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Abstract—This paper presents a framework for generating
optimal motor trajectories for a spherical parallel manipulator
(SPM) with revolute joints, actuated by servomotors with default
internal position control settings. The proposed framework con-
sists of three phases. First, an approach to obtain unique forward
kinematics is introduced, in order to relate the angular positions
of the servomotors to the orientation of the SPM top mobile
platform. Then, a configuration space for the SPM is defined by
using numerical procedures, in order to guarantee the absence of
singularities and of collisions between links during the motion of
the manipulator. Finally, reference trajectories of the servomotors
are defined via convex optimization. These trajectories determine
an optimal evolution of the SPM motion, based on configuration
space and original servomotor dynamics. The proposed strategy
is experimentally demonstrated on a prototype of Agile Wrist
SPM with three servomotors.

Index Terms—Spherical parallel manipulators, robot kinemat-
ics, motion planning, optimal control, optimization methods.

I. INTRODUCTION

Parallel mechanisms are widely used in applications re-
quiring speed, precision and rigidity with limited workspace,
e.g. in medical and industrial robotics, flight and automobile
simulators, mechatronic systems [1]–[5]. Among numerous
types of parallel manipulators, spherical parallel manipula-
tors (SPMs) can be applied for designing orientation wrist
platforms for industrial robot end effectors, solar or parabolic
antenna orientation systems, medical and rehabilitation robots
[6]–[9]. A special case of a three degree-of-freedom (3-DOF)
SPM with revolute joints (RRR type) named Agile Eye is
proposed in [10] for designing a novel camera orientation
system. A modification of the Agile Eye, the Agile Wrist,
with enhanced load-carrying capacity and reduced weight,
is extensively studied in [11]–[15]. Nevertheless, trajectory
generation and application development of 3-DOF RRR type
SPMs are still challenging tasks, due to the closed kinematic
structure of the manipulators, that limits the motion of the
robot top mobile platforms and creates complex kinematic sin-
gularities in their workspace [16]. These challenges presently
limit widespread practical application of SPMs, despite their
promising industrial potential as orientating devices.
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Many approaches have been considered to analyze different
SPM systems [6]–[20]. In [6] it is shown that the forward
kinematic problem of a general 3-DOF RRR SPM leads to
a polynomial with at most eight solutions, corresponding to
different poses of the manipulator top mobile platform, for a
given set of control inputs. However, only one, i.e., unique,
kinematic solution, corresponding to the actual physical pose
of a parallel manipulator, has to be used for designing a robot
control system [21], [22]. A unique kinematic solution of a
parallel manipulator can be directly identified using numerical
procedures. As an alternative, additional sensors can be used
[21], [23], which however will bring extra costs, and the need
of dealing with measurement errors [24].

Considering special SPM configurations, e.g. the Agile
Wrist/Eye, the complexity of forward and inverse kinematic
problems reduces significantly and closed-form analytical so-
lutions can be obtained [19]. An approach for producing
a unique solution to the forward kinematics of the Agile
Eye SPM is reported in [25]. A similar approach has been
applied to analyze the forward kinematics of a specific linearly
actuated quadratic SPM in [26].

Workspace analysis of parallel manipulators is a key el-
ement for manipulator trajectory planning and control. The
workspace of parallel manipulators, in addition to being in-
herently limited as compared to serial manipulators, is subject
to further restrictions due to possible collisions of the links
with one another. A number of different methods have been
adopted for workspace analysis of parallel manipulators [16],
[27]–[32]. According to [32], the SPM assembly modes (as
will be defined in Section II) should be taken into account for
workspace definition. However, most of the analyses of SPM
mechanics do not take the presence of mechanical interference
(i.e., collisions) into account [33], [34], which is instead an
important aspect in practical applications.

Optimizing the robot motion is important in many applica-
tions. The application of optimal control to parallel manipu-
lators has received little attention so far. In particular, optimal
trajectory planning problems for a given geometrical path are
formulated in [35] for high-speed cable-based parallel manip-
ulators, and in [36] for a Delta parallel robot manipulator.
Minimum-time trajectory planning and real-time control of a
special five-bar parallel robot is presented in [37]. Even though
low-level PID control has been applied to different types of
SPMs (see, e.g., [9], [38]), to the best of our knowledge no
results have been reported on the application of numerical
optimal control methods to these systems.

This paper presents a novel framework for generating op-
timal actuator trajectories for an SPM system with revolute
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joints, actuated by servomotors with default internal posi-
tion control settings. The proposed strategy consists of three
phases. At first, the kinematic analysis of 3-DOF SPMs with
revolute joints is revisited in Section II and an approach for
obtaining unique solutions to forward kinematics is introduced
in Section III, in order to univocally relate the angular posi-
tions of the SPM actuated joints to the orientation of its top
mobile platform. Based on these results, the second phase,
outlined in Section IV, focuses on singularity analysis and
determination of possible mechanical interference between the
SPM links. As a result, the SPM workspace (i.e., the set of
all accessible configurations of the manipulator) is defined
numerically. The last phase is presented in Section V and
consists in defining reference signals for the SPM actuators,
based on workspace and original servomotor dynamics, that
generate an optimal evolution of the system dynamics (e.g.
minimum-velocity-norm or minimum-time). This is different
from simply generating optimal references, in that the op-
timization is carried out with respect to the actual system
trajectory (imposed by its dynamics) for the given reference,
rather than considering the reference itself. Due to the need of
solving a numerical optimization problem that can easily have
hundreds of variables and constraints, the planning of these
trajectories requires offline computation, and can therefore
be applied only if the initial and final SPM configurations
are known a priori. In the proposed framework, the resulting
optimization problem is convex (or quasi-convex) [39]: as a
consequence, the problem related to the possible convergence
to local minima, present in nonlinear optimization problems
(cf. [40]), is overcome. Experimental demonstration of the
proposed framework using a 3D printed prototype of the Agile
Wrist SPM with three servomotors is given in Section VI,
which also includes a discussion of the results. The first phase
of the framework proposed in this paper is a development
of the authors’ preliminary work [41], that also reported an
approach for obtaining a unique inverse kinematic solution, a
graphical verification method using SolidWorks CAD software
and numerical examples considering a specific Agile Wrist
SPM.

II. FUNDAMENTAL CONCEPTS

Kinematic analysis of SPMs is a well-developed topic, see
e.g. [6]–[20], [25], [42]. In order to help the reader understand
the contributions of this paper, a brief summary of the 3-DOF
RRR SPM kinematics is introduced in the remainder of this
section.

A. Coordinate System

A model of a general symmetric 3-DOF SPM with revolute
joints is shown in Fig. 1. The SPM consists of two pyramid-
shape platforms: a base and a top mobile platform. These
are connected by three equally-spaced legs, numbered by
i = 1, 2, 3, each of them composed of two curved links,
namely proximal (lower) and distal (upper) links. The axes
of all joints, denoted by unit vectors ui, vi, and wi, intersect
at a common point, referred to as center of rotation. The
dimensions of proximal and distal links are denoted as α1 and

Fig. 1. 3D representation of the kinematic model of a 3-DOF RRR SPM:
(1) - proximal link, (2) - distal link, (3) - center of rotation, (4) - top mobile
platform.

α2, respectively. Angles β and γ define the geometry of two
regular pyramids of the top mobile and base platforms. The
motion of the top mobile platform is confined on the surface
of a sphere centered at the center of rotation.

The right-handed orthogonal coordinate system with its
origin located at the SPM center of rotation is shown in
Fig. 1. The z axis is normal to the base pyramid platform
and is directed upwards, while the y axis is located in the
plane generated by the z axis and u1. The input joint angles,
which can be imposed by using three electrical servomotors,
are referred to as θi, i = 1, 2, 3, and measured from the plane
generated by the z axis and ui, to the plane of a proximal link.

The unit vectors ui, i = 1, 2, 3, of the base joint axes are
defined as follows [12]:

ui = [sin ηi sin γ, cos ηi sin γ, − cos γ]T, (1)

where ηi, i = 1, 2, 3, are the angles measured from the plane
generated by the z axis and u1, to the plane generated by the
z axis and ui. By symmetry, ηi = 2(i− 1)π/3 [7].

Unit vectors wi, i = 1, 2, 3, correspond to the axes of the
SPM intermediate revolute joints and are obtained in terms of
input joint angles θi [12]:

wi =

sηi sγ cα1 − (cηi sθi − sηi cγ cθi) sα1

cηi sγ cα1 + (sηi sθi + cηi cγ cθi) sα1

−cγ cα1 + sγ cθi sα1

 , (2)

where s and c denote sine and cosine, respectively.
Unit vectors vi, i = 1, 2, 3, that are parallel to the axes of

SPM top revolute joints, define orientation of the SPM top
mobile platform.

B. SPM Kinematics

Considering the SPM forward kinematics, both ui and wi,
i = 1, 2, 3, are assumed to be known. Vectors wi are defined
as functions of the actuated joint angles θi. The task is to
find the unknown vectors vi, i = 1, 2, 3, of the SPM top
mobile platform [42]. Different approaches to obtain solutions
to the SPM forward kinematics problem lead to formulating
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eighth-degree polynomial equations, providing at most eight
forward kinematic solutions [6], [12], commonly referred to as
assembly modes [18]. In this work, the general SPM analysis
approach is adopted, in which vi, i = 1, 2, 3, are treated as
unknown unit vectors [12], implying the condition∥∥vi

∥∥ = 1, (3)

‖·‖ indicating the Euclidean norm, that will be directly used in
the numerical algorithms described in Section III. For the SPM
closed kinematic chain, the following equations hold [12]:

wi · vi = cosα2, i = 1, 2, 3. (4)

The geometry of the regular pyramid of the SPM top mobile
platform implies [12]

vi · vj = cosα3, i, j = 1, 2, 3, i 6= j, (5)

where α3 is the angle between the axes of the i-th and j-th
top joints. It is equal to the angle between the lateral edges of
the top pyramid, which takes the value [12]

α3 = 2 sin−1
(

sinβ cos
π

6

)
. (6)

A combination of equations (3)-(5) is utilized to generate a
system of three linear and six quadratic equations, which is
solved numerically to obtain a unique solution to the SPM
forward kinematics as proposed in Section III. Once the unique
solution to the SPM forward kinematics is found, the unit
vector n, normal to the SPM top mobile platform, can be
defined as a function of the corresponding components of
vectors vi as follows:

n =
N
‖ N ‖

, (7)

where N = v1 + v2 + v3. The case in which n = [0 0 1]T

corresponds to the SPM mobile platform being parallel to the
base platform in the coordinate system specified in Section
II-A.

If the orientation of the SPM mobile platform is given (i.e.,
vectors vi are known) inverse kinematic solutions are defined
by three uncoupled equations for actuated joint angles θi as
presented in [7], [15]. For any given orientation of the SPM
top mobile platform, there are two solutions exist for each
angle θi on each SPM leg i = 1, 2, 3 [7], also referred to as
working modes [18].

C. Singularity Analysis

After defining the the vector of actuated joint angles

θ ,
[
θ1 θ2 θ3

]T
, (8)

the Jacobian matrix J maps the angular velocity vector ω of
the SPM mobile platform into the vector of actuated joint rates
θ̇ as follows [7]:

θ̇ = Jω. (9)

An equivalent formulation of (9) can be written in terms of
matrices J1 and J2 [43]:

J1ω + J2 θ̇ = 0 (10)

in which

J1 =

(v1 × w1)T

(v2 × w2)T

(v3 × w3)T

 , (11)

J2 = diag(u1 × w1 · v1,u2 × w2 · v2,u3 × w3 · v3). (12)

The Jacobian is finally obtained as

J = J−1
1 J2. (13)

The first type of singularity occurs when det(J2) = 0. This
corresponds to vectors ui, wi and vi, i = 1, 2, 3, lying in
the same plane, i.e., the corresponding SPM leg is completely
folded or unfolded. The condition for this type of singularity
can be obtained from equation (12) as (ui × wi) · vi = 0,
i = 1, 2, 3 [31].

These singular configurations correspond to the set of
SPM poses for which the finite number of different working
(assembly) modes changes, thus defining the boundary of an
SPM workspace in a particular working mode (assuming no
joint limits and no link interference), i.e., [18], [27], [43].

The second type of singularity occurs when det(J1) = 0.
In general, as opposed to the first one, the corresponding
configuration may be located inside the workspace [31].

The third kind of singularity occurs when, for certain
configurations, both J1 and J2 are singular [43].

The SPM singularity conditions can be detected using the
condition number of its Jacobian matrix, defined as [7]:

κ =‖ J ‖‖ J−1 ‖ (14)

with
‖ J ‖=

√
tr(JT W J). (15)

Here, matrix W is defined as

W =
1

3
I , (16)

with J ∈ R3×3, I denoting the 3× 3 identity matrix.
To simplify numerical computations, the so-called condi-

tioning index is used [7]

ζ(J) =
1

κ(J)
, 0 < ζ(J) < 1. (17)

A value of ζ(J) close to zero denotes a singular configuration
of the SPM. On the other hand, a value ζ(J) in the immediate
vicinity of 1 corresponds to an isotropic configuration (i.e., a
perfectly conditioned Jacobian matrix) and is used to design
optimal configurations of SPMs [44].

III. UNIQUE FORWARD KINEMATICS

In order to achieve the objective of defining SPM optimal
trajectories, the first phase consists in obtaining unique forward
kinematic solutions for a given SPM system. In this way, after
defining the SPM actuator trajectories in the form of time
evolutions of the reference actuator angles θi, i = 1, 2, 3,
one can always obtain the corresponding evolution of the
other geometric variables of the system. This will be needed,
for instance, for verifying whether a particular configuration
leads to a singularity condition of the SPM. Here, the term
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configuration is referred to a particular value for the vector of
input joint (i.e., actuator) angles θ. The approach is presented
in the remainder of this section in the form of an algorithm
for obtaining a unique forward kinematic solution of a general
SPM with revolute joints.

A unique solution for the forward kinematics in the form of
three unit vectors vi, i = 1, 2, 3, is obtained using Algorithm
1 below.

Algorithm 1: Unique SPM forward kinematic solution
Input: θ, α1, α2, β, γ, x0, ηi, i = 1, 2, 3
Output: Unique vectors vi, i = 1, 2, 3

Calculate α3 using (6);
for i← 1 to 3 do

Calculate ui using (1) (optional);
Calculate wi using (2) given θ;

Calculate vi, i = 1, 2, 3, by numerically solving the
system of equations (3)-(5), given wi, i = 1, 2, 3, with
initial guess vector x0;
return ui, wi and vi, i = 1, 2, 3.

Analyses of the Agile Eye SPM design presented in [18]
and [25] prove that the current Agile Eye/Wrist SPM forward
kinematic solution lies in the same working mode and as-
sembly mode as the initial (home) assembly mode (initial
configuration of the robot) and is reachable through SPM
continuous motion without crossing a singularity, i.e., without
changing assembly mode. This condition may not hold for an
arbitrary SPM with revolute joints which may be cuspidal,
in the sense that it may change its assembly mode without
crossing a first-type singularity. Since the kinematic equations
of parallel manipulators are very complex, the definition of
geometric conditions that lead to a cuspidal parallel robot
design is still an open research problem [18], [45]. However,
utilizing the definition proposed in [22], stating that “noncusp-
idal parallel manipulators are defined as parallel manipulators
with none of their legs, as a serial structure, being cuspidal”,
we may assume that most of the 3-DOF SPMs with revolute
joints are, in fact, noncuspidal manipulators. According to
[45], each SPM leg i = 1, 2, 3, considered as an RRR series
manipulator, is noncuspidal, since the degree of its inverse
kinematics polynomial, e.g. as formulated in [7], [15], is no
greater than 2.

Considering an arbitrarily given general 3-DOF SPM design
with revolute joints, its initial (home) assembly mode can be
chosen employing the assembly analysis presented in [12]. As
a result, the most isotropic SPM assembly mode is selected
with ζ(J) being closest to 1, that may ensure the largest
singularity-free workspace. One example of such analysis
is presented in [12] for the case of a 3-DOF RRR SPM
with coaxial input shafts. Hereafter, we define an SPM home
configuration as a non-singular assembly with all proximal
links rotated to one side and attached to the base platform
through actuated joints, as shown in Fig. 1.

Numerical methods for solving systems of nonlinear alge-
braic equations require an initial guess, and in most cases
converge to the solution that is the closest to the initial guess

[22]. Since we expect to find the current forward kinematic
solution that lies in the same assembly mode, the manipulator
home position may be used as an initial guess [22] when
numerically solving the system of nonlinear equations (3)-(5).

In the present case, the initialization of the numerical
method is given by the initial guesses of the x, y and z
components of vi, i = 1, 2, 3, gathered in vector x0. By
changing the signs of the 9 components of x0, all possible
eight solutions for the SPM forward kinematics, i.e., vectors
vi, can be found. The sequence of signs corresponding to one
current forward kinematic solution can be selected using the
orientation of vectors vi of an SPM in its home configuration.
It can be obtained by projecting unit vectors vi onto x, y and
z axes of the coordinate system. Thus, to obtain numerically
the unique solution of the SPM forward kinematics, the signs
of x, y and z coordinates of unit vectors vi, i = 1, 2, 3, at the
SPM home position are used in the initial guess vector.

Assuming that the same home SPM assembly and coordi-
nate system are considered for obtaining unique solutions to
the manipulator kinematics, vector θ can be found knowing
vectors vi, i = 1, 2, 3, corresponding to the current orientation
of the SPM top mobile platform, by determining unique
inverse kinematic solutions, as proposed by the authors in [41].

IV. WORKSPACE DEFINITION

The second phase of the proposed framework consists in
defining a set of feasible configurations. This section shows
how to determine whether a given vector θ corresponds to an
SPM singular configuration (singularity detection), or causes
two or more SPM link collisions for that specific configuration
(link interference).

A. Singularity Detection

Utilizing the SPM singularity analysis outlined in Section
II-C, for a given vector θ it is possible to obtain the corre-
sponding vectors vi, i = 1, 2, 3, through forward kinematics.
Since ui and wi, i = 1, 2, 3, are fixed geometrical quantities,
it is possible to state that J = J(θ). It is then immediate
to determine whether a given vector θ corresponds to SPM
singular or near-singular configurations by calculating and
comparing the conditioning index ζ(J) with the minimum
threshold value ζ(J)min, as presented in Algorithm 2.

B. Link Interference

The determination of possible link interference for a given
SPM configuration θ is not a straightforward task using
analytical methods. In the approach proposed in this paper,
the SPM links are approximated by using sets of line segments
with coordinates defined as functions of θ, knowing the SPM
geometry.

Considering the kinematic model of a general SPM with
revolute joints (Fig. 1), it can be assumed that each SPM
proximal and distal links i = 1, 2, 3, can be approximated
by line segments that have the SPM joints and the centers of
the links as extremes. The coordinates of the end points are
defined by the SPM geometry and vectors ui, wi and vi for
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Fig. 2. Approximation of SPM proximal and distal links by line segments
(a), and sets containing all points within a distance δ from the segments (b).

any given vector θ. Thus, the line segments corresponding to
the links are uniquely located in the SPM coordinate systems,
and the interference can be determined by calculating the min-
imum Euclidean distance between any two line segments (the
approximation of robot links with segments for interference
analysis is already present in the literature, see, e.g., [46]).

Let points Ai, Bi, Ci, Di, Ei and Fi denote end points
of the line segments approximating proximal and distal links
i = 1, 2, 3, as shown in Fig. 2. Knowing the SPM geometry
and the unit vectors ui, wi and vi, the coordinates of points
Ai, Bi and Ci for proximal links i = 1, 2, 3, are found as

Ai = ui · OA, (18)

Bi =
ui + wi

‖ ui + wi ‖
· OB, (19)

Ci = wi · OC. (20)

in which ui and wi are functions of θi as defined by (1) and
(2). Similarly, the coordinates of points Di, Ei and Fi are
defined for distal links i = 1, 2, 3, as

Di = wi · OD, (21)

Ei =
vi + wi

‖ vi + wi ‖
· OE, (22)

Fi = vi · OF. (23)

Once these points are known for a specific value of θ, the line
segments AiBi, BiCi, DiEi, and EiFi can be determined.

The analysis of a general 3-DOF RRR SPM leg design in
Fig. 2a reveals the following observations:
• line segments AiBi cannot collide with segments BiCi

of the same distal links;
• line segments DiEi cannot collide with segments EiFi of

the same proximal links;
• proximal and distal links of the same SPM leg cannot

collide with each other, i.e., segments AiBi and BiCi

never intersect DiEi and EiFi, for a constant value of i.

In order to detect link collision in the cases not specified in
the above list, we decided to rely on numerical rather than
analytical methods. Each SPM arm is over-approximated in
the 3D-space as the union of all points which have a given
maximum distance δ > 0 from the line segments. In this way,
the value of δ accounts for the thickness of the SPM links,
and for the level of approximation that is used to describe
each curvilinear link structure with a set of segments. A 2D
representation of these sets is reported in Fig. 2b, while a
more sophisticated 3D graphical representation is presented
for the case study in Section VI-D. For any pair of segments,
a sufficient condition for interference is that the minimum
Euclidean distance between them be less than 2δ. For any two
given segments in the 3D space, this condition can be easily
verified by solving a quadratic program (QP). In particular,
two generic segments S1 and S2 in the 3D space can be
geometrically represented as the convex hull of their two
vertices. The fact that a point belongs to any of the segments
can therefore be expressed by a system of linear inequalities.
Referring to [39, Sec. 4.4], the minimum distance between S1

and S2 is found by solving

minimize
θ1,θ2

‖θ1 − θ2‖ (24a)

subj. to θ1 ∈ S1, (24b)
θ2 ∈ S2. (24c)

The optimization variables are the x, y, and z coordinates of
θ1 and θ2. The problem consists of a quadratic cost function
and of linear inequality constraints: it is therefore a small
QP, which, being a convex optimization problem, is typically
solvable in a few microseconds on a desktop computer.

C. Space of Feasible Configurations

Sections IV-A and IV-B introduced numerical procedures
to determine if a given configuration θ corresponds to an
SPM singular configuration, or to a collision between SPM
links. The procedure can be repeated for a 3D grid of different
configurations θ, in which all possible coordinates θi of the
nodes belong, respectively, to vectors

φi , {θi,1, θi,2, . . . θi,Mi
}, i = 1, 2, 3 (25)

and a uniform sampling is employed for simplicity, i.e.,
∆ , θi,j+1 − θi,j is constant.

Let set V be defined as the union of all nodes corresponding
to feasible configurations θ, i.e., those configurations for
which singularities and collisions are avoided. Algorithm 2
details the procedure to determine set V .

A possible approximate space of feasible configurations P ′
is defined as

P ′ ,

(⋃
θ∈V

θ ⊕ C∆

)
	 C∆,

C∆ being the cube with side equal to ∆, centered at the
origin, ⊕ and 	 indicating the Minkowski sum and Pontryagin
difference, respectively. In general, set P ′ is non convex.
Therefore, determining trajectories in P ′ leading to an optimal
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system performance would require the solution of a non-
convex optimization problem. In order to obtain a convex
optimization problem instead, for which we can rely on faster
and more reliable solvers, an inner approximation of P ′ is
obtained as a polytope (i.e., a bounded polyhedron), denoted
as

P , {θ ∈ R3 : Apθ ≤ bp} ⊆ P ′, (26)

where Ap ∈ Rnp×3, bp ∈ Rnp , np being the number of half
spaces, the intersection of which defines the polytope.

Algorithm 2: SPM workspace analysis
Input: α1, α2, β, γ, x0, δ, OA, OB, OC, OD, OE, OF,

ηi, φi, i = 1, 2, 3
Output: Set V
V ← ∅;
/* consider all SPM configurations */

for a1 ← 1 to M1 do
for a2 ← 1 to M2 do

for a3 ← 1 to M3 do
singularity ← false;
collision← false;
θ ←

[
θ1(a1) θ2(a2) θ3(a3)

]T
;

/* forward kinematics */

Calculate ui, wi and vi, i = 1, 2, 3, given θ
using Algorithm 1;
/* singularity detection */

Calculate J using (11)-(13) given ui, wi and
vi, i = 1, 2, 3;
Calculate ζ(J) using (14)-(17) given J;
if ζ(J) < ζ(J)min then

singularity ← true
/* link interference detection */

for i← 1 to 3 do
Calculate Ai, Bi, Ci, Di, Ei and Fi using
(18)-(23) given ui, wi and vi;
Define segments Li,1 ← AiBi,
Li,2 ← BiCi, Li,3 ← DiEi, Li,4 ← EiFi;

/* QP optimization routine */

for c1 ← 1 to 3 do
for c2 ← 1 to 3 do

for c3 ← 1 to 3 do
for c4 ← 1 to 3 do

if (c1 6= c3) and
distance(Lc1,c2 , Lc3,c4) < 2δ
then

collision← true

/* update workspace */

if singularity == false and
collision == false then
V ← V ∪ {θ}

return V .

V. OPTIMALITY-BASED TRAJECTORY GENERATION

Once the space of feasible configurations P has been
formulated as a polytope, it is possible to automatically define
feasible trajectories for the SPM motion. In the following,
the problem of generating an optimal trajectory of an SPM is
considered, given initial and final (desired) configurations of
the SPM. In order to formulate an optimal control problem, the
SPM dynamics is needed. In many implementations, an SPM
is actuated by servomotors with integrated PID controllers
implementing internal position control loops. Rather than
modifying the default internal servomotor controllers, which
is not practical or not possible in many applicative cases,
we define suitable reference trajectories that, exploiting the
information on the original dynamics of the servomotors,
ensure the best possible performance of the SPM system.

An internal control loop of a servomotor is typically tuned
so that its closed-loop (linear) dynamics can be represented by
a second-order critically-damped system. In state space form
it is defined as follows:

ẋi(t) =

[
0 1
−p2 −2p

]
xi(t) +

[
0
p2

]
θ∗i (t), i = 1, 2, 3, (27)

where −p is the location of the coinciding real poles of
the closed-loop system (assumed to be equal for all SPM
actuators), xi ,

[
θi θ̇i

]T
is the state of i-th actuator

(i = 1, 2, 3), and θ∗i is the corresponding reference position.
For numerical optimal control, the actuator dynamics (27)

can be transformed via exact sampling in discrete-time state
space form with sampling interval Ts, as

xi(k + 1) = Axi(k) +Bθ∗i (k), (28)

where k is the discrete-time index.
Assume that the initial and final actuator positions (i.e.,

SPM configuration) θ(0),θ(N) ∈ R3 (corresponding to time
instants 0 and NTs, N being a fixed integer number), are fixed
and equal to θd(0) and θd(N), respectively. In addition, the
corresponding velocity vectors θ̇(0), θ̇(N) ∈ R3 are equal to
zero. Then, the sequence of actuator position references within
the considered time window is defined as a single vector

Θ∗ ,
[
θ∗(0)T θ∗(1)T . . . θ∗(N − 1)T θ∗(N)T

]T
,

(29)
where θ∗(k) ,

[
θ∗1(k) θ∗2(k) θ∗3(k)

]T
.

A. Minimum-Velocity-Norm Problem

We first consider the particular problem, known as minimum
velocity norm (MVN), of minimizing the Euclidean norm of
the servomotors velocity vector during the SPM motion. This
type of cost function intrinsically limits the average system
speed during the task, ensuring a smooth motion: it has been
already proposed for different robotics applications (see, e.g.,
[47], [48]), but never for parallel manipulators. We formulate
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the MVN problem in our setting as

minimize
Θ∗

N∑
k=0

θ̇(k)T θ̇(k) (30a)

subj. to θ(0) = θ∗(0), θ(N) = θ∗(N) (30b)

θ̇(0) = θ̇(N) = 0 (30c)

|θ̇(k)| ≤ θ̇max, i = 1, 2, 3, k = 0, . . . , N (30d)
Apθ(k) ≤ bp, k = 0, . . . , N (30e)
xi(k + 1) = Axi(k) +Bθ∗i (k),

i = 1, 2, 3, k = 0, . . . , N − 1 (30f)

The equations in (30b) impose the initial and final angular
positions of the motors, while (30c) imposes the correspond-
ing angular velocities to be equal to zero. The system of
inequalities in (30d) limits the maximum angular velocity
of the actuators through the predefined fixed value of θ̇max.
Condition (30e) represents the set of linear inequalities (26),
which prevents collisions between links, and singular con-
figurations, during the robot motion. Finally, (30f) imposes
the SPM dynamics on the evolution of the actuator angular
positions and velocities.

Since (30f) holds, once the initial conditions are defined, the
whole SPM motion depends on the sequence of reference val-
ues to the manipulator actuators, which is represented by Θ∗.
The whole system can be represented by six states (vectors x1,
x2, x3) and three inputs (vector θ∗). The cost function can,
therefore, be defined as a quadratic function of Θ∗, while all
conditions in (30b)-(30f) can be represented as linear equality
and inequality constraints depending on Θ∗ and on the initial
condition. This allows one to formulate the problem as a QP,
which can be solved very quickly and efficiently, typically
relying on active-set or interior-point methods. The convexity
of the problem ensures that the optimal sequence of inputs
Θ∗ is the one leading to the global minimization of the cost
function within the given configuration space P .

B. Minimum-Time Problem

As an alternative to the MVN problem, a minimum-time
problem can also be formulated, which consists of finding
the smallest positive value of N for which the manipulator
can move from θ(0) to θ(N) satisfying the same constraints
expressed in (30b)-(30f).

minimize
Θ∗

N (31a)

subj. to (30b)− (30f) (31b)

This would not be a convex optimization problem, but rather
a quasi-convex one, the solution of which can be obtained by
iteratively finding a feasible Θ∗ satisfying (30b)-(30f) with a
different value of N (obtained through a bisection procedure)
until the minimum feasible value of N is found (see, for
example, [39, Ch. 4]).

Remark 1: Notice that, for both the considered problems,
all the constraints are imposed on the actual system variables
rather than on their references. Also, the optimization problem
is related to the actual variables θ rather than the reference

Fig. 3. The experimental setup, consisting of the 3D printed prototype of
the Agile Wrist manipulator with the Dynamixel MX-106 servomotors and
CM-700 servo controller.

θ∗, i.e., there is no need for the references to be perfectly
tracked in order to obtain the optimal performance. This means
that, for instance, the value of θ∗ can exceed the set P for
some time instants, in order to obtain a large error signal
θi − θ∗i for some of the actuators. This would lead to a
fast reaction of the internal actuator controllers, leading in
turn to an increase of angular velocity of the SPM actuators.
In general, the reference tracking depends on the internal
actuator controllers, and cannot be significantly improved.
However, using the proposed optimal method for trajectory
generation, it is possible to determine the reference that, given
the system dynamics, would lead to the optimal evolution
of the system variables. It is important to notice that using
a wrong system dynamics in (30f) would lead to obtaining
reference trajectories that do not optimize the behavior of the
actual system. For this reason, it is very important that the
closed-loop model of the servomotors, obtained either from
physical equations or from system identification, be as precise
as possible.

VI. RESULTS AND DISCUSSION

A. Experimental Setup

To experimentally demonstrate the application of the pro-
posed framework, a prototype of the “Agile Wrist” SPM
has been built. The mechanical part of the prototype has
been designed in SolidWorks CAD software and manufactured
using 3D printing technology with ABS plastic. The SPM pro-
totype is actuated by three Dynamixel MX-106 servomotors
fixed to the SPM base platform and controlled by a CM-
700 Dynamixel servo controller, as shown in Fig. 3. In the
Agile Wrist SPM configuration α1 = α2 = 90◦ (please refer
to Section II for the meaning of α1 and α2), with all three
legs being identical. The three unit vectors ui as well as
vi, i = 1, 2, 3, are mutually orthogonal [12]. This leads to
β = γ = 54.7◦.

The home configuration of the Agile Wrist is chosen such
that θ =

[
135◦ 135◦ 135◦

]
and the axes of base and top

joints are aligned as u1 = −v3, u2 = −v1, u3 = −v2. In
this configuration, the SPM top mobile and base platforms are
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parallel to each other. The angles θi, i = 1, 2, 3, are set from
the vertical plane generated by the z axis and vectors ui, to the
plane of the corresponding proximal links in the servomotor
counterclockwise direction [41].

B. Calculating SPM Orientation

1) Forward Kinematic Solution: Consider the case with
SPM input angle vector θ =

[
95◦ 110◦ 105◦

]
. The graph-

ical representation of this SPM configuration is shown in [41].
Following Algorithm 1 outlined in Section III all unit vectors
ui and wi are calculated in MATLAB using (1) and (2). Then,
combining equations (3)-(5), the system of three linear and six
quadratic equations is generated as follows:

−0.9962v1x − 0.0503v1y − 0.0712v1z = 0

0.2989v2x + 0.9125v2y − 0.2793v2z = 0

0.6123v3x − 0.7618v3y − 0.2114v3z = 0

v1x · v2x + v1y · v2y + v1z · v2z = 0

v1x · v3x + v1y · v3y + v1z · v3z = 0

v2x · v3x + v2y · v3y + v2z · v3z = 0

v2
1x + v2

1y + v2
1z = 1

v2
2x + v2

2y + v2
2z = 1

v2
3x + v2

3y + v2
3z = 1.

(32)

The system of nonlinear equations (32) with 9 unknown
components of vectors vi is solved in MATLAB using function
fsolve with the initial guess vector

x0 =
[
−1 1 1 1 1 1 −1 −1 1

]T
. (33)

corresponding to vector[
v1x v1y v1z v2x v2y v2z v3x v3y v3z

]T
.

Function fsolve uses the trust-region-dogleg algorithm
[49]. The absolute values in vector x0 were chosen arbitrarily,
whereas the sequence of signs in vector x0 in (33) was adopted
from the orientation of vectors vi, i = 1, 2, 3, at the Agile
Wrist home configuration and then verified with numerous
tests using the SolidWorks CAD software.

As a result, the orientation of the Agile Wrist top mobile
platform corresponding to the given actuated joint angles is
found in terms of unit vectors vi:

v1 =

−0.0817
0.8230
0.5621

 , v2 =

 0.9039
−0.1768
0.3896

 , v3 =

−0.4204
−0.5401
0.7291

 .
(34)

The unit vector n is defined from equation (7) as

n =
[
0.2321 0.0613 0.9708

]T
.

The solution (34) for the considered SPM was also verified
using the unique inverse kinematic solution and the graphical
method presented in [41].

TABLE I
FORWARD KINEMATIC SOLUTIONS OF THE AGILE WRIST/EYE SPM

OBTAINED WITH DIFFERENT NUMERICAL METHODS AND APPROACH [12]

θ v1 v2 v3

Trust-region-dogleg algorithm (MATLAB)

108 -0.276580 0.546672 -0.790536
60 0.127085 -0.794538 -0.593566
105 0.952551 0.264311 -0.150771

Newton’s method (MAPLE)

108 -0.276605 0.546401 -0.790528
60 0.127232 -0.794559 -0.593706
105 0.952523 0.264803 -0.150258

Solution from Table 5 in [12]

108 0.27657 -0.54652 0.79047
60 0.12704 -0.79457 -0.59379
105 0.95259 0.26459 -0.15034

2) Comparison Analysis: To verify the reliability of the
unique forward kinematic solutions, we compare two differ-
ent numerical methods (i.e., the above-mentioned trust-region
method and the Newton’s method implemented in Maple).
Algorithm 1 was implemented using the two mentioned meth-
ods to solve the system of nonlinear equations (3)-(5) for
the Agile Wrist SPM configuration θ =

[
108◦ 60◦ 105◦

]
,

with initial guess vector x0 given in (33). The solutions
using both numerical methods are listed in Table I, with one
of the eight Agile Wrist SPM forward kinematic solutions
computed with the approach reported in [12]. It is clear that
the obtained forward kinematic solutions are almost identical,
with maximum difference equal to the negligible value of
2 · 10−4, which only depends on two different numerical
tolerances set in the termination criteria of the two algorithms.
The coordinate system in [12] is defined as in Fig. 1, with
the difference that the x axis is pointing in the opposite
direction. Hence, the x components of the third triplet of
vectors vi in Table I have opposite signs. This confirms that
the proposed approach allows one to obtain coinciding SPM
unique forwards kinematic solutions in terms of unit vectors
vi, regardless of the employed numerical method.

The approach proposed in this paper was also compared
in [41] with the approach for obtaining a unique solution to
forward kinematics of the Agile Eye SPM proposed in [25].
It was shown that using both approaches, a correct unique
forward kinematic solution of the considered SPM is obtained.

C. Analysis of Different SPM Structures

Consider the example of a different SPM, with coaxial
shafts (collinear actuators) [7], [12] that implies γ = 0. The
dimensions of the SPM are given as α1 = 45 deg, α2 = 90
deg, and β = 60 deg. Following Algorithm 1, the SPM unique
forward kinematic solution is obtained with the two above-
mentioned numerical methods, for the case with all input
shafts angles θ =

[
0◦ 0◦ 0◦

]
. The eight forward kinematic

solutions of this SPM structure are also reported in [12]. The
comparison of the unique solutions computed numerically with
the corresponding solution (out of eight possible) presented
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TABLE II
FORWARD KINEMATIC SOLUTIONS OF AN SPM WITH COAXIAL SHAFTS

OBTAINED WITH DIFFERENT NUMERICAL METHODS AND APPROACH [12]

θ v1 v2 v3

Trust-region-dogleg algorithm (MATLAB)

0 -0.707080 -0.079491 0.786571
0 -0.500016 0.862360 -0.362339
0 0.500016 0.500016 0.500016

Newton’s method (MAPLE)

0 -0.707084 -0.079484 0.786569
0 -0.500016 0.862361 -0.362345
0 0.500016 0.500016 0.500016

Solution from Table 3 in [12]

0 -0.70711 -0.079461 0.78656
0 0.5 -0.86235 0.36233
0 0.5 0.49999 0.50003

in [12] is given in Table II. The y components of the third
triplet of vectors vi have opposite signs due to the left-handed
orthogonal coordinate system used in [12]. It can be concluded
that the general approach proposed in this paper to obtain
the SPM unique forward kinematic solution can be applied to
different 3-DOF SPM structures with revolute joints.

D. Workspace Computation

As described in Section IV, the workspace of the Agile
Wrist top mobile platform is calculated by verifying whether
a given SPM configuration vector θ results in a singular
configuration or link interference in the manipulator, as de-
tailed in Algorithm 2. Analysis of the Agile Wrist SPM CAD
design [41] and its prototype in Fig. 3 reveals that the parts
of the SPM proximal links attached to the actuators, i.e.,
corresponding to line segment AiBi in Fig. 2, do not collide
with other links, and can therefore be neglected. Thus, each
proximal link of the Agile Wrist is approximated by a single
segment BiCi to simplify the link interference analysis. The
graphical representation of the line segments approximating
the Agile Wrist SPM in its home configuration is shown in
Fig. 4.

A set of uniformly-sampled input SPM configurations θ
between 65◦ and 155◦, with spacing ∆ = 2◦ is adopted for
the numerical computations, based on preliminary analysis of
the Agile Wrist CAD model [41] and experiments with its
prototype (Fig. 3). Following Algorithm 2 for all nodes θ in
the grid, the SPM unique forwards kinematic solutions are
calculated according to Algorithm 1, as shown in Section
VI-B1, based on the geometrical dimensions of the Agile
Wrist prototype given in Section VI-A. The obtained unique
forwards kinematic solutions are then used to calculate the
SPM conditioning index ζ(J) according to (11)-(17), which is
employed for the detection of the singular configurations with
threshold ζ(J)min = 0.25.

Subsequently, the coordinates of points Bi, Ci, Di, Ei, and
Fi, i = 1, 2, 3, are calculated according to (19)-(23). The
segments BiCi, DiEi, EiFi, i = 1, 2, 3, are defined in the
MATLAB environment using the Multi-Parametric Toolbox

[50], which implements computational geometry functions.
This toolbox is also used to easily implement the QP that
calculates the Euclidean distance between any two segments
by setting δ = 14 mm, chosen based on the Agile Wrist SPM
prototype geometry given in Section IV-B.

A space of feasible configurations P for the Agile Wrist is
obtained in the 3D space defined by θ by defining np = 61
inequalities, is shown in Fig. 5.

E. Trajectory Generation

1) Actuator Dynamics: The internal PID controllers of the
three Agile Wrist SPM actuators receive desired reference
positions θ∗ as shown in Fig. 6. The reference values are stored
in the memory of the CM-700 servo controller, and are passed
to the servomotors with a sampling interval Ts = 20 ms.
The closed-loop dynamics of the MX-106 servomotors used
in the Agile Wrist prototype can be characterized using
(27), as explained in Section V, with p = 32.22, obtained
from experimental data via system identification. The discrete
equivalent of system (28) is found by using the Tustin method,
as follows:

A =

[
0.5481 0.0435
−45.1937 3.3534

]
, B =

[
0.4519
45.1937

]
. (35)

2) MVN Optimal Control: An optimal control problem in
form (30) is solved, by setting N = 150, which corresponds
to a time interval of 3 s. It was decided not to impose the
bound (30d) on the maximum actuator speed reference, which
remains implicitly bounded due to the formulation of the cost
function. The initial and final SPM configurations are imposed
as follows:

θ∗(0) ,
[
127.53◦ 83.23◦ 85.25◦

]T
;

θ∗(N) ,
[
66.80◦ 155.00◦ 131.48◦

]T
.

Both vectors lie on the boundary of the set P in Fig. 5, in
order to test the actual absence of collisions between links
during experimental trials, which is actually achieved.

The optimal reference sequence Θ∗ is obtained by solving
the corresponding QP problem (30) using the CVX solver [51]
on a MacBook Pro with a 2.9 GHz Intel Core i7 CPU and 8
GB 1600 MHz RAM. The definition and solution of the QP
is performed in 25 s.

The obtained position and velocity signals are reported in
Figs. 7 and 8. As can be seen from Fig. 7, the measured actu-
ator angular positions are indistinguishable from the simulated
ones, which confirms the validity of the identified closed-loop
model of the actuating servomotors, and, as a consequence,
certifies the optimality of the system evolution also in practice.
The velocity signals in Fig. 8 are obtained by using a Kalman
filter, which merges the information on the measured position
signals with the nominal evolution of the system variables.

3) Minimum-Time Optimal Control: This control problem
is formulated according to (31). In this case, a bound on the
maximum angular velocities of the Agile Wrist SPM actuators
have to be imposed, and is set to θ̇max = 50◦/s in (30d). The



PREPRINT SUBMITTED TO THE IEEE/ASME TRANSACTIONS ON MECHATRONICS 10

xy

z

(b)

z[mm]

x[mm]
y[mm] xy

z

(c)

z[mm]

x[mm]
y[mm]

B1

C1

D1

E1

F1

B2

C2
D2

E2

F2

B3

C3 D3

E3

F3

xy

z

(a)

z[mm]

x[mm]
y[mm]

Fig. 4. Graphical representation of the approximation of the links in the x-y-z space for workspace computation: (a) - segments approximation, (b) -
cylindrical shapes around the segments, which should not intersect for different arms (i.e., different colors), (c) - direct representation of the cylindrical shapes,
which include the mechanical parts of each arm.

θ1θ2

θ3θ3[
◦]

θ2[
◦]

θ1[
◦]

Fig. 5. Graphical representation of the obtained space of feasible configu-
rations P , for the Agile Wrist SPM prototype.

initial and final SPM configurations are set as

θ∗(0) ,
[
70.00◦ 90.00◦ 80.00◦

]T
;

θ∗(N) ,
[
66.80◦ 155.00◦ 131.48◦

]T
.

The optimal reference sequence Θ∗ is obtained by solving
the corresponding QP problem (30) using the CVX solver on
the above-described computer. Initializing the bisection routine
with N = 100, it is necessary to solve 8 QPs (30), which
overall lead to the solution of the quasi-convex optimization
problem. The overall computation required 85 s and led to the
optimal value N = 76, corresponding to 1.54 s.

Analogously to the MVN case, the position and velocity
signals obtained on the Agile Wrist experimental setup are
presented in Figs. 9 and 10. Also in this case, the measured
actuator angular positions are indistinguishable from the sim-
ulated ones, as shown in Fig. 9.
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Fig. 6. Conceptual schematic of the implementation of the optimal control
scheme.

VII. CONCLUSIONS

In this paper, a novel framework for the optimal control of
a 3-DOF SPM with revolute joints, actuated by servomotors
with default internal position control settings, is proposed. The
procedure outlined in the framework is composed of three
phases: i) determination of an SPM unique forward kinematic
solution, ii) numerical construction of a bounded workspace
and iii) optimal determination of the actuator references that
optimize the SPM motion. The necessary calculations are
explained in detail, and presented in the form of pseudocode
algorithms suitable for direct computer implementation. An
Agile Wrist SPM prototype is built with the purpose of testing
the proposed framework. Detailed numerical examples and
comparisons demonstrate the application and show the cor-
rectness of the proposed approach for identifying SPM unique
kinematic solutions. This approach is then employed to define
the set of feasible configurations of the Agile Wrist SPM and
generate optimal reference trajectories for the servomotors, in
order to implement MVN and minimum-time optimal control
of the manipulator. The obtained experimental results with
the Agile Wrist SPM prototype confirm the feasibility and
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Fig. 7. Experimental results regarding the time evolution of the simulated,
measured, and reference angular positions of the servomotor for the MVN
problem.
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effectiveness of the proposed framework.
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