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Abstract. In this paper we introduce the first known tool for symbol-
ically proving fair -CTL properties of (infinite-state) integer programs.
Our solution is based on a reduction to existing techniques for fairness-
free CTL model checking via the use of infinite non-deterministic branch-
ing to symbolically partition fair from unfair executions. We show the
viability of our approach in practice using examples drawn from device
drivers and algorithms utilizing shared resources.

1 Introduction
In model checking, fairness allows us to bridge between linear-time (a.k.a. trace-
based) and branching-time (a.k.a. state-based) reasoning. Fairness is crucial, for
example, to Vardi & Wolper’s automata-theoretic technique for LTL verifica-
tion [25]. Furthermore, when proving state-based CTL properties, we must often
use fairness to model trace-based assumptions about the environment both in
a sequential setting, and when reasoning about concurrent environments, where
fairness is used to abstract away the scheduler.

In this paper we introduce the first-known fair-CTL model checking technique
for (infinite-state) integer programs. Our solution reduces fair CTL to fairness-
free CTL using prophecy variables to encode a partition of fair from unfair
paths. Cognoscenti may at first find this result surprising. It is well known that
fair termination of Turing machines cannot be reduced to termination of Turing
machines. The former is Σ1

1 -complete and the latter is RE-complete [18].3 For
similar reasons fair-CTL model checking of Turing machines cannot be reduced
to CTL model checking of Turing machines. The key to our reduction is the use
of infinite non-deterministic branching when model checking fairness-free CTL.
As a consequence, in the context of infinite branching, fair and fairness-free CTL
are equally difficult (and similarly for termination).

Motivation. Current techniques for model checking CTL properties provide no
support for verification of fair-CTL, thus excluding a large set of branching-time
liveness properties necessitating fairness. These properties are often imperative
to verifying the liveness of systems such as Windows kernel APIs that acquire
resources and APIs that release resources. Below are properties which can be
expressed in fair-CTL, but not CTL nor LTL. We write these properties in CTL*,

3 Sometimes termination refers to universal termination, which entails termination for
all possible inputs. This is a harder problem and is co-RERE-complete.



a superset of both CTL and LTL4. For brevity, we write Ω for GFp→GFq. A state
property is indicated by ϕ (i.e., a combination of assertions on the states of the
program) and p and q are subsets of program states, constituting our fairness
requirement (infinitely often p implies infinitely often q).
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Property (1) generalizes fair non-termination, that is, there exists an infinite
fair computation all of whose states satisfy the property ϕ. Property (2) indicates
that on every fair path, every ϕ1 state is later followed by a ϕ2 state. We will
later verify property (2) for a Windows device driver, indicating that a lock will
always eventually be released in the case that a call to a lock occurs, provided
that whenever we continue to call a Windows API repeatedly, it will eventually
return a desired value (fairness). Similarly, (3) dictates that on every fair path
whenever a ϕ1 state is reached, on all possible futures there is a state which is
a possible fair future and ϕ2 is always satisfied. For example, one may wish to
verify that there will be a possible active fair continuation of a server, and that
it will continue to effectively serve if sockets are successfully opened.5

Furthermore, fair-CTL model checking is rudimentary to the well known tech-
nique of verifying LTL in the finite-state setting [25]. A fair-CTL model checker
for infinite-state systems would thus enable us to implement the automata-
theoretic approach to linear-time model checking by reducing it to fair-CTL
model checking as is done in the finite-state setting.

Fairness is also crucial to the verification of concurrent programs, as well-
established techniques such as [7] reduce concurrent liveness verification to a
sequential verification task. Thread-modular reductions of concurrent to sequen-
tial programs often require a concept of fairness when the resulting sequential
proof obligation is a progress property such as wait-freedom, lock-freedom, or
obstruction-freedom. Moreover, obstruction freedom cannot be expressed in LTL
without additional assumptions. With our technique we can build tools for au-
tomatically proving these sequential reductions using fair-CTL model checking.

Related Work. Support for fairness in finite and other decidable settings has been
well studied. Tools for these settings (e.g. NuSMV for finite state systems [5, 6],
Moped and PuMoc for pushdown automata [23, 24], Prism for probabilistic
timed automata [19], and Uppaal for timed automata [15]) provide support for
fairness constraints. Proof systems for the verification of temporal properties of
fair systems (e.g., [3], [21]) also exist. However, such systems require users to
construct auxiliary assertions and participate in the proof process.

4 These properties expressed in terms of the fair path quantifiers Ef and Af are
EfGϕ,AfG(ϕ1 → Af Fϕ2), and AfG(ϕ1 → Af F EfGϕ2), respectively.

5 Notice that our definition of fair CTL considers finite paths. Thus, all path quan-
tifications above range over finite paths as well.



Contrarily, we seek to automatically verify the undecidable general class of
(infinite-state) integer programs supporting both control-sensitive and numerical
properties. Additionally, some of these tools do not fully support CTL model
checking, as they do not reliably support mixtures of nested universal/existential
path quantifiers, etc. The tools which consider full CTL and the general class of
integer programs as we do are [2], [10], and [12]. However, these tools provide
no support for verifying fair-CTL.

When we consider the general class of integer programs, the use of infi-
nite nondeterminism to encode fairness policies has been previously utilized by
Olderog et al. [1]. However, they do not rely on nondeterminism alone but re-
quire refinement of the introduced nondeterminism to derive concrete schedulers
which enforce a given fairness policy. Thus, their technique relies on the ability
to force the occurrence of fair events whenever needed by the reduction. We
support general fairness constraints, rather than just fair scheduling. The ability
to force the occurrence of fair events is too strong for our needs. Indeed, in the
context of model checking we rely on the program continuing a normal execution
until the “natural” fulfillment of the fairness constraint.

An analysis of fair discrete systems which separates reasoning pertaining to
fairness and well-foundedness through the use of inductive transition invariants
was introduced in [20]. Their strategy is the basis of the support for fairness
added to Terminator [8]. However, this approach relies on the computation
of transition invariants [22], whereas our approach does not. We have recently
shown that, in practice, state-based techniques that circumvent the computa-
tion of transition invariants perform significantly better [14]. Additionally, a
technique utilized to reduce LTL model checking to fairness-free CTL model
checking introduced by [11] is largely incomplete, as it does not sufficiently de-
terminize all possible branching traces. Note that these methodologies are used
to verify fairness and liveness constraints expressible within linear temporal logic,
and are thus not applicable to verify fair branching-time logic or branching-time
logic. Indeed, this was part of our motivation for studying alternative approaches
to model checking with fairness.

2 Preliminaries

Transition systems. A transition system is M = (S, S0, R, L), where S is a count-
able set of states, S0 ⊆ S a set of initial states, R ⊆ S × S a transition relation,
and L : S → 2AP a labeling function associating a set of propositions with every
state s ∈ S. A trace or a path of a transition system is either a finite or infinite
sequence of states. The set of infinite traces starting at s ∈ S, denoted by Π∞(s),
is the set of sequences (s0, s1, . . .) such that s0 = s and ∀i ≥ 0. (si, si+1) ∈ R.
The set of finite traces starting at s ∈ S, denoted by Πf (s), is the set of se-
quences (s0, s1, . . . , sj) such that s0 = s, j ≥ 0, ∀i < j. (si, si+1) ∈ R, and
∀s ∈ S. (sj , s) /∈ R. Finally, the set of maximal traces starting at s, denoted by
Πm(s), is the set Π∞(s) ∪ Πf (s). For a path π, we denote the length of said
path by |π|, which is ω in case that π is infinite.



α(s)

M, s |=m α

¬α(s)

M, s |=m ¬α
M, s |= ϕ1 M, s |= ϕ2

M, s |=m ϕ1 ∧ ϕ2

M, s |= ϕ1 ∨ M, s |= ϕ2

M, s |=m ϕ1 ∨ ϕ2

∀π = (s0, s1, ...) ∈ Πm(s). M, s1 |= ϕ

M, s |=m AXϕ

∃π = (s0, s1, ...) ∈ Πm(s). M, s1 |= ϕ

M, s |=m EXϕ

∀π = (s0, s1, ...) ∈ Πm(s). (∀i ∈ [0, |π|). M, si |= ϕ1)∨
(∃j ∈ [0, |π|). M, sj |= ϕ2 ∧ ∀i ∈ [0, j). M, si |= ϕ1)

M, s |=m A[ϕ1Wϕ2]

∀π = (s0, s1, ...) ∈ Πm(s).
(∃j ∈ [0, |π|). M, sj |= ϕ)

M, s |=m AFϕ

∃π = (s0, s1, ...) ∈ Πm(s).
(∃j ∈ [0, |π|). M, sj |= ϕ2 ∧ ∀i ∈ [0, j). M, si |= ϕ1)

M, s |=m E[ϕ1Uϕ2]

∃π = (s0, s1, ...) ∈ Πm(s).
(∀i ∈ [0, |π|). M, si |= ϕ)

M, s |=m EGϕ

Fig. 1. Semantics of CTL: |=m

Computation tree logic (CTL). We are interested in verifying state-based prop-
erties in computation tree logic (CTL). Our definition of CTL differs slightly
from previous work, as it takes into account finite (maximal) paths. This seman-
tics allows us to specify properties such as termination without requiring special
atomic propositions to hold at program exit points, as proposed by Cook et al.
in [13], and to reason about a transformation that introduces many finite paths.

A CTL formula is of the form:
ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | AFϕ | A[ϕWϕ] | EXϕ | EGϕ | E[ϕUϕ],

where α ∈ AP is an atomic proposition. We assume that formulae are written in
negation normal form, in which negation only occurs next to atomic propositions.
We introduce AG,AU,EF, and EW as syntactic sugar as usual. A formula is in
ACTL if it uses only universal operators, i.e., AX, AW, AF, AU, or AG.

Fig. 1 defines when a CTL property ϕ holds in a state s ∈ S of a transition
system M . We say that ϕ holds in M , denoted M |=m ϕ, if ∀s ∈ S0. M, s |=m ϕ.

Fair CTL. For a transition system M , a fairness condition is Ω = (p, q), where
p, q ⊆ S. When fairness is part of the transition system we denote it as M =
(S, S0, R, L,Ω). We still include Ω as a separate component in transformations
and algorithms for emphasis. We freely confuse between assertions over program
variables and sets of states that satisfy them. An infinite path π is unfair under
Ω if states from p occur infinitely often along π but states from q occur finitely
often. Otherwise, π is fair. The condition Ω denotes a strong fairness constraint.
Weak fairness constraints can be trivially expressed by Ω = (true, q), that is,
states from q must occur infinitely often. Equivalently, π is fair if it satisfies the
LTL formula π |= (GFp → GFq). For a transition system M = (S, S0, R, L,Ω),
an infinite path π, we denote M,π |= Ω if π is fair [17]. We consider strong
fairness with one pair of sets of states. Extending our results to strong fairness
over multiple pairs is simple and omitted for clarity of exposition.

For a transition system M and a CTL property ϕ, Fig. 2 defines when the
property holds in a state s ∈ S. We say that ϕ holds in M , denoted M |=Ω+

ϕ
if ∀s ∈ S0.M, s |=Ω+

ϕ. When clear from the context, we sometimes omit the
transition system and write s |=Ω+ ϕ or s |=m ϕ instead.



α(s)

M, s |=Ω+ α

¬α(s)

M, s |=Ω+ ¬α
M, s |=Ω+ ϕ1 M, s |=Ω+ ϕ2

M, s |=Ω+ ϕ1 ∧ ϕ2

M, s |=Ω+ ϕ1 ∨ M, s |= ϕ2

M, s |=Ω+ ϕ1 ∨ ϕ2

∀π = (s0, s1, ...) ∈ Πm(s). (π ∈ Πf ∨
M,π |= Ω) ⇒ M, s1 |= ϕ

M, s |=Ω+ AXϕ

∃π = (s0, s1, ...) ∈ Πm(s). (π ∈ Πf ∨
M,π |= Ω) ∧ M, s1 |= ϕ

M, s |=Ω+ EXϕ

∀π = (s0, s1, ...) ∈ Πm(s). (π ∈ Πf ∨
M,π |= Ω) ⇒ (∀i ∈ [0, |π|). M, si |= ϕ1)∨

(∃j ∈ [0, |π|). M, sj |= ϕ2 ∧ ∀i ∈ [0, j). M, si |= ϕ1)

M, s |=Ω+ A[ϕ1Wϕ2]

∀π = (s0, s1, ...) ∈ Πm(s). (π ∈ Πf ∨
M,π |= Ω) ⇒ (∃j ∈ [0, |π|). M, sj |= ϕ2

M, s |=Ω+ AFϕ

∃π = (s0, s1, ...) ∈ Πm(s). (π ∈ Πf ∨
M,π |= Ω) ∧ (∃j ∈ [0, |π|). M, sj |= ϕ2 ∧

∀i ∈ [0, j). M, si |= ϕ1)

M, s |=Ω+ E[ϕ1Uϕ2]

∃π = (s0, s1, ...) ∈ Πm(s). (π ∈ Πf ∨
M,π |= Ω) ∧ (∀i ∈ [0, |π|). M, si |= ϕ)

M, s |=Ω+ EGϕ

Fig. 2. Semantics of Fair CTL with finite and infinite paths: |=Ω+

3 Fair-CTL Model Checking
In this section we present a procedure for reducing fair-CTL model checking to
CTL model checking. The procedure builds on a transformation of infinite-state
programs by adding a prophecy variable that truncates unfair paths. We start
by presenting the transformation, followed by a program’s adaptation for using
said transformation, and subsequently the model-checking procedure.

In Fig. 3, we propose a reduction Fair(M,Ω) that encodes an instantia-
tion of the fairness constraint within a transition system. When given a tran-
sition system (S, S0, R, L,Ω), where Ω = (p, q) is a strong-fairness constraint,
Fair(M,Ω) returns a new transition system (without fairness) that, through the
use of a prophecy variable n, infers all possible paths that satisfy the fairness

Fair((S, S0, R, L), (p, q)) , (SΩ , S
0
Ω , RΩ , LΩ) where

SΩ = S × N
 (¬p ∧ n′ ≤ n)∨

(p ∧ n′ < n)∨
q

RΩ = {((s, n), (s′, n′)) | (s, s′) ∈ R}∧
S0
Ω = S0 × N

LΩ(s, n) = L(s)

Fig. 3. Fair takes a system (S, S0, R, L) and a fairness constraint (p, q) where p, q ⊆ S,
and returns a new system (SΩ , S

0
Ω , RΩ , LΩ). Note that n ≥ 0 is implicit, as n ∈ N.



`1 `2

τ1 : x′ = 0

τ2 : m ≤ 0
x′ = x

τ3 : m > 0
m′ = m
x′ = x

τ4 : x′ = 1
m′ = m

`1 `2

τ1 : x′ = 0

τ2 : m ≤ 0 ∧
rΩ
x′ = x

τ3 : m > 0 ∧ rΩ
m′ = m
x′ = x

τ4 : rΩ
x′ = 1
m′ = m

rΩ : { (¬τ2 ∧ n′ ≤ n) ∨ (τ2 ∧ n′ < n) ∨m > 0 } ∧ n ≥ 0

(a) (b)

Fig. 4. Reducing a transition system with the fair CTL property AG(x = 0→ AF(x =
1)) and the fairness constraint GF τ2 → GF m > 0. The original transition system is
represented in (a), followed by the application of our fairness reduction in (b).

constraint, while avoiding all paths violating the fairness policy. Intuitively, n is
decreased whenever a transition imposing p ∧ n′ < n is taken. Since n ∈ N, n
cannot decrease infinitely often, thus enforcing the eventual invalidation of the
transition p ∧ n′ < n. Therefore, RΩ would only allow a transition to proceed if
q holds or ¬p ∧ n′ ≤ n holds. That is, either q occurs infinitely often or p will
occur finitely often. Note that a q-transition imposes no constraints on n′, which
effectively resets n′ to an arbitrary value. Recall that extending our results to
multiple fairness constraints is simple and omitted for clarity of exposition.

The conversion of M with fairness constraint Ω to Fair(M,Ω) involves the
truncation of paths due to the wrong estimation of the number of p-s until q.
This means that Fair(M,Ω) can include (maximal) finite paths that are prefixes
of unfair infinite paths. It follows that when model checking CTL we have to
ensure that these paths do not interfere with the validity of our model checking
procedure. Hence, we have to distinguish between maximal (finite) paths that
occur in M and those introduced by our reduction. This is done through adding a
proposition t to mark all original “valid” termination states prior to the reduction
in Fig. 3, followed by adjusting the CTL specification through a transformation,
all presented in Section 3.3. We first provide high-level understanding of our
approach through an example.

3.1 Illustrative Example

Consider the example in Fig. 4 for the fair CTL property AG(x = 0 → AF(x =
1)) and the fairness constraint GF τ2 → GF m > 0 for the initial transition
system introduced in (a). We demonstrate the resulting transformation for this
infinite-state program, which allows us to reduce fair model checking to model
checking. By applying Fair(M,Ω) from Fig. 3, we obtain (b) where each original
transition, τ2, τ3, and τ4, are adjoined with restrictions such that {(¬τ2 ∧ n′ ≤
n) ∨ (τ2 ∧ n′ < n) ∨m > 0 } ∧ n ≥ 0 holds. That is, we wish to restrict our
transition relations such that if τ2 is visited infinitely often, then the variable m
must be positive infinitely often. In τ2, the unconstrained variable m indicates
that the variable m is being assigned to a nondeterministic value, thus with
every iteration of the loop, m acquires a new value. In the original transition



Term(α, t) ::= α
Term(ϕ1 ∧ ϕ2, t) ::= Term(ϕ1, t) ∧Term(ϕ2, t)
Term(ϕ1 ∨ ϕ2, t) ::= Term(ϕ1, t) ∨Term(ϕ2, t)

Term(AXϕ, t) ::= t ∨ AX(Term(ϕ, t))
Term(AFϕ, t) ::= AFTerm(ϕ, t)

Term(A[ϕ1Wϕ2], t) ::= A[Term(ϕ1, t) W Term(ϕ2, t)]
Term(EXϕ, t) ::= ¬t ∧ EX(Term(ϕ, t))
Term(EGϕ, t) ::= EGTerm(ϕ, t)

Term(E[ϕ1Uϕ2], t) ::= E[Term(ϕ1, t) U Term(ϕ2, t)]

Fig. 5. Transformation Term(ϕ, t).

system, τ2 can be taken infinitely often given said non-determinism, however in
(b), such a case is not possible. The transition τ2 in (b) now requires that n
be decreased on every iteration. Since n ∈ N, n cannot be decreased infinitely
often, causing the eventual restriction to the transition τ2. Such an incidence
is categorized as a finite path that is a prefix of some unfair infinite paths. As
previously mentioned, we will later discuss how such paths are disregarded. This
leaves only paths where the prophecy variable “guessed” correctly. That is, it
prophesized a value such that τ3 is reached, thus allowing our property to hold.

3.2 Prefixes of Infinite Paths

We now elaborate on the transformations utilized to distinguish between the
maximal (finite) paths that occur in M , and those that are prefixes of unfair
infinite paths introduced by our reduction. Consider a transition system M =
(S, S0, R, L,Ω), where Ω = (p, q), and let ϕ be a CTL formula. Let t be an
atomic proposition not appearing in L or ϕ. We define the transformation to
mark “valid” termination states as Term(M, t) = (S, S0, R

′, L′, Ω′), where R′,
L′, and Ω′ are as follows:

R′ = R ∪ {(s, s) | ∀s′.(s, s′) /∈ R}
Ω′ = (p, q ∨ t) L′(s) =

{
L(s) ∪ {t}, if ∀s′.(s, s′) /∈ R
L(s), otherwise

That is, we eliminate all finite paths in Term(M, t) by instrumenting self
loops and adding the proposition t on all terminal states. The fairness constraint
is adjusted to include paths that end in such states. We now adjust the CTL
formula ϕ that we wish to verify on M . Recall that t does not appear in ϕ. Now
let Term(ϕ, t) denote the CTL formula transformation in Fig. 5.

The combination of the two transformations maintains the validity of a CTL
formula in a given system.

Theorem 1. M |=Ω+ ϕ⇔ Term(M, t) |=Ω+ Term(ϕ, t)

Proof Sketch (full proof in [9]). We show that every fair path of Term(M, t)
corresponds to a maximal path in M and vice versa. The proof then proceeds
by induction on the structure of the formula. For existential formulas, witnesses
are translated between the models. For universal formulas, we consider arbitrary
paths and translate them between the models. ut



1 let FairCTL(M,Ω,ϕ) : assertion =

2

3 match(ϕ) with

4 | Q ϕ1 OP ϕ2

5 | ϕ1 bool OP ϕ2 →
6 aϕ1 = FairCTL(M,Ω,ϕ1);
7 aϕ2 = FairCTL(M,Ω,ϕ2)
8 | Q OP ϕ1 →
9 aϕ1 = FairCTL(M,Ω,ϕ1)

10 | α →
11 aϕ1 = α
12

13 match(ϕ) with

14 | E ϕ1Uϕ2 →
15 ϕ′ = E[aϕ1U(aϕ2 ∧ ¬term)]
16 | E Gϕ1 →
17 ϕ′ = EG(aϕ1 ∧ ¬term)
18 | E Xϕ1 →
19 ϕ′ = EX(aϕ1 ∧ ¬term)
20 | A ϕ1Wϕ2 →
21 ϕ′ = A[aϕ1W(aϕ2 ∨ term)]

22

23 | A Fϕ1 →
24 ϕ′ = AF(aϕ1 ∨ term)
25 | A Xϕ1 →
26 ϕ′ = AX(aϕ1 ∨ term)
27 | ϕ1 bool OP ϕ2 →
28 ϕ′ = aϕ1 bool OP aϕ2

29 | α →
30 ϕ′ = aϕ1

31

32 M ′ = Fair(M,Ω)

33 a = CTL(M ′, ϕ′)
34

35 match(ϕ) with

36 | E ϕ′ →
37 return ∃n ≥ 0 . a
38 | A ϕ′ →
39 return ∀n ≥ 0 . a
40 | →
41 return a

Fig. 6. Our procedure FairCTL(M,Ω,ϕ) which employs both an existing CTL model
checker and the reduction Fair(M,Ω). An assertion characterizing the states in which
ϕ holds under the fairness constraint Ω is returned.

After having marked the “valid” termination points in M by using the trans-
formation Term(M, t), we must ensure that our fair-CTL model-checking pro-
cedure ignores “invalid” finite paths in Fair(M,Ω). The finite paths that need
to be removed from consideration are those that arise by wrong prediction of
the prophecy variable n. The formula term = AFAX false holds in a state s iff all
paths from s are finite. We denote its negation EGEX true by ¬term. Intuitively,
when considering a state (s, n) of Fair(M,Ω), if (s, n) satisfies term, then (s, n)
is part of a wrong prediction. If (s, n) satisfies ¬term, then (s, n) is part of a
correct prediction. Further on, we will set up our model checking technique such
that universal path formulas ignore violations that occur on terminating paths
(which correspond to wrong predictions) and existential path formulas use only
non-terminating paths (which correspond to correct predictions).

3.3 Fair-CTL Model Checking

We use Fair(M,Ω) to handle fair-CTL model checking. Our procedure employs
an existing CTL model checking algorithm for infinite-state systems. We assume
that the CTL model checking algorithm returns an assertion characterizing all
the states in which a CTL formula holds. Tools proposed by Beyene et al. [2]
and Cook et al. [10] support this functionality. We denote such CTL verification
tools by CTL(M,ϕ), where M is a transition system and ϕ a CTL formula.



1 let Verify(M,Ω,ϕ) : bool =

2

3 a = FairCTL(Term(M, t), Ω, Term(ϕ, t))
4 return S0 ⇒ a

Fig. 7. CTL model checking procedure Verify, which utilizes the subroutine in Fig. 6
to verify if a CTL property ϕ holds over M under the fairness constraints Ω.

Our procedure adapting Fair(M,Ω) is presented in Fig. 6. Given a transi-
tion system M , a fairness constraint Ω, and a CTL formula ϕ, FairCTL returns
an assertion characterizing the states in which ϕ fairly holds. Initially, our pro-
cedure is called by Verify in Fig. 7 where M and ϕ are initially transformed
by Term(M, t) and Term(ϕ, t) discussed in Section 3.2. That is, Term(M, t)
marks all “valid” termination states in M to distinguish between maximal (fi-
nite) paths that occur in M and those introduced by our reduction. Term(ϕ, t)
allows us to disregard all aforementioned finite paths, as we only consider infinite
paths, which correspond to a fair path in the original system.

Our procedure then begins by recursively enumerating over each CTL sub-
property, wherein we attain an assertion characterizing all the states in which
the sub-property holds under the fairness constraint Ω. These assertions will
subsequently replace their corresponding CTL sub-properties as shown on lines
15,17,19, and so on. A new CTL formula ϕ′ is then acquired by adding an appro-
priate termination or non-termination clause (lines 13-30). This clause allows us
to ignore finite paths that are prefixes of unfair infinite paths. Recall that other
finite paths were turned infinite and marked by the proposition t in Term(M, t).

Ultimately, our reduction Fair(M,Ω) is utilized on line 32, where we trans-
form the input transition system M according to Fig. 3. With our modified
CTL formula ϕ′ and transition system M ′, we call upon the existing CTL model
checking algorithm to return an assertion characterizing all the states in which
the formula holds. The returned assertion is then examined on lines 35-39 to
determine whether or not ϕ′ holds under the fairness constraint Ω. If the prop-
erty is existential, then it is sufficient that there exists at least one value of the
prophecy variable such that the property holds. If the property is universal, then
the property must hold for all possible values of the prophecy variable.

We state the correctness and completeness of our model checking procedure.

Theorem 2. For every CTL formula ϕ and every transition system M with no
terminating states we have M |=Ω+

ϕ⇔ S0 → FairCTL (M,Ω,ϕ).

Proof Sketch (full proof in [9]). We show that every infinite path in Fair(M,Ω)
starting in (s, n) for some n ∈ N corresponds to an infinite path in M starting in
s satisfying Ω, and vice versa. From this correspondence of fair paths in M and
infinite paths in Fair(M,Ω), we can safely disregard all the newly introduced
finite paths given a transition system with no finite paths (i.e., Term(M, t)). ut

We then proceed to show by induction on the structure of the formula that
the assertion returned by FairCTL(M,Ω,ϕ) characterizes the set of states of
M that satisfy ϕ. For a universal property, we show that if it holds from s in M



NTerm(α) ::= α
NTerm(ϕ1 ∧ ϕ2) ::= NTerm(ϕ1) ∧NTerm(ϕ2)
NTerm(ϕ1 ∨ ϕ2) ::= NTerm(ϕ1) ∨NTerm(ϕ2)

NTerm(AXϕ) ::= AX(NTerm(ϕ) ∨ term)
NTerm(AFϕ) ::= AF(NTerm(ϕ) ∨ term)

NTerm(A[ϕ1Wϕ2]) ::= A[NTerm(ϕ1) W (NTerm(ϕ2) ∨ term)]

Fig. 8. Transformation NTerm( ).

then it(s modified form) holds from (s, n) for every n in Fair(M,Ω) and vice
versa. For an existential property, we show that if it holds from s in M then its
modified form holds from (s, n) for some n in Fair(M,Ω) and vice versa.

Corollary 1. For every CTL formula ϕ and every transition system M we have
M |=Ω+

ϕ⇔ Verify(M,Ω,ϕ) returns true.

Proof. Verify calls FairCTL on Term(M, t) and Term(ϕ, t). It follows that
Term(M, t) has no terminating states and hence Theorem 2 applies to it. By
Theorem 1, the mutual transformation of M to Term(M, t) and ϕ to Term(ϕ, t)
preserves whether or not M |=Ω+

. The corollary follows. ut

4 Fair-ACTL Model Checking
In this section we show that in the case that we are only interested in universal
path properties, i.e., formulas in ACTL, there is a simpler approach to fair-
CTL model checking. In this simpler case, we can solely use the transformation
Fair(M,Ω). Just like in FairCTL, we still must ignore truncated paths that
correspond to wrong predictions. However, in this case, this can be done by a
formula transformation.

Let NTerm(ϕ) denote the transformation in Figure 8. The transformation
ensures that universal path quantification ignores states that lie on finite paths
that are due to wrong estimations of the number of p-s until q. Using this trans-
formation, it is possible to reduce fair-ACTL model checking to (A)CTL model
checking over Fair(M,Ω). Formally, this is stated in the following theorem.

Theorem 3. For every ACTL formula ϕ and every transition system M with
no terminating states, we have M |=Ω+ ϕ⇔ Fair(M,Ω) |= NTerm(ϕ) ∨ term.

Proof Sketch (full proof in [9]). The proof proceeds by induction on the structure
of the formula. We show that if the property holds from s in M then for every n
the (modified) property holds from (s, n) in Fair(M,Ω) and vice versa. Note that
the initial states of Fair(M,Ω) are all the initial states of M annotated by all
possible options of n ∈ N. It follows that the combination of all transformations
reduce fair ACTL model checking to ACTL model checking. ut

Corollary 2. For every ACTL formula ϕ we have
M |=Ω+ ϕ⇔ Fair(Term(M, t), Ω) |= NTerm(Term(ϕ, t)) ∨ term

Proof. As Term(M, t) produces a transition system with no terminating states
and Term(ϕ, t) converts an ACTL formula to an ACTL formula, the proof then
follows from Theorem 1 and Theorem 3. ut
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Fig. 9. A system showing that ECTL model checking is more complicated.

The direct reduction presented in Theorem 3 works well for ACTL but does
not work for existential properties. We now demonstrate why Fig. 3 is not
sufficient to handle existential properties alone. Consider the transition sys-
tem M in Figure 9, the fairness constraint Ω = {(p, q)}, and the property
EG(¬p ∧ EFr). One can see that M,m0 |=Ω+

EG(¬p ∧ EFr). Indeed, from each
state si there is a unique path that eventually reaches s0, where it satisfies r, and
then continues to s−1, where p does not hold. As the path visits finitely many p
states it is clearly fair. So, every state mi satisfies EFr by considering the path
mi, si, si−1, . . . , s0, s−1, . . .. Then the fair path m0,m1, . . . satisfies EG(¬p∧EFr).
On the other hand, it is clear that no other path satisfies EG(¬p ∧ EFr).

Now consider the transformation Fair(M,Ω) and consider model checking
of EG(¬p ∧ EFr). In Fair(M,Ω) there is no path that satisfies this property.
To see this, consider the transition system Fair(M,Ω) and a value n ∈ N.
For every value of n the path (m0, n), (m1, n), (m2, n), . . . is an infinite path in
Fair(M,Ω) as it never visits p. This path does not satisfy EG(¬p∧EFr). Consider
some state (mj , nj) reachable from (m0, n) for j > 2n. The only infinite paths
starting from (mj , nj) are paths that never visit the states si. Indeed, paths that
visit si are terminated as they visit too many p states. Thus, for every n ∈ N
we have (m0, n) 6|= EG(¬p ∧ EFr). Finite paths in Fair(M,Ω) are those of the
form (m0, n0), . . . , (mi, ni), (si, ni+1), . . .. Such paths clearly cannot satisfy the
property EG(¬p ∧ EFr) as the states si do satisfy p. Allowing existential paths
to ignore fairness is clearly unsound. We note also that in Fair(M,Ω) we have
(m0, n) |= NTerm(AF(p ∨ AG¬r)).

Reducing Fair Termination to Termination. Given the importance of termina-
tion as a system property, we emphasize the reduction of fair termination to
termination. Note that termination can be expressed in ACTL as AFAX false,
thus the results in Corollary 2 allow us to reduce fair termination to model
checking (without fairness). Intuitively, a state that satisfies AX false is a state
with no successors. Hence, every path that reaches a state with no successors
is a finite path. Here, we demonstrate that for infinite-state infinite-branching
systems, fair termination can be reduced to termination.

A transition system M terminates if for every initial state s ∈ S0 we have
Π∞(s) = ∅. System M fair-terminates under fairness Ω if for every initial state
s ∈ S0 and every π ∈ Π∞(s) we have π 6|= Ω, i.e., all infinite paths are unfair.

The following corollary follows from the proof of Theorem 3, where we estab-
lish a correspondence between fair paths of M and infinite paths of Fair(M,Ω).

Corollary 3. M fair terminates iff Fair(M,Ω) terminates.
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Fig. 10. Verifying a transition system with the CTL property EG x ≤ 0 and the weak
fairness constraint GF true → GF y ≥ 1. The original transition system is represented
in (a), followed by the application of our fairness reduction in (b).

Recall that the reduction relies on transition systems having an infinite branching
degree. For transition systems with finite-branching degree, we cannot reduce
fair termination of finite-branching programs to termination of finite-branching
programs, as the former is Σ1

1 -complete and the latter is RE-complete [18].

5 Example
Consider the example in Fig. 10. We will demonstrate the resulting transforma-
tions which will disprove the CTL property EG x ≤ 0 under the weak fairness
constraint GF true → GF y ≥ 1 for the initial transition system introduced in
(a). We begin by executing Verify in Fig. 7. In Verify the transition system
in (a) is transformed according to Term(M, t) and the CTL formula EG x ≤ 0
is transformed according to Term(M, t), as discussed in 3.2. Our main proce-
dure FairCTL in Fig. 6 is then called. First, we recursively enumerate over the
most inner sub-property x ≤ 0, wherein x ≤ 0 is returned as it is our base case.
In lines 13-30, a new CTL formula ϕ′ is then acquired by adding an appropri-
ate termination or non-termination clause. This clause allows us to ignore finite
paths that are prefixes of some unfair infinite paths, that is, those that have
not been marked by Term(M, t). We then obtain (b) in Fig. 10 by applying
Fair(M,Ω) from Fig. 3 on line 32. Thus, we must restrict each transition such
that { (¬true ∧ n′ ≤ n) ∨ (true ∧ n′ < n) ∨ y ≥ 1 } ∧ n ≥ 0 holds. This can be
seen in transitions τ1 and τ2.

Recall that Fair(M,Ω) can include (maximal) finite paths that are prefixes
of unfair infinite paths. We thus have to ensure that these paths do not interfere
with the validity of our model checking procedure. We have shown how to dis-
tinguish between maximal (finite) paths that occur in M and those introduced
by our transformation in Theorem 1. This is demonstrated by τ3 and τ4 in (b):



in τ3 we simply take the negation of the loop invariant (in this case it is false), as
it would indicate a terminating path given that no other transitions follow the
loop termination. In τ4 we instrument a self loop and add the proposition t to
eliminate all terminal states. Additionally, utilizing Term(ϕ, t) on EG x ≤ 0 al-
lows us to disregard all aforementioned marked finite paths, as we only consider
infinite paths which correspond to a fair path in the original system.

On line 33, a CTL model checker is then employed with the transition system
in (b) and the CTL formula ϕ′. We then apply tools provided by Beyene et al. [2]
and Cook et al. [10]to the transformation introduced to verify CTL for infinite-
state systems. An assertion characterizing the states in which ϕ′ holds is returned
and then further examined on lines 36 and 37, where it is discovered that this
property does not hold due to the restrictive fairness constraint applied to the
existential CTL property. The weak fairness constraint requires that infinitely
often y ≥ 1 holds, which interferes with the existential property that EG x ≤ 0.
This shows that for the existential fragment of CTL, fairness constraints restrict
the transition relations required to prove an existential property. This can be
beneficial when attempting to disprove systems and their negations.

6 Experiments
In this section we demonstrate the results of preliminary experiments with a
prototype implementation. We applied our tool to several small programs: a
classical mutual exclusion algorithm as well as code fragments drawn from device
drivers. Our implementation is based on an extension to T2 [4], [14], [10].6 As
previously discussed, there are currently no known tools supporting fair-CTL for
infinite-state systems, thus we are not able to make experimental comparisons.

Fig. 11 shows experimental evaluations of sequential Windows device drivers
(WDD) and various concurrent systems 7. WDD1 uses the fairness constraint
GF(IoCreateDevice.exit{1}) ⇒ GF(status = SUCCESS), while WDD2 and 3
utilize the same fairness constraint in relation to checking the acquisition and
release of spin locks and the entrance and exit of critical regions, respectively.
WDD4 requires a weak fairness constraint indicating that STATUS OK will hold a
value of true infinitely often, that is, whenever sockets are successfully opened,
the server will eventually return a successful status infinitely often.

Note that the initially concurrent programs are reduced to sequential pro-
grams via [7], which uses rely-guarantee reasoning to reduce multi-threaded ver-
ification to liveness. We verify the traditional Bakery algorithm, requiring that
any thread requesting access to the critical region will eventually be granted the
right to do so. The producer-consumer algorithm requires that any amount of
input data produced, must be eventually consumed. The Chain benchmark con-
sists of a chain of threads, where each thread decreases its own counter, but the
next thread in the chain can counteract, and increase the counter of the previous
thread, thus only the last thread in the chain can be be decremented uncondi-
tionally. These algorithms are verified on 2, 4, and 8 threads, respectively.

6 T2 can be acquired at http://research.microsoft.com/en-us/projects/t2/
7 Benchmarks can be found at http://heidyk.com/experiments.html



Program LOC Property FC Time(s) Result

WDD1 20 AG(BlockInits()⇒ AF UnblockInits()) Yes 14.4 X

WDD1 20 AG(BlockInits()⇒ AF UnblockInits()) No 2.1 χ

WDD2 374 AG(AcqSpinLock()⇒ AF RelSpinLock()) Yes 18.8 X

WDD2 374 AG(AcqSpinLock()⇒ AF RelSpinLock()) No 14.1 χ

WDD3 58 AF(EnCritRegion()⇒ EG ExCritRegion()) Yes 12.5 χ

WDD3 58 AF(EnCritRegion()⇒ EG ExCritRegion()) No 9.6 X

WDD4 302 AG(added socket > 0⇒ AFEG STATUS OK) Yes 30.2 X

WDD4 302 AG(added socket > 0⇒ AFEG STATUS OK) No 72.4 χ

Bakery 37 AG(Noncritical⇒ AF Critical) Yes 2.9 X

Bakery 37 AG(Noncritical⇒ AF Critical) No 16.4 χ

Prod-Cons 30 AG(pi > 0⇒ AF qi <= 0) Yes 18.5 X

Prod-Cons 30 AG(pi > 0⇒ AF qi <= 0) No 5.5 χ

Chain 48 AG(x ≥ 8⇒ AF x = 0) Yes 1.8 X

Chain 48 AG(x ≥ 8⇒ AF x = 0) No 4.7 χ

Fig. 11. Experimental evaluations of infinite-state programs such as Windows device
drivers (WDD) and concurrent systems, which were reduced to non-deterministic se-
quential programs via [7]. Each program is tested for both the success of a branching-
time liveness property with a fairness constraint and its failure due to a lack of fairness.
A X represents the existence of a validity proof, while χ represents the existence of a
counterexample. We denote the lines of code in our program by LOC and the fairness
constraint by FC. There exist no competing tools available for comparison.

For the the existential fragment of CTL, fairness constraints can often restrict
the transition relations required to prove an existential property, as demon-
strated by WDD3. For universal CTL properties, fairness policies can assist in
enforcing properties to hold that previously did not. Thus, our tool allows us to
both prove and disprove the negation of each of the properties.

7 Discussion
We have described the first-known fair-CTL model checking technique for integer
based infinite-state programs. Our approach is based on a reduction to existing
techniques for fairness-free CTL model checking. The reduction relies on utilizing
prophecy variables to introduce additional information into the state-space of the
program under consideration. This allows fairness-free CTL proving techniques
to reason only about fair executions. Our implementation seamlessly builds upon
existing CTL proving techniques, resulting in experiments which demonstrate
the practical viability of our approach.

Furthermore, our technique allows us to bridge between linear-time (LTL)
and branching-time (CTL) reasoning. Not only so, but a seamless integration be-
tween LTL and CTL reasoning may make way for further extensions supporting
CTL* verification of infinite-state programs [16]. We hope to further examine
both the viability and practicality of such an extension.

We include the definition of fair-CTL considering only infinite paths and show
how to change transition systems to use either definition in our technical report
which can be acquired at [9]. Additionally, we show how to modify the proof
system to incorporate an alternative approach to CTL verification advocated by
Cook & Koskinen [12].
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