
A Quantum Probability Explanation in Fock Space for Borderline Contradictions

Sandro Sozzoa

aCenter Leo Apostel for Interdisciplinary Studies (CLEA), Vrije Universiteit Brussel (VUB), Krijgskundestraat 33, 1160 Brussels, Belgium

Abstract

The construction of a consistent theory for structuring and representing how concepts combine and interact is one of
the main challenges for the scholars involved in cognitive studies. All traditional approaches are still facing serious
hindrances when dealing with combinations of concepts and concept vagueness. One of the main consequences of
these difficulties is the existence of borderline cases which is hardly explainable from the point of view of classical
(fuzzy set) logic and probability theory. Resting on a quantum-theoretic approach which successfully models con-
junctions and disjuncions of two concepts, we propound a quantum probability model in Fock space which faithfully
reproduces the experimental data collected by Alxatib and Pelletier (2011) on borderline contradictions. Our model
allows one to explain the occurrence of the latter contradictions in terms of genuine quantum effects, such as con-
textuality, superposition, interference and emergence. In particular, we claim that it is the specific mechanism of
‘emergence of a new concept’ that is responsible of these deviations from classical logical thinking in the cognitive
studies on human thought. This result seems to be compatible with a recent interesting application of quantum proba-
bilistic modeling in the study of borderline vagueness (Blutner, Pothos & Bruza, 2012), and analogies and differences
with it are sketched here.
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1. Introduction
Shedding light on the mechanism and dynamics of concept combination would enhance fundamental aspects of a
deeper understanding of human thought. It would give us new insight in how sentences and texts are formed by simple
concept combinations and as a consequence on how meaning is carried by conceptual communication between human
minds. The identification of new aspects of such a mechanism would also have an impact on various disciplines, for
example psychology, linguistics, computer science and artificial intelligence. The state of affairs is however that
none of the existing theories on concepts allows to identify a mechanism of ‘how concepts combine’, that is, derive
the model that represents the combination of two or more concepts from the models that represent the individual
concepts. This ‘combination problem’ was identified in a crucial way by Hampton’s experiments (Hampton, 1988a,b)
which measured the deviation from classical set theoretic membership weights of exemplars with respect to pairs of
concepts and their conjunction or disjunction. Hampton’s investigation was motivated by the so-called ‘Guppy effect’
in concept conjunction identified by Osherson and Smith (1981). These authors considered the concepts Pet and Fish
and their conjunction Pet-Fish, and observed that, while an exemplar such as Guppy is a very typical example of
Pet-Fish, it is neither a very typical example of Pet nor of Fish. Hence, the typicality of a specific exemplar with
respect to the conjunction of concepts shows an unexpected behavior from the point of view of classical set and
probability theory. As a result of the work of Osherson and Smith (1981), the problem is often referred to as the
‘Pet-Fish problem’ and the effect is usually called the ‘Guppy effect’. Hampton identified a Guppy-like effect for
the membership weights of exemplars with respect to pairs of concepts and their conjunction (Hampton, 1988a), and
equally so for the membership weights of exemplars with respect to pairs of concepts and their disjunction (Hampton,
1988b). Several experiments have since been conducted (Hampton, 2001), and many elements have been taken
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into consideration with respect to the Pet-Fish problem, to provide a satisfactory mathematical model of concept
combinations. In particular, we refer to the fuzzy set based attempts (Osherson & Smith, 1982; Zadeh, 1965; Zadeh,
1982), concerning the ‘Guppy effect’, and to the explanation based theories (Fodor, 1994; Komatsu, 1992; Rips, 1995),
concerning concept combinations. However no mechanism and/or procedure has as yet been identified that gives rise
to a satisfactory description or explanation of the effects appearing when concepts combine. The combination problem
is considered so serious that sometimes it is stated that not much progress is possible in the field if no light is shed on
this problem (Fodor, 1994; Hampton, 1997; Kamp & Partee, 1995; Rips, 1995).

Directly connected with the problem of conceptual vagueness and graded membership (Osherson & Smith, 1997)
are the so-called borderline contradictions (Bonini, Osherson, Viale & Williamson, 1999; Alxatib & Pelletier, 2011).
Roughly speaking, a borderline contradiction is a sentence of the form P(x) ∧ ¬P(x), for a vague predicate P and a
borderline case x. For example, the sentence “Mark is rich and Mark is not rich” constitutes a borderline contradiction.
Several studies have been conducted on the possible theories of vague language which can describe such borderline
cases (Bonini, Osherson, Viale & Williamson, 1999; Alxatib & Pelletier, 2011; Blutner, Pothos & Bruza, 2012;
Ripley, 2011; Sauerland, 2010), but also in this case the obtained results have not been unanimously accepted.

Meanwhile, it has become evident that quantum structures are systematically and successfully applied in a va-
riety of situations in cognitive and social sciences (Aerts, 2009a; Aerts & Aerts, 1995; Aerts, Broekaert, Gabora
& Sozzo, 2012; Aerts & Czachor, 2004; Aerts & Gabora, 2005a,b; Aerts, Gabora & Sozzo, 2012; Bruza, Kitto,
McEvoy & McEvoy, 2008; Bruza, Kitto, McEvoy & Nelson 2009; Busemeyer & Bruza, 2012; Busemeyer & Lambert-
Mogiliansky, 2009; Busemeyer, Wang & Townsend, 2006; Busemeyer, Pothos, Franco & Trueblood, 2011; Franco,
2009; Khrennikov, 2010; Lambert-Mogilansky, Zamir & Zwirn, 2009; Melucci, 2008; Pothos & Busemeyer, 2009;
van Rijsbergen, 2004; Wang, Busemeyer, Atmanspacher & Pothos, 2012; Widdows, 2006). For this reason, a Quan-
tum Interaction approach was born as an interdisciplinary perspective in which the formalisms of quantum theory
were used to model specific situations in disciplines different from the micro-world (Bruza, Lawless, van Rijsbergen
& Sofge, 2007; Bruza, Lawless, van Rijsbergen & Sofge, 2008; Bruza, Sofge, Lawless, van Rijsbergen & Klusch,
2009; Song, Melucci, Frommholz, Zhang, Wang & Arafat, 2011). In addition, the new emergent field of Quantum In-
teraction focusing on the application of quantum structures in cognitive disciplines was named Quantum Cognition. In
this paper, we mainly deal with the quantum-theoretic approach elaborated within the Brussels group (Aerts, 2009a,b;
Aerts & Aerts, 1995; Aerts, Aerts & Gabora, 2009; Aerts, Broekaert, Gabora & Sozzo, 2012; Aerts, Broekaert, Gabora
& Veloz, 2012; Aerts & D’Hooghe, 2009; Aerts & Gabora, 2005a,b; Aerts, Gabora & Sozzo, 2012; Aerts & Sozzo,
2011; Gabora & Aerts, 2002). This approach was inspired by a two decade research on the foundations of quantum
theory (Aerts, 1999), the origins of quantum probability (Aerts, 1986) and the identification of typically quantum
aspects, such as contextuality, emergence, entanglement, interference, superposition, in macroscopic domains (Aerts
& Aerts, 1995; Aerts, Aerts, Broekaert & Gabora, 2000; Aerts, Broekaert & Smets, 1999). A SCoP formalism was
worked out within the Brussels approach which relies on the interpretation of a concept as an ‘entity in a specific state
changing under the influence of a context’ rather than as a ‘container of instantiations’ (Aerts & Gabora, 2005a,b;
Gabora & Aerts, 2002). This representation of a concept was new with respect to traditional approaches (see, e.g.,
prototype theory (Rosch, 1973; Rosch, 1977; Rosch, 1983), exemplar theory (Nosofsky, 1988; Nosofsky, 1992) and
theory theory (Murphy & Medin, 1985; Rumelhart & Norman, 1988)), and allowed the authors to provide a quan-
tum representation of the guppy effect explaining at the same time its occurrence in terms of contextual influence
(Aerts & Gabora, 2005a,b). Successively, the mathematical formalism of quantum theory was employed to model
the overextension and underextension of membership weights measured by Hampton (1988a,b). More specifically,
the overextension for conjunctions of concepts measured by Hampton (1988a) was described as an effect of quantum
interference and superposition (Aerts, 2009a; Aerts, Gabora & Sozzo, 2012), which also play a primary role in the
description of both overextension and underextension for disjunctions of concepts (Hampton, 1988b). Furthermore,
a specific conceptual combination experimentally revealed the presence of another genuine quantum effect, namely,
entanglement (Aerts, 2009a,b; Aerts, Broekaert, Gabora & Sozzo, 2012; Aerts, Gabora & Sozzo, 2012; Aerts &
Sozzo, 2011). Finally, also emergence occurs in conceptual processes, and an explanatory hypothesis was put for-
ward according to which human thought is the superposition of ‘quantum emergent thought’ and ‘quantum logical
thought’, and that the quantum modeling approach applied in Fock space enables this approach to general human
thought, consisting of a superposition of these two modes, to be modeled.

In this paper, we apply the quantum-based approach for conceptual combinations mentioned above to the study
of a concrete problem, namely, borderline vagueness, also showing how and where our treatment is different from
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existing ones and is innovative. We firstly summarize our quantum-theoretic model of human thought in Fock space
in Section 2. We explain how two processes simultaneously occur during a decision, namely, a logical process and a
conceptual process and how both processes can be modeled in a Fock space. Then, we supply in Section 3 an analysis
of the empirical data collected by Alxatib and Pelletier (2011) on borderline cases of the form “John is tall and not
tall”, stressing the conceptual difficulties connected with a classical logical explanation of these data. Successively, we
apply in Section 4 the above quantum-theoretic approach in Fock space to the data in Section 3, hence to the borderline
cases of the form “John is tall and John is not tall”. The latter Fock space modeling is successively extended in Section
5 to deal with sentences of the form “John is neither tall nor not tall”. More specifically, we first show that a single
classical probability space cannot model these experimental data, and how a quantum probability model can be used,
which entails the relevance of complex numbers. Then, we particularize the quantum probability formula for the
conjunction of concepts to the specific vague concepts considered by the authors, and calculate the interference term,
together with the weights of ‘quantum emergent thought’ and ‘quantum logical thought’ of the Fock space. Our results
agree with the empirical data and allow us to propose the explanatory hypothesis that borderline contradictions are not
due to a deviation from the basic logical reasoning but, rather, they are due to the presence of genuine quantum effects,
including contextuality, superposition, interference and emergence. Furthermore, it follows from our modeling that
emergence is the dominant effect in the dynamics of human thought, a conclusion compatible with the identification
of emergence as dominant effect in the Fock space modeling of the conjunction of concepts (Aerts, 2009a; Aerts,
Gabora & Sozzo, 2012). In other words, a borderline contradiction is not really a logical contradiction: it ‘appears’
as a contradiction only if logical thought is considered as the dominant dynamics, as it is usually maintained. On
the contrary, if one accepts our theoretical explanation, a borderline contradiction is just one of the manifestations of
conceptual emergence, as the dominant dynamics of human thought.

A methodological discussion is presented in Section 6 where it is argued that the model presented here and, more
generally, the quantum-theoretic modeling in Aerts (2009a), have both descriptive and explanatory power. In this
perspective, we provide some suggestions on how to falsify them in actual cognitive experiments.

To conclude we observe that our quantum probability model in Fock space presents various analogies with the
quantum probability model recently elaborated by Blutner, Pothos and Bruza (2012) in the study on borderline con-
tradictions. We compare the two models in Section 7, stressing that they come to the same conclusions for what
concerns the appearence of quantum aspects as a major cause of the observed deviations from classicality in border-
line vagueness. We also observe, however, that the two models are different at a structural and a conceptual level.

2. Quantum-theoretic modeling for concept combination
In this section, we present the basic notions and results on conceptual vagueness and combinations that have been
attained within our quantum modeling approach and that will be needed for our purposes. Though many of these
results can be obtained by representing vagueness, concepts and combinations in a Hilbert space (see the Appendix),
we prefer to work out a more general quantum representation for vagueness in Fock space from the very beginning,
since this is the formulation we will refer to when dealing with borderline contradictions.1

In its simplest mathematical form, a Fock space F , for the case of combining two entities, which is what we focus
on here, consists of two sectors: ‘sector 1’ is a Hilbert space H , while ‘sector 2’ is a tensor product Hilbert space
H ⊗H . As a general consideration, sector 1 mainly allows the modeling of interference connected phenomena, while
sector 2 mainly allows the modeling of entanglement connected phenomena.

Let us now consider the membership weights of exemplars of concepts and their conjunctions/disjunctions mea-
sured by Hampton (1988a,b). He identified systematic deviations from classical set (fuzzy set) conjunctions/disjunctions,
an effect known as ‘overextension’ or ‘underextension’.

Let us start from conjunctions. Relying on research on the foundations of quantum theory and quantum probability
(Pitowsky, 1989), it can be shown that a large part of Hampton’s data cannot be modeled in a classical probability
space satisfying the axioms of Kolmogorov (1933), due to the following theorem.

1We observe that an application of Fock spaces to cognitive phenomena can be found in Beim Graben et al. (2008), where the full Fock space
is used in natural language processing.
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Theorem 1. The membership weights µ(A), µ(B) and µ(A and B) of an exemplar x for the concepts A, B and ‘A and B′

can be represented in a classical probability model if and only if the following two conditions are satisfied.

∆c = µ(A and B) −min(µ(A), µ(B)) ≤ 0 (1)
0 ≤ kc = 1 − µ(A) − µ(B) + µ(A and B) (2)

where ∆c is the conjunction rule minimum deviation, and kc is the Kolmogorovian conjunction factor.

Proof. See Aerts, 2009a, theorem 3.

Let us briefly comment on Theorem 1. Equation (1) expresses compatibility with the minimum rule for the
conjunction of fuzzy set theory and, more generally, with monotonicity of classical Kolmogorovian probability. A
situation with ∆c > 0 was called overextension by Hampton (1988a). Equation (2) expresses instead compatibility
with additivity of classical Kolmogorovian probability. Equations (1) and (2) provide together necessary and sufficient
conditions to describe the experimental membership weights µ(A), µ(B) and µ(A and B) in a single Kolmogorovian
probability space (Ω, σ(Ω), P) (σ(Ω) being a σ-algebra of subsets of Ω, P probability measure on Ω). In this case,
indeed, events EA, EB ∈ σ(Ω) exist such that P(EA) = µ(A), P(EB) = µ(B), and P(EA ∩ EB) = µ(A and B).

Let us now consider a specific example. Hampton estimated the membership weight of Mint with respect to
the concepts Food, Plant and their conjunction Food and Plant finding µMint(Food) = 0.87, µMint(Plant) = 0.81,
µMint(Food and Plant) = 0.9. Thus, the exemplar Mint presents overextension with respect to the conjunction Food
and Plant of the concepts Food and Plant. We have in this case ∆c = 0.09 ̸≤ 0, hence no classical probability
representation exists for these data, because of Theorem 1.

Let us now come to disjunctions. Also in this case, a large part of Hampton’s data (1988b) cannot be modeled in
a classical Kolmogorovian probability space, due to the following theorem.

Theorem 2. The membership weights µ(A), µ(B) and µ(A or B) of an exemplar x for the concepts A, B and ‘A or B′

can be represented in a classical probability model if and only if the following two conditions are satisfied.

∆d = max(µ(A), µ(B)) − µ(A or B) ≤ 0 (3)
0 ≤ kd = µ(A) + µ(B) − µ(A or B) (4)

where ∆d is the disjunction maximum rule deviation, and kd is the Kolmogorovian disjunction factor.

Proof. See (Aerts, 2009a), theorem 6.

Let us briefly comment on Theorem 2. Equation (3) expresses compatibility with the maximum rule for the
conjunction of fuzzy set theory and, more generally, with monotonicity of classical Kolmogorovian probability. A
situation with ∆d > 0 was called underextension by Hampton (1988b). Equation (4) expresses instead compatibility
with additivity of classical Kolmogorovian probability. Equations (3) and (4) provide together necessary and sufficient
conditions to describe the experimental membership weights µ(A), µ(B) and µ(A or B) in a single Kolmogorovian
probability space (Ω, σ(Ω), P) (σ(Ω). In this case, indeed, events EA, EB ∈ σ(Ω) exist such that P(EA) = µ(A),
P(EB) = µ(B), and P(EA ∪ EB) = µ(A or B).

Let us again consider a specific example. Hampton estimated the membership weight of Donkey with respect
to the concepts Pet, Farmyard Animal and their disjunction Pet or Farmyard Animal finding µDonkey(Pet) = 0.5,
µDonkey(Farmyard Animal) = 0.9, µDonkey(Pet or Farmyard Animal) = 0.7. Thus, the exemplar Donkey presents
underextension with respect to the disjunction Pet or Farmyard Animal of the concepts Pet and Farmyard Animal. We
have in this case ∆d = 0.2 ̸≤ 0, hence no classical probability representation exists for these data, because of Theorem
2.

It can be proved that a quantum probability model in Fock space exists for Hampton’s data (1988a,b). We introduce
the essentials of it in the following by using the mathematical formalism resumed in the Appendix (Aerts, 2009a).

Let us consider a concept A and an exemplar (item) x. We represent A and x by the unit vectors |A⟩ and |x⟩, respec-
tively, of a Hilbert spaceH , and describe the decision measurement of a subject estimating whether x is a member of
A by means of a dichotomic observable represented by the orthogonal projection operator M. The probability µ(A)
that x is chosen as a member of A, i.e. the membership weight, is given by the scalar product µ(A) = ⟨A|M|A⟩. Let
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A and B be two concepts, represented by the unit vectors |A⟩ and |B⟩, respectively. To represent the concept ‘A or B′

we take the archetypical situation of the quantum double slit experiment, where |A⟩ and |B⟩ represent the states of a
quantum particle in which only one slit is open, 1√

2
(|A⟩ + |B⟩) represents the state of the quantum particle in which

both slits are open, and µ(A or B) is the probability that the quantum particle is detected in the spot x of a screen
behind the slits. Thus, the concept ‘A or B′ is represented by the unit vector 1√

2
(|A⟩ + |B⟩), and |A⟩ and |B⟩ are chosen

to be orthogonal, i.e. ⟨A|B⟩ = 0. The membership weights µ(A), µ(B) and µ(A or B) of an exemplar x for the concepts
A, B and A or B are respectively given by

µ(A) = ⟨A|M|A⟩ (5)
µ(B) = ⟨B|M|B⟩ (6)

µ(A or B) =
1
2

(µ(A) + µ(B)) +ℜ⟨A|M|B⟩ (7)

where ℜ⟨A|M|B⟩ is the real part of the complex number ⟨A|M|B⟩. The term ℜ⟨A|M|B⟩ is called ‘interference term’
in quantum theory, since it produces a deviation from the average 1

2 (µ(A) + µ(B)) which would have been observed
in the quantum double slit experiment in absence of interference. We can see that, already at this stage, two genuine
quantum effects, namely, superposition and interference, occur in the mechanism of combination of the concepts A
and B. In Aerts (2009a) and Aerts, Gabora & Sozzo (2012) it has been proved that the model above can be realized in
the Hilbert space C3 with the interference term given by

Intd
θ (A, B) =

√
1 − µ(A)

√
1 − µ(B) cos θ (8)

with θ being the ‘interference angle’.
The quantum-theoretic modeling presented above correctly describes a large part of data in Hampton (1988b),

but it cannot cope with quite some cases, in fact most of all the cases that behave more classically than the ones that
are easily modeled by quantum interference. The reason is that, if one wants to reproduce Hampton’s data within
a quantum model which fully exploits the analogy with the quantum double slit experiment, one has to include the
situation in which two identical quantum particles are considered, both particles passes through the slits, and the
probability that at least one particle is detected in the spot x is calculated. This probability is given by µ(A) + µ(B) −
µ(A)µ(B) (Aerts, 2009a). Quantum field theory in Fock space allows one to complete the model, as follows.

In quantum field theory, a quantum entity is described by a field which consists of superpositions of different
configurations of many quantum particles. Thus, the quantum entity is associated with a Fock space F which is the
direct sum ⊕ of different Hilbert spaces, each Hilbert space describing a defined number of quantum particles. In
the simplest case, F = H ⊕ (H ⊗ H), where H is the Hilbert space of a single quantum particle (sector 1 of F )
and H ⊗ H is the (tensor product) Hilbert space of two identical quantum particles (sector 2 of F ). Entanglement
connected phenomena can obviously be described inH ⊗H .

Let us come back to our modeling for concept combinations. The normalized superposition 1√
2
(|A⟩+|B⟩) represents

the state of the new emergent concept ‘A or B′ in sector 1 of the Fock space F . In sector 2 of F , instead, the state of
the concept ‘A or B′ is represented by the unit (product) vector |A⟩⊗ |B⟩. To describe the decision measurement in this
sector, we first suppose that the subject considers two identical copies of the exemplar x, pondering on the membership
of the first copy of x with respect to A ‘and’ the membership of the second copy of x with respect to B. The probability
of getting ‘yes’ in both cases is, by using quantum mechanical rules, (⟨A|⟨B|)|M ⊗ M|(|A⟩ ⊗ |B⟩). The probability of
getting at least a positive answer is instead 1− (⟨A|⟨B|)|(1−M)⊗ (1−M)|(|A⟩⊗ |B⟩). Hence, the membership weight of
the exemplar x with respect to the concept ‘A or B′ coincides in sector 2 with the latter probability and can be written
as 1− (⟨A|⟨B|)|(1−M)⊗ (1−M)|(|A⟩ ⊗ |B⟩) = µ(A)+ µ(B)− µ(A)µ(B) = (⟨A|⟨B|)|M ⊗ 1+ 1⊗M −M ⊗M|(|A⟩ ⊗ |B⟩).

Coming to the Fock space F = H ⊕ (H ⊗ H), the global initial state of the concepts is represented by the unit
vector

|Ψ(A, B)⟩ = meiλ|A⟩ ⊗ |B⟩ + neiν 1
√

2
(|A⟩ + |B⟩) (9)

where the real numbers m, n are such that 0 ≤ m, n and m2 + n2 = 1. The decision measurement on the membership
weight of the exemplar x with respect to the concept ‘A or B′ is represented by the orthogonal projection operator
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M ⊕ (M ⊗ 1 + 1 ⊗ M − M ⊗ M), hence the membership weight of x with respect to ‘A or B′ is given by

µ(A or B) = ⟨Ψ(A, B)|M⊕(M⊗1+1⊗M−M⊗M)|Ψ(A, B)⟩ = m2(µ(A)+µ(B)−µ(A)µ(B))+n2(
µ(A) + µ(B)

2
+ℜ⟨A|M|B⟩)

(10)
Let us now consider to the representation for the conjunction ‘A and B′. Here, the decision measurement for the
membership weight of the exemplar x with respect to the concept ‘A and B′ is represented by the orthogonal projection
operator M ⊕ (M ⊗ M), while the membership weight of x with respect to ‘A and B′ is given by2

µ(A and B) = ⟨Ψ(A, B)|M ⊕ (M ⊗ M)|Ψ(A, B)⟩ = m2µ(A)µ(B) + n2(
µ(A) + µ(B)

2
+ℜ⟨A|M|B⟩) (11)

By comparing Equations (10) and (11), it seems that the formulas for the membership weights for conjunction and
disjunction of two concepts differ only for the piece in sector 2 of Fock space, µ(A)µ(B) versus µ(A)+µ(B)−µ(A)µ(B),
while the piece in sector 1 remains unchanged, which would be counterintuitive. There is a very subtle aspect involved
here and it should be clarified. The piece ( µ(A)+µ(B)

2 +ℜ⟨A|M|B⟩) is only formally identical in Equations (10) and (11).
We remind, in this respect, that the mathematical representation of the unit vectors |A⟩ and |B⟩ in a concrete Hilbert
space generally depends on the exemplar x, on the membership weights µ(A) and µ(B), and also on whether µ(A or B)
or µ(A and B) is measured, which results in a different interference angle θ. This means that, for a given exemplar
x, the mathematical representations of A and B, hence the interference term ℜ⟨A|M|B⟩ is different for ‘A or B′ and
‘A and B′. This was not explicitly mentioned in Aerts (2009a), because Hampton did not measure the disjunction
and the conjunction of two concepts for the same exemplars. But, one realizes at once that the interference angles
for similar concepts are very different. For example, the interference angles for Furniture, Household appliances,
Furniture and Household appliances are very different from those for House furnishings, Furniture, House furnishings
or Furniture (see (Aerts, 2009), p. 318).

The analysis above provides an intuitve theoretical support to the following two theorems.

Theorem 3. The membership weights µ(A), µ(B) and µ(A and B) of an exemplar x for the concepts A, B and ‘A and B′

can be represented in a quantum probability model where

µ(A and B) = m2µ(A)µ(B) + n2(
µ(A) + µ(B)

2
+ Intc

θ(A, B)) (12)

where the numbers m2 and n2 are convex coefficients, i.e. 0 ≤ m2, n2 ≤ 1, m2 + n2 = 1, and θ is the interference angle
with

Intc
θ(A, B) =

√
1 − µ(A)

√
1 − µ(B) cos θ (13)

Proof. See (Aerts, 2009a).

The term µ(A)µ(B) is compatible with the product t–norm in (classical set) fuzzy logic (Sauerland, 2010). The
term Intc

θ(A, B) is instead the quantum interference term and it is responsible, together with the average µ(A)+µ(B)
2 , of

the deviations from classical expectations. For example, in the case of Mint with respect to Food, Plant and Food and
Plant, we have that Theorem 3 is satisfied with m2

Mint = 0.3, n2
Mint = 0.7 and θMint = 50.21◦. The numbers m2 and

n2 estimate the weight of sectors 2 and 1, respectively, in the Fock space, that is, how the quantum logical thought is
correlated with the quantum conceptual thought. This point is crucial and will be extensively discussed in Sections 4
and 5 with reference to borderline cases.

Theorem 4. The membership weights µ(A), µ(B) and µ(A or B) of an exemplar x for the concepts A, B and A or B
can be represented in a quantum probability model where

µ(A or B) = m2(µ(A) + µ(B) − µ(A)µ(B)) + n2(
µ(A) + µ(B)

2
+ Intd

θ (A, B)) (14)

where m2, n2 and θ are defined as in Theorem 3.

2The membership weight µ(A or B) could have been calculated from the membership weight µ(A and B) by observing that the probability that a
subject decides for the membership of the exemplar x with respect to the concept ‘A or B′ is 1 minus the probability of decision against membership
of x with respect to the concept ‘A and B′.
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Proof. See (Aerts, 2009a).

Concerning the Donkey case, we have that Theorem 4 is satisfied with m2
Donkey = 0.26, n2

Donkey = 0.74 and θDonkey =

77.34◦. We have explicitly written Intcθ(A, B) and Intd
θ (A, B) to stress that the two terms are generally different.

Theorems 3 and 4 contain the quantum probabilistic expressions allowing the modeling of almost all of Hampton’s
data (1988a,b). Now, since overextension and underextension cases are so abundant in experimental tests on conjunc-
tions and disjunctions, and since Equations (12), (13) and (14) are so successful in modeling the large collection of
data by Hampton (1988a,b), one can naturally wonder about the underlying mechanism and dynamics determining
this deviations from classical (fuzzy set) logic and probability theory and, conversely, the effectiveness of a quantum-
theoretic modeling. The reason is that a new genuine quantum effect comes into play, namely emergence. Whenever a
given subject is asked to estimate whether a given exemplar x belongs to the vague concepts A, B, ‘A and B′ (‘A or B′),
two mechanisms act simultaneously and in superposition in the subject’s thought. A quantum logical thought, which
is a probabilistic version of the classical logical reasoning, where the subject considers two copies of exemplar x
and estimates whether the first copy belongs to A and (or) the second copy of x belongs to B. But also a quantum
conceptual thought acts, where the subject estimates whether the exemplar x belongs to the newly emergent concept
‘A and B′ (‘A or B′). The place whether these superposed processes can be suitably structured is the Fock space. Sec-
tor 1 of Fock space hosts the latter process, while sector 2 hosts the former, while the weights m2 and n2 measure the
amount of ‘participation’ of sectors 2 and 1, respectively. But, what happens in human thought during a cognitive test
is a quantum superposition of both processes. As a consequence of this explanatory hypothesis, an effect, a deviation,
or a contradiction, are not failures of classical logical reasoning but, rather, they are a manifestation of the presence
of a superposed thought, quantum logical and quantum emergent thought.

Interestingly, the Fock space equation for disjunction can be derived from the Fock space equation for conjunction
by applying de Morgan’s rules to the ‘logical reasoning’ sector of Fock space. In fact, Equation (12) can be obtained
from Equation (14) by replacing µ(A)µ(B) by 1− ((1−µ(A)(1−µ(B))), which is what we would expect intuitively from
the perspective introduced in our modeling. This also means that the de Morgan rules might be not satisfied when
both ‘logical reasoning’ and ‘emergent reasoning’ are taken into account, which is potentially relevant for clarifying
the situation of borderline vagueness, as we will see in Sections 4 and 5.

The explanation above might seem rather complicate. Nonetheless, we will see in Sections 4 and 5 that this
explanatory hypothesis accords with experimental data and can be successfully employed to solve the deviations from
classical logic and probability theory observed in the borderline contradictions. Let us thus devote the next section to
introduce these contradictions.

3. An experiment measuring borderline vagueness
The graded nature of membership weights of exemplars of concepts is a consequence of a characteristic of concepts
called vagueness. Besides the combination problem discussed in Section 2, the existence of fuzzy boundaries in
concepts is responsible of the so-called Zeno’s sorites paradox and the borderline contradictions. We do not dwell
with the former in the present paper, for the sake of brevity. We instead introduce the latter in this section.

If we consider the concept A Tall Man, we can immediately realize that it lacks well defined extensions, since
the boundary between ‘tall’ and ‘not tall’ is not clearly established. Moreover, a predicate like ‘tall man’ admits
borderline cases, that is, there are exemplars where it is unclear whether the predicate applies. It is important to
observe that this ambiguity cannot be removed by specifying the exact height of the person. It goes without saying
that these borderline cases violate some basic rules of classical logic and probability theory, even in their fuzzy
set extensions (Bonini, Osherson, Viale & Williamson, 1999; Alxatib & Pelletier, 2011; Ripley, 2011). Pioneeristic
investigations on these borderline contradictions are due to Bonini et al., (1999), and attempts to solve these difficulties
by weakening classical logical rules, proposing pragmatic logics and extensions of probability theory, or resorting to
fuzzy set theory, were given by Alxatib and Pelletier (2011), Ripley (2011) and Sauerland (2010). However, despite
the promising results that have been obtained, none of the approaches put forward so far provides a faithful modeling
of empirical data together with a coherent explanation in terms of concept theory. In the following, we analyze in
detail the experiment conducted by Alxatib and Pelletier (2011) on these difficulties.
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Alxatib and Pelletier (2011) performed an experiment in which participants were presented with a picture of five
suspects of differing heights in a police line-up. The suspects in the line-up were identified by the numbers #1 (5′4′′),
#2 (5′11′′), #3 (6′6′′), #4 (5′7′′), and #5 (6′2′′) and they were shown in a picture purposely not sorted by height, but
with an ordering based on names. In addition, participants received a survey with 20 questions and they had to mark
one of three check boxes corresponding to three possibilities (true, false, can’t tell). The 20 questions consisted of four
questions for each of the suspects, as demonstrated below for a given suspect #x. The ordering of the four questions
for each of the five suspects was randomized, so that no two copies of the survey had the same order of questions. A
sample of 76 subjects participated in the experiment.

#x is tall True 2 False 2 Can’t tell 2
#x is not tall True 2 False 2 Can’t tell 2
#x is tall and not tall True 2 False 2 Can’t tell 2
#x is neither tall nor not tall True 2 False 2 Can’t tell 2

The results are shown in Table 1. The figure shows the percentage of true and false answers to the four questions
for each subject #x.

Proposition 1: “Subject #x is tall”
Proposition 2: “Subject #x is not tall”
Proposition 3: “Subject #x is tall and not tall”
Proposition 4: “Subject #x is neither tall nor not tall”

Subject 1: True 1: False 2: True 2: False 3: True 3: False 4: True 4: False
#1 5’4” 1.3% 98.7% 94.7% 3.9% 14.5% 76.3% 27.6% 65.8%
#2 5’11” 5.3% 93.4% 78.9% 17.1% 21.1% 65.8% 31.6% 57.9%
#3 6’6” 46.1% 44.7% 25.0% 67.1% 44.7% 40.8% 53.9% 42.1%
#4 5’7” 80.3% 10.5% 9.2% 82.9% 28.9% 56.6% 36.9% 55.3%
#5 6’2” 98.7% 1.3% 0.0% 100.0% 5.3% 81.6% 6.6% 89.5%

Table 1: Experimental data by Alxatib and Pelletier (2011).

A preliminary look at Table 1 reveals that cases exist in which the statement “x is tall” is apparently accepted (e.g.,
subject #3), in which the statement “x is tall” is apparently rejected (e.g., subjects #1 and #4), but also borderline cases
in which one gets “can’t tell” as a typical answer (e.g., subjects #2 and #5). One can verify by pure inspection that
there is a consistent preference for denying a statement over accepting its negation. Furthermore, there is a substantial
preference for rejecting a negation (over accepting a statement). Another relevant result is that there are cases (about
30%) where the statements “x is tall” and “x is not tall” are both considered false, whereas the proposition “x is tall
and not tall” is considered true. The same holds for the statement “x is neither tall nor not tall”. In addition, accepting
the statement “x is neither tall nor not tall” is preferred over accepting the statement “x is tall and not tall”. The latter
seems intuitively plausible, but it is difficult to find a theoretical argument for it. And, indeed, Alxatib and Pelletier
(2011) could hardly explain the difference, as already noticed in (Blutner, Pothos & Bruza, 2012). Moreover, there is
no evident preference for either rejecting ‘neither’ or rejecting ‘and’. This is apparent for borderline cases.

The considerations above on subjects’ behavior in the evaluation of borderline cases put at stake some fundamental
rules of classical logic, including the de Morgan rules. Alxatib & Pelletier (2011) provided an exhaustive analysis of
their experiment, also in the light of existing concept theories. In particular, they proposed a combination of logic,
semantics and pragmatics which provides an intuitive qualitative picture of what is going on at an empirical level.
However, their theoretical proposal could not explain the observed pattern for the statement “x is tall and not tall”.
Moreover, they could not explain the fact that the pattern for “x is tall and not tall” was different from the pattern for
“x is neither tall nor not tall”.

A very interesting solution for borderline cases has recently been proposed by Blutner, Pothos & Bruza (2012) by
using quantum probabilistic notions in Hilbert space. These authors point out that a quantum superposition of “tall”
and “not tall” plays a fundamental role in borderline vagueness, and that the quantum interference generated by this
superposition is responsible of the deviations from classicality measured by Alxatib and Pelletier (2011). In the next
section, we put forward an alternative solution in Fock space which accords with the latter. We will see that the two
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proposals come to similar conclusions for what concerns the presence of genuinely quantum aspects as the main cause
of borderline vagueness. They present instead structural differences in the derivation and use of quantum probability,
and also conceptual differences in the role played by superposition and emergence. as well as in the relation between
logical and conceptual thinking. A more detailed comparison will be presented in Section 7.

4. Fock space for borderline contradictions
The Fock space model elaborated in Section 2 will be specified in this section to the analysis of a concrete effect and
to faithfully model the experimental data collected by Alxatib and Pelletier (2011) within a quantum probabilistic
framework.

Before coming to specific results on the concrete study of borderline vagueness, let we start with a general remark.
Our quantum-theoretic modeling in Fock space naturally contemplates the possibility that the classical de Morgan
rules are violated in borderline cases. As we have observed in Section 2, in fact, the latter rules hold only in the
‘logical reasoning’ sector of Fock space, but they are generally violated when both ‘logical reasoning’ and ‘emergent
reasoning’ are taken into account. Hence, a possible violation of the de Morgan rules in Alxatib & Pelletier (2011)
could be accounted for in our quantum model in Fock space.

Let us now denote by A the concept Tall, by A′ the concept Not Tall and by A and A′ the conjunction Tall and
Not Tall. Then, we denote by µx(A), µx(A′) and µx(A and A′) the probabilities that a given subject x belongs to the
vague concept Tall, Not Tall and Tall and Not Tall, respectively. Then, we assume that, in the large number limits,
µx(A), µx(A′) and µx(A and A′) coincide with the relative frequencies measured by Alxatib and Pelletier (2011) that
the propositions “x is tall”, “x is not tall” and “x is tall and not tall”, respectively, are considered true, for each one x
of the exemplars, with x = 1, . . . , 5. We know that the identification of the ‘amount of truth’ of a given proposition
with the ‘degree of membership’ may sound not completely rigorous, though these notions are strongly connected.
Nonetheless, in absence of a concrete experiment measuring typicalities or membership weights, which we plan to
perform in the next future, it is reasonable for our purposes to assume that this identification holds.

The above identification allows us to apply the conditions for a classical Kolmogorovian probability model, as
well as the quantum probability rules for conjunction in Fock space, to the data collected in Alxatib and Pelletier
(2011) and reported in Tables 2 and 3.

µx(A) µx(A′) µx(A and A′) (∆c)x (kc)x

A=Tall
A′=Not Tall
#1 5’4” 0.013 0.947 0.145 0.132 0.185
#2 5’11” 0.461 0.250 0.447 0.197 0.736
#3 6’6” 0.987 0.000 0.053 0.053 0.066
#4 5’7” 0.053 0.079 0.211 0.158 0.369
#5 6’2” 0.803 0.092 0.289 0.197 0.394

Table 2: Experimental data by Alxatib and Pelletier (2011) for concepts A=Tall and A′=Not Tall. The probabilities
associated with ‘be tall’, ‘to be not tall’, and ‘to be tall and not tall’ are respectively given by µx(A), µx(A′) and
µx(A and A′), for each exemplar x. We also reported the classical modeling conjunction factors (∆c)x and (kc)x, for
each exemplar x.

Let us start from Table 2. By comparing empirical data with Theorem 1 in Section 2, we can draw the conclusion
that, for each exemplar x, a classical probability model does not exist, as stated by the following theorem.

Theorem 5. The membership weights µx(A), µx(A′) and µx(A and A′) of an exemplar x for the concepts A, A′, A and A′

cannot be represented in a classical probability model.

Proof. It is sufficient to look at the items in columns (∆c)x and (kc)x of Table 2, for each subject x.
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µx(A) µx(A′) µx(A and A′) µx(A) · µx(A′) 1
2 (µx(A) + µx(A′)) ℜ⟨A|M|A′⟩x m2

x n2
x θx

A=Tall
A′=Not Tall
#1 5’4” 0.013 0.947 0.145 0.012 0.480 -0.229 0.445 0.555 180.00◦

#2 5’11” 0.461 0.250 0.447 0.115 0.356 0.163 0.177 0.823 75.14◦

#3 6’6” 0.987 0.000 0.053 0.000 0.494 -0.114 0.860 0.140 180.00◦

#4 5’7” 0.053 0.079 0.211 0.042 0.421 -0.134 0.310 0.690 107.44◦

#5 6’2” 0.803 0.092 0.289 0.074 0.448 -0.052 0.331 0.669 97.10◦

Table 3: Experimental data by Alxatib and Pelletier (2011) for concepts A=Tall and A′=Not Tall. The probabilities
associated with ‘to be tall’, ‘to be not tall’, and ‘to be tall and not tall’ are given by µ(A)x, µ(A′)x and µ(A and A′)x,
for each exemplar x. We also reported the classical expectations µx(A) · µx(A′), the averages 1

2 (µ(A)x + µ(A′)x) and the
Fock space weights m2

x and n2
x, for each exemplar x.

Let us come to Table 3. By comparing empirical data with Theorem 3 in Section 2, we can draw the conclusion
that, for each exemplar x, a quantum probability model exists in Fock space, as stated by the following theorem.

Theorem 6. The membership weights µx(A), µx(A′), µx(A and A′) of an exemplar x for the concepts A, A′ and A and A′

can be represented in a quantum probability model in Fock space.

Proof. Following the lines of Aerts (2009a), we can construct a quantum model in the Fock space C3 ⊕ (C3 ⊗ C3)
which reproduces the data in Table 3 and such that

µx(A and A′) = m2
xµx(A) · µx(A′) + n2

x(
µx(A) + µx(A′)

2
+
√

1 − µx(A)
√

1 − µx(A′) cos θx) (15)

for each subject x, x = 1, . . . , 5. The initial state of the concepts A, A′ is represented by the unit vector

|Ψ(A, A′)⟩ = mx|A⟩ ⊗ |A′⟩ +
nx√

2
(|A⟩ + |A′⟩) (16)

which fits the data in Table 3 with

|A⟩ =
( √

µx(A), 0,
√

1 − µx(A)
)

(17)

|A′⟩ = eiθx
(√ (1 − µx(A))(1 − µx(A′))

1 − µx(A)
,

√
µx(A) + µx(A′) − 1

1 − µx(A)
,−
√

1 − µx(A′)
)

(18)

θx = arccos
( 2

n2
x
(µx(A and A′) − m2

xµx(A)µx(A′)) − µx(A) − µx(A′)√
1 − µx(A)

√
1 − µx(A′)

)
(19)

The decision measurement is represented by the orthogonal projection operator M⊕(M⊗M), where M = |100⟩⟨100|+
|010⟩⟨010| and {|100⟩, |010⟩, |001⟩} is the canonical basis of C3.

For each subject x, the values of mx, nx and θx fitting the data are reported in Table 3. We note that the Fock space
model above contains three parameters mx, nx and θx which fit the data µx(A), µx(A′) and µx(A and A′) and are bound
by Equation (15) and by the condition m2

x + n2
x = 1. Summarizing, there are two independent parameters which are

used to predict the data point µx(A and A′), while µx(A)andµx(A′) are inserted into the model and not predicted. We
also notice that the unit vectors |A⟩ and |A′⟩ representing the concepts Tall and Not Tall, respectively, are orthogonal,
which is compatible with quantum mechanical rules, since ‘tall’ and ‘not tall’ can be regarded as outcomes of a
decision measurement.

Let us analyze the results obtained in Table 3. To test the quality of the fit, we have computed the ‘residual sum of

squares’ (RSS), getting RSS =
∑5

x=1

(
µx(A and A′)−m2

xµx(A)·µx(A′)−n2
x( µx(A)+µx(A′)

2 +
√

1 − µx(A)
√

1 − µx(A′) cos θx)
)2
=

2.26 · 10−26. Then, we note that, for each subject x, the average 1
2 (µx(A) + µx(A′)) and the interference term
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√
1 − µx(A)

√
1 − µx(A′) cos θx are, in modulus, higher than the corresponding classical probability term µx(A) ·µx(A′).

As a consequence, we expect that the effect of emergence is generally prevailing over the logical reasoning. To prove
this, we have computed, for each subject x, the sum 1

2 (µx(A) + µx(A′)) +
√

1 − µx(A)
√

1 − µx(A′) cos θx, thus finding
0.251, 0.519, 0.380, 0.287, 0.395, for the five subjects. After showing that this set has the same variance as the set
under µx(A) ·µx(A′) in Table 3, by means of an F-test, we have then performed an independent 2-sample t-test for these
sets of data, finally getting a p-value equal to 0.00013 (1-tail) and 0.000259 (2-tail). This shows that the corresponding
data are significantly different from each other. In any case, there are subjects for which the weight of sector 1 is much
higher than the weight of sector 2, as follows.

Let us consider subject #2 as an example. Here, we have an average equal to 0.356, an interference contribution
equal to 0.163, for an interference angle equal to 75.14◦, while the second sector weight is 0.177 and the first sector is
0.823. The explanation is simple, in this case. Whenever a person is asked to estimate whether subject #2 belongs to
the vague concept Tall, the person first wonders whether subject #2 belongs to the new emergent concept Tall and Not
Tall, and then the person considers two exemplars of subject #2 and applies the logical rules wondering whether the
first copy belongs to Tall and the second copy belongs to Not Tall. But, one can see that the ‘sector 1 weight’ prevails
over the ‘sector 2 weight’, and that the average factor prevails over the interference factor.

We can even be more explicit to illustrate how the quantum logical thought and the quantum conceptual thought
are related in this experiment. Consider, again, subject #2. In sector 2 of Fock space, two identical copies of subject
#2 are taken into account by a given test participant. One is confronted with Tall, the other with Not Tall. If both
confrontations lead to acknowledgement of membership, the conjunction is satisfied. We can immediately recognize
the classical logical calculus here, except that things are probabilistisc, or fuzzy. The dynamics in sector 1 is instead
different. In this sector, a test person estimates whether subject #2 is a good exemplar of the new emergent concept
Tall and Not Tall. By comparing m2

2 with n2
2, we can see that the quantum conceptual thought dominates over the

quantum logical thought, in this case. A similar behavior can be noticed for subject #4, where n2
4 = 0.669, m2

4 = 0.331
and both average and interference terms prevail, in modulus, over the classical probability term.

The above treatment can be repeated for all subjects involved in the experiment. For example, the other way around
occurs for subject #3. In this case, m2

3 prevails over n2
3, which means that quantum logical thought dominates over the

quantum conceptual thought, in that case. As a consequence, a classical logical reasoning is the dominant dynamics
in this specific case. But, the whole decision process happens in a quantum superposition of the two processes in Fock
space, as we have anticipated in Section 2.

We would like to recall that it is not surprising that the non-classical (quantum) effects of superposition, inter-
ference, emergence occur in sector 1 of Fock space. Indeed, it is the unit vector 1√

2
(|A⟩ + |A′⟩) in this sector which

represents then new emergent concept Tall and Not Tall. In our analysis of the experiment by Alxatib and Pelletier
(2011), the deviations from classical expectations in borderline cases can be mainly explained in terms of these effects
of superposition and interference between Tall and Not Tall, while no effect of entanglement between Tall and Not
Tall appears, which could be described in sector 2. This means that the concepts Tall and Not Tall are represented by
the product vector |A⟩ ⊗ |A′⟩ in sector 2, and this sector intuitively only models a classical (logical) behavior in this
borderline case. But, entanglement systematically occurs in concepts which is generally represented in sector 2, as it
has been proved in Aerts & Sozzo (2011) and Aerts, Gabora & Sozzo (2012). In this perspective, new experiments on
borderline contradictions might also reveal entanglement between a concept and its negation.

To conclude this section, the quantum model in Fock space presented in this paper for the borderline contradictions
identified by Alxatib and Pelletier (2011) shows that, the quantum conceptual dynamics generally prevails over the
quantum logical dynamics. This is relevant, from our perspective, since it reveals that these ‘contradictions’ should
not be regarded as pure ‘deviations from classicality’ but, rather, as effects due to the dominant dynamics, which is
emergence. Hence, the possible violation of de Morgan’s rules in borderline cases should be considered as a hint
toward the acceptance of emergence as dominant dynamics and classical logical reasoning as secondary dynamics.
This is exactly what happens for the deviations from classical (fuzzy set) logic and probability theory in concept
combinations discussed in Section 2, and for the ‘effects’ typically experimented in decision theory, such as the
conjunction fallacy and the disjunction effect (Aerts, 2009a; Aerts & D’Hooghe, 2009; Busemeyer & Bruza, 2012;
Busemeyer & Lambert-Mogilansky, 2009; Khrennikov, 2010).
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5. A complete modeling of experimental data
The modeling in the previous section does not provide a complete representation of the whole set of data collected by
Alxatib & Pelletier (2011). In particular, the data on the truth value of the setence “x is neither tall nor not tall” have
not been modeled yet. There is a reason for that, and it has to do that the quantum-theoretic approach presented in
Section 2 was originally elaborated to cope with simple concept combinations of the form A and B or A or B. Hence,
it is not trivial that such an approach could successfully model also combinations of the form neither A nor B. We will
see in this section that our Fock space modeling in Section 4 is general enough to cope with sentences of the form “x
is neither tall nor not tall”, due to the fact that a concept and its negation are involved in this sentence. But, before
undertaking this task, we need to anticipate an important remark, as follows.

When analyzing the semantic content of “x is neither tall nor not tall”, one must stress that the most natural
interpretation of this sentence seems to be “x is (not tall) and (not (not tall))”. Hence, one should experimentally test
the membership weights of a subject x with respect to the concepts Not Tall, Not (Not Tall) and Not Tall and Not (Not
Tall). And, should the latter test be performed, it could reveal that the statistics on “x is neither tall nor not tall” is
different from the statistics on “x is (not tall) and (not (not tall))”. Moreover, if we accept such an identification, then
one cannot generally use the data on the concept Tall also for the concept Not (Not Tall), since these two concepts
are not generally equivalent, as experimentally tested by Hampton (1988b). Notwithstanding this, we remind that
sector 1 of Fock space represents a quantum conceptual process, while sector 2 of Fock space represents a quantum
logical process in our construction. This entails that it is reasonable to use the same rules that hold in quantum logic,
i.e. identifying a quantum proposition with its double negation, when dealing with concepts in this sector. As a
consequence, in sector 2, we can treat the conceptual combination Not Tall and Not (Not Tall) as Not Tall and Tall,
thus using the quantum probabilistic formula for the conjunction in Equation (15). More explicitly, we repeat our
reasoning in Section 4 and construct a quantum model in the Fock space C3 ⊕ (C3 ⊗C3) which reproduces the whole
set of data in Table 3, as follows.

In sector 1 of Fock space, the unit vector 1√
2
(|A′⟩ + |A⟩) describes the new emergent concept Neither A Nor A’,

while in sector 2 of Fock space, one should consider the conceptual combination by the tensor product vector |A′⟩⊗|A⟩.
Thus, the initial state of the concepts A, A′ is now represented by the unit vector

|Ψ(A, A′)⟩ = mx|A′⟩ ⊗ |A⟩ +
nx√

2
(|A′⟩ + |A⟩) (20)

while the decision measurement is represented by the orthogonal projection operator M ⊕ (M ⊗ M), where M =

|100⟩⟨100| + |010⟩⟨010|. This means that we can represent the data on the conceptual combination Neither Tall Nor
Not Tall by the quantum probabilistic formula

µx(neither A nor A′) = m2
xµx(A) · µx(A′) + n2

x(
µx(A) + µx(A′)

2
+
√

1 − µx(A)
√

1 − µx(A′) cos θx) (21)

for each subject x, x = 1, . . . , 5. We stress that Equation (21) is only formally equivalent to Equation (15), since the
values of m2

x, n2
x and θx are different, as we can see by considering the following table.

µx(A) µx(A′) µx(neither A nor A′) m2
x n2

x θx

#1 5’4” 0.013 0.947 0.276 0.028 0.972 210.86◦

#2 5’11” 0.461 0.250 0.539 0.139 0.861 66.65◦

#3 6’6” 0.987 0.000 0.066 0.826 0.174 180.00◦

#4 5’7” 0.053 0.079 0.316 0.659 0.341 18.24◦

#5 6’2” 0.803 0.092 0.369 0.424 0.576 70.91◦

Table 4: Experimental data by Alxatib and Pelletier (2011) for concepts A=Tall and A′=Not Tall. The probabili-
ties associated with ‘to be tall’, ‘to be not tall’, and ‘to be neither tall nor not tall’ are given by µ(A)x, µ(A′)x and
µx(neither A nor A′), for each exemplar x.

Also in this case, we have computed the residual sum of squares (RSS), getting RSS = 3.61 ·10−27. By comparing
Tables 3 and 4, one realizes at once that similar conclusions can be attained with repsect to the prevalence of sector
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1 to sector 2 of Fock space, hence to the prevalence of the quantum conceptual thought over the quantum logical
thought.

The previous analysis enables to observe that our Fock space modeling can handle situations of the form “x is nei-
ther A nor B”, in the specific case when B is the conceptual negation of A. We conclude this section by observing that
we plan to investigate in the future whether it is possible to further generalize our representation. In this perspective,
one should (i) find an emergent superposition state in sector 1 of Fock space for the concept Neither A Nor B, (ii) find
a quantum logical expression of Neither A Nor B, which would consist of a sitable combination of A and B in the
tensor product Hilbert space. We do not insist on this point, for the sake of brevity.

It must be recalled, to conclude, that the modeling presented in Aerts (2009a) model enables in principle the
representation of more complex combinations, exactly because in sector 1 of Fock space ‘only the emergence of a
new concept’ plays a role in what happens there. And of course, whatever combination is made of the concepts A and
B, always a new concept emerges. Hence, also for the concepts Neither A Nor B, A Different From B, A Similar To B,
etc. Of course, in the first section of Fock space there is a limitation to what these combinations can be, in the sense
that they need to be interpretable within quantum logic. This would not be the case, for example, for A Different From
B, or A Similar To B, but it is the case for Neither A Nor B.

6. Some methodological remarks on the predictions of the Fock space model
We conclude this paper by providing a brief qualitative and quantitative comparison between the quantum model in
Fock space elaborated in this paper and the quantum model in Hilbert space for borderline vagueness developed in
Blutner, Pothos & Bruza (2012). But, first, we think it useful to discuss some general considerations on the methods
employed here, which theoretically rests on the results in Aerts (2009a).

One could at first sight observe that the model worked out here, and also the quantum-theoretic framework pre-
sented in Aerts (2009a), are descriptive of the corresponding experimental data, but they hardly have explanatory
power, due to the fact that they do not supply predictions for future experiments, hence they cannot be falsified. This
point is very important, in our opinion, and should be discussed carefully. The model we have presented here has
not been devised to directly reproduce the data by Alxatib and Pelletier, thus fitting them. It has rather applied the
general perspective on combinations of two concepts in Aerts (2009a) to the case in which the studied combination is
the conjunction of a concept and its negation. In this sense, our specialized model can be seen as a confirmation that
the quantum-theoretic modeling in Aerts (2009a), which faithfully reproduces Hampton’s data (1988a,b), can also be
successfully employed to deal with different data sets and in a completely different conceptual framework. The second
point is that both models have been constructed to statistically reproduce actual human choices and decisions on the
basis of a hypothesized two-layered structure, logical and conceptual, of human thought. This means that our model
in Fock space cannot reproduce any arbitrary set of data on borderline cases. For example, one could consider the
values for the memebership weights µx(A) and µx(A′) collected in Table 2 and the set of values µ1(A and A′) = 0.658,
µ2(A and A′) = 0.553, µ3(A and A′) = 0.579, µ4(A and A′) = 0.895, µ5(A and A′) = 0.421 as membership weights of
µx(A and A′) (we take the real data false answers to the sentence “x is neither tall nor not tall” on purpose, using them
in place of “x is tall and not tall”). By following a procedure similar to the one in Section 4, one can prove that a Fock
space model does not exist in this case which fits the new arbitrary data.

We believe that the constraints on our modeling are not imposed by the number of parameters but, rather, by the
two-layered Fock space structure assumed in it. In this sense, the constraints we are faced with are similar to the
constraints imposed to quantum mechanics by microscopic physics. We agree that further psychological experiments
should be performed on cognitive entities to test and eventually falsify these quantum models. For example, they
could be put at stake by performing experiments which reveal that a Hilbert space structure is prohibited and cannot
work. It could be the case, since we believe that conceptual entities are less crystallized structures than microscopic
quantum entities. These new cognitive experiments could, e.g., involve pieces of texts instead of individual exemplars.
Concerning the specific Fock space model elaborated in the present paper, it can describe the Alxatib & Pelletier
(2011) data purely in terms of quantum interference and superposition between the concept Tall and the concept Not
Tall. But the model is also compatible with a situation in which Tall and Not Tall also entangle in the standard quantum
sense. We expect that superposition, interference and emergence are not the only quantum effects playing a role in
borderline vagueness, but also entanglement might play a role here, and even an important one. We plan to investigate

13



this aspect in future work to see whether also entanglement is present in borderline contradictions. But, this will
obviously require a suitable choice of the cognitive tests (membership weights on Likert scale, collapse typicality
measurements, etc.) to be performed.

Another situation we expect in our quantum model is the following. In principle, for a given subject x, the
probabilities µx(A and A′) and µx(A′ and A) are different in our model. Indeed, although in sector 1 of Fock space the
concepts A and A′ and A′ and A are represented by the same superposition state, the phase of this state is different
in the two cases, leading to different interference angles, hence to different values for the probabilities. This means
that eventual order effects would be automatically accounted for by our model if the combination Not Tall and Tall is
measured instead of Tall and Not Tall. These order effects do not seem to occur in Alxatib & Pelletier (2011), but they
might be revealed by new experiments in which Tall and Not Tall are measured in a different order.

To conclude this section, we believe that the quantum model in Fock space presented in this paper and, more
generally, the quantum theoretic-modeling in Aerts (2009a), do not only describe actual experimental situations, but
they also provide an explanation of them in terms of genuine quantum effects.

7. A comparison between two quantum probability models
In this paper, we have elaborated a quantum probability model in Fock space for the data collected by Alxatib and
Pelletier. Recently, Blutner, Pothos and Bruza (2012) have worked out an alternative quantum model in Hilbert space
for the borderline vagueness occurring in the same experiment. It seems to us interesting to provide a qualitative and
quantitative comparison between the two models, analyzing analogies and differences, to see to what extent they are
compatible.

In Blutner, Pothos & Bruza (2012), the authors firstly introduce two dichotomic random variables T and F which
can take the values 0,1, instead of working with a single trichotomic (T, F,N, N=Null) random variable “Truth”. The
combination TF (T = 1, F = 0) corresponds to T , and so on, while the combination T F is excluded. Then, they
elaborate a classical Kolmogorovian probability model for vagueness, based on the ideas of Alxatib and Pelletier, and
show that it cannot quantitatively reproduce original data. Successively, the authors come to a quantum probability
model in which the state of “Tallness” of a subject x is represented by a unit vector |ψx⟩ of a Hilbert space, while
the decision measurement is represented by a self-adjoint operator whose spectral decomposition contains suitable
products of the projection operators T, T = 1 − T, F, F = 1 − F. For example, the operator 1

2 (TFT + FTF) is
associated with the outcome “true” in the decision process, and so on. The crucial assumption in this model is that
the projection operators T and F do not commute, which implies that interference terms appear in the probabilities
(calculated using the Born rule). This enables faithful modeling for both acceptance and rejection the truth of the
propositions “x is tall”, “x is not tall” and “x is tall and not tall”. The authors write explicitly that this model does not
explain the difference between “x is tall and not tall” and “x is neither tall and not tall”. They should reduce to the
statement “x is tall and x is not tall” versus “x is not tall and x is tall” (assuming the law of double negation) (Blutner,
Pothos & Bruza, 2012).

The model briefly summarized above and the one introduced in Sections 4 and 5 have some important analogies.
We will sketch them in the following, proceeding by steps.

(i) Both approaches accept that a classical set (fuzzy set) modeling cannot cope with borderline vagueness.
(ii) Both models enable to show that a classical Kolmogorovian probability framework cannot satisfactorily de-

scribe the data collected by Alxatib and Pelletier.
(iii) Both approaches show that human decisions in this experimental situation can be modeled in a quantum

probabilistic framework.
(iv) Both models describe borderline vagueness as an effect of a quantum interference phenomenon between the

concepts Tall and Not Tall.
There are however some relevant differences between the two models, which can be resumed as follows, again

proceeding by steps.
(i) The two proposals seemingly diverge from a technical point of view, since the model presented here is set in a

Fock space rather than in a Hilbert space, and each component Hilbert space has a specific role in our treatment. In
this respect, the authors wonder whether a Hilbert space modeling exists for Hampton’s data too, instead of resorting
to a Fock space model, as done in Aerts (2009a). We also observe that the specific representations of states and
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decision measurements are different in the two models. More specifically, we remind that the concepts Tall and Not
Tall are represented by orthonormal vectors (equivalently, by orthogonal one-dimensional projection operators) in this
paper, while the authors in Blutner, Pothos & Bruza (2012) assume that the projection operators T and F are neither
orthogonal nor commuting, e.g., TF , 0 and TF , FT.

(ii) The presence of a specifically structured two-layered form in human thought, logical and conceptual, is as-
sumed to play a fundamental role in the formation of borderline contradictions in human decisions. This aspect is
not present in Blutner, Pothos & Bruza (2012), which is responsible of the structural difference in the specific quan-
tum models. The distinction of two modes of thought has been proposed in psychological literature. Already Sig-
mund Freud proposed considering thought as consisting of two processes, which he called ‘primary’ and ‘secondary’
(Freud, 1899). Then, William James introduced the idea of ‘two legs of thought’, ‘conceptual’ and ‘perceptual’
(James, 1910). Jean Piaget, in his study of child thought, introduced ‘directed or intelligent thought’ and ‘autistic
thought’ (Piaget, 1923). Finally, Jerome Bruner introduced the ‘paradigmatic mode of thought’ and the ‘narrative
mode thought’ (Bruner, 1990) (see also (Sloman, 1996). It is the specific quantum-based structure presented here
which distinguishes our distinction from the existing ones.

(iii) In the present paper, we have not considered explicitly the cases of rejection of a statement “x is tall”, “x is not
tall”. This is because we were not interested in a complete treatment or modeling of the data collected by Alxatib and
Pelletier. We were more concerned with showing that the general modeling in Aerts (2009a) can be particularized in
such a way that borderline statements can be regarded as a conjunction of a concept and its negation, as the discussion
in Section 4 shows. On the contrary, Blutner, Pothos and Bruza (2012) supply a more extensive and complete analysis
of Alxatib and Pelletier data, where also the situation of rejection of a statement is quantitatively described. However,
we plan to investigate in the future also these aspects which are lacking in the modeling presented here.

(iv) In Blutner, Pothos & Bruza (2012), the authors accept that the de Morgan rules are satisfied, which does not
affect their quantum modeling. This aspect is more controversial in the model presented in Sections 4 and 5. The
two-layered structure of human thought suggests that typical logical relations between concepts should be satisfied
only in sector 2 of Fock space, while these logical relations, including de Morgan’s rules, could be violated if both
sectors are considered. As noticed in (iii), the absence of a complete quantitative treatment of the empirical data in
Section 3 does not allow us to provide a sharp answer to the question whether de Morgan’s laws are violated by our
modeling in this specific case. It, moreover, does not allow to conclude that de Morgan’s laws can be assumed without
affecting the structure of our modeling.

(v) Order effects seemingly do not play a role in Blutner, Pothos & Bruza (2012). On the contrary, we expect
that order effects might appear if suitable experiments are performed on borderline vagueness, as noticed in Section
6. Should this be the case, our modeling can automatically account for the appearence of these order effects.

The analysis in (i)–(v) allows one to conclude that the two quantum models show deep differences but, in absence
of a further analysis, which we plan to perform in the next future, the question of the compatibility between them
remains an open question.

Appendix. The Basics of Quantum-theoretic Modeling
When quantum theory is applied for modeling purposes, each entity considered – in our case a concept – is associated
with a complex Hilbert space H , which is a vector space over the field C of complex numbers, equipped with an
inner product ⟨·|·⟩, that maps two vectors ⟨A| and |B⟩ to a complex number ⟨A|B⟩. We denote vectors by using the
bra-ket notation introduced by Paul Adrien Dirac, one of the founding fathers of quantum mechanics (Dirac, 1958).
Vectors can be kets, denoted by |A⟩, |B⟩, or bras, denoted by ⟨A|, ⟨B|. The inner product between the ket vectors |A⟩
and |B⟩, or the bra-vectors ⟨A| and ⟨B|, is realized by juxtaposing the bra vector ⟨A| and the ket vector |B⟩, and ⟨A|B⟩
is also called a bra-ket, and it satisfies the following properties: (i) ⟨A|A⟩ ≥ 0; (ii) ⟨A|B⟩ = ⟨B|A⟩∗, where ⟨B|A⟩∗ is
the complex conjugate of ⟨A|B⟩; ⟨A|(z|B⟩ + t|C⟩) = z⟨A|B⟩ + t⟨A|C⟩, for z, t ∈ C, where the sum vector z|B⟩ + t|C⟩ is
called a ‘superposition’ of vectors |B⟩ and |C⟩ in the quantum jargon. From (ii) and (iii) follows that it is linear in the
ket and anti-linear in the bra, i.e. (z⟨A| + t⟨B|)|C⟩ = z∗⟨A|C⟩ + t∗⟨B|C⟩. We recall that the absolute value of a complex
number is defined as the square root of the product of this complex number times its complex conjugate. In formulas,
|z| =

√
z∗z. Moreover, a complex number z can either be decomposed into its cartesian form z = x + iy, or into its

goniometric form z = |z|eiθ = |z|(cos θ + i sin θ). As a consequence, we have |⟨A|B⟩| =
√
⟨A|B⟩⟨B|A⟩. We define the
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‘length’ of a ket (bra) vector |A⟩ (⟨A|) as |||A⟩|| = ||⟨A||| =
√
⟨A|A⟩. A vector of unitary length is called a ‘unit vector’.

We say that the ket vectors |A⟩ and |B⟩ are ‘orthogonal’ and write |A⟩ ⊥ |B⟩ if ⟨A|B⟩ = 0. We have introduced the
necessary mathematics to describe the first modeling rule of quantum theory, which is the following.

First quantum modeling rule: A state of an entity – in our case a concept – modeled by quantum theory is represented
by a ket vector |A⟩ with length 1, i.e. ⟨A|A⟩ = 1.

An orthogonal projection M is a linear function on the Hilbert space, hence M : H → H , |A⟩ 7→ M|A⟩, which is
Hermitian and idempotent, which means that for |A⟩, |B⟩ ∈ H and z, t ∈ C we have (i) M(z|A⟩+ t|B⟩) = zM|A⟩+ tM|B⟩
(linearity); (ii) ⟨A|M|B⟩ = ⟨B|M|A⟩ (hermiticity); and (iii) M · M = M (idempotency). The identity, mapping each
vector on itself, is a trivial orthogonal projection, denoted by 1. We say that two orthogonal projections Mk and Ml

are orthogonal, if each vector contained in Mk(H) is orthogonal to each vector contained in Ml(H), and we write in
this case Mk ⊥ Ml. The orthogonality of the projection operators Mk and Ml can also be expressed by Mk Ml = 0, 0
being the null operator. A set of orthogonal projection operators {Mk |k = 1, . . . , n} is called a spectral family, if all
projectors are mutually orthogonal, i.e. Mk ⊥ Ml for k , l, and their sum is the identity, i.e.

∑n
k=1 Mk = 1. This gives

us the necessary mathematics to describe the second modeling rule.

Second quantum modeling rule: A measurable quantity of an entity – in our case a concept – modeled by quantum
theory, and having a set of possible real values {a1, . . . , an} is represented by a spectral family {Mk |k = 1, . . . , n} in the
following way. If the entity is in a state represented by the vector |A⟩, this state is changed into a state represented by
one of the vectors

|Ak⟩ =
Mk |A⟩
||Mk |A⟩||

with probability ⟨A|Mk |A⟩ = ||Mk |A⟩||2. In this case the value of the quantity is ak, and the change of state taking place
is called collapse in the quantum jargon. The expression ⟨A|Mk |A⟩ is also the probability of getting the outcome ak in
a measurement of the quantity on the entity – in our case a concept (Born rule).

The tensor productHA ⊗HB of two Hilbert spacesHA andHB is the Hilbert space generated by the set {|Ai⟩ ⊗ |B j⟩},
where |Ai⟩ and |B j⟩ are vectors of HA and HB, respectively, which means that a general vector of this tensor product
is of the form

∑
i j |Ai⟩ ⊗ |B j⟩. This gives us the necessary mathematics to introduce the third modeling rule.

Third quantum modeling rule: A state p of a compound entity – a combined concept – is represented by a unit vector
|C⟩ of the tensor product HA ⊗ HB of the two Hilbert spaces HA and HB containing the vectors that represent the
states of the component entities – concepts.

The above means that we have |C⟩ = ∑i j ci j|Ai⟩⊗ |B j⟩, where |Ai⟩ and |B j⟩ are unit vectors ofHA andHB, respectively,
and
∑

i, j |ci j|2 = 1. We say that the state p represented by |C⟩ is a product state if it is of the form |A⟩ ⊗ |B⟩ for some
|A⟩ ∈ HA and |B⟩ ∈ HB. Otherwise, p is called an ‘entangled state’.

Fock space is a specific type of Hilbert space, originally introduced in quantum field theory. For most states of a
quantum field the number of identical quantum entities is not an actuality, i.e. predictable quantity. Fock space copes
with this situation in allowing its vectors to be superpositions of vectors pertaining to sectors for fixed numbers of
identical quantum entities. Such a sector, describing a fixed number of j identical quantum entities, is of the form
H ⊗ . . . ⊗ H of the tensor product of j identical Hilbert spaces H . Fock space F itself is the direct sum of all these
sectors, hence

F = ⊕ j
k=1 ⊗

k
l=1 H

For our modeling we have only used Fock space for the ‘two’ and ‘one quantum entity’ case, hence F = H⊕(H⊗H).
This is due to considering only combinations of two concepts. A unit vector |F⟩ ∈ F is then written as |F⟩ =
neiγ|C⟩+meiδ(|A⟩ ⊗ |B⟩), where |A⟩, |B⟩ and |C⟩ are unit vectors ofH , and such that n2 +m2 = 1. For combinations of
j concepts, the general form of Fock space expressed in equation (.1) will have to be used.
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