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Abstract

A Bayesian Approach to the Study of
Dark Matter in Disk Galaxies

by
Peter R. Hague

Studies of the rotation of disk galaxies have long been used to infer the presence and
distribution of dark matter within them. Here I present a new Markov Chain Monte Carlo
(MCMC) method to explore the extensive and complex parameter space created by the
possible combinations of dark and luminous matter in these galaxies. I present exhaustive
testing of this method to ensure it can retrieve dark matter halo parameters from artificial
data, and apply it to real galaxies from The HI Nearby Galaxy Survey (THINGS) and
other sources. The results of these studies can shed some light on how disk galaxies form
and evolve.

Chapters 1 and 2 provide background for the physics and statistical methods respec-
tively. Chapter 3 shows the testing of the MCMC method on artificial data, and applies it
to DDO 154 to find a more robust constraint on the inner log slope than previous meth-
ods. Chapter 4 applies this method to a broad range of galaxies taken from the THINGS
survey, constrains their physical properties, and presents a simple model of feedback to
compare with. Chapter 5 applies the method to M33, mapping a degeneracy between the
log slope of the dark matter halo and the mass-to-light ratio, that excludes the combination
of a cored halo and a light stellar disk. Chapter 6 extends the MCMC method to an earlier
stage of analysis by marginalising over the parameter space of possible disk models for
simulated galaxies. Chapter 7 presents conclusions and discusses future work that can
lead on from this thesis.
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Introduction 1.1. Background

The Milky Way is the largest structure visible in the night sky in terms of angular size,
and its presence clearly indicates that, rather than being isotropically distributed, stars in
the night sky are concentrated in a plane. Inferring a three dimensional structure from this
anisotropy was first attempted by William Herschel, and later using more modern methods
by Kapteyn| (1922). Around the same time, thanks to the observations of Edwin Hubble,
it became apparent that some of the patches of diffuse light known to astronomers as
nebulae were in fact similar galaxies external to our own. We now have an understanding
of the shape of our own galaxy, that of other galaxies, and the continuum of shapes they
occupy. Galaxies consist of gas, populations of stars, and dark matter, and vary in size
from 10° M, to over 10'? M.,

Galaxies are a product of the largest scale processes in the Universe, tracing their
origin to density perturbations that can be observed in the cosmic microwave background
(Spergel et al., 2003). The potential wells of their dark matter haloes increase the density
of gas within them, and thus dictate the formation of stars and then planets at the smallest
scales in astrophysics. This makes them of central importance to many astrophysical
phenomena.

Dark matter is responsible for most of the total galactic potential, so must be studied in
order to understand the dynamics of galaxies, which in turn is critical to the understanding
all other aspects of galactic astrophysics which are ultimately driven by gravity and its
interplay with gas physics.

Models of how dark matter is distributed in observed galaxies constrain predictive
models of galaxy formation. The potential wells created by dark matter haloes provide the
energy for baryon physics, but in turn baryonic phenomena can have a dynamical impact
disproportionate to their length and mass scales through processes known as “feedback”.
Active galactic nuclei (AGN), supernovae and bright stars are covered by the term, as they
are all able to disturb large quantities of gas through their radiation output, which in turn

alters the dynamics of the galaxy.

1.1 Background

Mass in the universe can be detected either by the radiation it emits or reflects, or by its
gravitational effect. Beginning with the prediction of the planet Neptune, based on the
inability to explain the orbit of Uranus using only the gravity of visible objects, the study
of gravity has repeatedly implied more mass than can be accounted for by visible objects.

Study of this discrepancy continues to be vital in astrophysics, and is complicated by the
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fact that neither studying mass via the radiation of sources nor via their motion measures
mass directly; modelling of sources is required to infer mass from radiation and modelling
of the dynamics of the system is required to detect mass by its gravitational effects.

Oort (1932) measured the vertical velocities and accelerations of Milky Way disk
stars, and from this calculated the vertical density profile of the galaxy. This indicated
dark matter in excess of that which is present in stars - but it was not a surprising result.
In the original sense, the phrase “dark matter” did not have any connotations of being
different from ordinary baryonic matter, it simply contrasted with luminous matter (i.e.
stars) that could be observed at the time.

What is now understood as dark matter was first proposed by Zwicky| (1937) in the
1930s to explain the substantial discrepancy between the mass measurements of the Coma
cluster derived through stellar population modelling and through dynamics. Zwicky used

the scalar virial theorem

U=-2T (1.1)

where U is the total potential energy of all particles in the system (at the time also
referred to as the virial) and 7 is their total kinetic energy, with the particles in this case
being the galaxies of the Coma cluster. By assuming a uniform distribution of mass, he

was able to express this

3GM?
= Y (12)

where M is the total mass of the cluster, R is its radius, m,, is the mass of a particular
galaxy and v, its velocity averaged over time. This gives
M= 5R <v* > (13)
3G
Where < v? > is the average squared velocity of each galaxy. Zwicky assumed an
isotropic velocity distribution, and so < v* >= 3 < vi > and from this estimated the
average mass of each galaxy at M = 4.5 x 10'° M. This contrasted with the estimated
average luminosity of the galaxies of L = 8.5 x 107 Lo, which he interpreted as a mass-to-
light ratio for the members of the coma cluster of ~ 500. This was the first indication of
substantial dark matter in astronomical systems, but did not immediately generate much
impact.
Within external disk galaxies, dark matter is studied by the analysis of rotation curves.

If we assume the baryonic disk of a galaxy can be approximated as a series of concentric
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rings of particles on circular orbits of velocity v, at radius r; in an axisymmetric potential,
Equation[I.T|can be written

Z $(r) = - Z ve(r)? (1.4)

where ¢(r,) is the gravitational potential at a particular radius, and the total mass
of the system is cancelled from both sides. The gas component of a galaxy technically
breaks the assumption of the matter being dissipationless, however in a mature galaxy
the gas is arranged in the energetically minimal configuration of a thin disk, and as such
we can assume it approximately conserves energy and is on non-crossing orbits. Given
that the radii r; are non-overlapping, so that relocating one of the circles would change
only the corresponding potential and kinetic energy terms, this equation can be separated
simply. In the plane of an axisymmetric potential, at a particular radius, the potential can
be produced by a Keplerian potential which we can express in terms of an effective mass
Mg

GM.¢

1

ve(ri)? = —¢(r)) = (1.5)

which can also be obtained directly by equating the gravitational force of a mass Mg
with the force required to keep an object moving in a circle radius r; at speed v.. It is
useful to consider it in terms of energy though, as the components of disk galaxies do not
all have a spherical geometry.

If we wish to decompose the potential of a disk galaxy into various baryonic com-
ponents and a dark matter halo, we are helped that the above discussion applies to any
axisymmetric potential - disks, bulges and haloes alike. Because the total potential is just

the sum of the potentials of each component

b= D> m(n) (1.6)

m=disk,bulge,halo

or in terms of circular velocity

VAR = ) V() (1.7)

m
where in both cases the index m denotes the different components. By proposing a
velocity contribution due to a dark matter halo potential, we can add the velocity contri-

bution due to the various baryonic components (stars, atomic gas, etc.) in quadrature and
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produce a prediction for the overall rotation velocity of the galaxy as a function of ra-
dius, which can then be compared to observations. This is the general method of studying
rotation curves, but is subject to various practical considerations which I will now discuss.

The study of dark matter by the decomposition of rotation curves began with Rubin
and Ford (1970) who studied the rotation of M31 measured by the relative doppler shift
of the HI line across the galaxy. This line is a hyperfine emission line produced by neutral
atomic hydrogen, where the electron transitions from a parallel spin to an anti-parallel
spin (Binney and Merrifield, 1998, §8.1). M31 was chosen for its very large angular di-
ameter; its distance was estimated by Freedman and Madore|(1990) through the use of the
luminosity/period relation for Cepheid variables 770 + 36 kpc (later work using alternate
methods has produced values within 1o of this, see McConnachie et al., [2005), meaning
that an arcsecond corresponds to about 4 parsecs. Despite the excellent resolution, M31
does not have an ideal rotation curve for analysis for a number of reasons. Due to the fact
that the M31 system has a line of sight velocity v o5 = =301 %1 kms™! (van der Marel and
Guhathakurta, 2008) and the flat part of its rotation curve is at v, ~ 250 kms™! (Carignan
et al., 2006) the receding side of the galaxy is subject to foreground contamination from
atomic gas in the Milky Way (Cram et al., [1980). The central region of M31 < 6 kpc is
lacking in HI emission (Sofue and Kato, |1981), and as Figure 2 of Carignan et al.| (2006))
shows the rotation curve is essentially flat outside this point precluding any study of its
shape. Other emission lines are not able to give the circular velocity as the stellar emission
in the area of interest is dominated by the bulge (Widrow et al., 2003) and the molecular
gas there shows complex non-circular motions (Stark and Binney, |1994)).

In later work, |Bosma/ (1981)), was able to exploit higher resolution and better sensitiv-
ity to study galaxies with smaller angular diameters, and was able to measure the rotation
curve to a radius 2-2.5 times the Holmberg radius (the radius of the 26.5 mag arcsec™>
isophote in the B band) which can be taken to define the outer edge of the visible stellar
disk and thus the limit of the continuous contribution of stars to the rotation curve. This
demonstrated the advantage of using the rotation of HI; the neutral gas disk of a galaxy
extends to much greater distances than its stellar component, and has a smaller overall
contribution to the enclosed mass at each point. Thus it allows the rotation to be studied
at radii where baryons are a very marginal contribution to the gravitational potential, and
the presence of dark matter is most apparent. Furthermore, HI emission is not absorbed by
dust, and the atomic gas clouds are optically thin (Walter et al., 2008)), allowing a straight
conversion of flux to mass in each beam.

As the results from rotation curve analysis were beginning to suggest the presence of
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dark matter within galaxies, an alternative explanation for the shape of rotation curves
was proposed. Milgrom (1983)) proposed that either gravity or inertia behaved differently
below a certain acceleration ag, such that F = um(a/ag)a, and that this would allow the
fitting of rotation curves with only the visible mass. This was proposed purely to fit the
observed data of galaxy rotation curves, and cannot explain galaxy clusters without the
presence of some dark matter in the form of massive neutrinos (Sanders, [2003). Given
this, and the cosmological evidence for dark matter given below, I will not be considering
modified gravity further in this thesis.

Results from large scale cosmology also point to the existence of dark matter, and im-
ply that it is non-baryonic in nature. The results from the WMAP (Wilkinson Microwave
Anisotropy Probe) satellite presented in Spergel et al. (2003) provided compelling evi-
dence that the baryon density €, is roughly 17% of the matter density €),, indicating
that the overwhelming majority of the matter in the Universe is not baryonic. These two
densities, and the other parameters of the ACDM model, are constrained by the acoustic
peaks of the cosmic microwave background. A denser baryon fluid responds more slowly
to the radiation pressure that acts against gravity as it falls into a potential well, and thus
the maximum compression of oscillations in the early universe is larger if the baryon
fraction is larger, whilst the maximum rarefaction remains them same. This manifests
observationally as a difference between the magnitudes of odd numbered acoustic peaks
in the CMB (representing the case where the oscillation was near maximum compression
at the last scattering time) and the even numbered peaks (where the oscillation was near
maximum rarefaction at this time). The baryonic density is also constrained by the cos-
mic deuterium abundance (about 107> relative to hydrogen from e.g. Burles et al., 2000),
as the rate of nuclear reactions during the epoch of nucleosynthesis is determined by the
baryon density (Gamow, |1946), and a high rate would see more deuterium converted to
helium-4 thus reducing the deuterium abundance. This relation was shown numerically
by Wagoner| (1973). The deuterium abundance was fixed within minutes of the Big Bang,
whereas the properties of the CMB are observed at ~400,000 years after the Big Bang, so
the agreement of these results makes a strong case that the majority of matter in the uni-
verse is non-baryonic (Spergel et al., [2003). Constraints on the densities Q,h* and Q,,h*
have been more recently confirmed and refined by the results from the Planck satellite
(Planck Collaboration 201 3)).

The distance and velocity of M31 relative to the Milky Way provide an additional
test of dark matter in the Local Group. The expansion of the Universe will make all

galaxies tend to recede, and so in order for M31 and the Milky Way to be moving towards
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one another, their mutual attraction must reduce the distance between them more than
the expansion of space increases it. This calculation was first done by [Kahn and Waltjer
(1959), who found a considerably larger mass than expected in the Local Group. To find
a minimum mass they considered the two galaxies to be in a Keplerian orbit around their
common centre of mass, with a period roughly equal to the Hubble time so that M31 is

on its first infall, and applied Kepler’s third law assuming no angular momentum
4n*

= ——a
GM

where T = 1.5 x 10'° years, M is the total mass of the local group and G is the

T? (1.8)

gravitational constant. This equation yields a, the semi-major axis of the assumed orbit.
This represents the maximal separation of M31 and the Milky Way, at which they will
have no relative radial motion. Thus a comparison of the conserved energy of the system
at that point to the current state
Gu_ou_p, 09
where D, and E are the present separation and kinetic energy per unit mass, uniquely
constrains the total mass. Kahn and Waltjer|(1959) found M > 1.8 x 10'>M,, using values
for Dy and E that are of the same order as current estimates.
A recent 3D model of the local group (van der Marel et al., 2012), combining proper
motions with the radial velocities already available for the main Local Group members
(including M33), has constrained the mass of the Local Group to be (3.17+0.57)x10'2 M,

in agreement with values estimated by the timing argument.

1.1.1 Luminous matter
1.1.1.1 Mass

Determining the amount of dark matter present in a system requires determining the total
mass present along with the total luminous mass present. In Zwicky’s study of the coma
cluster galaxies, the luminous matter was stars, but it is now possible to account for atomic
hydrogen, molecular hydrogen (by observing more accessible transitions in CO molecules
and applying a factor Xco - see below) and dust. A contemporary example of this kind of
mass decomposition can be found in Corbell1 et al. (2014)).

Much of the baryonic matter in galaxies is locked up in stars. The only data we have on

stars at extragalactic distances is their emissions, so a means to convert the luminosity of
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a stellar population into a mass is required in order to perform a rotation curve analysis.
This conversion can be expressed as a mass-to-light ratio in a specific band, e.g. V3¢
would be the number of solar masses per solar luminosity in the Spitzer 3.6 um band.

The stellar mass-to-light ratio is found to correlate with colour (Bell and de Jong,
2001), although it is subject to uncertainty due to the parameters of the stellar popula-
tion and evolution models, and observational issues such as dust reddening. The relation
between colour and stellar mass is a consequence of both the initial mass function (IMF)
and evolutionary history of stellar populations. The IMF gives the number of stars formed
of a given stellar mass in a single star formation event i.e. a single giant molecular cloud
collapsing under gravity and fragmenting due to Jeans instability. The simulated evolu-
tion of a population selected from this function predicts the colour of stellar populations.
A typical IMF is a power law such as N(M) = No(M/My)~>* (Salpeter, 1955) where N,
is a constant representing the scale of the star formation. Observational constraints on
this law are more difficult at the low mass (and thus low luminosity) end, and so there
are competing values for the slope of the power law below 1M, such as the proposal
by Kroupal (2001) which uses a piecewise power law IMF (M/M)™®, having exponents
a=03=+0.7,1.8+0.5,2.7 +0.3 at stellar masses (M/M,) < 0.08,0.50, 1.00, and being
compatible with the Salpeter IMF beyond that.

Atomic hydrogen is the simplest baryonic component of the galaxy to model due to
the directness of HI observation, and the fact that it extends further than other components.
This means that its velocity, rather than the velocity of the stellar component, is used in
the construction of modern rotation curves.

Molecular hydrogen cannot be observed directly as the symmetrical molecule has
no dipole, and generally occurs in clouds too cool to excite other modes, and so carbon
monoxide is used a tracer of molecular gas (Leroy et al.,|2009). A conversion factor Xcq 1s
then applied. This relation between molecular hydrogen and CO has some uncertainty, as
it is derived from Milky Way observations of molecular clouds with known mass (Dame
et al., 2001), which is assumed to be universal. Xco can be calibrated by studying the
width of the CO line for spatially resolved molecular clouds (Solomon et al., 1987). The
line width gives the velocity dispersion, and the size of the cloud is calculated from the

distance and the size of the cloud on the sky.

S = Dtan(+o0) (1.10)

Where S is the size parameter, D is the distance and o and o, are the variances (i.e.

the angular size of the emission) in Galactic longitude and latitude. This allows the total
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mass of the cloud to be computed via the virial theorem, in a manner not dissimilar to the
method described in §1.1.

S 2
M =3f, " (1.11)

Where o, is the line-of-sight velocity dispersion and f, = 2.9 is the projection fac-
tor, the ratio between o, and the total squared velocity dispersion. This formula allows
dynamical masses of resolved molecular clouds to be computed, which can then be com-
pared to the luminosity of CO emission to determine Xco.

The stellar mass-to-light ratio is the main uncertainty in the amount of luminous matter
present in a galaxy, as the atomic gas is optically thin and the molecular gas is generally
a lower mass component than both stars and atomic gas in nearby galaxies; |Leroy et al.
(2009)) found that for the HERACLES galaxies (48 nearby galaxies, overlapping with the
THINGS galaxies) the largest H,-to-stellar mass ratio was 0.25, and only one galaxy had

a H,-to-HI ratio greater than 1, integrated over the optical disk.

1.1.1.2 Non-circular Motions

When constructing a one dimensional rotation curve, it is generally assumed that the
non-circular motions of a galaxy will be outweighed by the overall circular motion. Non-
circular motion formally has two components - radial and vertical - but the vertical com-
ponent is typically small (<10km/s in jvan der Kruit, P. C. and Shostak, |1982; |Andersen
et al., 2006) in HI disks due to the cooling of the gas, and so when studying HI rotation
curves non-circular motion is generally taken to be radial. Random, symmetric devia-
tions from circular motion are not especially problematic, as they will just be reflected
in larger error bars. Systematic deviations may change the apparent circular velocity and
thus the result of any analysis. Systematic deviations can be caused by asymmetric drift,
azimuthal variation within the disk such as spiral arms, or by triaxiality of the dark matter
halo (Schoenmakers et al., [1997).

The assumption of generally circular motion was found to hold for the THINGS galax-
ies by Trachternach et al.| (2008), who performed a harmonic decomposition of the veloc-
ity fields in the survey, using a tilted ring model to subtract the circular motion compo-
nent. The amplitudes of the remaining components, added in quadrature, were found to

be 4.5 + 2.9% of the maximum rotation velocity of the galaxies.
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1.1.2 Dark Matter Haloes in Galaxies

While the ubiquity of dark matter haloes around galaxies is by now well established,
observational determinations of the density profiles of galactic dark matter haloes have
been, and remain, controversial. |[Flores and Primack| (1994) used gravitational lensing
and rotation curve analysis to argue against cusped haloes with p(r) ~ r~! and p(r) ~ r2,
which were being predicted by N-body simulations of cosmological structure formation
at that time (e.g. [Dubinski and Carlberg, 1991, who found that the r~! profile proposed
by Hernquist|(1990) best fit the haloes they obtained). During the 1990s, dark matter-only
cosmological simulations continued to suggest that a universal, cusped dark matter den-
sity profile, independent of halo mass, should be the outcome of the hierarchical formation

scenario for galaxy haloes (Navarro et al., 1996, hereafter NFW):

p(r) Oc
Perit B (r/rs)(l + r/rs)2

where p.; 1S the critical density of the Universe, ry is a scale radius equal to ryp/c

(1.12)

with ry being the virial radius and ¢ being a concentration parameter that is only the
free parameter in the model. J. is a dimensionless parameter related to the concentra-
tion parameter by 6. = (200/3)(c*/[In(1 + ¢) — ¢/(1 + ¢)]). Burkert (1995) proposed a
cored profile - one with a uniform density interior to a finite core radius - based on the

observations made at the time (e.g. Moore, |1994; Flores and Primack, [1994);

(1.13)

where pg and r( are a density scale and a scale radius. As with the NFW profile, this
tends towards a log slope dlogp/dlogr = —3 at large radii. Given the resolution of the
simulations which led to the NFW profile being proposed, and the fact they only included
dark matter, it is reasonable to expect the profile to be most accurate at large radii where
the potential is dominated by dark matter. The apparent disparity between the results of
cosmological simulations and observations of real galaxies became known as the “cusp-
core controversy’’.

Early work to resolve this controversy focused on low surface brightness (LSB) galax-
ies, on the basis that the stellar contribution could be ignored entirely in a first-order
model. In van den Bosch and Swaters| (2001) it was claimed that it was impossible to
differentiate between flat cores and r~! cusps using the data available at the time. They

cited the insufficient radial range of the data, and the problem of beam smearing. Beam
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smearing of HI rotation curve data is caused by the fact that each beam is larger than the
scale over which the rotation speed changes. This, and several other observational issues
that could lead to the false inference of cored haloes in galaxies which actually contained
dark matter cusps, were investigated and discounted by de Blok et al. (2003). Deriving
mass profiles from rotation curves without baryonic mass modelling, for a set of dark
matter dominated galaxies, they also found that the outer regions of their sample galaxies
were consistent with density profiles p ~ r~2 while the inner regions required power laws
which were typically shallower than p ~ 02,

Bosmal (2003) claimed to rule out ~! cusps at the 3-sigma confidence level for 17
galaxies (from a sample of 28) and, on this basis, stated that the slopes predicted by
CDM models were not observed. He demonstrated that the position of the slit used at the
time to observe rotation curves could not have been a factor in this result, by deliberately
offsetting the slit and observing the effect on the measured rotation curve. Gentile et al.
(2004) subsequently found that, when compared to the rotation curves of five nearby
galaxies along with a baryonic mass model, the cored Burkert profile produced fewer
discrepant data points (> 20°) than the cusped Navarro-Frenk-White (NFW) in all cases.
It should be noted that the exclusion of cusps in present-day galaxies is not synonymous
with invalidating the ACDM paradigm, as baryonic effects could alter the haloes over

time.

1.2 Galaxy Formation

Early galaxy formation is dominated by gravity and thus by dark matter. This is why
hydrodynamics is not thought to be a major factor in large scale structure formation.
Only when dark matter haloes form, and the in-falling baryons become dense, does hy-
drodynamics become critical. My work is concerned with disk galaxies, which are dis-
tinguished by their comparatively high angular momenta and gas content compared to
elliptical galaxies.

Gas is able to form disks due to the fact it can radiate energy. For a given angular
momentum, a disk is the configuration with the least energy, and therefore the state to-
wards which radiating gas tends. This can also be understood in terms of momentum.
Consider a spinning halo of gas in a co-rotating cylindrical coordinate system which is
coaxial with the net angular momentum. Each particular particle with momentum in the z
direction p,, can be uniquely partnered with another particle (or combination of particles)

with momentum —p,. Such symmetry does not exist in L, because there is net rotation in
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the gas. Thus given a sufficient number of particle collisions (such that momentum can
be transferred anywhere) there is no lower limit to the total magnitude of vertical motion
Y|p,| but angular momentum L, must be retained, which describes a tendency towards an
infinitely thin disk. This flattening increases the density of gas, leading to star formation,
which accounts for why the majority of stars in such galaxies occur in the disk rather than
the halo.

Feedback sources can alter the distribution of baryons in a galaxy, thereby altering the
potential, and this can then impact the distribution of dark matter. This can be demon-
strated through simulation, but in many cases it is useful to investigate galaxies using
simpler approximate models. For example King (2003) was able to demonstrate how tran-
sitions from momentum-driven to energy-driven outflows from AGN are able to account
for the M — o relation (the empirical relation between central black hole mass and veloc-
ity dispersion of a galactic bulge) through a simple spherically symmetric model. More
complex numerical models (e.g. Zubovas and Nayakshin, 2014; |Bourne et al., [2014) dif-
fer on small scales, but do not contradict the overall result. A mechanism by which matter
can be removed from the centres of dark matter haloes to transform cusps into cores was
discussed both through an analytical model and through simulations by |Pontzen and Gov-
ernato| (2012), and another analytical model that transfers energy from oscillating baryons
to those dark matter particles in resonance with the oscillation is proposed in (Ogiya and
Mori| (2012)).

Feedback from supernovae can, in galaxies with low mass, expel gas from a galaxy
entirely and thus reduce the amount available for future star formation (Dekel and Silk,
1986). In higher mass disk galaxies, supernova feedback generates turbulence which
leads to further star formation (Kim et al., 2011). In this model, the energy imparted
into the interstellar medium by supernovae causes the gas disk to expand and become
turbulent, and then as it cools more star formation occurs. A steady star formation rate
is established when the rate at which energy is imparted matches the cooling rate. AGN
feedback events are more powerful and can expel gas, entirely suppressing star formation
as supernovae do in smaller galaxies (leading to the M — o relation described above), but
they can also trigger star formation through compression of gas clouds too dense to be
removed (Zubovas et al., [2013)).

An approach to understanding these issues must bring together observational tech-

niques and simulations, and attempt to find common agreement between them.
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1.3 Observational Data

HI observations are now at the stage of being able to resolve galaxies at a resolution of
~ 100 pc out to distances substantially greater than the extent of the stellar disk. In surveys
such as THINGS (Walter et al., [2008)), a grid of beams produces not only an image of the
galaxy in HI, but a velocity profile in each beam based on the doppler shift of the emission
line. These data are referred to as a velocity field. Hermite polynomials can be fitted to
the HI spectrum of each beam, producing a series of 2D moment maps, which can then

be used as input for a tilted ring model (detailed below).

1.3.1 Tilted Ring Modelling

The tilted ring model is a standard way of producing one-dimensional rotation curves of
disk galaxies. It involves fitting concentric rings to a velocity field, and adjusting the
parameters of these rings (an inclination and an azimuth) until the circular velocities they
predict match the data well. The procedure is outlined in Begeman| (1989).

This method assumes that the dominant velocity present in the galaxy is circular, and
that any non circular motion is to be treated as noise to be removed by averaging over
all azimuths. In other words, only that matter moving on or close to a circular orbit is
considered useful as a tracer of the galactic potential. Each ring/bin of the model can be
considered one of these circular orbits. This is the correct approach if a one dimensional
rotation curve is required.

One current issue with rotation curves calculated through this method, as shown in
papers such as Chemin et al. (2011)), is that a number of quite different profiles all appear
to provide fits with low sze 4 Values. This is a combination of two issues that are not well
addressed in rotation curve studies at this time. First, the geometry of a disk galaxy limits
greatly the possible rotation curves that can exist, and so an apparent good fit in the r
versus v, plane may be not be as significant as it appears. Figure shows the rotation

curves of two sample @ — 8 — y profiles:

1
(1 + xl/@)a6=y)

p(x) o

(1.14)

where x = r/r; is a scaled radius and «a, B, and y are shape parameters. In one case
(a,B,v) = (1,3,0) and in the other (@, ,y) = (1,3, 1) - equivalent to an NFW halo. Both
examples have a maximum velocity of 100km/s and a scale radius of r; = 4 kpc. Despite

being analytically very different solutions, both of these extremes occupy a fraction of
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the plane, and all haloes with inner log slopes between these two values would lie in this
band.

Secondly, the rotation curves do not satisfy the assumptions behind y? - specifically
it is not clear that either the data points are independent, or that the reported errors are
accurate and Gaussian.

These problems can be clearly illustrated by considering how a rotation velocity is
calculated. Considering the outer region of the galaxy, where the majority of the potential
is due to a spherically symmetric dark matter halo, we can state

@“zgg (1.15)

and

» _ GIM+AM)
o2 = TG A

Where v, ; and v, are any two data points in the outer region, M and r are the enclosed

(1.16)

mass and radius at the first point, Ar is the difference in radius between the two points and
AM 1is the mass of the shell of dark matter between the two bins. By substituting for the
gravitational constant G in Equation[I.16|we can work out what fraction of mass enclosed

at r + Ar is in the shell between r and r + Ar, obtaining

M VC,Q

AM v, A
-———VJ(+ ﬂ—l (1.17)

,

Assuming that this part of the rotation curve is not steeply rising, we can say the
relative increase in enclosed mass AM/M is approximately equal to the relative increase
in radius between the two data points Ar/r. It is thus obvious for most good rotation
curves that the great majority of the mass enclosed at a particular radial bin is enclosed at
bins interior to it. By this argument any curve that minimises the error in velocity at radial
bin n will also be closer to minimising the error at bin n+ 1 than an independently selected
velocity curve would be - the interior data point essentially acting as a prior. However the
contribution to the y? at this new point will still be counted as if it were an independent
bin in most analyses, which is statistically incorrect.

A further complication is the method by which the errors are derived using the tilted
ring method. Reported errors on rotation curves derived using this method are based on
the distribution of azimuthal velocity (the difference between the median values on the
approaching and receding sides of the galaxy in the case of |de Blok et al., [2008). This

contains the implicit assumption that all deviations from the circular velocity around a
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Figure 1.1: Modified NFW halo rotation curves with y = 0 (lower curve) and y = 1 upper

curve. Both profiles have maximum velocity vy,.x = 100 km/s and scale radius r; = 4 kpc.
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particular ring are due to random motions that are separable from the overall circular
motion through the epicycle approximation. In reality, non-circular motions may be sys-
tematic if there is significant asymmetric drift or the potential is asymmetric. The tilted
ring model provides a good estimate of the rotation curve under the assumption of circu-
lar motion, but calculating a y* value of the resultant rotation curve and its errors reifies
this assumption, and produces a misleading estimate of the precision of the rotation curve
determination.

To extend meaningfully beyond the tilted ring model, the assumption of pure circu-
lar motion must be abandoned. This immediately leads to the problem that, without a
constraint on the inclination at the point a beam intersects the galaxy, circular velocity
is degenerate with the tangental velocity, radial velocity, and total velocity. Furthermore,
there is no longer a simple way to translate the speed of the matter in each beam to the
potential of the galaxy.

Despite these limitations, the tilted ring model is a good enough approximation of the
kinematics of a galaxy to use for the purposes of finding a radial density profile, and the
errors are only problematic if they are interpreted incorrectly. By taking all points along a
projected circle to be kinematically equivalent, the tilted ring model gives a (constrained)
three dimensional velocity structure by viewing ostensibly identical points in the galaxy
from different angles relative to their azimuth. Any attempt to extract more than line-of-
sight velocity information from galaxy images must rest on assumptions (except in the
case where a galaxy is close enough to provide proper motions) and the assumptions of

the tilted ring model produce reasonable estimates of circular velocity.

1.4 Hydrodynamical simulation

As was mentioned earler, in order to bring simulation into closer agreement with obser-
vation, modelling of the hydrodynamics of galaxy formation is required. The profile of
a galactic halo results from the interplay between a number of factors including the in-
trinsic physical properties of dark matter, the re-distribution of baryonic material by gas
cooling, supernovae or AGN feedback, and its history of major or minor mergers with
other galaxies (see e.g. Read and Gilmore, 2005; Maccio et al., 2011; Governato et al.,
2012, for recent simulations of these processes at work on galaxy scales). Cored haloes
may originally have had cusps - observations of the present day profiles constrain the
end-state of galaxy formation, rather than the initial conditions. Because many baryonic

phenomena occur at far smaller scales than the galaxies that they can radically impact, it
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is not possible to directly simulate galaxies with enough resolution to produce analogues
of real galaxies. In the case of black hole feedback, the radius of influence r; of a central

black hole is given (Binney and Tremaine, 2008, p. 352) by

1= 11(Mgu/10® My)(00s/200kms™ )% pc (1.18)

where Mgy is the black hole mass and o s is the line-of-sight velocity dispersion of
the galactic bulge. A sample of galaxies from Giiltekin et al.| (2009) shows a maximum

' which would give, for a 108 M, black hole, a radius of influence

Oros = 400kms™
r = 16pc. This gives a characteristic timescale of ~ 107 years, far shorter than the
timescales at which even individual galaxies must be simulated. Likewise, to simulate
stellar feedback completely would require the simulation of all star formation and thus
of individual stars (even of those stars with too little mass to contribute to feedback).
A small cosmological starting point of a 10 Mpc side cube, at the critical density p.,

! would have a mass of ~ 10" M.

assuming a Hubble constant H = 70kms™'Mpc~
Thus to have enough particles to simulate individual stars would require the calculation
of ~ 10?® mutual forces, which is intractable even with simplifying algorithms. Some
prescription of sub-resolution physics must therefore be introduced in order to overcome
these problems.

This has been attempted in work such as |(Governato et al.| (2007) and more recently
in Illustris (Vogelsberger et al.,|2014) and EAGLE (Evolution and Assembly of Galaxies
and their Environments, Schaye et al., 2014). In both cases, the sub-grid model used is
calibrated to produce a population of galaxies consistent with observed empirical rela-
tionships, such as those between stellar luminosity and dynamical mass (Trujillo-Gomez
et al., 2011). Whilst successful, this process intentionally ignores the dynamics of the
inner parts of the galaxy because they are far less clearly constrained and thus less able to

provide a clear relationship across galaxies for comparison with simulations.

1.5 QOutline of thesis

My work is a study of the kinematics of nearby galaxies, in order to determine the mass
distribution of dark matter in these galaxies. From this it is possible to make inferences
about the histories of these galaxies.

A starting point for my kinematic studies of dark matter in nearby galaxies was to
produce a more generalised version of the previous one-dimensional work that has been

done in this field. The current method (used for example in de Blok et al., 2008) applies
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tilted rings to a velocity field, and then calculates the x* values for various baryonic mass
model/halo profile combinations. I have used Markov Chain Monte Carlo (MCMC), a
Bayesian method that produces more informative results when applied to rotation curve
modelling than maximum likelihood fitting. This thesis presents my work as follows:

Chapter 2 is a general discussion of Markov Chain Monte Carlo, and some specific
issues that have arisen through this application of it.

Chapter 3 is a published paper (Hague and Wilkinson, |2013) that tested the MCMC
method of constraining dark matter halo parameters against artificial rotation curves.

Chapter 4 is based on Hague and Wilkinson| (2014) and applies the above method to
a selection of galaxies from the THINGS survey, and also attempts to relate the result to
feedback models.

Chapter 5 is based on Hague and Wilkinson| (2015) and covers the particular case of
M33, and some previous claims that have been made about this galaxy.

Chapter 6 is an as yet unpublished project which uses my new MCMC code Rainfal 1MCMC
and extends the scope of the MCMC method to the process of extracting circular motion
from galaxies by constraining parameters of a disk model.

Chapter 7 presents general conclusions and suggestions for future work.

18
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Markov Chain Monte Carlo 2.1. Monte Carlo Sampling

Here I provide a brief overview of Markov Chain Monte Carlo (MCMC) and its utility
over earlier Monte Carlo methods. I also discuss the specific codes used in this thesis to
implement MCMC.

2.1 Monte Carlo Sampling

Monte Carlo methods are united by the concept of random sampling of a parameter space,
rather than doing so uniformly. Given a parameter vector X, and wanting to find the
posterior probability function P(x), a discrete set of samples X, Xy, ... is used to estimate
the function. Monte Carlo methods are differentiated by their sampling techniques, and
the means by which the sample is used to estimate P(x).

Monte Carlo methods estimate a function randomly sampled N times in a volume of

parameter space as

fde:V<f>4_-V\/<f2>;]<f>2 2.1)

where f is the function of interest, and N is the number of sampled points in that
parameter space (Press et al., 2007, §7.7). For a large parameter space with many dimen-

sions, this can require a prohibitively large number of samples.

2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) improves on this approach in that the samples are
generated by a Markov chain, a sequence where each element x; depends on the previous
element x;_;.

The aim is to produce a list of points in parameter space Xj, X, ... such that the number

of points in any volume V is proportional to the likelihood of the function being evaluated

fie.

Ny f fdv (2.2)
\

A method of doing this is explained in |Hastings (1970). If the points in the chain are
distributed according to a non-normalised probability density function 7 = Af where A
is an unknown normalising constant, then there exists a transition function p(a, b) (the

probability of moving from point a to point b) such that
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D pla, byr(a) = n(b) (2.3)

and if the Markov chain obeys this transition function (which is straightforward enough
to do by appropriately designing the function of x,,_; which selects x,,) then a new point
added to the end of the chain will also follow the probability density function 7. This is
the equilibrium state for the chain - if the models follow the distribution 7 then all subse-
quent models will also. If a Markov chain is allowed to explore a parameter space for long
enough in such a way that all points can be reached, then after a long enough time it will
find this state. In practice, “long enough” is a manageable number of models (~ 100, 000
is sufficient in the cases explored here) when an appropriate point selection function is
used.

The particular version of MCMC described in Hastings| (1970) (generalising the work
of Metropolis and Rosenbluth (1953)) is known as the Metropolis-Hastings algorithm,
where each parameter vector Xx; is selected from a Gaussian distribution centred on x;_; .
The purpose of this is to evaluate Bayes’ theorem for any volume within parameter space

p(yp) = 22 'A;(Vl))l)) (M) (2.4)

Where D represents the data being evaluated and My the set of models within volume

V. We want to know what the probability of a model being true is, given the data available
(the posterior probability P(Mvy|D)). Bayes’ theorem allows us to derive this from the
probability of the model producing the data (the likelihood P(D|Mv)) and the probability
of the model independent of the data (the prior probability P(My). P(D) is generally
assumed to equal 1 (i.e. the data is certainly the data). In this case, I apply the Metropolis-
Hastings algorithm to the likelihood of a mass model fitting the rotation curve data, as a

function of the parameters of the mass model.

2.3 Specific issues

The following are some issues I encountered using MCMC, and solved in the course of

the work presented in Chapters 3-6.
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2.3.1 Parameter Correlations

When the model parameters over which MCMC acts are chosen manually, there is the
potential for correlation. Two parameters are correlated if the distribution of likelihoods
for one parameter changes when the other parameter value is altered. If a region of high
likelihood (for example, a region enclosing 68% of all models thus approximating a 1o
contour) has a clear diagonal axis in the plane described by the two parameters, this
indicates they are correlated.

Correlation is troublesome because it weakens the constraint that can be found on
either parameter. This can be understood by picturing a histogram of each parameter
being a projection of the plane it describes with another parameter onto the axis. If the
two parameters are correlated, the high likelihood region will be smeared out, compared
to a purely independent case. For example, in Figure [2.1] correlated parameters x and y
are selected from a Gaussian distribution of width 1, however the centre of the Gaussian
in y is displaced by x/2. If this distribution were to be projected on to the y axis, the width
of the distribution would be ~ 1.25.

One solution to this problem is Principal Component Analysis (PCA). The goal of
this is to find the set of parameters that form orthogonal axes for the high likelihood
region. In Chapters 3-6 we did this manually in our shift from the parameter ps t0 Vpax,
in order to remove the correlation between the former and r,. In general such manual
realignment of the parameter axes is more time consuming and subject to human error
than mathematically formal PCA, but in this case it allowed us to choose a new parameter

that we found physically meaningful whilst resolving the correlation.

2.3.2 Volume Effects

The goal of MCMC is to produce a non-normalised likelihood distribution over a given
parameter space. The output of the actual algorithm, however, is a list of models visited.
The density of these models in any sub-volume of the parameter space should only depend
on the likelihood function in that volume. However, this is not always the case.

If there is a region of the parameter space where one or more of the parameters no
longer has an influence on the likelihood of the model, and models in this region have
an adequate (but not optimal) likelihood, then the overall distribution of models may be
biased towards this region and away from the actual optimal likelihood. This is analogous
to the problem of generating a uniform distribution of points in circular coordinates (r, 6)

- the fact that 6 covers a smaller distance in space at smaller » means that if one naively
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Figure 2.1: Example of correlated variables x and y

selects points from uniform distributions of r and 6, points cluster towards the origin.

An example of this can be found in fitting rotation curves; if a maximal disk is permit-
ted by certain values of 1’5 ¢, then the shaping parameters for the necessarily reduced dark
matter halo no longer influence the predicted rotation curve on the scale of the observa-
tional errors (and thus have no significant effect on the likelihood). If such models have
adequate (not necessarily optimal) likelihood, then an MCMC chain can spend consid-
erable time moving through this part of parameter space, varying irrelevant parameters,
and creating a plateau in the parameter distribution which may not accurately represent

the non-normalised probability distribution that is the desired goal. When such plateaus
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begin to have comparable numbers of models in them to the actual peak, they can make

analysis of the result more difficult.

2.3.3 Boundary Effects

It is important to consider how an MCMC process works at the boundaries of parameter
space. One particular example of a boundary issue when applying MCMC to @ — 8 — y
haloes is the behaviour of the y parameter, which cannot be negative, and must be given
uniform prior probability from y = 0 upwards. This creates a hard boundary that can
distort the posterior probability distribution.

For a volume near the edge of a parameter space, there are fewer nearby points from
which it can be reached with high probability than there would be for a volume near the
centre of the parameter space. This reduces the probability of the chain stepping into that
volume, independently of the value of the probability density function in that volume,
thus creating a bias.

This can be shown quantitatively. In Figure the probability of moving from a
position vy, chosen from a uniform distribution (this effect would apply to non-uniform
distributions as well, but it is easier to illustrate with a uniform prior) to y* is represented
by a Gaussian selection function (in the case of the Metropolis-Hastings algorithm). The
probability of arriving at y* from any point lower is

*
1 Y _ry?

e 22 dy (2.5

P(low) =

g 27T Ymin

and from any higher point

P(high) =

1 f max ¢y
e 22 dy (2.6)
CT'\/E;; v*

Splitting equation[2.6]into two parts at the point y* + Ay (and dropping the normalising
constant, which will not be needed) gives

. ')’* +A7 (& 7}/)2 max —(* 77)2
P(high) o« e 22 dy+ e 22 dy 2.7
y y

* *+Ay

and finally, the ratio between the low and high probabilities is

P(high) mx 2 Y 2 |
:1+f e dyU e dy] (2.8)
P(ZOW) Y +Ay Ymin

due to the symmetry of the first term in equation [2.7] and equation [2.5] Because the
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~§_ N 2

Ymin Yn Ymax

Figure 2.2: Plot of the y axis of the parameter space, showing the probability of taking
a step from a random position 7, to a specific position y* as a gaussian. The probability
distribution is not to scale.

Gaussian function is positive everywhere for real input values, this shows the probability
of arriving at v* from a point nearer the centre of the parameter space must be larger
than the probability of arriving from a point nearer the edge. If, when arriving at the
nearby point in y space, the algorithm stays there for some time before moving off again
to another essentially random position, then this ratio of probabilities will be reflected in
the final output of the chain.

To allow a full exploration of the area of parameter space around y = 0, which is
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necessary for modelling cored halos, the parameter space must be mirrored around this

point, i.e. we select y from [—Ymax, Ymax] @and use |y| for all likelihood calculations.

2.4 Implementation

The work here uses two implementations of the Metropolis-Hasting algorithm. The first,
used in chapters 2-4, is CosmoMC in a generic mode provided publicly by Lewis and Bridle
(2002), and the second is my own code RainfallMCMC used in chapter 5.

2.4.1 CosmoMC

A set of cosmological parameters produce a deterministic prediction for the result of cos-
mic microwave background surveys, and thus an application of MCMC to this parameter
space permits the cosmological parameters to be constrained based on these data. This
is what CosmoMC is written for, although it features a generic mode which permits the
linking of an external likelihood function.

For my work I have added a likelihood function written in C, and a library of post-
processing routines in R to make sense of the results when applied to rotation curve anal-

ysis.

2.4.2 RainfallMCMC

This is a program of my own design, which I have developed in the light of my experiences
with the work in this thesis. I found that obtaining informative results from MCMC chains
required a great deal of post-processing, which could be slow for large chains, and so I
decided that much of it should be done as models are generated rather than as a batch at
the end (which requires reloading the data). I also found that requirements for what data
to produce and how to visualise it changed from task to task, and thus opted for the most
modular design possible.

RainfallMCMCE] is a generic MCMC driver by default, but it will include rotation
curve analysis as an example in the publicly available code. In the course of my future
work, I will develop this program in parallel with the application of MCMC to astro-
physics problems. At the time of writing it only implements the Metropolis-Hastings

algorithm, but will allow a broader range of MCMC techniques in the future. The design

'The name Rainfal1MCMC is intended to invoke the image of rain falling randomly on an uneven sur-
face, and exploring the “parameter space” of terrain height to find the optimal (lowest) point
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is entirely modular, so that facilities such as adaptive step size can be introduced at run
time as dynamic libraries. The code is available publicly with the hope that, if others find

it useful, a community can develop to build a library of add-ons.
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Dark Matter In Disk Galaxies - I 3.1. Introduction

We present a new method to constrain the dark matter halo density profiles of disk
galaxies. Our algorithm employs a Markov Chain Monte Carlo (MCMC) approach to
explore the parameter space of a general family of dark matter profiles. We improve
upon previous analyses by considering a wider range of halo profiles and by explicitly
identifying cases in which the data are insufficient to break the degeneracies between the
model parameters. We demonstrate the robustness of our algorithm using artificial data
sets and show that reliable estimates of the halo density profile can be obtained from
data of comparable quality to those currently available for low surface brightness (LSB)
galaxies. We present our results in terms of physical quantities which are constrained by
the data, and find that the logarithmic slope of the halo density profile at the radius of
the innermost data point of a measured rotation curve can be strongly constrained in LSB
([vstar/ VobsImax = 0.16) galaxies. High surface brightness galaxies ([Vgar/Vobslmax = 0.79)
require additional information on the mass-to-light ratio of the stellar population - our
approach naturally identifies those galaxies for which this is necessary.

We apply our method to observed data for the dwarf irregular galaxy DDO 154 and
recover a logarithmic halo slope of —0.39 +0.11 at a radius of 0.14 kpc. Our analysis val-
idates earlier estimates which were based on the fitting of a limited set of individual halo
models, but constitutes a more robust constraint than was possible using other techniques
since it marginalises over a wide range of halo profiles. Our method can thus reproduce
existing results, has been verified on test data, and is shown to be capable of providing
more information than is available from fitting individual halo profiles. The likely impact
of future improvements in data quality on rotation curve decomposition using this tech-
nique is also discussed. We find that velocity errors are a limiting factor on the constraint

that can be found, while spatial resolution is not.

3.1 Introduction

In order to understand the process of galaxy formation, it is important to have robust
constraints on the gravitational potential wells in which observed galaxies reside. Ac-
cording to the current A Cold Dark Matter (ACDM) cosmological paradigm, dark matter
haloes are generally thought to be an essential requirement for formation of a galaxy as
they provide the means to collect and bind sufficient baryonic matter to create galaxies
of sizes consistent with observations. Measurements of the velocities of gas moving in
the disks of disk galaxies provide a valuable probe of the total gravitational potentials of

such systems. Pioneering work by |Bosmal (1978)) and Rubin et al. (1978) demonstrated
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that the rotation curves of disk galaxies were generally flat to large radii, and the observed
disparity between the measured rotation curves and those predicted based on their lumi-
nous components is now generally interpreted as evidence for the presence of dark matter
haloes in these galaxies.

Observations of such a galaxy can give the rotation velocity at a specific radius r from
the centre of the galaxy, the density of gas at this distance, and the amount of stellar light
(and, hence the stellar mass, modulo certain assumptions about the mass-to-light ratio Y)
at each r. Calculating the rotation curves that would be expected from the two baryonic
components generally gives a combined value that falls short of the observed rotation
curve, and the difference can be used to infer the amount of dark matter enclosed at each
r and thus a density profile for the halo.

While the ubiquity of dark matter haloes around galaxies is by now well established,
observational determinations of the density profiles of galactic dark matter haloes have
been, and remain, controversial. |Flores and Primack (1994) used gravitational lensing
and rotation curve analysis to argue against cuspecﬂ haloes with p(r) ~ r~! and p(r) ~ 2,
which were being predicted by N-body simulations of cosmological structure formation
at that time (e.g. |Dubinski and Carlberg, 1991, who found that the profile proposed
by Hernquist (1990) best fit the haloes they obtained). During the 1990s, dark matter-
only cosmological simulations continued to suggest that a universal, cusped dark matter
density profile, independent of halo mass, should be the outcome of the hierarchical for-
mation scenario for galaxy haloes (Navarro et al., [1996; [Navarro et al., 1997, hereafter
NFW). On the other hand, a number of authors argued that observations of disk galaxy
rotation curves pointed towards the existence of a universal rotation curve (Persic and
Salucci, [1991; Burkert, |1995;; Persic et al., |1996). The former claimed an inner halo pro-
file of p(r) ~ r~! whilst the latter found uniform density central cores, and stated that
the cusps implied by numerical simulations could be excluded. The apparent disparity
between the results of cosmological simulations and observations of real galaxies became
known as the “cusp-core controversy”.

Early work to resolve this controversy focused on low surface brightness (LSB) galax-
ies, on the basis that the stellar contribution could be ignored entirely in a first-order
model. In van den Bosch and Swaters (2001) it was claimed that it was impossible to dif-

ferentiate between flat cores and ! cusps using the data available at the time. They cited

'In the literature, the terms cusp and core generally refer to negative log slopes at » = 0 of v > 1 and
vo = 0 respectively. In this chapter we discuss halos with intermediate inner slopes. We considered such
slopes neither cusped nor cored, even though in the strict mathematical sense any halo y, > 0 is cusped, in
order to maintain coherence with previous discussions.
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the insufficient radial range of the data, and the problem of beam smearing. Beam smear-
ing of HI rotation curve data is caused by the fact that the each beam is larger than the
scale over which the rotation speed changes. This, and several other observational issues
that could lead to the false inference of cored haloes in galaxies which actually contained
dark matter cusps, were investigated and discounted by de Blok et al.| (2003). Using di-
rect inversion of a large sample of rotation curves to determine mass profiles, they also
found that the outer regions of their sample galaxies were consistent with density profiles
p ~ r~2 while the inner regions required power laws which were typically shallower than
0 ~ 1025

Bosma (2003) claimed to rule out

cusps at the 3-sigma confidence level for 17
galaxies (from a sample of 28) and, on this basis, stated that the slopes predicted by CDM
models were not observed. He demonstrated that the position of the slit used at the time to
observe rotation curves could not have been a factor in this result, by deliberately offset-
ting the slit and observing the effect on the measured rotation curve. |Gentile et al. (2004)
subsequently found that the cored Burkert profile provided higher quality fits to the rota-
tion curves of five nearby galaxies than either the cusped Navarro-Frenk-White (NFW) or
a model based on Modified Newtonian Dynamics (MOND) that would not require dark
matter. This growing weight of evidence has led to the widespread acceptance of the
observational existence of cores. However, it is now recognised that exclusion of cusps
in present-day galaxies is not synonymous with invalidating the ACDM paradigm. The
profile of a galactic halo results from the interplay between a number of factors including
the intrinsic physical properties of dark matter, the re-distribution of baryonic material by
gas cooling, supernovae or AGN feedback, and its history of major or minor mergers with
other galaxies (see e.g. Governato et al., 2012, for recent simulations of these processes
at work on galaxy scales). Cored haloes may originally have had cusps - observations of
the present day profiles constrain the end-state of galaxy formation, rather than the initial
conditions.

In this context, it is important to note that “measured” halo properties should not be
confused with the values of particular parameters in a profile with an assumed form. For
example, a halo with an asymptotic inner slope of zero may exhibit a non-zero slope over
the entire radial range probed by a particular observational data set and indeed may be
well reproduced by an NFW profile over that radial range for an appropriate choice of
parameters. Additional information may be used to argue that the NFW parameters are
unrealistic (for example, based on their expected values using the scaling relations ob-

tained from cosmological simulations). In our analysis, we therefore focus on physically
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meaningful quantities such as the logarithmic slope at the radius of the innermost point in
the rotation curve, rather than the values of particular parameters in our models.

The HI Nearby Galaxy Survey (THINGS) sample of galaxies provides high resolu-
tion 2D data which addresses many of the issues such as non-circular motions that have
plagued rotation curve decompositions in the past (Walter et al., 2008). It is therefore
timely to examine in detail the constraints which can be placed on the physical properties
of the haloes of disk galaxies using these high resolution observations of their rotation
curves. Somewhat surprisingly, research to date has generally focussed on specific halo
models (e.g. de Blok et al., 2008), with particular interest in the NFW and Burkert pro-
files (see Sec. @) Recently, Chemin et al.| (2011) re-analysed the THINGS rotation
curves using Einasto profiles and found that these provided improved fits to the observed
data relative to earlier work. This is to be expected, as the Einasto profiles have an addi-
tional shape parameter which makes their form more flexible for the modelling of rotation
curves.

Taking advantage of new data from THINGS, |Oh et al.| (201 1)) claim that a selection of
dwarf galaxies (including DDO 154, the galaxy that we use as an example in this chapter)
exhibit 7~°2 inner profiles, which they classify as cores. This conclusion assumes a single
dark matter halo for all dwarf galaxies, but not necessarily a truly universal profile. DDO
154 1s a common target for studies of dark matter because it has a low surface brightness,
and now thanks to THINGS there is more extensive rotation curve data for this galaxy
than was available in older studies (Walter et al., 2008]).

All the above analyses focus on a small number of possible profiles, and thus any
comparison between them can only reveal which of the profiles considered best fits the
data. They provide no context in which to discuss how well the “best” profile performs
relative to all possible profiles. Furthermore, by restricting the set of profiles considered,
these earlier studies have to some extent dictated the shape of the model rotation curve, so
the slope of the best-fit model curve at any individual radius is based on the fit statistics
of the entire curve. It is possible that the quality of the fit for one part of the curve might
give a false impression of the quality of the fit for another part of the curve, when in actual
fact there is not enough information at that point to constrain the slope.

In this chapter, we re-visit the problem of rotation curve decomposition and use a
Markov Chain Monte Carlo (MCMC) algorithm to explore the parameter space of a very
general family of dark matter haloes. |Puglielli et al. (2010) have previously applied
MCMC techniques to the problem of rotation curve decomposition, but considered a re-

stricted set of halo profiles. Our three key innovations are: (1) the use of a more gen-
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eral family of halo profiles than has previously been used, thereby permitting the models
more freedom to match the observed data; (2) a focus on physical quantities which can
be constrained by the data, for example, the log-slope of the halo profile at the innermost
observed data point rather than the particular parameters of our models, for example the
asymptotic values of the log-slope of the dark halo profile at radii smaller or larger than
those probed by the data; (3) the potential for a detailed exploration of the degeneracies
between the model parameters. This latter exploration enables us both to quantify the
true uncertainties in the halo constraints we obtain as well as to determine what future
observations would be most likely to improve these constraints.

The outline of the paper is as follows. Section[3.2]describes the galaxy models we use,
both to analyse our artificially-generated data with known input values, and in our analysis
of the THINGS data for DDO 154 obtained from|de Blok et al.| (2008). In Section[3.3| we
present the algorithm we have developed for this purpose, employing CosmoMC (Lewis
and Bridle, [2002) as an MCMC driver. Section [3.4] details the results of tests on artificial
data while Section compares the performance of our method with that of existing
rotation curve fitting techniques (i.e. fits based on individual or small numbers of dark
matter halo profiles). In Section [3.6|we present an application of our method to DDO 154
and finally Section details our conclusions. An appendix is included which presents

some additional technical details of our method.

3.2 Galaxy Models

Under the assumption that the gas in a disk galaxy moves along approximately circular
orbits, the measured run of gas velocity with radius through the disk is a strong probe
of the total underlying mass distribution. There are three main contributions to the mass
distribution which we must account for in any mass model: the stellar disk, the gas disk,
and the dark matter halo. The spatial distributions of these three components are signifi-
cantly different and therefore their relative contributions are strong functions of radius. In
the inner regions of many of the THINGS galaxies, the baryonic components contribute
significantly to the gravitating mass, making it more difficult to determine the inner slope
of the dark matter profile. In this chapter, we go beyond previous analyses by considering
a more general family of halo density profiles and by explicitly exploring degeneracies
between the parameters of our models, in particular between the dark matter and baryonic

parameters.
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3.2.1 Baryonic components

The Spitzer Infrared Nearby Galaxies Survey (SINGS: see Kennicutt et al., 2003) provides
near-infrared photometric data for the galaxies in the THINGS catalogue, allowing the
determination of accurate stellar surface density profiles. Conversion of the luminosity
profile to a stellar mass profile requires information about the mass-to-light ratio of the
stellar population. In this chapter, we make use of the stellar rotation curves calculated by
de Blok et al. (2008). These curves are calculated by assuming that radial variations in the
colour of the stellar populations indicate stellar population gradients which in turn lead
to variations in V3¢, the mass-to-light ratio in the 3.6 um band. As described below, our
algorithm incorporates a scaling of the stellar rotation curve to account for uncertainties
in the stellar population modelling. The same scaling is applied at all radii, and we thus
implicitly assume the same radial gradients in 1" as de Blok et al. (2008).

In Section [3.4) we use DDO 154 as a template for LSB galaxies and NGC 7793 as
an example of an HSB galaxy. We use the data for their stellar disks from de Blok et al.
(2008). The surface brightness measured in the 3.6 um band for NGC 7793 was taken
from SINGS, while that for DDO 154 was obtained from the Spitzer archive. A Y value
was then calculated from the J— K band of 2MASS, using a formula that assumes a “diet”
Salpeter IMF (one with fewer low mass stars, necessary to keep some stellar disks sub-
maximal). de Blok et al.| (2008)) also present results using a Kroupa IMF. However as we
anticipate most difficulty analysing HSB galaxies, we choose the option that gives a more
massive disk in order to find the limit of the effectiveness of our method.

de Blok et al.| (2008) combined the surface brightness and T into a density profile,
which they then converted to a velocity curve using the GIPSYE] software. We approxi-
mate this velocity curve by fitting a thin exponential disk rotation curve (see e.g. Binney
and Tremainel 2008) to produce an estimate of the stellar contribution to the total rotation
curve. The goodness of fit for this profile does not impact on the performance of our
algorithm, as we marginalise over both the scale radius R4 and the amplitude (by varying
the stellar Y': see below). However, we note that it provides an excellent fit to the data
for DDO 154, with a maximal deviation of < 0.25 km s™!over the entire radial range, and
significantly less than this interior to 1.5 kpc.

In our analysis, we apply a scaling factor fy to explore the impact of observational
uncertainty on the mass of the stellar disk. The inclusion of fy as a free parameter in our
analysis enables us to explore whether we can differentiate between those cases in which

there is sufficient information to constrain the halo profile despite our lack of knowl-

Zhttp://www.astro.rug.nl/~gipsy/
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edge about the true T and those in which there is not. The latter cases will necessarily be
beyond the scope of this technique until I’ can be determined with greater accuracy. How-
ever, by reducing the range of allowed fy values explored by our algorithm, we would be
able to determine what I’ precision is required to constrain the halo to a particular level of
certainty. We allow fy to vary between 0.1 and 2, which encompasses " values derived
from the full Salpeter IMF (fy = 1.43) and the Kroupa IMF (fy = 0.71) that have been
considered in the previous analyses of rotation curve by Chemin et al. (2011) and de Blok
et al.|(2008), without placing either one near the edge of the parameter space.

Radial variations in f', which occur due to age gradients in the disk and which are
detected by means of color gradients, are already taken into account in the stellar rotation
curves of |de Blok et al.| (2008)) which we use in our modelling. This, and the fact that the
3.6 um band is sensitive mainly to the older portion of the stellar population, means that
our modelling technique is robust with respect to the stellar age.

The gas distribution for the THINGS galaxies is determined from their HI maps. The
gas mass is estimated assuming that the gas is entirely composed of atomic hydrogen.
While the presence of molecular gas would change the gas contribution to the overall
potential well, we note that for the majority of galaxies in the THINGS survey, the ISM
is dominated by atomic hydrogen (Leroy et al., 2008)). However, for galaxies with a
significant gas contribution to the gravitating mass, the composition of the ISM should be
confirmed to test this assumption.

Similarly to the the stellar disk, we take our model gas profiles from the |de Blok et al.
(2008) data for DDO 154 and NGC 7793. Following [de Blok et al.| (2008), we have
scaled the surface density given by THINGS HI data cubes by a factor of 1.4 in order to
take into account the non-hydrogen contributions of the gas (galaxies with large amount
of molecular gas having already been excluded from analysis at this point). They then
used the GIPSY software to construct an infinitely thin disk rotation curve based on a
titled ring modelling of the gas disk. We take this profile and apply the same smoothing
to it as we did for the stellar curve to obtain the gas contribution to the rotation curve. No
variation of the parameters of the gas disk are allowed in our modelling, as the mass and
extent of the disk are assumed to be well-constrained by the observations.

In addition to the gas located in the disk, galaxies may also have a hot, ionised halo
of gas. Miller and Bregman (2013) find that, in the Milky Way, the fraction of the total
galaxy mass in this component is 0.07. This means that, assuming comparable fractions
are present in nearby disk galaxies, the kinematic effect of this halo is smaller than errors

due to non-circular motions.
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It is well known that non-circular motions complicate the interpretation of galaxy
rotation curves because the observed gas motions at a particular radius may not accurately
reflect the underlying circular velocity at that location. Pizzella et al.| (2008]) show that
rotation curves based on stellar velocities may be more reliable for determinations of the
shape of the inner halo of a galaxy than those based on one-dimensional HI spectra. They
note, however, that integral field gas velocity maps can be used to screen out galaxies
with significant non-circular contributions to their velocity fields. The THINGS sample
has been selected on the basis of strict criteria including favourable inclination angle
relative to the line of sight (de Blok et al., 2008)). Subsequently, Oh et al.| (201 1)) examined
the velocity field data for evidence of non-circular motions and determined an optimal
rotation curve for each THINGS galaxy, which thus represents the best opportunity to
determine the dark halo profiles of this sample. In the present paper, we therefore assume
that the galaxy to be modelled has been checked for non-circular motion, and that the
rotation curve has been corrected for such motions if required.

A further potential complication is asymmetric drift, which affects measurements of
circular speeds obtained from gas or stars whose vertical velocity dispersion is not neg-
ligible compared to their ordered rotational velocities. In our modelling, we assume that
asymmetric drift can be neglected, or has been corrected for in the rotation curve data,

and as in de Blok et al. (2008) assume an infinitely thin gas disk.

3.2.2 Halo models

In common with most previous analyses, we assume that the dark matter halo of the
galaxy is spherical. Whilst non-spherical haloes are in principle possible, and indeed are
the likely outcome of either mergers and/or gas cooling (generically leading to triaxial
haloes; see e.g.|Vera-Ciro et al.,|2011} for a discussion), the presence of triaxiality would
typically lead to non-circular motion of the stars and gas in the disk. In their analysis of
the rotation curve of DDO 47, |Gentile et al. (2005) argued that the non-circular motions
seen in that galaxy were at a level of < 3km s~ 'and concluded that any triaxiality in the
halo of that galaxy was at a level which was irrelevant for rotation curve analyses. A
study of the non-circular motions in the THINGS galaxies by [Trachternach et al.| (2008),
based on harmonic decomposition of the velocity around each tilted ring, found that the
amplitude of non-circular components was less than 1km s~! at all radii. Given that we
are restricting our analysis to such galaxies which exhibit very low levels of non-circular
motion, the assumption of a spherical halo is reasonable.

We assume that the dark matter halo can be parameterised by an («, 3, y) profile (Zhao,
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1996), which is a general, spherical halo density profile given by

p(r) = P 3.1)

AIEAN

where vy is the asymptotic log-slope of the profile at small r, S is the slope at large

r, and a controls the transition between the two (lower values of a corresponding to
sharper changes). The parameters p, and r, are the density and length scales, respectively.
This family encompasses a number of the profiles which have previously been used to
model disk galaxy haloes. The cusped NFW profile, proposed as a good approximation
to the dark matter halo profiles obtained in dark mater-only cosmological simulations
of structure formation, corresponds to (a,8,y) = (1,3, 1), while the cored isothermal
halo, which is often used as an example of a cored halo profile has (@, ,y) = (1/2,2,0).
Another widely used cored halo is the Burkert| (1995) profile,

ps?
(r+ry)(r*+r?)

p(r) = (3.2)
which has been shown to provide a good fit to the rotation curves of a large sample of
disk galaxy rotation curves (see e.g. Persic and Salucci, |1988, 1991} Salucci et al., 2007,
and references therein). More recently, Chemin et al.| (2011) showed that the Einasto
profile (Einasto, |1969, 1965),

2 n
p(r) = p, exp [—; [(f) - IH (3.3)

where rg is a scale radius, p, is a density scale and » is a shape parameter, provides a
better fit to the rotation curves of THINGS galaxies than the other three profiles. This
profile, whose logarithmic slope varies continuously with radius, has been proposed as an
improvement on the NFW profile in terms of fitting the results of the most recent cosmo-
logical simulations (Navarro et al., [2004). While the (o, 8, y) family does not explicitly
include either the Burkert or Einasto profile, for suitable choices of the profile parameters
it can closely reproduce them over a restricted radial range.

For any (@, 8, y) model, the enclosed mass at a particular radius is

V= Arpgr? (r B

y
v—3 —) 2Fi(a,b,c,z2) (3.4)

Ts
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Parameter Minimum Maximum

a 0.1 2.5

B 3 5

0% 0 2

s Fmin Fmin + 2rs,O
Vmax 0 2Vmax,O
fr 0.1 2

s 0.1 2

Table 3.1: Summary of the parameters explored by the algorithm. ;¢ and vy o are initial
values determined by a single x? best fit. ryiy is the radius of the smallest radial bin of a
particular data set. fg, is a scaling factor which is used to vary the stellar disk scale length.

where ,F() is the hypergeometric function, with a = [ - y], b = —aly - 3], ¢ =
l1-afy-3],and z = —[r—’s]l/“.

In this chapter, we re-cast the (a, 8, y) profile in the form

2 nax VIQnax
p(r) = (3.5)

CEICET

with v, replacing the pg paramater, and X, being calculated from the remaining pa-

rameters via the formula
pS rmax

© M(a, B, Y76 ps)
This transformation is explained in detail in Appendix [A.I] Note that this is a different

Zmax

(3.6)

parameterisation of the same halo, rather than a distinct halo itself. The reason for intro-
ducing this parameter transform is to resolve the degeneracy between the halo parameters
ps and r. The parameter vy, is a useful choice as it has a clear physical meaning, namely,
the maximum circular velocity of the dark matter halo. This should not be confused with
the maximum circular velocity of the observed rotation curve, although in the case of LSB

galaxies they will be similar in value.

3.3 Markov Chain Monte Carlo
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Our goal is to determine the distributions of parameters for the models described in
the previous section which are consistent with a given observed HI rotation curve. We
assume that the observed rotation curve can be modelled by summing, in quadrature, the
contributions to the local circular speed of the gas disk, the stellar disk and the dark matter
halo. For a given choice of model parameters, we calculate the expected rotation curve
which we compare to the observed data by means of a y? test.

Markov Chain Monte Carlo (MCMC; see e.g. Press et al., 2007) produces a non-
normalised probability distribution for a parameter space by taking random steps through
the space. The steps are randomly selected from a one-dimensional Gaussian in each
parameter, with a variable step size, storing each model encountered on the way. A new
model is accepted if its likelihood is greater than the previous model, while less likely
models are accepted with a probability equal to the likelihood of the new model divided by
the likelihood of the old one. If a new model is not accepted, the old model is repeated in
the Markov chain. The choice of a Gaussian selection function is widespread, though not
essential in MCMC; but it has the advantage that it favours small steps over large ones, and
the probability of stepping between two points is identical in both directions. This second
property ensures that the steps satisfy the Metropolis detailed balance condition (Hastings,
1970; Metropolis and Rosenbluth [1953)).

We use an MCMC method to explore models over a broad range of values for the
halo parameters «, 3, v, rs, and v, and stellar disk parameters fy and fz,. A summary
of the parameters and their ranges can be found in Table We use the October 2012
release of the publicly available CosmoMC code (Lewis and Bridle, 2002) as an MCMC
driver. CosmoMC was originally designed to determine cosmological parameters from
the cosmic microwave background, but it has a generic MCMC mode that we utilise
here. We choose stepping mode 4 “slow grid” - which is described in the CosmoMC
documentation.

To facilitate the comparison between different parametric models, after the MCMC
chains have been generated, we calculate the physical parameter vy;, - the logarithmic
slope of the density profile at the location of the innermost radial bin of the measured
rotation curve - as the basis for comparison. This allows us to explore the issue of whether
our choice of a set of parametric profiles has a significant impact on the estimates of the
log-slope of the halo profile.

For each data set we generate 16 MCMC chains, each of which contains ~ 5 x 10°
accepted models and has a different set of starting parameters. All results in this chapter

have more than 7 x 10°® models. The multiple starting points help to ensure that a local
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maximum in the likelihood does not trap the algorithm - although due to the nature of
MCMC this is unlikely to happen if the chains are run for sufficiently long. We are able
to verify that MCMC chains have converged by comparing multiple chains (if converged
they should all produce the same, smooth, distribution of values for each parameter), and

all chains produced for this chapter have been checked for convergence in this way.

3.3.1 Prior distributions and normalisation

We assume uniform priors on all our parameters and as a result the shape of our param-
eter space is simply a uniform hypercuboid. However the non-linear transformation of
this space into physical quantities such as y;, or dlogp(r)/dlogr means that the prior
distributions of these quantities may no longer be uniform. This can be seen from Fig.
which shows the distribution of y;, values generated by a “flat” run that returns y2, = 1
for all models. There is a volume bias in (@, 8, y) space away from y;, = 0, due to the fact
that the log slope only reaches zero at r = 0 and any finite scale radius will shift y;, away
from zero even when y = 0. The derived parameter, y;,, therefore requires normalisation,
because there is a one-to-many mapping between each value of vy;, and sets of parameter
values, i.e. the parameter space for each value of y;, is a different size. Without normali-
sation, this would bias a histogram of y;, towards areas where the parameter space had a
larger volume and away from v;, = 0. In what follows, all histograms of derived quanti-
ties such as y;, are normalised by the corresponding histogram obtained from a flat run.
We have verified that this normalisation process is robust in the sense that normalising the
output of one flat run by that of another leads to a uniform distribution to within the bin
noise.

Although in some of the figures in later sections we plot certain parameters using
logarithmic scales, we have chosen, after extensive testing, not to use a logarithmic range
for any of our parameters. Typically, logarithmic spaces are used for parameters whose
values can range over several orders of magnitude. However, for a parameter whose
values vary over a limited range, a uniform prior in a logarithmic space corresponds to
a prior in linear space that favours smaller values of the parameter. Since CosmoMC
dynamically varies the step sizes for all parameters, it is already able to survey a large
range in parameter space while concentrating on small values of particular parameters if
necessary. We therefore use uniform priors in linear space for all our parameters, as this
greatly simplifies the interpretation of the output from the MCMC chains.

The y = 0 boundary can lead to a bias of the MCMC chains away from models with

very small values of y. This effect came to light during early tests of our analysis and is
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Figure 3.1: Histogram of ;, for a “flat” run in which all parameter combinations are
equally probable, illustrating the need to normalise histograms for derived quantities.
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alleviated by extending the range of y values to include y < O (the actual range used is
[-2,2]) and using the modulus of v in calculations of the halo rotation curve. This ensures
that the models of most interest to us are not in an unusual portion of the parameter space.
Tests on synthetic data presented in Section [3.4] confirm that the algorithm is indeed able

to recover halo profiles with y ~ 0.

3.4 'Tests on synthetic data

Before applying the algorithm to observed data, it is essential to demonstrate that it can
successfully recover the properties of galaxies with known characteristics. To this end,
we generate a number of synthetic data sets for each of two galaxy types: (1) a low
surface brightness (LSB) galaxy, based on the galaxy DDO 154, for which we expect
the algorithm to perform well; and (2) a high surface brightness (HSB) galaxy, based on
NGC 7793, which we use to demonstrate explicitly the strong degeneracies which occur
in modelling this class of galaxy and the way in which the MCMC approach naturally
identifies their presence.

To generate the artificial data, we fit a rotation curve for a thin exponential disk (Bin-
ney and Tremainel 2008)) to the stellar rotation curve provided by lde Blok et al.| (2008])
(which uses a sech®(z) vertical profile and is generated from surface brightness models
using the ROTMOD task in GIPSY) , which includes estimates of the mass-to-light ratio.
For DDO 154 and NGC 7793 we obtain disk scale lengths R4 of 2.15kpc and 2.51 kpc,
respectively.

We next assume a particular dark matter halo profile for each galaxy, and calculate
the corresponding circular speed curve which we add in quadrature to the stellar rotation
curve, assuming the same stellar T34 as de Blok et al. (2008). If we are allowing the
stellar 1" to vary along the MCMC chains, the stellar circular speed at all radii is scaled by
a factor \/E before it is combined with the dark matter curve. Finally, the gas contribution
is added (in quadrature) to obtain the total circular speed curve for our synthetic galaxy.
The properties of the gas component are held fixed along the chains - we use the observed
gas contributions in DDO 154 and NGC 7793 for the model LSB and HSB galaxies,
respectively.

Before applying our algorithm to these synthetic data, we add Gaussian observational
noise to each data point. The final data set passed to the algorithm is then the set of
“observed” velocity data points and their error bars, and the contribution to the rotation

curve of the stellar and gas disks, which are assumed to have been measured for the
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Figure 3.2: Results of the algorithm applied to model A, an LSB galaxy with small obser-
vational error bars. The colour scale is 10g[ N(X)/Noal], 1.€. the log proportion of models
going through a particular point. Left: the distribution of halo density profiles for all
models accepted in the MCMC chains. The vertical dashed lines show the inner and
outer limits of the input data, and the coloured dashed curves show the best fits of single
profiles: purple for the (a, S, y) profile, green for the burkert profile, red for the Einasto
profile, orange for the Hernquist profile. The black curve is the input profile. Right: the
distribution of halo density profiles in (dlogp(r)/dlogr,logr) space i.e. the log slope
with respect to log radius. Overlaid profiles follow the same colour scheme as in the top
panel.

observed galaxy, in the manner which has been done by de Blok et al.| (2008) for the
THINGS sample.

3.4.1 Reduced observational errors

In our first test, we explore the performance of the algorithm on almost “ideal” data by
assuming fractional error bars of 0.02 on the velocities. These are about a factor of five
smaller than the typical errors on the THINGS rotation curves. The dark matter halo
is assumed to be a Hernquist profile, i.e. (a,8,y) = (1,4, 1), with parameters given in
Table[3.2] For this test, we consider an LSB galaxy whose stellar mass profile is based on
the exponential disk fit to DDO 154.

Fig. [3.2] presents the results of this test. As the left panel shows, given very pre-
cise input data, the algorithm is able to recover very accurately the density profile of

the dark matter halo. The right panel shows the distribution of accepted models in the
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dlogp(r)/dlogr versus log r plane, indicating that the log slope is very well modelled
at all radii within the data range (indicated by vertical dashed lines in the plot.) The
performance of the algorithm is facilitated by the low surface brightness of the stellar
disk. Although in this instance we did not allow fy to vary, the full range in values of
this parameter covers a range in amplitude of < 1 kms™!in the total rotation curve. It is
important to note, however, that the distribution of models in Fig [3.2] marginalises over
all the model parameters and shows that the algorithm takes advantage of the freedom
provided by the many parameters to recover the overall density profile of the galaxy. Al-
though the individual model parameters are not necessarily recovered correctly, this does
not affect our conclusion that the algorithm is unbiased, as our goal is to recover physical
quantities such as the log slope as a function of radius rather than values for parameters
of our particular form for the halo profiles.

The results of this test show that the algorithm performs well in the idealised case of
high quality data for an LSB galaxy. We find no evidence of any modelling bias in either
the shape or amplitude of the density profile and therefore conclude that the algorithm is
working correctly. In the following sections, we consider its application to data sets of
differing quality including realistic error bars that correspond to the quality of presently
available rotation curves, as well as to data for HSB galaxies in which the uncertainty in

the stellar mass to light ratio of the galaxy plays an important role.

3.4.2 Realistic Observational Errors

In this test, the underlying galaxy model is identical to that used in the previous section,
but we now add observational errors of 10 percent to the total rotation curve which is
more representative of the errors typical of current observed data sets, such as THINGS.
Fig. [3.3] presents the results of this test. As expected, the most obvious difference with
the previous test is that the distribution of halo models is much broader. Nevertheless, as
the left panel of the Figure shows, the algorithm accurately recovers the input halo profile
over the radial range probed by the rotation curve data. Outside this region, the range
of consistent models expands significantly. We emphasise that outside the range of the
observed data, the apparent constraints on the halo profile are the result of our assumption
of a parametric model for the dark matter halo. In the absence of physical constraints at
larger or smaller radii than those probed by the data, we are effectively using all five halo
parameters to fit the rotation curve over the finite radial range covered by the data. The
physical relevance of our models is thus limited to the volume probed by the data and,

as stated earlier, the values of the parameters are less significant than the overall profile
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Figure 3.3: As in Fig. [3.2] but for model B, an LSB galaxy with realistic observational
error bars. See text for a discussion.
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Figure 3.4: Histograms of vy, for artificial data for the LSB galaxy model B (left) and
the HSB galaxy model C (right). Arrows indicate the values of y;, for the input model
(black) as well as for the best-fit Burkert (green), Einasto (red), Hernquist (orange) and
(a,B,v) (purple) profiles. See text for a discussion.
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Figure 3.5: The highest likelihood model identified by the MCMC chains in the HSB
galaxy model C. The dotted curves are the input model, while the solid curves are for the
models in the MCMC bin (in the 7-dimensional parameter space) containing most models
(the thickness of the curve is due to many similar models being over-plotted). The stellar
disk is shown in red, the gas disk is dark blue, the dark matter halo is green, and the
expected (total) rotation curve is light blue.
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obtained in the range of the data.

Of particular relevance to the question of resolving the cusp-core issue, the lower
panel shows that we are still able to exclude models with uniform density cores at a high
level of confidence even in the presence of realistic velocity errors. This is made more
quantitative by the histogram in the left panel of Fig. which shows the distribution
of the derived quantity v;,, the logarithmic slope of the halo density profile at the radius
of the innermost data point. The various vertical arrows in the plot show the results of
the direct fitting of a selection of individual halo models to the rotation curve data, rather
than taking the MCMC approach. This is akin to the type of modelling that is more
commonly applied to rotation curve data, and the models used span the range of models
normal considered in such analyses. The peak of the MCMC histogram coincides with the
values of y;, for the directly fitted (e, 8, y), NFW and Einasto models. More importantly,
the histogram shows that the input data (generated for a cusped halo model) are able to
exclude Burkert halo profiles. This shows that our MCMC analysis is able to constrain
the inner slope of the dark matter halo of an LSB galaxy.

The high surface brightness case shows a distribution that is more than 1o~ from the
input value, but as the best fit (@, 8,y) model still coincides with the peak of this distri-
bution, this is not a problem with MCMC. Some realisations of the random errors may
disfavour the input model compared to other ones, and the “correct” distribution that the
MCMC should output is that which is pointed to by the data, which does not always
correspond to the input values because of this.

We conclude that current data for LSB galaxies are sufficient to place constraints on
the dark matter profiles of those galaxies. We are able to make this stronger claim than

previous work due to the greater generality of our modelling.

3.4.3 High Surface Brightness galaxy

We now consider the case of an artificial data set for an HSB galaxy which we construct
based on the higher surface brightness stellar contribution of NGC7793, but embedded
in the same dark matter halo as in the previous sections so that the contribution to the
simulated rotation curve from baryons is comparable to that of the dark matter. Because a
maximal (or near maximal) disk could provide a reasonable fit to the data in this case (see
Fig.[3.5), it is important to know whether or not it is still possible to constrain the dark
matter halo parameters.

As the right panel of Fig. shows, the algorithm is able to obtain a constraint on the

dark matter halo profile which appears to be only marginally weaker than that returned in

48



Dark Matter In Disk Galaxies - I 3.4. Tests on synthetic data

the LSB test, as seen in the left panel and in Fig. However, the results for the HSB
galaxy exhibit a bias towards steeper slopes for the reasons stated above. The MCMC
distributions for y;, can be well approximated by a Gaussian for both these test cases,
and thus can be used to estimate the uncertainty on this value. We find y;, = 1.00 = 0.11
and y;, = 1.25 £ 0.11, for the low and high surface brightness cases, respectively. For
comparison, a simple maximum likelihood fitting of the (a, 5, y) halo profile to these data
yields y;, = 1.06 and y;, = 1.31, respectively, but without providing information about
the distribution of allowed values.

It is important to remember that in this test we have assumed that the Y" and R, of the
stellar components are both known and are therefore fixed at their correct values along
the MCMC chains. Given the significant contribution of the baryons to the overall gravi-
tational potential in this case, the results will clearly be strongly sensitive to uncertainties
in these two parameters. In Section [3.4.§] we return to this issue and consider the case in

which the stellar parameters are only very weakly constrained.

3.4.4 Higher resolution data sets

We now investigate what would happen if, in the future, data sets of higher spatial reso-
lution became available. Thus far, our artificial data sets have used the same radial bins
as those in the THINGS rotation curves from de Blok et al. (2008) for the two galaxies
on which they are based (i.e. DDO 154 for the LSB case and NGC 7793 for the HSB
case). In this test, we generate a data set with twice the number of radial bins over the
same radial range. We assume that the velocity error bars remain unchanged - while this
may be pessimistic (higher resolution sampling of the rotation curve might be expected
to coincide with improved velocity resolution also), it allows us to separate the impact of
higher spatial resolution rotation curves from more precise velocity measurements. The
current radial bin size for DDO 154 is 136 pc, which at a distance of 4.3 Mpc is an angu-
lar resolution of 6.5 (de Blok et al., 2008), so this higher density data set would have an
angular resolution of 3.25”.

Fig. [3.6] shows that a value of y;, = 1.13 + 0.08 is obtained from the high spatial
resolution test, and whilst this gives a 27% reduction in reported error, the peak of the
distribution remains offset from the input model value of 1.07 by a similar amount to the
lower spatial resolution test. This indicates that there is relatively little to be gained at the
present time from increased spatial resolution until the velocity errors are significantly

reduced.
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Figure 3.6: As in Fig. but for artificial data for an LSB galaxy with realistic obser-
vational error bars (model D), and with the radial sampling density of the rotation curve
increased by a factor of two. See text for a discussion.
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Figure 3.7: As in Fig. 3.2 but for artificial data for an LSB galaxy with realistic observa-
tional error bars and the data range extended by a factor of 2 (model E). The rightmost
vertical dashed line represents the new maximum radius, centre vertical dashed line rep-
resents the original maximum radius in previous tests. See text for further discussion.

3.4.5 Data sets extending to larger radii

In this section, we apply our algorithm to data sets which extend to significantly larger
radii than are probed by current rotation curve observations. We implicitly assume that
the target galaxy has sufficient gas at these radii to make the observations possible, and
that the baryonic disk remains relatively undisturbed so that our modelling assumptions
remain valid. In principle, given a suitable target and sufficient observing time, it would
be possible to obtain such a data set using existing instruments.

The left panel of Fig.[3.7)shows the constraints on the density profile which we obtain
for a data set extending to ~ 16 kpc with velocity errors typical of current observations.
Comparing this with Fig.[3.3] one might be tempted to conclude that improved constraints
are obtained at all radii, including the inner regions. It is important to note that this occurs
only because the data at large radii place tighter constraints on parameters in our halo
model such as g which leads to a reduced range of available parameter space at all radii.
A non-parametric approach to the modelling would alleviate this situation, and we intend
to pursue this in the future.

Comparison of Figs. [3.7]and [3.2] shows that the fit quality is not improved by as much
as it is when the velocity errors are reduced. We conclude that future observational pro-

grams should concentrate on reducing the velocity errors rather than increasing the spatial
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Figure 3.8: As in Fig. [3.2] but for artificial data for an LSB galaxy with a Burkert dark

matter halo (model F).
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Figure 3.9: As in Fig. [3.2] but for artificial data for an LSB galaxy with realistic observa-
tional error bars, and free stellar disk parameters fy and fg, (model G).
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Figure 3.10: Contour plot of models for an artificial data set with a Hernquist input pro-
file, free stellar parameters, and realistic errors (model G), in the fy versus y;, plane. The
red contour encloses the region containing 0.683 of all models (equivalent to a 1o~ con-
tour), while the green and blue contours contain 0.95 (207) and 0.999 (30°) of all models,
respectively. The corresponding contours in the fg, versus v;, plane show the same inde-
pendence of fz, and yi,. The open triangle shows the model with the highest likelihood in
the MCMC output, while the open square shows the input model.
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Figure 3.11: As in Fig. [3.2] but for artificial data for an HSB galaxy with realistic obser-
vational error bars, and free stellar disk parameters fy and fz, (model H).

resolution or radial extent of the rotation curve data.

3.4.6 Cored Profile Test

Much of the original impetus for detailed rotation curve modelling came from interest in
the question of whether galaxy haloes are cored or cusped. In the previous sections, our
input data were generated from model galaxies with Hernquist dark matter haloes, which
are cusped (y = 1). We now consider the case of a galaxy whose halo has a Burkert
profile, a widely-used cored halo profile, which also forms the basis of the Universal
Rotation Curve analyses of galaxy rotation curves (e.g. Persic and Salucci), [1988] [1991};
Persic et al.,[1996). Another reason for selecting this particular cored profile is that it is not

a member of the (a, 5, y) family (although over a restricted range of radii it can be closely

represented by a profile from this set) and thus constitutes a test of the performance of
the algorithm when the parameterisation of our models does not match the actual form of
the dark matter halo. We assume radial sampling similar to that of DDO 154 and realistic
velocity errors.

The results of this test are shown in Fig. [3.8] The distributions in both panels show
that the MCMC chains are favouring models with shallow inner profiles. Comparison
with the results in section [3.4.2] shows that the algorithm is able to distinguish between

haloes with cored and cusped density profiles in the radial range probed by the rotation
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curve. More quantitatively, the MCMC chains yield an estimate of y;, = 0.15 + 0.13,
which excludes haloes with cusp slopes steeper than 0.67 with 40~ confidence.
We conclude that our algorithm is able to distinguish between cored and cusped halo

profiles using extant observational data sets for LSB galaxies.

3.4.7 Free stellar disk parameters

We explore the impact of observational and modelling uncertainties in the Y of the stellar
population and the disk scale radius R, by repeating our analysis from section but
now allowing both quantities to vary along the chains. This represents the fact that the
stellar population of the target galaxies is not known precisely, which translates into an
uncertainty in the disk ', and the simplification we make in the disk modelling by fitting
a smooth function to the observed data, which may lead to uncertainty in the disk scale
length Ry.

We note that the distribution of fy values from the MCMC chains is almost uniform,
which indicates that the data are not able to constrain the fy in this case. Nevertheless,
Fig.[3.9shows that the algorithm is able to constrain the halo density profile with a similar
level of precision to that obtained when the stellar parameters were held fixed (Fig. [3.3).
This behaviour can be understood by the fact noted earlier that the stellar disk contributes
to the total rotation curve in quadrature, rather than linearly. As a result, the full range in
disk fy covers a range in amplitude of < 1 km s™'in the total rotation curve.

Our test shows that a galaxy with a comparable ratio between surface brightness,
observed rotation curve, and observation errors to the one we have synthesised here cannot
constrain fy, but can still constrain properties of the dark matter halo.

Fig. [5.5] presents contours in the fy versus vy, plane and shows explicitly that the
estimate of y;, is independent of fy. The corresponding contours for fx, are very similar
to those for fy. This emphasises the power of the MCMC approach over simple model
fitting. If the MCMC analysis of a real galaxy results in a flat distribution of the disk
parameters whilst still being able to constrain dark matter parameters, and exhibiting no
correlation between 7;, and the disk parameters, we are able to conclude with confidence

that the halo parameters have genuinely been constrained independently of the disk.

3.4.8 High surface brightness test with free stellar parameters

Distinct from the question of whether a near maximal disk makes it impossible to con-

strain the properties of a dark matter halo, we wished to investigate the degeneracy be-
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tween vy, and fy, both of which affect the amplitude of the total rotation curve. We
therefore applied the algorithm with free fy and fg, to our HSB data set. The results are
shown in Fig. [3.11] As one would naively expect, the degeneracy between Vi, and fy
means that a much wider range of halo profiles may be consistent with the observed data
set.

We therefore conclude that HSB galaxy rotation curves are of limited value for con-
straining dark matter halo profiles unless robust information about the stellar disk mass
distribution is available either through stellar population-based estimates of Y or estimates
of the vertical velocity dispersion within the disk (see e.g. Bershady et al., 2010). This
agrees with previous work: for example |Gentile et al. (2004) who found that Burkert
and NFW haloes yielded equally good fits to the data for NGC 7339 which they partly
attributed to uncertainties in (" and partly to the limited radial extent of the observed data.

Compared to the test in Section [3.4.3] Fig.[3.12] shows that we obtain a much weaker
constraint on vy, here, which is an indication that the dark matter component is highly

degenerate with the stellar component, and thus the result for the shape of the dark matter
halo is unreliable. The right panel of Fig. [3.12] presents a contour plot showing the
degeneracy between fy and v;, for this test. The input value y;, = 1.05 is much more
strongly excluded for fy = 1.5 than for fy = 1.0. If such a degeneracy is seen when
working with real data, it must be resolved before the likelihood distribution produced
can be accepted.

In this case, we obtain an estimate of y;, = 1.36 + 0.19, giving the impression that
the data are able to distinguish strongly cusped haloes from uniform cores. It is worth
noting that the MCMC peak is consistent with the best fit (a,,y) curve - both exclude
the input value of y;, at  20. The power of our MCMC approach to the problem is
that we are alerted to the fact that these constraints may be spurious by the presence of
strong degeneracies between parameters. We can thus explicitly and straightforwardly
identify those cases in which the algorithm fails to constrain the halo parameters of the
target galaxy. A simple fitting of a small set of halo profiles, on the other hand, could
yield artificial constraints on the halo profile which were not actually arising from the

properties of the data themselves.

3.4.9 Over-estimated errors

In our final test, we explore the performance of our algorithm on data sets in which the
error bars do not reflect the scatter between successive data points along the rotation

curve. This is seen in several of the THINGS galaxies, and is caused by the definition
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Figure 3.12: Left: The constraint of vy, in the HSB test (model H). Right: Contour plot
showing the correlation between fy and y;, for the same model. Contours and symbols

are as in Fig.[5.3]
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Figure 3.13: Left: Histogram of ;, obtained for a data set generated for a galaxy with a
Burkert model halo and realistic observational errors. Right: As in top panel, but with
the error bars inflated by a factor of four relative to the actual Gaussian noise added to the
data. Arrows are as in Fig.
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Figure 3.14: As in Fig. but for data generated for a galaxy with a Hernquist dark
matter halo.

of the error bars in terms of the variation between the rotation curve on either side of the
rotation axis rather than purely the statistical noise around an annulus of the tilted ring
model. Systematic differences between the rotation curve on either side of the axis can
therefore lead to over-sized errors being quoted for the data, resulting in a series of data
points whose error bars are much larger than the scatter between the points.

To test the effect of such error inflation, we generated Hernquist-based and Burkert-
based models where the error bars on the data points were a factor of four larger than
the noise which had been added to the observation - the noise added was the same as
that added in Model B. All other model inputs remain the same. The noise added to the
data is generated randomly for each realisation, rather than being the same errors scaled
differently for each model.

Figure [3.13] shows, for the Burkert models, that the distribution of y;, values re-
turned by the MCMC chains is not greatly affected even by this significant level of over-
estimation - the peak of the distribution moves by < 0.1 and the shape of the distribution
is somewhat broadened. In the case of a galaxy with a Hernquist halo, Figure [3.14] shows
that the effect on the distribution is even smaller. It is worth noting that in case of the
Burkert halo, the best single fit of an (a, 8, y) halo (indicated by the purple arrow) moves
considerably, whilst the peak of the distribution from the MCMC algorithm does not. This
is a further demonstration of the robustness of our MCMC method.

For the Hernquist case, the correct error case gives a log slope y;, = 1.00 £ 0.11 and
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the over-estimated error case gives a log slope y;, = 1.01 £ 0.11. In the Burkert case, the
log slope changes from y;, = 0.15 £ 0.11 to y;, = 0.22 + 0.16, which is clearly within the

1o uncertainty.

3.5 Comparison with previous methods

3.5.1 Profile fitting

Before we apply our algorithm to the observed data for DDO 154, we carry out a quanti-
tative comparison between performance of our algorithm and that of the standard model
fitting approach most common in the literature. In these tests, we fit five individual halo
profiles which are commonly used in previous work. For each profile we used the optim
function in Rl’f] which employs a limited-memory BFGS method with box constraints (L-
BFGS-B; Byrd et al. [1995). This method constrains the fitting to a specific parameter
volume which we set to be the same parameter volume as that available to the MCMC al-
gorithm in order to facilitate a fair comparison between the two approaches. We compare
the best-fit model parameters returned by this method with (i) The model from the centre
of the most favoured bin of the MCMC distribution (with 512 bins per parameter); (ii) the
distribution of models returned by the MCMC analysis.

In these comparison tests, we use data generated using two input halo profiles: the
Hernquist profile from the previous sections, as an example of a cusped halo, and the
Burkert profile as a representative cored halo. For consistency with previous work which
typically holds the Y and R, parameters constant, in this section we do not allow the
stellar properties to vary along our MCMC chains.

The left panel of Fig. compares the histogram of 7y;, values returned by the
MCMC analysis with the values obtained from the fitting of individual halo profiles. The
consistency of the v;, value for the best-fit (@, 5, y) model (purple arrow) with the peak
of the MCMC-generated histogram, combined with an inspection of the MCMC chains
for convergence, shows that the MCMC works with these data. The Hernquist, NFW and
Einasto profiles yield also fits which are close to the MCMC peak.

More importantly, in this test the Burkert profile returns a y;, value which is dis-
favoured by the MCMC distribution at the 30 level. Reassuringly, its szed values also
disfavour these models relative to the NFW fit at the 30~ confidence level. This test sug-

gests that the widely-used, simple curve-fitting approach can yield reliable results for

3http://www.r-project.org/
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Figure 3.15: Histogram of y;, values for a test with a Hernquist profile input (modelB,
left) and a Burkert profile (model F, right). Arrows indicate the values of y;, for the input
model (black) as well as for the best-fit Burkert (green), Einasto (red), Hernquist (orange)
and (a, B, y) (purple) profiles. See text for a discussion.

cusped profiles, both in terms of recovering physical parameters and distinguishing be-
tween different halo models.

The sze 4 values for all single fits, and the parameters for these fits and for the optimal
MCMC result, are shown in Table [3.3] In both cases the fits for the best MCMC result
and the best-fitting (a, 5,7y) model find very similar values for y;,, even though there is
variation in the parameters.

In order to test the ability of our algorithm to distinguish between models with differ-
ent values of y;, we ran a series of models, based on Hernquist profiles (@, 8,y) = (1,4, 1)
but with y values ranging from 0.1 to 0.9 in steps of 0.1 - uniform cored and y = 1
cusped models having already been tested above. The distributions of 7;, for the three
cases 0.1,0.5 and 0.9 are presented in Fig. As the Figure shows, in each case, the
MCMC chains are able to exclude both other values of y;, at approximately 20~ confi-
dence. We therefore conclude that provided the MCMC chains are properly converged,
current observational data are sufficient to constrain y;, to within < +0.25. In addition to
providing estimates of particular parameters, however, the MCMC approach returns the
distributions of models which are consistent with the data, and is thus more informative

than pure curve-fitting approaches.
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Figure 3.16: The constraint on v;, for input values of y = (0.1, 0.5,0.9) which are shown
in red, green and blue respectively. The arrows show the values of y;, for the input model
- note that these are not the same as the input values of vy.
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3.5.2 MCMC approaches

The application of MCMC techniques to the analysis of rotation curves was previously
carried out by Puglielli et al.|(2010). Their analysis was of a single galaxy, NGC 6503, us-
ing a more complex stellar model than is considered here (and, as a consequence, a higher
dimensional parameter space). They used 18 parameters, and tested 4 distinct scenarios
which effectively expanded the volume further, but without continuously parameterising
the extra dimensions. The majority of the parameters related to the stellar distribution,
while the dark matter halo was characterised by just three parameters: a density scale, a
radial scale and an inner logarithmic slope. The other shape parameters of the halo were
held fixed (@« = 1 and B = 3). They rejected the use of HI rotation curve data on the
basis that the one dimensional data they were modelling could not differentiate between
circular and non-circular motion. They instead use stellar rotation curves, which require
additional calculation to take into account asymmetric drift.

Our motivation for allowing the parameters @ and 8 to vary, in contrast to the approach
of Puglielli et al.| (2010), is that we wish to determine explicitly the extent to which the
observed data can constrain the halo profiles. By using an MCMC approach, parameters
which are unconstrained are easily identified as such. Further, MCMC permits easy iden-
tification of parameter degeneracies. This is a key advantage of the method as it makes
it possible to determine which physical quantities are constrained by the data. It is im-
portant to note that although individual parameters in our models (e.g. the asymptotic log
slope of the halo profile y) may not be constrained, the data may nevertheless constrain
physical quantities such as the log slope at the innermost data point (which is a non-linear
function of all the model parameters). A simple example of this is that the gravitating
mass within the outermost data point, which depends on all five model parameters, can be
constrained simply by virtue of our assumption that the gas is moving on circular orbits
at each radius. If we fix the shape of the halo at large radii, however, we limit the ability
of the models to reproduce the data and may therefore bias the estimate of the mass. In-
cluding more parameters is justified provided that the MCMC results are interpreted with
caution - no credence is given to individual parameters which are unconstrained, and all
parameter correlations are carefully explored.

With the availability of two dimensional velocity fields, non-circular motion can now
either be removed from HI data, or target galaxies can be selected on the basis of their ex-
hibiting low levels of non-circular velocity. In either case, gas is a more reliable source for
rotation curves as it does not require further modelling. This partly motivates our use of

simpler models of the stellar components in this work than those used by Puglielli et al.
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(2010). Additionally, however, we have found from our study that the inclusion of pa-
rameters which relate to physical quantities that are not constrained by the observed data
creates the risk of biasing the analysis due to complications in the shape of the parameter
space or the presence of degeneracies between these parameters and physical quantities
which the data can constrain. In particular, if there is a region of the parameter space
where one or more of the parameters no longer has an influence on the model likelihoods,
and models in this region have an adequate (but not optimal) likelihood, then the overall
distribution of models may be biased towards this region and away from higher likelihood
models. For example, if a maximal disk is consistent with the data then a model which has
a low value of v, can have a wide range of (@, 3, y, ;) without affecting its likelihood.
The volume of parameter space associated with such high-Y, low-v,,, models is therefore
increased, which may lead the MCMC chains to become biased in favour of maximal disk
models.

We have therefore elected to take a bottom-up approach to the stellar modelling rather
than an all-in approach and our models contain a minimal set of parameters. For the
stellar distribution, two parameters is the least that are required to reflect the uncertainties
in the data, and for the dark matter halo the (@, 8, ¥, Vmax, ¥s) parameterisation is necessary
to ensure that the full range of models which have previously been considered can be

approximated within a single family.

3.6 Application to DDO 154

Having shown that our algorithm is able to produce reliable results, we now present an
application to observational data for the LSB galaxy DDO 154. DDO 154 is a dwarf
irregular galaxy whose mass has been estimated to be 3.0 x 10° M, inside a radius of
8 kpc (Carignan and Purton, |1998)). The galaxy also has an extensive gas disk, providing
good data for the study of its rotation curve. In a recent study of the rotation curve of DDO
154, also based on THINGS data, Oh et al.| (2011) found the log slope of its halo based
on the inner data points to be @ = 0.29 + 0.15. This study excluded the innermost data
point, where our 7;, is defined, but in what follows we take this as a general description
of the inner slope for comparison with our results.

It is worth noting that the error bars on the rotation curve of DDO 154 presented in
de Blok et al.|(2008) appear, on inspection, larger than the noise in the data points, sug-
gesting that they are not purely statistical errors and may be affected by the error inflation
discussed earlier, in Section While we have shown already that such outsized errors
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do not strongly impact on the performance of our algorithm for an LSB galaxy, it is an
undesirable feature of the tilted ring modelling approach to the determination of rotation

curves which we plan to address in future work.
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Figure 3.18: As in Fig.[3.2]but for DDO 154 data. Here we use free stellar disk parameters
Sfr and fg,.
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Fig. presents the results of our MCMC analysis of DDO154 in the form of his-
tograms of all the model parameters, as well as the physical parameter y;,. From the
latter histogram, we find that the inner log slope of the DDO154 dark matter halo is
Yin = 0.39 £ 0.11. This result is consistent with the earlier result of |(Oh et al.| (2011)
(@ = =0.29 £ 0.15, where « is an inner density slope derived from several data points).
As the histogram shows, the data strongly exclude both y;, = 1 and y;, = 0. The v, his-
togram in Fig. is similar to those shown in Fig. [3.16] which lends credibility to our
MCMC constraints. We note that while the results shown in the Figure are based on runs
in which the stellar parameters fy and fg, are allowed to vary along the chains, the results
obtained when we hold these parameters at their estimated values are very similar. This is
consistent with our earlier findings that our analysis is able to return reliable constraints
on the halo profiles of LSB galaxies independently of the quality of the constraints on the
stellar parameters.

In order to compare our results for DDO 154 with those of previous studies of this
galaxy in a quantitative manner, we have performed fits of individual halo profiles to the
observed data in the same way as described in Section [3.5.1] A complete description of
all the fits can be found in Table[3.4] These fits are also over-plotted on the MCMC data
in Fig. and their estimates of y;, are indicated by the arrows in panel (d) of Fig.
The 7;, histogram shows that the Einasto and («a, 8, y) profile fits yield values of y;, which
are fully consistent with the distribution of values returned by the MCMC chains.

However, Table shows that the Xfe 4 values for all the individually fitted profiles
(including the (a,f,vy) and Einasto profiles) are less than unity. Comparisons between
X2, values below unity are meaningless, as this represents consistently approaching data
points within the 1o error bars. The differences between these low values are essentially
a measure of how effectively they model noise. Further, comparison of the )(fe 4 Obtained
from models with different forms and different numbers of fitting parameters is merely
indicative of which models are preferred by the data, rather than being formally statisti-
cally robust. Our MCMC approach, on the other hand, allows us to compare the relative
merit of the full space of (a, B, y) halo profiles and hence to make meaningful statements
about the generic properties of models which are consistent with the observed data. In a
subsequent paper, we will exploit this power to obtain general results for the full set of
THINGS galaxies (Hague & Wilkinson, in prep.).

Early work on the density profile of DDO 154 attempted to compare rotation curves
for halo profiles whose parameters were determined by cosmological constraints. Moore

(1994)) excluded the Hernquist profile in favour of a cored profile, but only with a “cos-
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mological simulation prior” on the Hernquist parameters. The same prior was later used
by Burkert (1995) to argue for a “universal” dark halo profile. However, given the widely
acknowledged limitations of cosmological simulations on kpc scales due to our incom-
plete understanding of the baryon physics on these scales we have opted not to restrict our
parameter space by imposing priors in this manner.

In their analysis, Burkert| (1995) drew on the work of Flores and Primack (1994)
and concluded that the Burkert profile provides a better fit to the rotation curve of DDO

154 than a p o r!

cusp. The fact that this profile produced a good quality fit appears
inconsistent with our result which excludes a purely cored halo at approximately the ~
2.50 confidence level. However, the analysis in Burkert| (1995)) used ry = 2.8 kpc for the
Burkert halo and the innermost data point available at the time was at r = 0.6 kpc. The

formula for the log slope of a Burkert profile is

r 272

dlogp N
r+ro r2+r(2)

dlogr

(3.7

so the shallowest slope within the data range then available was —0.26. It is also important
to note that this data point has a very large error in v.. At the same radius, the (@, ,y)
model at the peak in the y(r) histogram from our MCMC chains shows a log slope of
—0.58. Burkert| (1995) did not supply a fitting statistic nor errors for the Burkert fit pa-
rameters, so it is not possible from this information alone to determine if the result is truly
incompatible. However, given the quality of the extant data at that time, it is possible
that the uncertainties would be large enough to be consistent with our result. It is also
worth noting that in addition to poorer quality velocity data, the stellar data that existed
was not as detailed as that obtained from Spitzer and used in de Blok et al. (2008). In
particular, from the figures provided by Flores and Primack| (1994) it is clear that the dark
matter rotation curve that was needed to reconcile their baryonic and total observed rota-
tion curves was substantially and qualitatively different from that required for the current
THINGS/Spitzer derived rotation curves. Nevertheless, we note that the shallowest log
slopes from the Burkert (1995) and |Oh et al. (2011) analyses are broadly consistent with
that found by our study, with the caveat that they are measured at slightly different radii.
The principle conclusion of Burkert| (1995) with regard to DDO 154 was that steeply
cusped haloes were excluded by the data. Notwithstanding the differences in the observed
data used in our study, their conclusion is fully consistent with the ~ 40~ exclusion of such

haloes by our method.
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3.7 Conclusion

We have presented a new approach to the modelling of disk galaxy rotation curves which
uses a Markov Chain Monte Carlo algorithm to explore the parameter space of a very gen-
eral family of dark matter halo profiles. Through extensive testing on artificial data sets,
we have demonstrated that our method can both recover dark matter halo profiles reliably
and can provide robust constraints on the distribution of acceptable models in parameter
space. More critically, when the observed data are unable to constrain particular param-
eters, or indeed the entire profile, the output of our algorithm shows this explicitly. This
is a useful property, as it means that it does not require pre-judgement or pre-processing
to determine whether or not a particular galaxy is amenable to this form of analysis; if
a galaxy has too high a surface brightness to allow the dark matter halo parameters to
be meaningfully constrained, the algorithm will explicitly show the degeneracy between
dark matter and stellar contributions.

In particular, we have shown that the logarithmic slope of the dark matter halo profile
at the location of the innermost data point in an observed rotation curve can be robustly
constrained in the case of an LSB galaxy. This conclusion is insensitive to moderate
over-estimation of the observational errors in the data sets. We have further shown that
a reduction in the velocity errors of the data would improve constraints more than an
increase in spatial resolution.

We have applied the method to the recently obtained THINGS data set for the LSB
galaxy DDO 154, obtaining an estimate of —0.39 + 0.11 for the logarithmic slope of the
dark matter halo at a radius of 0.14 kpc, the radius of the innermost data point in the
measured rotation curve. We have compared our MCMC results with those obtained by
fitting individual dark matter halo profiles to the data. While the numerical value of our
result is consistent with the results of previous studies of this galaxy, the marginalised
probability distributions for the parameters that can be produced through MCMC give
significantly more information than it is possible to obtain through the fitting of small set
of halo profiles. Based on our analysis, it is possible to exclude logarithmic slopes of both
0 and 1 with high significance.

Clearly, our method has the potential to yield interesting results when applied to large
samples of galaxy rotation curves. In future work, we intend to apply it to the full set of
THINGS galaxies in order to obtain a general picture of the range of halo mass profiles

which are consistent with current observed data.
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The disparity between the density profiles of galactic dark matter haloes predicted by
dark matter only cosmological simulations and those inferred from rotation curve decom-
position, the so-called cusp-core problem, suggests that baryonic physics has an impact
on dark matter density in the central regions of galaxies. Using a Markov Chain Monte
Carlo (MCMC) analysis of galactic rotation curves we constrain density profiles and an
estimated minimum radius for baryon influence, r;, which we couple with a feedback
model to give an estimate of the fraction of matter within that radius that must be ex-
pelled to produce the observed halo profile. We examine the rotation curves of 8 galaxies
taken from the THINGS data set and determine constraints on the radial density profiles
of their dark matter haloes. For some of the galaxies, both cored haloes and cosmological
p oc r ! cusps are excluded which requires finely tuned baryonic feedback. For galaxies
which exhibit extended cores in their haloes (e.g. NGC 925), the use of a split power-law
halo profile yields models without the unphysical, sharp features seen in models based on
the Einasto profile. We have found there is no universal halo profile which can describe

all the galaxies studied here.

4.1 Introduction

Disk galaxies are presumed by ACDM cosmology to be dominated by dark matter e.g.
(e.g. Bosma, [1978). An understanding of the arrangement of dark matter is therefore
necessary for understanding the kinematics and dynamics of these galaxies. Analysis
of galactic rotation curves, as well as of N-body cosmological simulations, has produced
numerous models describing how dark matter density varies with distance from the centre
of a galaxy.

Dark matter only cosmological simulations were found by Dubinski and Carlberg
(1991)) and Navarro et al.| (1996) to produce haloes with an approximately universal den-
sity profile, with density proportional to r~! towards = 0 and r~> towards r = co. These
haloes follow a set of scaling relations with virial mass such that they behave as a single
parameter family of models (Bullock et al., 2001).

The halo density profiles inferred from observing the rotation of disk galaxies appear
to contradict this picture. For example, Gentile et al.| (2004) inferred the density profiles
of 5 spiral galaxies and found them to be consistent with flat cores. Rotation curves of 17
galaxies analysed by Bosma (2003) were also found to contradict simulations and exclude
r~! cusps. This has become known as the cusp-core problem. The possibility of the differ-

ence being due to erroneous inference of cores from observations has been discussed, and

74



Dark Matter In Disk Galaxies - 11 4.1. Introduction

refuted, in de Blok et al. (2003). This, coupled with an increase in resolution of kinematic
data, has at this point resolved such concerns.

High quality data from The HI Nearby Galaxy Survey, THINGS (Walter et al.,[2008)
has allowed the generation of more detailed rotation curves, that extend to smaller radii
than those used in previous treatments of the cusp/core problem (de Blok et al.,[2008)). An
analysis of these rotation curves by |Chemin et al.|(2011]) showed that an Einasto profile
o o« exp(—r"), provides a better formal fit than cored profiles such as the Burkert profile
(Burkert, [1995) or the NFW profile. Also using THINGS data, Oh et al.| (2011) claimed
that a selection of dwarf galaxies (including DDO 154, which we studied using an MCMC
method in Chapter 3) exhibit 7~%2° central slopes. They found all the dwarf galaxies in
their study to be inconsistent with 7~! inner haloes. Velocity fields were also obtained via
integral field spectroscopy and used to compare NFW haloes to pseudo-isothermal haloes
for 17 galaxies by |de Naray et al.| (2008), claiming that a maximal disk and an NFW halo
were mutually exclusive.

Simulations have been used to try and resolve the cusp-core problem. Read and
Gilmore| (2005) demonstrated that the baryon physics left out of pure N-body simulations
can account for this disparity, in the case of dwarf galaxies, through time asymmetric
mass loss (e.g. baryon infall and outflow), and Governato et al.| (2010) used supernovae
feedback to explain both the flattening of the inner dark matter density profile and the
absence of bulges in dwarf galaxies. Another approach by Katz et al.| (2014) attempted to
account for the current density profile of a subset of THINGS galaxy dark matter haloes
using only adiabatic contraction. They fit NFW profiles to the rotation curve data from
de Blok et al.| (2008)) and compare the concentration parameter with that of a primordial
halo.

In this chapter we attempt to provide an improved modelling of dark matter density
profiles in a selection of THINGS galaxies using a more general parameterised density
profile, the @ — 8 — y profile (Zhao, |1996), and a Markov Chain Monte Carlo (MCMC)
method to explore the parameterisation. We also explore the implications of our improved
density profiles for out understanding of feedback processes. The structure of this chapter
is as follows; Section 4.2 summarises the rotation curve decomposition and MCMC tech-
niques used to derive dark matter density profiles. Section 4.3|describes a simple analytic
model that can be used to constrain formation scenarios for an individual galaxy given
its halo density profile and rotation curve. Section [4.4]discusses the results for individual
galaxies, and Section draws conclusions from the analysis when applied to our full

sample of galaxies.
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4.2 Method

The rotation curve analysis method used in this chapter is described fully in Chapter
3. Here we will briefly summarise our data processing chain: first the method used by
de Blok et al.| (2008)) to derive rotation curves from the THINGS velocity fields, secondly
the halo density profile we fit to this data and the parameter space defined by it, and then
finally the Markov Chain Monte Carlo (MCMC) method that we use to constrain the
density profiles of the dark matter haloes. The output of this method is a distribution of

halo models, and thus provides not only a best fit model but also robust errors.

4.2.1 Baryonic Mass Modelling

The rotation curve decompositions we used were provided by de Blok, and we describe
their generation here for completeness. A more thorough description can be found in
de Blok et al.| (2008). Data from the Spitzer Infrared Nearby Galaxy Survey (SINGS:
see Kennicutt et al., 2003)) provides surface brightness data that, when mapped onto tilted
rings and combined with an estimate of the mass-to-light ratio Y for the stellar popula-
tion, can give a radial mass distribution for the stellar component of the galaxy. When
modelling 1D rotation curves, we assume it is sufficient to model this as an axisymmetric
disk with exponentially decreasing density as a function of radius.

In de Blok et al.| (2008) there are two values for 1" used; one derived from a Kroupa
IMF and one derived from a version of the Salpeter IMF with the mass reduced by 30%
that is referred to as a diet Salpeter IMF. Bell and de Jong| (2001) found that reducing the
number of low mass stars relative to the original Salpeter IMF was required in order to
make the stellar disk “consistent with the maximum disk constraints”. We use this value
for " only as a centre point for the parameter range, half a dex either side of the values
given in Table 3 in de Blok et al.| (2008), which in all cases besides DDO 154 (due to
its very low surface brightness) already encompasses baryonic mass scalings up to, and
including, a maximal disk.

Gas can be modelled in the same way, from the THINGS data, but there are fewer
issues determining the mass of gas present. HI emission is proportional to the neutral
hydrogen present, and a scaling factor of 1.4 is applied that takes into account the amount
of helium and metals that will also be present. Again, an exponential disk model is used
in order to generate an axisymmetric potential and thus a 1D rotation curve contribution.

Our models do not include molecular gas, but following the method of |de Blok et al.

(2008) we assume that the density distribution of this gas follows that of the stars and is
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a small fraction of the stellar surface density. There would be no benefit to introducing a
parameter describing the ratio of stars to molecular gas, as it would be entirely degenerate
with Y.

There is some uncertainty in the inclinations of the galaxies studied here, which would
manifest itself in a rotation curve as a systematic shift in the circular velocity. It would
be possible to include the inclination as a parameter in our study, however it would also
be degenerate with T’; stellar and gas mass modelling are insensitive to inclination unless
significant extinction occurs. This can only happen when the galaxy is near to edge on,
and the galaxies in our set have already been selected to have intermediate inclination (see
de Blok et al., 2008)).

4.2.2 Dark Halo Profiles

We make three assumptions about the dark matter haloes of the galaxies analysed in this
chapter

1. They are spherically symmetric

2. The density monotonically decreases with radius

3. The log slope is continuous and differentiable with respect to radius

Satisfying these constraints, a general, spherically symmetric, halo density profile has
been selected, which either analytically encloses, or closely emulates, all commonly used
density profiles. We start with the @ — 8 — y profile (Zhao, |1996)

Ps
x)’(l + xl/a)oz(ﬁ—y)

p(x) = 4.1)

where pj is the scale density, 7y is the scale radius and «, 8, and y are shape parameters.
v determines the log slope at » = 0, 5 determines the log slope as r — oo and « the rate
at which the profile transitions between the two power laws, with lower values being a

sharper transition. We transform the parameter space of this profile thus:

2

Zmax vmax
PO = =G o a /oy 4.2)

where x = r/rg, with rg the scale radius, v,y is the peak velocity of the dark matter

rotation curve and X, is given by

<~ PsFmax
> =
M M(Fnax)

where rp,x 1s the radius at which the profile’s rotation curve reaches its maximum

4.3)

77



Dark Matter In Disk Galaxies - 11 4.2. Method

velocity, M(rmax) 1S the mass enclosed at that radius. A derivation and more complete
description of this can be found in Chapter 3. The degeneracy removed by our transfor-
mation can be seen in Figure 1 of Katz et al.|(2014)) the case of an NFW profile (a subset
of the @ — 8 — vy halo) which applies a similar Monte Carlo method to ours to a simpler
parameter space.

Because double power laws with respect to radius can be approximately modelled
(provided the transition between the two powers is smooth) by a single power law over
a finite range, we assert that our two power model can represent any profile containing
more power laws, over a finite radial range, as long as a similar condition of smoothness

is met.

4.2.3 Markov Chain Monte Carlo

A Markov Chain Monte Carlo (MCMC) method (Hastings,, [1970) is used to integrate
over the parameter space defined by the profile given in equation 4.2|along with two disk
scaling parameters; a mass-to-light ratio multiplier fi which scales the magnitude of the
stellar contribution (relative to the mass-to-light ratio Y for the diet Salpeter IMF case in
de Blok et al., 2008). We consider fv in the range [0.316, 3.16] which encloses the Kroupa
IMF and the factor of 2 variation in infrared IMF suggested by Bell and de Jong| (2001)).
We use CosmoMC (Lewis and Bridle, 2002), in a generic mode, together with a likelihood
function of our own as our MCMC engine. MCMC is a Bayesian method that generates a
probability distribution in the parameter space of a set of models. Bayes’ Theorem states
that

P(M[X]ID) = P(DIMI[:])P(M[X]) 4.4)

(D)

where M is a proposed model defined by parameter vector x, and D is the data. As-

suming that P(D) = 1, we can then generate a series of values for P(D|M) via a Markov
chain process. Starting at a random point, the algorithm generates a new candidate point
based on a random step drawn from a probability distribution, which in this case we take

to be Gaussian. The new point x’ is added to the Markov chain with a probability

P(DIM[x']) 1] 4.5)

P = mi ,
accept min [ P(DlM[X])
if the new point is not accepted, the current point is added again to the Markov chain.

This process is repeated and, provided the chain is able to converge, produces a distribu-
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tion of P(D|M[x]), which can be combined with the prior distribution P(M[x]) to calculate
the probability distribution we seek.

A condition required for an MCMC run to converge well is that the step size (mea-
sured in our Gaussian case by a standard deviation o in each parameter) is appropriate to
the distribution. This can either be done by trial and error, or by a step size that adapts
during the course of the run. We opt for the second approach, updating the probability
distribution of candidate points relative to the current point based on a covariance ma-
trix generated from the most recent half of the models generated. CosmoMC then samples
PYT(D|M[x]) where T is a temperature value which we set equal to 1 (reducing to Equa-
tion 4.5) unless there are specific problems finding a constraint, where we use T’ = 2.

A further condition for convergence is that the parameter space be able to cover the
entire range of models that are likely to fit the data. In our case, this condition is of most
concern for those haloes where y — 0, which are required to model the flat-cored Burkert
(1995) halo. Boundary effects at the edge of the parameter space not only cause prob-
lems integrating there due to cutting off part of the Gaussian selection function, but also
necessarily mean that the distribution is not normalised. Strictly, MCMC produces a non-
normalised distribution, but the distribution can be normalised correctly if the probability
tends towards zero at the boundaries of the parameter space, and the distribution can be
assumed to have no models with nonzero probability outside this space.

To resolve this boundary issue, we mirror the parameter space around y = 0. The
MCMC explores a parameter range y’ in the range [-2, 2], and generates parameter values
using y = |y’|, so the actual parameter v is only explored in the range [0,2]. We do not
consider negative values of y physically consistent with our model of the dark matter halo.

We use 8 independent MCMC chains, each using approximately 5 x 10° models (the
code terminates once the first chain completes, but as the run time for the chains is quite
consistent this does not usually cause the chains to be unduly shortened.) The first 1 x 10°
models in each chain are treated as burn in, the process by which the MCMC algorithm
initially finds and moves into the main body of the distribution, and discarded.

Previous work on rotation curves such as (Chemin et al. (2011) and |Oh et al.| (2011)
has tested a small number of proposed density profiles against the data; these profiles
represent single points (or in the case of the Einasto profile, curves) within the parameter
space we explore. By fully characterising the parameter space, we are able to put these

previous fits in a wider context.
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4.3 Analysis

Once we have generated distributions of density profiles for each galaxy, we investigate
their systematic properties, with reference to previous claims regarding the nature of dark
matter haloes. Our primary focus is to find properties of the dark matter haloes that could
constrain formation scenarios.

In previous work (see e.g. van den Bosch and Swaters|, 2001)), haloes whose density
profiles became flat as » — 0 are referred to as ’cored’ whereas haloes that show density
profiles approaching p o r™ where n > 1 are referred to as cusped. Terminology for
intermediate haloes (i.e. those with 0 < n < 1) is unclear. For the purposes of our
discussion, we consider such haloes neither fully cusped nor fully cored.

The parameter y, the asymptotic log slope of the profile as » — 0, is a property of the
profile that describes the shape of the halo outside the data range. Therefore we generate,
from the halo profiles, an alternative parameter y;,. This is the log slope of the dark
matter halo density profile at the innermost data point of the measured rotation curve. As
the data sets all start at a different radius, direct comparisons between galaxies using i,
are not possible. It is, however, a useful quantity because if it is substantially above zero,
it excludes the existence of a core within the data range.

Another value we extract from our density profiles is r;. This is the radius at which
the log slope (which must monotonically decrease for all profiles) reaches —1. As we will
show, this a well constrained and useful scale radiuﬂ In order to demonstrate its utility,
we construct a simple model for the formation of the galaxies we study here.

If we assume that the starting point for a dark matter halo is an NFW profile (or some
other cosmological profile that tends towards a log slope of -1 at r = 0), then the density
profile must have a logarithmic slope of dlogp/dlogr = —1 or steeper at all radii, so any
part of the density profile that has a shallower slope can clearly be stated to be inconsistent
with a cosmological profile derived from pure dark matter N-body simulations. Thus 7,
gives us a radius to which the effects of any process which modifies the shape of the halo
must reach in order to account for the current density profile, and we now show that this
is a conservative estimate.

The choice of the parameter r; is based on the minimisation of assumptions. To con-

struct an exact model of an observed galaxy at the time of its formation would require

Tn some work (e.g. |Chemin et al.,|2011), the radius r;, is also used (sometimes written as r_,, but we
exclude the sign in order to maintain consistency with the positive sign of the parameters in the @ — 8 — y
profile.) For individual profiles (such as Burkert profiles) the relationship between these is a straightforward,
constant ratio.
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knowledge of the density of the Universe and assert the exact correctness of a particular
halo model such as NFW or Einasto (whereas we only assume that the halo had a cusp
of some kind). Using r; allows a degree of physical modelling without having to resolve
these unknowns.

In order to investigate the origins of non-cosmological (i.e. v < 1) haloes, we con-
struct a simple model of feedback, where outflows of gas on timescales shorter than the
dynamical time of the halo can impart energy to the halo and alter its density profile. The
source of this feedback can either be an accreting central black hole, supernovae, or other
stellar feedback.

Our model features an inhomogenous spheroid of gas in a spheroid of dark matter, and
a disk. Gas is removed entirely from the galaxy instantaneously and permanently during
an outflow (realistic, given velocities of various possible outflows in e.g. Governato et al.,
2010; Kingl [2003). Spheroidal symmetry allows us to make a number of simplifying
assumptions in the discussion which follows in both the spherical case, and the oblate
spheroidal case (Binney and Tremaine, 2008)). Hereafter we only discuss radius, however
the arguments still apply using the equivalent coordinate in an oblate spheroidal system.

Given the assumed geometry, dark matter particles can only respond to changes in
the mass interior to their current position. If a certain portion of this mass is removed,
a particle will respond by moving outwards. Assuming a much longer timescale for the
removed mass to fall back in (if it does at all) the upper limit to the instantaneous change
in the total energy of dark matter particles at any particular radius, taking the potential
to be relative to r; is the change in potential interior to that radius. As baryons and dark
matter move in the same potential, we assume a mass of baryons outflowing past r; can
bring the same mass of dark matter with it. The change in dark matter mass of the halo

interior to r; is obtained from

M i (r1) = Mg (r))(1 = fi)™! (4.6)

where My 4,«(r) is the initial mass interior to r and f; is the fraction of mass that is in
baryons and thus available for an outflow. We assume that the available gas is arranged
in a diffuse spheroid the follows the density profile of the dark matter. In this case we
are modelling a single outflow, or multiple outflows where any gas falling back in negates
the effects of its initial outward movement exactly. In reality, infall happens over a much
larger timescale than outflow (see e.g. (Governato et al., 2010), but modelling this is be-
yond the scope of the simple model we are constructing here, and will be addressed in

later work.
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We assume here that the amount of dark matter removed from inside a radius r is
approximately equal to the amount of gas removed. To verify this, we ran a series of
2 x 106 particle N-body simulations using falcON (Dehnen, 2000, 2002), using spherical
initial haloes with inner log slopes y = 0,0.25,0.5,7/9, 1, and removing a fraction of
mass equal to f, = 0.02,0.04,0.08,0.16,0.24,0.48,0.64,0.90. Mass is removed equally
from all of the particles in the simulation. Under conditions of spherical symmetry this
does not produce a different result from removing all the mass interior to r;, and does not
require an extra step of calculating the position of r;.

We compared mass before and after, within the scale radius, and found that for a
cosmological baryon fraction, the fraction of dark matter carried away with gas outflow
is of order unity, as shown in Figure The ratio decreases as the fraction of matter
expelled (considered to be f, here) as there is less dark matter in total to expel.

The starting conditions for these simulations were constructed in equilibrium using
mkhalo from the same software suite - in reality the response of the dark matter to gas
outflow is dependent on the velocity structure of the halo. This velocity structure depends
on the precise history of the halo, as shown in|Read and Gilmore|(2005) where halo cores
are formed by moving particles from tangential to radial orbits. Thus the exact order of
the curves in Figure should not be taken as strictly realistic, but it does demonstrate
that the ratio between the dark matter removed and the gas removed at a certain radius
should be of order unity.

From equation 4.6}, assuming an initial and a final mass profile, we can compute the
spheroidal baryon content at the time the outflow(s) occurred. In reality this could be
raised by contraction of the gas content of the galaxy, or lowered due to baryons leaving
the spheroidal gas component through either clumping, or becoming part of the disk,
and either way being too dense to participate in an outflow event. However, we are able
to produce a consistent model to predict f, - the fraction of matter available as gas of
sufficiently low density to be part of the feedback process.

Assuming the dark matter halo mass interior to the outermost data point we have
observed is unchanged through feedback, there exists an NFW profile (using the scaling
relation established in cosmological simulations) that gives a value for Mi(r;) and the
model above then gives f,. In Section 4.5 we determine this value for this set of galaxies,

and discuss whether they are realistic.
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Figure 4.1: Ratio of the mass of dark matter removed from the simulated halo after
outflow AM, to the mass of baryons removed during outflow AM,, from N-body sim-
ulation, for a range of initial conditions. Red to blue denotes increasing log slope (0,
0.25, 0.5, 7/9, 1). Simulations were run with expelled fractions of the initial matter
f» = 0.02,0.04,0.08,0.16,0.24,0.48,0.64,0.90. The ratio decreases as the fraction of
matter expelled as there is less dark matter in total to expel. Deviations of the curves at
low f, are due to AM,, being a smaller multiple of M,icie.
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4.4 Results

Table {.1] shows relevant physical information for the galaxies in our sample and some
detail of the MCMC output. We have sampled 4 x 10’ models in each case, using 8 in-
dependent MCMC chains which have converged to similar distributions. The quantitative
convergence statistic we use here, provided by the getdist program which accompanies
CosmoMC, computes the variance of the means of the chains o(X), divided by the mean of
the variances of the chains 6(x), and must be smaller than unity for a set of chains to be
converged. This statistic is calculated for each parameter, and the largest value is taken to

be an overall measure of convergence.
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The galaxies we study are modelled by de Blok et al.| (2008), utilising HI velocity
maps from THINGS to derive the rotation speed, the same HI data to derive a radial gas
density profile, and 3.6 um maps from SINGS (along with assumed 7 ratios) to derive the
stellar components. Some of the galaxies in this sample are modelled with a single stellar
disk, whilst some are modelled with a stellar disk and a separate bulge component.

Figure [4.2] shows the distribution of halo log slope profiles for all accepted models in
the MCMC chains. We categorise as having cored haloes NGC 925, NGC 3198, NGC
3521, and (with a weaker constraint) NGC 2976. We find cusps in NGC 2403 and NGC
3621, and intermediate inner log slopes in DDO 154, NGC 3198 and NGC 7793. Figure
[.3]shows the rotation curve decomposition of the most populated bin of parameter space
in the MCMC chains.
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4.4.1 DDO 154

This is the least massive galaxy in the set we are examining, having a mass of 3 x 10° M,
according to Carignan and Purton (1998), and thus has lower rotation speeds overall than
the other galaxies. Given that its low surface brightness makes the dark matter halo pa-
rameters easier to constrain, we used it as a test case for the method that we discussed in
Chapter 3. The chapter contains some analysis of the result.

The HI velocity field of this galaxy is asymmetric in the outer parts (illustrated in
Figure 81 in |de Blok et al., 2008), but as we are concerned mainly with the potential
at small r, this is not an obstacle to the constraint of y;,. The rotation curve is well
constrained and, based on the errors which are calculated from the difference between
the two sides of the rotation curve, quite symmetrical in the region of interest. We find
a well constrained 7;, value, with an intermediate log slope at the innermost datapoint
(r = 135.7pc.) Unsurprisingly this value is unaffected by the chosen value of fy due to
the low contribution of the stellar disk to the rotation curve.

In Chapter 3, the gas curve for this galaxy was represented by the rotation curve of a
smooth exponential disk. We have opted to no longer do this, first because the gas contri-
bution does not significantly alter the result anyway, and secondly because any smoothing
that is necessary should be handled by the MCMC process. We now directly use the gas
distribution data from de Blok et al.| (2008). This reasoning is supported by the fact that

we indeed get the same value for y;,, within error, as that reported in Chapter 3.

4.4.2 NGC 2403

The data for this galaxy have large error bars relative to their scatter (Figure 70, de Blok
et al., 2008)). However we demonstrated in Chapter 3, using test data, that our method is
robust to this issue.

The constraint on the inner log slope is shown in Figures and With a freely
varying mass-to-light ratio, the distribution of 7, is clearly not Gaussian, showing a
plateau towards more cored values. This part of the parameter space is noisy, and the
level of the noise is not consistent across parameter space. Whilst formally converged
(o(%)/6(x) = 0.73), the presence of the plateau reveals something interesting about the
parameter space, as well as pointing to the need for judicious use of convergence statistics.
The peak at the high end of the v;, distribution appears in all chains. Figure {.6] shows
that the inner log slope has a single smooth peak when f+ is fixed by assuming either a

diet Salpeter or Kroupa IMF, in both cases consistent between chains, indicating that the
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Figure 4.4: Histogram of v;, values produced by the MCMC analysis of NGC 2403 with
a freely varying mass-to-light ratio multiplier (fy). Arrows indicate the logarithmic slope
at this radius of single profile fits (Green: Burkert profile. Orange: Hernquist profile.
Purple: @ — 8 — y profile. Red: Einasto profile.)
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Figure 4.5: Contour plot of fy versus y;, demonstrating the nature of the degeneracy
between the two parameters. The red contour encloses 0.68 of all models in the MCMC
chains, the green contour encloses 0.95 and the blue contour encloses 0.99.
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Figure 4.6: Histograms of v;, values produced by MCMC analyses of NGC 2403 with
fixed stellar IMF. Blue with a fixed fy derived from a diet salpeter IMF. Red with fy
derived from a Kroupa IMF (Kroupa, 2001). Arrows are as in Figure [4.4]

94



Dark Matter In Disk Galaxies - 11 4.4. Results

<—m
|
|
<>

I I I
0.0 0.5 1.0 15 2.0

Yin

Figure 4.7: Histogram of v;, values produced by the MCMC analysis of NGC 2403 with
a freely varying mass-to-light ratio multiplier (fy), and a temperature 7 = 2. Arrows are
as in Figure 4.4} See text for detailed discussion.
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additional tail in the free fy case is due to a degeneracy (shown in Figure between
the dark matter halo parameters and the mass-to-light ratio. This is to be expected for a
higher surface brightness galaxy - at higher values of fy, the stellar contribution is able
to model the rotation curve alone, and the MCMC then finds fits with low dark matter
density where the exact shape of the halo is less important.

The small, cored plateau represents models which attempt to fit maximal disk models
to the data, and such models require very high values of fy. Furthermore, the fact that
these models cannot form a second peak in the distribution indicates they do not repro-
duce the data as well as those in the peak. We now explore this in more detail. The
maximal disk part of parameter space occupies a large volume, due to the fact that the
shape parameters of the dark matter halo are no longer significant, and can be freely var-
ied without compromising the quality of the fit. This can bias the MCMC chains towards
that volume, so if models there were of a higher fitness than those in the peak, the plateau
region would be strongly favoured in all chains. If we disregard these models on this ba-
sis, we can conclude that NGC 2403 has a moderate cusp. As shown in Figure 4.6|a cusp
is also indicated when using a fixed fy derived from either Kroupa or diet Salpeter IMF.

We took a subsample of 1423 models from the MCMC chain, that were randomly
selected after burn-in with a probability of 10~ for each model, and then divided this into
2 subsamples either side of y;, = 0.5. We found no difference in reduced y? for either side,
to 2 significant figures. Both produced a 90% confidence interval of 2, = 0.30,0.31.
Given the very definite preference of the MCMC chain, and the fact that values of )(fe g <1
are of little use for comparison, we conclude that the algorithm is still able to produce a
meaningful result. We also note that the number of degrees of freedom is treated as a
constant when using x7,, but the nature of the problem means that in some parts of the
parameter space not all of the parameters contribute significantly to the fit - for example,
if vinax 18 low and fy is high then the shaping parameters of the dark matter halo can be
freely varied whilst maintaining a nearly constant proposed rotation curve. This inherent
weakness in )(fed does not apply to our MCMC method, as we use the ratio between a
proposed model and the current one to determine the next step in the chain, and thus )(fed
is equivalent to y? (which we use) as the degrees of freedom cancel.

In order to try and produce a better convergence for the tail, we reran the MCMC
algorithm using a temperature 7 = 2 (and thus sampling P'/? rather than P.) The result
was more consistent across independent chains, and produced a smoother distribution
overall when the chains are summed, as shown in Figure This produces the same

constraint on 7y;, within 1o errors. The numeric values discussed in later sections are
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derived from this version.

4.4.3 NGC 2976

This galaxy has a high surface brightness, so is not expected to produce as strong a con-
straint on the dark matter halo as some of the other galaxies have done. This is borne out
by the y;, distribution in Figure 4.8]

As shown in Figure the rotation curve data for NGC 2976 show a sharp increase
just outside 2 kpc, and it is possible to get a mathematically credible fit to the data without
treating this as a feature at all. However, the shape of the stellar contribution to the rotation
curve suggests that this is the region where dark matter should begin to dominate. Interior
to this, the rotation curve follows the features of the stellar contribution well. Therefore,
an adequate fit (from the perspective of y? only) can be obtained using f > 1 and ignoring
the last few data points.

We find, however, that MCMC selects lower values of fy that are able to fit the entire
range of data using both dark and visible components, as shown in Figure The free
fr run gives r; = 1.94+]7%kpc (90% confidence), which has an upper bound outside the
data range. The lower bound roughly corresponds to the point where the contribution to

the circular velocity from the dark matter halo first exceeds that of the stellar disk.

444 NGC 3198

This galaxy has a well-studied rotation curve (e.g. Begeman, 1989). Error bars show the
disk is roughly axisymmetric, and there is good kinematic data from the HI map at all
radii (Figure 75 in |de Blok et al., 2008]).

One notable feature of the rotation curve for NGC3198 is that the circular velocity
contribution of atomic gas is less than zero in the inner part. This represents a void
where the net gravitational effect of the gas disk is outwards, and has to be subtracted
in quadrature rather than added. This occurs in the same region as the peak of the inner
stellar component in the rotation curve, so if the lack of atomic gas could indicate a large
amount of molecular gas in the disk (observations of which are not part of any of the
original data sources used here) then the contribution of such gas can be modelled by the
freedom in fy. Under this assumption, fy no longer functions purely as a factor of stellar
mass-to-light ratio.

NGC 3198 is another high surface brightness galaxy, but this itself does not preclude a

constraint. The initial run produced differing constraints for each chain, as did a run using
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Figure 4.8: Histogram of the y;, value of all the models produced by the NGC 2976
MCMC run. Arrows are as in Figure 4.4
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Figure 4.9: Histogram of the y;, value of all the models produced by the NGC 3198
MCMC run using fixed fy. Left Results derived from a Kroupa IMF and right results
derived from a diet Salpeter IMF. Arrows are as in Figure 4.4]

the higher temperature setting 7' = 2, but we were able to produce a consistent constraint
by also excluding those data points where the neutral gas contribution is negative - which
also includes the supermaximal inner stellar component. This constraint had a y peak
greater than 1, and thus no meaningful value for r;.

Constraints at 7 = 1, using the entire data range, were possible using a fixed fy, with
the results shown in Figure 4.9 As these both produce constraints on y;, that agree to
within 1o, we classify this galaxy as having a core, but this assumes that the stellar mass-
to-light modelling is robust. The models produced by the free mass-to-light multiplier
run are almost entirely (> 88%) below fy = 0.341, indicating that the MCMC prioritises
keeping the stellar contribution low in order to keep the inner part of it lower than the
observed circular velocity of the galaxy. Better stellar mass modelling is required for a

more definitive constraint.

4.4.5 NGC 3521

We used a temperature setting of 7 = 2 for this galaxy as the lower temperature run
produced a constraint value of o7(X)/6(x) = 2.91 for 8. Due to the nature of the data, and
the area of our interest being the central region of the galaxy, having a poorly constrained

outer log slope is not in itself grounds for a rejecting a result, but in this case both & and
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rs also had o(x)/6(x) > 1.0 when T = 1, so we only present the higher temperature run
here.

A preference for a core is obtained, as shown in Figure [4.10] being flat to within
reasonable error at the innermost data point. This remains unchanged regardless which of
our initial assumptions about stellar mass-to-light is used, although in the cases of fixed
IMF the dark matter contribution is negligible at the smallest radial bin (r = 312 pc.)
A strong constraint is however produced on r; as shown in Figure 4.1} There is no
dependency of r; on fy, which is also strongly constrained, in the free mass-to-light case.
However, the exact value that r| is constrained to changes if we use a fixed fy based on a
Kroupa or diet Salpeter IMF. This is discussed further in Section 4.5]

The rotation curve decomposition for NGC 3521, shown in Figure 4.3] indicates a gap
in the neutral atomic gas disk and also a stellar contribution that is larger than the total
rotation curve for the input value of fy, corresponding to a diet Salpeter IMF. Only using
the data in the range where the neutral gas contribution to the rotation curve is positive
would not permit modelling of the density profile shape as all the contributions and the
observed rotation curve in the remaining region is almost flat. The rising part of the dark
matter halo contribution to the rotation curve is required in order to differentiate between
a central core and a cusp. An MCMC run excluding the data points where the velocity of
the gas contribution is negative produced a peak y;, > 2, but as stated above this cannot

be considered a meaningful value.

44.6 NGC 3621

This galaxy has a stellar disk and a rotation curve of similar maximum velocity and shape
as that of NGC 3198, and like that galaxy has a high surface brightness. However, the
galaxy exhibits significantly more of a cusp when analysed.

In Figure [4.12] we see there is a slight degeneracy between y;, and fy. Although v, is
well constrained when the mass-to-light ratio parameter varies freely (the red contour on
the map showing the 1o level, with an overall range y;, = 0.91i8:£), or when the ratio
is fixed to a particular value, the position of the distribution varies from moderately cored
(¥in = 0.33+03 when using a diet Salpeter IMF) to almost entirely cusped (y;, = 0.89+0°
when using a Kroupa IMF.)

The cusped interpretation is favoured when the MCMC can control fy, however this
distribution is a product of our prior assumptions. The correct value of fy also needs to
account for any molecular gas not included in the model, so it is difficult to give a precise

value for it. We cannot at this point state which of the y;, values is correct from just this
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Figure 4.10: Contour plot of log r; versus y;, for NGC 3521. Inset shows a zoom in on
the contoured region.
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Figure 4.11: Contour plot of the mass-to-light multiplier fy versus r; of all the models
produced by the NGC 3521 MCMC run.
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Figure 4.12: Contour plot of the mass-to-light multiplier fy versus vy;, of all the models
produced by the NGC 3621 MCMC run.
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analysis.

447 NGC7793

NGC 7793 is another high surface brightness galaxy, but at first sight we appear to be
able to constrain it reasonably well. We generated a test case for high surface brightness
galaxies based on NGC 7793 in Chapter 3.

According to Figure both the inner log slope and the mass-to-light multiplier f+
are well constrained and show a clearly cored profile. However, the constraint indicates a
mass-to-light ratio which is substantially higher than that implied by a diet Salpeter IMF,
possibly due to the involvement of molecular gas. Different values, with equally tight
constraints, are found when a fixed mass-to-light ratio is chosen, as shown in Figure 4.14]

This demonstrates a reason why the likelihood distributions in Figure 4.14] must be
used with caution. Each distribution, taken in isolation, returns a very strong constraint -
but it is only apparent through a broader analysis of the parameter space of the result that
this constraint is entirely dependent on the initial assumption about the stellar mass-to-

light ratio. This emphasises the value of the MCMC approach.

4.4.8 NGC925

This galaxy is described in de Blok et al. (2008) as having a weak bar, which is found
in Elmegreen et al.| (1998) to have a length of 5.4kpc. The impact of this bar on the
kinematics, and thus the rotation curve, of the galaxy must be taken into account in our
analysis. We do this through two separate runs of this galaxy, one with the entire data
range from de Blok et al.| (2008)), and one excluding the data points inside r = 5.6 kpc in
order to minimise the impact of bar kinematics on our result.

In a previous analysis (Chemin et al., |2011), the calculated rotation curve of this
galaxy was found to be well fit by an Einasto profile dark matter halo that featured a
sharp change in the rotation curve, caused by the single Einasto shaping parameter (n in
Chemin et al.|2011 but also referred to as @ in|Navarro et al.[2004) being very low. Such
a halo was avoided in our analysis through the availability of more shaping parameters.

The fits to this halo strongly point to the existence of a core, with a radius that encom-
passes most of the data range. Forcing a fixed mass-to-light multiplier does not change the
result, it merely reduces the size of the tail of the distributions. Assuming a diet Salpeter
IMF results in a supermaximal disk i.e. the calculated stellar contribution being higher

than the observed rotation velocity, for a number of points towards the inner part of the
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Figure 4.13: Contour plot of the y value versus mass-to-light multiplier fy of all the
models produced by the NGC 7793 MCMC run.
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Figure 4.14: Histograms of y;, values for NGC 7793 runs blue using a diet Salpeter IMF
derived mass-to-light ratio, and red using a Kroupa IMF (Kroupal 2001) derived mass-
to-light ratio. Histograms are scaled to have equal integrated area. For a Kroupa IMF,
fr = 0.72 and for a diet Salpeter IMF f = 1.
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Figure 4.15: Contour plot of fy versus r; for NGC 7793. Inset shows a zoom in on the
contoured region.
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Figure 4.16: Rotation curve produced by the MCMC analysis of the data for NGC 925
assuming a fixed Kroupa IMF. The black data points are HI rotation curve data, the red
solid line is the modelled stellar contribution derived from a Kroupa IMF to the rotation
curve, the dark blue line is the modelled gas contribution, the green line is the dark matter
halo model at the peak of the distribution, and the light blue line is the expected rotation
curve produced by all these components. For comparison the dotted line shows the stellar
component assuming a diet Salpeter IMF, which is not used in this calculation.
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rotation curve, so we conclude that the Kroupa IMF derived stellar component represents
a more realistic fixed Y.

As shown in Figure 4.T6] the contribution of the stellar component is high at small r,
but the surface brightness becomes much lower further out in the disk. This could mean
that the cored profile (which has the steepest rotation curve) is simply the one which
allows the dark matter contribution to most quickly transition from almost irrelevant, to
being the dominant contribution, as radius increases. There is also a feature at around
r = Skpc that is not modelled well by either the baryons or the proposed dark matter
halo, and may be related to the bar.

The above does not prevent our result being robust. The cored portion of the proposed
dark matter halo extends from where the stellar contribution stops matching the shape of
the observed rotation curve, through to where the dark matter contribution is dominant.
So, whilst the innermost data points may not able to constrain a core, if there were not a
flat density profile at these points, the overall profile would be surprising as it would have
uniform density at intermediate radii, and a rising density again interior to this.

Due to the influence of the bar, and the fact that the rotation curve indicates a larger
stellar contribution than that of dark matter at small r, we do not consider the log slope
here itself to be evidence of a cored density profile. However, we note that analysis of
this galaxy gives a value of r| = 6.84i8:‘51§ kpc (90% confidence interval) which places the
scale radius beyond the radial extent of most of the bar.

Our second run, excluding the inner part of the rotation curve, showed r; = 6.77+553 kpc.
In this case vy is less well constrained, as illustrated in Figure This shows that for this
galaxy the r; result is not compromised by any relation between y and r;. We conclude
that r; is well constrained for this galaxy, but y;, is much less well constrained. However,
it should be noted that higher values of 7y;,, associated with a cusped profile, are much
more difficult to reconcile with the value we have for r; as it would imply a very slow
change in log slope and thus provide a poor fit at larger r.

Our modelling can also explain the anomalous result obtained for this galaxy by
Chemin et al.| (2011). The rotation curve requires a flat log slope over a large radial range
in order to produce a good fit, and the only way to do this with an Einasto halo is to lower
the shape parameter n radically, which also leads to an unphysical, sharp drop in density
near r = 10kpc. A profile with more parameters (in this case, y controlling the inner log
slope and a controlling the rate of transition from the inner to the outer asymptotic log

slopes) avoids this problem.
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Figure 4.17: Distributions of y for NGC 925 using all data points (left) and using only
those data points outside r; = 6.77 kpc (right). Note that we do not use 7y;, for this
comparison as the two cases have different inner radial bins. See text for a discussion.

4.4.9 Rejected Galaxies

We attempted to apply this technique to NGC 2841, NGC 2903, NGC 3031, NGC 4736,
NGC 5055 and NGC 7331, but we found that there was either inadequate kinematic data
for the MCMC algorithm to find a genuine fit to the data, or there was sufficient underlying
asymmetry in the disk to prevent the MCMC method finding a useful constraint.

In the case of NGC 5055, the morphology of the galaxy and the shape of the rotation
curve both appear promising as a target for this technique. However, when we applied an
MCMC analysis, we were unable to constrain any parameters. In Figure #.3| we showed
the peak of the distribution. The halo corresponding to the most populated bin in the
parameter space fits the data well, and relying purely on the value of )(fe 4 < 0.5 without the
context of the parameter space, the conclusion would be that the halo has been correctly
modelled.

The extra information provided by the MCMC process allows us to show that this
is not the case. In Figure we see the distribution of y;, values is not smooth over
a length scale comparable to the initial step size of the MCMC chain, suggesting the 8
parallel chains have not converged to the same distribution, despite them visiting over
~ 4 x 107 models between them. At temperature settings 7=1, 2, and 3 we were unable
to produce a set of chains with a convergence statistic o(x)/d(x) < 1 for all parameters.

Without a repeatable probability distribution, we cannot draw any conclusions.
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Figure 4.18: Histogram of y;, values from an MCMC run on NGC5055 with a temperature
setting T = 1. There are ~ 4 x 107 models included from 8 independent chains. Arrows
are as in Figure 4.4
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4.5 Discussion

Our MCMC method has produced good constraints on r; in those galaxies where such
a constraint is possible. We now place these estimates in the context of other work, and
then use the model we outlined in Section 4.3|in order to explore what we can deduce

about their formation history.

4.5.1 Scale length correlation

In Donato et al.|(2004) it is suggested that, for a set of 25 galaxies, the scale length of the
dark matter halo is proportional to the scale length of the stellar disk. The cored density
profile used to argue for proportionality with the disk scale is a pseudo-isothermal halo,
given by

2

T
= J 4.7
P = P 4.7)

and the stellar component is modelled by an exponential disk with a scale length Rp.
The profile does not show the same degeneracy between py and r. as the « — 8 —y
profile, because it becomes independent of r. at small radii. However it is effectively a
single parameter profile. In our analysis we have found that v, is strongly constrained,
and this constraint translates into a constraint on pyr? at large radii. Therefore, for any
given value of py (which controls the core behaviour on its own) there is little freedom in
r.. This in itself does not imply that r, is necessarily meaningless, so we have investigated
whether or not there is an equivalent correlation to that found in Donato et al.| (2004) in

the galaxies we are examining.

112



Dark Matter In Disk Galaxies - 11 4.5. Discussion

w |
o |
3 ;geczggs GG3621 NGC3198
S GC24
g 7o cas2!
IS
S [To]
[®)]
IS
Q
o
To]
OI' —

I [ I [
-0.5 0.0 0.5 1.0

log Ry (log kpc)

Figure 4.19: The relation between the dark matter core radii, as defined in equation 4.7
and stellar disk radii for our set of galaxies assuming a cored psuedo-isothermal halo
profile. NGC 925 is off the right hand edge of this plot. The overlaid solid line is the
relation identified by Donato et al. (2004).
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Figure 4.20: Comparison of data from Table 4.3 with simulated predictions. M,y =
M; + My is the total mass, baryons and dark matter, interior to r;. The dotted line
shows the remaining mass after baryon removal, and the solid lines show the overall
mass loss after 1Gyr for various halo profiles. As in Figure red to blue denotes
increasing log slope (0, 0.25, 0.5, 7/9, 1). Simulations were run for baryon fractions
f» = 0.02,0.04,0.08,0.16,0.24,0.48,0.64,0.90. The positions of the galaxies are deter-
mined by the analytical model, which always assumes equal baryon and dark matter loss
and thus they must all lie on in a single line. The simulation results are not by construc-
tion forced to agree with the analytical results. Vertical arrows illustrate the decrease in
mass due to the baryon loss (simulated by reduction of particle masses) and the resultant
decrease in dark mass.
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In order to exclude the possibility of the reported correlation being an artefact, we
generated sets of 100 rotation curves with random, uncorrelated scale radii for the stellar
disk and dark halo of Ry = 3 + 1 kpc and ry = 5 + 2 kpc respectively. We added Gaussian
noise to the data and included 1o error bars of the corresponding size. The dark halo
models were either Burkert, pseudo-isothermal, or NFW. We then found the best fitting
pseudo-isothermal haloes, given a free mass-to-light ratio. In none of the cases did we
find a correlation. Give that Donato et al.|(2004) found that maximal disks were favoured
in their models, we then forced a maximal disk to be used before fitting the pseudo-
isothermal halo. Again, we did not find a correlation.

We investigated whether there is a comparable correlation from our own data set
(shown in Figure[d.19)), by assuming a maximal disk and fitting a single pseudo-isothermal
profile to each galaxy. We do not see a relation as presented in Donato et al. (2004)), al-
though we note that our sample is smaller and has a narrower range of properties. It
should also be noted that in order to produce maximal disk fits, higher fy values than we

allowed in our MCMC modelling had to be assumed in many cases.

4.5.2 Feedback modelling

The question of whether or not there is a relation between any parameters of the baryonic
component of a galaxy and parameters of its dark matter halo is relevant to understanding
galaxy formation. It is presumed, based on cosmological models by Navarro et al.|(1996)
and others, that the centres of dark matter haloes begin strongly cusped, and then become
cored by some interaction with baryonic matter (e.g.|Governato et al., 2010).

The r; parameter we calculate can be used to gain some insight into this. Any process
which reshaped the halo must be able to disrupt the potential of the galaxy to at least this
radius, under the assumptions of an NFW starting point and a spherically symmetric halo.
In Table @ we show that for galaxies DDO 154, NGC 2403, and NGC 2976 the values
of r; are for each galaxy within the 90% confidence intervals of each other for all prior
assumptions about mass-to-light ratio used here. In the case of NGC 7793, the intervals
do not entirely overlap but, as Figure @.15| shows, the constraint on r; is very strong and
not dependent on fy so this is not an issue of baryonic modelling.

We now focus on DDO 154, the smallest galaxy in our set, because work such as
Governato et al.| (2010) focuses on feedback in dwarf galaxies. Considering supernova
feedback, if each 100 M, of star formation leads to a single supernova which feeds back
10*J of energy (5.6 x 107® M, equivalent solar masses), and assuming the current stel-

lar mass is ~# 88% of the initial mass (using a Kroupa IMF gives an initial composition
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where 12% of the total stellar mass is O stars (Kroupa, |2001), and have all undergone
supernova), the feedback energy is 210 Myc?. This is larger than the energy change re-
quired in the dark matter halo to modify its density profile; the difference in total kinetic
energy between DDO 154 and the closest NFW halo (based on least squares fitting) is
1.2 ié:g Myc?. Energy production is in this galaxy therefore does not constrain this pro-
cess, so we must focus on how this energy can be transferred to the dark matter halo.

Feedback from a central star forming region in DDO 154 was modelled in Gelato and
Sommer-Larsen| (1999) as an attempt to explain the discrepancy between observations of
the galaxy and the NFW halo model. They were only able to reproduce the observed rota-
tion curve by assuming a disk more massive than that which is observed in HI emissions,
and furthermore Read and Gilmore|(2005) shows that their method of contracting the dark
matter halo cusp could bias its final state after outflow towards being more flat, due to the
assumed isotropic velocity structure of the halo. Applying the method described in Sec-
tion 4.3]to DDO 154, we find a gas fraction available for feedback f, = 0.42, compared
to the estimate of the currently observed baryon fraction of 0.1 by Carignan and Purton
(1998)), which supports the conclusion that this galaxy requires additional baryonic mass
to account for its dark matter halo profile (although it still leaves open the question of
where this mass is now). The complete set of values for f,, for all the galaxies studied
here, are are shown in Table

Our calculated values for f, are minima, as the contraction of the baryonic component
prior to outflow can only increase the dark matter content interior to r;, and thus require
a greater amount of gas outflow to remove. If we assume that the process of contracting
dark matter through baryon motion has efficiency of order unity for infall as well as for
outflow (that is, each unit mass of baryons moved past r; in either radial direction brings
with it a unit mass of dark matter) then significant infall and contraction would move the
value of f, towards 0.5.

In Figure 4.20| we show the values from Table [4.3]in the context of the output from the
simulations in Section[4.3] The construction of the analytical model forces all the galaxies
on to one straight line of the plot, so this should not be taken as a physical confirmation of
the simulations. The simulations are shown to be consistent one of the main assumptions
of the analytical model; that the amount of dark matter removed during an outflow is
comparable to the amount of gas removed.

The disk of DDO 154 is dominated by neutral hydrogen gas, whose presence must
be accounted for when suggesting an energetic outflow (Carignan and Purton, 1998)).

Zubovas et al.| (2011)) present a simulated model of the Fermi bubbles above and below
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Galaxy MF,dark/(MI,dark + MI,gas) fg Yin
DDO 154 0.16 042 0.42+0%
NGC 2976 0.67 0.17 0.47010
NGC 7793 0.67 0.17 <0.13
NGC 2403 0.22 039 0.7240%
NGC 925 0.53 024 <0.29
NGC 3621 0.15 043 0.87+018
NGC 3198 0.33 0.34 0.0918:(23
NGC 3521 0.77 0.12 0.03=017

Table 4.3: Inferred available gas fractions at the time of outflow, based on a simple spher-
ical model, along with i, values taken from the free fy case. Note that My, here refers
to the baryon mass interior to 7y, so f, is a factor 2 smaller than the total mass deficit.

the disk of the Milky Way, detected in y rays (Su et al., 2010). These bubbles are part
of a black hole outflow that is pinched in the centre due to the density of the gas in the
Galactic disk. A black hole outflow scenario is compatible with the gas-richness of DDO
154’s disk if the density of that gas is high enough that an outflow able to reach r; would
not significantly disturb it. If we assume that the density of the dark matter halo can be

172 inside r| (as an average log slope, assuming the halo becomes

approximated as p o« r~
flat at » = 0), and that the disk density can also be approximated near the centre of the

galaxy by a p o r~!/2 profile, the energy required to lift all matter inside | to r; is

_ 3GM(r)
B 5 r

Imparting the same amount of energy to both components, and cancelling the enclosed

U (4.8)

mass of both components, gives

Mhao(r1)  Maisk(Routfiow)
r Routﬂow

4.9)

where R,yaow 1S the distance gas can be swept up in the disk with the same energy

required to sweep up all halo gas to ry. For the p = po(-)~'/? density profile we use,

" 8
M = 4rx f p(rrdr = gnpOrS/%g/S (4.10)
0

assuming equal scale radii and substituting into (4.9) we can calculate how an outflow

that sweeps up all gas to a specific radius would travel in the two different media

2

£0,halo \°

Routﬂow = ( ) r (411)
P0,disk
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Taking the model of Banerjee et al.| (2011) for the inner regions of the gas disk of
DDO 154, with a pseudo-isothermal scale density of dark matter pg, = 0.028 Mypc™,
X = 5.7 M@pc_3, and gas scale height 1 = 100 pc, we derive pgpao = 4.8 X 1072 M@pc:_3
and po gisk = 0.057 M@pc_3. We use the halo model of Banerjee in this calculation because
their disk model is calculated assuming a pseudo-isothermal halo - however, our rotation
curve data is the same. Given the value r; = 1.21 kpc for DDO 154, we therefore estimate
Rousiow = 192 pc. The first radial bin in this galaxy is situated at R = 135 pc, which means

a Fermi bubble-like outflow cannot be excluded based on the presence of gas in the disk.

4.6 Conclusions

We have applied the MCMC method described in Chapter 3 to a number of nearby galax-
ies and been able to constrain the density profiles of their haloes with less ambiguity than
would be possible with simpler statistical methods. From these constraints, we have deter-
mined that the sample of galaxies studied here cannot be described by a single, universal,
halo profile. We have also calculated from the modelled haloes the values of physical
quantities (r; and f,) which can be used to constrain formation scenarios for these galax-
ies.

Contrary to work such as de Naray et al. (2008)) and Chemin et al. (201 1)), we find that
a lower reduced y? value does not necessarily indicate a better description of the data.
Their assertion requires the errors be correct, and that the degrees of freedom be constant
across the parameter space, neither of which is necessarily correct for these data and these
models. Our MCMC method only relies on the y? values being locally meaningful for
consecutive members of the Markov chain, and the use of a more general profile removes
the strong prior link between the inner and outer haloes imposed by other profiles such as
NFW.

The sample investigated here is subject to a selection bias. The THINGS galaxies
were subsampled for generation of rotation curves by de Blok et al.| (2008), based on
inclination and other factors, and then subsampled again here on the basis of whether or
not they can produce meaningful outputs from our MCMC technique. Our conclusions
must be interpreted in this context.

The selection biases we experience also apply to any attempt at rotation curve de-
composition. The cases where MCMC cannot find a constraint should be taken as an
indication that the fitting of an individual profile, that is part of our parameter space or

closely approximated by a profile that is, cannot produce a result that is credible without
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further discussion of the issues that prevent a constraint with MCMC. Our technique has
the potential to overcome these bias using different data, or different modelling of the data
(that incorporates more well constrained stellar populations for instance.) The behaviour
of our MCMC technique with potential future data sets is described in Chapter 3 and is
found to be promising.

We have identified several degeneracies in the parameter space. Some we are unable
to break, such as the degeneracy between Y and the inner log slope y;, for NGC 3621.
One of the most important degeneracies we discovered is between ps and rg, which has
been resolved in all cases presented here. This degeneracy precludes these two parameters
being independently considered as physical. Our transformation of the parameter pg into
Vmax Temoves this degeneracy, but unfortunately ry still cannot be interpreted as a physi-
cally meaningful radius, because its position is degenerate with the shaping parameters «,
B and y.

Scale radii fixed by the points at which the curve reaches a particular log slope (i.e. r,
where 7 is the negative log slope) are more useful for a discussion of the actual morphol-
ogy of dark matter haloes. We chose r; due to the fact that parts of the halo interior to this
distance cannot be modelled by a cosmological halo such as NFW. Thus r; corresponds
to a radius over which baryonic physics must act in order to produce the measured halo.

We have shown that r; is useful and well constrained, and that it can be used to con-
strain a simple feedback-based formation model. The relevance of r; is first as a constrain-
able physical parameter within the data range of the galaxies studied here, secondly as a
required scale of mass loss (under reasonable assumptions) and thirdly as a common scal-
ing parameter with which to compare observationally derived haloes to simulated ones
in a physically meaningful way. The second reason applies only for r; and not for other
radii. However we recognise that other radii may have similar uses, and such radii may
also be constrained well with an MCMC method, as we have used here.

The model we use to derive f, is simple, but links a physically viable outflow scenario
to a quantity derived by MCMC analysis of observations, and could be refined iteratively
by using it as an initial condition in formation simulations. This value cannot be reliably
derived from simpler fitting methods due to the complexity of the parameter space, and
the low quality of measures such as )(fe 4 as absolute goodness of fit statistics for these data.
MCMC provides a firm enough constraint, and a confidence that the parameter space has

been properly explored, to allow results such as f, to guide simulations.
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The degeneracy of M33 mass modelling and its physical implications 5.1. Introduction

The Local Group galaxy M33 exhibits a regular spiral structure and is close enough to
permit high resolution analysis of its kinematics, making it an ideal candidate for rotation
curve studies of its inner regions. Previous studies have claimed the galaxy has a dark
matter halo with an NFW profile, based on statistical comparisons with a small number
of other profiles. We apply a Bayesian method from our previous paper to place the
dark matter density profile in the context of a continuous, and more general, parameter
space. For a wide range of initial assumptions we find that models with inner log slope
vin < 0.9 are strongly excluded by the kinematics of the galaxy unless the mass-to-light
ratio of the stellar components in the 3.6 um band satisfies V3¢ > 2. Such a high T3¢ is
inconsistent with current modelling of the stellar population of M33. This suggests that
M33 is a galaxy whose dark matter halo has not been significantly modified by feedback.
We discuss possible explanations of this result, including ram pressure stripping during

earlier interactions with M31.

5.1 Introduction

Cosmological models of the formation of dark matter haloes predict cusped density pro-
files (Dubinski and Carlberg, |1991}; Navarro et al., |1996), which do not appear to match
the dark matter density profiles inferred from observations of rotation curves of disk
galaxies (Gentile et al., 2004).

Decompositions suggesting uniform central density haloes (Flores and Primack,|1994;
Moore, 1994) led Burkert (1995) to propose a universal, cored profile. Rotation curves
were originally measured with a slit along the principal axis of the galaxy, but most cur-
rent measurements use a tilted ring method to extract rotation curves from velocity fields
(Begeman, 1989). Using this method Gentile et al. (2004} found that cored haloes were
preferred to both ACDM haloes and MOND (MOdified Newtonian Dynamics) for a sam-
ple of five galaxies. Observations of galaxies from THINGS (The HI Nearby Galaxy
Survey; Walter et al.,|2008) have provided improved observational constraints on the ro-
tation curves (and thus density profiles) of nearby galaxies, as explored in de Blok et al.
(2008) and Hague and Wilkinson| (2013) (the paper that formed the basis of Chapter 3).
These improved velocity data permit more precise constraints on halo density profiles
than were possible in previous papers that addressed the cusp-core problem.

Hydrodynamics simulations have been used to attempt to reconcile dark matter-only
ACDM simulations with observations. (Governato et al.| (2010) found that feedback from

supernovae is able to flatten the inner density profile of isolated dwarf galaxies and pro-
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duce a rotation curve comparable to that observed in the dwarf galaxy DDO 39. In con-
trast, Parry et al.| (2011) found that satellites of a Milky Way-like simulated galaxy, gen-
erated using a hydrodynamical simulation that was able to reproduce the observed pop-
ulation and kinematics of the Milky Way system, did not have their dark matter haloes
significantly altered by baryonic activity, although they note that they are unable to resolve
the innermost parts of the profile due to the force resolution of their simulations. D1 Cintio
et al.| (2013) found a relation between maximum rotation velocity v, and the inner log
slope of the dark matter profile in 31 simulated galaxies, with cores being seen in smaller
(Viot ~ S0kms™") galaxies and profiles approaching NFW in larger (vyo; ~ 150kms™)
galaxies.

In this chapter we apply the Bayesian method presented in Chapter 3 to the galaxy
M33, which previous work has shown can be fitted over the entire radial range of HI
data by a single power law p o 7!}, compatible with the NFW profile (Corbelli and
Salucci, [2000). Later work in [Corbelli (2003) added molecular gas to the mass model,
resulting in an inner density profile p o ! being excluded. We also examine the more
recent claim of Seigar (2011) that the NFW profile itself best represents the dark matter
halo of M33. This result is at odds with some observational claims (e.g. |de Blok et al.,
2008) that smaller galaxies are best described with cored halo profiles. In Hague and
Wilkinson (2014) (the paper that formed the basis of Chapter 4) we found, using our
Bayesian method, a broad range of inner log slopes in a subset of the THINGS galaxies.

Previous work on rotation curves (e.g.|Chemin et al., 2011; Gentile et al.,[2004; [Seigar,
2011) has taken the reduced y? values of mass models to be an accurate representation of
the quality of the fit, and further have inferred support for the particular properties of their
dark halo models from these values. This is problematic for three main reasons; first the
degrees of freedom cannot be trivially inferred from examination of the profile, as it is not
clear that all the parameters impact the fit independently at all points in parameter space
(see Section . Secondly, even using non-reduced y?, the errors that occur in rotation
curves derived using the tilted ring model are not Gaussian, and thus the y* statistic is
not strictly valid in this case. Thirdly, there are many halo density profiles that vary
considerably in their essential qualities that produce comparably good fits measured by
X, as shown in Figure where modifying the inner log slope of an NFW profile and
then finding the best fit with a free mass-to-light ratio gives good y? for profiles that span
the range between cusps and cores. In this context, we present an alternative approach
based on MCMC that attempts to overcome these issues, and uses ? as a local estimate

of the relative likelihood of nearby models rather than a rigorous global goodness of fit.
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Figure 5.1: Variability of best fit y?, using the rotation curve data presented in Section
with inner log slope for a range of modified NFW profiles p o (r/r)"(1 + r/r,)*™, where
v is the inner log slope. Free mass-to-light ratios are allowed for both stellar components.
The unmodified NFW halo is the marked point.
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In Section we present the data we use in this analysis. In Section we de-
scribe how we reproduce the baryonic mass modelling and rotation curve of M33, and the
MCMC technique we use with this model. In Section [5.4] we analyse the output of the
MCMC chains and in Section 5.5 we discuss our result in the context of previous papers

and the current paradigm of galaxy formation.

5.2 M33 Data

We use the rotation curve and gas surface density from Corbelli| (2003). This gas model
includes both neutral atomic and molecular gas. The rotation curve is derived from HI
velocity cubes of the galaxy using a tilted ring model with 11 free rings. Our stellar
luminosity data are taken from [Seigar (2011), which divides the stellar component into
a centrally concentrated component (referred to as a bulge in that paper) and a more
extended component.

A more extended rotation curve is shown in (Corbelli et al.| (2014), but these data do
not provide higher spatial resolution and primarily introduce new circular speed bins in
the outer (>16 kpc) part of the galaxy. As we are focusing on the profile of the inner halo,
and the impact baryons have on it, these data are not relevant here. Also, as we explain
in § we specifically use a dark matter density profile that allows for independent
fitting at large and small radii, which therefore does not impose a prior relation between

the slope of the inner profile and the outer profile.

5.3 Modelling of M33

We decompose the rotation curve of M33 into four components: two stellar disks, a gas
disk and a dark matter halo. The circular velocity contribution of each component is added

in quadrature to produce a proposed rotation curve, to be compared with observations.

5.3.1 Baryonic Mass Models

The [Seigar| (201 1)) model consists of a gas component taken from Corbelli (2003)), along
with two stellar components. These latter components are distinguished photometrically,
rather than by velocity structure. The more extended component is assumed to be expo-
nential, whilst the more centrally concentrated component is taken to be a Sérsic profile

(although in this case the best fit was found to be n = 1, making it equivalent to an
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exponential profile). Table shows the values used to generate the two components.
Values for the inner component appear to differ from those quoted in Seigar| (2011)) as we
have converted them from those of a Sérsic profile to the equivalents for an exponential
disk. We explore models with a freely varying baryonic mass-to-light ratio, 1’5 ¢, the solar
masses per solar luminosity in the Spitzer 3.6 um band, and with a number of fixed mass-
to-light ratios taken from previous work or derived from stellar mass modelling. We do
not include a mass-to-light gradient in the disk as the estimated gradient in Seigar| (2011)
(=0.014 kpc™") gives rise to a change in the total predicted velocity which is less than 0.75
of the observational error bars at all radii. However we investigate the potential impact of
varying mass-to-light ratio with radius in models D1 and D2.

Our first model for the stellar mass allows the mass-to-light ratio of the stellar disks to
vary freely over a large range. We consider a second, fixed stellar model using the stellar
population mass modelling of Oh et al. (2008), along with the J — K values for M33
taken from the 2MASS Large Galaxy Atlas (Jarrett et al., 2003). These values are based
on integrated magnitudes measured within a 20 mag arcsec™ isophote, which in M33
corresponds to a radius r = 6 kpc. For M33, [J — K] = 0.891 which gives a mass-to-light
ratio Y36 = 0.67. This is more consistent with current estimates of mass-to-light ratios
of similar nearby galaxies (e.g. Meidt et al., 2014) than the value from Seigar (2011) of
Ts6 = 1.25.

We have been provided with the radial surface density of neutral atomic gas and
molecular gas used in|Corbelli/ (2003) by the authors. We processed this using the ROTMOD
task in GIPSYE], which employs the method described in (Casertano (1983) to generate
a rotation curve contribution. We use a sech® vertical density law, and the value for
Zgas = 0.5kpc given in |Corbelli and Salucci| (2000), who note that an infinitesimally thin
disk yields an identical result. Other density laws do not produce a sufficiently large dif-
ference to impact the analysis, and the gas rotation curve is consistent with that shown in
Figure 5 of |Corbelli| (2003). The gas contribution used in Seigar (2011)) is that of (Cor-
belli and Salucci (2000), which does not include molecular gas. However, as shown in
Corbelli (2003)), the molecular gas mass is 10% of the atomic gas and so the result from

Seigar| (2011)) is suitable for a first order comparison.

Thttp://www.astro.rug.nl/~gipsy/
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Parameter Definition Value

hy (kpc) Inner stellar disk scale length  0.235

M, (My) Inner stellar disk mass 6.07 x 108
h, (kpc) Outer stellar disk scale length 1.7

M, (M;)  Outer stellar disk mass 3.81 x 10°
Zgas (kpc)  Gas disk scale height 0.5

M,y (M)  Gas disk mass 3x10°

Table 5.1: The two stellar components are modelled as exponential disks using parameters
from Seigar| (2011). For definiteness, we use their mass-to-light ratio T3¢ = 1.25 here
(although can be a free parameter or takes different values in our models, see Table ,
and the gas component is modelled using radially binned surface density data provided

by [Corbelli| (2003).

5.3.2 Dark Matter Models

To model the dark matter halo we used an @ —f—7 profile, but as in Chapter 3 transformed

to remove the degeneracy between p, and r;

2

_ ZmérlX Vmax 51
P =G T+ iy G-

where r; is the scale radius, v, is the peak velocity of the dark matter rotation curve,
a,f and vy are shaping parameters, and Emax is the normalised surface density at rp, =
r(Vimax)> glven by
~ PsVmax
Yax = ———
M M(rmax)

which means that the parameterisation replaces ps with vy, but retains the same num-

(5.2)

ber of parameters, since T nax 18 fixed at each point in parameter space.

Contrary to the statements in Adams et al. (2014)), it does not matter that the pa-
rameters of this halo profile are still degenerate to some extent as we focus on physical
properties of each halo model, within the data range, rather than parameters such as 7.
Our approach has the advantage that we do not impose as strong a prior link as all pre-
vious authors between the log slope of the halo at small and large radii (due to the larger
parameter space) and we do not extrapolate beyond the data range. We have confirmed

the utility of this approach through extensive testing in Chapter 3.
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5.3.3 MCMUC analysis

We use a Bayesian Markov Chain Monte Carlo (MCMC) method to explore the parameter
space of our models. This method produces a non-normalised probability distribution,
which can be argued to be normalised if there are no physically credible models outside
the parameterisation. The method is described, along with the extensive testing we have
done on simulated data, in Chapter 3. Starting at a random position in the parameter
space defined by [, 5, V, Viax, s, L3.6], each MCMC chain moves through the space using
a Metropolis-Hastings algorithm (Hastings, [1970) which chooses a new model based on a
Gaussian step from the existing one, and then moves there if the new model shows a higher
likelihood, or with a probability equal to the ratio of the new likelihood divided by the
current one if the new likelihood is lower. This results in the chain seeking, and spending
most time in, likelihood peaks, but also enables it to move out of peaks to explore other
parts of the parameter space. The posterior probability distributions of the parameters are
then calculated from the density of models in the parameter space by multiplication with
the prior probability. For explicit parameters (e.g. a, 3, y etc.) we assume a flat prior to
allow the data the greatest freedom to constrain the models. For derived parameters (e.g.
vin) this leads to an implicit prior which we calculate numerically (see §3.1 of Chapter 3).

We use y? to calculated a likelihood value at each chosen point in parameter space,
but the validity of our approach only depends on the relative values of y? for nearby
models being a reasonable proxy for relative likelihood. There are many halo profiles that
produce good y? values for this rotation curve, and the strength of the MCMC method is
that it allows us to differentiate between these models and determine what, if any, actual
constraint exists.

Following the method in Chapter 3 we use the publicly available CosmoMC code (Lewis
and Bridle, [2002) to implement our MCMC chains. We ran 8 chains in parallel, with a
total of ~ 4 x 107 models. We have shown in Chapter 4 that this method can be applied to
galaxies spanning a wide range of mass and surface brightness.

We present the results for eight runs, shown in Table [5.2] For the A runs we allowed
a free mass-to-light ratio, T3¢, with a range [0.1, 5] to generously cover possible stellar
contributions from no disk contribution through to a super-maximal disk. For the B runs
we model the baryonic components as in Seigar (2011); for the C runs we use the mass-
to-light ratio calculated above (Section[5.3.T)), and the D runs use two independent values
for Y5 ¢ for the inner and outer stellar components, using the same ranges as the A runs.

The parameter space is mirrored around y = 0, using a range [-2,2] for model selection

but taking the absolute value in the range [0,2] for likelihood testing, so that potentially
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Run 754 Radial Bins Number of Models

Al [0.1,5] 27 34969550
B1 1.25 27 39147303
Cl 0.67 27 39285713
DI [0.1,5] 27 33891283
A2 [0.1,5] 25 34169361
B2 1.25 25 39634524
C2  0.67 25 39455690
D2 [0.1,5] 25 31798101

Table 5.2: The number of radial bins in models in the second set of models is reduced
by ignoring the feature at the outermost part of the rotation curve in |Corbelli and Salucci
(2000). The priors for V3¢ are (1) a freely varying 1’56 in the range [0.1, 5] (models A,
D); (2) the value from Seigar et al.| (2008), who used a central mass-to-light ratio in the
Spitzer 3.6um band of V3¢ = 1.25 £ 0.10 (model B); (3) a value for 1’54 derived in this
chapter with assumptions from|Oh et al.| (2008)), as described in the text (model C).

viable cored profiles are not located at the boundary of the parameter space (see Chapter
3 for details).

We have discarded 10,000 models from the beginning of each chain to allow for burn-
in, which we find is sufficient for all the chains to move to areas of high likelihood (Xfe 4 <
2.5). However, after this point some chains explore secondary peaks before finding the
main peak. These secondary peaks are a genuine part of the distribution, as can be verified
by the fact that chains sometimes leave the main peak to explore them for an extended
period. Our use of MCMC in our analysis thus gives us a more complete picture of
the multi-modal probability distribution. However, we note that the high Y54 tail of the
distribution is very weak, and only partially resolved by our chains. Thus, a comparison

of likelihood values between these peaks is not meaningful.

5.3.4 Convergence of MCMC Chains

To check that all 8 chains are converged on the same distribution, we calculated the ratio
of the variance of the means of the chains o°(%), to the mean of the variances of the chains
J(x), for each parameter x. This number is not meaningful for y, as the distribution
is bimodal, but the highest value for other parameters was 0.17 for g8 indicating good
convergence. Inspection of the distribution for each chain showed that in some cases the
chain had found only the main peak shown in Figure[5.5| whereas in other cases the chain
only found the left hand side of the tail. As some chains managed to integrate the entire

distribution as shown in Figure [5.5] it is reasonable to assume that given enough time
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any chain will converge on the same result. Combining the distributions may produce an
incorrect relative model density between the density of the main peak and the tail, but
our analysis does not make use of these values. The aim here is to include the broadest
possible range of alternate hypothesis in order to demonstrate that the areas avoided by
the MCMC are truly excluded. Calculating the precise likelihood of each peak explored

is not required for this purpose.

5.4 Results

Our main finding is that models of M33 exhibit a well defined degeneracy between stellar
mass and halo inner slope. Furthermore, we are able exclude models with both slopes
shallower than y;, < 0.9 and stellar mass to light ratios in the 3.6um band V3¢ < 2, for a
generous range of priors. Runs Al, A2, D1 and D2 all show the degeneracy, and runs B1,
B2, C2 and C3 find values for fixed values of Y5 ¢ that are consistent with the distribution
found with less restrictive mass-to-light priors. We use A1 as our primary example here,

and the other runs to demonstrate the insensitivity of the degeneracy to different priors.

5.4.1 Individual Profiles

A rotation curve from the most populated bin of the A1 distribution is shown in Figure
with parameters (a, 3,7, I's, Vmax, L3.6) = (0.36,3.85,1.22,32.6 kpc, 135.4 kms™!, 1.53). A
density plot of all the profiles produced in this run is shown in Figure showing the
best fits of other commonly used density profiles. The highest density of models occurs in
a band centred on a single power-law profile with log-slope ~ —1.25, in agreement with
the findings of |Corbelli and Salucci (2000). We note that the sharp lower boundary of the
distribution between logr = —1 and logr = 0.5 corresponds to the limit of a maximal
halo.

Figure [5.4] shows the halo of the most favoured part of the parameter space compared
to other commonly used halo profiles, which have been fitted by minimising )(fe 4> using
a free 1’3 parameter. All the halos are able to capture the data in the inner part of the
galaxy reasonably well whilst not fitting the outer data points well. This does not preclude
a low value of )(fe 4» as the poor fit at large radii can be compensated for by a tight fit at low
radii, which is the case in these curves. This further underscores the danger of applying a

statistic such as 2, to these data.
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Figure 5.2: Rotation curve of M33. The dark blue curve is the gas (atomic and molecular)
contribution, the purple curve is the inner stellar component, the red curve is the outer
stellar component, the green line is a proposed dark matter halo (taken from the most oc-
cupied bin from the parameter space of the A1 run) and the light blue line is the expected
rotation curve. Observed data from [Corbellil (2003)) are in black. The mass-to-light ra-
tio of the stellar components has been found by fitting the rotation curve rather than by
modelling the stellar population in this case.
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Figure 5.3: Density plot of all the models produced by A1, in dlogp/dlogr space. Overlaid
are fits of commonly used profiles to the M33 data. The vertical dashed line marks the
outer edge of the observed rotation curve data.
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Figure 5.4: Best models of the M33 rotation curve where the blue band is the best fitting
MCMC bin, the green dotted line is the best Burkert halo )(2 fit, the red dot-dashed line the
best Einasto halo fit, and the orange dashed line the best NFW profile fit. In each case the
rotation curve was fitted using a free mass-to-light ratio ('3 ¢. The quoted y? value for the
NFW profile is not the same as that found by Seigar (2011)) as we use slightly different
rotation curve data (see Section . The similarity of the y? value for the NFW halo
and the Burkert halo (separation of < 1 in terms of reduced y?) illustrates that this fitting
statistic cannot be used to clearly differentiate between cusps and cores in this application
and that a more sophisticated technique such as MCMC is needed.
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5.4.2 Log Slope Degeneracy

We measure the inner log slope of each model at the innermost data point, y;,, rather than
relying on the parameter 7y, so that our measurement of the slope is not an extrapolation
outside the data range.

For A1, we found 7;, to be degenerate with the mass-to-light ratio as shown in Figure
[5.5] The distribution is binned on a 128 x 128 grid and then contours placed that enclose
68%, 95%, and 99% of all models. Our analysis favours models with steep inner cusps
and high mass-to-light ratios, with a tail in the distribution moving towards flat haloes
with even higher values of Y3 ¢. The two areas are connected by a bridge of models which
is not shown here as the density is below the 30 level. The exact combination of stellar
disk mass and dark matter halo favoured in Seigar (2011) (T3¢ = 1.25 and y;, ~ 1) is
disfavoured at over 30~ when using the free prior here. However, this does not mean that
it cannot fit the rotation curve, or that it is not the most favoured result given a more
constraining prior on Y34. The question we address here is not whether the NFW halo
can fit the data (it can, as has been established in the work of Seigar| (2011) and Corbelli
et al.| (2014) and confirmed here). Rather, we are asking whether other models provide
better fits, and thus what can actually be inferred from the fact that a particular profile
does fit the data.

At the low y;, end of the plot is the maximal disk case, where the baryonic component
of the galaxy contributes almost all of the rotation curve. Note that despite being flat, this
region is not flush with the upper boundary of the Y5 ¢ range - higher values are excluded
by the rotation curve data themselves.

We further illustrate the degeneracy by binning the MCMC models along the v;, axis
and showing a sample of rotation curves from each bin. This is presented in Figure [5.6]
which clearly shows the degeneracy between the disk and halo contributions. The right-
hand panel shows the case of models near the peak of the probability distribution, and the
left and middle panels show models from the tail towards shallower profiles. These are

substantially disfavoured relative to the peak.

5.4.3 Impact of Rotation Curve Features

The rotation curve presented in (Corbelli and Salucci (2000) and Corbelli (2003) shows
an apparent feature in the outermost part of the rotation curve where the rotation velocity
begins to increase, after having levelled off (see Figure [5.2). We now explore the extent

to which these two data points influence our result on the distribution of y;, by re-running
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Figure 5.5: Contour plot of the mass-to-light V3¢ versus inner log slope yi,. The red
contour contains 68% of all the models in the MCMC chains, the green contour contains
95% and the blue contour contains 99%.
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Figure 5.6: Overlay of representative samples of rotation curves from Figure [5.5]illustrat-
ing the degeneracy between halo slope and stellar mass-to-light ratio. From left to right
the panels show models with 0.1 < y;, < 0.2, 0.8 < y;, < 09 and 1.3 < v, < 1.4,
respectively. Key is as in Figure

our MCMC chains without the two outmost data points. This is required as we wish to
show that our result is independent of the inclusion or not of these two data points.

The feature may be modelled by a flat dark matter density profile extending throughout
the radial range, coupled with the maximal baryonic component to model the shape of the
rotation curve at small . We confirm this by calculating ry, the radius at which the log
slope of the dark matter halo reaches -1. We find that this value is high (on the order of
the radial extent of the data) for high values of 3¢ (which from Fig. [5.5] correspond to
Yin ® 0).

If these outermost data points represented a genuine feature of the density profile and
the disk were not maximal, it would require an anomalous increase in the dark matter
density at this point as the baryonic component is marginal here. As there is no obvious
mechanism to form such a shell of dark matter, we cannot take this model to be correct at
large r.

We consider an artefact of the tilted ring method used to generate this rotation curve
to be more a likely explanation of this rotation curve feature. In Corbelli and Salucci
(2000), an initial set of radial bins in this rotation curve are generated by fitting a pa-
rameterised ring to the HI velocity field of the galaxy, under the assumption of entirely
circular motion, and then additional radial bins are calculated from interpolating between
the neighbouring rings. If the assumptions of the model do not hold e.g. in the presence
of significant radial motion, then the parameters of a particular ring may be invalid. An
underestimate of inclination would lead to an overestimation in rotation velocity, and due
to the interpolation, a single incorrect inclination can account for the apparent feature seen
in the last two radial bins. Considered without the final two radial bins, it is not clear the

feature exists at all.
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In [Corbell1 et al.| (2014)) there are data that cover a greater radial extent than earlier
papers. However, as can be seen in Figure 5 of that paper, data further out than the outmost
limit of the rotation curve used here (from ~ 15 kpc) have large errors and can be clearly
approximated by a flat rotation curve. This confirms the above assessment, and means
that there would be little to be gained for our specific goal of constraining y;, by using the

more extended rotation curve.

5.4.4 Alternate mass-to-light priors

Figure shows that for run B1 (where Y5 is taken from Seigar| (2011)), the distribution
of i, favours a cusped density profile, steeper than the best fitting NFW profile. This
does not imply that an NFW halo does not fit the rotation curve, merely that other regions
of parameter space are favoured. The distribution is bimodal, but removing the last two
data points removes the second peak (Figure [5.8)). This peak is then purely dependent on
a feature which may be an artefact.

In runs C1 and C2, we found a log slope compatible with the NFW profile. However,
this was in a region that is disfavoured by the run with a free value of Y'56. In Figure[5.9]
we show the equivalent result to Figure which demonstrates that in this case a single
power law is not favoured. The smaller stellar contribution to the kinematics requires the
shape of the rotation curve to be primarily modelled by the dark matter halo, and the NFW
profile is unable to do this for the entire radial range. The inner part (log r < 0.5) would
require a different concentration parameter cy;, than the outer part (log » > 0.5) and in the
fitting statistic y? is weighted towards the inner part of the galaxy as there are more data
points there.

Runs D1 and D2, with an additional free parameter for the ;¢ value of the inner
stellar component, produced a similar degeneracy to the A runs. Figure [5.10]shows the
relation between v;, and both values of Y;¢. There is a weak, secondary peak of models
featuring a maximal inner component and a flat (y;, < 0.5) inner slope, but the main peak
n V36 0uer VETSUs i, 1s unaffected. We repeated this test, imposing a prior that the value
of V3¢ for the inner component always be greater than that for the outer component, and
found that the result shown in Figure [5.10| remained unchanged. It should be noted that
the smooth variation of these two components effectively parameterises a mass-to-light
gradient across the stellar disk (which we elected not to model, see Sectionmassmodels)
and demonstrates that its inclusion would not impact the result. In general, we find that
cusped halo models exhibit smaller gradients than cored models. The distribution of

'3 6.inner 18 Unsurprisingly wide, due to its dependence on a small number of the innermost
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Figure 5.7: Histogram of values of vy;, in case B1 where T is fixed at 1.25 (i.e. using
the mass-to-light value from Seigar, 2011)). Vertical axis shows number of models, nor-
malised to give the histogram a total area of 1. Arrows show log slopes for maximum
likelihood fits of four individual profiles: green is the Burkert profile, red is the Einasto
profile, orange is the NFW profile, and purple is the single power-law found in [Corbelli
and Salucci (2000). Note that the value calculated in |Corbelli et al. (2014) corresponds
closely to the value for the NFW profile shown here.
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Figure 5.8: Histogram of values of y;, in case B2, where the last two data points are
excluded. Key as in Figure
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Figure 5.9: Density plot of all the models produced by C1, in dlogp/dlogr space. Key as
in Figure[5.3]
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Figure 5.10: For run D1. Correlation between vy;, and (left) mass-to-light ratio 5 ¢ for the
outer stellar component and (right) 1’5 ¢ for the inner stellar component. There is a prior
constraint that the inner mass-to-light ratio be higher.

data points.

5.5 Discussion

5.5.1 Comparison with Previous Work

We have found a result more in agreement with the value of y;, = 1.3 implied by |Corbelli
and Salucci (2000) than the assertion by Seigar (2011) that M33 is best described by an
NFW halo. Whilst the NFW halo does fit the rotation curve decomposition with )(fed =
1.18, there are many other haloes (mostly steeper) that also fit the same data equally well.

We noted in Chapter 3 that with multi-parameter models, sze 4 1s not reliable across the
entire parameter space because it is calculated assuming that the degrees of freedom are
constant across the parameter space. This cannot be assumed to be the case. For instance,
if a model includes a high stellar mass, and a reduced contribution of the dark matter
halo to the rotation curve at small r, then any shape parameters of the halo are going to
become less relevant to the quality of the fit. This was described, in an extreme case, in
Chapter 3 for the case of constructed high surface brightness rotation curves where the
dark matter contribution to the rotation speed was smaller than the error bars. Even in less

extreme cases, the parameter S is often not fully utilised, if the scale radius of the halo is
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large enough that 8 does not become the dominant shape parameter within the data range.
Model comparison on the basis of )(fe 4 alone is thus not necessarily meaningful.

The probability of adding a model, a point in parameter space, to one of our MCMC
chains is not based on the absolute value of its y? but on the gradient of the goodness of fit,
i.e. the relative goodness of fit compared to some other point the chain may arrive from.
The final result is essentially an integral of this value over all possible starting points - but
with a substantial weighting towards nearby points due to the Gaussian shape of the model
selection function in the Metropolis-Hasting algorithm. This means that the MCMC result
does not rely on the goodness of fit being a globally correct representation of likelihood.
Given that in a tilted ring model, errors are computed from azimuthal variations in the
inferred circular velocity, it is not immediately clear they satisfy the requirements of being
independent, Gaussian errors as assumed when y? is used to calculate a statistically robust
likelihood. An analysis (such as ours - see Chapter 3) that does not rely on the assumption
of Gaussian errors is preferable.

In Chapter 3 we showed that the MCMC method was able to recover the correct halo
model from synthetic data with artificially inflated error bars more tightly than would be
naively expected. We attribute this not only to the method being less dependent on the
actual values of the goodness of fit, but also to the physically reasonable prior assumption
of a smooth dark matter density profile. Smoothness is inherent in the & — 8 —7y profile for
reasonable values of «, but for an even freer prior, smoothness would have to be imposed
separately. A non-parametric halo, with a log slope for each data point in the rotation
curve, would have to impose a constraint on these values such that together they form a
physically realistic density profile.

In |Seigar| (2011) it is claimed that fitting of the NFW profile to rotation curve bins
outside r = 7kpc is evidence that the this profile best represents these data”. Only the
prior assumption of an NFW profile makes the fit to the outer rotation curve relevant to the
determination of the inner density profile. Without assuming a strong link between inner
and outer data points as a prior, we find that a steeper inner density profile is favoured
when using the 1’54 value used in that paper.

The fact that the NFW profile is able to fit the rotation velocities in previous work does
not itself convey the properties of the NFW profile (i.e. a log slope of -1 at r = 0) upon
the galaxy, given that we have shown there are many profiles with differing properties
that also provide good fits. Thus, it cannot be concluded that a low reduced y? value for
an NFW fit gives a high posterior probability for specific analytic properties of the NFW

profile, e.g. the central p o ! cusp. Allowing more freedom in the profile, and fully
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exploring the parameter space with MCMC, resolves these issues and provides a more
robust description of the dark matter density profile across the entire radial range of the
rotation curve data.

The second claim of [Seigar (2011) is that the NFW concentration parameter cy; is
related to the spiral arm pitch angle P. Taking c;, purely as a density profile parameter
without any implications for inner profile slope, correlations between it and other physical

parameters are not necessarily in conflict with our conclusions.

5.5.2 Y36 — vin Degeneracy

It is clear from our result that there is a substantial degeneracy between the baryonic
mass-to-light ratio V'3 and the inner log slope yi,. The scale length of the stellar disk is
approximately equal to the radius at which the total rotation curve transitions from rising
to flat, so the most obvious cause of the degeneracy is the degree to which the rising part
of the stellar contribution to the circular velocity is used to model the rising part of the
overall rotation curve. To investigate this, we assume that the degeneracy of the fit near
the peak of the disk rotation curve approximates that of the entire rotation curve, and that
the inner dark matter halo can be taken to be a single power law (which in our results it
can; over 98% of models in Al have a scale radius outside the data range). We can then

represent the degeneracy using

2
max,star

% + vpm(Rmax)* = constant (5.3)

where Viyaxstar 15 the maximum velocity contribution of the stellar component and

vpMm(Rmax) 1 the velocity contribution of the dark matter halo at that radius. Given that

2
max,star

the log slope at this radius, due to our assumption of a single power law) we can write

v o Y36 and vppm(Rmax)? ¢ (Rmax/75)> "™ (as i, is assumed to be representative of

Y36 =a— bcz_”" (5.4)

where a, b, and c are constants. This is not meant to imply that the galaxy is well fitted
by a single power law; this is merely meant to approximate the dark matter halo density
profile well in the region which is most sharply affected by the degeneracy. The curve in
vin — Y36 space described here is not a physical description, nor a prediction, but is useful
as a parameterised, quantitative summary of the degeneracy determined by the MCMC
method.

We binned v;, values of a subset of models from A1 (34846 models chosen from all
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chains with a probability 107>, ignoring the first 10,000 models for burn-in) to produce a
set of 2000 bins with a uniform number of points. We fit the relationship to these
data and find a = 2.6, b = 6.3, and ¢ = 0.089 as shown in Figure @ The baryonic
mass-to-light ratio in the maximal disk case is V3 ¢max = @ — bc? and the halo slope in the
no disk case 1S ¥ipno = 2 — (loga — log b)/log c.

In runs D1 and D2, we tested whether this degeneracy would be changed by having
independent 1’5 ¢ values for both stellar components. The scale radius of the inner compo-
nent is too short to meaningfully contribute to the circular velocity at the radius at which

we model the degeneracy between i, and T3 g ouer above.

5.5.3 Alternate Gas Mass Models

We now consider whether it is possible that the apparently large stellar mass in our cored
models could be accounted for by molecular gas. The gas density profile we obtained
from |Corbelli| (2003) included the molecular gas fraction, calculated from CO emission,
along with the atomic gas contribution to the rotation curve. The factor used to calculate
total molecular gas mass from CO emission, Xco, is estimated based on observations of
the Milky Way (Wilson, [1995) and may not be correct for M33. In the mass modelling
we use, the stellar disk has a mass 3.8 x 10° M, and the molecular gas disk component
has a mass 3 x 10% M, so this would represent an increase in Y34 of ~ 0.1. (Note that,
following de Blok et al. (2008)), we have assumed that the scale length of the molecular
gas is that same as that of the stars). To account for the difference between the modelled
T36 = 0.67 and the Y34 = 2.5 required for a flat halo would require Xco to be 37 times
larger. In Dame et al. (2001)) the 1o relative error for this ratio was found to be less than

0.17 for nearby clouds in the Milky Way and thus a factor 37 increase seems unlikely.

5.5.4 Comparison with cosmological simulations

Given that we have confirmed earlier claims that the halo profile of M33 is steeper than in
other galaxies of similar luminosity, it is worth asking whether there is a natural explana-
tion for this difference. In their models of the Local Group Bekki (2008) found that M33
encountered M31 with a periapsis of ~ 100 kpc at 4-8 Gyr before present. Ram pressure
stripping of M33 by an outflow from M31 could also have had an impact on the progres-
sion of feedback in M33 (e.g. Nayakshin and Wilkinson, 2013)). The prompt removal
of low density gas by stripping would cause the dark matter halo to relax into a shallow,
less concentrated state (as modelled in Gnedin and Zhao, 2002 |Read and Gilmore, 2005}
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Figure 5.11: Fit to the degeneracy between log slope at the inner most bin (y;,) and
mass-to-light ratio in the Spitzer 3.6um band (Y3¢). Points are 34846 models chosen
from the chain, after burn-in, with a probability 10~>. The line shows the relationship
Ts6 = 2.6 — 6.3 x 0.089%> 7, fitted to 2000 bins, and should not be taken as valid outside
the range of the models shown. Green and blue points are constraints on 7y;, found by
models B1 and C1 respectively. See text for discussion.
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Governato et al., 2010, and Chapter 4), so it might be reasonably assumed that such an
event would lead to a cored dark matter halo, but this is not necessarily the case, as we
now discuss.

It is reasonable to assume the the process of contraction would mean that after initial
baryon infall, but before feedback begins, the dark matter halo would have an inner log
slope steeper than y;, = 1. Feedback models such as Read and Gilmore|(2005), Governato
et al. (2010), Parry et al.|(2011) and (Ogiya and Mori (2012) require multiple outflow and
inflow events to account for the transition from such steep initial haloes to their flatter
inner haloes at later times. If this process were interrupted early on, it could prevent a
sufficiently large amount of feedback that, even though the event itself would flatten the
halo slightly, it would still retain an inner halo that is steep relative to those of similar

galaxies.

5.6 Conclusion

We have modelled the rotation curve of M33 using the MCMC-based approach we pre-
sented in Chapter 3. We have quantified and understood the degeneracy between bary-
onic mass-to-light ratio Y3 ¢ and the log slope of the dark matter halo at the inner bin 7y;,.
We cannot resolve the conflict between observations of similar galaxies (Kuzio de Naray
et al.| (2006) and de Naray et al.| (2008)) and the MCMC analysis of the M33 rotation
curve without assuming T3 > 2, which is difficult to reconcile with stellar population
modelling. We find that with a lower fixed Y3 = 0.67, an NFW halo is compatible with
the data, but that this part of parameter space is not strongly favoured when we relax the
constraint on T34. We strongly exclude the combination of T34 < 2 and a halo profile
inner log slope y;, < 0.9, for a comprehensive range of assumptions.

The constraints we find on 1’56 and y;, admit at least the four following scenarios:

1. there is a great deal more mass in the disk of M33 than is accounted for by standard

modelling of stellar populations and molecular gas clouds.

2. the halo of M33 deviates significantly from spherical symmetry, being flattened at

small disk radius and less so in the outer part of the galaxy.

3. feedback cannot produce a core in a galaxy with the stellar mass of M33. D1 Cintio
et al.| (2013)) make this point but their conclusion depends on the specific feedback

physics used in that paper, and only accounts for supernova and early stellar feed-
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back. It also predicts a shallower (y;, = 0.75) inner density profile for a galaxy with

the range of stellar masses we calculate.

4. the dark matter halo has a much steeper inner profile than would be expected from
hydrodynamical simulations of galaxy formation (e.g. Governato et al., 2010; Mac-
cio et al., 2011). This could occur if M33 were dominated by the process of con-
traction. The above simulations show both contraction of the halo steepening the
inner profile, and feedback flattening it. In the absence of any obvious source of
significant additional disk mass, and assuming no fundamental error in the view of
baryon-dark matter interaction in galaxy formation, we propose that the history of
the dark matter halo in M33 is dominated by contraction. Ram pressure stripping
by M31 before feedback flattening the halo is a possible physical mechanism by
which this could have happened.

The first scenario is inconsistent with the stellar mass modelling of Corbell1 et al.
(2014). We will investigate the remaining three possibilities by applying our modelling

scheme to cosmological simulations in a future work.
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As kinematic data from external galaxies improves, it is important to develop a more
accurate idea of what these data can meaningfully constrain. It is important to know, for
instance, how accurately rotation curve studies can constrain the shape of the dark matter
halo, or the amount of feedback involved in the formation of the galaxy. Feedback can
be modelled in simulations, but in order to test this against observations it is necessary to
know how an observed galaxy (for which we have two spatial dimensions and one veloc-
ity) would look in the full 6D phase space of the simulation. It is far easier to determine
what a simulated galaxy would look like were it observed, and Bayesian methods provide
a means to constrain the former based purely on the knowledge of the latter.

In studies of rotation curves (e.g. |de Blok et al.|(2008)), the azimuthal velocity v, is
calculated around a series of rings, by modelling the inclination at each radial bin with the
tilted ring method. It is assumed that the circular velocity v. = v, the average azimuthal
velocity, and the errors are assumed to be the difference in v, between the approaching
and receding sides of the galaxy. Mass models are then compared to this velocity model
through y? minimisation. The conclusions of such studies thus depend on the validity of
the prior assumptions of the tilted ring approach and the mass model. The MCMC process
described in previous chapters addresses the problems with the comparison of models, by
weakening the dependence of the result on the absolute (rather than relative) correctness
of the errors.

Velocity fields are available for both stars (from infrared observations e.g. (Croom
et al., 2012) and neutral gas (from HI observations e.g.(Walter et al.,[2008). The velocities
in the former are subject to asymmetric drift, where the peak in the distribution of v, lags
that of the circular velocity v.. This is not seen in gas disks, as the orbits required to
create the effect would cross and thus would be altered by collisions much more so than
near-circular orbits.

This chapter describes a new method of producing rotation curves from simulated
galaxies, an examination of systematic errors that arise, and uses N-body models to deter-
mine the extent to which properties of the galaxy can be constrained by rotation curves.
This follows on from Chapter 2, which used simpler rotation curves derived from ana-
lytic potentials rather than N-body simulations. This chapter is also a demonstration of
the MCMC code introduced in Chapter 1, RainfallMCMC, applied to an astrophysical

problem.
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6.1 Method

The objective here is to convert the velocity field of a simulated galaxy into a rotation
curve using MCMC, and then from that rotation curve attempt to retrieve the properties
of the dark matter halo via the method described in Chapter 2. This produces a mapping
between the dark matter halo properties in the “observed” galaxy, and those that can be
inferred from the rotation curve.

In order to obtain the rotation curve, a disk model is constructed from a series of
concentric rings, each with a normal vector which defines the expected orientation of
angular momentum at each radius. The parameter space is explored using Rainfal1lMCMC
in serial mode, evaluating the square of the total azimuthal velocity (3] v¢)2 = (3 ji/R)?,
for each ring, where j; is the angular momentum of particle i projected onto the unit
normal of the ring. The likelihood estimate is the sum of these values across all rings.
Each chain consists of 50,000 models selected through the Metropolis-Hasting algorithm
(Hastings, [1970).

To determine realistic errors in v,4, consistent with those calculated using tilted ring
methods such as in|de Blok et al.| (2008)), a seperate v, is calculated for two sides of the
disk and the difference between the two values is taken to be twice the Gaussian error.

CosmoMC is then used to recover the dark matter halo properties, in order to make for

a consistent comparison with results from Chapters 2-4.

6.1.1 Disks

A purely rotationally supported, infinitely thin disk of matter can be represented by angu-
lar momentum as a function of radius J(R), which can be discretised into a set of values J,
for a set of m rings. The stars and gas of a disk galaxy will show both random deviations
from this (i.e. dispersion) and systematic deviations from this (e.g. due to asymmetric

drift). The following algorithm can be used to find a set of parameters for the rings:

1. Start with the centre of rotation set at the centre of mass of all particles, and a
non-warped disk with angular momentum in the direction of the total angular mo-

mentum vector of all disk star particles;

2. Propose a new set of disk parameters, which generates an angular momentum unit

vector J, at each radial bin (see below);

3. Calculate the rotation velocity in each radial bin;
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4. Iterate over steps 2 and 3 using MCMC, minimising a fitness statistic.

The parameters of the disk are x, Jy, and Jn.x. These describe the origin of a cylin-
drical coordinate system, X, the angular momentum vector as R — 0, Jy, and a second
angular momentum vector relative to the first, J.y, that the disk assumes at the outermost
radial bin. Both J vectors are unit vectors parameterised as (6, ¢), relative to the coor-
dinate system of the stars for Jy and to Jy for J,.x . In all cases here R is the projected
radius in the plane of each ring.

Here the function describing the transition from Jy, and Jy,.x 1s simply linear, although
more complex functions could be used. The angular momentum vector at any radius
relative to Jg i (OR/Rpmax, ®R/Rmax) Where 6 and ¢ are the spherical coordinates of Jax.

In cartesian coordinates defined by the basis vectors X, ¥ and J this is

J(R) = &sin [0(R)] cos [¢(R)] + §sin [6(R)] sin [p(R)] + Jocos [O(R)] 6.1)

Coordinates in the plane of each ring are described with basis vectors X and ¥ that are

calculated using

g=JoAA (6.2)
and
§=Jongk (6.3)

where A = (cos(¢ + m/2), sin(¢ + n/2),0) in cartesian coordinate The direction of
A maintains a continuous coordinate system throughout the parameter space and avoids

aligning closely with Jo.

6.1.2 Likelihood estimates

One method to assess the likelihood of a particular J vector representing a disk is the
fraction of kinetic energy that is in ordered rotation about the z axis, defined in Sales et al.
(2012) as

Lol (i)
ot — 7, —m;| — 4
Kror KZZm(ri) (6.4)

'This particular vector is one of many that could work here. The only requirement of A is that it never
be parallel with Jy.
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Where K is the total kinetic energy of all particles, and m;, r; and j,; are the mass,
radius and angular momentum of the ith particle. This chapter uses the squared average
azimuthal velocity in each bin that contains particles. The azimuthal velocity v, for each

particle is calculated using

Vioti = (a0 AV))/R; (6.5)

where J, = J,/1J.| is the unit vector representing the proposed disk angular momen-
tum in the bin, r; and v; are the position and velocity of the particle, and R; is the radius
projected onto the plane of the ring. In cases where similar numbers of particles are
found in each bin (which is to be expected once the centre of rotation is located) then our
likelihood function 3,(3; Vrorin)? Will give the same likelihood ratio between models as

comparing ko, would.

6.1.3 Asymmetric drift

In real galaxies, the azimuthal velocity distribution f(v,) of stars has a peak which lags
the circular velocity v.. This is due to the fact that stars on non-circular orbits spend more
time near apoapsis than near periapsis, and the fact that the density of stars decreases with
radius so there is a larger population of stars currently at a specific radius R whose orbits
lie mainly inside R (and thus are moving at < v.) than there are with orbits mainly lying
outside R. The formula for the difference in velocity peak v, (as derived in |Binney and
Tremaine, 2008, §4.8.2) is

2

.
Va = —~g(R,v,07) (6.6)
2v, J

where g is a function of the radius R, the density distribution v, and velocity dispersion

tensor O'izj. I assume, due to the symmetrical starting conditions of the galaxy models, this
will be the main source of systemic error, and will test to see if it makes an impact on the

ability to determine dark matter halo shape.

6.2 Models

A summary of the models used are shown in Table 1.
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Name Particles Total Mass
Simple Halo 10,000 10° M
Simple Disk 10,000 10°M,

Realistic Disk + Core | 1,440,000 | 5.6 x 10'' M,
Realistic Disk + Cusp | 1,440,000 | 5.6 x 10'' M

Table 6.1: Properties of galaxy models used in this chapter

6.2.1 Simple models

The first models represent a rotationally supported galaxy and one supported by ran-
dom motion, although neither involved any attempt at dynamic self consistency and both
feature star particles only. The latter model has particles distributed on each axis ac-
cording to a Gaussian with width o = 10kpc and velocities equal to v, = —Ax, where
A = 1kms 'kpc™' (the aim here is not to give a realistic velocity structure, merely one
with small magnitude velocities and no net angular momentum). The former has a thin-
ner Gaussian width o, = lkpc in the vertical axis, and has rotational motion around that
axis with a magnitude of [v| = 100 kms™'arctan(R/10 kpc) - which is a simple way to
provide the approximate shape of a rotation curvre. Vertical velocity is calculated as in
the randomly supported galaxy. In order to check that the algorithm does not depend on
the galaxy being aligned with the coordinate system, I repeated the disk case rotated by
30, 60 and 90 degrees relative to the (x,y) plane.

These galaxies are not realistic beyond gross morphology, but provide very clear ex-
amples of rotating and non-rotating ensembles of particles for use in a first order test of

the algorithm.

6.2.2 N-body rotation

Next are four galaxies provided by Mark Wilkinson, that feature combinations of thin and
thick disks and cored and cusped dark matter haloes. These galaxies have been generated
with the mkgalaxy program (McMillan and Dehnen, [2007), and are generated from initial
conditions featuring an exponential stellar disk of mass My = 5 x 10'° M, scale length
Ry = 2.5kpc, and sech? vertical profile with scale height z; = 125 pc. The dark matter
halo has mass M;, = 5 x 10!! M, and scale radius r, = 15 kpc. It follows an o — 8 — y
profile, with parameters (1, 4, 0.2) in the cored profile case and parameters (1, 4, 1) in the
cusped case i.e. a Hernquist profile.

These models feature more realistic stellar dynamics; most importantly they include

asymmetric drift, because the particles in these galaxies are evolved from their initial
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positions and velocities through an N-body simulation prior to use. It is important to
know if the systemic bias introduced by this makes it impossible to distinguish between

the cusped and cored dark matter haloes.

6.3 Results

Figure [6.1] shows the distribution of 6, the & component of Jy, as expressed in spherical
coordinates. This demonstrates that the algorithm can detect a rotating structure, and does
not falsely detect one when it is not present. As rotation direction is not relevant, 6, only
covers half the normal range in order to avoid a bimodal distribution, and the fact that
it does not go to zero at y = 0 and 6, = m/2 is not an issue because all the angular
parameters have a periodic boundary.

In Figure the simplified disk galaxy is rotated relative to the coordinate system.
This is an important test if the method is to be applied autonomously to generate rotation
curves from simulated galaxies, as they cannot be assumed to be coaxial with the chosen
spherical coordinates. Towards 6, = 0, the other spherical coordinate ¢, ceases to alter the
orientation of the disk, which creates a volume effect (as described in Chapter 1) that adds
noise to the distribution by biasing the chain towards lower likelihood models in this part
of parameter space. To remove this noise and highlight the peaks, only the most likely
10% of models are shown in Figures and [6.2] These plots show that the algorithm is
able to detect the axis of the disk when it is not aligned with the coordinate system of the
particles.

Figure shows the circular speed implied by the particles in bins of width 200 pc,
given the most likely configuration of disk parameters, compared to one calculated from
the simulation directly. In order to find this curve, the potential was calculated at a ring
of points for each bin, and then the circular speed worked out from vg = R(0¢/0R). The
errors used here are the difference in v, between the two sides of the galaxy, in order
to provide a comparison with observed rotation curves. Fitting a disk to the simulated
galaxies produces a systematic deficit in velocity compared to the actual circular velocity
curve (as calculated above) which is due to asymmetric drift. If the curve were displaced
in the v, axis it could match closely to the curve corresponding to the cored density profile
(solid curve), but the errors are large enough to encompass both cored and cusped pro-
files (although as previous chapters have shown, this may not necessarily be a barrier to

differentiating between them).
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6.3.1 MCMUC processing of rotation curves

The method described in Chapter 2 was applied to the rotation curves produced above,
proposing an exponential disk with a scale length fixed at the value given in the initial
conditions of the galaxies, but no prior on mass-to-light ratio. For the cored galaxy (Figure
@, there is a constraint on r, the radius at which the log slope of the dark matter halo
profile reaches -1. There is a slight degeneracy with the mass-to-light ratio Y’ (relative to
the stellar mass profile found in the simulation), which is to be expected as a larger stellar
contribution means a shallower dark matter halo profile is required. However the shape of
this degeneracy does not favour the combination of Y" = 1 with the value for r; calculated
from the initial conditions of the galaxy simulation (4 kpc). This value of r; may not be
the correct answer in the evolved simulation which is being studied here, as the N-body
process may have altered the shape of the halo.

Correcting v, for the asymmetric drift moves the peak into regions of higher ; and T,
favouring a maximal stellar contribution in the inner components and thus a larger dark
matter core. The most favoured part of parameter space is represented by the rotation
curve shown in Figure [6.5]

In the case of the cusped halo the MCMC algorithm is unable to converge on the
presumed correct model, as shown by the relation of the log slope at the inner most data
point, ¥;, with Y in Figure[6.6] The MCMC does favour cusped models, but skips between
several small peaks. This is due to the very small size of the errors, smaller than those
in the cored model - the model is unable to match all the data, and the small error bars
strongly exclude models that miss data points. Correcting for asymmetric drift leads to a
maximal disk being strongly favoured, with a more cored halo.

Fixing the mass-to-light ratio at the input value (i.e. making the stellar contribution
equal to the one inferred from force summation in the simulation) leads the corrected
model back towards cusped haloes, as shown in Figure although the MCMC still
does not converge on a single peak. However, when the mass-to-light ratio is fixed for
the non-corrected halo, a constraint emerges. This seems to indicate that some of the
assumptions used to construct the ideal mass model may be incorrect.

Examining the axis ratios of the simulated haloes shows that the cusped one is signif-
icantly more oblate in the inner regions (Figure This means the correct halo profile is

different from the one based on the assumption of spherical symmetry.
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Figure 6.1: Comparison of 6, values for the first two models in Table 1. Top the halo
model, with no rotational motion, showing only a uniform distribution in 6. and bottom
the disk model, with only rotation in the x-y plane, showing a tight constraint. The axis is
given as a fraction of 7. Only models in the top decile of likelihood are included.
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Figure 6.2: The result for the disk model shown in Figure[6.1], but rotated 30 degrees (top)
and 60 degrees (bottom) clockwise in the x, z plane.
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Figure 6.3: Comparison of the rotation curves derived through disk fitting of a realistic
stellar disk with a cored halo. Solid line is the actual circular velocity in the case of a
cored halo profile and dashed line in the case of a cusped halo profile. The red dotted line
connects the points of the rotation curve determined by the MCMC process.
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Figure 6.4: The relationship between r; (the radius at which the log slope of the dark mat-
ter halo profile is equal to -1) and the mass-to-light ratio, Y. The red contour encloses 68%
of models, the green contour 95% and the blue contour 99%. Top shows the result using
the output of the MCMC chains and bottom shows the result corrected for asymmetric
drift. The cross shows the parameter combination inferred from the initial conditions of
the galaxy.
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Figure 6.5: The rotation curve corresponding the the most populated bin in the parameter
space of the cored model, using data corrected for asymmetric drift. The red line is the
stellar contribution to the rotation curve, the green line the dark matter contribution, the
light blue line the proposed rotation curve and the black points are the data derived from
force summation in the simulation. Errors are derived from the MCMC process
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Figure 6.6: The relationship between v;, (the negative log slope at the innermost data
point) and the mass-to-light ratio, (’, for the cusped model. The red contour encloses 68%
of models, the green contour 95% and the blue contour 99%. Top shows the result using
the output of the MCMC chains and bottom shows the result corrected for asymmetric
drift.
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Figure 6.7: The distribution of y;, values for the cusped galaxy, top uncorrected and
bottom corrected for asymmetric drift, with a Y value fixed at 1
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Figure 6.8: The axis ratios b/a (solid line) and c/a (dashed line) where a is the major axis
length and c is the minor axis length. Top is the cored halo and bottom the cusped halo
model.
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6.4 Discussion
This chapter has established that:

1. RainfallMCMC evaluating the likelihood estimator shown here can find disks from
particle data, and the parameterisation of the disk has no obvious problems. This
has applications not only in producing rotation curves for further analysis, but also
in extracting bulk rotation properties from simulated galaxies. As the code is able
to locate the axis of rotation accurately without human supervision, it is suitable for
large batch processes. Further testing is required in order to measure the ability to
capture more complex disks that are asymmetric or warped, and MCMC is likely to

best approach to do this due to its ability to handle many dimensions.

2. The inferred rotation curves are compatible with the actual matter content of the
simulated galaxies. Although asymmetric drift appears to be present in the models
(as will be the case for observed stellar rotation curves), it does not automatically
preclude measuring the shape of the dark matter halo. Cores and Cusps can be
discerned through this method. The single incorrect answer for the cusped case can
be corrected for by using a narrower prior on the mass-to-light ratio, which should

be possible through stellar population modelling.

3. As the poor convergence of some of the outputs shows, the y? statistic is not always
an ideal likelihood estimator for use with MCMC. Such an effect is a failure mode
of the y? statistic, which whilst useful as a broad estimate of which are “good” and
“bad” models can distort the parameter space by undue favouring of outliers with
small error bars. As this produces a clear fragmentation of the peak in parameter
space, there is no chance of such a failure mode going unnoticed, and it can be

confidently stated is has not impacted the results of previous chapters.
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In this thesis I have shown that Markov Chain Monte Carlo (MCMC) is a powerful
method for exploring the complex parameter spaces involved in modelling the rotation
of disk galaxies. I have derived more useful information from existing data sources than
has previously been possible using more simple profile fitting techniques. The ability to
place better constraints on galaxy properties has permitted me to begin investigating how
these properties relate to the histories and formation scenarios of galaxies. By extending
the MCMC process to the initial extraction of circular velocities from observed velocity
fields, and being able to apply this to synthetic observations produced by the latest hydro-
dynamic simulations, there is great scope to advance this field further with the methods

described here.

7.1 Chapter 3

Extensive testing of the MCMC technique on rotation curves showed that, contrary to y*
minimisation, MCMC is robust against over-estimated errors. In this chapter I established
the derived parameter 7;,, the negative log slope at the inner data point, as a more phys-
ically meaningful estimate of inner profile shape than v, the asymptotic log slope in the
a — 8 — vy profile.

The test galaxy here, DDO 154, showed an inner log slope —yi, = —0.39 + 0.11. This
is compatible with previous estimates using the same data but, I argue, a more robust

estimate due to the strength of the method.

7.2 Chapter 4

A survey of selected THINGS galaxies further demonstrated the utility of the MCMC on
real observations. Another derived parameter is introduced here - r;, the radius at which
the log slope of the halo reaches -1. Inside this radius, the halo cannot be described by an
NFW profile, so this provides an estimate of the length scale over which baryonic physics
must be able to impact the dark halo for it to be responsible for its shape differing from
that which would be produced purely by non-baryonic physics.

This chapter also links this radius to the fraction of gas f, that must be ejected in
order to produce the inferred halo from an NFW halo that encloses the same mass at
the outer data point. This calculation is subject to a number of simplifications, and the
sample of galaxies is too small to draw any firm conclusions, but suggest a link between

observational constraints and formation scenarios.
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7.3 Chapter 5

This chapter modelled M33 in detail using the MCMC method, and was able to map
the degeneracy between inner log slope y;, and mass-to-light ratio Y3¢. Comparison
with previous results was able to reproduce their log slopes when the same mass-to-light
prior was assumed. We found that it appears to either have a steeper halo than has been
anticipated by previous hydrodynamical modals is required, or a high ('35 > 2) mass-to-
light ratio.

Possible explanations for this are that the mass modelling of M33 greatly underesti-
mates the amount of baryons in the galaxy, that the halo of M33 deviates significantly
from spherical symmetry, or that the process of feedback in M33 did not occur in the

manner modelled in hydrodynamic simulations - possibly due to interaction with M31.

7.4 Chapter 6

Here I added a new step to the MCMC process by marginalising over the parameter space
of a disk model, applied to a simulated galaxy. The rotation curves were then run through
the same MCMC code as used in previous chapters. Although the weaknesses of the y?
statistic as a likelihood estimator for rotation curves became more problematic here, I was
still able to differentiate between cusps and cores, even if disks were not aligned to the
coordinate system or were subject to asymmetric drift.

This is useful from the perspective both of being able to study the rotation curves of
simulated galaxies, but also from the future application to the tilted ring modelling of
observed galaxies. A standard method of going from the best available data (6D particle
data for simulations and velocity fields for real galaxies) to constraints on dark matter

halo parameters is a vital tool for comparative study between the two.

7.5 Future work

There is a glut of new kinematic surveys of external galaxies in the coming years; the
continued development of new analytic techniques is vital to making the most of these
new data. My near term goal is to investigate mapping between hydrodynamic models
and observed galaxies. To this end I am working with the EAGLE team (Schaye et al.,
2014) to apply these techniques to the simulated galaxies.

In order to further investigate the constraint that can be placed on formation scenarios
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using properties of the currently observed dark matter density profile, I intend to apply
the MCMC method above to artificial galaxies produced in cosmological simulations that
include baryon physics. This will allow a study of the mapping of formation scenario
to current observables such as r;. I am currently studying the outputs of simulations in
Governato et al.|(2010) (kindly provided by the authors) in order to put this into practice.

Reyes et al.| (2011) presented a survey of 189 disk galaxies from SDSS, calculating
rotation curves for each from Ha emission. I intend to use these rotation curves (and
future surveys) to constrain relations between dark matter haloes and the baryonic com-
ponents of disk galaxies using MCMC. Rather than fitting individual curves, I will fit the
entire survey simultaneously using a halo density profile whose parameters are functions
of observed properties of the galaxy. The constraints found in this way should constrain
galaxy formation simulations.

MCMC is becoming a more popular technique in the analysis of rotation curves and
other dynamical models. However, radial density profiles have numerous problems that
are seldom addressed in the literature, and require careful mitigation when used in an
MCMC method. Generally scale densities and scale radii are degenerate, which we mit-
igated in Chapter 2 by substituting ps for vi,.x. NFW, Burkert, Hernquist and psuedo-
isothermal haloes all impose an artificial relation between the log slope in the inner radial
bins of the galaxy and the outermost ones, making them useless for unbiased resolution of
the cusp-core problem. Einasto profiles cannot model cored haloes at all (see the best fits
of NGC925 in |Chemin et al., 2011)). The @ — 8 — vy halo is the best profile of these to use
in an MCMC scenario. However, there is little physical basis for its use other than that
its parameter space comfortably encloses all physically motivated parameters, so in fu-
ture a non-parametric approach, constrained only by monotonically steepening log slope,
should be used to provide the most general prior.

Rotation curves are also built from a number of assumptions, notably for the tilted ring
model the assumption that circular motion corresponds to the peak line-of-sight velocity.
This can potentially raise questions about the conclusions that it is possible to draw from
their analysis - or at the very least restrict the range of galaxies that can be analysed at all.
I therefore intend to move from applying MCMC to derived rotation curves to directly

modelling galaxies in the data space i.e. the velocity fields.
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Figure A.1: Comparison of the rotation curves obtained from a family of NFW profiles,
illustrating the effect of varying r; (left panel) and ps (right panel). In each panel, the red
line is the stellar contribution to the rotation curve, the blue line is the gas contribution,
and the green line is the dark matter halo (with the corresponding total rotation curve
shown in light grey). In the upper panel, r varies from 1kpc (lowest curve) to 12 kpc
(highest curve) in steps of 1 kpc while in the lower panel p, varies from 10° My kpc™ to
1.2 x 10" Mg kpc™ (highest curve). In the upper panel, p; = 6 x 10® Mg kpc™ while in the
lower panel r; = 6 kpc.

A.1 Parameter Transform

Our MCMC chains include the parameter vy,,x, the peak of the halo rotation curve, from
which we must derive the corresponding ps for the (a,,vy) profile. Our use of vy, in
preference to p, is motivated by the fact that when p, and r, are used as chain parameters,
their mutual degeneracy means that both contribute to the amplitude of the halo profile
(see Fig.[A.T). MCMC algorithms are more efficient when the parameters in the chains
are chosen to minimise any degeneracies and we found significant improvements in the
performance of our algorithm when one parameter scales the halo circular speed curve
purely in velocity amplitude, and one scales it purely radially. An additional advantage
is that vy, 1s also a physical halo property and hence can be meaningfully compared
between galaxies.

For completeness, in this appendix we derive the relation between v,,x and ps explic-
itly.

We first define r,,,, the radius at which the circular speed curve of the dark matter
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halo reaches its maximum value vy,,c. Differentiating the expression for the circular speed

GM
V2 (r) = ) (A1)
we obtain p y
2 (") = (G [drrp(r) - XL (A2)
dr r2
whose maximum occurs when
)
M(rmax) = 47Tr?naxp(rmax) = rmaxﬂ (A3)

G

This is a general result that must be true of any halo profile whose density is only a

function of radius. Defining the scaled mass M(r) via
M(r) = p,M(r) (A.4)

and rearranging, we obtain the expression to convert between vy,,x and py

2

= ~—max. A.

rmaxv
Ps

where rn, 18 obtained via Eq.[A.3] given the values of vy, and 7. In the text we combine

part of this into the value X, given by

Vmax
Z:max = = . A.6
M(rpax) (A0
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