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We summarise results of a theoretical study investigating the distinct convective
instability properties of steady boundary-layer flow over rough rotating disks. A
generic roughness pattern of concentric circles with sinusoidal surface undulations
in the radial direction is considered. The goal is to compare predictions obtained
by means of two alternative, and fundamentally different, modelling approaches for
surface roughness for the first time. The motivating rationale being to identify com-
monalities and isolate results that might potentially represent artefacts associated
with the particular methodologies underlying one of the two modelling approaches.

The most significant result of practical relevance obtained is that both approaches
predict overall stabilising effects on the Type I instability mode of rotating disk
flow. This mode leads to transition of the rotating-disk boundary layer and, more
generally, the transition of boundary-layers with a cross-flow profile. Stabilisation
of the Type 1 mode means that it may be possible to exploit surface roughness
for laminar-flow control in boundary layers with a cross-flow component. However,
we also find differences between the two sets of model predictions, some subtle
and some substantial. These will represent criteria for establishing which of the
two alternative approaches is more suitable to correctly describe experimental data
when these become available.

I. INTRODUCTION

We recently reported first theoretical results investigating effects of distributed surface
roughness on the convective stability of the rotating-disk boundary layer1. This analysis was
based on the particular approach of Miklavčič & Wang2 for modelling surface roughness and
revealed stabilising roughness effects. In order to establish whether the predicted roughness
effects arose as an artefact of the particular modelling approach of Ref. [2] we have attempted
to reproduce them by means of an alternative, fundamentally different theoretical approach
for the implementation of surface roughness. Here we summarize the results obtained from
this alternative analysis and compare them to our original set of data from Ref. [1]. The
goal is to highlight similarities and differences in the two data sets which we expect to
become of significance in the context of interpreting future experimental data when they
become available. We begin by briefly outlining the context of our overall programme.

The boundary-layer flow established over a rotating disk - in an infinite fluid environment
that is at rest sufficiently far above the disk - is known as the von Kármán boundary layer3,4.
It represents a typical, generic example of a general class of fully three-dimensional boundary
layers that share the common, characteristic feature of what is known as a cross-flow velocity
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component4–6. Similar boundary layers are encountered in many applied contexts such as,
for instance, on the blades of wind turbines or over the highly swept wings of aircraft.

All boundary layers with a cross-flow component display similar laminar-turbulent tran-
sition characteristics due to the existence of an inflection point on the cross-flow velocity
profile4–6. Hence, the results on roughness effects to be presented here are of general, direct
practical relevance to all applied flow configurations where a boundary layer with a cross-
flow component is established. Our long-term goal being, as indicated above, to develop
theoretical methods enabling the energetically-optimal design of surface-roughness that can
be exploited, for boundary layers with a cross-flow component, in the context of new, passive
drag-reduction techniques.

It has now been firmly established that - contrary to the classic belief - the interaction of
boundary-layer flow with the right sort of roughness8 on surfaces can result in energetically
beneficial, drag-reducing effects7–9. The challenge that remains is, however, to identify
what represents the right sort of roughness that leads to such drag-reducing effects in any
particular application and, moreover, to become able to reliably predict the roughness effects
to be expected theoretically.

One fundamental, general strategy known to result in reduced drag is to control the
laminar flow and delay its transition to turbulence. This method of the stabilisation of the
boundary-layer flow exploits the fact that laminar flows are subject to smaller dissipative
energy losses than turbulent flows. Our theoretical results discussed in Ref. [1] did predict
such stabilising roughness effects on the rotating-disk boundary layer. However, these results
were based on one particular theoretical approach of modelling roughness2 which has, as yet,
not been tested experimentally. Therefore, it appeared necessary to explore and implement
an alternative option for modelling surface roughness to investigate the robustness of our
previous results and, thereby, generate confidence in their validity.

There exists an alternative, fundamentally different, method for modelling roughness than
that introduced by Miklavčič & Wang2. This alternative approach was suggested by Yoon,
Hyun & Park10. Henceforth we will refer to the two approaches as the MW and YHP
models, respectively. Both models can be implemented to show how successively increasing
roughness levels lead to deviations from the classic similarity solution for the flow over a
smooth disk due to von Kármán3. It is these modified steady-flow base profiles which are
underlying the subsequent linear stability analysis. In this context minor differences of the
steady base flow have the potential to result in major discrepancies of the predicted overall
stability charactersitics of the boundary layer.

The MW approach adopted in Ref. [1] models roughness empirically by replacing the usual
no-slip boundary conditions with partial-slip conditions at the disk surface. This is achieved
by introducing ad hoc slip factors in Newton’s law of viscosity for the azimuthal and radial
velocity component. Selecting different slip factors for each component enables modelling
independent levels of roughness in the radial and azimuthal directions. We refer to the case
where both slip factors are equal as isotropic roughness; whereas different values for the slip
factors represent anisotropic roughness. The major weakness of the MW approach is that
the slip factors have no apriori relation to any specific, geometric roughness height. Such
a relation can only be established, if at all, through calibration procedures in connection
with future experiments.

However, the YHP approach studied here models roughness by directly imposing a partic-
ular surface profile as a function of the radial position. Its drawback is, nevertheless, that it
assumes rotational symmetry. The YHP approach therefore models roughness in the radial
direction only and it can, hence, describe anisotropic roughness only. For our comparison
with the MW model we have, therefore, selected the generic pattern of concentric grooves
of a particular cross-sectional shape profile. However, the major advantage of the YHP
approach over the MW model is that a specific geometric roughness height can be defined
explicitly in terms of the amplitude and the wavelength of the surface undulations.

Due to the fact that the MW approach uses the slip factors, not related to any spe-
cific geometric roughness height, while the YHP model explicitly prescribes the roughness
height it is not possible to make quantitative comparisons between the results obtained
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from both approaches. Currently only the comparison of qualitative results and trends can
provide insight. However, this insight will ultimately enable formulating the criteria for de-
ciding which modelling approach is more appropriate when experimental data will become
available.

This paper proceeds as follows: In §II we summarise the calculations of the steady
boundary-layer flows over rotating disks with radial anisotropic surface roughness using
the two models. We then investigate the convective stability properties of the two sets of
resulting steady flows in §III and present neutral curves and critical Reynolds numbers. In
§IV we present an analysis of the energy balance within the boundary layers arising from
both models in order to extract possible underlying physical mechanisms behind the effects
of roughness on the stability of the flows. Conclusions are then drawn in §V.

II. THE STEADY FLOWS

As discussed in §I, two distinct approaches exist in the literature for modelling the steady
boundary-layer flow over rotating disks with radial anisotropic surface roughness. The YHP
model will be used with some modification to its original description10 and this warrants
a detailed description in §II A. The MW model will however be used without modification
to its original presentation and we discuss it only briefly in §II B; full details are available
elsewhere1,2.

A. The surface-geometry model due to YHP10

The surface of the disk is described by s∗(r∗) = δ∗ cos(2πr∗/γ∗), with ∗ indicating a
dimensional quantity. The quantity δ∗ is the amplitude of the surface variation from its
mean value, γ∗ is the wavelength of the surface variation, and r∗ is the distance along
the disk in the radial direction. The surface function can of course be altered to facilitate
any required profile by changing the values of δ∗ and γ∗, or indeed the functional form;
however, the cosine function will be used throughout this study. The disk is considered to
be rotating about its axis of symmetry at a constant rotation rate Ω∗ and we formulate
the analysis in the rotating frame. It is natural to consider this geometry in a cylindrical
polar coordinate system (r∗, θ, z∗) in which the governing Navier–Stokes equations are well
known. The steady-flow components in these directions are denoted (u∗, v∗, w∗) and we
assume a rotational symmetry such that the θ-dependence can be neglected.

Note that the original formulation of this model10 is in the stationary frame of reference.
This is in contrast to our choice of frame and we will necessarily find additional centrifugal
terms in the analysis that follows. Furthermore, the original presentation considers the
more general case of a rotating fluid in the far field and our current analysis corresponds to
the particular case that their system parameter Ro is set to unity.

All dimensional quantities are scaled on a characteristic length-scale given by the
boundary-layer thickness, d∗ =

√
ν∗/Ω∗, where ν∗ is the kinematic viscosity, and a velocity

scale given by r∗Ω∗. This leads to the Reynolds number Re = r∗Ω∗d∗/ν∗ = r and the
non-dimensional coordinate system (r, θ, z). The surface function non-dimensionalises to

s(r) = δ cos

(
2πr

γ

)
(1)

This particular form of s(r) gives two non-dimensional control parameters: δ, the height of
the roughness, and γ, the pitch of the roughness, both are expressed in units of boundary-
layer thickness as a consequence of the spatial scalings. It is useful to define the aspect
ratio a = δ/γ which we henceforth refer to as the roughness parameter within the YHP
model. The formulation used here is entirely consistent with the standard formulation of
the rotating-disk problem in the literature and reduces to that previously used by Malik11

and Lingwood12, for example, when a = 0.
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It is necessary to transform out the surface distribution before attempting to solve the
governing equations. To this end we use a new coordinate system (r, θ, η) defined by the
transformation η = z − s(r). In this modified coordinate system the radial velocity, az-
imuthal velocity, axial velocity and pressure are transformed to, respectively,

U(r, η) = u(r, z),

V (r, η) = v(r, z),

Ŵ (r, η) = −s′(r)u(r, z) + w(r, z),

P (r, η) = p(r, z),

where the prime denotes differentiation with respect to r. At this stage we make the
boundary-layer assumption, Re−1 << 1, and set W = ReŴ and ζ = Reη. The boundary-
layer equations are then obtained as

U

r
+
∂U

∂r
+
∂W

∂ζ
= 0,

U
∂U

∂r
+W

∂U

∂ζ
= −∂P

∂r
+Res′

∂P

∂ζ
+
(
1 + s′2

) ∂2U
∂ζ2

+
(r + V )2

r
,

U
∂V

∂r
+W

∂V

∂ζ
= (1 + s′2)

∂2V

∂ζ2
− U(2r + V )

r
,

s′′U2 = s′
∂P

∂r
−Re

(
1 + s′2

) ∂P
∂ζ
− s′ (r + V )2

r
.

Consistent with von Kármán’s original analysis3, the pressure gradient in the radial direc-
tion is taken to be zero. The governing equations for the steady flow are obtained after
introducing variables closely related to the von Kármán similarity variables,

f(r, ζ) =
1

r
U(r, ζ),

g(r, ζ) =
1

r
V (r, ζ),

h(r, ζ) = W (r, ζ)

(2)

and are stated as

2f + r
∂f

∂r
+
∂h

∂ζ
=0, (3)

rf
∂f

∂r
+ h

∂f

∂ζ
+

(
1 + r

s′s′′

1 + s′2

)
f2 =(1 + s′2)

∂2f

∂ζ2
+

(1 + g)2

1 + s′2
, (4)

rf
∂g

∂r
+ h

∂g

∂ζ
=(1 + s′2)

∂2g

∂ζ2
− 2f(1 + g), (5)

These are subject to the boundary conditions

f(r, ζ) = h(r, ζ) = g(r, ζ) = 0 at ζ = 0

f(r, ζ) = 0, g(r, ζ) = −1 as ζ →∞ (6)

which represent the no-slip and quiescent fluid conditions at all radial positions in this
rotating frame of reference. Note that this PDE system reduces to the von Kármán system
of ODEs in ζ when s(r)→ 0, as would be expected.

The presentation to this point has been consistent with the original description10 (albeit
in the rotating frame) and we now proceed to discuss modifications to the model that are
required in order to perform the stability analyses. Equations (3)–(6) can be solved, for
example, using the commercially available NAG routine D03PEF. The routine is a PDE
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solver that reduces the PDEs to a system of ODEs in ζ using the method of lines, and
solves the resulting ODEs using the backwards difference method. The solver uses an
initial solution at r = 0 to find the velocity profiles at the next increment of r and marches
forward. The velocity profiles at each r are found using a grid between ζ = 0 and 20.

The initial solution at r = 0 is found from assuming that

f(r, ζ) ∼ rF (ζ), g ∼ rG(ζ) and h ∼ H(ζ),

as r → 0, which results in the familiar set of von Kármán ODEs in ζ. This approach is
consistent with the series solution method described by Banks13 and applied more recently
by Garrett & Peake14 in a similar context for smooth surfaces.

The transformed flow field arising from the complete NAG solution across (r, ζ) is found
to vary at two distinct spatial scales in the radial direction. At the scale characterised by
γ, we have a response dependent on where r is within the oscillatory cycle of the surface
cosine function; that is, the flow fields at r and r+mγ (where m is an integer) are identical.
In addition to this oscillatory behaviour, we see a similarity-type solution scaling with r
(as per von Kármán3) at the larger spatial scale. For γ < O(10−1), as is envisaged here,
we argue that the small-scale response of the viscous flow will not occur in practice and it
is a reasonable approximation to take a spatial average of the flow field over any complete
cycle in r. This approach leaves only the similarity-solution variation within the averaged
flow field, (f̄(ζ), ḡ(ζ), h̄(ζ)). Note that overbars have been introduced to denote averaged
quantities.

When the surface function s(r) is oscillatory, as it is here, the spatial average acts to

‘average away’ the surface distribution, that is s(r) = 0 and so ζ → z. Under our approach
the surface roughness is therefore seen to lead to a modified von Kármán flow, denoted
(f̄(z), ḡ(z), h̄(z)).

Note that throughout this study we compute all spatially averaged quantities at 100
regularly spaced locations over one wavelength and the results have been confirmed to be
independent of the starting radial position. Our results also show that the aspect ratio
a = δ/γ determines the flow response and so, despite having two control parameters, we
can work in terms of the single roughness parameter, a. A discussion of these aspects is
given by Harris15.

Figure 1 shows the results from spatial averages of flows over one wavelength for a = 0,
0.1, 0.2 and 0.3. The radial flow is shown in Figure 1(a) and roughness is seen to decrease the
maximum radial velocity, max(f̄), within the boundary layer, i.e. roughness acts to reduce
the wall jet. This is physically sensible as roughness would increase the friction holding
back the base of the wall jet as it moves along the radius of the disk. For the azimuthal flow
shown in Figure 1(b), roughness is seen to thicken the boundary layer through a widening
of the profile; again, this is a physically sensible response. We note that the effect on the
radial flow component arising from the YHP model is consistent with that obtained from
the MW model1. However, for the wall-normal flow shown in Figure 1(c), roughness is
here seen to increase the axial flow entrained, |ḡ∞|, into the boundary layer which is in
direct contrast to the results from the alternative MW model. We return to the conflicting
properties of the two models in the following section.

B. The partial-slip model due to MW2

Rather than imposing a particular mathematical form for the surface roughness, the
MW approach assumes that roughness can be modelled by a modification of the no-slip
conditions at the disk surface. In particular, the model assumes partial slip at the disk
surface but is otherwise identical to the von Kármán formulation3; full details can be found
elsewhere1,2. The full MW model has two parameters η and λ (giving empirical measures
of the roughness in the radial and azimuthal directions, respectively) that appear in the
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FIG. 1: Steady-flow profiles resulting from spatial averages of the YHP model at various a.
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surface boundary conditions of the von Kármán ODEs,

f̄(0) = λf̄ ′(0),

ḡ(0) = ηḡ′(0).

Here a prime denotes differentiation with respect to the normal spatial variable. Note that
an overbar notation consistent with the presentation of the YHP model is used for the flow
components throughout, although no spatial averaging is required in the MW approach.
The empirical roughness parameters represent factors in Newton’s law of viscosity and
cannot, therefore, be associated with particular levels of roughness in practical applications
without carefully produced calibration curves.

In this paper we are concerned with the particular case of anisotropic roughnesses in
the radial direction, consistent with the capabilities of the YHP model, and so set λ = 0.
As with the YHP model, increased roughness in the MW model reduces the radial jet.
In contrast to the YHP model, however, we see that the azimuthal profiles have a value
at the disk surface that is progressively shifted backwards with increased roughness - this
is a direct consequence of the boundary condition that underpins the approach - and the
boundary layer is only marginally thickened. Furthermore, as mentioned previously, the
wall-normal profiles show reducing axial entrainment with increased roughness which is in
direct contrast to the response under the YHP model for the moderate levels of roughness
investigated here. Despite both models predicting a reduced radial jet, the areas enclosed by
the radial profiles are found to increase with roughness under the YHP model and decrease
in the MW model. This area is a measure of the volume of fluid transported outwards in the
radial direction and accounts for the different behaviour of the axial entrainment between
the two models.

Given the different physical predictions arising from the two models and the empirical
definition of roughness in the MW model, a direct quantitative comparison between ‘equiv-
alent’ levels of roughness is not possible. Instead we proceed with a qualitative comparison
of the effects of increasing roughness under both models. The particular values of η used
here are therefore reasonably arbitrary and we have opted to use the maximum value of the
radial jet as a matching parameter. That is, for each value of a in the YHP model, the value
of η in the MW model is chosen such that the maximum values of the radial wall jet, max(f̄),
agree. Note that the azimuthal and wall-normal components can never be matched between
the two models and we emphasise again that direct quantitative comparisons should not be
made.

The paired parameter values are taken to be a = 0.1 ∼ η = 0.14, a = 0.2 ∼ η = 0.57 and
a = 0.3 ∼ η = 1.18 and the resulting flow profiles can be seen in Figure 2. Note that the
azimuthal profiles are presented as ḡ + 1 to separate the presentation of that component
from the wall-normal component. Both models lead to the same von Kármán profiles for
a = η = 0, which can also be seen in Figure 1. Despite having identical values of the
maximum wall jet, Figure 2 illustrates the significant differences in the flow profiles; these
are further demonstrated in Table I. Note, in particular, that the YHP predictions for
the azimuthal flow component approach the von Kármán solution for the smooth disks
at low values of z whereas the MW predictions consistently agree better with the von
Kármán solution at higher values of z. The situation is more complex for the other two
flow components. For instance, in the case of the wall-normal component, represented by
h̄, both the YHP and the MW models yield velocities higher than the von Kármán solution
at lower values of z; but MW lies above von Kármán at higher z whereas YHP lies below
it. Despite both models leading to the same limiting behaviour of the radial component at
the edge of the boundary layer, the YHP prediction has a much broader jet than both the
MW and von Kármán solutions. Note moreover that the results of the MW model found
here are entirely consistent with those found in our previous study1 at η = 0.25, 0.5, 0.75
and 1.0.
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,ḡ

+
1
,h̄

-1.5

-1

-0.5

0

0.5

1

Smooth
YHP, a=0.2

MW, η=0.57

(b) a = 0.2, η = 0.57 such that max(f̄) = 0.139

z
0 2 4 6 8 10 12 14 16 18 20

f̄
,ḡ
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YHP model
max(f̄) ḡ∞

∫
f̄dz

∫
ḡdz

a = 0 0.181 -0.885 0.442 1.272

a = 0.1 0.167 -0.926 0.463 1.451

a = 0.2 0.139 -1.015 0.507 1.931

a = 0.3 0.115 -1.113 0.555 2.622

MW model

max(f̄) ḡ∞
∫
f̄dz

∫
ḡdz

η = 0 0.181 -0.885 0.442 1.272

η = 0.14 0.167 -0.850 0.425 1.222

η = 0.57 0.139 -0.774 0.387 1.113

η = 1.18 0.115 -0.704 0.352 1.012

TABLE I: A comparison of various properties of the steady flows resulting from the YHP
and MW models with increasing roughness.

III. CONVECTIVE INSTABILITY

The two approaches used to calculate the steady flows in §II both result in similarity
solutions in the scaled physical space (r, θ, z). The resulting flows are therefore related
to the von Kármán flow, and, importantly, the stability analyses of the rotating-disk flow
presented elsewhere12,16 are directly applicable in this current study. Full details of the
governing perturbation equations can be found in those references. Here it is sufficient to
understand that we conduct a normal-mode analysis with perturbations of the form

(û, v̂, ŵ, p̂) = (u(z), v(z), w(z), p(z))ei(αr+βReθ−ωt).

The wavenumber in the radial direction, α = αr+iαi, is complex, as required by the spatial
convective analysis to be conducted; the frequency, ω, and circumferential wavenumber,
β, are real. It is assumed that β is O(1) and the integer number of complete cycles of
the disturbance around the azimuth is n = βRe. We identify n with the number of spiral
vortices around the disk surface. Furthermore, the orientation angle of the vortices with
respect to a circle centred on the axis of rotation is ε = arctan(β/α). The quantities n and
ε can be compared directly to experimental observations. Surface roughness is known to
naturally excite and reinforce continuously disturbances that are fixed relative to the disk4.
We therefore set ω = 0 and consider only disturbances that are stationary in our rotating
frame.

The governing perturbation equations are solved using a Chebyshev polynomial discreti-
sation method in the wall-normal direction to obtain solutions of the dispersion relation
D(α, β;Re, [a, η]) = 0 with the aim of studying the occurrence of convective instabilities for
various values of the roughness parameters. The use of the polynomials ensures a higher
accuracy compared to standard finite differences methods with a similar discretisation. An
exponential map is adopted to map the Gauss–Lobatto grid points used for the Chebyshev
polynomials into the physical space: 100 points are therefore distributed between the disk
surface z = 0 and the top of the domain zmax = 20. The stability equations are written and
solved in primitive variables at all the collocation points except the ones at the boundaries
(z = 0 and z = zmax), where the following boundary conditions are enforced

u(z) = v(z) = w(z) = w′(z) = 0 at z = 0,

u(z) = v(z) = w(z) = p(z) = 0 at z = zmax.

These conditions are identical to those used in our previous analysis of the MW model1.
The straightforward implementation of the boundary conditions is a significant advantage
of using primitive variables.
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FIG. 3: The neutral curves in the Re–αr plane resulting from the YHP and MW models
with increasing roughness.

As with existing analyses of smooth rotating disks and other related geometries in the
literature, two modes are found to determine the convective instability properties of the
disturbance modes over rough rotating disks. The Type I mode, appearing as the upper
lobe in Re–αr neutral curves, is known to arise from the inflectional nature of the steady-
flow profiles, and the Type II mode, appearing as the lower lobe, is known to arise from
streamline curvature and Coriolis effects. The results of the spectral code in the smooth
case (a = 0 = η) have been compared against those in the literature and the predictions
for the critical parameters of the Type I mode are found to be entirely consistent with
other published results11,17–22. However, as discussed in Appendix A, the literature reports
a range of critical values for the Type II mode that appears to suggest sensitivity to the
particular calculation method. Our results are at the upper end of those reported in the
literature and are very close to those arising from similar codes developed by Appelquist18.

Our numerical results have been verified as being independent of the number of Gauss–



11

YHP model

Re n ε

a = 0 286.1 (461.5) 22.2 (21.3) 11.4 (19.2)

a = 0.1 311.5 (394.4) 20.7 (16.7) 11.1 (19.5)

a = 0.2 426.8 (283.3) 20.6 (11.1) 10.8 (19.0)

a = 0.3 593.9 (220.6) 21.8 (8.5) 11.1 (18.5)

MW model

Re n ε

η = 0 286.1 (461.5) 22.2 (21.3) 11.4 (19.2)

η = 0.14 300.6 (390.3) 19.6 (17.5) 9.8 (16.9)

η = 0.57 343.7 (311.5) 15.4 (9.2) 7.3 (12.3)

η = 1.18 393.8 (284.9) 12.4 (6.3) 5.6 (9.2)

TABLE II: Critical values of measurable parameters at the onset of instability under both
models. Type I and (Type II). Bold text indicates the most dangerous mode in terms of

critical Reynolds number.

Lobatto grid points and the upper domain, zmax. For example, varying the number of grid
points between 50 and 150 leads to a variation in predicted critical Reynolds numbers in
the third decimal place only. A similar numerical sensitivity is found when using steady
flows obtained with zmax between 15 and 100.

The neutral curves arising from the analysis of both models are shown in Figure 3. Despite
resulting from fundamentally different steady-flow models, both collections of neutral curves
display the same qualitative behaviour: the Type I lobe is diminished (both in terms of
critical Re and width) with increased roughness, and the Type II mode exaggerated. This
is entirely consistent with the results of our previous study of radial isotropic roughness1.
The results of the YHP model appear much more sensitive to the increased roughness,
however this merely reflects the much greater response of the steady flows (as reported in
Table I) over the range of a used. Critical parameters at the onset of unstable Type I and
Type II modes are given in Table II - we again emphasise that it is inappropriate to make
direct numerical comparisons between the two data sets.

The behaviour of the Type II mode under both roughness models is identified as being
similar to the effect of wall compliance on this mode, as found by Cooper & Carpenter17.
In that study the disk boundary was comprised of a single layer of viscoelastic material free
to move under the influence of disturbances in the boundary layer, inducing a disturbance
field in the material. For certain levels of wall compliance the Type II lobe of the neutral
curve was exaggerated and the critical Re reduced significantly, in exactly the same way as
exhibited in this study.

As previously discussed in our detailed analysis of the full MW model1, a consideration
of the onset of local absolute instability is important if inferences about delaying the onset
of transition with surface roughness are to be made. The effects of surface roughness on
the absolute instability are the focus of a separate ongoing study, but preliminary results
have shown that roughness acts to delay the onset of absolute instability to significantly
higher Re compared to the smooth disk. For example, the onset of absolute instability over
a smooth disk12 is known to be at around Re = 507 and initial calculations suggest that the
onset of absolute instability is delayed to beyond Re = 700 for a = 0.3 in the YHP model,
and to beyond Re = 600 for η = 1.18 in the MW model. We note that in the compliant
wall case17 it was found that the stabilising effect of wall compliance also suppressed the
onset of absolute instability. The similarity between the use of compliant walls to suppress
transition and surface roughness is therefore further extended.
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IV. ENERGY ANALYSIS

Following previous work1,17 an integral energy equation for three-dimensional distur-
bances (û, v̂, ŵ) to the undisturbed three-dimensional boundary-layer flow (U, V,W ) is de-
rived in order to extract possible underlying physical mechanisms behind the effects of
roughness on the stability of rotating disk boundary-layer flow. Essentially, the energy-
balance approach enables one to assess the relative influences of the various energy transfer
mechanisms affecting the destabilisation of fluid disturbances. The method was used in ex-
tensively for the full MW model in our previous publication1 and full details are presented
there. As demonstrated elsewhere1,17, the energy equation that applies to a particular
eigenmode is given by

−2αi = (P1 + P2 + P3)︸ ︷︷ ︸
I

+ D︸︷︷︸
II

+ (PW1 + PW2)︸ ︷︷ ︸
III

+

(S1 + S2 + S3)︸ ︷︷ ︸
IV

+ (G1 +G2 +G3)︸ ︷︷ ︸
V

,
(7)

where the mathematical form of each component, as derived by Cooper & Carpenter17, is
given by

(I) P1 + P2 + P3 =
∫∞
0

[(
−ûŵ ∂U

∂z

)
+
(
−v̂ŵ ∂V

∂z

)
+
(
−ŵ2 ∂W

∂z

)]
dz,

(II) D = −
∫∞
0

(
σij

∂ûj

∂xi

)
dz,

(III) PW1 + PW2 = −
∫∞
0

(
ûp̂
r

)
dz + (ŵp̂)w,

(IV) S1 + S2 + S3 = −[ûσ31 + v̂σ32 + ŵσ33]w,

(V) G1 +G2 +G3 = −
∫∞
0

∂K
∂z Wdz −

∫∞
0
û2 ∂U∂r dz −

∫∞
0

v̂2U
r dz.

Here overbars denote a period-averaged quantity, i.e. ûv̂ = ûv̂∗ + û∗v̂ (∗ indicates the
complex conjugate) and w subscripts denote quantities evaluated at the wall. Furthermore,
K = 1

2 (û2 + v̂2 + ŵ2), and σij are the viscous stress terms

σij =
1

Re

(
∂ûi
∂xj
− ∂ûj
∂xi

)
.

Physically, the terms in equation (7) as identified as follows

(I) the Reynolds stress energy production terms, {Pi}

(II) the viscous dissipation energy removal term, D

(III) pressure work terms, {PWi}

(IV) contributions from work done on the wall by viscous stresses, {Si}

(V) terms arising from streamline curvature effects and the three-dimensionality of the
mean flow, {Gi}.

Terms that are positive contribute to the energy production and those which are negative
remove energy from the system. A particular eigenmode is amplified when energy produc-
tion outweighs the energy dissipation in the system, which is consistent with the instability
criteria (αi < 0) used to obtain the neutral curves in §III.

Calculations have been carried out for both roughness models, and for both the Type I
and II modes at Re = 400. The corresponding growth rates are shown in Figure 4. This
emphasises the stabilising effect of roughness on the Type I mode, the destabilising effect
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FIG. 4: Type I and II growth rate curves at Re = 400.

on the Type II mode and the stronger effect on both of these modes for the YHP model.
For the MW model the amplification of the Type II mode is more modest, even though the
Type II lobe of the neutral curve shows similar augmentation to the YHP case, and the
stabilising effect on the Type I mode is not quite so strong.

By calculating all terms in the energy equation (7), it is possible to identify where the
effects of roughness are the greatest. Given the boundary conditions for the YHP model
some terms in the energy equation are identically zero (PW2, S1, S2, S3). The results of
the energy balance for the three roughness values a = 0.1, 0.2 and 0.3 are compared to
those for a smooth disk (a = 0) in Figure 5. For both modes the main contributors are
energy production by the Reynolds stress (P2) and conventional viscous dissipation (D).
Terms P1, P3, PW1 and G2 are found to be negligible and the geometric terms G1 and G3

remove energy from the system. The strongly stabilising effect of roughness on the Type I
mode is manifested in a striking reduction in P2 and a slight increase in viscous dissipation.
Conversely, the growth with roughness of the Type II mode arises from a net increase in
energy production through increased Reynolds stress alongside with a reduction in viscous
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FIG. 5: Results of energy analysis for YHP model at Re = 400.

dissipation.

The form of the eigenfunctions (or disturbance velocity profiles) provides some expla-
nation for the above trends. The dominant eigenfunction is the azimuthal perturbation
velocity, v, which contributes to the dominant energy production term P2. Figure 6 shows
the magnitude of the v-profile for the roughness cases considered. In the case of the Type
II mode the effect of roughness is seen through the eigenfunctions extending further in to
the boundary layer and the profiles becoming more stretched out as roughness is increased.
Corresponding results for the Type I mode show that the general form of the disturbance
profile is preserved in this case, with the profile being merely translated slightly further into
the boundary layer as roughness is increased. The dramatic reduction in P2 in this case
results from a strong reduction in the amplitude of the normal velocity, w, as roughness
increases. As explained elsewhere1,17, the viscous dissipation term D is dominated by the
term σ32∂v̂/∂z so that D ≈ −(2/Re)

∫
|∂v̂/∂z|2dz. The broadening of the v velocity pro-

file for the Type II mode has the effect of decreasing D. The effect of roughness on the
distribution for D is less significant for the Type I mode.
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FIG. 6: Profiles for azimuthal perturbation velocity in YHP model.

In summary, the Type II disturbances generally extend further into the boundary layer
than the Type I disturbances. The further stretching of the disturbance profile as roughness
is increased, together with the thickening of the boundary layer with roughness, would
appear to contribute to the augmentation of the Type II mode.

Results of the energy balance calculation for the MW model are shown in Figure 7.
Again both modes are dominated by contributions from P2 and D. The main difference
from the YHP model in the case of the Type II mode is that, although the Reynolds stress
energy production term increases as before, the MW model also shows an increase in viscous
dissipation (opposite to YHP) which would account for the more modest growth observed
in Figure 4. The Type I mode shows a less pronounced decrease in P2, but more viscous
dissipation compared to the YHP model.

Figure 8(b) shows a similar stretching of the Type II eigenmodes to the YHP case. Since
there is no increase in the boundary-layer thickness for the MW steady flow, the fluid
disturbances do not extend quite as far into boundary layer as for the YHP case. The Type
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FIG. 7: Results of energy analysis for MW model at Re = 400.

I disturbance profiles are very similar to those for the YHP model.

V. CONCLUSION

We have summarised and discussed the results of a theoretical study investigating the
effects of radial anisotropic surface roughness resulting from concentric grooves on the sta-
bility of the von Kármán boundary-layer flow over a rotating disk. Our theoretical analysis
was based on the two alternative modelling approaches suggested by Yoon et al.10 and by
Miklavčič & Wang2 for modelling the steady boundary-layer flow over a rough rotating
disk. Whereas the former approach describes roughness by explicitly prescribing a partic-
ular geometry for the surface roughness, the latter models roughness by a modification of
the no-slip boundary conditions at the disk surface.

As regards practical applications, the most significant overall result of our study is that
we have been able to confirm our conclusion from Ref. [1], by means of a different modelling
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FIG. 8: Profiles for azimuthal perturbation velocity in MW model.

approach, that surface roughness is expected to stabilise the Type 1 instability mode of
the rotating-disk boundary layer. This means that the stabilisation is not just an artefact
arising from the particular methodologies associated with the MW model. Therewith it now
appears substantially more likely that it may indeed be possible to exploit surface roughness
in practice for focussed, theory-led approaches to designing the right sort of roughness8

for the purpose of laminar-flow control by devising optimisation strategies employing our
suggested energy analysis.

Nevertheless, it is evidently still far from clear which of the two approaches adopted to
model surface roughness will ultimately reveal itself as better suited to correctly describe
experimental data when these become available. Only detailed experimental investiga-
tions will eventually enable establishing if one of the two models is indeed representative
of distributed roughness or whether modifications, or even entirely different alternative
approaches, have to be sought. If future experiments reveal that neither one of the two
models is entirely satisfactory then the inter-comparison of these first results described here
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will assist in pointing a way forward to systematic strategies for adapting the modelling
methodologies taking into account the different qualitative behaviours found in our current
investigation.

In relation to the von Kármán similarity solution for flow over smooth disks, the two
methodologies for modelling roughness have resulted in qualitatively different modifications
of the steady-flow base profiles. However, these profiles are underlying the subsequent
stability analysis for the boundary-layer flow. In particular, it was found, for instance,
that predictions of the azimuthal velocity profile based on the YHP methodology approach
the von Kármán solution near the disk surface whereas the predictions of the MW model
are more similar to the von Kármán profiles at intermediate heights above the disk. The
situation was somewhat more complex for the radial and the wall-normal component. While
we have here not studied how such differences lead to specific variations in the predicted
neutral stability, it is clear that it must be certain aspects of these small-scale differences
that govern the global stability behaviour. Nevertheless, it was found that, overall, the
effects arising when following the YHP model are somewhat more pronounced than when
using the MW approach. This apparent sensitivity may, however, be a consequence of the
difficulty associated with defining ‘equivalent’ levels of roughness between the two models
which do not allow direct quantitative comparisons due to the different nature of the two
approaches.

The results obtained from our linear stability analysis were thereafter reconfirmed by an
energy analysis consistent with that described in other published studies1,17. The energy
analysis has revealed that for both the YHP and the MW approach, and for both the Type
I and Type II instability modes, the main contributors to the energy balance are the energy
production by the Reynolds stresses and conventional viscous dissipation. For the Type I
mode dissipation increases with the roughness level and the increase is more pronounced
for the MW model than for the YHP model. For the Type I mode Reynolds-stress energy
production decreases with the roughness level and the decrease is more pronounced for the
YHP model than for the MW model. Thus, in summary, increased energy dissipation and
decreased energy production by Reynolds stresses implies a stabilisation of the Type I mode
by increasing roughness levels.

For the Type II mode Reynolds-stress energy production increases with the roughness
level and the increase is slightly less pronounced for the YHP model than for the MW
model. The main qualitative difference is observed for the energy dissipation of the Type
II mode. For the Type II mode energy dissipation decreases with the roughness level for
the YHP model whereas there is a slight increase under the MW model. Yet, the overall
increased Reynolds-stress energy production and decreased energy dissipation result in a
destabilisation of the Type II mode for both the YHP and the MW model.

Our study suggests that the beneficial stabilisation of the Type I mode by concentric
roughnesses becomes suppressed when the Type II mode is destabilised as it moves up-
stream and eventually becomes the critical mode at the lowest Reynolds number. This is
consistent with our previous results1. The results of the energy analysis imply that the
dissipation of the Type II mode is sensitive to the precise form of the steady-flow base pro-
file. Consequently, maximising dissipation by an appropriately designed surface-roughness
pattern, that leads to the energetically optimal base profile, can theoretically lead to an
overall beneficial stabilisation of the Type II mode. Provided that the Type I mode is not
adversely affected, this could result in a boundary-layer-transition delay and drag reduction.
This points to a possible way forward for exploiting the beneficial stabilising effects of radial
anisotropic roughness on the Type I mode in future drag-reduction techniques relying on
transition delay for boundary layers with a cross-flow component.

SJG is supported by a Senior Research Fellowship of the Royal Academy of Engineering,
funded by the Leverhulme Trust. MÖ wishes to acknowledge financial support from Repub-
lic of Turkey Ministry of National Education. Useful conversations with Ellinor Appelquist
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Type I mode

Re n ε αr

Malik11 285.36 22.14 11.4 0.38482

Balakumar & Malik19 286.05 22.26 11.4 0.38643

Cooper & Carpenter17 285.36 22.13 11.4 0.38451

Turkilmazoglu & Gajjar20 286.05 22.15 11.4 0.38407

Thomas22 290.00 22.33 11.5 0.37790

Garrett et al.21 285.36 22.20 11.4 0.38537

Appelquist18 (shooting) 286.05 22.20 11.4 0.38338

Appelquist18 (spectral) 286.05 22.21 11.4 0.38527

This paper 286.05 22.16 11.4 0.38419

Type II mode

Re n ε αr

Malik11 440.88 20.60 19.5 0.13228

Balakumar & Malik19 451.40 20.95 19.5 0.13109

Cooper & Carpenter17 440.87 20.55 19.5 0.13159

Turkilmazoglu & Gajjar20 453.76 21.16 19.4 0.13198

Thomas22 451.00 20.93 19.2 0.13360

Garrett et al.21 450.95 20.90 19.5 0.13067

Appelquist18 (shooting) 452.97 21.20 19.4 0.13227

Appelquist18 (spectral) 460.90 21.23 19.2 0.13158

This paper 461.51 21.33 19.2 0.13260

TABLE III: Critical values of measurable parameters at the onset of Type I and Type II
instabilities as reported in the literature.

Appendix A: Literature survey of critical instability parameters for smooth disks

Table III summarises published critical values for the onset of the Type I and Type II
convective modes of instability in the von Kármán boundary layer over a smooth disk. We
note a relatively close spread of values for the onset of the Type I mode but a larger spread
for the onset of the Type II mode. In particular, the results appear to cluster around either
Re ≈ 440, 450 or 460. The results of this current study are at the upper end of the range
reported in the literature.

We suggest that the spread of values in the Type II results can be attributed to an
apparent sensitivity to the formulation of the solution method. This is consistent with the
comment of Balakumar & Malik19 who attribute their discrepancy with Malik’s11 earlier
result to the use of a perturbation system expressed in terms of primitive variations (as we
do here) rather then a transformed vorticity formation. No such sensitivity appears to exist
for the Type I results.

1Cooper, A.J., Harris, J.H., Garrett, S.J., Thomas, P.J. & Özkan, M. 2015 The effect of anisotropic and
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2Miklavčič, M. & Wang, C.Y. 2004. The flow due to a rough rotating disk. Z. angew. Math. Phys., 54,
235-246.
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