mean increases as can be seen from figure 5.9. The 

uncertainty caused by the positioning of the threshold results in an inconclusive SBI 

value.

70
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4 0.8
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© 30D
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f(max)

f(mean)

SBI
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Threshold

Figure 5.9 Trends in f mean and as the threshold is increased; inconclusive SBI.

In the case of the threshold based on the individual spectra there is no 

ambiguity caused by the choice of threshold since the threshold is defined relative to 

the magnitude of the individual frequency spectrum and is not fixed at a certain level. 

This significantly reduces the sensitivity of the SBI to gain and also produces a single 

estimate of SBI for a particular recording.

5.3 Summary

This chapter has outlined the techniques required to post-process the time- 

frequency sonogram. In the next chapter simulated data is used to compare the 

accuracy of the FFT and AR algorithms in the presence of noise.
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6. Spectral broadening of simulated Doppler signals

6.1 Introduction

The previous chapters have described the stages necessary to take a raw 

ultrasound signal from its original time-domain form and to convert it into a time- 

frequency sonogram using either the short-time Fourier transform (STFT) or 

autoregressive (AR) modelling and then how to post-process the resulting time- 

frequency map for the diagnosis of stenosis. It has been proposed that the modem 

spectrum analysis techniques such as AR modelling are better at producing a time- 

frequency decomposition of a non-stationary signal such as Doppler ultrasound. It is 

not possible however to quantitatively compare the results obtained using real data 

since the true underlying spectrum is unknown. It is therefore necessary to compare 

the two techniques using simulated data in which a time series is generated with a 

known frequency spectrum, it is then possible to establish which of the signal 

processing algorithms performs best. The contents of this chapter are in a paper by 

Keeton et al. (1997)2.

This chapter is divided into two parts, firstly, the relationship between the 

spectra obtained using FFT and AR was studied using the spectral broadening index 

(SBI), described in chapter 4, for simulated symmetrical wide band signals using data 

frames containing 64 and 256 samples. Secondly, three filters were used to simulate 

Doppler spectra typically found around the systolic peak which represent signals taken 

from a healthy carotid artery and signals that represented diseased carotid arteries. 

Gaussian noise was added to the simulated Doppler signals over a range of signal-to- 

noise ratios (SNRs). The accuracy and robustness of the SBI for both the FFT and AR 

spectra were compared for a range of SNRs, since estimation of the frequency 

spectrum is complicated by the presence of noise (Kay, 1979; Scott et a l, 1987).

It has been reported that typical clinical SNR levels are in the range of 0-20 dB 

(Forsberg, 1991). If the signal processing algorithm is not stable in the presence of 

noise then the variance of the spectral estimate is going to be large. Parameters
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derived from these spectra will have a large variance making it clinically infeasible to 

produce a statistically significant estimate since the number of heartbeats that need to 

be sequentially recorded for averaging the SBI will be too large. Therefore, one of the 

aims of this research is to establish the magnitude and variance of SBI in the presence 

of noise at SNRs present in a clinical environment.

6.2 Methods & Discussion

The behaviour of the SBI obtained from spectral estimates based on the FFT 

approach was compared to that from spectra produced by autoregressive modelling. 

The first algorithm was a straightforward 256-point FFT with no overlap and no anti

leakage window. The second algorithm was identical to the first except that the data 

was multiplied by a Hamming window. The AR algorithm was based on an 

implementation of the Yule-Walker equations using the recursive Levinson-Durbin 

approach with model order 12 as described by Schlindwein and Evans (1989). Both 

techniques produced spectral estimates with 128 frequency bins.

The signals used in this study were generated using filtered Gaussian white 

noise which has a uniform theoretical spectrum from zero to half the sampling 

frequency. The shape of the frequency spectrum of the signals was determined by 

filtering the Gaussian white noise using a set of digital filters. Using this method a 

series of wide band signals with varying bandwidths and frequency response 

characteristics were generated. The ideal shape of the filter was approximated using 

an 8-order infinite impulse response (IIR) Yule-Walker digital filter whose 

coefficients were determined using a least squares fit to the desired filter shape. The 

design was performed using MATLAB. A Gaussian white noise sequence of N  

samples was filtered and the first 256 filtered samples were discarded so that 

transients caused by the filter would not be processed. The impulse response of the 

filter was used to determine the number of samples that should be rejected to ensure 

that the initial transients had decayed sufficiently within the first 256 samples. Figure

6.1 shows the frequency response of the symmetrical band-pass filters that were used 

to create the wide band signals.
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Figure 6.1 Frequency response of filters used to generate symmetrical wide band 

signals. Normalised 6 dB bandwidths for each filter are (a) 0.2 (b) 0.4 (c) 0.6 (d) 0.8.

The calculation of SBI was performed using [4.1]. The f mean and f max frequency 

envelopes were determined using the -6 dB threshold described in chapter 5 in which 

the level of the threshold was measured with respect to the maximum magnitude 

component in each individual frequency spectrum.

6.3 Comparison of FFT-SBI & AR-SBI

Preliminary tests were carried out to establish the relationship between FFT- 

based SBI (with and without an anti-leakage window) and AR-based SBI by 

comparing the magnitude and variance of the estimates. The SBI was calculated from 

64 separate spectral estimates obtained using a 64 point data frame and a 256 point
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data frame using each of the algorithms described above. The results obtained were 

plotted against one another and are shown in figure 6.2.
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Figure 6.2 Comparison of FFT-SBI, AR-SBI and windowed FFT- 

SBI for four symmetrical wide band signals (a),(b),(c) 64-point data 

frame (d),(e),(f) 256-point data frame.
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Table 6.1 shows the exact value of the SBI determined from the frequency 

response of each filter and the mean and variance of the SBIs determined from the 

spectral estimates using each of the algorithms described above. It can be seen that for 

the 256 point data frame the mean of the AR-SBI is closer to the true value than the 

FFT estimate and generally the variance of the SBI estimate is smaller for AR than 

FFT. When a data frame of only 64 points is used the variance of all the algorithms 

increases and the average SBI is not so close to the true value.

Table 6.1 Comparison of true SBI for four wide band signals and the estimates of SBI 

determined from the FFT and AR frequency spectra.

Normalised
Bandwidth

True SBI FFT 
Av. SBI

FFT (Hamming) 
Av. SBI

AR  
Av. SBI

64 256 64 256 64 256
0.2 0.167 0.133

+/- 0.053
0.131
+/- 0.043

0.141
+/- 0.048

0.123
+/-0.060

0.129
+/-0.059

0.146
+/- 0.023

0.4 0.286 0.227
+/- 0.062

0.237
+/- 0.053

0.223
+/-0.066

0.211
+/-0.081

0.229
+/- 0.076

0.258
+/- 0.054

0.6 0.375 0.312
+/- 0.076

0.333
+/- 0.038

0.300
+/- 0.089

0.322 
+/- 0.068

0.308
+/- 0.080

0.342
+/- 0.026

0.8 0.444 0.378 
+/-0.081

0.396
+/- 0.053

0.379
+/- 0.090

0.394
+/- 0.064

0.397
+/- 0.074

0.426
+/-0.031

It can be seen from figure 6.2 that there is a linear relationship between the 

SBIs calculated using the three separate algorithms. The correlations between the 

indices are shown in table 6.2 and table 6.3 for the 64 and the 256 point data frames 

respectively. The correlation coefficients for each of the comparisons exceed the 0.1 

% value, therefore the results are significant at the 0.1 % level (p < 0.001). The 

correlation between the FFT (no anti-leakage window) and the AR algorithm is the 

strongest. The correlation between the FFT (anti-leakage window) and the other 

algorithms gives the worst result. From these results it is apparent that the application 

of an anti-leakage window does not improve the estimation of SBI, in fact the 

variance of the SBI when using FFT and an anti-leakage window is larger than that of 

the SBI obtained for FFT spectra with no anti-leakage window.
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Table 6.2 Matrix of Pearson Product-Moment Correlation Coefficients for 64-point 

data frame.

AR FFT (Hamming) FFT
FFT 0.90 0.84 1.0
FFT (Hamming) 0.83 1.0
AR 1.0

Table 6.3 Matrix of Pearson Product-Moment Correlation Coefficients for 256-point 

data frame.

AR FFT (Hamming) FFT
FFT 0.93 0.91 1.0
FFT (Hamming) 0.90 1.0
AR 1.0

6.4 Effect of AR model order on SBI

When implementing the AR algorithm there is a certain degree of choice in the 

selection of model order for the AR model. There are various techniques for 

establishing the ‘best* order for a particular process. For Doppler signals Kaluzynski 

(1989) and then Schlindwein and Evans (1990) suggested that the AR model order ip) 

should be around 12. The effect of using different model orders was tested using the 

same symmetrical wide band signals that were used to compare FFT-SBI and AR- 

SBI. Figure 6.3 shows the result of model order on the estimation of AR-SBI. If the 

model order is less than about 8 then there are not enough poles to adequately model 

the signal and therefore the spectral estimates are not representative of the true 

spectrum. If the model order is too high then the filter attempts to model the local 

fluctuations in noise as well as the underlying signal producing a biased estimate 

(Akaike, 1974). In addition the computational time to calculate the autoregressive 

coefficients using the Levinson-Durbin recursive algorithm is proportional to p 2, 

therefore, in real-time applications of the AR algorithm it is sensible to avoid 

unnecessary computation. For AR model orders between 10 and 16 the variance of 

AR-SBI is smaller than that of FFT-SBI for all cases.
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Figure 6.3 Effect of AR model order on the estimation of SBI for four symmetrical 

wide band signals.

6.5 Estimation of SBI from simulated Doppler signals

Having established that the FFT and AR algorithms produce comparable 

indices for symmetrical signals the second stage of the study was to look at the ability 

of the algorithms to produce estimates of SBI in the presence of noise and with 

asymmetric spectra, which are more comparable to Doppler signals. Simulated 

Doppler signals were created using digital filters modelled on the typical frequency 

spectra obtained around the systolic peak of the cardiac cycle (Hedrick et a l, 1995). 

Three types of filter were used to simulate different degrees of spectral broadening. 

Figure 6.4 shows the frequency responses of the filters that were used to generate the 

simulated Doppler signals. The first filter has only slight spectral broadening and is 

characteristic of a healthy ICA carotid artery, where plug flow is present. The second 

two spectra simulate the effect of a stenosis which would lead to spectral broadening 

as the flow would be disturbed. A second Gaussian white noise signal was used to add 

noise to the simulated Doppler signals to generate noisy signals with SNR from +10 

dB down to -10 dB.
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Figure 6.4 Frequency response of the filters used to simulate the Doppler spectra

The signals were processed using the FFT and AR algorithms using data 

frames of 64 and 256 samples. Figure 6.5 shows examples of typical spectra obtained 

using each of the algorithms with a data frame of 256 samples.

It can clearly be seen that the AR spectral estimate in figure 6.5(c) is closer to 

the shape of the filter, refer to figure 6.4(b), than either of the FFT spectra. All three 

spectral estimators produce spectra with a varying degree of ripple in the pass band, 

figure 6.6 shows the variance in the spectral estimates for the simulated Doppler 

spectra, figure 6.4(c), using AR with a data frame of 256 points.
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Figure 6.5 Frequency response for simulated Doppler spectrum, (a) FFT (b) FFT- 

Hamming window (c) AR model order 12. Signal generated using filter with 

frequency response shown in figure 6.4(c).
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Figure 6.6 Spectral estimates for simulated Doppler spectra using AR (model order 

12) on consecutive 256 point data frames.

The results show that although there is a high variance in the pass band, the 

bandwidths of the estimated spectra are stable. The average SBI and the variance was 

estimated from 128 and 32 frames for each signal using the 64 and 256 sample data 

frames respectively. The -6 dB threshold was used to determine SBI from the 

simulated Doppler spectra. The results are shown in figure 6.7 and figure 6.8.

It can be seen that for high SNRs the average SBI is constant for both FFT and 

AR. Figure 6.7 also shows the true SBI for each of the filters revealing that all of the 

algorithms underestimate the actual value, this is particularly true for the 64 point data 

frame. When the 256 point data frame is used the estimate of SBI is better, with AR- 

SBI producing the most accurate result. The variance of the SBIs for the short data 

frames is approximately the same for both the FFT and AR, however the AR 

algorithm performs marginally better than the FFT for a 256 point data frame. The 

ability of the FFT to perform as well as AR particularly for the short data frames can 

be attributed to the fact that the SBI is solely dependent upon the rise and fall of the 

wide band frequency spectral estimate, the variance across the pass band does not 

affect SBI as long as the ripple is uniform. Therefore even though the individual 

spectral estimates for FFT are qualitatively worse than AR, when the results are 

averaged over a number of frames the FFT is able to closely match the shape of the 

filter of figure 6.4(c). Figure 6.9 shows the averaged spectra for all the algorithms 

using 64 and 256 samples.

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109113117 121 125
frequency bins
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Figure 6.7 Average SBI for three simulated Doppler signals in noise (a) 64 point data 

frame (b) 256 point data frame. True SBI for simulated Doppler spectra indicated 

using the lines I, II & III for the three asymmetric filters in figure 6.4(a,b,c) 

respectively.
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Figure 6.8 Standard deviation of SBI for three simulated Doppler signals in noise

(a) 64 point data frame (b) 256 point data frame.
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Figure 6.9 Averaged frequency spectra for a stationary simulated Doppler signal.

When the level of noise approaches the threshold the SBI starts to increase. 

The SNR at which the SBI starts to drift is dependent upon the bandwidth of the 

simulated Doppler signal. For signals with a high degree of spectral broadening the 

noise will start to cause the SBI to drift at higher signal-to-noise ratios than signals 

with a lesser degree of spectral broadening. This is due to the larger relative amplitude
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of the noise for a broad band signal compared to a narrow band signal. It can be seen 

from figures 6.7 and 6.8 that the magnitude and variance of the SBI are stable when 

the SNR is higher than 3 dB for the 256 point data frame (7 dB for the 64 point data 

frame). Therefore, in a normal clinical environment where the SNR is around 10-20 

dB (Forsberg, 1991) the results of SBI can be considered stable. In a very noisy 

environment where the SNR is approaching 0 dB the results will be affected by the 

noise.

6.6 Conclusions

The results of this study have shown that there is a strong correlation between 

the estimates of SBI using both the FFT and AR algorithms. The actual value of SBI 

is more accurate with AR for a 256 point data frame although for both data frame 

sizes (64 and 256 samples) all the algorithms underestimate the true value. The use of 

an anti-leakage window on the FFT algorithm does not reduce the variance of the 

spectral broadening.

The average SBI for all algorithms is constant in low-level noise down to 

SNRs of 3 dB for the 256-point data frame and 7 dB for the 64 point data frame 

(figures 6.7 and 6.8), it is therefore possible to estimate the SBI down to these SNRs. 

The variance of the estimates for both FFT and AR at high signal-to-noise ratios 

remains fairly constant until the level of noise reaches the threshold where the SBI is 

measured. When the level of noise is comparable to the threshold the variance of the 

FFT and AR SBIs increase and the average SBI starts to increase as a result of noise 

contamination, as expected. The SNR at which the estimate of SBI tends to drift is 

dependent upon the degree of spectral broadening present in the signal. It should be 

noted that the magnitude of SBI tends to approximately 0.5 at low SNR.

For AR model orders greater than 10 the average value of AR-SBI is stable. 

For AR model orders between 10 and 16 the variance of AR-SBI is smaller than that 

of FFT-SBI.
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Despite the fact that the results of this study have shown that there is a distinct 

qualitative improvement in the spectral estimates for AR compared to those of the 

FFT, the ability of the AR model to produce stable spectra does not result in a 

significant improvement in the determination of SBI over the FFT approach. For short 

data frames the FFT is able to produce similar SBI results to AR.

6.7 Summary

In this chapter the accuracy of the STFT and AR have been compared using a known 

wide band signal that was modelled on the typical spectra obtained around peak 

systole. It has been shown that the spectra obtained using the AR techniques are 

smoother than the STFT spectra and that they are closer to the true spectrum. The 

stability of the algorithms to produce spectra in the presence of noise was also studied 

to compare the stability of the SBI at various signal-to-noise ratios. In the next chapter 

the algorithms are tested using real clinical data.
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7. Spectral broadening of clinical Doppler signals

7.1 Introduction

In this chapter ten real cases are studied to correlate the behaviour between the 

results obtained using the simulated data described in the previous chapter and real 

clinical Doppler ultrasound scans.

Real clinical data from both healthy and diseased patients was used to compare 

the spectra obtained using the FFT and the spectra obtained using AR modelling to 

give a range of Doppler signals with different degrees of spectral broadening. As for 

the study of simulated data described in the previous chapter the spectral broadening 

index (SBI), described in chapter 4, was used to quantify the broadening of the 

frequency spectrum. The SBI was calculated from both the FFT and the AR-based 

spectra at peak systole and also by averaging the SBI value of up to five spectra 

starting at peak systole. The correlation between both FFT-SBI and AR-SBI and the 

degree of stenosis is presented for 10 documented cases. In all cases more than 20 

heartbeats were processed, with up to 5 spectra per heartbeat, totalling more than 1000 

estimations of the systolic spectrum and SBI for each approach.

7.2 Off-line analysis

For the purposes of this comparison the real-time system described in chapter 

3 was not used to analyse the Doppler signals. Instead, the system was taken off-line 

so that the same digital data could be analysed using both the FFT and AR algorithms. 

The off-line system is described in chapter 5 and again in more detail in Appendix 1. 

Ten Doppler ultrasound scans were digitised and stored on disk, each scan was 

comprised of at least 20 sequentially recorded heartbeats. Table 7.1 contains details of 

the recordings that were used in this study. All the recordings were taken from internal 

carotid arteries (ICA) of (i) patients with known diseased arteries ranging in severity 

of stenosis and (ii) healthy subjects. A subjective estimate of the degree of stenosis
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was made at the time of the examination using colour Doppler images of the artery 

(both axial and cross-sectional views).

Table 7.1 Internal carotid artery (ICA) Doppler ultrasound data used in evaluation of 

AR against FFT.

Signal Degree o f  Stenosis 
(Approx. % o f  lumen occluded)

Sample
Frequency

(kHz)
1 0 (Slight wall thickening) 10.24
2 0 10.24
3 20 10.24
4 25 10.24
5 40-50 10.24
6 50 10.24
7 65 5.12
8 >70 10.24
9 80 10.24
10 >80 10.24

The signals were acquired by skilled personnel at the Leicester Royal 

Infirmary from patients that had been admitted for colour Doppler ultrasound scans. 

Doppler ultrasound recordings were recorded and stored on digital audio tapes (DAT) 

tapes. A small sample volume positioned in the centre of the vessel was used to assess 

the flow through the vessel.

For patients with stenosis the site of the scan was around 2 diameters distal to 

the stenosis. For normal subjects the recordings were taken from a position distal from 

the carotid branch, which corresponded to the point where the data collection was 

made for the patients with stenosis. A continuous wave Doppler velocimeter, with a 4 

MHz focused 1.5 mm beam width, was used for data collection. The beam transfixed 

the vessel axis at an angle of around 50°.

The conditions for the digital signal processing of the Doppler signals were 

identical to the specifications of the real-time system described in chapter 3. The 

spectral frame rate was set at 80 frames per second, corresponding to a data frame
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length of 12.5 ms irrespective of the sampling rate. The signals were analysed using 

non-overlapping data frames. The choice of sampling frequency was dependent upon 

the observed bandwidth for each signal and is listed in Table 7.1. The signals were 

analysed using an straightforward 256-point FFT, the data was multiplied by a 

Hamming window. Three AR algorithms were implemented: the first algorithm was 

based on the Yule-Walker equations using the recursive Levinson-Durbin approach 

with model order 12 to calculate the autoregressive coefficients (ak), the PSD was 

computed using [7.1]; the second algorithm again used the Levinson-Durbin recursive 

algorithm to calculate ah the PSD was calculated using [7.2]; the third AR algorithm 

used Burg’s algorithm for calculating ah the PSD was computed using [7.1]. All four 

algorithms produced spectral estimates with 128 frequency bins.

P S D j k )  =
T o 1

y
1 + ]T ak exp(- jl7tknT)

n=1

[7.1]

where: T = sampling period, o* = variance of the driving white noise input to the AR 

filter.

A  ^ -1  A

PSDAR(k) = T ^  Rxx(n)Qxip(-j2mkT) [7.2]
n = -M

A

where: Rxx = estimated (extrapolated) autocorrelation sequence, for more details refer 

to chapter 2.

7.3 Results & Discussion

Figure 7.1(a-d) shows the output for several heartbeats using each of the four 

methods described (FFT, Yule-Walker AR [7.1], Yule-Walker AR using [7.2] and 

Burg AR) and figure 7.1(e-h) shows a typical spectrum obtained from around the 

systolic peak using each of the algorithms. It can be seen that there is no significant 

difference between the frequency spectra obtained using the different AR algorithms.
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There is a distinct qualitative improvement however in the frequency spectra obtained 

using the AR algorithms over the FFT.

(a)

(b)

(c)

(d)

(e)

(f)

Frequency

Frequency

(h)

Figure 7.1 Sonograms of internal carotid arteries (ICA) using (a) FFT, (b) AR with 

Yule-Walker approach and eqn [7.1] for PSD, (c) AR with Yule-Walker approach and 

eqn [7.2] for PSD, (d) Burg and eqn [7.1] for PSD, (e)-(h) Frequency spectra taken 

from respective sonograms around the peak systole of the cardiac cycle (as marked 

with the vertical line on (a)-(d).

The -6 dB threshold described in chapter 5 was used to extract the f mean and f max 

frequency envelopes. Figure 7.2(a,b) shows the raw maximum and mean frequency 

envelopes extracted from the sonograms obtained using the FFT and AR algorithms 

respectively. The envelopes have been superimposed on the original sonograms to 

show the ability of the -6 dB threshold to successfully reject low-level noise and retain 

the true Doppler signal. The two envelopes are then low-pass filtered using a 5-point

Frequency

Frequency
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moving-average filter. It can be seen from figure 7.2(c,d) that there are significant 

differences between the envelopes obtained using the FFT and AR algorithms. These 

differences can affect the positioning of the systolic peak which is defined as the 

maximum frequency component of the f max envelope in each cardiac cycle. There is 

also a distinct difference between the relative spectral widths of the frequency spectra 

obtained using the FFT and AR algorithms.

(a)

(b)

(C)

(d)

Figure 7.2 Raw maximum and mean frequency envelopes extracted from the (a) FFT 

(b) AR sonograms using the -6 dB threshold. Figures (c) & (d) show the low-pass 

filtered envelopes of (a) & (b) respectively and the comparison between the location 

of the systolic peaks for each heartbeat based on the FFT and AR sonograms.
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Figure 7.3 Illustrates the consecutive frames after the systolic peak used to produce an 

average SBI/heartbeat.

The results of averaging between 1-5 estimates of SBI around each systolic 

peak (figure 7.3) were studied to assess whether the effects of spectral instability 

resulting from the frequency analysis of short data frames can be reduced. The mean 

value calculated for a particular heartbeat was then averaged over a number of 

heartbeats (always more than 20) in order to obtain a statistically valid SBI (Labs and 

Fitzgerald, 1992). The variance of the overall SBI for a particular patient was 

improved when the estimate of SBI for each heartbeat was obtained using more than 

one spectrum, as can be observed in figure 7.4. This was the case for both the FFT and 

the AR sonograms.
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Figure 7.4 Scattergram of FFT-SBI versus AR-SBI for 1-SBI/Heartbeat and 5- 

SBI/Heartbeat.
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The correlation between the SBIs obtained using the FFT and AR algorithms 

for the 10 cases documented earlier in the paper is illustrated in figure 7.4, from where 

it can be seen that there is a strong correlation between the AR-SBI and the FFT-SBI. 

If the estimate of SBI is made from the average of several estimates taken from 

around the systolic peak then there is an improved correlation between AR-SBI and 

FFT-SBI. The correlation coefficients for using either a single estimate of 

SBI/heartbeat or 5 estimates of SBI/heartbeat are shown in figure 7.4. The correlation 

coefficients for each of the comparisons exceed the 0.1% value, therefore the results 

are significant at the 0.1% level (p < 0.001).

Having established that there is a strong correlation between the FFT-SBI and 

the AR-SBI, the magnitude and the standard deviation of the overall SBIs calculated 

using 5 estimates of SBI/heartbeat are compared in figure 7.5. The magnitude of the 

AR-SBI is significantly smaller than that of the FFT-SBI which is concurrent with the 

relative spectral width trends seen in figure 7.2(c,d). The standard deviations of the 

AR-SBI estimates are generally larger than the FFT-SBI. The smaller magnitude of 

the AR-SBI results in a larger coefficient of variation as can be seen in figure 7.5(c). 

The SBIs calculated using the FFT algorithms are therefore generally more stable. 

They are not, however, necessarily more accurate, as reported by Keeton et a l (1997)2 

who concluded that the AR-SBI is more accurate for short data frames with simulated 

data. From figure 7.5(a) it is also apparent that the magnitude of the SBI is directly 

proportional to the severity of stenosis.
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Figure 7.5 (a) Magnitude of SBI (b) Standard deviation (c) Coefficient of variation for 

10 documented cases using FFT and AR sonograms based on 5 estimates of 

SBI/heartbeat. Increasing severity of stenosis from left to right based on a subjective 

study of colour Doppler ultrasound scans.
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The minimum number of estimations needed to produce a statistically
2 #

significant value for a parameter depends on the variance (a ) of the estimates, the

mean ( x  ) value of the parameter and the error and level of significance desired and is 

given by:

n 5%, 95%

(  Y
1.96g 

^ 0.05 x-'

[7.3]

for a 95 % level of significance with an error less than 5 %, if one assumes a normal 

distribution (Hughes and Graiwoig, 1971). The number of estimations needed to 

produce significant results was calculated and is illustrated in figure 7.6. For patients 

with a high degree of stenosis the overall SBI can be determined using fewer 

individual estimates of SBI: typically n < 10 for FFT and n < 20 for AR. For a lesser 

degree of stenosis the mean value of SBI will be lower resulting in a higher value for 

n. Since up to 5 estimates of SBI are being taken from each heartbeat and a minimum 

of 20 heartbeats are being used to estimate the overall SBI, the results for all cases are 

statistically significant, with the exception of the AR-SBI for patient 2.
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Figure 7.6 Sample size required to produce a statistically valid estimate of SBI for 10 

documented cases using FFT and AR sonograms.. Results are based on 5 estimates of 

SBI/heartbeat, therefore, No. of heartbeats = No. of estimations/5. Increasing severity 

of stenosis from left to right based on a subjective study of colour Doppler ultrasound 

scans.
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7.4 Conclusions

Based upon the results obtained for the two techniques, it is clear that the AR 

approach can help improve the quality of the spectra (figs. 7.1(e-h)). This is 

particularly true when there are too few samples for the FFT to be able to produce 

reasonable spectral estimates due to its inherent limitations. The AR sonograms do not 

suffer from some of the intrinsic problems that affect the FFT based spectral 

estimation and hence there is a distinct qualitative improvement in the visualisation of 

the dynamic flow over the cardiac cycle (figs. 7.1(a-d)). With the sample cases 

examined it was found that the AR algorithms all produced similar sonograms, and all 

the AR algorithms produce smoother sonograms than the FFT approach.

A strong correlation was observed between the value of the FFT-SBI and the 

AR-SBI. The mean value of the FFT-based SBI is larger than that of the AR-based 

SBI and the variance of the FFT-SBI is smaller than that of the AR-SBI.

If only one spectrum per heartbeat is used for the estimation then the number 

of heart beats required in order to produce a statistically significant value for SBI 

(with a 95 % level of significance) is perhaps too large for clinical practice 

particularly when the degree of stenosis is mild. If five spectra around the peak systole 

are used for the estimation then, for all cases studied here (with the exception of one 

AR-case), 20 heartbeats was more than adequate to produce a statistically significant 

value for SBI. As the severity of the stenosis increases fewer heartbeats are required.

7.5 Summary

This chapter has completed the discussion about the merits of using alternative 

AR techniques compared to the STFT. The remainder of this thesis is devoted to 

looking at alternative signal processing tools that have, as far as we know, so far not 

been applied to Doppler ultrasound and to discuss their potential applications.

7-10



8. Wavelets

8.1 Introduction

The previous chapters have discussed techniques that have been used in 

Doppler ultrasound for over a decade and has provided a quantitative assessment of 

the effects of using different signal processing algorithms to analyse the Doppler 

signal. This chapter introduces a new tool which has emerged in the signal processors 

toolbox and which is finding an ever increasing range of applications in biomedical 

engineering. Wavelets were introduced in the early 1980’s and are still in the 

experimental stage of development. This chapter looks at ways in which the wavelet 

transform could be applied to Doppler ultrasound. The contents of this chapter have 

been published in a paper by Keeton and Schlindwein (1997)1.

8.2 Wavelets

The Fourier transform (FT) is excellent at extracting the frequency information 

from stationary signals. The short-time Fourier transform (STFT) is a modified 

version of the FT which has been developed to perform time-ffequency analysis of 

non-stationary signals. There are a number of limitations inherent in the STFT which 

have been discussed in detail in chapter 3. One of the fundamental limitations of the 

STFT is the selection of a fixed window for the analysis of the signal. This limits the 

ability of the STFT to be able to detect the different features of the signal. “I f  we look 

at a signal (or function) through a large ‘window we would notice gross features. 

Similarly, i f  we look at a signal through a small ‘window \ we would notice the small 

features.” (Graps, 1995). Therefore, by fixing the size of the window we are limiting 

the resolution with which we can study the signal. The wavelet transform addresses 

the problem of fixed resolution by using base functions that can be scaled. These 

‘wavelets’ act in a similar way to the windowed complex exponentials that are used in 

the STFT except that with the wavelet transform the length of signal being analysed is 

not fixed. “The result in wavelet analysis is to see both the forest and the trees” 

(Graps, 1995). Figure 8.1 illustrates some of the more common wavelets. At first
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glance it is apparent that wavelets are better suited to analysing transient signals, since 

they are well localised in time, whereas sinusoids extend over all time. Wavelets are 

not however just well localised in time, they are also well localised in frequency, 

although not as well as sinusoids. The property of time and frequency localisation is 

known as compact support and is one of the most attractive features of wavelet 

analysis.

Haar wavelet Mexican Hat wavelet
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|
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0 1 2 3 0 2

Figure 8.1 Examples of common wavelets.

Wavelets have already been used in biomedical applications for the analysis of 

the ECG (Gramatikov and Georgiev, 1995; Thakor and Sherman, 1995) and the EEG 

(Thakor and Sherman, 1995). In this research the potential of using wavelets for the 

analysis of blood flow is explored. The variable time-frequency resolution of wavelet 

analysis makes wavelets well suited to the analysis of Doppler blood flow signals: a 

compressed wavelet to analyse the rapid time varying frequency components around 

the systolic peak and a dilated wavelet to analyse the slower frequency changes during 

diastole. In addition, the wavelet has similarities with the shape of the Doppler 

waveform and offers compact support which is ideal for modelling the nonstationary 

characteristics of the received Doppler signal. Before looking at specific applications 

of wavelets to Doppler ultrasound the next section describes the wavelet transform.
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8.2.1 Continuous wavelet transform

The continuous wavelet transform (CWT) [8.1] compresses or dilates and

where: W(t) is the wavelet, b is the translation factor and a is the dilation factor. The 

output of the transform shows the correlation between the signal and wavelet as a 

function of time. If the signal and wavelet are a good match then the correlation 

between the signal and the wavelet is high resulting in a large coefficient. The choice 

of wavelet depends upon the application. The concept of scale in the CWT is 

analogous to the inverse of frequency in the FT. When the wavelet is highly 

compressed it extracts the localised high frequency details of the signal. When the 

wavelet is fully dilated the length of the wavelet is more comparable to the length of 

the signal and therefore it extracts the low frequency trends of the signal.

Figure 8.2(a) shows a chirp signal with a sinusoid and an instantaneous spike 

superimposed. Figure 8.2(b-c) shows the results of analysing the signal using the 

STFT and the CWT respectively. The results of the Fourier analysis illustrate the 

trade-off between time and frequency resolution. If the sinusoid is going to be 

resolved with any degree of accuracy then the time resolution of the chirp and the 

localisation of the instantaneous spike are compromised. If the time resolution is 

improved then the frequency resolution becomes inadequate to resolve the sinusoid 

and the chirp. The CWT pinpoints the instantaneous spike and shows the sinusoid and 

chirp. The CWT also shows the oscillatory behaviour in the time-scale diagram, this 

corresponds to the relative phase difference between the wavelet and the signal. The 

CWT does not resolve sinusoidal components as well as Fourier analysis, its ability to 

localise transient events however, makes it an attractive alternative to the STFT.

translates a ‘mother’ wavelet and correlates it with the signal at all times and scales.

CWT{a,b)= ] — 1
va  V a J

[ 8.1 ]
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Figure 8.2 (a) Signal composed of a chirp with a sinusoid and an impulse 

superimposed, (b) STFT analysis using a sliding 128-point FFT. (c) CWT 

decomposition. Scale is the inverse of frequency.
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The CWT is computationally intensive and the amount of information that the 

transform provides is extremely large. A more efficient routine is the discrete wavelet 

transform (DWT) which looks at the signal at specific dilations of the mother wavelet. 

The efficiency of the DWT is better than that of the FFT. To understand the DWT and 

to see where wavelets come from it is necessary to introduce the concept of filter 

banks which are the discrete equivalent of wavelets.

8.2.2 Filter banks and subband coding

A single filter has a particular frequency response and after passing a signal 

through the filter some of the information within the signal is lost. A single filter 

cannot be used to reconstruct the original signal from the filtered output since once the 

information has been lost it cannot be retrieved. If two filters are used, one which 

retains the low frequency information and the other which keeps the high frequency 

information they can be designed in such a way that, together, they contain all the 

original information within the signal. The outputs from these two filters can be 

combined to reconstruct the original signal. The set of filters used to split the spectral 

information in such a way is known as a filter bank. It is possible to extend this 

concept to further decomposition of the signal into finer and finer frequency bands. In 

order to manage the data that is output from the filters it is necessary to downsample 

the outputs from the filters otherwise as the signal is passed through each level of the 

filter bank the amount of data is doubled. Generally the idea is to represent the signal 

more efficiently. If the signal is decomposed n times it is not beneficial to have T  

times more data than the original signal. For a set of filters to act as ‘perfect 

reconstruction filters’ it is necessary that they have special characteristics since real 

filters do not have perfect cut-off frequencies and therefore there is some overlap 

between adjacent filters in order to retain all the information. The filters that were 

developed in the early 1980’s to perform this task are known as quadrature m irror 

filters (Strang and Nguyen, 1996).
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8.2.3 Discrete wavelet transform

The discrete wavelet transform is derived from these filters and is based on a 

multiresolution decomposition of the signal to give a coarser and coarser 

approximation to the original signal by removing high frequency detail at each level 

of the decomposition as illustrated in figure 8.3(a). The original signal can be 

reconstructed by adding together the approximation and detail at the lowest level to 

reconstruct the approximation at the higher level, this can be repeated until the 

original signal is retrieved. In order to reconstruct the original signal it is therefore 

only necessary to keep the lowest level approximation and the detail coefficients at 

each level. The time-frequency representation of the decomposition is given in figure 

8.3(b). It can be seen that the low frequency trends are well localised in frequency and 

the high frequency components are well localised in time but not in frequency.

S I G N A L

(a)
frequency

(b)
time

Figure 8.3 (a) DWT decomposition of a time varying signal, (b) Time-frequency 

representation using the DWT.

8.2.4 Wavelet packet analysis

Wavelet packet analysis is an extension of the DWT and it turns out that the 

DWT is only one of the many possible decomposition’s that could be performed on 

the signal. Instead of just decomposing the low frequency component of the filter 

bank each time it is possible to decompose the high frequency component as well. It is

8-6



Chapter 8 - Wavelets

therefore possible to subdivide the whole time-frequency plane into different time- 

frequency tilings as can be seen from figure 8.4.

SIGNAL

ADAAAA

frequency

time

(a) (b)

Figure 8.4 (a) Total decomposition of a time varying signal using wavelet packet 

analysis, (b) Time-frequency representation for each level of the decomposition.

The advantage of wavelet packet analysis is that it is possible to combine the 

different levels of decomposition in order to achieve the optimum time-frequency 

representation of the original signal.

8.3 Application of the wavelet transform to real signals

The concept of being able to totally decompose a signal and then perfectly 

reconstruct the signal again is nice, but it is not particularly useful by itself. In order to 

make use of this tool it is necessary to manipulate the wavelet coefficients to identify 

characteristics of the signal that were not apparent from the original time domain 

signal. The next section outlines how the wavelet transform could be used to analyse 

Doppler ultrasound signals: Firstly, the extraction of a time-frequency sonogram of
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the Doppler signal using wavelet analysis compared to the conventional FFT is 

considered. Secondly, wavelets are used in the post-processing of the sonogram to 

extract information that can be used for clinical diagnosis.

8.3.1 Time-frequency analysis of the Doppler signal

Conventional time-frequency analysis of the Doppler signal involves 

processing the signal using data frames of fixed duration. The maximum size of the 

data frame is dependent upon the stationarity of the signal. The Doppler signal is non- 

stationary and therefore a time frame of < 20 ms is used for analysis. If a longer time 

frame is used then the transient behaviour of the blood flow becomes blurred. Figure 

8.5(a,b) shows typical FFT sonograms for two Doppler signals, the first signal is taken 

from the internal carotid artery and the second from the femoral artery. The 

sonograms show the periodic heartbeats and within each beat it is possible to visualise 

the systolic and diastolic flow as the heart contracts and then relaxes. The same 

signals were analysed using wavelet packet analysis (db3 wavelet, see figure 8.1), the 

results are shown in figure 8.5(c,d).

From figure 8.5 it can be seen that the time-frequency decomposition using 

wavelet packet analysis produces a representation of the signal that resembles the 

STFT sonogram. The difference between the sonogram obtained using the STFT and 

the wavelet packet time-frequency representation is that wavelet packet analysis does 

not analyse the signal with a fixed resolution as is the case for the STFT. Instead a 

flexible time window is used which enables efficient modelling of the signal based on 

a minimum energy criterion which allows optimisation of the time-frequency tiling. 

The wavelet decomposition coefficients contain all the energy of the original signal 

and therefore the time-frequency decomposition can be used to perfectly reconstruct 

the original signal, something which cannot always be achieved using the STFT. The 

low energy coefficients can be removed from the signal using thresholding techniques 

to improve the quality of the time-frequency decomposition since they do not 

contribute a significant amount to the original signal.
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Figure 8.5 Time-Frequency decomposition o f Doppler ultrasound signals, (a) STFT - 

internal carotid artery, (b) STFT - femoral artery, (c) Wavelet packet analysis - 

internal carotid artery, (d) Wavelet packet analysis - femoral artery.
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Doppler ultrasound systems process the acquired data in real-time. This is 

done using the FFT by processing the data in frames that comply with the stationarity 

of the signal. For real-time wavelet packet analysis it would be necessary to split the 

data into longer frames. This is because wavelet packet analysis performs a total 

decomposition on a signal so that all the possible time-frequency representations are 

available. An algorithm is used to find the optimum combination of these levels to 

produce the sonogram. The computational requirements for producing a time- 

frequency representation using wavelet packet analysis are far greater than for the 

conventional FFT, therefore the implementation of real-time wavelet packet analysis 

would not be straightforward.

The effect of analysing such a large time segment is that the memory 

requirements for storage of the decomposed data becomes extremely large. The results 

shown in figure 8.5 were generated using MATLAB on an IBM PC-computer with 20 

Mb RAM. It was only possible to obtain 5 levels of decomposition which is 

equivalent to 32 (25) frequency bins. This resolution is 4 times worse than that 

available using the STFT and therefore it is not possible to make a direct comparison 

between the two time-frequency representations.

Despite the practical limitations imposed by wavelet analysis the results show 

interesting features which warrant further investigation. Wavelet packet analysis 

provides a novel way to model the Doppler signal compared with conventional 

spectral estimators such as the STFT. As far as we know this is the first time that 

wavelets have been used for the joint time-frequency analysis of Doppler signals.

8.3.2 Post-processing of the time-frequency decomposition

Following time-frequency analysis of the Doppler signal a clinical diagnosis is 

made to determine whether or not the vessel is diseased. This decision is based on a 

subjective study of the sonogram and further quantitative analysis. One kind of 

quantitative analysis is performed using frequency envelopes extracted from the 

sonogram. The envelopes are normally obtained by selecting a threshold to reject low
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level noise components. Figure 8.6 shows the extracted mean and maximum 

frequency envelopes for the two examples over a number of cardiac cycles.

8.3.3 Denoising the frequency envelopes
The raw frequency envelopes extracted from a sonogram are usually corrupted

by noise (figure 8.6) due to statistical instability in the frequency spectrum. To use the 

envelopes for quantitative analysis it is necessary to remove the noise to identify the 

underlying trends. Conventionally a 5-point moving average filter is used to denoise 

the envelopes as illustrated in figure 8.6. Discrete wavelet analysis can be used to 

clean the noisy envelopes. A signal can be represented efficiently using a relatively 

small number of wavelet coefficients assuming an appropriate selection of wavelet is 

made. It is therefore possible to discard small wavelet coefficients that do not contain 

a significant amount of information about the overall signal. The coefficients that are 

kept are used to reconstruct the original signal. Figure 8.6 shows the effect of 

denoising the raw envelopes using this technique. This wavelet-based adaptive 

approach has advantages over a fixed filter because the wavelet denoising process 

does not indiscriminately attenuate specific frequencies. Wavelet denoising assumes 

that the signal-to-noise ratio (SNR) is significantly large, that is, the noise coefficients 

are small compared to the coefficients used to model the signal. This seems to be the 

case for the removal of noise from the frequency envelopes as figure 8.6 shows.

8.3.4 Compression
Computer storage of patient data is invaluable since data can be transferred

electronically in a few seconds. Efficient compression of data ensures minimal storage 

space and quicker data transfer. At present storage of Doppler ultrasound recordings is 

made by producing a grey scale hard copy of several cardiac cycles. By using 2-D 

wavelet image compression it may be possible to digitally store recorded sonograms 

in a patient database for future reference using much less storage space. High 

compression ratios have been achieved using wavelets for image compression and the 

FBI are using wavelets to reduce storage space required to store their database of 

fingerprints.

8-11



Chapter 8 - Wavelets

150

100

100 200 300 400 500 600 700 800 900 1000

150

100

100 200 300 400 500 600 700 800 900 1000

150

100

100 200 300 400 500 600 700 800 900 1000

(a) Top: Raw envelopes. Middle: 5-point MA filtered envelopes. Bottom: Wavelet
denoised envelopes.

150

100

100 200 300 400 500 600 700 800 900 1000
150 T

100

100 200 300 400 500 600 700 800 900 1000
150

100

100 200 300 400 500 600 700 800 900 1000

(b) Top: Raw envelopes. Middle: 5-point MA filtered envelopes. Bottom: Wavelet
denoised envelopes.

Figure 8.6 Envelopes extracted from the STFT-sonograms. (a) Internal carotid artery, 

(b) Femoral artery.
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8.4 Conclusions

Wavelet analysis provides an interesting alternative to conventional Fourier 

methods. The compact support inherent in wavelets makes them an attractive choice 

for time-frequency analysis. Fourier analysis has a fixed time-frequency resolution. 

This means that there is a trade-off between the resolution of transient events and 

underlying trends in the signal. Wavelets are better suited to resolving transient events 

since wavelet analysis incorporates the concept of scale into the equation, which gives 

the analyst the flexibility to look at the time domain signal at different resolutions: A 

compressed wavelet for analysing high frequency detail and a dilated wavelet for 

detecting underlying trends.

Wavelet packet analysis of the Doppler signal can provide a time-frequency 

decomposition similar to that of the FFT. The advantage of wavelet packet analysis 

over the FFT is the ability to optimise the time-frequency decomposition of the 

sonogram. The computational overheads for wavelet packet analysis are far greater 

than for FFT analysis of the Doppler signal making real-time implementation difficult.

The DWT can be used to denoise the frequency (blood velocity) envelopes 

extracted from the sonograms by manipulating the wavelet coefficients. Large wavelet 

coefficients contain significant information about the signal while small coefficients 

are expendable. If a signal is contaminated with noise and the SNR is high, then it is 

possible to remove the noise by implementing a threshold to remove small 

coefficients.

8.5 Summary

This chapter has presented the fundamental ideas behind continuous and 

discrete wavelet analysis. Examples of the application of wavelets to Doppler 

ultrasound were given and potential areas for further research have been outlined. This 

concludes the various aspects of the research that has been carried out. The next 

chapter provides a summary of all the key-points that have been raised during the 

course of this project.
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This thesis can be separated into three distinct sections: In the first section 

real-time frequency analysis was addressed and the implementation of a real-time 

system was discussed; The second section extensively examined the relationship 

between classical and modem spectral estimators for analysis of simulated and clinical 

Doppler signals; The third section looked at the wavelet transform which is a 

relatively new signal processing tool in the signal analyst’s toolbox. The potential of 

using the wavelet transform in the field of diagnostic vascular ultrasound was 

investigated and suggestions as to its potential areas of application were put forward. 

This chapter serves to bring together the different aspects of the research that have 

been covered during the course of this research project and to highlight the key points 

that have been observed in the preceding chapters.

In chapter 3 a real-time system was developed using a DSP32C DSP board 

combined with a PC 486 DX2 66 MHz to compare the implementation of the FFT and 

the AR algorithms. The system mixed forward and reverse flow signals onto a single 

signal centred around a suppressed programmable carrier frequency via an 

independent analogue heterodyne mixer unit. The output was displayed on the 

computer screen in a sonogram format. Initially the FFT system was used to contrast 

the speed of implementing the system in ‘DSP32C assembly’ or *C\ It was found that 

the assembly routines were several times quicker than the same routines written using 

‘C’. The real-time FFT analyser developed in ‘C’ was however sufficiently quick to 

enable more sophisticated algorithms to be implemented. The development time for 

programs written in "C’ is much quicker than for programs written in ‘DSP32C 

assembly’ and therefore the AR routines were written in ‘C’. The system had a 

variable sampling frequency that could be selected by the operator and included 5.12, 

10.24, 20.48 and 40.96 kHz sample rates. It was found that if a model order of 8 was 

used then the system could operate in real-time at any of the sampling frequencies. 

For a higher model order (10 or 12) real-time operation was compromised at the 

maximum sampling frequency. If real-time operation is desired for a model order
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greater than 8 it would be necessary to develop some of the functions in DSP32C 

assembly.

Chapter 4 looks at how the joint time-ffequency analysis of the Doppler signal 

can be used to aid in the diagnosis and the quantification of stenosis. The methods 

used in this research have been based around the spectral broadening of the frequency 

spectrum around the systolic peak. The measure of spectral broadening was estimated 

using the spectral broadening index (SBI). In chapter 5 a post-processing system was 

developed to enable calculation of the SBI for a series of sequentially recorded 

heartbeats. A threshold was used to reject low level noise and to enable the extraction 

of frequency envelopes from which the SBI could be computed. Two types of 

threshold were examined, the simple global threshold was found to create ambiguity 

in the choice of threshold since there was no plateau in the SBI versus threshold plot 

where the SBI could be considered constant. This was found to be due to the trends in 

the mean and maximum frequency envelopes and was consistent with results found in 

other published research. A second threshold was used which was set at a level 

relative to the maximum component in the individual frequency estimates. The 

threshold was tested at -3, -6, -9, -12, -15, -18 dB levels. The optimum threshold is 

defined as being the level at which the background noise is rejected with maximum 

retention of the true Doppler signal. The threshold was tested using sonograms 

generated using the FFT and AR algorithms, it was found that the AR spectra were 

more robust than the same spectra obtained using the FFT. For comparison of the 

relative magnitudes of the SBI estimated from the FFT and AR sonograms the 

threshold was set at the -6 dB level.

In chapter 6 the behaviour of the spectral broadening index (SBI) derived from 

wide band spectra obtained using autoregressive modelling (AR) compared to the SBI 

based on the fast Fourier transform (FFT) spectra was investigated. Simulated 

Doppler signals were created using white noise and shaped filters to analyse spectra 

typically found around the systolic peak and to assess the magnitude and variance of 

AR and FFT-SBI for a range of signal-to-noise ratios. The results of the analysis show 

a strong correlation between the indices calculated using the FFT and AR algorithms.
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Despite the qualitative improvement of the AR spectra over the FFT the estimation of 

SBI for short data frames is not significantly improved using AR.

Chapter 7 investigates the behaviour of the spectral broadening index (SBI) 

derived from spectra obtained using autoregressive (AR) modelling compared to that 

of SBI based on fast Fourier transform (FFT) analysis of clinical Doppler ultrasound 

scans. Doppler signals from internal carotid arteries of patients with normal and 

diseased vessels with up to 80% stenosis were analysed. A threshold at -6 dB of the 

maximum magnitude component of each individual spectrum was implemented to 

reject low-level noise. The SBI was obtained using the maximum and the mean 

frequency envelopes extracted from the sonogram. A qualitative improvement in both 

the appearance of the AR sonograms and the shape of the individual AR spectra was 

noticeable. The AR approach consistently produced narrower spectra than the FFT 

and the shapes of the frequency envelopes derived from the AR sonogram and the 

FFT sonogram were also rather different. Despite these differences a strong 

correlation was observed between the value of the FFT-based SBI and the AR-based 

SBI. The mean value of the FFT-SBI is larger than that of the AR-SBI and the 

variance of the FFT-SBI is smaller than that of the AR-SBI based on a set of at least 

20 sequentially recorded heartbeats. It was established that, for all cases, a statistically 

significant value for SBI could be obtained using 20 heartbeats if five spectra around 

the peak systole were used to estimate the SBI of an individual heartbeat.

The results obtained using the simulated data and real clinical data showed a 

close correlation in the comparison of the relative magnitudes of the FFT-SBI and the 

AR-SBI.

Chapter 8 gives an introduction to wavelets and illustrates their application 

with two examples. The wavelet transform provides the analyst with a scaleable time- 

ffequency representation of the signal, which may uncover details not evidenced by 

conventional signal processing techniques. The signals used in this research were 

Doppler ultrasound recordings of blood flow velocity taken from the internal carotid 

artery and the femoral artery. Firstly, it was shown how wavelets could be used as an
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Chapter 9 - Conclusions

alternative signal processing tool to the short-time Fourier transform for the extraction 

of the time-frequency distribution of Doppler ultrasound signals. Secondly, wavelet- 

based adaptive filtering is implemented for the extraction of maximum blood velocity 

envelopes in the post processing of Doppler signals.

9.1 Future work

The real-time system was developed on a DSP board that has been around 

since 1988. There is scope to improve the existing algorithms by replacing the ‘C* 

programs with programs written in ‘DSP32C assembly’. Alternatively the system 

could be implemented using a faster chip in order to allow complete real-time analysis 

of the Doppler signal across the range of expected Doppler shifts.

In chapter 5 an automatic heartbeat separation algorithm was described, the 

results of the algorithm showed limited success for very noisy signals and therefore 

more work is needed to produce a totally automatic and robust algorithm.

The results in this research for the comparison of clinical data used data from 

recordings with a small sample volume. It has been noted in several papers that mild 

stenosis do not have a dramatic affect on the whole velocity profile and only affect the 

flow patterns close to the vessel wall. It would therefore be interesting to compare the 

results of the small sample volume recordings with those taken using a large sample 

volume.

The programs developed during the course of this research have all been MS 

DOS based applications. The implementation of a Windows based interface would 

improve the graphical user interface.

This research has also investigated the possibility of applying wavelets to 

diagnostic vascular ultrasound. Some potential applications have been suggested in 

this research which warrant further research to investigate the benefits of the wavelet 

transform. In particular the investigation of the compression of the Doppler sonogram.
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Chapter 9 - Conclusions

Some systems only keep a hard copy of the examination which allows a limited 

number of heartbeats to be recorded. A few commercial systems store the results onto 

disk for future examination. Wavelets have been found to be particularly good at 

compressing one dimensional signals and two dimensional images and therefore 

efficient storage of recorded sonograms could be used to help provide a manageable 

patient database for progressive assessment of arterial disease.
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Appendix 1

COMPUTER-BASED SPECTRUM ANALYSER

The following section describes the different options that were incorporated into the 

program to perform different types of analysis:

• Input and output filenames - The operator inputs the name of the input file and the 

type of data that is stored in the file (integers or floating-point numbers) and 

specifies the output filename to which the results are going to be stored.

• Data frame length - The number of samples used in each frame to estimate the 

frequency spectrum.

• Spectral estimation algorithm - Four algorithms were implemented these are 

described in more detail below:

Fourier-based spectral estimation

1. Fast Fourier transform

0 FFT size - Select size of FFT this can be larger than the data frame 

size to allow for zero padding.

AR-based spectral estimation

(I) Determination o f  AR coefficients

(II) Estimation o f  PSD using coefficients in (I)

2. (I) Yule-Walker (II) PSD obtained using equation [2.12].

3. (I) Burg (II) PSD obtained using equation [2.12].

4. (I) Yule-Walker (II) PSD obtained using equation [2.21].

0 Model order - Select model order of AR process.

0 Extrapolation - Number of lags that the ACS should be extrapolated 

up to before mirroring.



• Anti-leakage window - Either a rectangular or a Hamming window can be chosen.

• Averaging - Number of data frames that should be averaged before displaying the 

output.

• Overlap - The number of samples that the data frames should be overlapped by.

‘O’ - The consecutive data frames are side by side and have no overlap.

‘Positive’ - The consecutive data frames have a gap between them.

‘Negative’ - The consecutive data frames overlap.

=> Increment = overlap + data frame size.

Display results - Each spectrum that is computed can be displayed on the screen along 

with the data frame and the zero padded signal or in the case of the AR functions 

the extrapolated ACS can be viewed.

Format of the input and output files:

• Binary input files - data can be either 16-bit integers or 32-bit floating-point 

numbers.

Optional 4-byte header contains:

16-bit unsigned integer = Sampling frequency 

16-bit integer = Heterodyne carrier frequency

• Text files - No header.

NB. Due to file manipulation text files cannot be used if overlapping data frames are 

required.

Output files:

Data is stored in a binary file as 32-bit floating-point numbers.

A 6-byte header is generated automatically if a header was included with the 

input file, the format of the header is as follows:
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16-bit integer - representing the DSP function used:

0 : Fast Fourier transform

1 : Yule-Walker, PSD obtained using equation [2.12]

2 : Burg, PSD obtained using equation [2.12]

3 : Yule-Walker, PSD obtained using equation [2.21] 

16-bit unsigned integer = Sampling frequency

16-bit integer = Heterodyne carrier frequency
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A SIMPLE MODULATOR AND MIXER FOR DIRECTIONAL DOPPLER SIGNALS

F.S. Schlindwein1, P.I.J. Keeton1 and D.J. Dryden1

ABSTRACT -- This technical note describes the design of a simple instrument 

that conveniently modulates and mixes the forward and reverse components 

outputs from a Doppler velocimeter. The output is a single signal around a 

programmable carrier frequency. A graphical explanation of the way the circuit 

works is provided, as well as the complete circuit diagram. The instrument is 

extremely simple to build and is a very useful tool in a vascular laboratory.

Key words: Doppler velocimeters, Ultrasound, Directional Doppler, Blood flow, 

Instrumentation, Modulator

INTRODUCTION

The radio frequency signal received by a Doppler velocimeter contains information of 

velocities towards the probe and away from the probe. Without sacrificing generality this kind 

of signal can be written as

S(t) = A 0cos(a>0t + <|>0) + A f cos(co0t + coft + <|>f) + A r cos(co0t - c o rt + (t>r) (1)

where the subscripts refer to the transmitted base frequency (0), the forward component (f)

and the reverse component (r). The transmitted frequency f0 = 1S or<̂ er 2 to 20

MHz. Let us consider a signal with forward and reverse components whose amplitude 

spectral density is that shown in figure 1, where the lower hump corresponds to the 

components cor.

1 University of Leicester, Department of Engineering, University Road, Leicester LEI 7RH, 

England, UK, e-mail: fssl@le.ac.uk
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Amplitude

f frequency0o

Figure 1. Radio frequency signal received by a CW Doppler velocimeter.

In the past, a simple coherent demodulator using the same angular frequency co0 from 

the master oscillator was applied to shift the signal S(t) down in frequency and produce an 

audio signal output, but this does not differentiate between movements towards and away 

from the transducer assembly because upper and lower sidebands of the forward and reverse 

components are brought to the same base audio band as seen in figure 2 (Wells, 1969).

Amplitude

2 f frequency

Figure 2. A simple coherent demodulator does not produce directional information because 

the upper and lower side bands are brought to the same base frequency band.

Nowadays most Doppler velocimeters are directional, that is, they provide separate 

information about forward flow and reverse flow. The most widely used technique of 

directional demodulation is quadrature phase detection, which results in two output audio 

signals, D(t)’ and Q(t)’ that contain the directional information in the relative phase between 

them. For a situation where flow is only towards the probe the direct signal D(t)’ lags the 

quadrature signal Q(t)’ by n il, while for flow that is only receding from the probe it is the 

quadrature signal that lags the direct signal by n il  (Evans et al., 1989). Quadrature phase
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detection may be followed by phase domain processing (still in the Doppler velocimeter) 

resulting in the complete separation of the forward and reverse components into two separate 

signals F(t) and R(t) as shown in figure 3.

Directional Doppler velocimeters produce outputs either in phase quadrature form (as 

the Parks 806A does) or completely separated as a forward and a reverse component (as the 

Dopplex II does). Although these two kinds of output are mathematically equivalent and one 

can be transformed into the other, the best kind of output to handle is the one that uses 

separate forward and reverse signals because it can be recorded onto magnetic tape directly. 

This is not straightforward with quadrature signals because the process of recording and 

playing back the signal introduces different phase shifts to the two channels, corrupting or 

even completely destroying the directional information contained in quadrature signals.

The digital processing of the Doppler signals either in quadrature form or in the forward 

and reverse form requires two analogue to digital channels capable of sampling the signals at 

frequencies up to around 40 kHz. In the case of quadrature signals the traditional multiplex- 

sample/hold-A/D converter architecture of most commercial A/D boards for personal 

computers is not convenient. Simultaneous sampling is much preferred because the alternative 

procedure of dealing with the known phase shift introduced by the multiplexed sampling in 

the post-processing stage is quite awkward. Analogue to digital converter boards that allow 

simultaneous sampling are much more expensive than the traditional ones.

A single channel output is particularly well suited to spectral analysis since only one 

A/D channel and one spectrum analyser are required to deal with bi-directional flow. The 

instrument described here achieves exactly this. The design goal is: We want to mix the 

forward and reverse components around a programmable carrier of angular frequency coc, 

subtracting the undesired side bands, to produce a single analogue signal that contains the 

forward spectrum at frequencies above the carrier, say at (coc + cof) for an individual 

component of angular frequency cof and the reverse spectrum at frequencies below the carrier, 

say at (ooc - cor) for a reverse component of angular frequency cor , as explained below.
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DESIGN CHARACTERISTICS - A GRAPHICAL APPROACH

The description of the circuit can be entirely derived from a very simple graphical 

analysis of the frequency representation of the input signals and the required output. It 

follows.

The forward and reverse signals can be represented as in figure 3 while the required 

output is as in figure 4. The procedure to obtain that is easily followed referring to figures 5 

and 6. First, both the forward component signal, F(t), and the reverse signal, R(t), are 

modulated by the carrier, H(t) = cos(coct). The complete circuit of the crystal controlled sine 

wave generator that produces the carrier signal is shown in figure 9. The resulting signal from

A  F(f)

frequency

R(f)

frequency

Figure 3. The frequency representation of the forward and reverse spectra.

Amplitude

_C0c 0  ©c frequency
Figure 4. The required output from the instrument: Forward and reverse components

modulated about a programmable carrier frequency coc and mixed to produce a single signal.

2-5



a)

F(f)

frequency

0 frequency-co, co,c c

frequency-co, co,0c c

Figure 5. The forward component (a) is modulated (b) and then high-pass filtered (c).

a)

b)

/ 'R(f)

^ • A
0 frequency

/

1

®C 0

/

co„ 0

c)

COc frequency

frequency

Figure 6. The reverse component (a) is modulated (b) and then low-pass filtered (c).

the modulation of the forward component is high-pass filtered to remove the lower side band, 

while the signal resulting from the modulation of the reverse component is low-pass filtered
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to remove the upper side band. Finally the filtered signals are added producing the required 

output. The diagram with the modulators, filters and adder is shown in figure 7 and the 

complete circuit in figure 10.

The result of adding the signals represented in figure 5 c and 6c is obviously the required 

signal of figure 4.

F(t)

output

R(t)

Adder

Modulator

Modulator Low-pass filter

High-pass filter

Figure 7. Block diagram of the independent modulator and mixer.

The frequency of the carrier signal is programmable via a 3-bit BCD switch to be 500 

Hz, 1, 2, 4, or 8 kHz. The setting of this BCD switch is read by an IBM-compatible personal 

computer using the parallel printer port programmed as an input. The frequency selection 

switch, represented by T l, T3 and T4 in figure 9, produces the six input bits labeled ‘FREQ’ 

after the EPROM 2732. These are used as input codes to the filters. Both the high-pass and 

the low-pass filters are implemented using switched capacitor filter IC chips - two 7th order 

Elliptical modules in cascade for each, the low-pass implemented using the American 

Megatrends Incorporated S3528 and the high-pass, the S3529 as shown in figure 10. For the 

IC filters the specified pass band ripple is only 0.05 (typ.) per stage, the stop band attenuation 

is better than 51 dB per stage (102 dB total) for frequencies higher (for the low-pass) than 1.3 

times the cut-off frequency. The phase is non-linear around the cut-off frequency - and
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therefore the group delay is not flat, but this is of little consequence for the kind of processing 

we perform on the Doppler signals: We are interested in the amplitude spectrum only; phase 

distortion is not relevant. The choice of the carrier frequency automatically reprograms the 

cut-off frequencies of both filters. It is left to the operator to ensure that the carrier frequency 

is larger than the maximum frequency component contained in the reverse signal.

CONCLUSION

The circuit described performs its function well and produces a clean signal as shown in 

the amplitude sonogram of figure 8. It has been in use in our research laboratory for over two 

years. We feel that the graphical description given here is of value for teaching the subject and 

might even help designers with similar problems. The full diagram of the circuit is given in 

figures 9 and 10. A critical part of the adjustments for the circuit is the carrier suppression. 

This was performed using a spectrum analyser, measuring the output of the modulators IC2 

and IC9 (Motorola M CI496) and carefully adjusting the multi-turn potentiometers VR1 and 

VR2 of the circuit of figure 10.

DIGITAL SIGNAL PROCESSING OF BLOOS ftOU USING DOPPLER ULTRASOUND

5120

■A_i

Figure 8. The sonogram of a bi-directional Doppler signal processed by the instrument 

together with the results of the detection of the individual heart beats. The grev-scale for the

amplitude sonogram is linear.
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Appendix 3

A STUDY OF THE SPECTRAL BROADENING OF SIMULATED DOPPLER 

SIGNALS USING FFT AND AR MODELLING

P.I.J. Keeton, F.S. Schlindwein
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A STUDY OF THE SPECTRAL BROADENING OF SIMULATED DOPPLER 

SIGNALS USING FFT AND AR MODELLING

Abstract —  Doppler ultrasound is used clinically to detect stenosis in the carotid 

artery. The presence of stenosis may be identified by disturbed flow patterns distal to 

the stenosis which cause spectral broadening in the spectrum of the Doppler signal 

around peak systole. This paper investigates the behaviour of the spectral broadening 

index (SBI) derived from wide band spectra obtained using autoregressive modelling 

(AR) compared to the SBI based on the fast Fourier transform (FFT) spectra. 

Simulated Doppler signals were created using white noise and shaped filters to 

analyse spectra typically found around the systolic peak and to assess the magnitude 

and variance of AR and FFT-SBI for a range of signal-to-noise ratios. The results of 

the analysis show a strong correlation between the indices calculated using the FFT 

and AR algorithms. Despite the qualitative improvement of the AR spectra over the 

FFT the estimation of SBI for short data frames is not significantly improved using 

AR.

keywords: Doppler ultrasound, carotid stenosis, autoregressive model, spectral 

analysis, spectral broadening.
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INTRODUCTION

The ‘fast Fourier transform’ (FFT) is the most commonly used digital signal 

processing tool for estimating the spectrum of Doppler ultrasound signals. This is due 

to the computational efficiency and widespread availability of FFT algorithms. It has 

been suggested however that the FFT is not necessarily the best tool for analysing 

Doppler blood flow signals. Kitney and Giddens (1986) stressed the better 

performance on spectral tracking and spectral resolution of autoregressive (AR) 

spectral estimation when short frames are used. Kaluzynski (1987) reported the 

advantages of using AR modelling for the analysis of pulsed Doppler signals 

especially for short data lengths. Vaitkus, Cobbold and Johnston (1988) addressed the 

good spectral matching ability of the AR modelling approach using a simulated 

stochastic stationary Doppler signal with a known theoretical spectrum as a reference 

test sequence. They also added white noise in order to test the performance of six 

alternative spectral estimation methods with signals at various signal-to-noise ratios 

(SNRs).

Accurate extraction of Doppler shifts using current signal processing 

algorithms is extremely difficult since Doppler ultrasound signals are highly non- 

stationary, this is due to the pulsatile flow through the vessel. The stationarity of the 

signal is further reduced if the flow pattern is disturbed as a result of an obstructed 

vessel. If the blood flow over the cardiac cycle is to be observed, it is necessary to use 

time frames that are no longer than the length of time that the signal can be considered 

stationary. If longer time frames are used then the frequency spectra will be smeared 

and the consecutive frames will not provide a detailed indication of how the velocities 

within the vessel are changing with respect to time. The data frames are typically 

shorter than 20 ms (Evans et al. 1989, Nichols and O’Rourke 1990) and this limits the 

signal duration that can be used to estimate the frequency spectrum.

For the analysis of stochastic signals the FFT approach is known to have an 

inherent inability to produce stable spectra. Vaitkus, Cobbold and Johnson (1988) 

results demonstrated that the FFT approach has the largest variance for all frequency
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values when compared to five other spectral estimation techniques at an SNR of 20 

dB using 20 realisations of 256 samples of the simulated stationary Doppler spectrum. 

There is also a trade-off between frame acquisition rate and frequency resolution. For 

very short time segments the FFT spectra will have only a few frequency bins. Zero 

padding can be used to interpolate between the sparse points but this offers no 

improvement in the underlying spectral resolution. Another problem with the Fourier 

based spectral estimation approach is spectral leakage. This can be improved with 

anti-leakage windows, but only at the expense of further reduction of spectral 

resolution. The autoregressive spectral estimation produces more stable spectra from 

short segments of data and also produces spectra that have good spectral matching 

ability, “closely approximating the theoretical spectrum with good statistical 

consistency” (Vaitkus, Cobbold and Johnston 1988). The AR approach does not 

assume periodicity, offering an interesting alternative to FFT-based techniques for the 

analysis of Doppler signals of disturbed blood flow signals such as the kind of signals 

collected at post-stenotic sites.

This study is divided into two parts, firstly the relationship between the spectra 

obtained using FFT and AR was studied using a diagnostic parameter for simulated 

symmetrical wide band signals using data frames containing 64 and 256 samples. 

Secondly, three filters were used to simulate Doppler spectra typically found around 

the systolic peak which represented signals taken from a healthy carotid artery and 

signals that represented diseased carotid arteries. Gaussian noise was added to the 

simulated Doppler signals over a range of SNRs. The accuracy and robustness of the 

parameter used to measure spectral broadening for both the FFT and AR spectra were 

compared for a range of signal to noise ratios.

Spectral broadening index (SBI)

The spectral broadening index (SBI) has been used as the parameter 

traditionally associated with the measurement of flow disturbances that occur with 

stenosis (Harward et al. 1986, Labs and Fitzgerald 1992). Kaluzynski and Palko

(1993) studied the behaviour of SBI as well as other indices with different conditions 

of spectral analysis for simulated signals. In this study SBI was calculated from both
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the FFT and the AR-based spectra. There are several definitions of SBI, the one used 

in this work is given by:

f  -  fJ  m ax  J mean I" 1 1~ f  L J
J  m ax

where = the maximum frequency component in the spectrum above a threshold 

used to reject low level noise components and f nKan = the average mean frequency of 

the spectral components that exceed this threshold.

The SBI is calculated by selecting a threshold to reject low level noise 

components as can be seen in figure 1. It has been observed by Schlindwein et al.

(1994) that if a simple threshold is implemented then there is no obvious plateau on 

the SBI vs. threshold plot where the SBI can be considered constant. Figure 2 shows 

the SBI and the resistance index (RI) (Pourcelot, 1976) for a real Doppler signal. The 

Doppler ultrasound signal was taken from an internal carotid artery. The site of the 

scan was 2 to 3 diameters distal to the stenosis. A continuous wave Doppler 

velocimeter, with a 4 MHz focused 1.5mm beam width, was used for data collection. 

The beam transfixed the vessel axis at an angle of around 50°. It can be seen from 

figure 2 that there is a range of thresholds over which the value of RI is constant but 

the SBI is changing (RI has been included here to illustrate the window where the 

envelopes used to determine the diagnostic parameters fit the signal, i.e. the range of 

thresholds where noise is rejected with minimal loss of the true Doppler signal). The 

reason why there is no plateau for SBI is due to the trends in the mean and maximum 

frequency envelopes: As the threshold is increased, f max decreases and f mean increases. 

The uncertainty caused by the positioning of the threshold results in an inconclusive 

SBI value. This problem can be avoided if a threshold is defined that is set at a pre

determined level with respect to the individual spectra. It is proposed that the 

threshold should be set 6dB below the maximum component of each of the individual 

spectra as suggested by Labs and Fitzgerald (1992). This significantly reduces the 

sensitivity of the parameter to gain and also produces a single estimate of SBI for a 

particular recording.
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If a high grade stenosis is affecting the flow pattern, then it is possible to have 

simultaneous forward and reverse flow components as a result of turbulence. The 

presence of reverse flow is in itself a strong indication of disturbed flow. In this 

situation the definition of SBI as described in [1] is not adequate.

Estimation of the frequency spectrum is further complicated by the presence of 

noise in the signal, it has been reported that typical clinical SNR levels are in the 

range of 0-20dB (Forsberg, 1991). If the signal processing algorithm is not stable in 

the presence of noise then the variance of the spectral estimate is going to be large. 

Parameters derived from these spectra will have a large variance making it clinically 

infeasible to produce a statistically significant estimate since the number of heartbeats 

that need to be sequentially recorded for averaging the SBI will be too large. 

Therefore one of the aims of this paper is to establish the magnitude and variance of 

SBI in the presence of noise at SNRs present in a clinical environment.

METHODS & DISCUSSION

The behaviour of the SBI index obtained from spectral estimates based on the 

FFT approach was compared to that obtained from spectra produced by autoregressive 

modelling. The first algorithm was a straightforward 256 point FFT with no overlap 

and no anti-leakage window. The second algorithm was identical to the first except 

that the data was multiplied by an 256 point Hamming window. The AR algorithm 

was based on an implementation of the Yule-Walker equations using the recursive 

Levinson-Durbin approach with model order 12 as described by Schlindwein and 

Evans (1989). Both techniques produced spectral estimates with 128 frequency bins.

The signals used in this study were generated using filtered Gaussian white 

noise which has a uniform theoretical spectrum from zero to half the sampling 

frequency. The shape of the filter was adapted to generate a series of wide band 

signals with varying bandwidths and frequency response characteristics. The ideal 

shape of the filter was approximated using an 8-order HR Yule-Walker digital filter 

whose coefficients were determined using a least squares fit to the desired filter shape.

3-6



The design was performed using MATLAB. A Gaussian white noise sequence of N  

samples was filtered and the first 256 filtered samples were discarded so that 

transients caused by the filter would not be processed. The impulse response of the 

filter was used to determine the number of samples that should be rejected to ensure 

that the initial transients had decayed sufficiently within the first 256 samples. Figure 

3 shows the frequency response of the symmetrical band-pass filters that were used to 

create the wide band signals.

Comparison of FFT-SBI & AR-SBI

Preliminary tests were carried out to establish the relationship between FFT- 

SBI (with and without an anti-leakage window) and AR-SBI by comparing the 

magnitude and variance of the estimates. The SBI was calculated from 64 separate 

spectral estimates obtained using a 64 point data frame and a 256 point data frame 

using each of the algorithms described above. The results obtained were plotted 

against one another and are shown in figure 4.

Table 1 shows the exact value of the SBI determined from the frequency 

response of each filter and the mean and variance of the SBIs determined from the 

spectral estimates using each of the algorithms described above. It can be seen that for 

the 256 point data frame the mean of the AR-SBI is closer to the true value than the 

FFT estimate and generally the variance of the SBI estimate is smaller for AR than 

FFT. When a data frame of only 64 points is used the variance of all the algorithms 

increases and the average SBI is not so close to the true value.

It can be seen from figure 4 that there is a linear relationship between the SBIs 

calculated using the three separate algorithms. The correlations between the indices 

are shown in table 2 and table 3 for the 64 and the 256 point data frames respectively. 

The correlation coefficients for each of the comparisons exceed the 0.1% value, 

therefore the results are significant at the 0.1% level (p < 0.001). The correlation 

between the FFT (no anti-leakage window) and the AR algorithm is the strongest. The 

correlation between the FFT (anti-leakage window) and the other algorithms gives the 

worst result. From these results it is apparent that the application of an anti-leakage
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window does not improve the estimation of SBI, in fact the variance of the SBI when 

using FFT and an anti-leakage window is larger than that of the SBI obtained for FFT 

spectra with no anti-leakage window.

Effect of AR model order on SBI

When implementing the AR algorithm there is a certain degree of choice in the 

selection of model order for the AR model. There are various techniques for 

establishing the ‘best’ order for a particular process. For Doppler signals Schlindwein 

and Evans (1990) suggested that the AR model order ip) should be around 12. The 

effect of using different model orders was tested using the same symmetrical wide 

band signals that were used to compare FFT-SBI and AR-SBI. Figure 5 shows the 

result of model order on the estimation of AR-SBI. If the model order is less than 

about 8 then there are not enough poles to adequately model the signal and therefore 

the spectral estimates are not representative of the true spectrum (Kaluzynski, 1989). 

If the model order is too high then the filter attempts to model the local fluctuations in 

noise as well as the underlying signal producing a biased estimate (Akaike, 1974). In 

addition the computational time to calculate the autoregressive coefficients using the 

Levinson-Durbin recursive algorithm is proportional to p 2, therefore in real-time 

applications of the AR algorithm it is sensible to avoid unnecessary computation. For 

AR model orders between 10 and 16 the variance of AR-SBI is smaller than that of 

FFT-SBI for all cases.

Estimation of SBIfrom simulated Doppler signals

Having established that the FFT and AR algorithms produce comparable 

indices for symmetrical signals the second stage of the study was to look at the ability 

of the algorithms to produce estimates of SBI in the presence of noise and with 

asymmetric spectra, which are more comparable to Doppler signals. Simulated 

Doppler signals were created using filters modelled on the typical frequency spectra 

obtained around the systolic peak of the cardiac cycle. Three types of filter were used 

to simulate different degrees of spectral broadening. Figure 6 shows the frequency 

responses of the filters that were used to generate the simulated Doppler spectra. The 

first filter has only slight spectral broadening and is characteristic of a healthy carotid
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artery, where plug flow is present. The second two spectra simulate the effect of a 

stenosis which would lead to spectral broadening as the flow would be disturbed. A 

second Gaussian white noise signal was used to add noise to the simulated Doppler 

signals to generate noisy signals with SNR from +10dB down to -lOdB.

The signals were processed using the FFT and AR algorithms using data 

frames of 64 and 256 samples. Figure 7 shows examples of typical spectra obtained 

using each of the algorithms with a data frame of 256 samples, it can clearly be seen 

that the AR spectral estimate is closer to the shape of the filter (refer to figure 6(b)) 

than the FFT spectra. All of the spectral estimators produce spectra with a varying 

degree of ripple in the pass band, figure 8 shows the variance in the spectral estimates 

for the simulated Doppler spectra (figure 6(c)) using AR with a data frame of 256 

points. The results show that although there is a high variance in the pass band, the 

bandwidths of the estimated spectra are stable. The average SBI and the variance was 

estimated from 128 and 32 frames for each signal using the 64 and 256 sample data 

frames respectively. The same 6dB threshold as for the first part of the paper was used 

here to determine SBI from the simulated Doppler spectra. The results are shown in 

figure 9 and figure 10.

It can be seen that for high SNRs the average SBI is constant for both FFT and 

AR. Figure 9 also shows the true SBI for each of the filters, all of the algorithms 

underestimate the actual value, this is particularly true for the 64-point data frame. 

When the 256-point data frame is used the estimate of SBI is better, with AR-SBI 

producing the most accurate result. The variance of the SBIs for the short data frames 

is approximately the same for both the FFT and AR, however the AR performs 

marginally better than the FFT for a 256 point data frame. The ability of the FFT to 

perform as well as AR particularly for the short data frames can be attributed to the 

fact that the SBI is solely dependent upon the rise and fall of the wide band frequency 

spectral estimate, the variance across the pass band does not affect SBI as long as the 

ripple is uniform. Therefore even though the individual spectral estimates for FFT are 

qualitatively worse than AR, when the results are averaged over a number of frames
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the FFT is able to closely match the shape of the filter of figure 6(c). Figure 11 shows 

the averaged spectra for all the algorithms using 64 and 256 samples.

When the level of noise approaches the threshold the SBI starts to increase. 

The SNR at which the SBI starts to drift is dependent upon the bandwidth of the 

simulated Doppler signal. For signals with a high degree of spectral broadening the 

noise will start to cause the SBI to drift at higher signal-to-noise ratios than signals 

with a lesser degree of spectral broadening. This is due to the larger relative amplitude 

of the noise for a broad band signal compared to a narrow band signal. It can be seen 

from figures 9 and 10 that the magnitude and variance of the SBI are stable when the 

SNR is higher than 3dB for the 256-point data frame (7dB for the 64-point data 

frame). Therefore in a normal clinical environment where the SNR is around 10-20dB 

the results of SBI can be considered stable. In a very noisy environment where the 

SNR is approaching OdB the results will be affected by the noise.

CONCLUSIONS

The results of this study have shown that there is a strong correlation between 

the estimates of SBI using both the FFT and AR algorithms. The actual value of SBI 

is more accurate with AR for a 256 point data frame although for both the data frames 

all the algorithms underestimate the true value. The use of an anti-leakage window on 

the FFT algorithm does not reduce the variance of the spectral broadening.

The average SBI for all algorithms is constant in low-level noise, it is therefore 

possible to estimate the SBI in this situation. The variance of the estimates for both 

FFT and AR at high signal-to-noise ratios remains fairly constant until the level of 

noise reaches the threshold where the SBI is measured. When the level of noise is 

comparable to the threshold the variance of the FFT and AR SBIs increase and the 

average SBI starts to increase as a result of noise contamination, as expected. The 

SNR at which the estimate of SBI tends to drift is dependent upon the degree of 

spectral broadening present in the signal. It should be noted that the magnitude of SBI 

tends to approximately 0.5 at low SNR.
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For AR model orders greater than 10 the average value of AR-SBI is stable. 

For AR model orders between 10 and 16 the variance of AR-SBI is smaller than that 

of FFT-SBI.

Despite the fact that the results of this study have shown that there is a distinct 

qualitative improvement in the spectral estimates for AR compared to those of the 

FFT, the ability of the AR model to produce stable spectra does not result in a 

significant improvement in the determination of SBI over the FFT approach. For short 

data frames the FFT is able to produce similar SBI results to AR.
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frame (b) 256 point data frame. True SBI for simulated Doppler spectra indicated 

using the lines I, II & III for the three asymmetric filters in figure 6.4(a,b,c) 

respectively.
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Figure 10 Standard deviation of SBI for three simulated Doppler signals in noise 

(a) 64 point data frame (b) 256 point data frame.
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Figure 11 Averaged frequency spectra for a stationary simulated Doppler signal.
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Table 1 Comparison of true SBI for four wide band signals and the estimates of SBI 

determined from the FFT and AR frequency spectra.

Normalised
Bandwidth

True SBI FFT 
Av. SBI

FFT (Hamming) 
Av.SBI

AR  
Av. SBI

64 256 64 256 64 256
0.2 0.167 0.133

+/- 0.053
0.131
+/- 0.043

0.141
+/- 0.048

0.123
+/- 0.060

0.129
+/- 0.059

0.146
+/- 0.023

0.4 0.286 0.227 
+/- 0.062

0.237
+/- 0.053

0.223
+/- 0.066

0.211
+/-0.081

0.229
+/- 0.076

0.258
+/- 0.054

0.6 0.375 0.312
+/- 0.076

0.333
+/- 0.038

0.300
+/- 0.089

0.322 
+/- 0.068

0.308
+/- 0.080

0.342
+/- 0.026

0.8 0.444 0.378 
+/-0.081

0.396
+/- 0.053

0.379
+/- 0.090

0.394
+/- 0.064

0.397
+/- 0.074

0.426
+/- 0.031

Table 2 Matrix of Pearson Product-Moment Correlation Coefficients for 64-point data 

frame.

AR FFT (Hamming) FFT
FFT 0.90 0.84 1.0
FFT (Hamming) 0.83 1.0
AR 1.0

Table 3 Matrix of Pearson Product-Moment Correlation Coefficients for 256-point 

data frame.

AR FFT (Hamming) FFT
FFT 0.93 0.91 1.0
FFT (Hamming) 0.90 1.0
AR 1.0
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A STUDY OF SPECTRAL BROADENING OF CLINICAL 
DOPPLER SIGNALS USING FFT AND AUTOREGRESSIVE 

MODELLING

Abstract - This paper investigates the behaviour of the spectral broadening index 

(SBI) derived from spectra obtained using autoregressive (AR) modelling compared 

to that of SBI based on fast Fourier transform (FFT) analysis of clinical Doppler 

ultrasound scans. Doppler signals from internal carotid arteries of patients with 

normal and diseased vessels with up to 80% stenosis were analysed. A threshold at -6 

dB of the maximum magnitude component of each individual spectrum was 

implemented to reject low-level noise. The SBI was obtained using the maximum and 

the mean frequency envelopes extracted from the sonogram. A qualitative 

improvement in both the appearance of the AR sonograms and the shape of the 

individual AR spectra was noticeable. The AR approach consistently produced 

narrower spectra than the FFT and the shapes of the frequency envelopes derived from 

the AR sonogram and the FFT sonogram were also rather different. Despite these 

differences a strong correlation was observed between the value of the FFT-based SBI 

and the AR-based SBI. The mean value of the FFT-SBI is larger than that of the AR- 

SBI and the variance of the FFT-SBI is smaller than that of the AR-SBI based on a set 

of at least 20 sequentially recorded heartbeats. It was established that, for all cases 

where significant stenosis was present, a statistically significant value for SBI could 

be obtained using 4 or more heartbeats if five spectra around the peak systole were 

used to estimate the SBI of each individual heartbeat.

key words: Doppler ultrasound, autoregressive model, spectral analysis, spectral 

broadening, carotid stenosis.
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INTRODUCTION

Doppler ultrasound is used clinically to assess stenosis in the carotid arteries. 

The presence of stenosis may be indicated by disturbed flow distal to the site of 

stenosis and this causes a broadening of the spectrum of the Doppler signal around 

peak systole. Nowadays colour Doppler is used for the detection of stenosis, but 

quantification of its severity can be done using an index extracted from the Doppler 

spectrum such as the spectral broadening index (SBI).

The spectral estimation of Doppler ultrasound signals is normally performed 

using the ‘short-time Fourier transform’ (STFT). Various researchers however have 

demonstrated that some more modem spectral estimation techniques can produce 

better spectral estimates, especially when short data frames are required: Marple 

(1977) demonstrated the better spectral resolution of autoregressive (AR) and 

autoregressive moving average (ARMA) models compared to FFT; Kitney and 

Giddens (1986) reported the better performance of AR spectral estimation on spectral 

tracking and spectral resolution; Kaluzynski (1987) addressed the advantages of using 

AR spectral estimation for pulsed Doppler signals; Vaitkus et al. (1988) stressed the 

good spectral matching ability of the AR modelling approach under various signal-to- 

noise ratio (SNR) situations; David et al. (1991) tested three modem spectral 

estimation techniques, including AR, with the STFT approach and concluded that, 

provided that the model order is chosen appropriately, the modem techniques are 

superior to the traditional FFT-based approach.

Autoregressive spectral estimation produces more stable spectra from short 

segments of data and since the AR approach does not assume periodicity, it offers an 

interesting alternative to FFT-based techniques. This ability to produce spectral 

estimates from short segments of data is important for the analysis of Doppler signals 

of arteries with disturbed blood flow such as the kind of signals collected at post

stenotic sites.
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Kaluzynski and Palko (1993) studied the behaviour of SBI and other indices 

under different conditions for the spectrum analysis of simulated signals and 

concluded that the instability of the spectral estimates (of simulated data) has only a 

limited effect on the indices derived from the spectrum. Keeton et al (1997) also used 

simulated data and studied the robustness of Fourier-based and AR-based SBI in noise 

and the behaviour of AR-SBI with model order. They concluded that although AR had 

better spectral matching characteristics than the FFT approach there was no significant 

improvement in the estimation of the SBI by using the AR technique even in the 

presence of noise.

The main aim of this paper is to test whether the afore mentioned conclusions 

derived for simulated data are applicable to real clinical Doppler signals, i.e., how the 

AR spectral estimation technique compares with FFT-based spectral estimation for the 

quantification of spectral broadening for clinical Doppler signals.

METHOD

In this study real clinical data from both healthy and diseased patients were 

used as opposed to simulated signals. The SBI has been used as the parameter 

traditionally associated with the measurement of flow disturbances that occur with 

stenosis (Harward et al. 1986, Labs and Fitzgerald 1992). The SBI was calculated 

from both the FFT and the AR-based spectra at peak systole and also by averaging the 

SBI value of five spectra starting at peak systole. The correlation between both FFT- 

SBI and AR-SBI and the degree of stenosis is presented for 10 documented cases. In 

all cases more than 20 heart beats were processed and by measuring the SBI of 5 

spectra per heart beat, more than 1000 estimations of the systolic spectrum and SBI 

were performed for each approach.

The spectral broadening index used in this study is defined as:
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mean [1 ]
fJ  max

where = the maximum frequency component in the spectrum above a -6dB 

threshold (measured from the maximum component of the individual frequency 

spectra) used to reject low level noise components and f mean = the average mean 

frequency of the spectral components that exceed this threshold.

In this study forward and reverse flow are combined to produce a single signal 

with both positive and negative frequency shifts modulated around a programmable 

'central' frequency (selected by the operator to be one of the following values: 500 Hz, 

1, 2, 4, or 8 kHz). If forward and reverse flow components are present simultaneously 

then equation [1] is not adequate since it is only suitable for establishing the spectral 

broadening of a single wide band lobe. In order to overcome this problem the reverse 

flow was eliminated from the calculation of SBI and only the forward flow 

components were used to determine the f mean envelope.

Spectrum Estimation

The FFT power spectral density estimation (PSDE) was obtained using N=256 

real data points with a Hamming window and producing spectra with 128 frequency 

bins.

The AR power spectral density is given by either

PSDAR( f )  =
Tc:w [ 2 ]

P
2

l  + ^ a k exp(-j2nfkT)
k= l
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where ak are the autoregressive coefficients, g2w is the variance of the driving white 

noise input and T is the sampling period, or approximated by using

A  a

PSD a r  ( / )  = T Rxx (n) Qxp(-j2jinkT) [ 3 ]
n = -M

A

where Rxx(n) is an AR-based extrapolation of the biased estimate of the 

autocorrelation sequence (ACS) R„(n) derived from the data sequence. The 

extrapolation is given by

i 4 i
k = 1

The AR PSDE can therefore be obtained if a 2w and the coefficients ak are 

known. In this paper the method used for estimating the AR parameters is based on 

the Yule-Walker equations (Kay and Marple, 1981). The results were compared to 

those obtained using Burg’s algorithm (Kay and Marple, 1981) in which the 

coefficients are obtained directly from the data samples without estimating the ACS. 

Typical results of this comparison are illustrated in figure 1. The fact that the spectra 

produced using each of the three above mentioned AR approaches are very similar to 

one another can be appreciated from figure 1. In this study M =  128 and p  = 12 (after 

Schlindwein and Evans, 1990) were used.

The algorithms for performing AR modelling are computationally more 

demanding than the FFT approach and a real-time AR system requires more 

computational power than that of a standard personal computer. Modem DSP boards 

combined with standard microcomputers allow a flexible software approach to the 

implementation of real-time algorithms for analysing a wide range of signals. One 

such system capable of real-time AR spectrum analysis of Doppler ultrasound signals 

was described by Schlindwein and Evans in 1989.
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Real-time Doppler ultrasound

A system has been developed for real-time digital signal processing of the 

Doppler signal using a Digital Signal Processor (AT&T DSP32C capable of 12.5 

MIPS) combined with an IBM PC compatible microcomputer - 486 DX2 66 MHz. 

The front end to the system is an analogue processor unit that combines the forward 

and reverse waves into a single signal around a modulation frequency chosen by the 

operator (Schlindwein et al., 1996). The input is taken from pre-recorded continuous 

wave Doppler ultrasound scans that have been stored on Digital Audio Tapes, with the 

forward and reverse signals stored on separate channels. The system can also be used 

on-line with Doppler signals obtained directly from a Doppler velocimeter.

The spectral frame rate was set at 80 frames per second, corresponding to a 

data frame length of 12.5 ms irrespective of the sampling rate. All data is processed 

for sampling frequencies 5.12 kHz, 10.24 kHz or 20.48 kHz, the choice depending on 

the observed bandwidth. For each frequency estimate 128 frequency bins are 

computed. Table 1 shows the number of data points and the degree of zero padding, 

for the FFT approach, for each sample rate to maintain both a standard frame rate and 

the number of frequency bins.

Off-line analysis

The system was taken off-line so that the same digital data could be analysed 

using both the FFT and AR algorithms. Ten Doppler ultrasound scans were digitised 

and stored on disk, each scan comprised of at least 20 sequentially recorded 

heartbeats. Table 2 contains details of the recordings that were used in this study. All 

the recordings were taken from internal carotid arteries (ICA) of (i) patients with 

known diseased arteries ranging in severity of stenosis and (ii) healthy subjects. A
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subjective estimate of the degree of stenosis was made at the time of the examination 

using colour Doppler images of the artery (both axial and cross-sectional views).

For patients with stenosis the site of the scan was around 2 diameters distal to 

the stenosis. For normal subjects the recordings were taken from a position distal from 

the carotid branch, which corresponded to the point where the data collection was 

made for the patients with stenosis. A continuous wave Doppler velocimeter, with a 4 

MHz focused 1.5mm beam width, was used for data collection. The beam transfixed 

the vessel axis at an angle of around 50°.

RESULTS & DISCUSSION

Figure l(a-d) shows the output for several heartbeats using each of the four 

methods described (FFT, Yule-Walker AR [2], AR using [3-4] and Burg AR) and 

figure l(e-h) shows a typical spectrum obtained from around the systolic peak using 

each of the algorithms. It can be seen that there is no significant difference between 

the frequency spectra obtained using the different AR algorithms. There is a distinct 

qualitative improvement however in the frequency spectra obtained using the AR 

algorithms over the FFT which is in agreement with other published results (Vaitkus 

et al., 1988; Kitney and Giddens, 1986; Kaluzynski, 1987; Keeton et al., 1997).

A threshold was applied to the sonogram to reject low-level noise. The 

threshold was defined as 6dB below the maximum component of the individual 

frequency spectrum. Figure 2(a,b) shows the raw maximum and mean frequency 

envelopes extracted from the sonograms obtained using the FFT and AR algorithms 

respectively. The envelopes have been superimposed on the original sonograms to 

show the ability of the 6dB threshold to successfully reject low-level noise and retain 

the true Doppler signal. The two envelopes are then low-pass filtered using a 5-point 

moving-average filter. It can be seen from figure 2(c,d) that there are significant 

differences between the envelopes obtained using the FFT and AR algorithms. These 

differences affect the positioning of the systolic peak in each cardiac cycle. There is 

also a distinct difference between the relative spectral widths of the frequency spectra
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obtained using the FFT and AR algorithms: The AR spectra are noticeably narrower 

(figure 2).

There are two approaches for producing an estimation of the average value of 

a parameter derived from the sonograms: The first is averaging spectra from different 

heart beats, and then calculating the parameter from the averaged spectrum; the 

second is calculating the parameter from the individual spectra, and only then 

averaging the values obtained. It was decided to use the second method here to 

estimate the SBI in order to avoid the inherent difficulties of time alignment of the 

first technique and the possibility of smearing the averaged spectrum if the alignment 

is not perfect.

The results of averaging between 1-5 estimates of SBI around each systolic 

peak (figure 3) were studied to assess whether the effects of spectral instability 

resulting from the frequency analysis of short data frames can be reduced. The mean 

value calculated for a particular heartbeat was then averaged over a number of 

heartbeats (always more than 20) in order to obtain a statistically valid SBI (Labs and 

Fitzgerald, 1992). The variance of the overall SBI for a particular patient was 

improved when the estimate of SBI for each heartbeat was obtained using more than 

one spectrum, as can be observed in figure 4. This was the case for both the FFT and 

the AR sonograms.

The correlation between the SBIs obtained using the FFT and AR algorithms 

for the 10 cases documented earlier in the paper is illustrated in figure 4, from where it 

can be seen that there is a strong correlation between the AR-SBI and the FFT-SBI. If 

the estimate of SBI is made from the average of several estimates taken from around 

the systolic peak then there is an improved correlation between AR-SBI and FFT-SBI. 

The correlation coefficients for using either a single estimate of SBI/heartbeat or 5 

estimates of SBI/heartbeat are shown in figure 4. The correlation coefficients for each 

of the comparisons exceed the 0.1% value, therefore the results are significant at the 

0.1% level (p<  0.001).

4-9



Having established that there is a strong correlation between the FFT-SBI and 

the AR-SBI, the magnitude and the standard deviation of the overall SBIs calculated 

using 5 estimates of SBI/heartbeat are compared in figure 5. The magnitude of the 

AR-SBI is significantly smaller than that of the FFT-SBI which is concurrent with the 

relative spectral width trends seen in figure 2(c,d). The standard deviation of the AR- 

SBI estimates are generally larger than the FFT-SBI. The smaller magnitude of the 

AR-SBI results in a larger coefficient of variation as can be seen in figure 5(c). The 

SBIs calculated using the FFT algorithms are therefore generally more stable. From 

figure 5(a) it is also apparent that the magnitude of the SBI in general increases with 

the severity of stenosis with a noticeable step at around 50% stenosis - between 

patients 5 and 6 in figure 5(a).

The minimum number of estimations needed to produce a statistically 

significant value for a parameter depends on the variance of the estimates, the mean 

value of the parameter and the error and level of confidence desired and is given by
~l2

1.96 a
5%, 95%

_0.05x

[5 ]

for a 95% level of confidence with an error less than 5%, if one assumes a normal 

distribution (Hughes and Graiwoig 1971). The number of estimations needed to 

produce significant results was calculated and is illustrated in figure 6. For patients 

with a high degree of stenosis the overall SBI can be determined using fewer 

individual estimates of SBI: typically n < 10 for FFT and n < 20 for AR. For a lesser 

degree of stenosis the mean value of SBI will be lower resulting in a higher value for 

n. Since 5 estimates of SBI are being taken from each heartbeat and a minimum of 20 

heartbeats are being used to estimate the overall SBI this means that the results for all 

cases where significant stenosis is present are statistically significant. In the case of 

minor to moderate stenosis care should be taken in interpreting the results due to the 

statistical instability resulting from the inability to record a sufficient number of 

sequential heartbeats, this is particularly true for the AR approach (figure 6).
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CONCLUSIONS

Based upon the results obtained for the two techniques, it is clear that the AR 

approach can help improve the quality of the spectra of clinical Doppler signals (figs. 

l(e-h)). This agrees with other works based on simulated data. The AR sonograms do 

not suffer from some of the intrinsic problems that affect the FFT based spectral 

estimation and hence there is a distinct qualitative improvement in the visualisation of 

the dynamic flow over the cardiac cycle (figs. l(a-d)). With the sample cases 

examined it was found that the AR algorithms all produced similar sonograms, and all 

the AR algorithms investigated produced smoother sonograms than the FFT approach.

A strong correlation was observed between the value of the FFT-SBI and the 

AR-SBI. The mean value of the FFT-based SBI is larger than that of the AR-based 

SBI and the variance of the FFT-SBI is smaller than that of the AR-SBI.

If only one spectrum per heartbeat is used for the estimation then the number 

of heart beats required in order to produce a statistically significant value for SBI 

(with a 95% level of significance) is perhaps too large for clinical practice when the 

degree of stenosis is mild. If five spectra around the peak systole are used for the 

estimation then, for all cases where significant stenosis was present, a statistically 

significant value for SBI could be obtained using 4 or more heartbeats.

This research has also shown that despite the qualitative improvement in the 

individual frequency spectra, there is no quantitative advantage in using the AR 

approach over the FFT for the determination of SBI due to its poorer variance and the 

additional computational complexity.
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Figure 1 Sonograms of internal carotid arteries (ICA) using (a) FFT, (b) AR with 

Yule-Walker approach and eqn [3] for PSD, (c) AR with Yule-Walker approach and 

eqn [5] for PSD, (d) Burg and eqn [3] for PSD, (e)-(h) Frequency spectra taken from 

respective sonograms around the peak systole of the cardiac cycle (as marked with the 

vertical line on (a)-(d).
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(a)

(b)

(d)

Figure 2 Raw maximum and mean frequency envelopes extracted from the (a) FFT (b) 

AR sonograms using the -6dB threshold. Figures (c) & (d) show the low-pass filtered 

envelopes of (a) & (b) respectively and the comparison between the location of the 

systolic peaks for each heartbeat based on the FFT and AR sonograms.
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Figure 3 Illustrates the consecutive frames after the systolic peak used to produce an 

average SBI/heartbeat.
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Figure 4 Scattergram of FFT-SBI versus AR-SBI for 1-SBI/Heartbeat and 5- 

SBI/Heartbeat.
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Figure 5 (a) Magnitude of SBI (b) Standard deviation (c) Coefficient of variation for 

10 documented cases using FFT and AR sonograms based on 5 estimates of 

SBI/heartbeat. Increasing severity of stenosis from left to right based on a subjective 

study of colour Doppler ultrasound scans.
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Figure 6 Sample size required to produce a statistically valid estimate of SBI for 10 

documented cases using FFT and AR sonograms.. Results are based on 5 estimates of 

SBI/heartbeat, therefore, No. of heartbeats = No. of estimations/5. Increasing severity 

of stenosis from left to right based on a subjective study of colour Doppler ultrasound 

scans.
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Table 1 - Zero padding is used to obtain frames of 256 data points and produce 
spectra with 128 frequency bins.

sampling frequency fsam (Hz) number of data points zero padding
20480 256 0
10240 128 128
5120 64 192

Table 2 - Internal carotid artery (ICA) Doppler ultrasound data used in 
evaluation of AR against FFT.

Signal Degree o f  Stenosis 
(Approx. % o f  lumen occluded)

Sample
Frequency

(kHz)
1 0 10.24
2 0 (Slight wall thickening) 10.24
3 20 10.24
4 25 10.24
5 40-50 10.24
6 50 10.24
7 65 5.12
8 >70 10.24
9 80 10.24
10 >80 10.24
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Abstract
Provides an introduction into wavelets and illustrates their 
application with two examples. The wavelet transform 
provides the analyst with a scaleable time-frequency 
representation of the signal, which may uncover details 
not evidenced by conventional signal processing tech
niques. The signals used in this paper are Doppler ultra
sound recordings of blood flow velocity taken from the 
internal carotid artery and the femoral artery. Shows how 
wavelets can be used as an alternative signal processing 
tool to the short time Fourier transform for the extraction 
of the time-frequency distribution of Doppler ultrasound 
signals. Implements wavelet-based adaptive filtering is for 
the extraction of maximum blood velocity envelopes in the 
post processing of Doppler signals.

Introduction

D oppler ultrasound is a non-invasive tech
nique which is w idely used in m edicine for the 
assessm ent o f  b lood flow in intact vessels. T h e  
technique has im proved m uch since Satom u- 
ra first dem onstrated the application o f  the 
D oppler effect to the m easurem ent o f  blood  
velocity in 1959. D oppler velocim eters work 
by em itting a focused  ultrasound beam  with a 
base freq u en cy /in to  the body via a p iezoelec
tric transducer and detecting the change in 
frequency that occurs after the beam  is 
reflected or scattered by m oving targets. T his  
D oppler shift frequency A/D is proportional to 
the speed o f  the m oving targets:

2 v f  cos Q
A / d  - (1)

w here v  =  m agnitude o f the velocity o f  target, 
A/d  = D oppler shift, / =  frequency o f  trans
m itted ultrasound, c =  m agnitude o f  the 
velocity o f  ultrasound in b lood, and 6  -  angle 
betw een ultrasonic beam  and direction o f  
m otion . If  the ultrasound probe is positioned  
so that the beam  insonates a b lood  vessel, the 
D oppler shift frequency is proportional to the 
velocity o f  the b lood  within the sam ple 
volum e (1). S ince there is a population o f  
targets (m ostly red b lood  cells) scattering  
back the ultrasound signal, there is a corre
sponding distribution o f D opp ler shift fre
quencies, in other words a w ideband spec
trum , which ideally corresponds to a his
togram o f  the velocities o f  all the scattering 
particles. T h e band o f  D oppler shift frequen
cies norm ally falls w ithin the audio range (A/D 
< 20kH z). Since the velocity com ponents are 
proportional to the frequency shifts it is possi
ble to  track the velocity distribution by obtain
ing the power spectral density estim ate 
(PSD E ) o f  the dem odulated  signal.

For many years derivatives o f  the Fourier 
transform (FT ) (2) have been  the m ain tools 
used in signal processing for obtaining the 
P SD E .

X ( f ) =  I x ( t ) e x p( - j 2 n f t ) d t (2)
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T h e F T  in its original form assum es that the 
signal exists for all tim e. T h is for practical 
purposes is not a realistic assum ption and 
does not give any inform ation about how  the 
signal is changing with respect to time. This is 
not a problem  when the signal being analysed 
is stationary, that is, the statistical properties 
o f  the signal are not changing with time. M ost
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useful signals, however, are non-stationary; 
for the analysis o f  these signals it is necessary  
to identify and locate the changing frequency  
characteristics.

T h e short-tim e Fourier transform  
(S T F T ) (3 ), also known as the tim e-depen
dent or the w indowed-Fourier transform  
(O ppenheim  and Schafer, 1989), attem pts to 
analyse non-stationary signals by dividing the 
w hole signal into shorter data frames.

N-1
X ( k ) =  X x(ri)w{n -  «0)exp

n= 0

- j 2  7mk 

N
( 3 )

T h e output o f successive S T F T s can provide 
a tim e-frequency representation o f  the signal. 
To accom plish this the signal is truncated into  
short data frames by m ultiplying it by a 
w indow  so that the m odified signal is zero  
outside the data frame. T h e frequency spec
trum  for the data frame is calculated using the 
fast Fourier transform (F F T ). In order to  
analyse the w hole signal the w indow  is trans
lated in tim e and then reapplied to the signal.

O ne o f  the lim itations o f  the S T F T  is that 
the tim e frame for analysis o f  the signal is 
fixed. A  m ore flexible approach w ould  be to 
use a scalable window: a com pressed  w indow  
for analysing high frequency detail and a 
dilated w indow  for uncovering low  frequency  
trends within the signal.

Wavelets

T h e wavelet transform addresses the problem  

o f  fixed resolution by using base functions 
that can be scaled. T h ese “wavelets" act in a 
sim ilar way to the w indow ed com plex exp o
nentials that are used in the S T F T , except 
that with the wavelet transform the length o f  
signal being analysed is not fixed. Figure 1 
illustrates som e o f  the m ore com m on  
wavelets. A t first glance it is apparent that 
wavelets are better suited to analysing tran
sient signals, since they are well localized in 
tim e, whereas sinusoids extend over all tim e. 
W avelets are not just well localized in tim e, 
they are also well localized in frequency, 
although n ot as well as sinusoids. T h e proper
ty o f  tim e and frequency localization is known  
as com pact support and is one o f  the m ost 
attractive features o f  wavelet analysis.

Continuous wavelet transform
T h e continuous wavelet transform  (C W T ) (4) 
com presses or dilates and translates a 
“m other” wavelet and correlates it with the 
signal at all tim es and scales:

C W T ( a , b )  = -  J x ( t ) - L y f
-oo

dt  (4)

Figure 1 Examples of common wavelets
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where \\f (r) is the wavelet, b is the translation 
factor and a is the dilation factor. T h e output 
o f  the transform  shows the correlation  
betw een the signal and wavelet as a function  
o f time. If the signal and wavelet are a good  
match then the correlation between the signal 
and the wravelet is high resulting in a large 
coefficient. T h e choice o f wavelet depends on  
the application. T h e concept o f  scale in the 
C W T  is analogous to the inverse o f  frequency  
in the FT. W hen the wavelet is highly com 
pressed it extracts the localized high frequen
cy details o f  the signal. W hen the wavelet is 
fully dilated the length o f  the wavelet is m ore 
com parable to the length o f  the signal and 
therefore it extracts the low frequency trends 
o f  the signal.

Figure 2(a) shows a chirp signal with a 
sinusoid and an instantaneous spike superim 
posed. Figure 2(b-c) shows the results o f  
analysing the signal using the S T F T  and the 
C W T respectively. T h e results o f  the Fourier 
analysis illustrate the trade-off betw een  tim e 
and frequency resolution. If  the sinusoid  is 
going to be resolved w ith any degree o f  accu
racy then the tim e resolution  o f  the chirp and 
the localization o f  the instantaneous spike are 
com prom ised. If the tim e resolution is 
improved then  the frequency resolution  
becom es inadequate to resolve the sinusoid  
and the chirp. T h e  C W T  pinpoints the 
instantaneous spike and show s the sinusoid  
and chirp. T h e  C W T  also show s the oscillato
ry behaviour in the tim e scale diagram, this 
corresponds to the relative phase difference 
betw een the wavelet and the signal. T h e C W T  
does not resolve sinusoidal com p onents as 
well as Fourier analysis, but its ability to 
localize transient events m akes it an attractive - 
alternative to the STFT.

Wavelets have already been  used in b io
m edical applications for the analysis o f  the 
E M G  and E C G . In this paper the potential o f  
using wavelets for the analysis o f  b lood  flow  is 
explored. T h e D opp ler signal from  ultra
sound analysis is highly non-stationary and it 
has been reported that the S T F T  is not n eces
sarily the best tool for extracting the D oppler  
shifts from the received signal (Kaluzynski, 
1987).

T he C W T  is com putationally  intensive and  
the am ount o f  inform ation that the transform  
provides is extrem ely large. A  m ore efficient 
routine is the discrete wavelet transform  
(D W T ) w hich looks at the signal at specific 
dilations o f the m other wavelet. T h e efficiencv

Figure 2 (a) S ignal c o m p o s e d  o f a  ch irp  w ith  a  s in u so id  a n d  an  im p u lse  
su p e r im p o s e d ;  (b) STFT a n a ly s is  u s in g  a s lid ing  1 2 8 -p o in t FFT; (c) CWT 
d e c o m p o s itio n .  S ca le  is th e  in v e rse  o f  f req u en cy
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o f  the D W T  is better than that o f the FFT. To 
understand the D W T  and to see where 
wavelets com e from it is necessary to intro
duce the concept o f  filter banks which are the 
discrete equivalent o f wavelets.
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Filter banks and sub-band coding
A  single filter has a particular frequency  
response and after passing a signal through  
the filter som e o f  the information within the 
signal is lost. A  single filter cannot be used  to 
reconstruct the original signal from the fil
tered output since once the inform ation has 
been  lost it cannot be retrieved. If  two filters 
are used, one w hich retains the low frequency  
inform ation and the other which keeps the 
high frequency information, they can be 
designed  in such a way that, together, they  
contain  all the original information w ithin the 
signal. T h e outputs from these two filters can  
be com bined to reconstruct the original 
signal. T h e set o f  filters used to split the sp ec
tral inform ation in such a way is known as a 
filter bank. It is possible to extend this con 
cept to further decom position o f  the signal 
into finer and finer frequency bands. In order 
to m anage the data which are output from  the 
filters it is necessary to downsam ple the out
puts from the filters; otherwise, as the signal is 
passed through each level o f  the filter bank, 
the am ount o f  data is doubled. G enerally the 
idea is to represent the signal m ore efficiently. 
If the signal is decom posed  n tim es it is not 
beneficial to have 2 ” tim es m ore data than the 
original signal. For a set o f filters to act as 
“perfect reconstruction filters” it is necessary  
that they have special characteristics, since  
real filters do not have perfect cu t-o ff frequen
cies and therefore there is som e overlap 
betw een adjacent filters in order to retain all 
the information. T h e filters that were devel
oped in the early 1980s to perform  this task

are know n as quadrature mirror filters (Strang  
and N gu yen , 1996).

Discrete wavelet transform
T h e discrete wavelet transform is derived  
from  these filters and is based on a m ultireso
lution decom position  o f  the signal to give a 
coarser and coarser approximation to the 
original signal by rem oving high frequency  
detail at each level o f the decom position  as 
illustrated in  Figure 3(a). T h e original signal 
can be reconstructed by adding together the  
approxim ation and detail at the lowest level to 
reconstruct the approxim ation at the higher 
level, this can be repeated until the original 
signal is retrieved. In order to reconstruct the 
original signal it is therefore only necessary to 
keep the low est level approxim ation and the  
detail coefficients at each level. T h e tim e- 
frequency representation o f  the d ecom p osi
tion  is given in Figure 3(b ). It can be seen  that 
the low  frequency trends are well localized in  
frequency and the high frequency com p o
nents are well localized in tim e but n ot in 
frequency.

Wavelet packet analysis
W avelet packet analysis is an extension o f  the 
D W T  and it turns out that the D W T  is only  
one o f  the m any possible decom positions that 
cou ld  be perform ed on the signal. Instead o f  
just d ecom p osin g  the low frequency com p o
nen t o f  the filter bank each tim e, it is possible  
to d ecom p ose the high frequency com ponent  
as w ell. It is therefore possible to subdivide 
the w hole tim e-frequency plane into different

Figure 3 (a) DWT decomposition of a time varying signal (b) Time-frequency representation using the DWT
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tim e-frequency tilings as can be seen from  
Figure 4.

T h e advantage o f wavelet packet analysis is 
that it is possib le to com bine the different 
levels o f decom position  in order to achieve the 
optim um  tim e-frequency representation o f  
the original signal.

A pplication o f  the wavelet transform  to 
real signals
T h e concept o f  being able to d ecom pose a 
signal totally and then perfectly reconstruct 
the signal again is nice, but it is not particular
ly useful by itself. In order to make use o f  this 
tool it is necessary to m anipulate the wavelet 
coefficients to identify characteristics o f  the 
signal that were not apparent from  the origi
nal time dom ain signal.

T he next section  o f  this paper outlines how  
the wavelet transform  could be used to 
analyse D oppler ultrasound signals. First, the 
extraction o f  a tim e-frequency sonogram  o f  
the D oppler signal using wavelet analysis 
com pared to the conventional F F T  is consid
ered. S econ d , wavelets are used  in the post
processing o f  the sonogram  to extract infor
m ation that can be used for clinical diagnosis.

T im e-frequency analysis o f the Doppler 
signal
C onventional tim e-frequency analysis o f  the 
D oppler signal involves processing the signal 
using data frames o f fixed duration. T he  
m axim um  size o f  the data frame is dependent 
on the stationarity o f the signal. T h e D oppler 
signal is highly non-stationary and therefore a 
tim e frame o f  <20m s is used for analysis. If a 
longer tim e frame is used then the transient 
behaviour o f  the blood flow becom es blurred. 
Figure 5 shows typical F F T  sonogram s for 
two D oppler signals; the first signal is taken 
from the internal carotid artery and the 
second from  the femoral artery. T h e son o
grams show  the periodic heartbeats and 
within each beat it is possible to visualize the 
systolic and diastolic flow as the heart con
tracts and then relaxes. T h e sam e signals were 
analysed using wavelet packet analysis (db3 
wavelet, see Figure 1); the results are shown in 
Figure 5.

W avelet packet analysis produces a time- 
frequency sonogram  that resem bles the FF T  
result. T h e advantage o f wavelet packet analy
sis over the F F T  is the optim ization o f  the 
tim e-frequency resolution.

D oppler ultrasound system s process the 
acquired data in real-time. T h is is done using

Figure 4 (a) Total d e c o m p o s itio n  o f  a  t im e  v a ry in g  s ig n a l u s in g  w a v e le t  p a c k e t  a n a ly s is  (b) T im e-freq u en cy  r e p re s e n ta t io n  fo r  e a c h  level o f 
th e  d e c o m p o s itio n
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the F F T  by processing the data in frames that 
com ply with the stationarity o f  the signal. For 
real-tim e wavelet packet analysis it w ould be 
necessary to split the data into larger frames 
(= Is). T his is because wavelet packet analysis 
performs a total decom position on a signal so  
that all the possib le tim e-frequency represen
tations are available. An algorithm is used to 
find the optim um  com bination o f these levels 
to produce the sonogram . T he com putational 
requirem ents for producing a tim e-frequency  
sonogram  using wavelet packet analysis are far 
greater than for the conventional FFT.

Post-processing o f the tim e-frequency  
decom position
Follow ing tim e-frequency analysis o f  the 
D oppler signal a clinical diagnosis is m ade to 
determ ine whether or not the vessel is dis
eased. This decision is based on a subjective 
study o f the sonogram  and further quantita
tive analysis. O ne kind o f  quantitative analysis 
is perform ed using frequency envelopes 
extracted from the sonogram . T he envelopes 
are norm ally obtained by selecting a threshold  
to reject low  level noise com ponents. Figure 6 
shows the extracted frequency envelopes for 
the two exam ples over a num ber o f  cardiac 
cycles.

Denoising the frequency envelopes 
T h e raw frequency envelopes extracted from  a 
sonogram  are usually corrupted by noise 
(Figure 6) due to statistical instability in the 
PSD E . To use the envelopes for quantitative 
analysis it is necessary to remove the noise to 
identify the underlying trends. C onventionally  
a five-point m oving average filter is used to 
denoise the envelopes as illustrated in Figure 
6. D iscrete wavelet analysis can be used to  
clean the noisy envelopes. A  signal can be 
represented efficiently using a relatively small 
num ber o f  wavelet coefficients, assum ing an 
appropriate selection  o f  wavelet is m ade. It is 
therefore possib le to discard small wavelet 
coefficients that do not contain a significant 
am ount o f inform ation about the overall 
signal. T h e coefficients that are kept are used  
to reconstruct the original signal. Figure 6 
shows the effect o f  denoising the raw 
envelopes using this technique. T his wavelet- 
based adaptive approach has advantages over 
a fixed filter because the wavelet denoising  
process does not indiscriminately attenuate 
specific frequencies. Wavelet denoising  
assum es that the signal-to-noise ratio (SN R ) 
is significantly large, that is, that the noise

Figure 5 S o n o g ra m s  o b ta in e d  u sin g  a 2 5 6 -p o in t  FFT fo r  tw o  D o p p le r u ltra  
s o u n d  s c a n s  (a) in te rn a l c a ro tid  a r te ry  (b) fe m o ra l a r te ry
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coefficients are sm all com pared to the coeffi
cients used  to m odel the signal. T h is seem s to 
be the case for the rem oval o f noise from the 
frequency envelopes as Figure 6 shows.

Compression
C om puter storage o f  patient data is invaluable 
since data can be transferred electronically in 
a few  seconds. Efficient com pression o f  data 
ensures m inim al storage space and quicker 
data transfer. At present storage o f  D oppler  
ultrasound recordings is m ade by producing a 
grey scale hard copy o f  several cardiac cycles. 
By using 2 -D  w avelet im age com pression it 
m ay be possib le to store recorded sonogram s 
digitally in a patient database for future refer
ence using m uch less storage space. High  
com pression  ratios have been achieved using  
wavelets for im age com pression and the FBI 
are using wavelets to reduce storage space
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required to store their database o f  finger
prints.

Conclusions

Wavelet analysis provides an interesting alter
native to conventional Fourier m ethods. T h e  
com pact support inherent in wavelets m akes 
wavelets an attractive choice for tim e-frequen- 
cy analysis. Fourier analysis has a fixed tim e- 
frequency resolution. T his m eans that there is 
a trade-off between the resolution o f  transient 
events and underlying trends in the signal. 
Wavelets are better suited to resolving tran
sient events since wavelet analysis incorpo

rates the concept o f scale into the equation, 
which gives the analyst the flexibility to look at 
the tim e dom ain signal at different resolu
tions: a com pressed wavelet for analysing high 
frequency detail and a dilated wavelet for 
detecting underlying trends.

Wavelet packet analysis o f the D oppler  
signal can provide a tim e-frequency d ecom 
position similar to that o f  the FFT. T h e  
advantage o f  wavelet packet analysis over the 
F F T  is the ability to optim ize the tim e-fre- 
quency decom position  o f  the sonogram . T he  
com putational overheads for wavelet packet 
analysis are far greater than for F F T  analysis

Figure 6 E n velopes e x tra c te d  fro m  th e  S T F T -so n o g ram s: (a) In te rn a l c a ro tid  a r te ry ; (b) F em oral a r te ry
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o f the D oppler signal making real-tim e im ple

m entation difficult.
T h e D W T  can be used to denoise the 

frequency (blood velocity) envelopes extract
ed from the sonogram s by m anipulating the 

wavelet coefficients. Large wavelet coefficients 

contain significant inform ation about the 

signal w hile sm all coefficients are expendable. 

I f  a signal is contam inated with noise and the 

S N R  is high, then it is possible to rem ove the 

n oise by im plem enting a threshold to rem ove 

sm all coefficients.
T his paper has presented the fundam ental 

ideas behind continuous and discrete w avelet 
analysis. T he application o f  wavelets to

Volume 17 • Number 1 • 1997 • 38-45

D oppler ultrasound has been  investigated and

potential areas for further research have been

outlined.
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Appendix 6

SONOGRAMS OF SEVERAL SEQUENTIALLY RECORDED HEARTBEATS 

MEASURED USING CLINICAL DOPPLER ULTRASOUND AND 

PROCESSED USING THE SHORT-TIME FOURIER TRANSFORM

This appendix contains examples of the ten clinical Doppler ultrasound signals 

recorded at the Leicester Royal Infirmary and used in the examination of spectral 

broadening in chapter 7. Both healthy subjects and patients with diseased internal 

carotid arteries with varying degrees of stenosis were used in the study. Figure 1 

illustrates the sonograms of several sequentially recorded heartbeats obtained for each 

subject. The signals were analysed using the short-time Fourier transform with a data 

frame of 12.5 ms. For patients with stenosis the site of the scan was around 2 

diameters distal to the stenosis. For normal subjects the recordings were taken from a 

position distal from the carotid branch, which corresponded to the point where the 

data collection was made for the patients with stenosis. A continuous wave Doppler 

velocimeter, with a 4 MHz focused 1.5 mm beam width, was used for data collection. 

The beam transfixed the vessel axis at an angle of around 50°. A subjective estimate 

of the degree of stenosis was made at the time of the examination using colour 

Doppler images of the artery (both axial and cross-sectional views).
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Patient 7 » 65 % stenosis;^am/, = 5120 kHz

Patient 8 > 70 % stenosis; f samp = 10240 kHz

Patient 9 » 80 % stenosis; f samp = 10240 kHz

Patient 10 > 80 % stenosis;^aTOp = 10240 kHz

Figure 1 FFT sonograms illustrating several heartbeats recorded from each of the 10 

subjects used in chapter 7.
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