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ABSTRACT
One of many challenges in forming giant gas planets via gravitational disc instability model is
an inefficient radiative cooling of the pre-collapse fragments. Since fragment contraction times
are as long as 105–107 yr, the fragments may be tidally destroyed sooner than they contract onto
gas giant planets. Here, we explore the role of ‘pebble accretion’ the pre-collapse giant planets
and find an unexpected result. Despite larger dust opacity at higher metallicities, addition of
metals actually accelerates – rather than slows down – collapse of high-opacity, relatively low
mass giant gas planets (Mp � a few Jupiter masses). A simple analytical theory that explains
this result exactly in idealized simplified cases is presented. The theory shows that planets
with the central temperature in the range of 1000 � Tc � 2000 K are especially sensitive to
pebble accretion: addition of just ∼5 to 10 per cent of metals by weight is sufficient to cause
their collapse. These results show that dust grain physics and dynamics are essential for an
accurate modelling of self-gravitating disc fragments and their near environments in the outer
massive and cold protoplanetary discs.
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1 IN T RO D U C T I O N A N D BAC K G RO U N D

Gravitational disc instability (GI) theory for giant planet formation
(e.g. Kuiper 1951; Cameron, Decampli & Bodenheimer 1982; Boss
1997, 1998) posits that gravitational instability of the disc leads to
formation of self-gravitating gas fragments that later contract into
present-day planets. This view has been strongly challenged in the
last decade since it was shown that protoplanetary discs do not cool
rapidly enough to fragment on to gas clumps inside several tens
to a hundred au (Gammie 2001; Mayer et al. 2004; Rafikov 2005;
Rice, Lodato & Armitage 2005; Durisen et al. 2007; Stamatellos
& Whitworth 2008; Meru & Bate 2011). This would preclude the
model from explaining most of the giant planets, since most are
detected at separations much smaller than this, all the way down to
∼0.05 au (e.g. Mayor & Queloz 1995).

However, Nayakshin (2010a) argued that giant planets could be
born far out but then migrate inwards arbitrarily close to the parent
star due to gravitational torques of the disc (e.g. Lin & Papaloizou
1979; Goldreich & Tremaine 1980). Crucially, GI planets are born
as fluffy (gas density ρ ∼ 10−13 g cm−3) and cold (T ∼ 100 K)
molecular gas fragments. In order to become dense Jupiter-like
giant planets, they must first contract to T � 2500 K at which
point a rapid dynamical collapse occurs (e.g. Bodenheimer 1974).
Tantalizingly, if the planets migrate inwards more rapidly than they
contract, then they may be tidally disrupted. The disruption leaves
behind a rocky/icy core if grains inside the planet managed to grow
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and sediment down into a core rapidly enough (McCrea & Williams
1965; Boley et al. 2010). This scheme, named ‘tidal downsizing
(TD)’ by Nayakshin (2010a), may potentially explain any mass
planets at arbitrary separation from the host star within a single
framework (Forgan & Rice 2013).

Here, we focus on giant gas planets within the GI/TD frame-
work specifically. While the rapid (migration time tmig ∼ 104 yr;
see, e.g., Nayakshin 2010a; Baruteau, Meru & Paardekooper 2011)
inward migration and tidal disruption process of gas fragments are
crucial to TD as a way of accounting for terrestrial-like planets,
these processes challenge the formation of the gas giants them-
selves (Zhu et al. 2012). First, since radiative contraction time of
even the solar metallicity clouds is quite long (∼106 yr; see, e.g.,
Bodenheimer et al. 1980; Vazan & Helled 2012), the disruption
process appears to be too efficient (see Section 2.1), so it is hard
to explain how any close-in giant planets survive. Secondly, radia-
tive contraction of planets is slowed down at higher grain opacities
(Helled & Bodenheimer 2011). Thus, tidal disruption in metal-rich
environments should be even more efficient. This would seem to
contradict the well-known fact that giant planets are more abundant
at higher metallicities (e.g. Fischer & Valenti 2005; Wang & Fischer
2013). If this is true, then close-in giant planets must form via core
accretion rather than GI (see, e.g., Boley 2009).

There may appear to exist a simple solution to the conundrum of
too long a radiative cooling time for GI clumps: a strongly decreased
grain opacity due to grain growth. Helled & Bodenheimer (2011)
find that in models that include grain growth, opacity decrease cuts
the planet contraction time-scale to as short as ∼103 yr. We do not
favour this solution for two reasons. First, this would predict that
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protoplanetary discs of low-metallicity stars would be ideal sites for
gas giant planet formation. Instead, Fischer & Valenti (2005) show
that low-metallicity stars are the least likely to host a giant planet.
Secondly, models of Helled & Bodenheimer (2011) do not include
collisional fragmentation of dust grain aggregates which are found
to occur at relatively modest velocities in laboratory experiments
(e.g. Blum & Wurm 2008). Dullemond & Dominik (2005) consider
grain growth and opacity in protoplanetary discs of T Tauri stars.
They find that models that neglect grain growth deplete the small
grain population by a factor of a million in a few thousand years
(see their fig. 3), reducing the dust opacity significantly. However,
the spectra of T Tauri sources clearly require a copious presence of
small dust grains even at ages of a few million years. To explain this,
Dullemond & Dominik (2005) argue that high-speed dust aggregate
fragmenting collision must be also taken into account. This then
results in a quasi-steady state for dust distribution in which the
smallest grain abundance is suppressed only mildly even after about
a million year of grain growth (see their fig. 7). For these two
(observationally backed up) reasons, we discount the possibility that
grain opacity in GI fragments is much lower than the interstellar
one, although we do explore some grain opacity reduction below.

The solution to the too-slow-cooling conundrum that is proposed
here is based on another unexpected effect that grains have on
GI clumps. Nayakshin, Helled & Boley (2014) investigated the
structure of the gas ‘atmosphere’ around the massive solid core built
within the TD gas fragments by grain settling. Similar to CA theory,
it was found that there exists a critical core mass, Mcrit, beyond which
the atmosphere may become self-gravitating and too massive to be
in hydrostatic balance (Mizuno 1980; Stevenson 1982). Following
CA arguments, the authors argued that the atmosphere collapse sets
off a phase of a rapid gas accretion on to the dense core. This may
initiate a hydrodynamical collapse (termed core-assisted gas capture
instability) of the whole gas fragment before a core-less fragment of
same configuration would have collapsed, thus providing a second
and an unexplored way for the formation of giant planets in the TD
picture.

The original goal of this project was to follow up the work of
Nayakshin et al. (2014) with a hydrodynamical rather than hydro-
static code, and to model the whole gas clump rather than only
its centre. In addition, we included external large grain deposition
on to the planet, the so-called pebble accretion (e.g. Johansen &
Lacerda 2010; Ormel & Klahr 2010) of grains on massive bodies
embedded in protoplanetary discs. In doing so, we discovered that
planets accreting grains can collapse more rapidly than those of
fixed metallicity. It turned out that this effect has nothing to do with
formation of the core directly, and instead originates in the fact
that grain accretion on a planet in itself is a form of cooling. Pend-
ing detailed analysis below, this last statement can be understood
qualitatively as follows.

Consider the total energy of the pre-collapse planet of mass Mp

and radius Rp, Etot ∼ −GM2
p /Rp. It evolves in time according to

dEtot

dt
= −Lrad − GMpṀz

Rp
, (1)

where Lrad is the radiative luminosity of the planet, and the last term
on the right is the change in the gravitational potential energy of the
planet, Egrav, due to grain accretion on it at the rate Ṁz. In the con-
stant metallicity case (no pebble accretion) that was so far studied
in the literature (Helled & Bodenheimer 2011), the second term on
the right is absent, so that radiation is the only way for the planet
to lose excess energy and contract towards H2 collapse. Increasing

metallicity of the planet increases dust opacity and decreases Lrad,
hence slowing down its contraction. However, if Ṁz > 0, then the
planet ‘cools’ due to addition of metals, since Etot becomes more
negative. Deposition of pebbles into a planet from outside may
hence speed up rather than delay giant planet formation.

The goal of this paper is to study the contraction of pre-collapse
giant planets due to grain accretion in detail. To not overcomplicate
this first study by having to also study the instability found by
Nayakshin, Helled and Boley (2014), we turn off grain growth in
the planet, with the result that grain sdimentation is negligible, and
no core forms in the planet’s centre. The more general case is to be
studied in a near future paper. We use a 1D spherically symmetric
radiation hydrodynamics code as well as analytic arguments to
understand the planet’s response to pebble deposition.

The paper is structured as follows. In Section 2, the cooling chal-
lenge of GI-born fragments is described, and the rate of pebble
accretion from the surrounding protoplanetary disc is estimated. In
Section 3 and in Appendix A, numerical methods employed here are
presented. Section 4 compares the evolution of planets enriched by
metals either at birth or by pebble accretion, and Section 5 outlines
an analytical toy model that helps to understand why metal accre-
tion accelerates planet contraction. The analytical model is com-
pared with grain-dominated contraction of numerically integrated
polytropic clouds with fixed specific heats ratios (γ ), as well as a
more realistic molecular planet in Section 6. The conditions under
which pebble accretion dominates planet contraction are delineated
in Section 7. A discussion is given in Section 8.

2 PRELI MI NARI ES

2.1 The cooling challenge

The properties of the first gas condensations in a self-gravitating
disc should be similar (Nayakshin 2010b) to that of the ‘first cores’
(Larson 1969) in star formation, see also Bodenheimer (1974) and
Bodenheimer et al. (1980). The central temperature of these may
be as low as �100 K, hydrogen is molecular, and the mass of the
fragment is of the order of a Jupiter mass to perhaps 10 MJ (Boley
et al. 2010; Forgan & Rice 2011; Tsukamoto et al. 2013). If the
fragments cool sufficiently rapidly, reaching the central temperature
of ∼2500 K before they are tidally disrupted, then dissociation
of molecular hydrogen occurs. Since post-collapse fragments are
∼3–5 orders of magnitude denser than pre-collapse ones, post-
collapse fragments are much more likely to survive as giant planets.
H2 collapse is hence a necessary step to formation of a gas giant
planet.

However, radiative cooling times of isolated Jupiter-mass pre-
collapse fragments are trad ∼ 106 yr (e.g. Bodenheimer et al. 1980),
far longer than the disc migration times, tmig ∼ 104 yr (e.g. Nayak-
shin 2010a; Baruteau et al. 2011). Fig. 1 shows the radiative cooling
time of the pre-collapse planets, defined as

trad = −Etot

2L
, (2)

where Etot is the total energy of the fragment and L is the lumi-
nosity of the planet. The factor 2 in the denominator is introduced
empirically to better match the numerical calculations of planet
contraction (all the way to H2 dissociation) reported below.

In accord with previous results (Bodenheimer et al. 1980; Helled
& Bodenheimer 2011), Fig. 1 shows that more massive planets cool
more rapidly. Also note that, for all planetary masses, the initial
cooling phase at Tc of a few hundred K is much more rapid than
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Metal loading of planets 461

Figure 1. Radiative cooling times of pre-collapse planets of four different
masses composed of a solar mix of H/He and metals, as labelled on the
figure, versus the central temperature of the planet, Tc. Note that low-mass
planets are least capable of contracting rapidly, and that the slowest evolution
always occurs at Tc � 1000 K. Interstellar dust opacity is assumed for this
figure.

at Tc � 1000 K. This is because the modulus of the total energy
of the planet, |Etot|, increases, whereas the luminosity L(Tc) usually
drops with increasing Tc since the planet contracts and opacity in
the atmosphere rises. This implies that the cooling ‘bottleneck’ for
planets of any mass is always at Tc � 1000 K, that is, the planets are
expected to spend more time contracting from Tc ∼ 1000 K to H2

dissociation (Tc ∼ 2200 K or so, for most of our runs below) than
they spend contracting from their initial state towards Tc ∼ 1000 K.

Based on Fig. 1, the expected outcome of GI fragment contrac-
tion, while it also migrates inwards rapidly, is that the fragment is
tidally disrupted before it collapses (Boley et al. 2010; Nayakshin
2010a). For example, for Mp = 2 MJ, it takes more than 105 yr for
this collapse to take place. Furthermore, calculations by Cameron
et al. (1982) and Vazan & Helled (2012) show that irradiation from
the parent star and the surrounding disc slows the contraction of the
fragments further, and may in fact even reverse the heat flow from
the planet. In this case, the planet puffs up rather than contracts
with time. In the presence of tidal shear from the parent star, this
is clearly a receipt for destruction rather than formation of a giant
planet-to-be.

2.2 The role of metals

Giant planets are observed to be overabundant in metals by a factor
of a few to 10 in the Solar system and beyond (Miller & Fortney
2011). Helled & Bodenheimer (2011) have shown that contraction
of pre-collapse giant planets is slowed down further at high metal-
licities if dust opacity is proportional to the metallicity of the gas.

In the context of GI/TD models, we see two principal modes of
metal enrichment of pre-collapse fragments. First, fragments can
be enriched by solids at birth by efficient aerodynamic capturing of
grains into spiral arms of the gravitationally unstable disc before
it collapses on to fragments (e.g. Boley, Helled & Payne 2011). In
this model, therefore, pre-collapse planets are born more metal rich
than the surrounding disc. For simplicity, we then assume that the
metallicity of such planets remains constant with time. Secondly,
metals can be gained by accretion from the disc, as we explain now.

2.3 Accretion of metals from the disc

Johansen & Lacerda (2010) and Ormel & Klahr (2010) pointed out
that ‘pebbles’, which are small solid bodies of ∼10 cm size, can ac-
crete efficiently on planetesimals and rocky protoplanets embedded
in a disc. This can potentially speed up assembly of massive solid
cores at tens of au distances from the host star, where core accretion
(CA) via planetesimal capture is inefficient, and solve the problem
of too long core assembly time-scale of CA theory (e.g. Helled &
Bodenheimer 2014) for planets such as Neptune and Uranus.

In this picture, the accretor follows a Keplerian circular orbit of
radius ap around the star of mass M∗, whereas the gas in the disc
moves at a velocity slightly smaller than the local Keplerian, and
there is also the local Keplerian shear, so that there is always gas
streaming past the accretor. The gas itself does not accrete on to the
accretor since the gravity of the latter is insufficient to overcome
the pressure gradient force of the gas. The small grains, on the other
hand, are not supported against accretion on to the protoplanet by a
pressure gradient.

A similar situation may hold around a much more massive molec-
ular gas fragment. Nayakshin & Cha (2013) show that radiative
pre-heating of the surrounding disc material by the radiation from
a young embedded protoplanet is important in deterring gas ac-
cretion on to relatively low-mass protoplanets, Mp � 6 MJ. Such
planets are found to build a hydrostatic-like atmosphere around
themselves. The gas pressure gradient around them is large enough
to prevent accretion of gas from the disc. Fragments with initial
masses Mp � 6 MJ are found to migrate inwards rapidly at more or
less constant fragment mass until they are tidally challenged and
eventually destroyed at R ∼ 20–30 au. More massive protoplan-
ets instead accrete gas rapidly, becoming proto-brown dwarfs and
stalling at about their initial locations (R ∼ 80 au). These results
imply that, as far as planet formation is concerned, we need to limit
our attention to relatively low mass gas fragments of a few Jupiter
masses as more massive fragments may form low-mass stars, and
eventually turn the system into a stellar binary, a situation that is
well outside the scope of this paper.

Lambrechts & Johansen (2012) recently presented analytical es-
timates and numerical simulations of pebble accretion on large
planetesimals and solid cores. We rescale their results to the case of
a pre-collapse giant planet embedded in a protoplanetary disc. Due
to the substantial mass of the planet (compared to planetesimals or
solid cores), the accretion of pebbles on it is always in the ‘Hill’s
regime’, when pebbles are accreted from the whole of the Hill’s
radius, RH = ap(Mp/3M∗)1/3, where ap is the planet–star separation
and M∗ is the mass of the host star. The maximum rate, Ṁz, at which
the grain particles can be accreted by the planet in this regime is
(see equation 38 in Lambrechts & Johansen 2012)

max Ṁz = ṀH ≈ 2RH�dustvH , (3)

where �dust is the pebbles surface density in the protoplanetary disc,
Hill’s velocity is vH = �pRH, and �p is the Keplerian angular speed
at the location of the planet. In reality, only grains intermediately
strongly coupled to the gas, such that dimensionless stopping time,
τ f ≡ tf�p, 0.1 � τ f � 1, are accreted as efficiently as equation (3)
suggests. The physical size of the particles in the strongly coupled
regime, that is ‘pebbles’ in our definition, depends on the protostellar
disc properties and the radial distance from the star, R. For the
minimum mass solar nebula disc, Lambrechts & Johansen (2012)
show that particles of size a ∼ a few cm × R

−3/2
1 are in the pebble

regime, where R1 = R/(10 au). Thus, at the outer disc regions,
R ∼ 100 au, pebble regime grains are actually about 1 mm or so.
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Let us define the planet metallicity doubling time-scale tz as

1

tz
≡ Ṁz

Mz(0)
, (4)

where Mz(0) ≡ z0Mp is the initial mass of metals in the planet. Let
the fraction of mass in the pebble regime, that is, in the maximum ef-
ficiency accretion regime (compared to the total mass in grains in the
disc at radius ap) be fmax < 1. Further, �dust = z0� ∼ z0Mdisc/(πa2

p),
where � is the total (dust plus gas) surface density of the disc, Mdisc

is the disc mass at radius ap, and we assumed that the disc metallic-
ity is equal to the initial metallicity of the planet, z0. The end result
is

tz ≈ 1

2fmax

M1/3
p M2/3

∗
Mdisc

2π

�p
. (5)

Now, in the early massive protoplanetary disc stage that is of interest
here, the disc can be as massive as 0.1M∗ or more. Picking this value
for Mdisc and Mp = 1 MJ, we then have

tz ∼ 103 yr
1

2fmax

( ap

100 au

)3/2
. (6)

This shows that if the population of large grains is significant, e.g.
fmax � 0.1, then the time-scale to double the initial metal content of
the gas fragment is comparable to or shorter than the typical migra-
tion time, tmig ∼ 104 yr (Nayakshin 2010a). TD planets may then be
non-trivially overabundant in metals by the time they migrate into
the inner few au of the protoplanetary disc region.

Clearly, Ṁz and tz are functions of the disc properties, of the
planet’s location within the disc. Further, the disc itself may be
influenced by the interaction with the planet. For now, we explore
the case of a fixed tz, in which the planet is loaded by pebbles
(metals) from outside at a constant rate as given by equation (4).
The value of tz is varied in a broad range to study the parameter
space.

3 N U M E R I C A L M E T H O D S

The code used here is a spherically symmetric Lagrangian hydro-
dynamics code first described in Nayakshin (2010b), expanded and
updated since then as detailed in Nayakshin (2011a,b, 2014). Here,
we actually simplify the dust–gas interaction module of the code
to expose the metal-loading effect most clearly. The simplified set
of equations permits a comparison with analytical solutions, which
serves as a check of both the code and our physical intuition. In the
papers cited just above, the focus was on formation of dense metal
cores inside the fragment, and hence the relative dynamics of gas
and pebbles within the fragment was important and modelled by
two-fluid equations with aerodynamical gas force coupling the two
species. In this paper, we turn off grain growth and vaporization
physics, assuming that grains are always ‘small’, setting a = 1 μm.
In practice, this means that there is no relative motion of gas and
grains and hence our equations reduce to the standard one-fluid gas-
dynamical equations. Physically, this limit corresponds to the case
when grains deposited into the outer reaches of the planet either do
not grow sufficiently rapidly or get vaporized quickly if the frag-
ment is too hot (e.g. water ice is vaporized already at T ∼ 150 K).
The grains can however be mixed in with the gas throughout the
cloud quickly by convection and turbulence (e.g. Helled, Podolak
& Kovetz 2008; Helled & Bodenheimer 2011; Nayakshin 2011b),
so that the metallicity of the planet (related to the grain-to-gas
mass ratio) is set to be uniform inside the planet at all times. The
more complicated situation, where a relative gas–grain motion does

occur, is of course of a significant interest as well, but, due to a con-
siderably expanded parameter space in that case (e.g. has the core
formed or not, and what is the chemical composition of that core?)
it is to be presented in the near future elsewhere. We emphasize
that the ‘metal-loading’ effect presented here exists when the grains
are allowed to sediment as well; it is however not possible to study
that analytically since grains are redistributed within the planet in a
complicated way.

Following Helled & Bodenheimer (2011), we make a reasonable
assumption that dust opacity in the fragment is directly proportional
to the metallicity of the gas, z. The opacity κ(ρ, T) is then given by

κ(ρ, T ) = fopκ0(ρ, T )
z

z�
, (7)

where κ0(ρ, T) are the interstellar gas plus dust opacities from Zhu,
Hartmann & Gammie (2009) which assume solar metallicity, z�,
and fop = const ≤ 1 is a positive constant, set to 0.1 everywhere in this
paper, to account for possible opacity reduction due to grain growth.
The main conclusions of our paper are unchanged irrespectively of
the value of fop, except that the parameter space where metal loading
dominates as a cooling process of course does depend on fop, as
described below in Section 7.

The full set of equations being solved for numerical experiments
in this paper is presented in Appendix A. The initial conditions are
polytropic spheres of a given central temperature Tc, metallicity
(usually solar metallicity), and total mass Mp.

4 T H E M E TA L - L OA D I N G ‘ PA R A D OX ’

Fig. 2 shows contraction calculations for a planet of Mp = 4 MJ

masses, with grain opacity reduced by a factor of 10, performed
under two different assumptions about the planet’s grain content.
The left-hand panels show the cases of constant planet metallicity
(enrichment at birth model), where z = 0.5, 1, and 2 times the solar
metallicity. The right-hand panels show the same calculation but for
the planets all starting with the solar grain abundance at t = 0 and
then metal-loaded by pebble deposition at five different (constant)
rates as labelled in the figure. In particular, the curves are computed
for metal-loading times ranging from tz = 250 to 4000 yr, in steps
of a factor of 2. Note that the shortest tz values are unlikely to be
reached even in the inner disc regions (unless radial drift of pebbles,
see Lambrechts & Johansen 2014, significantly increases the local
pebble abundance). However, such cases expose the metal-loading
effects clearly. In a follow-up paper (Nayakshin 2014, submitted),
the pebble accretion rate is calculated self-consistently from the sur-
rounding disc properties, which is modelled in some detail similarly
to Nayakshin & Lodato (2012).

The constant metallicity cases, panels (a) and (b), are in qualita-
tive agreement with results of Helled & Bodenheimer (2010). The
time taken by the planet to contract to the point of collapse increases
with increasing z, somewhat less rapidly than a linear proportion.

Panels (c) and (d) show a completely different evolution, however.
The more rapidly the metals are added to the planet, the more rapidly
it contracts and eventually collapses via H2 dissociation. In the most
rapid metal-loading case, tz = 250 yr, the collapse time-scale is
shortened by a factor of almost 4 compared to the solar metallicity
case. For this particular case, the metallicity at collapse is z ≈ 0.12,
eight times larger than the starting value, z0 = 0.015. Based on the
left-hand panels, one would expect that collapse time-scale for such
a high-metallicity fragment would be a factor of ∼5 longer than the
solar metallicity case, not shorter. There is thus over an order-of-
magnitude difference in the collapse time-scale for this particular
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Figure 2. Top-left panel (a): evolution of the central temperature versus time for constant metallicity planets of 4 MJ masses. The bottom-left panel (b) shows
the (constant in time) metallicity, z, of the planets. Right-hand panels (c) and (d): same but for planets loaded by grains at constant rates parametrized by the
metallicity doubling time tz. Note that the faster the metals are added to the planet, the quicker it collapses.

case between the enrichment at birth and a gradual metal deposition
models.

Fig. 3 shows another numerical experiment that helps to shed
more light on the situation. The planets here are started exactly
as the ones presented in Figs 2(c) and (d), with the same choices
for the metal doubling time, but grain accretion is terminated when
the central temperature reaches Tc = 700 K. The exact numerical
value of the termination temperature is not important. Fig. 3 shows
that once grain accretion stops, contraction of the cloud continues
at a slower rate than that for a non-metal-polluted planet, i.e. one
recovers the main result of the fixed metallicity cases shown in
Figs 2(a) and (b). For example, for the case of the most rapid metal
loading, tz = 250 yr, the fragment collapsed at less than 2000 yr in
Fig. 2(a), but collapses only at t ≈ 9000 yr when grain accretion is
discontinued.

These results indicate that pebble deposition into a pre-collapse
planet produces two opposing effects, one delaying contraction of
the planet and the other speeding it up. The former effect is due to the
increase in the dust opacity which slows down radiative contraction
of the fragment. In our opacity model, this effect depends on the
instantaneous amount of dust in the planet, that is, its metallicity.
The latter effect however depends not on the amount of dust in the
planet but on the rate of grain deposition into the planet, as hinted
in the introduction.

5 A TOY MO D EL

To understand how grain accretion can accelerate collapse of a
planet, we turn to a simple analytical model in which the planet is

modelled as a polytropic sphere of adiabatic index γ = 1 + 1/n.
The equation of state (EOS) of the gas in the sphere is

P = Kργ , (8)

where P and ρ are the total (gas plus metals) pressure and den-
sity, respectively, and K is a constant throughout all of the planet.
Constancy of K is assumed to be maintained by convection that
is known to be the main energy transfer mechanism within H2-
dominated planets (e.g. Helled & Schubert 2008).

The theory is only approximate, since there is no single value of
γ that could describe a planet dominated by molecular hydrogen
exactly. For gas dominated by molecular hydrogen, γ varies from
γ = 5/3 at T � 100 K to γ = 7/5 in a relatively broad temperature
range, 200 � T � 1000 K, and finally drops to γ ≈ 1.1–1.2 at
T � 1500 K (see Fig. 5a and Boley et al. 2007). An H2-dominated
gas fragment spans a range of temperatures, from the maximum
at the centre, Tc, to the minimum at the atmosphere of the planet,
Teff, which may be as low as tens of K (Vazan & Helled 2012),
so γ varies within the planet significantly. However, qualitatively,
H2-dominated gas fragments behave as polytropes with γ varying
from 5/3 at low Tc to γ < 4/3 at Tc � 2000 K.

The total energy of a polytrope of mass Mp and radius Rp is (e.g.
Chandrasekhar 1957)

Etot = −3 − n

5 − n

GM2
p

Rp
≡ −3γ − 4

5γ − 6

GM2
p

Rp
. (9)

For γ < 4/3, the total energy of the planet changes sign, which
marks the dynamical instability to gravitational collapse for gas
with γ < 4/3. In the context of molecular hydrogen-dominated
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Figure 3. Same as the right-hand side panels of Fig. 2 but grain accretion
is (arbitrarily) turned off once the central temperature of 700 K is reached.
Note that the faster the metals are loaded, the faster the fragments contract,
but once grain accretion stops the situation reverses; the more metals are in
the planet, the slower it contracts.

fragments, the instability leads to H2 dissociation and the gravita-
tional collapse of the planet.

Consider now an instantaneous addition of grains of mass
δMz 	 Mz 	 Mp throughout the planet, where Mz is the cur-
rent mass of metals in the planet, so that grain mass added within
radius R is δM = (M/Mp)δMz, where M is planet’s mass interior
to R < Rp. If grains are not vaporized, then the thermal energy of
the gas/grain mixture does not vary appreciably due to this addition
(kinetic energy in Brownian motion of grains is negligible since the
weight of a grain is much larger than that of H2 molecule). However,
there is a change in the gravitational potential energy of the planet,

δEgrav = −
∫ Mp

0

(
G

M + δM

R
[dM + dδM] − GM

R
dM

)
. (10)

Assuming that R does not vary during this instantaneous mass vari-
ation, and since δM/M = δMz/Mp = const,

δEgrav = 2
δMz

Mp
Egrav , (11)

where Egrav = − ∫
(GM/R)dM = −(3/(5 − n))GM2

p /Rp. Due to
energy conservation, δEtot = δEgrav, and hence the total energy of
the planet evolves according to

− 3 − n

5 − n

d

dt

GM2
p

Rp
= − 6

5 − n

GM2
p

Rp

Ṁz

Mp
. (12)

Now, since grain accretion is the only mass gain term for the planet,
Ṁp = Ṁz, and so equation (12) integrates to

ln
GM2

p

Rp
= 6

3 − n
ln Mp + const . (13)

It is apparent that as Mp increases, |Etot| increases as well (and
rapidly if n → 3). If M0

p and R0
p are the initial planet mass and

radius before grain accretion sets in, then the constant in the above
equation can be eliminated, resulting in

GM2
p

Rp
=

(
GM2

p

Rp

)
0

[
Mp

M0
p

] 6
(3−n)

. (14)

The planet’s mass is the sum of the mass of the gas and that of
metals, Mp = (1 − z)Mp + zMp, and Mgas = Mp(1 − z) = const.
Thus, Mp/M

0
p = (1 − z0)/(1 − z), where z0 is the initial metallicity

of the planet. Equation (14) can be now re-written in terms of
changing metallicity of the planet rather than its total mass.

Provided that the mean molecular weight of the gas, μ, is known,
one can find the central temperature of the polytrope,

Tc = An

GMpμ

kbRp
, (15)

where An = −[(n + 1)ξ1θ
′
n]−1 ∼ 1 is a function of n but not Mp or

Rp. For n = 5/2, An ≈ 0.7. Since we neglect metal’s contribution to
pressure and internal energy of the mix and assume a homogeneous
spreading of metals inside the planet, μ ≈ μ0Mp/Mg = μ0/(1 − z),
where μ0 is the mean molecular weight of H2/He mixture. From
equation (15), Tc ∝ GM2

p /Rp, leading to

Tc = T0

(
Mp

Mp0

) 6
3−n

= T0

[
1 − z0

1 − z

] 6
3−n

. (16)

This equation describes how temperature of the planet increases as
its metallicity increases. In the limit z0 < z 	 1, it can be further
simplified by writing (1 − z0)/(1 − z) ≈ 1 + (z − z0), and using
the identity (1 + x)b ≈ exp (bx) valid for x 	 1:

Tc = T0 exp

[
6�z

3 − n

]
, (17)

where �z = z − z0. This shows that if 6/(3 − n)  1, then the
planet is very sensitive to addition of grains.

In particular, for diatomic molecules, γ = 7/5, or n = 5/2, which
yields

Tc = T0 exp [12�z] = T0 exp

[
0.18

�z

z�

]
, (18)

where z� = 0.015, the solar metallicity. This suggests that over-
abundance of metals by a factor of 5–10 in a gas fragment domi-
nated by molecular hydrogen may significantly increase Tc, taking
the planet closer to the desired Tc � 2000 K point at which it can
collapse to much higher densities.

Fig. 4 shows a comparison of the analytical theory (equation 16)
with numerical integrations of the metal-loading effect performed
with our code, except that the H/He mix EOS was replaced by
the polytropic gas equation with a fixed γ . Five values of γ are
considered, as labelled in the figure. The metal-loading time is
tz = 300 yr for all of the curves. The black curves in the top panel,
Fig. 4(a), are numerical integrations, whereas red lines are equation
(16). Fig. 4(b) shows the metallicity evolution of the planets, which
is identical, all given by same value of tz = 300 yr. The agreement
between the theory and numerical simulations is acceptable to us.
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Figure 4. Evolution of polytropic gas fragments for five different values
of γ , as labelled in the figure, when loaded with grains homogeneously
throughout the cloud. The solid red lines are predictions of the analytical
model (equation 16), whereas black curves are the results of the numerical
integration.

The curves show, just as equation (16) does, that the smaller the
value of γ , the stronger the planet reacts to addition of grains. This
is because n = 1/(γ − 1) edges closer to the unstable value, n = 3,
as γ approaches 4/3 from above, and even a small amount of metals
can cause a significant contraction of the planet.

The same result (equation 16) can also be obtained from a poly-
tropic sphere relation between planet’s radius, mass, and the ‘con-
stant’ K, if the latter is allowed to vary as z changes. Namely,
K = P/ρ1+1/n = K0[(1 − z)/(1 − z0)]1+1/n in this case, where K0 is
the polytropic constant at z = z0. Since K is related to entropy per
unit mass of the planet, this provides another interpretation of the
metal-loading effect: adding metals decreases entropy of the cloud,
just as radiative cooling does, so metal accretion is effectively a
cooling mechanism.

6 R EA L H 2-DOMINATED POLY TROPES

Having explored idealized polytropic models with a fixed value
of γ (or n), we turn to more realistic cases of H/He-dominated
pre-collapse planets. Fig. 5(a) shows adiabatic index γ versus gas
temperature for a solar composition H/He plus metals mix for the
ideal EOS used in this paper calculated for a fixed gas density of
ρ = 10−7 g cm−3. As expected, γ = 5/3 at T � 100 K when ro-
tational and vibrational degrees of freedom of molecular hydrogen

Figure 5. Panel (a): the ratio of specific heats, γ , for our solar composition
EOS at a fixed gas density, ρ = 10−7 g cm−3 (the solid curve), and the
effective γ for two planetary masses as defined by equation (19). Middle
panel (b): metallicity exponent (equation 20) for the same cases as panel (a),
plus one directly measured from a numerical experiment for Mp = 4 MJ (dot–
dashed curve passing through triangles). The larger σz, the more rapidly
planet contracts as metals are loaded into it. Panel (c): the central temperature
doubling metallicity zd, defined by equation (21), for the same cases as in
panel (b), and plotted in units of the solar metallicity, z�.

are not yet excited; then at higher T, γ drops to ≈7/5 appropriate
for diatomic gas. This persists until T ∼ 1500 K when H2 disso-
ciation becomes energetically possible. Due to H2 dissociation at
temperatures around 2000 K, γ plunges to about 1.1.

Clearly, each pre-collapse planet configuration spans a range of
densities and temperatures, from the maximum in the centre to
the minimum in the atmosphere. To relate to the analytical theory
derived in Section 5, we define effective γ and n for a planet by
computing the gravitational potential energy of that planet and then
comparing it with that of a polytropic planet of the same mass and
radius, e.g.

Egrav = − 3

5 − n

GM2
p

Rp
, (19)

where n = 1/(γ − 1). The values of the γ eff versus planet’s cen-
tral temperature are plotted in Fig. 5(a) for two planetary masses,
Mp = 1 MJ and 4 MJ. These are very similar all the way to
Tc ≈ 2000 K. As can be expected, γ eff for a planet bears a strong
resemblance to the γ (T) function (the solid curve), except smoothed
out somewhat due to the presence of a range of temperatures inside
a planet, and also shifted to higher temperatures since Tc repre-
sents the maximum temperature in a given planet, whereas γ eff is
probably related more closely to a mean temperature in the planet.
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Now, the analytical theory developed in Section 5 predicts how
the central temperature of a polytropic planet varies with its metal-
licity when grains are added to the planet, e.g. Tc ∝ (1 − z)−σz

(equation 16), where we defined ‘metallicity exponent’

σz = − d ln Tc

d ln(1 − z)
= 6

3 − n
. (20)

The dependence of σ z on central temperature is plotted in Fig. 5(b)
for the two planetary masses, and also for the solid curve from
Fig. 5(a) (corresponding to a fixed gas density of ρ = 10−7 g cm−3).

The dash–dotted curve passing through red triangles in the panel
shows −[dln Tc/dln (1 − z)] actually measured in simulations of
planets of mass Mp = 4 MJ loaded with metals. These (short) runs
are started with the planets initialized as polytropic spheres of solar
metal abundance following the ideal EOS with Tc shown on the
horizontal axis. The metals are added to the planets in the same
way as described in Section 4, with tz = 500 yr (the choice of tz
is unimportant for this plot). We then measure σ z when z varies
by a small increment. To make sure that radiative cooling of the
planet, which also drives evolution of Tc in realistic planets, does
not corrupt our measurement of σ z, we set the opacity multiplier to
a very large number (1010) to turn off radiative cooling of the planet
for Fig. 5.

The dash–dotted curve (measured σ z) should be compared with
the dashed one (predicted). These two are relatively close but do not
coincide exactly, which probably reflects the fact that our definition
of γ eff in equation (19) is somewhat arbitrary, and is only one
possible way to define an effective γ for a planet. Using the total
energy of the planet to define γ , for example, gives slightly different
values for γ eff. Nevertheless, the agreement appears reasonable and
hence the analytical theory has some utility in explaining contraction
of metal-loaded pre-collapse planets.

We also define the central temperature doubling metallicity, zd,
as metallicity at which Tc is twice its initial value, T0. Given the
definition of σ z and equation (16),

zd = 1 − (1 − z0) 2−1/σz , (21)

where z0 is the initial planet’s metallicity. The doubling metallicity
in units of solar metallicity, and assuming z0 = z�, is plotted in
Fig. 5(c) for the same models as in the two panels above it. We
can see that metal overabundance of a factor of a few to 10 in
solar metallicity units is required to cause the planet to shrink by
a factor of 2 in radius (planet’s radius is nearly exactly inversely
proportional to Tc). The required metal overabundance is smaller
at higher temperatures because the planet is closer to the unstable
value of γ = 4/3 at higher Tc.

7 G RAIN-DOMINATED PLANET C OLLAPSE

Having studied the contraction rates of planets loaded by metals,
we can now ask the question of when such a contraction is faster
than that due to radiative cooling. This happens when the rate of
central temperature increase due to radiative cooling rate is equal
to that due to metal loading. The latter can be found via

dTc

dt
= Tc

d ln Tc

d ln(1 − z)

d ln(1 − z)

dt
. (22)

Now, using equation (20) and definition 1 − z = Mgas/(Mgas + Mz),
where Mgas and Mz are the total mass of gas and metals in the planet,
we write

d ln(1 − z)

dt
= − 1

Mp

dMz

dt
= −Mz(0)

Mptz
. (23)

Figure 6. Critical metal-loading time versus planet’s central temperature
for four different planetary masses and interstellar grain opacities, as labelled
in the box in the figure. Metals must be added to the planet rapidly, so that
tz < tcrit, in order for the metal loading to dominate over radiative cooling
as a contraction mechanism.

The condition of the two contraction rates being equal to each other
reads

Tc

trad
= Tcσz

z0

tz
, (24)

where we set z = z0. This defines the critical metal-loading time-
scale, tcrit, such that if metals are supplied to the planet on a time-
scale shorter than tcrit, then the planet contracts mainly due to the
increasing metal content rather than radiative cooling. According to
equation (24), the critical time is

tcrit = tradσzz0. (25)

Fig. 6 plots the critical metal-loading time versus planet’s central
temperature for the same range of planetary masses as in Fig. 1.
The curves showing tcrit are qualitatively similar to those showing
trad for obvious reasons save for the absolute values, and the factor
σ z that is a function of Tc.

This figure shows that loading the planet by metals at a typical
tz of a few thousand yr, as estimated in Section 2.3, is not likely
to affect relatively massive planets, Mp � 2 MJ, at the beginning
of their evolution, but may affect them when they contract towards
T � 1000 K. This finding is consistent with the right-hand panels
of Fig. 2, in which the central temperature evolution of metal-
loaded planets fed by metals at different rates was shown. The
figure showed that early evolution of planets, when Tc � 500 K, is
indistinguishable for different tz, at least in a rather broad range of
tz, from 250 yr all the way to tz = ∞. This can now be understood in
terms of the radiation-dominated phase of the planet’s contraction:
early on the planet contracts radiatively more rapidly than it does
due to metal loading, even at the shortest tz explored in the figure.
At later times, however, depending on tz, the planets go off the fixed
metallicity (solid curve in Fig. 2c) track and accelerate on to the
metal-dominated part of their evolution.

On the other hand, Fig. 6 predicts that evolution of lower mass
gas fragments may be much more sensitive to deposition of metals.
For example, for Mp = 0.5 MJ, even tz = 104 yr is short enough to
dominate fragment’s contraction. One preliminary conclusion from
this, which clearly needs to be explored more rigorously in a realistic
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Figure 7. The central temperature (top panels, a and c) and metallicity (bottom panels, b and d) versus time for planets with mass Mp = 1 MJ and Mp = 4 MJ

(left-hand and right-hand panels, respectively). The dashed curve in the bottom panels show the ratio of the critical metal-loading time-scale to the actual value
of tz (4000 yr for both runs). The dashed curves show that the evolution of the Mp = 1 MJ is dominated by metal loading, whereas that of the Mp = 4 MJ is
dominated by radiative cooling.

evolving protoplanetary disc setting, is that lower mass giant planets
formed by GI/TD may be more metal rich. Physically, it takes far
longer for these planets to contract (because their radiative cooling
times are much longer; see Fig. 1). For this reason, they are likely
to have a lower central temperature for longer than their massive
cousins. Based on the theory developed above and Fig. 5, their
contraction due to metal loading is therefore slower, and hence they
may be able to absorb more metals before they collapse.

While a full-scale investigation of this prediction is outside the
scope of our paper, Fig. 7 compares the evolution of two planets,
Mp = 4 MJ, which was already shown in Figs 2(c) and (d) with
the long dash curves, while the other planet has a lower mass,
Mp = 1 MJ. The solid lines in Figs 7(a) and (b) show the evolu-
tion of the central temperature and metallicity, z, respectively, for
Mp = 1 MJ. The dashed curve in Fig. 7(b) shows the ratio of the
critical metal-loading time-scale to the actual value of tz (4000 yr
for both runs). Except for the earliest times, that ratio is always
greater than unity, suggesting that evolution of this planet is nearly
always metal dominated. This planet collapses at t = 0.12 Myr,
almost entirely due to metal loading rather than radiation. By the
time the planet collapses, its metallicity is very high, z ≈ 0.3, e.g.
some 20 times higher than z�.

The evolution of the more massive planet is distinctly different.
Since such planets are cooling much more rapidly (see Fig. 1),
metal loading is a relatively minor effect in this case, with tcrit/tz < 1
everywhere (see Fig. 7 d). The evolution of a massive planet is hence
radiation dominated. The critical loading time tcrit is calculated using
equation (25), where the radiative time is found at each time step
using the definition from equation (2), the metallicity exponent σ z is

computed using equation (20) and definition of n given by equation
(19).

8 D I SCUSSI ON

In this paper, we have shown that accretion of pebbles from the
surrounding protoplanetary disc is a surprisingly efficient way for
pre-collapse H2-dominated planets to contract and eventually col-
lapse in high-opacity regime. The simplest way to understand this
result is to (1) realize that a gentle sedimentation of grains on to
a planet brings in additional gravitational potential energy but not
thermal or kinetic energy, so that the total energy of the cloud be-
comes more negative. (2) The reason for a surprising sensitivity of
molecular pre-collapse planets to metals is the fact that the total
energy of a polytropic cloud with index n (equation 9) with n → 3
is very small compared to GM2

p /Rp (e.g. (3 − n)/(5 − n) = 0.2 for
n = 5/2), so it takes only a little extra weight in metals to topple
the planet over into the unstable H2 dissociation regime.

The implications of our results for TD hypothesis and GI-born
planets are potentially significant. First of all, metal loading makes
it much more likely that these planets are able to contract and col-
lapse despite a rapid inward migration. This may help to resolve
the challenges to forming GI planets at short separations by migra-
tion of fragments born at separations ∼100 au emphasized by Zhu
et al. (2012) and Vazan & Helled (2012). Secondly, metal-loading
process may explain why giant planets are overabundant in metals
(e.g. Miller & Fortney 2011). Finally, TD/GI planet survival may
be enhanced at high metallicities since the rates of pebble accre-
tion are higher, making the planets collapse sooner, while planet
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migration rates are unlikely to depend on disc metallicity strongly.
This may produce a positive giant planet frequency–host star metal-
licity correlation as needed to explain observations (Fischer &
Valenti 2005). These issues will be addressed in a separate forth-
coming publication where the disc–planet interaction is modelled
in detail.

As discussed in the introduction, low opacity in pre-collapse GI
clumps may be another way to speed up the collapse (Helled &
Bodenheimer 2011), but it is not clear if opacity in the clumps
is indeed much smaller than the interstellar one. Dullemond &
Dominik (2005) argued that grain aggregate fragmentation in higher
speed collisions is required by observations of T Tauri stars to
maintain a high abundance of small grains despite the simultaneous
presence of grains as large as ∼1 cm in size. Furthermore, the low-
dust opacity picture would predict a very efficient formation of giant
planets at low metallicities, which contradicts observations (Fischer
& Valenti 2005).

We also found that the response of giant planets to metal loading
is a strong function of their mass. More massive planets are less
likely to be influenced by metal accretion since they cool much
more rapidly than their lower mass cousins (see Fig. 7). This gives
us hope that there may be strong trends in predictions of the TD
model with fragment’s mass that could hopefully be used to contrast
it with observations of exoplanets.

The main shortcomings of our numerical approach here are (i)
the simplification in the EOS that neglects metals’ contribution to
the internal energy and pressure of the mix (see Appendix ), and (ii)
assuming a homogeneous spreading of the grains inside the planet.
Both of these are made in order to keep our treatment as transpar-
ent as possible and to enable a comparison to the analytical model
developed in Section 5. Furthermore, preliminary results of simula-
tions with a more complete EOS show that this only strengthens the
tendency of the fragments to collapse due to metal loading because
grain vaporization must occur before the fragment collapses (as
T � 2000 K at that point), and this process takes extra energy from
the gas due to the latent heat of vaporization (e.g. Podolak, Pollack
& Reynolds 1988), cooling the fragment yet more. The assumption
that grains are well mixed with gas is reasonable if convection stirs
the grains up quickly (e.g. Helled & Bodenheimer 2011), mixing
newly accreted grains throughout the planet efficiently. Neverthe-
less, we shall endeavour to relax these simplifications in future
publications.
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A P P E N D I X A : E QUAT I O N S

The equations are solved in spherical symmetry, with gas mass Mg,
the primary coordinate counted from the centre of the planet, used
to set a staggered grid. The numerical time integration procedure is
based on the Lagrangian scheme ‘lh1’ presented in section 6.2 of
Bodenheimer et al. (2007). In the one-fluid limit, the equations are

1

ρ
= 4πr2 dr

dM
(A1)

dv

dt
= −4πr2 ∂P

∂M
− GM(r)

r2
, (A2)
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du

dt
= −4πP

∂(r2v)

∂M
− 4π

∂
(
r2F (r)

)
∂M

, (A3)

where v = dr/dt is gas velocity, M(r) = Mg(r) + Mz(r) is the total
(gas + grains) mass enclosed within radius r, and ρ and P are the
total gas density and pressure at radius r. Note that since 1 − z is
the mass fraction of gas (H/He in the context of this paper), the total
mass can be written as

M(r) = Mg(r)

1 − z
, (A4)

and similarly, total density ρ = ρg/(1 − z) at all radii inside the
planet. F is the radial energy flux, and is equal to either the radiative
flux, Frad, given by the classical radiation flux,

Frad = −4aradcT
3

3κ(T )
4πr2 ∂T

∂M
, (A5)

where arad is the radiation constant, or Fcov, the convective energy
flux if the conditions for convective instability are satisfied. The
latter is modelled according to the mixing length theory. The nu-
merical scheme is explicit, with the time step limited by the Courant
condition. An artificial viscosity is used to capture shocks. The EOS
that we use provides gas pressure and internal energy as a function
of total density ρ tot, metallicity z, and gas temperature T. Since gas
temperature T is not explicitly present in equations (A1)–(A3), at
the end of each time step, which yields the values of P, ρ, u, and
z, at every mass zone, an iterative procedure is implemented to find
the corresponding T.

The EOS of H/He mix with astrophysical metals is in general
very complicated, and one needs an extensive chemical network to
follow phase transitions and interactions between different chemical
species. For example, Hori & Ikoma (2011) considered a number of
compounds formed by elements C and O with hydrogen, and found
that thermodynamical properties of gas change strongly at high
metallicity (z → 1). Vazan et al. (2013) used SiO2 to model ‘rock’
in their EOS. Lacking such proprietary EOS tables, we use a simpler
approximation in which grains/metals do not contribute to the gas
pressure or the internal energy of the gas other than by increasing
the mass of the mixture. This approximation is excellent while

metals are all in the grain phase because the energy in Brownian
motion of the grains is negligible compared to that of the much
lighter H/He molecules or atoms. The approximation is less well
justified when grains are vaporized and the constituent molecules
are broken down at higher temperatures. However, including the
latent heat of grain vaporization and metal molecule dissociation
would only strengthen conclusions of our paper since the extra heat
required for these processes would have been taken from the thermal
energy of the fragment and would thus lead to its faster collapse.
The simplified EOS we use therefore presents the minimum metal-
loading effect, and the more complicated forms of it must make it
even stronger.

The H/He part of the EOS is modelled as that of an ideal H/He
gas mixture which includes hydrogen molecules’ rotational and
vibrational degrees of freedom (calculated as in Boley et al. 2007),
and H2 dissociation (cf. more technical detail in Nayakshin 2011b),
as well as ionization of hydrogen atoms. Ionization of He atoms is
not important for temperatures of interest, and is hence neglected.

The EOS of the toy model of an ideal polytropic gas planets that
we use in Section 5 is P = Kρ

γ
tot, where γ is a fixed adiabatic index

and K is a constant related to the entropy of the gas. The internal
energy is then given by

u = P

ρ

1

γ − 1
. (A6)

The mean molecular weight of the mixture is calculated as

1

μ
= 1 − z

μg
+ z

μdust
= 1 − z

μg
, (A7)

where μg is the mean molecular weight of the H/He mixture (which
depends on the fraction of H atoms in H2 molecules, atomic H, and
ionized H; He atoms are assumed to be not ionized). The last step
in equation (A7) is possible because the mean molecular weight of
dust particles is orders of magnitude larger than μg.
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