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E x p r e s s i b i l i t y  A n d  T r a c t a b i l i t y

Richard Gault

Abstract
This thesis is composed of three separate, yet related strands. They have in common 

the notion that computational problems are regarded not as sets of strings, but as 
classes of finite structures. Our “computing devices” , be they of a logical, traditionally 
computational, or algebraic nature, all work directly upon such structures. This is 
in contrast to traditional computability and complexity theory, where machines act 
instead upon some encoding of structures.

We begin by investigating a restriction of the question of whether or not N P  = 
co-N P. In particular, we consider the effect of adding a transitive closure operator to 
monadic N P , and show that the resulting logic is a strict extension of it which is not 
closed under complementation. This extends Fagin’s result that monadic N P  is itself 
not closed under complementation.

We then investigate the expressive power of a class of program schemes which we 
call RFDPS. We prove a strong result limiting the expressive power of this class, and 
use it to obtain a strict, infinite hierarchy of problem classes within RFDPS. To our 
knowledge, this is the first strict, infinite hierarchy in a polynomial-time logic which 
properly extends inductive fixed-point logic (with the property that the union of the 
classes of the hierarchy consists of the class of problems definable in the polynomial
time logic itself).

Finally, we turn our attention to constraint satisfaction problems. This important 
class of problems is NP-hard in general, but many restrictions to it have been identified 
over the years which ensure its tractability. We introduce a method of combining two 
tractable classes over disjoint domains, so as to synthesise new tractable classes. We 
demonstrate that these new classes are genuinely novel, and extend naturally to yet 
further tractable classes. The algorithms for solving these extended classes can be less 
than obvious.



Acknowledgements

First and foremost, I would like to thank my supervisor, Iain Stewart, for his continued 

help, support, and encouragement during the writing of this thesis. Without his guid

ance, it could never have been written. Many thanks are also due to Peter Jeavons and 

David Cohen, who have taught me all that I know of constraint satisfaction problems. 

Chapter 5 was written whilst working in collaboration with these researchers, and I 

am grateful to them for their permission to include it in this thesis. The constraint 

satisfaction puzzle which appears in Chapter 1 is due to Paul Roberts.

I have moved around a good deal during the writing of this thesis. I would like to 

thank the staff and students at each institution I attended for providing me with such an 

enjoyable and stimulating environment in which to work. In particular, special mention 

must be made of the members of the Theory Lab at the University of Wales College 

of Swansea: Yaagoub Ashir, Tom Atkiss, Savita Chauhan, Anuj Dawar, Anthony Fox, 

Henrik Imhof, Dafydd Rees, and Kristian Stewart; of Matthew Baker and Charles 

Eaton at the University of Leicester; of Joe Bater at Royal Holloway College, University 

of London; and of Andrei Bulatov and Andrei Krokhin at the University of Oxford.

Many people have read through various parts of my thesis at one time or another, 

and have offered useful comments. Apart from the people mentioned above, I would 

like to thank Rick Thomas and Simon Ambler, who read through preliminary versions 

of parts of Chapters 3 and 4; along with Florent Madelaine, Victor Dalmau, and Justin 

Pearson, who read through various versions of Chapter 5.

The unconditional support of my family, and of Kate has been invaluable. Fi



nancially, I must thank the EPSRC, whose grants 969035068 and GR/M 12933 have 

supported me over the past few years.

To those whom I have inevitably forgotten: my apologies. It is impossible to

remember everyone who has helped to shape this thesis.

Finally, I would like to thank the participants of BCTCS 14 at St Andrews, for not

asking too many awkward questions...



Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Basic Definitions and Notation 8

2.1 First-Order L o g ic ..........................................................................................  8

2.2 Extending First-Order L ogic .......................................................................  12

2.3 The Constraint Satisfaction P ro b le m ........................................................ 23

2.4 Operations on T up les.................................................................................... 25

3 Adding Transitive Closure to Monadic N P 30

3.1 Introduction...................................................................................................  30

3.2 The Ehrenfeucht-Fra'fsse G am e.................................................................... 32

3.3 Extending the Ehrenfeucht-Frai'sse G am e ...................................................  34

3.3.1 The Ajtai-Fagin G a m e ...................................................................... 34

3.3.2 Winning the Ajtai-Fagin G a m e ......................................................  36

3.3.3 Gradel’s TC G a m e ............................................................................  38

3.4 Extending monadic N P  .............................................................................  41

3.5 The Effect of a Successor R elation.............................................................. 50

iv



4 Program Schemes with Forall Instructions 60

4.1 Program Schem es..........................................................................................  60

4.2 Definitions.......................................................................................................  65

4.3 A More Formal Sem antics........................................................................... 86

4.4 Some Limitations of our Program Schem es...............................................  91

4.5 Conclusion.......................................................................................................... 107

5 Generating New Tractable Problems From Old 109

5.1 Introduction....................................................................................................... 109

5.2 Combining Sets of R elations........................................................................... 110

5.2.1 Multiple Relational Unions...................   110

5.2.2 Restricting the Possible Polymorphisms..............................................119

5.3 Combining Tractable Sets of R e la tio n s ........................................................ 127

5.3.1 Generating Novel Tractable C lasses.....................................................127

5.3.2 The Full Tractable C la s s ...................................................................... 130

5.4 Multiple Relational Unions on Binary Domains ........................................ 133

5.5 C onclusions.......................................................................................................136



Chapter 1

Introduction

Finite model theory is the study of the logical properties of finite mathematical struc

tures.

Model theory in general dates back to at least 300BC, when Euclid wrote The Ele

ments. In it, he stated five “self-evident” postulates, and used them to systematically 

deduce a large number of propositions of geometry. However, neither Euclid himself, 

nor the many mathematicians who came after him, were ever truly satisfied with his 

fifth postulate: the notorious “parallel lines postulate” . Many people tried to deduce 

the fifth postulate from the other four; all failed. Several investigators, including Sac- 

cheri, Lambert, and Legendre experimented with assuming that the postulate was false. 

However, they did so in the hope of obtaining a contradiction to one of the first four 

postulates. It does not seem to have occurred to anyone before Gauss that the fifth 

postulate might actually be independent of the other four. In modern terminology, we 

would say that all the early researchers assumed that the set of models of the first four 

postulates is equal to the set of models of all five postulates; that is, that Euclidean 

geometry is the only possible geometry. (Indeed, Kant described Euclidean geometry 

as “the inevitable necessity of thought.”)

Gauss never published his findings, and it was left to Bolyai and Lobachevsky to 

publish the first non-Euclidean geometries in the first half of the nineteenth century

1
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(though it was not until 1868 that Beltrami proved that the fifth axiom was independent 

of the others, by constructing a model for the Bolyai-Lobachevsky geometry within 

three-dimensional Euclidean geometry).

Since those early days, model theory has flourished (see [14]), but until fairly re

cently, finite model theory has remained largely unexplored. Partly, this is because 

many staple tools of model theory fail to work in the finite case. The completeness 

theorem of first-order logic, for example, and the compactness theorem both break 

down when attention is restricted to finite structures. There were a few early results 

in finite model theory: Trakhtenbrot’s Theorem dates from 1950 for example [84], but 

they tended to be few and far between and, in any case, to be rather negative results.

There are very few results which hold in both the finite and the general case. The 

theory of Ehrenfeucht-Frai’sse games is one of the few exceptions, and Fagin made heavy 

use of a variant of these when he showed in the early 1970s that so-called monadic N P  

is not closed under complementation [33]. This result is of significance because it is at 

least a small step in the direction of proving that the whole of N P  is not closed under 

complementation; that is, that N P  ^  co-NP. However, extending his result even to 

binary N P  has so far met with little success.

In the first part of this thesis, we extend Fagin’s work on monadic N P  by considering 

an extension to this logic which is, firstly, a provably strict extension, and secondly, 

not closed under complementation. More specifically, we add to monadic N P the 

ability to compute the transitive closure of a relation, and show that the problem 

NON-CONNECTIVITY of undirected graphs is not expressible in the resulting logic.

Although we have been unable to generalise this new result in any significant way, 

the first part of this thesis concludes with several ideas for possible extensions to the 

result, as well defining as a tool which may, perhaps, be used to this end.

The next part of the thesis concerns program schemes. Program schemes originated 

in the seventies and were extensively studied then, although it was not until the mid- 

to-late eighties that their computational complexity was examined in depth. In [75],



Chapter 1: Introduction 3

Stewart further developed the concept by defining some classes of program schemes 

which operated on finite, ordered structures; that is, which took such structures as 

inputs. He was able to demonstrate an intimate tie-up between these classes and finite 

model theory; in particular he showed that each class he defined had exactly the same 

expressive power as some natural extension of first-order logic. More recently, Arratia- 

Quesada, Chauhan, and Stewart have generalised Stewart’s constructions [6], and have 

used them to define proper hierarchies within transitive closure logic and path system 

logic. Interestingly, the proofs of these results were established without the authors 

having to play any form of Ehrenfeucht-Frai’sse game: usually the most valuable tool 

available for proving inexpressibility results.

Such a result should be motivation enough for studying program schemes, but 

they are intrinsically interesting in their own right because of the curious position they 

occupy in the world of theoretical computer science. Half-way between logical formulae 

and high-level programs, their connection to logic means that they can often be easier to 

reason about than traditional high-level languages [57, 64], yet it is normally simpler to 

write code for program schemes than to construct a sentence of some logic. In addition, 

there are tools and paradigms available to the programmer (such as the use of stacks 

[6] or parallel architectures) which cannot easily be translated into the language of the 

logician. Because they act directly on structures (rather than on a tape of Os and Is, 

say) we can encode problems much more naturally than if we were working with Turing 

Machines. At the same time however, we can write code in a sequential, imperative 

style.

In Chapter 4 of this thesis we introduce a class of program schemes which we call 

RFDPS. This class is based on arrays, if-instructions, forall-loops, and repeat-loops. 

The class arose out of our attempts to replace the notion of a while-loop, present 

in earlier classes of program schemes, with one of a forall-loop which allows parallel 

execution of blocks of code.

We prove some strong results about the expressive power of RFDPS. Although
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it is strictly stronger than inflationary fixed-point logic (it can express PARITY, for 

example) there are still a good many computationally simple problems which it cannot 

express. We are able to obtain a strict, infinite hierarchy of classes of problems within 

the class of problems accepted by program schemes of RFDPS. These classes are pa- 

rameterised by the depth of nesting of forall-loops allowed in the definition of program 

schemes. To our knowledge, this is the first strict, infinite hierarchy in a polynomial

time logic properly extending inductive fixed-point logic (with the property that the 

union of the classes of the hierarchy is the same as the class of problems definable in 

the polynomial-time logic itself). Our results are obtained by a direct analysis of the 

computations of our program schemes. Note that the existing hierarchy theorems of 

finite model theory, such as those in [41, 42, 43], are of no use to us here given that all 

of these hierarchy results are for explicit fragments of bounded-variable infinitary logic 

(which has a zero-one law), whereas our computational model is, first, not defined in 

terms of traditional logics, and second, is complicated by its ability to define problems 

not having a zero-one law.

Finally, we turn in a slightly different direction in Chapter 5, and discuss constraint 

satisfaction problems (CSPs). A CSP consists of a set of variables, to each of which 

must be assigned a value (from some domain), subject to one or more constraints.

Constraint satisfaction problems crop up in a huge variety of disciplines: from 

timetabling (“To each member of a set of lectures, assign a (room, time) pair, subject 

to constraints such as that no student or lecturer should have to attend two lectures si

multaneously” ) to radio frequency planning (“To each member of a set of mobile phone 

masts, assign a (geographic location, frequency) pair so that reception is adequate for 

mobile phone users, whilst the signals from adjacent masts do not significantly inter

fere with each other”). Many combinatorial problems may be naturally expressed as 

CSPs [51]. For example, 3-COLOURABILITY can be formulated as “To each vertex 

of an undirected graph, assign a colour from the set {Red, Green, Blue), subject to 

the constraint that whenever E  is an edge in the graph, then the endpoints of E  are
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assigned different colours” . Many puzzles can also be framed as CSPs. The interested

reader may get a feeling for constraint satisfaction problems in general by attempting

to solve the following, slightly frivolous example.

Example 1.1 Arrange the letters A to P in a 4*4 grid, one letter in each of the sixteen 

squares, subject to the following constraints.

• P is above J, which is to the left of F and N.

• B is not in the third row.

• E is two squares above D.

• O and K are in the same column.

• C is above F, and to the right of A.

• M is above A, and to the right of H.

• E and I are in the same row.

• B is above J.

• K is not in a corner square.

• L is below H, and to the left of P.

• The second row contains exactly two consonants.

• G is adjacent to C.

Here, phrases such as “to the right of” mean that the letters in question appear in the 

same row. Adjacency includes diagonal adjacency.

In this thesis we will only consider assignments to fixed, finite domains (though 

infinite domains have also been studied in the literature). In addition, we will assume
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that our constraints are given by physically enumerating all possible allowed combina

tions of values which may be taken by sets of variables. Succinct representations, of 

forms such as “P is to the left of Q” will not be allowed, as they complicate notions 

such as the size of a problem instance.

The decision problem for CSPs is NP-complete in general. Nevertheless, much 

research has been done on restricting CSPs in various ways to ensure that they may be 

solved in polynomial time. In particular, restricting the possible constraints which we 

are permitted to use can ensure tractability in many interesting cases [18, 28, 37, 55, 

56, 58, 65, 85]. From the point of view of finite model theory, this is hardly surprising. 

Consider Example 1.1 once again. Determining whether or not there is a solution to 

this puzzle is equivalent to determining whether the given set of constraints (which we 

may view as axioms) has a finite model. It is reasonable to expect that the difficulty 

in answering this question will depend on the expressive power of the logic we use to 

define the axioms. If the logic has a good deal of expressive power then the question 

may well be hard to answer; if it has very little then the question is likely to be easier, 

but we may no longer be able to express the axioms.

Given that so many tractable classes of constraint relations have been identified, 

it is pertinent to ask whether they may be combined, to yield new, larger constraint 

classes which are still tractable. This question has been posed before [15], but whereas 

the authors of that paper considered the effect of combining tractable classes over some 

fixed domain, in this thesis we generally consider the effect of combining two tractable 

classes from disjoint domains.

We focus in particular on the “multiple relational union” of two sets of constraint 

relations. We show that whenever both sets of relations are tractable, then their 

multiple relation union is a tractable set also. In addition, we show that its tractability 

cannot in general be deduced from previously known results about tractability. Using 

the results of [51] we then show that the multiple relational union is itself just one 

small subset of a much larger set of tractable relations, whose proof of tractability is
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much less obvious than that of the multiple relational union itself.



Chapter 2

Basic Definitions and N otation

In this chapter we will present the basic definitions and notation which we shall use 

throughout the remainder of this thesis. Many of our definitions are adapted from 

those in [30], though we also acknowledge a debt to [5, 51]. Some of our notation has 

been influenced by Stewart -  see [74, 81] amongst others.

2.1 First-Order Logic

A signature, also known as a vocabulary or a similarity type, is a finite tuple a = 

(Ri, R2, . • •, R r, Ci, C*2, . . . ,  Cc) of relation symbols (the Ri) and constant symbols (the 

Ci). Each relation symbol has an associated arity a* > 1. We do not admit function 

symbols into our signatures1.

A <7-structure A  is a tuple

_A : =  ( \ A \ ,R f , R * , . . . ,  R*, C f ,  C t , C t )
1 Although much of what follows would go through more or less unchanged if we permitted function 

symbols, allowing them would complicate those of our proofs which depend on the careful counting 

of quantifiers. For example, a simple expression such as f ( f ( f ( x) ) )  =  y silently elides the two 

quantifiers which would be required to express the same proposition over a purely relational structure: 

3u3v(F(x,u)  A F(u,v)  A F(v,y) ) ,  where F  is the relational analogue of / .
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consisting of a non-empty, finite set |*4|, which we call the universe or domain of A , 

along with relations R f  C |*4|ai and constants C -4 € \A\. These relations and constants 

are said to be the interpretations of the corresponding relation and constant symbols 

from a. Relations, therefore, are sets of tuples of elements of |*4|. Given any tuple t  

(also known as a word), we denote its ith element by t[z]. Where it will aid clarity, 

symbols representing tuples are often emboldened in this way.

The size of A  is the cardinality of |,4|, and is also denoted by \A\ (this will cause 

no confusion). We will henceforth assume that every structure under consideration 

has size at least 2. This is no real restriction, since it is usually easy to treat size-1 

structures as a special case if desired.

In accordance with common practice, we will often abuse the strict formalism de

fined above, and blur the distinction between relation symbols and their interpretations 

in a structure. We will also allow the use of relation symbols with names different from 

Ri , and constant symbols with names different from C{. No confusion will arise as a 

result of this notational abuse, which is merely designed as a convenient aid to expo

sition.

We denote the set of all finite cr-structures by STRUCT (a).

For any signature cr, FO(cr) denotes first-order logic over the signature a , defined 

in the usual way, and with the usual connectives and quantifiers (->, — A, V, 3, V, etc.) 

Free and bound variables are defined in the standard way, and we shall use the notation 

(p(x) to denote that the free variables of <p contain (amongst others) the variables of 

the tuple x, which we assume to be distinct. We denote (J{FO(cr)|cr is some signature} 

by FO.

We will often have cause to refer to more expressive logics than first-order logic. 

We write £  to denote an arbitrary logic, and £(a)  to denote those formulae of £  which 

are over the signature a.

Let (p{x) 6 £{&) be a formula whose free variables are precisely the variables of x, 

and let A  be some cr-structure. Let a G \A\k be a tuple of domain elements of A. We
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denote by (A , a) the augmentation of A  with the k extra constants from a, and write 

(A, a) f= <p to mean that when the value of each variable x[i] is assigned to be a[i] and 

the rest of p  is interpreted in A, then the result of the interpretation is True.

A problem of arity k > 0 over the signature a is defined to be a subset of

{(A, a) | A e  STRUCT(<t), a e \A\k}

which is closed under isomorphism. That is, if V  is a problem, if A  and B are a- 

structures, and if (A, a) and (B, b) are isomorphic, then (A, a) € V  if, and only if,

(B,b)e7>.

Ultimately, we will only be interested in problems of arity 0. Problems of any arity 

may be converted to problems of arity 0 by adding constant symbols to the underlying 

signature. However, it is convenient in what follows to allow problems of positive arity 

when we build new logics.

A successor relation over A  is a binary relation of the form

( K  ^ 1 ) 5  ( ^ l j  ^ 2 ) 5  • • • j 2 ? l ) }

where each of the U{ is a distinct domain element of A, and n is the size of A. The

minimum element of the successor relation is Uq\ the maximum element is un-\. Given

a logic C over a signature a (which we may assume without loss of generality does not 

contain either the special relation symbol succ or the special constant symbols 0 or 

max) we may add a successor relation to C as follows.

The formulae of Cs(a) are the same as the formulae of £(<rU(0, max, succ)), where 0 

and max are constant symbols, and succ is a binary relation symbol. The interpretation 

of a formula ip 6 Cs(a) over a cr-structure A  is exactly as would be expected, save 

that 0 and max are always interpreted as distinct elements of \A\, and succ is always 

interpreted as a binary successor relation whose minimum element is (the interpretation 

of) 0 , and whose maximum element is (the interpretation of) max.

Of course, whether or not A  [= <p could well depend on the precise successor relation 

chosen. The usual way around this is to insist that the only well-formed formulae of
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Cs are those whose validity is independent of the chosen successor relation. This is a 

semantic (as opposed to syntactic) condition, and is somewhat unsatisfactory for that 

reason. For even in the case where Cs = FOs, it is known that FOs is not recursive. 

This is an easy consequence of Trakhtenbrot’s Theorem: the formula —>• E(0, max) is 

independent of the particular successor relation chosen if, and only if, i/j is unsatisfiable. 

Many researchers therefore do not consider “logics” involving a successor relation to 

be true logics [44]. Indeed, one of the most important open questions in Descriptive 

Complexity today is to determine whether or not there is a pure logic which captures 

PTIM E (several logics are known to capture PTIM E in the presence of successor 

relations [40, 48, 78]).

Another, weaker, way to extend a logic is to augment it with two constant symbols. 

As in the case when we augment a logic with a successor relation, we denote these by 

0 and max , and ensure that they are always interpreted by distinct domain elements 

of the structure over which we are interpreting. (Despite the suggestive names, there 

is no sense in which max is any greater or lesser than 0. They are merely constant 

symbols.) Once again, the usual practice is to insist that formulae which depend in 

some way on the exact values assigned to 0 and max are not well-formed. Once again 

however, this gives rise to (potentially) non-recursive sets of well-formed formulae.

In both of these cases, we will adhere for the time being to the semantics just given. 

Nevertheless, we will resume this discussion in Chapter 4, when we will have a little 

more to say on the subject.

If is a sentence of some logic C(a) (that is, it contains no free variables) then the 

set of structures defined by p  is

{A  e  STRUCT (a) \ A\=<p}.

For similar reasons to those just outlined, there are logics such that this set of structures 

is not necessarily closed under isomorphism (that is, does not define a problem). We 

will not be interested in sentences which do not define problems.
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2.2 Extending First-Order Logic

D efinition 2.1  Let r  =  (Ru R 2, . . . ,  Rr, Ci, C2, • •., Cc) and o be signatures, where 

each R{ is a relation symbol of arity a* > 1, and each Ci is a constant symbol. Let 

k £ N, and let

T =  (<£i(xi, z), (p2(x2, z) , . . . ,  ĉ r (xr , z), ^ i(y i), V>2(y2), • • •, ^c(yc))

be a tuple of formulae of some logic C, where each cpi is over the kai distinct free 

variables x* (along with the free variables from z) and each ipi is over the k distinct 

free variables y* (and no others). We assume that none of the variables of z occur 

amongst the variables of any x* or y7; however, we need not assume that any of the 

other variables are distinct from each other. (In practice, we need not force each (pi 

to contain every variable of z free: merely a subset. However, we can extend the free 

variables of any p>i to be the whole of z by adding trivial clauses such as Z7 = 2:7, so 

the present definition is equivalent to the apparently more general one.) Furthermore, 

let each ipi have the property that for any cr-structure A,

A  (= 3xu 3x2 , - - - 1 3xk(ipi(xi,x2 , . . . , x k) A V2/ i ,2/2, • • - ,2/fc(

tpi{yi,V2 , ■ ■ ■, Vk) (xi = yi A x 2 = y2 a  . . .  A xk =  yk))).

A tuple of formulae such as T  is called T-descriptive of arity k.

Given any cr-structure A,  and any assignment v £ \A\^  to the variables z, these 

formulae then give rise to a translation of A to a r-structure defined in the following 

manner.

The domain elements of Bw are the A;-tuples of domain elements of A. For any 

relation Ri of we define -Rj(ui, u2, . . . ,  uaJ  to hold if, and only if,

(A, 111, u2, . . . ,  uai, v) f= p>i (xi, z)

(where the shorthand used should be obvious). We define each constant Ci to be at the 

(unique) domain element u £ \BV\ for which (A, u) (= if(y  i). In addition, if there is a
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successor relation present in A  then we can extend it to a successor relation over Bw 

by defining 0Bv = (0 ,0 , . . . ,  0), maxBv = (max, max, . . . ,  max), and swcc(x, y) holds in 

Bv if, and only if, y is the lexicographic successor (in A) of x.

This notion of translating a structure over one signature into a structure over a 

possibly different signature is analogous to the complexity-theoretic notion of reducing 

an instance of one problem to be an instance of another problem. In the case of com

plexity theory, the place of the logic C is taken by some Turing machine (a transducer) 

whose resources are bounded in some way. Here, the expressiveness of C is what limits 

the sorts of translations we can achieve. As in the case of traditional complexity theory, 

we may exhibit reductions from one problem to another.

E xam ple 2.2  Consider the arity-0 problem /c-COLOURABILITY, defined by: 

IN STA N C E: An undirected graph, G.

Y ES-IN STA N C E: G can be k-coloured. That is, each vertex of G can be assigned a 

natural number from the set {0 , 1, . . . ,  k — 1}, so that vertices which are connected 

by an edge are always assigned different numbers.

(We have already met this problem briefly in Chapter 1.)

Let a — t — (E) be identical signatures containing just the one binary relation 

E. We may view a- (and r-) structures as undirected graphs, via “There is an edge 

between vertices u and v if, and only if, E(u, v) V E(v, u) holds.” Consider the formula

<p(xi, x 2, 2/i, 2/2) =  (x\ = 0 A yi =  0 A E(x2, 2/2)) V (xi = max A x 2 = max A yi = 0)

Given any graph A, the translation of A  by ip is another graph B containing \A\2 

vertices. As far as edges are concerned, B contains an isomorphic copy of the graph A  

(on the vertices (0,y)), along with edges from the vertex (max, max) to every vertex

(0 ,y).
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It is easy to see that for any k > 1, B is (k +  l)-colourable if, and only if, A  

is A;-colourable. Consequently, for each k , p  defines a reduction from the problem 

/c-COLOURABILITY to the problem (k + l)-COLOURABILITY.

Another complexity-theoretic notion which we may appropriate to our logical set

ting is that of an oracle. The idea here is that a Turing machine may make repeated 

use of an oracle, which can solve instances of (potentially computationally difficult) 

problems in one step. To carry this idea across to the logical world (and, indeed, to 

generalise it to nested oracles) we introduce the logic (±f2)*[FO].

Definition 2.3 Let a and r  be as in Definition 2.1, and let Q be some problem of 

arity t over r. The syntax of the logic (±Q)*[FO (cr)] is defined to be the smallest set 

of formulae such that:

• any formula of FO (a) is a formula of (±fi)*[FO(a)];

•  if p  and ip are formulae of (±fi)*[FO(<j)], then so are

(p Aip), (pV  ip), (->p), (Bxip), and (\fxp) ; and

• if T, defined as in Definition 2.1, is a tuple of formulae of (±Q)*[FO(cr)] which is 

r-descriptive of arity k, then

Q[Axi, <pi(xi, z), Ax2, ^ ( x 2, z ),  . . . , Axr , ^ r (xr , z),

Ayi, ^i(yi),  Ay2, ^2(y2) , . . . ,  Ayc, Vv(yc)](wi, w2, . . . ,  wt) (2.1)

is a formula of (±ft)*[FO(a)], where each w* is a £;-tuple of variables and constant 

symbols, and the variables of each w* do not occur in any formula pj or ipj. The 

free variables of this formula are the union of the variables of z, and the variables 

of each w*. Let us denote the tuple of these variables (according to some canonical 

ordering) by x.
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Semantically, we define the interpretation of a formula 0 G (3r£2)*[FO(cr)] in the 

usual recursive manner. The only non-standard case occurs when 6 is of the form given 

in Formula 2.1. In this case, for any cr-structure A, and for any tuple v G \A\^ ,  let Bv 

be the translation of A  by T  according to the interpretation (from v) of the variables 

of z. Furthermore, let Bv be augmented by the constants v 1} v2, . . . ,  v t, where each 

Vj G \A\k is obtained from the tuple w* by giving any variable of wt- the appropriate 

value from v. Then

(.4, v) |= 0(x) if, and only if, (Bv , v u v2, . . . ,  v t) G Cl.

There are a number of natural sublogics of (±fl)*[FO(<r)]. For example, the logic 

(f2)*[FO(cr)] is the same as (±D)*[FO(<r)], save that all occurrences of the “generalised 

quantifier” Cl must occur positively. That is, Cl must not occur within the scope of 

an odd number of negation signs. The logic (±D)/c[FO(cr)] (with k E N) is the same 

as (±fi)*[FO(<r)], save that occurrences of Cl must not be nested more than k deep. 

Finally, the logic (fl)/c[FO(cr)] contains both of these restrictions.

As might be anticipated, it is possible to add more than one generalised quantifier 

to a logic, and also to add them to logics other than FO. We will not be concerned 

with the former in this thesis, though we will return to the latter in the next chapter.

Example 2.4 The traditional quantifiers, V and 3, can be viewed as special cases 

of the above construction. For example, the problem FORALL is defined over the 

signature (U) containing just one unary relation by:

INSTANCE: A collection of points, and a specified subset U of that collection.

YES-INSTANCE: The subset U contains every point in the collection.

It is easy to see that using a generalised quantifier corresponding to the problem 

FORALL is equivalent to using the V quantifier. Of course, there is a similar problem 

EXISTS corresponding to 3.
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Example 2.5 The problem TC (short for Transitive Closure) is a problem of arity 2 

which is defined over the signature 0 2  — (E) consisting of one binary relation. Struc

tures over <72 may be viewed as directed graphs in the obvious way. A yes-instance of 

TC is a (72-structure with two augmented constants, (*4, u, v), with the property that 

there is a path of edges leading from u to v in the digraph represented by A.

The problem CONNECTIVITY is an arity-0 problem, also defined over the signa

ture (72- This time, we will view structures over 02 as undirected graphs in the same way 

as in Example 2.2. A yes-instance of CONNECTIVITY is an undirected graph which 

is completely connected. It may be defined as a sentence of (±TC)*[FOs] (actually, of 

TC1[FO]) as follows

VuVYTCfAz, y, (E (x ,y ) V E(y,x))](u,v).

Related to the problem TC is the problem DTC (short for Deterministic Transitive 

Closure). Like TC, DTC is an arity-2 problem defined over the signature 0 2  whose 

structures represent digraphs. An augmented structure (A, it, v) is a yes-instance of 

DTC if there is a deterministic path from the vertex u to the vertex v. That is, if there 

is a path from u to v in the digraph with the property that all vertices on the path 

(with the possible exception of v itself) have out-degree exactly 1.

Example 2.6  The problem PARITY of arity 0 is defined on the empty signature by 

INSTANCE: A collection of domain elements.

YES-INSTANCE: The collection is of even size.

Computationally, PARITY is a very easy problem to solve. Nevertheless, it cannot 

be defined using just first-order logic. (This is well known, and easy to prove. The 

Ehrenfeucht-Frai'sse game, introduced in the next chapter, provides one possible proof 

method.) We shall show here that it can be defined by a sentence of (±DTC)*[FOs].
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For consider ip defined in the following manner.

cp =  DTC[Ax0,Xi ,2/0>2/i5(^o =  0 A t/0 — max A succ(xi,yi)) V

( x q  = max A yo = 0 A succ(x\, 2/i))](0, 0, 0, max)

Let (p be interpreted over a structure A, of size n. The digraph constructed by p

contains n2 vertices. However, we are only interested in 2n of these: those of the form

(0, x), and those of the form (max,x ), with x € |*4|. Given any successor relation, 

the formula constructs a bipartite digraph on these 2n vertices by including an edge 

from each vertex (0 , x) to the vertex (max,x + 1), and from each vertex (max,x) to 

the vertex (0, x +  1), where x /  max. Consequently, it is easy to see that there is a 

deterministic path from (0 , 0) to (0, max) if, and only if, n is even; i.e., if, and only if, 

A  is a yes-instance of PARITY.

Definition 2.7 Let £  be a logic. The class of problems represented by C consists of 

all those problems expressible by a sentence of C. We overload notation, and refer to 

this class of problems as C also.

Some logics, as we will shortly discover, have the property that the problems de

finable in that logic are, in some sense, the same as the problems expressible in a 

traditional complexity class. We say “in some sense” because problems within tradi

tional complexity classes are considered to be sets of strings from {0, 1}*, which are 

recognised by a resource-bounded Turing machine (or some other equivalent computa

tional model). We must therefore make this connection more explicit.

Definition 2.8 Let A  £ STRUCT(a) for some signature

o — (-Rij R 2 , • • • j Rn Ci, C2, . . . ,  Cc)

where each Ri is a relation symbol of arity a;, and where each C* is a constant symbol. 

The encoding of A , enca(A), is a string from {0, 1}* defined as follows.
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• The interpretations of the relations R i ,R 2, . . . , R r are encoded in order, with 

each R f  encoded as a sequence of Os and Is, defining the characteristic 

function of R f  in the natural way, according to some ordering on the domain 

elements of A  (where this ordering depends only on the domain, and not on the 

particular structure A  itself).

• The interpretations of the constants C\, C2, • . . ,  Cc are encoded in order, with 

each C f  being encoded as the binary representation of its position in the above 

ordering, padded with leading zeroes so as to be of length flog2 \A\].

• The two strings thus formed are concatenated.

Note that for a fixed signature, the length of the encoding of any structure depends 

only on its size; conversely, the domain size of a structure can be deduced knowing 

only the length of its encoding. Consequently, encodings are reversible.

For any problem f2 over cr, we may define enca(Q) = {enca(A) \ A  6 O}. That is, 

we can associate with Q a set of strings over {0,1} which is isomorphic to Q. Because 

problems are isomorphism-closed, the precise order chosen in the definition of encodings 

makes no difference to the resulting set of strings.

Furthermore, any set of strings over S = {0,1}* which is the encoding of at least 

one problem over some signature, is also an encoding of the following problem £2' over 

the signature <Ti =  (U) consisting of one unary relation symbol. £2' consists of those 

structures A  for which encai (A) € S. Since S  is the encoding of some problem, D' is 

also a problem.

A computational complexity class C is identified with a set of problems C if, and 

only if:

1. for each 5 € C, there is some £2 £ C over some signature a such that S = enca(d); 

and

2. for each Q € C over the signature a, we have that enca{Q) € C.
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If C and C are identified, we shall say that C captures C, and will write C =  C.

The following theorem is due to Immerman [49, 50].

Theorem 2.9 1. Every sentence of (±DTC)*[FOs] is equivalent to one of the form

DTC[Ax, y, ip(x, y)](0, max)

where 0 and m ax are tuples (0 , 0, . . . ,  0) and (max, max , . . . ,  max) respectively, of 

the appropriate length, and where where ip is a quantifier-free first-order formula. 

Furthermore, (±DTC)*[FOs] =  L.

2. Every sentence of (±TC)*[FOs] is equivalent to one of the form

TC[Ax, y, -0(x, y)](0, max)

where 0 and m ax are tuples (0, 0 , . . . ,  0) and (max, max, . . . ,  max) respectively, 

of the appropriate length, and where ^  is a quantifier-free first-order formula. 

Furthermore, (±TC)*[FOs] =  NL.

L (resp. NL) is the class of problems computable by a deterministic (resp. non- 

deterministic) Turing machine using a logarithmic amount of workspace. Other re

searchers have captured other complexity classes by adding a generalised quantifier to 

FOs (or sometimes just FO) [7, 24, 72, 73, 74, 76, 77, 78, 79]. Indeed, all of the major 

traditional complexity classes have been captured in this way.

In fact, the 'ip in both of the cases in Theorem 2.9 is not just a quantifier-free 

first-order formula; it may actually be assumed to be a quantifier-free projection.

Definition 2.10 Let a be a signature. A quantifier-free projection (qfp) over a is a 

formula xp € FOs(a) of the form

( a0 A f a )  V (a ,  A P i )  V . . .  ( a m  A 0 m )

for some m > 0 , where
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1. each ai is a conjunction of the logical atomic relations (succ and =), and their 

negations;

2 . each ft is atomic or negated atomic; and

3. if i 7̂  j  then a* and aj are mutually exclusive.

The qfp is an extremely weak form of reduction: the fact (implicit in Theorem 2.9) 

that L and NL (along, in fact, with many other complexity classes) have complete 

problems with respect to qfp’s is a very strong result. Since the presence or absence 

of an edge in the target graph defined by the reduction depends only on the presence 

or absence of just one bit in the input structure, it is difficult to envisage a much 

weaker form of reduction under which complexity classes may continue to have complete 

problems.

Note that in some earlier work, qfp’s have been called projection translations. The 

term quantifier-free projection was originally reserved for an apparently more general 

notion of reduction, in which the first condition of Definition 2.10 is replaced by:

1. Each ^  is quantifier-free, and does not involve any relation symbol of a.

Immerman was the first to observe that the two notions of reduction are, in fact, the 

same (see [80]). A corollary of this fact is that the composition of two qfp’s is another 

qfp. This is easy to see given the apparently more general definition, but less clear 

when qfp’s are defined as in Definition 2.10.

As an alternative (or, indeed, as a supplement) to the use of generalised quantifiers 

such as those we have already discussed, we may add fixed point operators to first-order 

logic. Several of these operators have been defined in the literature, but we will be 

concerned here with the Inflationary Fixed Point operator, IFP.

Definition 2.11 Let a be some signature, let R  be some A;-ary relation symbol not in 

cr, and let C be some logic. Let </?(x) G C(cr U (R )), with |x| = k be some formula, and 

let A  e STRUCT(cr).
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We may define a sequence of k-ary relations as follows. Define R q = {}: the empty 

relation of arity k over |*4|. Define

R i+1 =  {uG |.A|* : ip(u, Ri) holds} U Ri.

Then Ri C  Ri+i for each i. Since A  is finite, there must be some i < \A\k for which 

Ri =  Ri+i. Of course, every further j  > i also has the property that Ri = Rj. We call 

this Ri the inflationary fixed point of ipA, and denote it by IFP[Ax, R , ^ ( x ,  *)]•

As with the generalised quantifiers defined earlier, we may augment a logic C with 

the IFP operator, yielding logics such as (d=IFP)*[FO], IFP7[FOs], and so on.

Example 2.12 Consider the following formula over 02++ U (R):

<p(x, y) =  (x = y) V E(x, y) V 3z(E(x, z ) A E(z, y)).

Then for any A  G STRUCT(tr2++) it is not hard to see that

(A ,u ,v)  |=IFP[Ax ,y ,R ,p(x ,y ) \(u ,v )

if, and only if, there is a path from u to v in the digraph represented by A. Conse

quently, the sentence

IFP[Ax,y,R,(p(x,y)\(c, d)

defines the problem TC. Indeed, with a little more work, it can be shown that any

sentence of (±TC)*[FO] can be defined in (±IFP)*[FO].

Both (±IFP)*[FO] and (dbTC)*[FO] are fragments of bounded variable infinitary 

logic, (see [30]). This is defined as Udli(^ooo;}> where is defined in the

same way as first-order logic save that the only variables we allow in our formulae 

(free or bound) are sq, #2, • • • > and where we allow conjunctions and disjunctions of

arbitrary (rather than just finite) sets of formulae.

A third way of extending first-order logic, somewhat different in flavour from adding 

generalised quantifiers and inductive operators, is to move to second-order logic. In
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second-order logic, we allow our formulae to make use of quantification over relations 

of arbitrary (fixed) arity, rather than just over domain elements of a structure.

Example 2.13 Consider the signature cr2 — (E) consisting of one binary edge relation, 

and treat structures over cr2 as undirected graphs, as in Example 2 .2 . Define <p by

<p =  3R 3G 3B Vx{(R(x) V G(x) V B{x)) A

-<(R(x) A G(x)) A -i(i?(rc)  A B(x)) A -»(Cr(a;) A B(x))) A 

VxVy((E(x, y) V E(y, x)) ->

(->{R{x) A R(y)) A - . ( G(x) A G(y)) A ->(B(x) A B{y))))

where R , G , and B  are new unary relation symbols. Then for any structure A  £ 

STRUCT (cr2),

A  |= (p iff the graph *4 is 3-colourable.

Of course, 3-COLOURABILITY is an NP-complete problem. More generally, by 

Fagin’s celebrated result [32], the existential fragment of second-order logic (by which 

is meant that fragment consisting of first-order formulae, prefixed by one or more 

existentially quantified relation symbols) precisely captures the complexity class NP. 

This fragment is sometimes known as Ej. Indeed, Stockmeyer went further, and showed 

that each level of the polynomial hierarchy can be captured by an appropriate fragment 

of second-order logic [82], but we shall not make use of this result here.

A further restriction of Ej can be obtained by limiting the permitted arities of 

the quantified second-order variables. It is known that the natural hierarchy obtained 

in this way is strict [2]. We shall be concerned here with the monadic fragment -  

that is, the fragment in which all of the second-order variables have arity 1. Monadic 

N P , as it is sometimes known, was originally studied by Fagin [33]. It is orthogonal 

to traditional complexity classes: we have already seen that it contains the problem 

3-COLOURABILITY, yet it does not contain the computationally simple problem
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PARITY. This fact, originally observed by Fagin, is easy to prove given the right 

machinery. We shall come to this in the next chapter.

2.3 The Constraint Satisfaction Problem

The definitions presented in this section are only used in Chapter 5, and may be

omitted, if desired, until that chapter is read.

The constraint satisfaction problem [59, 60, 63] is defined as follows.

Definition 2.14 An instance of a constraint satisfaction problem consists of:

• a finite set of variables, V ;

•  a finite domain of values, D\ and

• a finite set of constraints {Ci, C2, . . . ,  Cq}.

Each constraint Ci is a pair (s^Ri), where:

-  Si is a tuple of variables of length mi, called the ‘constraint scope’; and

-  Ri is an m*-ary relation over D, called the ‘constraint relation’.

For each constraint, (si,Ri), the tuples in Ri indicate the allowed combinations of 

simultaneous values for the variables in S{. The length of s*, and of the tuples in Ri} is 

called the ‘arity’ of the constraint. In particular, unary constraints specify the allowed 

values for a single variable, and binary constraints specify the allowed combinations of 

values for a pair of variables.

A solution to a constraint satisfaction problem instance is a function from the 

variables to the domain such that the image of each constraint scope is an element of the 

corresponding constraint relation. Deciding whether or not a given problem instance 

has a solution is NP-complete in general [60], even when the constraints are restricted 

to binary constraints. In Chapter 5 of this thesis we shall consider how restricting the
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allowed constraint relations to some fixed subset of all the possible relations affects the 

complexity of this decision problem. We therefore make the following definition.

Definition 2.15 For any set of relations, T, C r is defined to be the following decision 

problem.

INSTANCE: A constraint satisfaction problem instance, V, in which all constraint 

relations are elements of T.

YES-INSTANCE: V  has a solution.

If there is a deterministic algorithm which solves every problem instance in Cp in 

polynomial time, then we shall say that T is a tractable set of relations. If T = {i?} is 

a singleton set, then we shall call the relation R  itself tractable.

Example 2.16 The binary disequality relation over a set D is defined as follows.

7 {(^1^ 2) £ D 2 | d\ ^  d2}

For any finite set D, the class of constraint satisfaction problem instances 

corresponds to the graph |D|-COLOURABILITY problem. This problem is tractable 

when \D\ < 2 and NP-complete when \D\ > 3. Consequently, when \D\ < 2, { ^ d} is 

a tractable set of relations.

Note that Cp always defines a problem -  that is, the set of structures which it 

defines is always closed under isomorphism. Furthermore, as is the case with monadic 

NP, there are many computationally simple problems which cannot be defined as Cp 

for any T. The easiest way to see this is to observe that if (V, D, {C\, C2, . . . ,  Cq}) is 

a yes-instance of some Cp, then (V U P', D , {C\, C2j. . . ,  Cq, CJ, C '2, . . . ,  C'q} is another 

yes-instance, where V' is a set of |P| variables which are disjoint from those of V, and 

where each C[ is identical to the corresponding Ci, save that its constraint scope refers 

to the variables of V ' , rather than V. Consequently, each Cp which has at least one
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yes-instance, has an infinite collection of yes-instances; it is impossible to define any 

non-empty finite problem in this framework.

There are other, less trivial examples of undefinable problems in the literature: see 

[35, 61] for some examples.

2.4 Operations on Tuples

Theorem 5.2 from Chapter 5 will allow us to define a variety of previously unknown 

tractable classes of relations. In order to generalise the theorem however, and make it 

more widely applicable, we need to work within an algebraic framework. This section 

sets up the basic definitions and results which we shall need.

A A;-ary operation <p on a set D is simply a function from D k to D. We call k the 

arity of the operation. The domain, dom(p), and range, range(p), of (p are defined in 

the obvious way; in particular, the domain of a partial operation on D will, in general, 

be a subset of D.

Any operation on the elements of a set D can be extended to an operation on tuples 

over D by applying the operation to the values in each coordinate position separately.

Hence, any operation defined on the domain of a relation can be used to define an 

operation on the elements of that relation, in the following manner.

Definition 2.17 Let R  be an n-ary relation over a domain D , and let ip : Dk —> D be 

a &-ary operation on D.

For any collection of tuples, t i , t 2, . . .  ,tk G R  (not necessarily all distinct) define 

the tuple (p(ti,t2, by:

(p(ti, t2, . . . ,  tk) =

(p(ti[l],t2 [l\, . . . ,  Lfc[l]), tp(ti[2], t2[2] , . . . ,  tk[2] ) , . . . ,  (p(ti[n],t2[n] , . . . ,  tk[n}))

Note that in this definition, and indeed throughout, we allow the possibility that k = 0; 

that is, that <p is a nullary operation. Such an operation takes no arguments, but always
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returns some domain element, d. Nullary operations are a special kind of constant 

operation, defined below.

We may now define the following closure property of relations.

Definition 2.18 Let R  be a relation over a domain D , and let : Dk —>■ D be a k-ary 

(possibly partial) operation on D.

R  is said to be closed under <p if, for a llti, t2, . . . ,  tk £ R  (not necessarily all distinct) 

such that . •., tk) is defined:

< p ( t i ,  * 2 ,  • • ■ , * * )  e  R

Lemma 2.19 Let R  be a relation over a domain D which is closed under some (possi

bly partial) operation <p. Let R! be a second relation over D which has been generated 

from R  by permuting the order of elements in each tuple of R  in the same way. Then 

R! is also closed under <p.

Proof Follows immediately from the definition of closure. □

N otation 2.20 Let T be a set of relations over a domain D , and let ip : Dh —» D be 

a ft-ary operation on D. Then T is said to be closed under ip if every relation R  G T is 

closed under (p.

The set of all total operations under which F remains closed is called the set of 

polymorphisms of T, and is denoted by Pol(Y). In a similar vein, let $  be a set of 

operations over D. The set of all relations which are closed under every operation of 

$  is called the set of invariants of <f>, and denoted by Inv($).

There are certain relations which we can guarantee will always occur in Inv (<!>). 

For example, the equality relation on D (of any arity) is closed under every possible 

(p. Similarly, the relation Da is a member of Inv($) for any a.

An observation which will be useful later is that Inv(&) normally also contains the 

empty relation of every arity > 0. The exception to this rule is that if contains an
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operation of arity 0 (which must always be a constant operation), then Inv(Q) can only 

contain relations of strictly positive size. This is because every relation in Inv($) of 

positive arity must then contain the appropriate constant tuple of that arity. Between 

them, the mappings Pol() and InvQ establish a Galois connection between sets of 

relations and sets of operations [16, 62]. That is, the following four conditions all hold.

1. If and <F' are sets of operations, and $ C <F', then Inv(&)  C Inv($).

2. If T and T' are sets of relations, and T C T', then PoliT') C Pol(Y).

3. If is a set of operations, then 4> C Pol(Inv($)).

4. If T is a set of relations, then T C Inv(Pol(T)).

From these conditions, we can also deduce that for all sets of relations T, we 

have Pol(F) = Pol(Inv(Pol(F))); and for all sets of operations <E>, we have Inv($) = 

Inv(Pol(Inv($))). That is, Pol(InvQ) and Inv(PolQ) are “closure functions” on sets 

of operations and sets of relations respectively (albeit of a different type to the closure 

operations we have so far considered).

The following theorem was proved in [51].

Theorem 2.21 A set of relations T over some domain is tractable if, and only if, 

Inv(Pol(T)) is tractable.

A set of relations of the form Inv(Pol(T)), for some T, is known as a relational clone.

We will sometimes want to refer to operations with various special properties, as 

specified in the following definition.

Definition 2.22 Let p : Dk —>• D be a k-ary operation.

• If there is some d 6 D such that for all (di, d2, . . . ,  dk) € Dk we have that 

<p(di, c?2, . . . ,  dk) =  d, then we say that ip is a constant operation.
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• If there exists an index 1 < i < k such that for all (di, d2, . . . ,  d*) € Dk we have 

that p(di, 5 dk) == d{, then p  is called a projection.

• If k = 2, and for all di, d2, d3 G D we have that

1. <^(^(di,d2),d3) =  <p(di,<p(d2,d3)) (Associativity);

2 . p(di:d2) =  <̂ (d2,di) (Commutativity); and

3. y?(di,di) =  di (Idempotence)

then p  is said to be a binary ACI operation2.

• If k =  3 and for every di, d2 G D it is the case that p(d±, di, d2) =  p(di, d2, di) = 

p(d2 ,di,di) = di then is called a majority operation.

• If k = 3 and for all di, d2, d3, d4 G fi we have that

1. p(p(du d2 ,d3 ),d3 ,d4) = p(di,d2, d4);

2. p(du d2 ,d3) = p(d3 ,d2 ,d1)- and

3. <p(di, di, d2) =  d2

then p  is said to be affine. An alternative way of defining affine operations is as 

those ternery operations p  for which there exists some Abelian group (D , + , _1, 0), 

such that given any di, d2, d3 G D

p(d\, d2, d3) = di + (d2) 1 -f d3.

The two definitions are equivalent [83], and we shall use them interchangeably.

• If there is some 1 < i < k such that for all di, d2, . . . ,  d*, dj G D it is the case 

that

p{d\, d2, . . . ,  di—i, dj, dj+i,. . . ,  d ^  p{d\ ; d2, . . . ,  di—i, d̂ , d̂ _)_i, . . . ,  d^),

then we say that p does not depend on its ith argument.
2This is more commonly known as a 2-semilattice operation in the Universal Algebra literature.
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Note that constant operations are precisely those that do not depend on any of their 

arguments. Projections on the other hand depend on exactly one of their arguments 

(though not all such functions are projections).

The properties of being a majority operation, a binary ACI operation, or an affine 

operation are three examples of properties which are defined by identities. A property 

is said to be defined by identities if it is defined by giving one or more equations which 

must be true for every di,d2, .. .dr E D.

Jeavons, Cohen, and Gyssens [53] were able to identify four distinct classes of 

tractable sets of relations. These were characterised as those sets of relations which 

were closed under a constant operation, a majority operation, a binary ACI operation, 

or an affine operation respectively. At the time, these four classes together captured 

all known tractable sets of relations. More recently however, other researchers have 

discovered some more tractable sets [8 , 11, 12, 25, 26, 56]. These too may be charac

terised by closure under sets of operations. In this thesis we shall refer explicitly only 

to the four classes from [53]. Most of what we shall say however, will also apply to the 

novel sets of relations.



Chapter 3 

Adding Transitive Closure to  

Monadic N P

3.1 Introduction

In this chapter, we will examine the expressibility of logics such as mon-£}(±TC)*[FO], 

formed by adding variants of the TC-operator to monadic existential second-order logic. 

We will examine this power both in the presence and the absence of a built-in successor 

relation.

The motivation for this strand of research stems ultimately from the question of 

whether or not N P  = co-N P. Fagin [32] showed that this question is equivalent to the 

one of whether the fragments £} and II[ of second-order logic are equally expressive, 

and was able to make a start in investigating it by showing that the monadic fragment 

of £} is in fact not closed under complementation. Whilst this provides a small degree 

of evidence that full £} is not closed under complementation either, we are a long way 

from actually finding a proof of this conjecture.

It therefore seems sensible to concentrate our attention on a fragment of £] which, 

whilst more expressive than monadic £}, is still not powerful enough to capture the 

whole of N P. Showing that such a logic is not closed under complementation may give

30
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clues as to how to go about proving the general case. Our hope (which we have been 

unable to realise) is to determine whether mon-Ej(±TC)*[FO] is an example of such 

a logic. Despite this failure, we do exhibit a sublogic of mon-Ej(±TC)*[FO] which is 

a strict extension of monadic E} and which is not closed under complementation.

Adding a transitive closure operator is not by any means the only natural extension 

of mon-E}, of course. Binary E} (so-called binary N P), for example, has been studied 

in a certain amount of detail by Durand, Lautemann, and Schwentick [29]. However 

whether or not binary N P  =  binary co-N P is still an open question. Similarly, Ajtai, 

Fagin, and Stockmeyer have investigated the closure of monadic E} under first-order 

quantification and existential unary second-order quantification [4]. The resulting logic 

is more robust than monadic Ej, but it is unknown whether the class is closed under 

complementation.

Courcelle has examined the expressive power of monadic N P  and, indeed, of 

mon-E}(±TC)*[FO] in a long-running series of papers (see [20] for a good overview). 

The bulk of his research has been concerned with investigating how the representation 

chosen for a structure, or set of structures, can affect its descriptive complexity. In 

particular, he shows how representing graphs in a way which allows quantification over 

edges and sets of edges (as well as the more usual vertices and sets of vertices) allows us 

to express graph properties in monadic N P  which would otherwise require a stronger 

logic to express. DIRECTED-REACHABILITY for example, shown by Ajtai and Fa

gin to be inexpressible in monadic N P  under the usual representation of graphs [3], 

becomes expressible under Courcelle’s representation. Courcelle has also investigated 

the extent to which being able to guess an orientation on the edges of an undirected 

graph gives a logic added expressive power [21, 22, 23].

In the present chapter however, we will be concerned only with the usual represen

tation of graphs over the binary signature 0 2  — (E). The material herein is motivated 

largely by Gradel’s research [39] into TC*[FO].
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3.2 The Ehrenfeucht-Fraisse Game

We begin this chapter with a discussion of the following well-known game, devised by 

Ehrenfeucht [31] and Frai'sse [36]. It is (usually) used to prove inexpressibility results 

in first-order logic1.

Definition 3.1 For every word p over the alphabet {3,V} we define the first-order 

quantifier class L°(p) in FO inductively as follows:

• L°(e) contains the quantifier-free formulae; and

• for a quantifier Q € {3,V}, the class L°(Qp) is the closure under conjunctions

and disjunctions of the class L°(p) U {(Qxi)p : tp £ L°(p)}.

Definition 3.2 Let a  be a signature containing s > 0 constant symbols, and let D 

be a problem over a. The Ehrenfeucht-Fraisse game for D is a two-player game (the 

players are normally called Spoiler and Duplicator), which is played as follows.

• Spoiler begins by choosing some k £ N, and fetches k pairs of pebbles: (iti,ui), 

(u2,v2), . • (uk,vk).

• Duplicator then chooses some a-structure A  6 fb (Of course, her choice will 

depend on k .)

• She next chooses some cr-structure B ^ f2.

• The game proper now begins. In the zth round, Spoiler can choose to make one

of two types of move.

-  The 3-move. Spoiler takes pebble Ui, and places it on one of the domain

elements of A. Duplicator responds by placing pebble V{ on one of the

domain elements of B.
Tt can, in principle, be used to show expressibility results also, but it is usually simpler just to 

give a suitably expressive first-order sentence in such cases.
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— The V-move. Spoiler takes pebble and places it on one of the domain 

elements of B. Duplicator responds by placing pebble iq on one of the 

domain elements of A.

• The game ends when all 2 k pebbles have been placed.

At the end of the game, Duplicator wins if, and only if, the pebbles determine a local 

isomorphism from A  to B. More precisely, let a i , . . . ,  a*, and b\ . . . . ,  bk be the elements 

of A  and B respectively which are carrying the pebbles iz1}. . . ,  Uk and iq , . . . ,  v*, and 

let c i , . . . ,  cs and di , . . . ,  ds be the interpretations of the constant symbols of a in the 

two structures. If the mapping /  : A  — > B with

/(ai) = bi for i = 1, . . . ,  k and /(c*) =  di for i = 1, . . . ,  s

is well defined, and is an isomorphism between the substructures of A  and B that 

are generated by the pebbled elements and constants, then Duplicator wins; otherwise 

Spoiler wins.

This game is defined in a slightly different manner to how it is usually defined in the 

literature. It is much more common to omit the first three steps, and to define the “k- 

round Ehrenfeucht-Fraisse game on structures A  and B” . We believe that the present 

definition (which is equivalent from the point of view of the following proposition) is 

more elegant, however.

The point of the game is encapsulated in the following proposition (which is stated 

in its “negative” form since that is the form in which it is most useful).

Proposition 3.3 [31, 36] Duplicator has a winning strategy in the Ehrenfeucht-Fraisse 

game for Q, if, and only if, Q is not definable in first-order logic.

In fact, this proposition can be strengthened. If p £ {V, 3}* is a word, then we may 

define a restricted version of the Ehrenfeucht-Fraisse game -  the L°(p) game -  which 

is the same as the usual game, save that the choice of whether to make a V or 3 move
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during the ith round is not left up to Spoiler, but is instead determined by p[i\. (Thus, 

the length of p also determines the value chosen by Spoiler for k at the very beginning 

of the game.)

Theorem 3.4 [31, 36] Duplicator has a winning strategy in the L°(p) game for if, 

and only if, Q is not definable in L°(p).

3.3 Extending the Ehrenfeucht-Fraisse Game

Theorem 3.4 is a very useful tool, and many important results can be proved using it. 

For example, it can be used to provide a simple proof that the problem PARITY is 

not definable in FO. However, one of its most important properties is that it can be 

extended in various ways so as to capture logics other than FO. A huge variety of such 

extensions have been considered in the literature; we shall be concerned here with just 

two of them. (We shall mention a third variation, the infinitary game, in Chapter 4.)

3.3.1 The Ajtai-Fagin Game

The Ajtai-Fagin game is a reworking by Ajtai and Fagin [3] of an earlier game by Fagin 

[33] which characterises definability in monadic NP.

Definition 3.5 Let A  be some structure over a signature a. A colouring of A  by the 

s sets Si, S 2 , • • •, Sa is an assignment of a subset of {S \} S2 , . . . ,  Ss} to each domain 

element of A. Equivalently, it is an assignment of a subset of |*4| to each set S{.

By a coloured structure, we just mean a pair consisting of a structure and some 

colouring of it.

Note that once again, this definition varies throughout the literature. Some re

searchers refer to colouring a structure by c colours. Here, each colour represents a 

particular subset of sets. Of course, colouring a structure by s sets is equivalent to 

colouring it with 2s colours.
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Definition 3.6 The Ajtai-Fagin game for a problem Cl is played by Spoiler and Du

plicator as follows.

• Spoiler chooses a number of rounds, k, and a number of sets, s. As in the original 

game, he fetches k pairs of pebbles.

• Duplicator chooses a structure A  € Cl.

•  Spoiler colours A  with the s sets Si, S2, • • •, SSi forming the coloured structure

A'.

• Duplicator chooses a structure B £ Cl.

• She colours it with the s sets Si, S2, • • •, Sa, forming B'.

• The game now proceeds in the same way as does the main part of the Ehrenfeucht- 

Fraisse game, for k rounds. As before, the game ends when all 2 k pebbles have 

been placed.

The winning condition is essentially the same as before: Duplicator wins if, and only 

if, the mapping defined by the pebbles and the constant symbols of the structure is a 

partial isomorphism, where this partial isomorphism must respect colour. That is, if 

domain element a £ A'  is a member of sets Si, S7, and S13 only (say), and if a is in 

the domain of the partial mapping / ,  then /(a) is a member of sets Si, S7, and S13 

only in B ' .

The motivation for the game is the following proposition.

Proposition 3.7 [3] Duplicator has a winning strategy in the Ajtai-Fagin game for 

the problem Cl if, and only if, Cl is not definable in monadic NP.

Once again, this proposition may be strengthened in a natural way. If p G {V, 3}* 

is a word, and q > 0, then we may define the second-order quantifier class Lq(p) by

U>(p) = (BX,3X2 ... 3XqV>: V € L°(p)}.
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We take L*(p) =  (J jli  Lq(p). Note that L°(p) coincides with our earlier definition, so 

there is no confusion in notation.

Furthermore, we may define the Lq(p) game to be the same as the usual Ajtai-Fagin 

game, save that Spoiler is forced to choose q as his value of s and, in addition, must 

make his k first-order moves according to p. The L*(p) game is identical, except that 

Spoiler is not constrained in his choice of s.

Theorem 3.8 [3] For any p G {V, 3} and any q > 0, Duplicator has a winning strategy 

in the Lq(p) game (resp. the L*(p) game) for problem D if, and only if, D is not definable 

by sentence of Lq(p) (resp. L*(p)).

This theorem is a strict generalisation of Theorem 3.4, and can be used to prove 

many non-definabilty results for monadic E |, amongst them the result mentioned in 

the previous chapter that PARITY is not definable in this logic.

3.3.2 W inning the Ajtai-Fagin Game

The game theoretic characterisations of logics which we have so far presented are 

all very well, but they suffer from one major drawback. It is usually very difficult in 

practice to prove that one or other player has a winning strategy in the Q game. Fagin, 

Stockmeyer, and Vardi [34], following Hanf [47], developed the following technique 

which can often simplify such proofs.

For any structure A, we say that a,b G \A\ are adjacent if either a = b, or there is 

some tuple t in some relation of A, such that a and b both occur in t. The degree of 

a G \A\ is the number of domain elements which are adjacent to a, but not equal to a.

Definition 3.9 Let a be a signature, and let A  be a cr-structure. For any a G A, and

d G N, we define the neighbourhood of radius d about a recursively as follows.

Nbd(l , a) = {a}

Nbd(d +  1, a) = {x G \A\ : x is adjacent to some b G Nbd(d, a)}
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Intuitively, Nbd(d, a) consists of those points from \A\ whose distance from a is 

strictly less than d.

Definition 3.10 Let A  be a structure, or a coloured structure. For any a € |*4|, and 

d E N, the d-type of a is the isomorphism type of the substructure of A  which is 

induced by Nbd(d, a), together with a distinguished constant representing the point a.

Definition 3.11 Let a be a signature, and d,m € N. We say that the cr-structures 

A  and B are (d, ra)-equivalent if, for every d-type r, either A  and B have the same 

number of domain elements with d-type r, or else they each have at least m  domain 

elements which have d-type r.

Fagin, Stockmeyer, and Vardi proved the following result (slightly reworded to fit 

in with our notation).

Theorem 3.12 [34] Let j  be a signature containing just relation symbols (and no 

constants). Let I, /  6  N. Then there are d, m G N, where d depends only on /, and m 

depends only on I and /  such that whenever A  and B are (d, m)-equivalent cr-structures 

(or coloured cr-structures) in which every domain element has degree at most / ,  then 

Duplicator has a winning strategy in the restriction of the Ehrenfeucht-Fraisse game 

in which Spoiler is obliged to choose I as his value of k.

This theorem can often simplify the proof that Duplicator has a winning strategy 

in either the usual Ehrenfeucht-Fraisse game, or in the Ajtai-Fagin game. For instead 

of actually having to exhibit a strategy, it is sufficient to prove that the two structures 

chosen by Duplicator (and coloured, in the case of the Ajtai-Fagin game) are, in some 

sense, “locally equivalent”. This is often a considerably easier task.

In fact, the theorem also holds over signatures which contain constant symbols (see 

[69]). To see this, let a = (Ri, R2, . . . ,  Rr, Ci, C2, . . . ,  Cc) be a signature containing the 

c constant symbols Ci, C2, ■ ■ ■Cc, and let A  € STRUCT(cr). Consider now the purely
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relational signature o' =  (Ri, R 2, . . . ,  Rr, R[, R2, ■ ■ •, R ’c) in which each constant symbol 

of a has been replaced by a unary relation symbol. We define the structure A! over o' 

in the following way.

The domain of A' is equal to the domain of A. Each relation Ri of o' is interpreted 

in A ' in the same way as the corresponding relation Ri from o is interpreted in A. Each 

relation R'i(v) of o' is defined to hold for precisely one value of v £ \A!\] specifically for 

that value for which (A, v) |= C{ = x. Clearly, the structures A  and A' are isomorphic. 

Consequently, for any d, m, a pair of structures A  and B are (d, m)-equivalent if, and 

only if, the corresponding structures A' and B' are (d, m)-equivalent. Furthermore, 

Duplicator has a winning strategy for the Ajtai-Fagin game on A  and B if, and only 

if, she has a winning strategy on A 1 and B'.

We shall make use of this extended version of the theorem when we begin to play 

the mon-E}(d=TC)*[FO]-game, defined below.

3.3.3 G radel’s TC Game

Another extension of the Ehrenfeucht-Fraisse game, due to Gradel [39], allows us to 

analyse the expressive power of transitive closure logic, (±TC)*[FO].

We begin by extending the first- and second-order quantifier classes defined above.

Definition 3.13 For every word p over the alphabet {3, V, TC, -iTC} we define the 

first-order quantifier class L°(p) in (±TC)*[FO] inductively as follows:

• L°(e) contains the quantifier-free formulae.

• For a quantifier Q € {3,V}, the class L°(Qp) is the closure under conjunctions 

and disjunctions of the class L°(p) U {(Qxi)p : p  G L°(p)}.

• L°((TC)p) is the closure under conjunctions and disjunctions of the class of for

mulae L°(p) U {TC[Ax, y, <p(x, y)](u, v) : <p G L°(p)}.
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• L°((-iTC)p) is the closure under conjunctions and disjunctions of the class of 

formulae L°(p) U {->TC[Ax, y, <p(x, y)](u, v) : ip G L°(p) }.

These are strict extensions of the classes already introduced, so there will be no 

confusion over notation. We will henceforth assume that the logic (±TC)*[FO] is 

augmented with two constant symbols, 0 and max, which are always interpreted as 

distinct domain elements of any structure over which we interpret a formula of the 

logic.

Proposition 3.14 [39] Every formula in (±TC)*[FO] is equivalent to a formula in 

some L°(p) where p G {TC,~iTC}*.

Proof We can always replace existential quantifiers by TC-operators: a formula 

(3z)ip(z) is equivalent to

TC[Ax, y ,(x  = 0 A ^(y)) V {ij){x) A y = max)](0, max).

In a similar vein, universal quantifiers can always be replaced by -iTC-operators. □

Definition 3.15 The quantifier depth of any formula p  G (±TC)*[FO] is defined in

ductively by:

• depth(ip) = 0 if is atomic

• depth(-xp) = depth((p)

• depth(<p A VO = depth (ip V ip) =  max { depth (cp), depthfy)}

• depth(3x(p) = depth (\/xcp) = depth{ip) + 1

• depth(TC[Ax, y, y?](u, v)) = depth((p) + 2k, where x and y are of length k. 

Definition 3.16 [39] The Gradel game for the problem Q is played as follows.

• Spoiler begins by choosing some k G N, and fetches the k pairs of pebbles (ui,vi), 

(u2,v2) , . . . , ( u k,vk).
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• Duplicator chooses some structure A  G D.

• Duplicator chooses some structure B f  Q.

• The game proper now begins. During the zth round, Spoiler chooses to make one 

of the following four varieties of moves.

-  T he 3-move. Spoiler takes pebble it*, and places it on one of the domain 

elements of A. Duplicator responds by placing pebble u* on one of the 

domain elements of B.

-  T he V-move. Spoiler takes pebble and places it on one of the domain 

elements of B. Duplicator responds by placing pebble U{ on one of the 

domain elements of A.

-  The TC-move. Suppose that r pairs of pebbles are already on the board. 

Spoiler chooses some I < (k — r)/2 and selects a sequence xo, xi, . ..,  xm 

(m > 1) of /-tuples in A  such that x0 and xm consist only of constants and

of already pebbled elements. Duplicator then chooses a similar sequence

(though not necessarily one of the same length) of /-tuples y0, yi, . . yn 

(n > 1) in B, where y0 = / ( x 0) and yn =  / ( x m) where /  is the local 

isomorphism defined by the constants and the pebbles (see below). Spoiler 

now chooses two /-tuples y* and yi+i which are adjacent in Duplicator’s 

sequence. He lays down 2/ pebbles on structure B: one on each of the 

components of y* and y^+i (including repetitions). Duplicator responds by 

choosing adjacent /-tuples x  ̂ and xJ+1 from Spoiler’s sequence, and laying 

down 2/ pebbles on the appropriate elements of A.

-  The -iTC-m ove. This is exactly the same as the TC-move, save that the 

roles of the structures A  and B are reversed.

• The game ends after all 2k pebbles have been placed. This may occur before k 

rounds have been completed.
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When all of the pebbles have been placed, Duplicator wins if, and only if, the 

pebbles determine a local isomorphism from A  to B in the sense which we have already 

described.

Observe that this game reduces to the usual Ehrenfeucht-Fraisse game when Spoiler 

is restricted to making just V- and 3-moves.

The associated proposition is as one might by now expect.

Proposition 3.17 [39] Duplicator has a winning strategy in the Gradel Game for Q 

if, and only if, Q is not definable by a sentence of (±TC)*[FO].

As with the other games, this is just a special case of the following theorem. For a 

word p 6 {3, V, TC, -iTC} and for I G N we define the (L°(p), I) game to be the same 

as the Gradel game, save that Spoiler is restricted to choosing I as his value of k , and 

must make his moves according to the word p. (Note that unlike in previous games, 

the value of I is not determined by the length of p; all we have is that I > |p|.)

Theorem 3.18 [39] Duplicator has a winning strategy in the (L°(p),/) Gradel Game 

for D if, and only if, is not definable by a sentence of L°(p) with quantifier depth I.

3.4 Extending monadic NP

In this section, we turn our attention to the logic mon-£j(±TC)*[FO], and give an 

Ehrenfeucht-Fraisse-type game which characterises definability within it. We begin 

with the definition of the logic itself.

Definition 3.19 A formula of mon-£](±TC)*[FO] is composed of s > 0 existential 

monadic second-order quantifiers, followed by a formula of (±TC)*[FO].

Clearly, mon-£](±TC)*[FO] is at least as expressive as monadic NP, and also 

as (±TC)*[FO]. Furthermore, it is a strict extension of them both. For it contains
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the problem 3-COLOURABILITY, which is not definable in (±TC)*[FO] (this is a 

consequence of the results in [27]), and also contains the problem CONNECTIVITY 

(see Example 2.5), which is known not to be definable in monadic N P  [33, 34].

Before we present our game for precisely determining the expressive power of 

mon-E[(=tTC)*[FO] we need the following definition, which establishes several sublog

ics of our logic. It should be compared with the definition immediately following 

Proposition 3.7.

Definition 3.20 If p G {V, 3, TC, -TC}* is a word, and q > 0, then we may define 

the second-order quantifier class Lq(p) by

L"(p) = { 3 X ^ X 2  ... 3Xqy  : y  e L°(p)}.

We take L*(p) =  U Jli Lq(p). Note that this is just an extension of our previous 

definitions, so once again there is no confusion in notation.

Our game is a natural amalgamation of the Ajtai-Fagin game and the Gradel game.

Definition 3.21 Let a be a signature, and let Q, be some problem over a. The

mon-E}(±TC)*[FO] game for Q is played between Spoiler and Duplicator, and pro

ceeds in the following way.

• Spoiler chooses some k € N, and a number of sets, s. As usual, he fetches k pairs 

of pebbles.

• Duplicator chooses a structure A  £ D.

• Spoiler colours A  with the 5 sets Si, S2 , • -., Ssi forming the coloured structure 

A'.

•  Duplicator chooses a structure B £ f2.

• She colours it with the s sets S\, S2 , ■ ■ ■, Ss, forming B’.
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• The game now proceeds in the same way as does the main part of the Gradel 

game. That is, Spoiler chooses to play either an 3-move, a V-move, a TC-move, 

or a -iTC-move, and Duplicator responds appropriately.

• The game continues until all 2k pebbles have been placed.

The winning condition is the same as in the Ajtai-Fagin game. That is, Duplicator wins 

if, and only if, the mapping defined by the pebbles and the constant symbols of the 

structure is well-defined, and is a partial isomorphism, where this partial isomorphism 

must respect colour.

The game gives rise to the following proposition, whose proof follows from that of 

Theorem 3.23 below.

Proposition 3.22 Duplicator wins the mon-£}(±TC)*[FO] game for D if, and only 

if, D is not definable in mon-£}(±TC)*[FO].

As usual, this result is just a special case of a more general result. For any word 

p G {V, 3, TC, -iTC}*, and for any q, I > 0, we may define the (Lq(p), I) game to be the 

same as that defined above, save that Spoiler is obliged to choose I as his value of k, 

to choose q as his value of s , and to choose his moves according to the word p. Then 

we have the following result.

Theorem 3.23 Let D be a problem over some signature a. Let p G {V, 3, TC, -^TC}*, 

and let q,l > 0. Then Duplicator has a winning strategy in the (Lq(p),l) (resp. 

(L*(p)J) mon-£}(±TC)*[FO] game for D if, and only if, Q is not definable in Lq(jp) 

(resp. L*(p)) by a sentence of quantifier depth 1.

Proof We shall only prove the theorem in the case where q is given. The case where 

q is unrestricted is similar.

We begin by proving the “if” direction. This is the most useful direction in practice, 

and is the easier to prove. In fact, we prove the contrapositive: that is, if Q is definable
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by a sentence of Lq(p) whose quantifier depth is /, then Duplicator does not have a 

winning strategy.

Suppose therefore that is defined by the sentence ip = 3 X \ . . . 3X q(p, where 

ip G L°(p) has depth I. During the first step of the game, Spoiler is obliged to take 

k =  I and s = q. Duplicator responds by constructing some structure A  G which 

Spoiler must colour. Clearly, A  \= ip. Consequently, there must be some assignment 

to the sets X i, X 2, . . .  , X q so that the colouring A!' of A  by this assignment satisfies 

A " f= p. Spoiler chooses the isomorphic colouring with the sets Si, S2, • •., Sq to form 

A'. Then A' \= p', where ip1 is the same as y?, save that occurrences of Xi have been 

replaced with the corresponding Si. (Henceforth, we shall elide this difference, and 

refer to both formulae just as ip.)

Duplicator now responds by choosing some 8  £ D, and colouring it. Since B ^  ip, 

then no matter how she colours the structure (forming 8 '), it is always the case that

BV*V-
The game now proceeds as does the Gradel game on fb The proof that Spoiler has 

a winning strategy (and hence that Duplicator does not) is identical to that of Theorem 

3.18. It may be found in [39]. We need merely observe that the proof presented in [39] 

still goes through when the structures in question are coloured.

For the converse, we will prove that if Duplicator does not have a winning strategy in 

the (Lq(p), I) mon-£}(±TC)*[FO] game for D, then Q, is definable in the corresponding 

logic.

If Duplicator does not have a winning strategy, then Spoiler must have such a 

strategy. That is, whichever 4  G 9  Duplicator chooses, it may be coloured by the q 

sets in such a way that whichever 8  ^ D Duplicator chooses, and however she colours 

it, Spoiler has a winning strategy in the Gradel-part of the game. For any A , denote 

Spoiler’s winning colouring of A  by col(A).

Since the proof of correctness of the Gradel game goes through even when the 

structures are coloured, it follows that whichever A  G D Duplicator chooses as her first
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structure, and whichever coloured B' she chooses as her second structure, there is at 

least one formula <pa,b' £ L°(p) of depth I such that col(A) f= p  and B' [= -xp. Of 

course, p a ,b> will make use of up to q free monadic second-order variables. Let $.4 

be the conjunction of these Pa ,b' over all possible choices of B'. This conjunction is 

permitted since there are only a finite number of such formulae up to logical equivalence. 

Note that $ a  £ L°(p) and has quantifier depth I.

Now, clearly col(A) |= $.4. Also, for every B £ and for all possible colourings B' 

of B , B' 1= -i$A- So let be the conjunction of $ a over i s  fi. Once again, this is 

permitted since there are only a finite number of up to logical equivalence. Then 

4/ € L°(p) and has depth I and, moreover, for any A  £ Q, col(A) |= 4L Furthermore, 

for all B ^ Q and for all colourings B' of B , B' \= -i\JL

So for every A  £

A ^ 3 X i 3 X  2. . . 3Xntf

where the Xi  are chosen to be the free second order variables of 4/.

Similarly, for every B and

B 1= VAiVA2 ...VAn- ^ .

Hence, 3 X \3 X 2 . . .  3Xnty is an Lq(p) sentence of depth I which defines fh □

Having defined this game, we may now use it to show that some (strict) extension 

of mon-E} is not closed under complementation. Immerman showed [49] that every 

sentence of TC*[FOs] is equivalent to a sentence of TC1[FOs] (see Chapter 2). He did 

this by showing inductively that for any two formulae <p, 0  £ TC1[FOs], the formulae 

ip A 0, (p V 0, Mxp, 3xp , and TC[Aw, x ,  TC[Ay, z ,  y>](s, t)](u, v )  are all equivalent to a 

formula from TC^FOJ. In fact, his proof goes through in most of these cases even in 

the absence of a successor relation. The exception is the case of Vxip.

With that in mind, we define the following hierarchy.

Definition 3.24
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• TC(0) is the set of all formulae of the form TC[Ax, y, <p(x, y)](u, v), where p  is 

first-order (and may contain free variables other than those of x and y).

• V-TC(m) is the universal closure of TC(ra) -  i.e., the set of formulae (Vx)V>, 

where 'ip G TC(ra).

• TC(m +  1) is the set of formulae TC[Ax, y, <p(x, y)](u, v), where p G V-TC(m).

Logics such as mon-£}-TC(ra) are also defined in the natural way, with the second- 

order quantifiers coming at the front.

Note that each of these classes is equivalent to the union of one or more classes 

L°(p) (resp. L*(p)). Consequently, they may (in principle at least) be separated by 

playing an appropriate version of one of the games already defined in this chapter. The 

proof of the following lemma does exactly that.

Lemma 3.25 Let a = (E ) be a signature consisting of a binary relation symbol, E. 

Furthermore, let a be augmented with the two distinct constants 0 and max. Then 

CONNECTIVITY cannot be expressed as a formula of the logic mon-£}-TC(0) over 

a.

P ro o f  The appropriate game to play is the mon-£}(±TC)*[FO] game for CONNEC

TIVITY in which Spoiler is obliged to begin with a single TC-move, and then to restrict 

his moves to coming from the set {V, 3}.

Spoiler begins by choosing s, k G N, and fetching the k pairs of pebbles. Duplicator’s 

structure A  is going to be a large, undirected cycle, so she takes /  =  2 and I = k, and 

applies (the proof of) Theorem 3.12 to obtain d and m. Duplicator must now choose 

the length, p, of her cycle. She does this as follows.

Given an undirected path of length 2d, there are exactly (2s)2d ways of colouring 

it. Consequently, for any r, if Duplicator chooses p > r • (2d) • (2 2sd) then no matter 

how Spoiler colours the cycle, it must contain at least r identically coloured, non

overlapping regions of length 2d. Call these regions A1; A2, . . . ,  A r> with r' > r. We
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add that in fact p may be made much smaller than this and this property would still 

hold. We are interested only in the existence of such a p, not a minimal value.

We must now give a suitable value for r.

The number of distinct isomorphism types of radius d on the cycle (ignoring con

stants for the moment) is less than 2 2sd. So the size of the power set of the set of 

isomorphism types is less than 222sd. Therefore, if we choose r > (m +  /c +  3) • 222sd, 

then there must be a “gap” between two adjacent A* regions with the property that 

the d-isomorphism type of every point in the gap occurs in at least (m +  k +  2) other 

gaps between adjacent regions. Similarly, if we choose r > 3(m +  k +  3) • 2 22ad, then 

there must be at least three such gaps.

So Duplicator chooses:

Duplicator constructs the cycle of length p, and places the constants 0 and max 

anywhere on the cycle. This is structure A.

Spoiler colours in the cycle, forming A 1.

Duplicator finds one of the three gaps referred to above, so that the gap itself, along 

with the nearer half of the two identically coloured regions next to it, is constant-free. 

This is always possible since there are three gaps, and only two distinct constants. She 

takes this whole constant-free part of the cycle, and joins the ends together to form 

another, smaller, cycle (see Figure 3.1).

p > 3(m +  k +  3) • 2?sd • (2d) • 22sd

Constant free

Figure 3.1: Cutting up a cycle
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She then takes the disjoint union of this small cycle and (an isomorphic copy of) 

the original cycle as her second, disconnected graph, B.

Duplicator colours this second graph in the natural way: she colours the first cycle 

in the same way as Spoiler coloured his cycle, and the second cycle using the colours 

induced from the first cycle. The resulting graph is B ' .

It is now time for the game proper to begin. Spoiler’s strategy must consist of first 

making a TC-move, then carrying on with a normal, first-order game. So he begins by 

constructing a path of t-tuples in A 1.

Duplicator responds with the isomorphic path in the larger cycle of B'.

Spoiler now chooses two adjacent t-tuples from Duplicator’s path. Duplicator 

chooses the isomorphic t-tuples from Spoiler’s path.

At this point, there are at most k + 2 pebbles and constants on each of the two 

graphs (and none at all on the smaller cycle of B'). So by construction, A! and B' 

are still (d,ra)-equivalent. Hence, by Theorem 3.12 (generalised, as described above, 

to hold over signatures containing constant symbols) we can conclude that Duplicator 

has a winning strategy in the game. □

Lemma 3.26 mon-E}-TC(0) is a strict extension of mon-Ej.

Proof That mon-E}-TC(0) is an extension is obvious. We need only prove strictness. 

In fact this is simple given Ajtai and Fagin’s result [3] that DIRECTED REACHABIL

ITY ^ mon-E}. It is easy to see that DIRECTED REACHABILITY can be expressed 

in TC(0) however, and hence a fortiori in mon-Ej-TC(O). □

Our theorem now follows almost immediately:

Theorem 3.27 mon-E}-TC(0) is a strict extension of mon-Ej which is not closed 

under complementation (provided that our signature contains two distinct constant 

symbols and a relation symbol of arity at least two).
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Proof Fagin showed in [33] that non-CONNECTIVITY is definable in mon-E}. Thus 

it is also definable in mon-E}-TC(0). The preceding two lemmas complete the proof.

□

In fact Lemma 3.25 is a generalisation of a result originally due to Martin Otto, 

and presented (with a different proof) by Erich Gradel in [39]. That result states that 

CONNECTIVITY cannot be expressed in TC(0). The immediate corollary is that 

TC(0) 7̂  V-TC(O). But Gradel goes further. Provided that we restrict our attention to 

structures containing at least two distinct constants, then he showed that the following 

holds.

Theorem 3.28 [39] For all m  G N, TC(m) C V-TC(m) C TC(m +  1).

It would be nice to extend Lemma 3.25 along similar lines. That is, to show a result 

such as

“For all m € N, mon-E}-TC(m) C mon-Ej-V-TC(m) C mon-E}-TC(ra +  1)”.

However, proving such a result appears to be extremely difficult. In particular, Gradel’s 

own methods [39] fail to generalise to the case where we have existential second-order 

quantifiers available.

Intuitively, the reason for this failure is as follows. We have already observed (see 

Proposition 3.14) that existential first-order quantifiers may be simulated by a TC 

quantifier. One consequence of this is that in proving the “even” levels of the TC- 

hierarchy to be strict; that is, to show that V-TC(m) C TC(m + 1), Gradel merely 

needed to show that V-TC(m) C 3-V-TC(m). (We have not defined this class of 

formulae, but our meaning should be clear.)

However, when we have a second-order 3 quantifier present, then this latter in

equality is not strict. For a sentence of mon-E}-E3-V-TC(ra) of the form

3X3y\/zip
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with (p G TC(ra), is equivalent to one of the form

3 X 3 Y ( UY  ^  0” A Vy(-Y(y)  V Vztp))

At first sight, it may appear that we have not gained very much: we still require 

a first-order existential quantifier to express “Y  0” . Note however that “Y  7  ̂ 0” 

G TC(0), and consequently may be moved inside cp. Thus our original sentence is 

equivalent to one from mon-Ej-V-TC(m).

As a consequence of this, any attempt to prove a hierarchy similar to Gradel’s in 

the presence of monadic existential second-order quantifiers, must make some more 

essential use of TC than its ability to define first-order 3 quantifiers. It is hard to see 

how such a use may be made.

3.5 The Effect of a Successor Relation

In this section we examine the logics mon-E}(±TC)*[FOs] and mon-E}(±DTC)*[FOs] 

-i .e. ,  essentially we examine the effect of adding a successor relation to the logic of the 

previous section. Although we refer exclusively to the DTC operator in what follows, 

everything said is applicable to the TC operator also, provided references to the word 

“deterministic” are ignored.

We begin with an elementary result, but one which is necessary if we are to justify 

our working with these logics. Specifically, we must show that mon-E}(±DTC)*[FOs] is 

not the same logic as mon-Ej(FOs) (and, as indicated above, we must show something 

analogous for TC). Note that we cannot expect to be able to prove something similar 

for mon-E}(±DTC)*[FOs] and (±DTC)*[FOJ, since

L = (±DTC)*[FOs] C mon-E}(±DTC)*[FOs] C NP.

So to do so would separate L and NP.

Lemma 3.29 Let a =  (U) be a signature containing one unary relation symbol. Then

mon-E}(FOs(a)) C mon-E} (DTC)1 [FOs(cr)].
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P roof That there is a containment is of course obvious. We need only prove strictness.

First note that cr-structures may be considered as strings over the set {0,1}- By 

Biichi’s Theorem [10], the languages definable in mon-E}(FOs(<r)) are precisely the 

regular languages. On the other hand, by the results of Immerman [49] the logic 

mon-E}(DTC)1 [FOs(cr)] is at least as powerful as L. To prove the lemma therefore, it 

is only necessary to exhibit a non-regular language which is recognisable in L. In fact 

there are many such languages; perhaps the simplest is that given by { ln0n : n G N}. 

□

We shall be concerned here with the sequence of logics g-mon-E}(±DTC)*[FOs], 

defined for any q to be fragment of monadic existential second-order logic with successor 

and a DTC operator whose formulae have at most q second order quantifiers. This 

gives rise to a natural hierarchy:

(±DTC)*[FOs] -  0-mon-E}(±DTC)*[FOs]C l-mon-E}(±DTC)*[FOs]

C 2-mon-E}(±DTC)*[FOs]

C . . .

The zeroth level of this hierarchy is clearly equivalent to L. On the other hand, we have 

already observed that several NP-complete problems can be defined in the first level 

(KERNEL for example, and SATISFIABILITY). So proving any level of the hierarchy 

to be strict would be at least as hard as separating L and N P .

Whilst it is obvious that the entire hierarchy is contained in N P , it is an open 

question as to whether or not all the levels are equal. Once again, proving that they 

are not equal would involve separating L from NP. This time however the converse 

is not true: if the hierarchy exactly captures N P it might be tractable to prove it. 

Having said that, we believe that the former case is more likely: monadic N P  seems 

sufficiently weak that adding just a L amount of extra power to it is unlikely to give it 

the full power of N P.

Interesting questions in this area include ones such as:
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• What happens if the hierarchy collapses at, say, the nth level? Does this im

ply that it collapses further down as well? Does it imply some complexity- 

theoretically unlikely result, such as L = NP?

• Assuming that L /  N P , and that the hierarchy is strict for at least the first few 

levels, are there any natural problems which are definable in the hierarchy which 

are not definable in either (±DTC)*[FOs] or mon-E}?

These questions appear to be very hard, and we have been unable to find answers to 

them. We do, however, have a couple of tools which may be helpful in making inroads 

into the questions in the future.

We begin by exhibiting a class of reductions under which the hierarchy remains 

closed. Even more usefully, we define a class of reductions under which the individual 

levels of the hierarchy each remain closed. Cosmadakis’ monadic first-order reductions 

provide an example of the former type of reduction; his monadic first-order reductions 

of factor 1 provide an example of the latter.

D efinition 3.30 [19] Let r = (Ro, R \ , . . . ,  Rr- 1, Co, C i , . . . ,  Cc_i) and a be signatures, 

where for each i, the arity of Ri is denoted by a*. (Note that we are numbering 

our relation and constant symbols from 0, rather than from 1 as elsewhere. This 

is to simplify our exposition slightly.) Let 9  be a class of r-structures and let T 

be a class of cr-structures. A monadic first-order reduction from T to D is a tuple 

5ft =  (/c? f , (£>°? ^  ? <£r_1, ip°, ip1, . . . ,  ip0- 1) with the properties that:

• k is a natural number. We call this the factor of the reduction.

• f  is a /c-tuple (£o, fi, • • •, ?*-i) of first-order formulae of arity 1.

• For each 0 < i < r, ip1 is a A:ai-tuple consisting of one first-order formula ip\ of 

arity a* for every word t 6 {0 , . . . ,  k — l}ah
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• For each 0 < i < c, 'ip1 is a /c-tuple • • • > V^-i) °f first-order formulae of

arity 1.

And furthermore such that for every cr-structure A, there is a r-structure B such that:

• The universe of B is the set of all pairs (x , j ) ,x  G \A\, j  < k, for which (A, x) J=

• For every i < r and for all tuples ((x0 jjo),(x i, j i ) , ( ^ - 1, ^ - 1)) € \&\ai it 

holds that:

( ( ^ 0 ? Jo) ?  • • • 5 ( x a i - l i  ^ ^  (A,X0,  . . . , . Xa i - i )  f =  ^ ( j 0 , . . . j ar i ) ’

• For every i < c there is exactly one (x,j) G \B\ such that (A,x)  (=

• For every i < c and for every (x, j) G \B\

C f  = (x,j)  •*=► {A,x)\=il>).

Note that in conjunction with the last condition, this ensures that an interpreta

tion of the constant symbols C o , , Cc_ 1 exists in B , and that it is unique.

• B G D v  v A  G r.

T heorem  3.31 [19] Monadic N P  is closed under monadic first-order reductions.

Unfortunately, it is not easy to generalise Cosmadakis’ proof techniques (see [69]) 

to the case where a DTC operator is present. To see why, we must first give just the 

barest bones of his proof.

P ro o f  Let a, r, T, D, and be as in Definition 3.30, and suppose D is defined by a 

formula 9 of the form

9 = 3X q3X\  . . .  BXq-i'ip

where ip is a first-order formula in prenex normal form. We wish to massage 9 into a 

formula 0  which expresses T. In essence, we just have to replace every relation symbol
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and constant symbol from r  with an appropriate formula from 5ft. Technical problems 

arise however, since the universe constructed by the reduction consists of pairs (x,j), 

where x comes from the domain of the source structure, and where j  < k. We construct 

0  via a three-step process.

1. First, replace any subformula of 0  of the form Vxx(^) by

k- 1
Vz / \ t a  -*• x!((x,j)))

3=0

where j))  is obtained from x(x ) by replacing every occurrence of x by (x, j).

2. Next, replace any subformula of 0  of the form 3xx{x) by

fc-i
V f e  A x ' ( (^ , i ) ) ) -
3=0

3. Finally, replace relation symbols and constant symbols by appropriate formulae 

from The details are routine, and are omitted here since we shall not nded 

them.

The first two steps in the above proof rely on the fact that universal quantification is 

the same as repeated conjunction, and existential quantification is the same as repeated 

disjunction. Because these operations are both associative and commutative, we may 

“factor out” the syntactically ill-formed V(x,j)(£j(x) x'((x iJ))) an^ 3(x, j))£j(x) A

X'((x ,j)))  in the manner shown.

Now consider trying to add a similar step to deal with a subformula of the form

DTC[Ax, y, x(x, y)](0, max)

where x, y, 0 , m ax are all of arity I. In this case, were we to replace x and y with (x, i) 

and (y, j) respectively, there would be no apparent way to “factor out” the i’s and j ’s. 

Any path in the digraph built by x is likely to move freely between vertices of the form 

(x, j) and vertices of the form (x;, j') with x /  x', j ^  j'. Consequently, Cosmadakis’ 

proof does not easily generalise to the present setting.
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In order to show that mon-E}(±DTC)*[FOs] is closed under monadic first-order 

reductions, we make use of the fact that the DTC operator gives us the ability to 

create new vertices from nothing. Consider once again the DTC-formula above, and 

suppose we interpret it over some structure A. If we double the arity of x and y, then 

(provided \A\ > k), we may treat pairs (x, j) ,x  G \A\l, j G { 0 ,1 ,..., k — l}* directly as 

pairs (x ,x '),x , x' G \A\l. All that is then required is a certain amount of management 

to ensure that the k copies of A  fit together in the correct way.

The following proof fills out the details.

T heorem  3.32 mon-E} (±DTC)*[FOs] is closed under monadic first-order reductions.

P ro o f Let be a problem which is defined by a formula 9 of mon-E} (±DTC)*[FOJ 

over the signature r  =  (R0, R i , . . . ,  Rr-i, Co, . . . ,  Cc-\)  of constant and relation 

symbols, where the relation symbols have arity a0, Gq,. . . ,  ar_i respectively. By [49] 

(see Theorem 2.9), we may assume that 9 is of the form:

9 = . . .  3Ag_!DTC[Ax, y, 6 ](0, max)

where x, y, 0 , and m ax are of arity /, and where 5 is a quantifier-free projection.

Let 3ft =  (k, f , <p°,. . . ,  . . . ,  V̂ -1) be a monadic first-order reduction from

another problem T (over a signature a) to Q. Let T i C T consist of all those
| >k

structures in T whose universe has size at least k. We will construct a sentence © 

of mon-E}(±DTC)*[FOs] which defines That T itself is definable by a sentence

of mon-E} (±DTC)*[FOJ will then follow immediately, since we can define the finite 

number of structures in T \  T|>fc explicitly using just first-order logic.

We have already indicated that we are going to treat domain elements of our target 

structure as pairs (x , y) of elements of our source structure. However, the formulae 

from 3ft are presented to us in a slightly inconvenient form. We need to be able to 

refer to, say, the y’th formula from the tuple ip2 (where y is a logical variable which 

represents a natural number less than k), or the x ’th formula from the tuple £.
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An example should make this clearer. Define:

fc-i
S(ar,y) = * /  \ / ( y  =  },  A f j (z ) ) .

3=0

Assume for the moment that / 0, . . . ,  fk-\  are constants which are interpreted by distinct 

elements in any structure over which we interpret E. Then for each j  < k , E(x,fj)  is 

logically equivalent to (x). (In fact when we come to define 0  shortly, we will define 

fo =  0, fi =  succ(f0), . . .  , fk-i  = succ(fk~2)- This will prove convenient for us when 

we come to define 0, max , and a successor relation on the target structure of 9ft.)

In a similar vein, for each i < r we may define:

a,-l

$*(a;o,. . .  , z ai_i , 2/o, • • • , 2/o<-i) = * / V  ( ( A  = 4 ) A^ o ,.. ,^ - i) (x0’ • ■ • > ^ - 1))

so that for every word (t0, . . ., ta,-i)  6 {0, . . . ,  k -  1}““, <f>‘( x , i s  logically 

equivalent to ¥>((o„..,ta._1)(x )-

Finally, for each i < c we define:

k—1 

j=0

Then as might be expected, for every j  < k, ^ l(x,fj)  is logically equivalent to ipj(x).

We may use the formulae \&* to define SETCONSTS(do, • ■ •, dc-u  eo, • • •, ec_ 1). This 

asserts that the pairs (d0,eo), (di,e\), . . .  , (dc_i,ec_i) of elements from the source 

structure represent the constants Co, C \ , . . . ,  Cc_i respectively of the target structure:

c—1

SETCONSTS(d0, . . . ,  0, . . . ,  ec_,) = (te/ / \
i=0

We would like to use similar formulae to define the logical constants 0 and max, but 

there is a small problem to do with the relativisation of the target universe by £. Al

though we can order its potential members lexicographically from (0 , fo) to (max, fk-i), 

there is no guarantee that H(0 , fo), say, will hold. So to define the position of the logi

cal constant 0, we must find the lexicographically smallest pair (d , e) such that E(d, e)
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holds.

SETZERO(d, e) =def £(d, e) A ( ( d  = 0 A e  = / 0) V DTC[Ax, p, p, h, (

((y =  s u c c ( x )  A  g  =  h ) W  ( x  =  m a x  A y  =  0 A h  =  s u c c ( g ) ) )  A 

( ( - £ ( x ,  p) A A3(p, A)) V ( - £ ( x ,  g )  A y  =  d A  h  =  e ) )

) } ( 0 , f 0 , d ,  e))

Note that this formula relies on the fact that /)+1 =  succ(fi) for each i < k — 1. 

SETMAX(d, e) is defined symmetrically.

We are now ready to define 0:

© — def 3Xo,o • • • 3X 0,fc-l . . . 3X(?_ i)0 . . . 3 X q- i tk - l

3 y " o  • • • ^ f k —i 3 g ? o  . . .  3 d c _ i 3 ( i c 3 d c ^ . i 3 e o  • • • 3 e c _ i 3 e c 3 e c - | _ i (

/o =  0 A /1 =  succ(fo)  A . . .  A /)fe_i =  succ(Jk- 2) A

SETCONSTS(do,. . . ,  d c- 1, eo,. . . ,  ec_i) A

SETZERO(dc, e c ) A  SETMAX(dc+1, e c + 1 ) A

DTC[Ax0, . . . ,  xi-ij go, .. ■, pi—1, Vo, • • •, 2/1—1, h o , , hi-1,
/-1
/ \ ( H ( x i} A S (2/i, h i ) )  A  A ] ( { d c ) 1, ( e c ) 1, (d c + 1 ) l , (e c + l ) 1) ) .

* = 0

Given all of the above, this should be fairly self-explanatory. We set up the variables 

f i  to refer to the various copies of the universe of our source structure; the pairs 

(d0> ^ o ) , , ( d c- 1, ec_i) give the location of the constants Co, . . . ,  Cc-\  in our target 

structure; finally, the pairs ( d c , e c ) and (dc+1,ec+i) give the location of the logical 

constants 0 and m a x  respectively.

The DTC sub-formula itself is composed of two conjunctions. The first (itself a 

large conjunction) ensures that all the pairs (Xi,gi) and (yi, hi) which we deal with are 

in the relativised universe of the target structure. The second, the sub-formula A, has 

not been discussed yet. It is derived from the qfp S in the following way:

• Replace any sub-formula of 6  of the form X i  = P j  by X i  = P j  A  g i  = h j .  Other
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equalities should be dealt with in similar ways. X{ — Cj , for example, should 

be replaced by X{ = dj A gi =  ej\ similarly, yi = max should be replaced by

Vi dc-\-\ A ec+i.

• Replace any sub-formula of the form Xi = succ(yj) by

DTC[Au, s, w, t, (((v = Xi A s = hi A w = yj A t = gj) V

The reason for this complexity is basically the same as the reason for the com

plexity in the definitions of SETZERO and SETMAX above: the lexicographic 

successor of (x*,^) is not necessarily a member of the relativised universe of the 

target structure.

As before, we treat other sub-formulae of the same form similarly.

• Replace any sub-formula of the form Ri(xj0 , Xj1, . . .  ,Xja._1) by

Then for each s < k, x*ix ifs) is logically equivalent to Xi)S(x). So we may replace 

any sub-formula of the form X i(xj)J i < q, by X%ixjj9j)- As usual, we handle 

sub-formulae of a similar form in the obvious way.

(v = Xi A s = hi A t)) V

(A~(u, s) A w = yj A t = gj) V

(-i£(v, s) A -iE(w, £))) A 

((v = succ(w) A s = t) V

(v = 0 A w = max A s = succ(t))))](xi, yj , hj)

$  (Xj0 , Xjx, . . . ,  Xja,_l , go, gjx, . . . ,  gjai_x)•

As usual, other similar sub-formulae are handled in the obvious way.

• Define:
A-i
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All that remains is to check that 0  does indeed define Ti . Let A  be a cr-structure
| > A ;

of size n > k, and let B be the corresponding r-structure given by the reduction 3ft. 

Then the construction of 0  implies that 0  holds in A  if and only if 9 holds in B. So 

we have:

a \=g  <=> B\= 9 

<=> B £ Q,

A e  r

So 0  defines Thus there is a mon-E} (±DTC)*[FOs] formula which defines T.

□

Note that the above proof goes through essentially unchanged even in the absence 

of a successor relation. For the successor relation is only used for two purposes: first, 

to define / i ,  / 2, ■• •, fk -u  and second, to define SETZERO, SETMAX, and the replace

ment of subformulae of the form Xi =  succ(yj). For the former purpose, a quantifier-free 

first-order formula which does not involve the successor realtion will suffice; the latter 

purpose is, of course, unnecessary in a successor-free logic.

As mentioned above, it is difficult to see how to extend (rather than, as here, 

to modify) the standard proof that monadic N P is closed under monadic first-order 

reductions to cope with the case when the DTC operator is present.

The following corollary is immediate from the proof of the theorem.

C orollary  3.33 For each k G N, &-mon-E}(±DTC)*[FOs] is closed under monadic 

first-order reductions of factor 1.



Chapter 4 

Program Schemes with For all 

Instructions

4.1 Program Schemes

One of the central open problems of finite model theory is whether or not there is 

a logic capturing PTIM E. That is, does there exist a logic whose sentences define 

exactly the problems (whose encodings are) recognisable by polynomial-time Turing 

machines? Of course, in order to make sense of this question, one needs to say exactly 

what one means by a “logic”. This has been done by Gurevich [44] who formulated a 

very liberal definition which encompasses many different traditional logics as well as a 

variety of computational models. Over the years, a number of contenders have been 

suggested as logics which might capture PTIME, but so far all such logics, whilst only 

having the power to define problems within PTIME, have eventually been shown to 

be too weak to to define every problem in PTIME. Perhaps the best-known contender 

was inductive fixed-point logic with counting (see, for example, [30]). Immerman had 

suggested that this logic might capture PTIME, but this was later shown not to be 

the case by Cai, Fiirer and Immerman [13].

In this chapter we introduce a new logic (in the sense of Gurevich) which defines

60
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only problems in PT IM E . Whilst our logic is strictly more expressive than, for exam

ple, inductive fixed-point logic and can define problems such as PARITY, there remain 

problems in P T IM E  which are not definable in our logic. This comes as no surprise 

to us as (intuitively) our logic lacks the sophistication we feel any such logic must have 

were it to capture P T IM E . In any case, it is not our real aim here to develop a logic 

which might capture P T IM E  (though we feel that our logic might provide a stepping- 

off point in the search for such a logic): rather, our primary motivation for introducing 

our logic is because such a logic arises naturally within the ongoing systematic study 

of the expressive power of classes of program schemes (see [6 , 70, 71, 75, 81]). Broadly 

speaking, program schemes are models of computation which are amenable to logical 

analysis, yet closer to the general notion of programs than are logical formulae. Pro

gram schemes were extensively studied in the seventies, without much regard being 

paid to an analysis of resources, before a closer complexity analysis was undertaken 

in, mainly, the eighties. There are connections between program schemes and logics of 

programs, especially dynamic logic. (The reader is referred to [6] for references relating 

to the research mentioned in the preceding two sentences.)

We define our program schemes around “high-level” programming constructs such 

as arrays, while-loops, assignments, non-determinism, and so on, but so that the input 

comes in the form of a finite structure and, in general, there is no access to a linear 

ordering of the elements of the input structure. The program schemes defined in [70, 81] 

all involve arrays, while-loops and non-determinism. Allowing unrestricted access to 

arrays enables one to accept PSPACE-complete problems, whilst by restricting access 

to arrays (to be, in a sense, “write-once”), one can limit oneself to accept only problems 

in N P  (although there is still sufficient power to accept NP-complete problems). Other 

classes of program schemes were defined in [6, 71] in which every problem accepted by 

such a program scheme is in P T IM E  and, furthermore, there are such program schemes 

accepting PTIME-complete problems. These program schemes involve while-loops, a 

stack and non-determinism. So as to emphasise that these models of computation
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are not given an ordering on the elements of an input structure, amongst the results 

in the aforementioned papers are that the class of problems accepted by any of the 

above classes of program schemes has a zero-one law (but, interestingly, not necessarily 

because the problems can be defined in bounded-variable infinitary logic as is often the 

case in finite model theory). On ordered structures, the above classes of program 

schemes capture the complexity classes PTIME, N P and PSPACE as appropriate 

(see also [75]).

In this chapter, we introduce a class of program schemes which we call RFDPS. This 

class is based on arrays, if-then instructions, and forall-loops, where our forall-loops 

result in parallel executions of a portion of code, with one execution for each element 

of the input structure. So as to provide a means for iteration, we allow portions of 

code to be repeatedly executed n times, where n is the size of the input structure. The 

class RFDPS arose through our efforts to replace the notion of a while-loop in earlier 

classes of program schemes with one of a forall-loop. Note that unlike the program 

schemes mentioned above, our program schemes are deterministic (and every problem 

accepted by such a program scheme is in PTIME).

A related model of computation has recently been examined by Blass, Gurevich 

and Shelah. In [9], these authors introduced a model of computation called CPTime 

(Choiceless Polynomial-Time), a program (p,p(n),q(n)) of which is an adapted Ab

stract State Machine p (see [45, 46]) augmented with two polynomial bounds, p(n) and 

q(n), with p{n) bounding the length of any run of the machine on any input and q(n) 

bounding the number of “parallel executions” in one of their forall-loops, where these 

polynomial bounds are in terms of the size n of the finite input structure upon which 

the program works. Although such a program takes a finite structure (over some rela

tional signature) as input, it treats the elements of this finite structure as atoms and 

has the potential to build certain sets over these atoms and use these sets as new “ele

ments” in its “computational domain”. Consequently, without restricting the run-time 

and the number of parallel executions, the program would have the capacity to build
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a computational domain of arbitrary size; and, indeed, it is not difficult to show that 

such an unrestricted program can simulate an arbitrary Turing machine. The instruc

tions, or rules in the terminology of [9], of the programs of CPTime have similarities 

with those of the program schemes of this chapter. For example: there are dynamic 

function symbols and assignments via update rules, whereas our program schemes have 

arrays and assignment blocks; there are conditional rules, whereas our program schemes 

have if-then-fi blocks; and there are do-forall rules, whereas our program schemes have 

forall-do-od blocks. However, there are a number of important differences between the 

computational model of Blass, Gurevich and Shelah and ours, including the following. 

Their computational domain fluctuates, whereas ours is fixed and is always the do

main of the input structure. Viewed as a logic, CPTime is three-valued (a program 

may accept, reject, or neither accept nor reject), whereas our program schemes always 

either accept or reject. A program of CPTime has no access to the cardinality of 

the input structure, and the problem PARITY cannot be accepted by a program of 

CPTime (furthermore, it has been reported in [9] that Shelah has shown that CPTime 

has a zero-one law), whereas our program schemes have access to the size of the input 

structure and there is such a program scheme accepting PARITY. In order to force the 

abstract state machine to accept polynomial-time solvable problems, the polynomial 

bounds p(n) and q(n) must be imposed from without, whereas no such bounds need 

be imposed upon our program schemes: our program schemes naturally accept only 

polynomial-time solvable problems.

The motivation for the research in [9] was the search for an answer to the question, 

stated earlier, of whether there is a logic capturing PTIM E. In turn, this ques

tion has motivated a search for logics capturing an increasing sub-class of the class 

of polynomial-time solvable problems. The main results of [9] are that the class of 

problems accepted by the programs of CPTime properly contains the class of prob

lems accepted by Abiteboul and Vianu’s class of polynomial-time relational machines 

[1] but that there are polynomial-time solvable problems, in particular PARITY and
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BIPARTITE MATCHING, that are not accepted by any program of CPTime. (BI

PARTITE MATCHING consists of those bipartite undirected graphs whose two sets 

in the partition have equal size, for which there exists a perfect matching.) In fact, it 

is also shown in [9] that BIPARTITE MATCHING is not accepted by any program of 

CPTime+, an extension of CPTime which allows access to a constant symbol whose 

value is fixed at the size of the input structure (however, PARITY is accepted by a 

program of CPTime+). It is also claimed in [9] that the class of problems accepted by 

the programs of CPTime includes any problem definable in any other “polynomial-time 

logic” in the literature (the authors presumably mean only “natural polynomial-time 

logics” and not augmentations of such by, for example, counting quantifiers or Lind- 

strom quantifiers).

Our results are of a somewhat different flavour to those of [9] and, in a sense, are 

more refined. We obtain a strong result which provides limitations on the problems 

accepted by our program schemes, and we use this result to obtain a strict, infinite 

hierarchy of classes of problems within the class of problems accepted by the program 

schemes of RFDPS. These classes are parameterised by the depth of nesting of forall- 

loops allowed in the defining program schemes, and the union of these classes is the 

class of problems accepted by the program schemes of RFDPS. Consequently, each 

class of problems in the hierarchy is definable by a logic in Gurevich’s sense. To our 

knowledge, this is the first strict, infinite hierarchy in a polynomial-time logic properly 

extending inductive fixed-point logic (with the property that the union of the classes of 

the hierarchy consists of the class of problems definable in the polynomial-time logic). 

Our results are obtained by a direct analysis of computations of our program schemes. 

Note that the existing hierarchy theorems of finite model theory, such as those in 

[41, 42, 43], are of no use to us here, since all of these hierarchy results are for explicit 

fragments of bounded-variable infinitary logic (which has a zero-one law). On the other 

hand, our computational model is, first, not defined in terms of traditional logics, and 

second, has no zero-one law (and so in particular cannot be a fragment of bounded
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variable infinitary logic, making the existing hierarchy theorems useless to us).

Like the Choiceless Polynomial-Time model of Blass, Gurevich and Shelah, our 

program schemes are different from other (polynomial-time) models of computation 

more prevalent in database theory, such as the relational machines of Abiteboul and 

Vianu [1], the extension of inductive fixed-point logic with a symmetry-based choice 

operator proposed by Gire and Hoang [38] and the extension of first-order logic with 

for-loops proposed by Neven, Otto, Tyszkiewicz, and Van den Bussche [66]. The models 

of computation proposed by these researchers (and others) allow the construction of 

whole relations as an atomic operation, whereas our construction of relations (stored 

in arrays) is, in a sense, “one element at a time”. Some of these models are more 

expressive than our class of program schemes but, unlike our class of program schemes, 

no hierarchy results have been established. Hence, we do not discuss these models 

further here (although the reader is referred to our comments in Section 4.5).

4.2 Definitions

The classes of program schemes we shall be concerned with here are yet further gener

alisations of those presented in [75], and extended in various ways in [6, 70, 71, 81]. We 

dispense with the WHILE instructions of these previous papers, and replace them with 

a REPEAT instruction (which iteratively executes a block of instructions a number of 

times depending on the size of the input structure) and a FORALL instruction (which 

allows a large degree of parallel computation to take place). We also permit the use of 

arrays.

D efinition 4.1 A program scheme p £ RFDPS involves a finite set {rci, £2, • • •, xk} 

of variables, for some k > 1; a finite (possibly empty) set {Ai, A 2, . . . ,  Ag} of array 

symbols, for some g > 0; and is over a signature a. Each array symbol Ai has an 

associated arity a; > 1.
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The set of basic terms consists of the variables {xi,X 2 , . . .  together with the 

constant symbols of a and the additional constant symbols 0 and max (which we 

assume are not present in a). An array term is a string of the form Ai[ri, t 2, . . . ,  raJ, 

where each Tj is a basic term. Note that we do not allow array terms to be nested. 

(This could be simulated if required by introducing extra variables. The details are 

trivial.) The set of terms is the union of the set of basic terms and the set of array 

terms.

Informally, a program scheme consists of an input instruction, a sequence of blocks 

of instructions, and an output instruction. More technically, it is an input-output block, 

defined by

INPUT(:ri, a:2, • • • ? %k) input instruction

ai block of instructions

0L2 block of instructions

ai block of instructions

O U T P U T ^, X2 , • ■ •, Xk) output instruction

for some / > 1. The scope of this block is the whole of the program scheme.

A program scheme has only one input-output block. All of its other blocks are 

defined recursively as follows.

• An assignment block a  is simply an instruction of the form

t t ' assignment instruction

where r  is a variable or an array term and r' is a term. The scope of a is the

actual assignment instruction constituting the block.

• An if-then-fi block a  is a sequence of instructions of the form

IF <p THEN if instruction
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Of! block of instructions

a 2 block of instructions

ai block of instructions

FI fi instruction

for some / > 1, where p  is a quantifier-free first-order formula over a U {0, max} 

whose free variables come from {x i ,x 2, . . . ,  Xf~} (note that we do not allow array 

terms within <p, though once again this could be simulated if required). The scope 

of a  is the union of the if instruction, the fi instruction and the scopes of the

blocks C t\ , CX-2 i • • • ,  O il-

A repeat-do-od block a  is a sequence of instructions of the form

REPEAT DO repeat-do instruction

ct\ block of instructions

a . 2  block of instructions

ai block of instructions

OD repeat-od instruction

for some / > 1. The scope of a  is the union of the repeat-do instruction, the 

repeat-od instruction and the scopes of the blocks oq, a 2, . . . ,  cq.

A forall-do-od block a  is a sequence of instructions of the form

FORALL xp WITH A{ DO forall-do instruction

ai block of instructions

a .2  block of instructions

at block of instructions
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OD forall-od instruction

for some / > 1, where l < p < k ,  l < i < g  and 1 < j  < ai. The variable xp 

is called the control variable and the array symbol A* is called the control array 

symbol of the forall-do-od block. The scope of a  is the union of the forall-do 

instruction, the forall-od instruction and the scopes of the blocks a \ ,a 2, .. .  ,oti. 

If there exists at least one assignment instruction in the scope of a  where the 

term on the left-hand side of the assignment is an array term involving Ai, then 

we say that the control variable xp is active in Ai in a at index j.  If there is no 

such assignment instruction, then we say that xp is inactive in a. Furthermore, 

there are some additional constraints on a.

1. Any array term A;[ti, r2, . . . ,  raJ appearing in any assignment instruction 

(on the left or on the right) in the scope of a  must be such that the term Tj 

is xp (the control variable).

2 . No array symbol apart from the control array symbol may appear in a term 

on the left-hand side of any assignment instruction in the scope of a.

3. The control variable xp must not appear (as a solitary variable) on the 

left-hand side of any assignment instruction in the scope of a.

4. Any other forall-do-od block (with either an active or an inactive control 

variable) whose instructions are in the scope of a  must not have xp as its 

control variable.

We will come to the reason for these constraints shortly. For now, it is enough to 

observe that they force both xp, and all entries of arrays other than A* to remain 

unchanged in value within the scope of the forall-do-od block.

We say that a block a appears in the scope of another block a 1 if the instructions 

in the scope of a  are in the scope of a'. The depth of nesting of an instruction in the
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scope of p or of a block appearing in p is the number of forall-do-od blocks in whose 

scope the instruction or the block appears.

In a similar vein, the scope of the program scheme p is defined to be the scope of its 

input-output block; we say that a block a appears in p if it appears within the scope 

of the input-output block of p; and the depth of nesting of p is the maximum of the 

depth of nesting of all instructions of p. □

Our name for our class of program schemes, RFDPS, is an acronym for ‘Repeat 

Forall Deterministic Program Schemes’.

With the above definitions in mind, we can explain how our program schemes 

compute. The following definition is relatively informal; a more rigorous definition 

of the semantics will be presented in the next section. Nevertheless, these informal 

semantics will be sufficient for us to give examples of our program schemes, and also 

to give some lower bound results on their computational power.

D efinition 4.2 A program scheme p G RFDPS over a takes as input a a-structure 

A. The variables and array elements all take values from \A\, with array elements 

being indexed by tuples of elements of the input structure (the length of the tuple is 

the arity of the array symbol). The program scheme proceeds sequentially through its 

component instructions in the obvious way, but according to the following rubrics.

• At the beginning of the computation, the constant sybols 0 and max are given 

arbitrary distinct values from \A\. All variables, and all array elements are set 

to the value 0 .

• A repeat-do-od block a of the form

REPEAT DO repeat-do instruction

Oil block of instructions

0L2 block of instructions
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cq block of instructions

OD repeat-od instruction

repeatedly executes the blocks oq, a2, . . .  , cq in sequence, a total of |.4| times. 

Intuitively, the effect is the same as that of writing

^ • 1 )  ^ 2  j • ■ • j  d - l  i  @ - l i  & 2 >  • ■ • > Q - l  i  • • • ^ 1  > ■ j

in place of the repeat-do-od block, where there are |*4| repetitions of a\\ ct2; . . . ;  cq. 

Of course this is is impossible within our syntax, since program schemes are 

fixed, whereas the value of \A\ depends on the particular input structure under 

consideration.

A forall-do-od block a  of the form

FORALL xp WITH DO forall-do instruction

a.\ block of instructions

a 2 block of instructions

ai block of instructions

OD forall-od instruction

causes a “multi-way split” in the computation path of p. On encountering the 

instruction, a total of \A\ “child processes” are set off in parallel, each executing 

the blocks ai, a2, . . . ,  ai of instructions, and each with its own local copy of 

the variables aq, x2, . . . ,  of p. This latter stipulation ensures that the child 

processes cannot somehow use these variables to communicate with each other. 

The only difference between the processes is that xp takes a different value in 

each. That is, for each u G |^4|, there is a unique child process with the property 

that xp takes the value u within it. The value of xp cannot change within a 

process (this is a consequence of the third and fourth syntactic constraints in our
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definition of the forall-do-od block) but other variables are free to change, and 

hence to take a different value in two different processes.

Arrays, on the other hand, are not local to the individual processes: each process 

makes use of exactly the same set of arrays. This could lead to conflicts and 

“race conditions” were it not for our four syntactic constraints. The first of these 

ensures that the processes each have exclusive access to their own unique part of 

Specifically, in the child process in which xp takes the value u G \A\, only 

array elements from the set

. . . ,  Uj—h u , . . . ,  rtai] . u \ , . . . ,  Uj—i, Uj+1 , . . . ,  uai G |*A|}

may be referred to. By the second constraint however, Ai is the only array which 

may be changed by an instruction in the scope of a. Of course, two processes 

might both have read-only access to the same elements of arrays other than Ai, 

but no process has write access to these arrays. Consequently, conflicts cannot 

occur and non-determinism is not introduced.

When all of the child processes have reached the forall-od instruction, they ter

minate, and the computation of p proceeds as follows. Call those variables which 

occur alone on the left hand side of an assignment instruction within the scope 

of a , the local variables of a. (Note that it is quite possible that a  may have no 

local variables.) The main computation resumes at the instruction in p following 

the forall-do-od instruction, but according to the following provisos. The value 

of xp is set to be either 0 or max. It is set to max if, in every child process, 

each of the local variables was set at max on termination. Otherwise, xp is set 

to 0. If a  has no local variables, then xp is always set to max. The values of all 

variables apart from xp now take the original values they had immediately prior 

to the execution of a. The values of the arrays remain unchanged at the end of 

the block. As we have already observed, they are in an entirely consistent state.

To re-cap: execution of a forall-do-od block leaves the values of all variables (save,
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perhaps, its control variable) unchanged; it has an effect which is signalled by its 

control variable; and it may alter the value of some of the elements of its control 

array. All other arrays remain unaffected by it.

The structure A  is accepted by p if, and only if, there exist distinct values of 0 and 

max such that the computation described above reaches the output instruction with 

all variables set at max.

What we are doing is “building in” two distinct constant symbols, 0 and max, but 

we are building them in with a slightly different semantics than is usual in finite model 

theory. Traditionally, as explained in Chapter 2, we would not consider a program 

scheme to be well-formed unless its acceptance, or otherwise, of a structure was inde

pendent of the placements of 0 and max. This raises the question of whether or not it 

is decidable to determine whether or not a program scheme of RFDPS is well-formed.

Under the semantics presented here however, every program scheme is automatically 

well-formed. Consequently, RFDPS is truly a “logic” in, say, the sense of Gurevich 

[44]. Moreover, we shall presently come to define some fragments of RFDPS. Using 

our semantics, it is immediately obvious that these fragments are all logics in the sense 

of [44]; using the traditional semantics, this fact would be far from clear.

We phrase the following trivial observations in the form of a lemma.

Lem m a 4.3 The computation of a program scheme p G RFDPS on some input struc

ture always terminates; and every problem in RFDPS can be solved in polynomial 

time.

A couple of examples will help to clarify these definitions.

E xam ple 4.4 Given any signature <r, the problem PARITY of deciding whether the 

size of the universe over which a program scheme is executed is even, can be expressed 

by the following program scheme of RFDPS.



Chapter 4: Program Schemes with Forall Instructions 73

INPUT (xu x2) 

x\ max 

REPEAT DO

x 2 := 0

IF (xx =  0) THEN DO 

X\ max 

x 2 := max

OD

IF (x2 = 0) THEN DO

X \  : =  0

x 2 := max

OD

OD

OUTPUT (zi,a;2)

We present program schemes in an indented style to aid readability.

During each iteration of the repeat loop, the value of the variable x\ is swapped 

between 0 and max. It therefore ends with the value max if, and only if, the universe 

has even size. The variable x 2 ends every iteration of the repeat loop with the value 

max. Thus, this program scheme accepts precisely those structures whose universes 

are of even size.

R em ark  4.5 Before proceeding to our next example, it is worth pointing out one or 

two things concerning the nesting of forall-do-od blocks. Suppose we have one such 

block, a, nested inside another as follows:

FORALL xmi WITH Ag DO

FORALL x m2 WITH Af2 DO
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on

OD

OD.

The syntactic constraints concerning the nesting of forall-do-od blocks force m i /  

m2, but they deliberately say nothing either about the relationship between i\ and i2 

or about that between j i and j 2. There are three possibilities for this relationship:

1. i\ ^  i2. The second constraint, applied to both forall-do-od blocks, implies 

that no term of any array can appear on the left hand side of any assigment 

instruction in the scope of a. In other words, arrays within the scope of the 

two blocks are read-only, and xm2 must consequently be inactive within a. (Of 

course, whether or not x mi is inactive within the outer forall-do-od block depends 

on the instructions which we have elided with ellipses.)

2. i\ =  i2 and j \  — j 2. Applying the first constraint to both forall-do-od blocks 

implies that any reference to Aix within the scope of a  would be forced to have 

both x mi and x m2 simultaneously in the j i ’th position in the array. Consequently, 

no instruction within the scope of a can make any reference whatsoever (be it 

read or write) to . So xm2 is once again inactive within a.

3. i\ =  i2 but j i /  j 2. In this case the two sets of constraints dovetail neatly: array 

terms involving Aix can appear on either side of any assignment instruction in 

the scope of a, whilst those involving other arrays may only appear on the right 

hand side. Similarly, array terms in the scope of a  which involve Aix must all 

have xmi as their j i ’th entry, and x m2 as their j 2 th entry; the terms of other 

arrays are unconstrained in this regard. We cannot say anything a priori about
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whether or not the control variables are inactive within their blocks.

We reiterate that these remarks are not additional constraints on forall-do-od 

blocks; rather, they are natural consequences of the four constraints which we enu

merated when we originally introduced the blocks.

Having set up our formalism, we now proceed to systematically abuse notation. 

Firstly, and most trivially, we will allow ourselves a good deal of freedom in our choice 

of variable names: x , 2/3, and work.var are examples of the sorts of variables we will be 

using. Array names will undergo a similar treatment. To prevent confusion however, 

array names will always be in upper case, whilst variable names will always be in lower 

case.

Secondly, we will allow ourselves a richer syntax than is strictly permitted under 

the formalism. The following extended syntaxes will all be used.

• An if-then-else-fi block of the form

IF p  THEN

0=1 

02

o/ block of instructions

ELSE else instruction

Pi block of instructions

P2 block of instructions

Pm block of instructions

FI fi instruction

for some l ,m  > 1, where p  is a quantifier-free first-order formula is just an 

abbreviation for

if instruction 

block of instructions 

block of instructions
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test := 0

IF (<p) THEN DO 

test := max 

ot\

test is a new variable

on

OD

IF (test /  max) THEN DO 

test := max

A

Pm

OD

and has the obvious semantics. Note that if this code fragment occurs within the 

scope of a forall-do-od block, then care must be taken to set the value of test to 

max before the termination of the program scheme, else the program scheme will 

reject all input structures.

An array-free-forall-do-od block, a, of the form

FORALL xp DO

O f  i

OL 2

array-free-foralI-do instruction 

block of instructions 

block of instructions

OD

for some / > 1, is just an abbreviation for

FORALL xp WITH A lu DO

block of instructions

array-free-forall-od instruction
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ai

OL2

OH

OD

where A u is a new array symbol of arity 1.

Although just an abbreviation, we may define, informally at least, the scope of 

a  to be the union of the array-free-forall-do instruction, the array-free-forall-od 

instruction, and the scopes of the blocks oti, a2, . . . ,  on. Similarly, we may refer 

to xp as the control variable of a.

The constraints on those instructions which may appear within the scope of a 

follow from the constraints which must be present on the translation of a. In 

particular:

-  The only array symbol which can occur on the left hand side of an assign

ment instruction within the scope of a is Av. Since Av is a new array symbol 

however, it follows that no array term may appear on the left hand side of 

such an assignment instruction.

-  The control variable xp must not occur alone on the left hand side of any 

assignment instruction in the scope of a.

-  Any other forall-do-od block (whether an abbreviated, array-free block or 

otherwise) whose instructions are in the scope of a  must not have xp as its 

control variable.

Note that since Av is entirely new, it follows from Remark 4.5 that the same 

array symbol Av may be used in the translation of all array-free-forall-do-od 

blocks. Note too, that by the above comments xp is inactive in the translation of 

a. In fact, the converse is true as well: it is not hard to see that any forall-do-od
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block with an inactive control variable may be recast as an array-free-forall-do- 

od block. Consequently, array-free-forall-do-od blocks are sometimes known as 

inactive forall-do-od blocks. We shall use the terms interchangably.

Our second example is a little more complicated than our first, but shows that even 

PTIM E-complete problems may be expressed in RFDPS.

Example 4.6 Let a = (R, c, d) be a signature containing a relation symbol R  of arity 

3, and two constant symbols c and d. A structure A  E STRUCT(cr) of size n can be 

viewed as a path system; that is, as a set of vertices {0 , 1, . . , ,  n — 1} and a set of rules of 

the form "From x and y deduce z ” (one such rule for each (x, y, z) such that R (x , y, z) 

holds in .4), together with two distinguished vertices c and d. The set of accessible 

vertices of A  is constructed inductively in the following way:

• the vertex c is accessible;

• if x and y are accessible vertices (not necessarily distinct), then every z which 

may be deduced from x and y by an application of some rule is also accessible.

The problem PATH-SYSTEM is defined as follows.

Instance: A structure A  E STRUCT(cr).

Yes-instance: A structure A  E STRUCT (a) such that d is in the set of accessible 

vertices.1

The problem PATH-SYSTEM has long been known to be PTIME-complete via

logspace reductions [17], and in fact the logic (±PS)*[FOs] has more recently been

shown to capture PTIM E [78] (where PS is the generalised quantifier corresponding
1 Occasionally, PATH-SYSTEM is defined over a signature where c and d are unary relations rather 

than constant symbols. In this set-up, all the vertices in c are defined to be initially accessible, and 

the yes-instances of the problem are those structures for which there exists some x € d such that x is 

accessible. It is easy to see that the two definitions are interchangeable.
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to PATH-SYSTEM). We now show that PATH-SYSTEM may be defined by a program 

scheme of RFDPS.

Consider the following program scheme over a which uses the two unary arrays A 

and T.

INPUT (w, x , y , z)

A[c] := max 

REPEAT DO

FORALL 2 DO 

w := 0

FORALL x DO 

FORALL y DO

IF {A[x\ = 0 V A[y) = 0V ~iR(x, y, z)) THEN 

w := max

Is z now accessible?

FI

OD

OD

IF (A[z\ = max V x =  0) THEN 

T[z\ := max

FI

OD

FORALL x WITH A 1 DO 

A[x] := T[x]

OD

OD

w := max 

x := max 

y max

If so, set T[z\ = max

We now copy T  over A

A[x\ = max iff x is accessible.
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*  : =  0

IF (A[d] = max) THEN 

z := max

FI

OUTPUT (w,x,y, z)

The first thing to observe about p is that it is indeed a program scheme of RFDPS. 

This is routine to check: all that it requires is a verification that the syntactic conditions 

on instructions within the scope of forall-do-od blocks are not violated. We now show 

that p does in fact accept precisely the yes-instances of PATH-SYSTEM. We prove 

this in some detail, since the ideas behind the construction of the program scheme will 

crop up several times in the sequel.

The key loop is the REPEAT loop which surrounds much of the rest of the program 

scheme. We maintain the invariant that after the zth iteration of this loop, the value 

of A[x] will be max if, and only if, x is accessible from c after i or fewer applications 

of a rule. This obviously holds after the zeroth iteration: A[c] = max, and the rest 

of A is zero. Within the loop, for each vertex z we must determine whether z is 

accessible after this iteration; we store this information temporarily in the array T. 

By definition, z is accessible after the zth iteration if, and only if, either it was already 

accessible (i.e., A[z] =  max) or else it has just become accessible (i.e., it is not the 

case that for every x and for every y, either A[x\ — 0, or A[y\ = 0, or R (x , y, z) fails 

to hold). Finally, we copy the array T  over the array A, ready for the next iteration 

of the repeat instruction. (We do not need to zero the array T  at the end of every 

iteration, since the set of accessible vertices increases monotonically.)

This process of gradually increasing the set of accessible vertices must reach a 

stable state after at most n iterations, since if even only one vertex is added to the set 

after each iteration, n iterations would be sufficient for every vertex to have become 

accessible. So when the repeat instruction terminates, the array A  contains, as claimed,
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a complete characterisation of the set of accessible vertices. The rest of the program 

scheme is trivial. We set virtually all of the input-output variables to max immediately, 

but set the final such variable to max if, and only if, A[d\ holds. Thus p accepts a 

structure A  if, and only if, A  G PATH-SYSTEM.

We now exhibit some lower bounds on the class of problems accepted by the program 

schemes of RFDPS.

Theorem 4.7 Given any first-order definable problem D, there is a program scheme 

of RFDPS which accepts Q.

P roof We shall prove the result by induction on the quantifier-rank d of any first- 

order formula where our induction hypothesis is:

Let a be some signature and a' be the expansion of a with m additional 

constant symbols. For any first-order formula ip of quantifier-rank r less 

than d > 1 over a and with free variables xi ,X2 , • • • , x m, say, there exists 

a program scheme p' G RFDPS over o' such that if ip is considered as a 

sentence over a' then for every a'-structure A :

• if A ' f= ip then A' f= p a n d

• if A! ^  ip then the computation of p' on input A ' (no matter what 

the distinct values given to 0 and max are) is such that the output 

instruction is reached with all variables involved in p' having the value 

0 .

Moreover, pf does not involve any array symbols and has depth of nesting 

r.

Let ip be a first-order formula of quantifier-rank d > 1 of the form

3xmip(xi , X2 -, • • •, xm),
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where xi, x2, . . . ,  xm are the free variables of 'ip. By the induction hypothesis, there 

exists a program scheme p' over a' (the expansion of a with m  additional constant 

symbols) such that for every a'-structure A 1:

• if A! |= ip then A! f= p'\ and

• if A 1 y=- ip then the computation of p' on input A! is such that the output instruc

tion is reached with all variables involved in p' having the value 0.

Moreover, p' does not involve any array symbols and has depth of nesting d — 1. Let p 

denote the program scheme p' with the input- and output instructions stripped away; 

and suppose that the variables involved in p' are those of the tuple y. Also, regard xm 

now as a variable as opposed to a constant symbol (we assume for the sake of exposition 

that the name of the constant symbol of o' which corresponds to the variable xm is 

also x m). Define the program scheme p" over o" (the expansion of o with a constant 

symbol for each of the variables x\, x2, . . . ,  xm-\) as follows.

INPUT(y, xm)

FORALL xm DO 

p'

IF y =  0 THEN 

y := m ax

ELSE 

y :=o

FI

OD

IF xm = max THEN 

(y , X m )  ' =  (0,0)

ELSE

(y, X m )  : =  (max, max)
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FI

OUTPUT(y, xm)

The shorthand used above should be obvious (except that 0 and m ax denote tu

ples of the constant symbols 0 and max , respectively, of the appropriate lengths). 

The program scheme p" is clearly as required. The case where <p is of the form 

\/xTn,ip(xi,x2i • • •, Xm) is similar (indeed, somewhat simpler). As the induction hypoth

esis holds for all quantifier-free formulae, the result follows. □

So RFDPS is strictly more expressive than first-order logic (the strictness follows 

from Example 4.4). In fact, this result can be generalised.

T heorem  4.8 Given any problem D which is definable in inductive fixed-point logic, 

there is a program scheme of RFDPS which accepts D.

P ro o f  Let cp(y, z) be a formula of inductive fixed-point logic of the form

IFP[Ax, R,il>(x,y,R)](z),

where: |x| =  |z| =  / c ; Ri sa  relation symbol of arity k , not in the underlying signature 

<t; and ip is a first-order formula whose free variables are those of the &-tuple x and 

the ra-tuple y. Suppose that there is a program scheme p' over a' (the extension 

of a with k +  m  additional constant symbols called aq, #2, ■■■,£*;, 2/i, 2/2> ••• j Vm) with 

the following properties. Involved in p' is an array symbol B  of arity k which does 

not appear on the left-hand side of an assignment instruction. We shall regard the 

array symbol B  as being ‘free’ in the sense that we shall set the values of its elements 

from without (and so B  will not be zeroed whenever execution of p' commences); and 

we shall only be interested in valuations of B  for which every element is either 0 or 

max. In this way, B  models a k-ary relation over the elements of the input structure. 

Furthermore, the program scheme p' is such that for every cr-structure A, for every
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k-tuple u and ra-tuple v over \A\ and for every array valuation val(A) modelling the 

k-ary relation R, as above,

(of course, (A, u, v) is the a'-structure obtained from A  by augmenting A  with the 

k +  m  constants (u, v)).

Suppose that the variables involved in the program scheme p' are those of the tuple 

w, and regard the additional constant symbols £2, • • •, xk now as variables. Consider 

the program scheme p over a" (the extension of a with m  additional constant symbols 

yi, y2, . . . ,  ym) built as follows, where A is another array symbol of arity k.

REPEAT DO

FORALL xi WITH B 1 DO copy A to B

FORALL x2 WITH B 2 DO

FORALL xk WITH B k DO

B[xu x2 , . . . , x k] := A[xu x 2 , . . . , x k\

OD

OD

OD

FORALL x\ WITH A 1 DO Iterate B, placing

FORALL x2 WITH A 2 DO result in A

((A, u, v), val(H)) J= f! if, and only if, ipA(u, v,R)

INPUT(w, x)

REPEAT DO

REPEAT DO

k nested repeat-do-od 

blocks

FORALL xk WITH A k DO
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w := 0

p'

IF w = m ax THEN

A[x\,X2, ■ ■ •, Xk] := max

FI

OD

OD

OD

OD

OD

OD

(w,x) := (max, m ax)

OUTPUT(w, x)

where p' has its input- and output- instructions stripped away. We claim that the 

program scheme p is such that for every cr-structure A  and for every m-tuple u over 

\A\, (*4, u) |= p and on termination, the array element A[z] encodes ^ ( u ,  z), the 

inductive fixed point of ̂ ( x ,  u, R). To see that this claim is true, note that p computes 

in a similar way to the program scheme for PATH-SYSTEM in Example 4.6. Each 

iteration of the innermost repeat-do-od block performs one iteration of the formula 

temporarily storing its result in the array A. Array A is then copied back over B  before 

execution resumes at the start of the loop. Because the arity of R  is k , this process 

must have reached a stable state after at most \A\k iterations of the loop.

Immerman [48] proved that every problem definable in inductive fixed-point logic 

can be defined by a sentence of the form

3z2 ... 3^IFP[Ax, R , ^(x, R)){zu z2, .. •, zk),
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where ip is first-order. A combination of the above construction and that of Theorem 

4.7 yields the required result. □

4.3 A More Formal Semantics

Having introduced the program schemes of RFDPS, let us now give a more formal 

description of a computation of a program scheme on some finite structure. This 

more formal description will be necessary when we come to prove some (very refined) 

limitations of our program schemes.

Let the program scheme p G RFDPS be over the signature cr, and involve the 

variables of {x\, x2, . . . ,  x^} and have h instructions. Let A  be a cr-structure of size n. 

An instantaneous description (ID) of p on A  is a tuple (V, A, / ,  R) consisting of:

• a tuple V which contains a value of \A\ for every variable of {aq, :r2, (with 

the components ordered in some canonical fashion);

• a tuple A which contains a value of \A\ for every array element of

{A[ui, w2, . . . ,  ua] : A is an array symbol in p, of arity a, and

ui ,u2, . . . , u a G \A\}

(with the components ordered in some canonical fashion);

• a number I  G {1,2,.. . ,  h}\ and

• if instruction /  of p is within the scope of r repeat-do-od blocks then an r-tuple 

R of numbers from the set {1,2,... ,  n}.

We can represent a computation of p on A  as a labelled acyclic digraph Q(pA), whose 

vertices are labelled with IDs of p on input A , built as follows. Start with two vertices 

q0 and qi, and an edge (qo, q\). Label the vertex q0 with the ID (V, A, I, R) = (0,0,1, e) 

(this represents the values of the variables and the array elements and the instruction
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about to be executed in the computation of p on input A  initially, where e denotes 

the empty tuple). If the second instruction is not a repeat-do instruction then label 

the vertex q\ with the ID (0,0, 2, e), otherwise label q\ with the ID (0,0,2, (1)) (this 

represents the values of the variables and the array elements and the instruction about 

to be executed after execution of the first instruction, the input instruction, of p on 

input *4). Now apply the following rules as many times as possible.

• If the instruction associated with (the ID labelling a) vertex q is an assignment 

instruction of the form r  := r ', where r  and r' are terms, then create a new 

vertex q' and include the edge (q,qr). Label the vertex q' with the same ID as 

that labelling vertex q except:

-  with the value of the term r  altered so that it is made equal to the value of 

the term r ' (where value means according to the ID labelling vertex q);

-  with the value of I  increased by 1; and

-  if the instruction whose number corresponds to the new value of I  is a 

repeat-do instruction then tag an extra component onto the tuple R  and 

give this component the value 1.

• If the instruction associated with vertex q is an if instruction, involving some test 

p, then create a new vertex q' and include the edge (q,q'). Label the vertex q' 

with the same ID as that labelling vertex q except:

-  with the value of I  increased by 1 if the test ip holds in A  when the values 

of any terms in p  are taken according to the ID labelling vertex q;

-  with the value of I  made equal to 1 plus the number of the fi instruction 

corresponding to the if instruction if the test p  does not hold; and

-  if the instruction whose number corresponds to the new value of I  is a 

repeat-do instruction then tag an extra component onto the tuple R  and 

give this component the value 1.
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• If the instruction associated with vertex q is a fi instruction then create a new 

vertex q1 and include the edge (q,q'). Label the vertex q' with the same ID as 

that labelling vertex q except:

— with the value of I  increased by 1; and

— if the instruction whose number corresponds to the new value of I  is a 

repeat-do instruction then tag an extra component onto the tuple R and 

give this component the value 1.

• If the instruction associated with vertex q is a repeat-do instruction then create 

a new vertex q' and include the edge (q,q'). Label the vertex q' with the same 

ID as that labelling vertex q except:

— with the value of I  increased by 1; and

— if the instruction whose number corresponds to the new value of I  is a 

repeat-do instruction then tag an extra component onto the tuple R and 

give this component the value 1.

• If the instruction associated with vertex q is a repeat-od instruction then create 

a new vertex q' and include the edge (q,q'). Label the vertex q' with the same 

ID as that labelling vertex q except:

— if the value of the final component of R is not equal to n then increase 

this value by 1 and set the value of I  to be the value of the corresponding 

repeat-do instruction; or

— if the value of the final component of R is equal to n then remove the final 

component from R and increase the value of I  by 1, unless the instruction 

whose number corresponds to the new value of I  is a repeat-do instruction 

when we do not remove this final component but simply reset it to 1.
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• If the instruction associated with vertex q is a forall-do instruction, for which 

the control variable is xp, then create n new vertices qo, q\ , . . . ,  qn-1 and include 

edges (q, q0), (q, <?i),. . . ,  (q, qn- 1)- Label the vertices of {q0 , 9i, • • •, qn- 1} with the 

same ID as that labelling vertex q except:

— with the values of xp (in V) in each of the IDs set at a unique value of |*4|;

— with the value of I  increased by 1; and

— if the instruction whose number corresponds to the new value of I  is a 

repeat-do instruction then tag an extra component onto the tuple R  and 

give this component the value 1.

• If the instruction associated with vertex q is a forall-od instruction of a forall- 

do-od block a , where the control variable corresponding to this instruction is xp, 

then find the (unique) first ancestor q" of q (working backwards up the already 

constructed acyclic digraph) for which the instruction associated with q" is the 

forall-do instruction corresponding to our forall-od instruction. Let Q be the set 

of leaves, i.e., vertices of out-degree 0, of the already constructed acyclic digraph 

that are descendants of q". If the instruction associated with every vertex of 

Q is our forall-od instruction then create a new vertex q' and include edges 

{(<7? Q1) '■ Q £ Q}- Label the vertex q' with the following ID.

— The value of V is the same as the value of V in the ID labelling vertex q" 

except if the values of the local variables of a in the IDs labelling the vertices 

of Q are all max then the value of xp is made equal to max; otherwise it is 

made equal to 0. If a  has no local variables then the value of xp is made 

equal to max.

— The values of the array elements of A are as they are in the ID labelling 

vertex q" except that if any of these array elements has a different value in 

any of the IDs labelling vertices of Q then the value of the array element
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in the ID labelling the vertex q' is the new value at this vertex of Q (note 

that because of our syntactic restrictions on forall-do-od blocks, all array 

elements in the ID labelling q' are well defined).

— The value of I  is increased by 1.

— The values of R  are the same as in the ID labelling vertex q", unless the

instruction whose number corresponds to the new value of I  is a repeat-do 

instruction, when we tag an extra component onto the tuple R  and give this 

component the value 1.

For any block a  appearing in p, there might be a number of connected subgraphs of 

G(pA ) corresponding to a  (where by ‘connected’ we mean with respect to the underlying 

undirected graph obtained from Q (pA) by replacing all directed edges with undirected 

ones): this is because the block a  might appear in the scope of a repeat-do-od block or 

a forall-do-od block. We call the subgraphs of G{pA) corresponding to these connected 

subgraphs images of a  in G{pA ), and we denote an image by Im ^ a )  (it is always clear 

as to which image of a  we are referring). Note that every image has a source, the 

unique vertex of in-degree 0, and a sink, the unique vertex of out-degree 0. Note also 

that the sink of one image will generally be the source of another image, and that the 

digraph G(pA ) is formed by gluing together images of blocks by identifying sources and 

sinks. The source of G(pA ) is the unique vertex of in-degree 0, and the sink of G{pA) 

is the unique vertex of out-degree 0. We can clearly talk of a child and a parent of a 

vertex of G{pA ) (indeed, we have already spoken of ancestors and descendants).

Let q be a vertex of G(pA ) and let r  be some term. We denote by q(r) the value

of the term r  in the ID labelling the vertex q (note that if r  is an array term then

we must instantiate the appropriate values for the index terms). The input structure 

A  is accepted by p if, and only if, the ID labelling the sink, s, of G(pA ) is such that 

s(xi) =  max, s(x2) =  max, ..., s(x^) = max.

A cut in G(pA ) is a set U of vertices such that the source of G{pA ) is in U and the
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vertices of U form a connected subgraph (in the above sense). A vertex q of Q(pA) \  U 

is a successor vertex of the cut U if there exists an edge from a vertex of U to q. A 

leaf of U is a vertex of U from which there is no edge to another vertex of U.

4.4 Some Limitations of our Program Schemes

We begin by proving some limitations on the actual values held by variables and array 

elements throughout a computation of a program scheme of RFDPS on some input 

structure.

Lem m a 4.9 Let p G RFDPS involve the variables x\, x2, . . . ,  Xk (and no others) and 

be over the signature a whose constant symbols are C\, C2, . . . ,  Cc, where c > 0. Let 

A  be some cr-structure and let q be some vertex of G(pA) for which the associated 

instruction I  is in the scope of forall-do-od blocks in p whose control variables are 

(without loss of generality) Xi, x 2, •. •, xm, for some m > 0.

(i) If I  is not a forall-do instruction then for every j  G {m 4- 1, m  +  2 , . . . ,  k},

q{xj) G {0, max, Cu C2l. •., Cc} U {q(xi),q(x2) , . . . ,  q(xm)};

and if I  is a forall-do instruction, with control variable xm, say, then for every 

j  G {m, m +  1, . . . ,  k},

q(xj) G {0, max, Cx, C2, • • •, Cc} U {q(xi), q(x2), • • •, q(xm- 1)}.

(ii) Let A be any array symbol, of arity a, say, and let (iii, u2, • • •, ua) G |^4|a. Then 

q(A[ui,u2, . . . ,  ua]) e {0, max, Ci,C2, . . . ,  Cc} U {uu u2, . . . ,  ua}.

P ro o f  We shall show that if the two conditions hold for all vertices in a cut of G(pA) 

then they hold for any successor vertex of this cut. As the statement trivially holds for 

the source of G(pA), the result will follow by induction. There are a number of cases, 

depending upon the type of the instruction associated with a leaf or leaves of our cut.
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Suppose that the instruction associated with a leaf q of our cut is a repeat-do 

instruction, a repeat-od instruction, an if instruction, a fi instruction or a forall-do 

instruction. Then (z) and (zz) trivially hold for any successor vertex of q in G(pA)- (Let 

us remark that if the instruction associated with a successor vertex of q is a forall-do 

instruction then we have another control variable to contend with. However, note that 

this control variable was not a control variable at q and so (z) still holds at a successor 

vertex of q . This remark applies throughout.)

Suppose that the instruction I  associated with a leaf q of our cut is an assignment 

instruction and let the successor vertex of q in G{pA) be q!.

• If I  is of the form Xi := r , for some variable or constant symbol r , then (z) and 

(zz) can easily be seen to hold for q' (note that z 0 {1,2, . . . ,  ra}).

• If I  is of the form B[t[,t '2, . . .  ,r^], for some array symbol B, of arity 6,

say, then q(B[r[,ri , . . . ,  T'b}) G {0, max, Cu C2, ■ ■ •, Cc} U {q(r[), q fa ), . . . ,  q ^ ) }  

and q(r-) G {0, max, Cu C2, • • •, Cc} U {tf(xi), q(x2), • • •, q(xm)}, for each;  G 

{1,2, . . . ,  b}. So, q'(xi) G {0,max,Ci,C2 , . . . , C c}\J{q(xi),q{x2) , . . . ,q ( x m)} and 

q(xj) = q'{xj), for each j  G {1, 2, . . . ,  m} (again, note that z ^  {1, 2 , . . . ,  m}). 

Hence, (z) and (zz) hold for q' .

• If I  is of the form A[ti, r2, . . . ,  ra] := r, where A is an array symbol, of arity a, 

say, and where r  is a variable or a constant symbol, then q'(A[ri,T2 , . . .  , r a]) G 

{0, max , Ci, C2, . . . ,  Cc} U {q(xx), q(x2) , . . . ,  ^(^m)} = {0, max, Cu C2, . . . ,  Cc} U 

{qr{xi), q'{x2), ■. ■, q'(xm)}. However, because I  is in the scope of forall-do-od 

blocks with control variables x\, x2, . . . ,  xm, we have that Xj G {ti, r2, . . . ,  r a}, for 

each j  G (1 ,2 , . . . ,  ra}. Hence, q'(A[Ti,r2, . . . ,  r j )  G {0, max, C1} C2, . . . ,  Cc} U

{^ (n ), q'(r2) , . . . ,  q'(ra)}, and (z) and (zz) hold for q'.

• If I  is of the form A[t\ , t2, . . . ,  ra] := B[t[,t2, . . . ,  r^], where A and B  are array 

symbols of arities a and b, then q'(A\r\, t 2, . . . ,  ra]) G {0, max, C1} C2, . . . ,  Cc} U
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{g(r{), ^(Tg),. . . ,  q(r'b)}. Also, we know that q(r}) G {0, raaz, C\,C2, . . . ,  Cc} U 

{^(^i)5 9(^2), • • •, for each j  G {1,2, . . . ,  6}. However, because I  is in the

scope of forall-do-od blocks with control variables x\, x2, . . . ,  xm: we have that 

Xj G {ri, r2, . . . ,  ra}, for each j  G {1,2, . . . ,  m}. Hence, as q(xj) = q'(xj), for each 

j  G {1,2, . . . ,  ra}, we have that (i) and (ii) hold for q'.

Let a  be a forall-do-od block, with control variable xm, say, and let Im^fa) be an 

image of a  in Q(pA) so that every vertex of In r^a) apart from the sink is in our cut. 

Denote the sink of Inr4^ )  by q' and the source by p. Consider q'(A[ui,u2, . . . ,  it0]), 

where A  is some array symbol of arity a, say, and ui ,u2, . . .  ,ua G |*4|. As (i) and (ii) 

hold for p and every parent of q1 in Im ^a), we have that (ii) also holds for q’. It is 

also the case that q'(xm) G {0, max} and q'(xj) = p(xj) G {0, max, C\, C2, . . . ,  Cc} U 

{p(xi),p(x2 ) 1 • • •, p(xm- 1)} =  {0, max, CUC2, . . . ,  Cc} U {q'(xi),q'(x2) , . . . ,  q'(xm^ 1)}, 

for each j  G {ra +  1, ra +  2 , . . . ,  &}. Hence, (i) holds for vertex q' .

The result follows by induction. □

Before proceeding to our main result, we make the following small diversion.

Recall from Chapter 2 that we denote d-variable infinitary logic by Let A

and B be cr-structures, for some <7, and let u G \A\e and v G \B\e, where 0 < e < d. If

{(p : p  G has free variables x \ , x 2, . . . ,  xe, A  [= p(ui, u2, . . . ,  ue)}

= {p  : p  G has free variables x u x2, . . . ,  x e, B |= p(vu v2, . . .  ,vc)}

then we write

(.4, ui, u2, . . . ,  ue) (5, ui, v2, . . . ,  ve).

There is a well-known game-theoretic characterisation of definability in based 

on the Ehrenfeucht-Frai'sse game described in Chapter 3.

The Barwise-Immerman-Poizat game (see [30]) for a problem £1 proceeds in the 

same manner as the traditional game, described in Definition 3.2, but with one change.
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Instead of using a fresh pebble on every move, Spoiler is instead free to move an already- 

placed pebble from one domain element of a structure to another domain element of 

the same structure. As before, Duplicator must respond by moving the other pebble 

of the pair. Potentially therefore, the game may have an infinite duration: Spoiler and 

Duplicator may shuffle pebbles around the structures without end.

In fact, if the game ends after a finite number of moves then Duplicator must 

lose. More precisely, if ever Duplicator’s turn ends with the mapping defined by the 

pebbled elements and constant symbols of the two structures failing to induce a partial 

isomorphism, then Spoiler wins. If each of Duplicator’s turns ends with the mapping 

inducing a partial isomorphism, then Duplicator wins. In this case however, the game 

must necessarily be of infinite length.

We say that Duplicator has a winning strategy for the Barwise-Immerman-Poizat 

game for Q if she has a strategy by which she can win every play of the game.

Theorem  4.10 Duplicator has a winning strategy in the Barwise-Immerman-Poizat 

game for Q if, and only if, Q is not definable in C%’ou.

This game can be generalised in the same way as the other variants described in 

Chapter 3. In particular, definability in can be characterised by a version of the 

game in which Spoiler is forced to begin the game by selecting d pairs of pebbles.

Furthermore, if a game is already underway, with d pairs of pebbles having been 

selected by Spoiler; with structures A  and 8  having been selected by Duplicator; and 

with 0 < e < d pairs of pebbles having already been placed (on domain elements 

ui, u2, . . . ,  ue of A  and v\, v2, . . . ,  ve of B respectively), and if Duplicator has a winning 

strategy for the remainder of the game, then we say that she wins the d-pebble game 

on (A, u) and (B,v). Theorem 4.10 can then be reformulated as follows.

Theorem 4.11 Let A  and 8  be two structures over the same signature and let u G 

\A\e and v 6  \8 \e, where 0 < e < d. The following are equivalent.
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(i) (A , ui, u2, . . . ,  ue) (B , vi, u2, . . . ,  ve).

(n) Duplicator wins the d-pebble game on (̂ 4, u) and (B, v).

We do not actually use the above characterisation result, only the notion of Duplicator 

winning the d-pebble game on (*4, u) and (B, v). However, it is useful for the reader

to know the logical significance of the Duplicator winning this game.

We now turn to our main result in this chapter (note that, by Theorem 4.11, we 

think of A  B in game-theoretic terms).

T heorem  4.12 Let p G RFDPS be over the signature a. and have depth of nesting 

d > 0. Let A  and B be a U {0, max {-structures of equal size such that O'4 /  maxA,

0 B 7̂  maxB and A  B. Then

A  |= p if, and only if, B \= p.

P ro o f Suppose that the variables involved in p are aq, x2, . . . ,  Xk and that the constant 

symbols of a are Ci, C2, . . . ,  Cc, where c > 0. Let a be any block of instructions 

appearing in p. Suppose that a is in the scope of forall-do-od blocks Pi, / h , . . . ,  0m 

with control variables Xi, x 2, . . . ,  x m, respectively, for some m > 0; and suppose further 

that block /3i+i is in the scope of block $ , for each i G {1,2, . . . , m  — 1).

Let In r^ a )  and Imfi(a) be images of a in G(pA) and Q(pB), respectively, and 

let sA and tA be the source and the sink of In r^a), and sB and tB the source and 

sink of Im^(o;). Write cons(^l) for {O'4, maxA, CA, CA, . . . ,  CA}, with cons(^) defined 

similarly.

We write A s =c Bs to denote that the following two conditions hold:

(i) (^4, s-4^ ! ) ,  sa (x2) , . . . ,  s-4^ ) )  (B, sB(xi), 5fi(a:2) , . . . ,  sfi(xm)); and

(m) for each i G {m + 1, m  +  2 , . . . ,  k}, one of the following is true:

-  s,/4(xi) =  sA(xj) and sB(xi) = sB(xj), for some j  G {1,2, . . . ,  m},
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or

— s"4^ )  =  CA and sB(xi) = CB, for some C G {0, max, C\, C2, . . . ,  Cc}.

Consider the forall-do-od blocks f t , f t , . . . ,  ftn- Note that if X{ is active in the 

array symbol A  in ft then Xj is active in (the same array symbol) A  in ft, for each 

j  G {1,2, . . . , z  — 1}; and if X{ is inactive in ft then xj is inactive in ft, for each 

j  G {z +  1, z +  2 , . . . ,  m }. In particular: either there exists a unique array symbol A so 

that Xi is active in A  in ft, for at least one z G {1,2, . . . ,  m}, when we say that A is the 

array symbol associated with a; or X{ is not active in ft, for each z G {1,2, . . . ,  m}, when 

we say that a  has no associated array symbol. (The intuition behind the notation is 

that the associated array symbol, if present, represents the unique array whose entries 

change during the execution of the ft. If no entries change, then we say that there is no 

associated array symbol, even though the ft all have their own control array symbols.)

Whenever a  has an associated array symbol, which we always take to be the array 

symbol A, of arity a, say, and /  G {1,2, . . . ,  m} is the maximal such element for which 

x j  is active in A in f t  then w.l.o.g. we assume that Xi is active in A  in ft at index z, 

for every z G {1 ,2 , . . . , / }  (throughout, /  always refers to this particular index if a has 

an associated array symbol).

Suppose that A s Bs. Let um+i, um+2, . . . , u d e \A\ and vm+i,vm+2, . . . ,  vd G

\B\ be such that

(A, s-4^ ) , . . . ,  sA(xm),uTn+1, . . . , u d) (B, sB(x 1) , . . . ,  sB(xm), vm+i, . . . , v d).

Define 7rs to be the natural map from cons(^4) U {s*4^ ) , . . . ,  sA(xm), um+i, . . . ,  ud} to 

cons(#) U {sB(xi) , . . . ,  sB(xm), vm+i , . . . ,  vd} (note that this map is well-defined and 

depends upon zzm+i,zzm+2, .. .  ,ud, but we have suppressed this fact in the notation). 

Suppose that

(with 7rs applied point-wise) whenever
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• B  is an array symbol, of arity b, say, and different from the associated array sym

bol of a, if there is one, and w £ (cons(w4) U {s4 (:ri),. . . ,  sA(xm), um+1, . . . ,  ud})b

or

• there is an associated array symbol A of a, B — A  and w £ (cons(*4) U 

( s4 (:ri),. . . ,  sA(xm), um+i , . . . ,  ud})a with Wi = sA(xi), for each i e {1 ,2 , . . . , / }

(note that, by Lemma 4.9, 7ts(s4 (J3[w])) is always well-defined). If the above holds for 

every um+u um+2, . . . , u d e \A \  and vm+1, vm+2j. . . ,  vd £ \B\ for which

(A, s^ fa i ) , . . . ,  sA(xm), um+1, . . . , u d) (B , sB(x i ) , . . . ,  sB(xm), vm+u . . . , v d)

then we say that sA and sB are array-consistent (note that the notion of array- 

consistency is symmetric).

We shall proceed by induction on the building process for the constituent blocks of 

p. The following will be our induction hypothesis: lFor all images ImA(a) and ImB(a), 

if A s =c°°“ Bs and s4 and sB are array-consistent then At =c°°“ Bt and tA and tB are 

array-consistent’.

Base Case The block a  is an assignment block and let Im4 (a) and Im^(o:) be such 

that A s =c°°* Bs and sA and sB are array-consistent.

Suppose that a  consists of an instruction of the form Xi := r, for some term r. If r  is 

a variable or a constant symbol then trivially At Bt. Hence, suppose that r  is

an array term of the form B[ti , t 2, . . . ,  rb\. Let tts be the natural map from cons (A) U 

{s4 (xi), s4 (^2), • • •, sA(xm)} to cons(B) U (sB(a:i), sB(x2) , . . . ,  sB{xm)}. As sA and sB 

are array consistent, we have that

7rs(s4 (B[s4 (ri), sa (t2) , . . . ,  s*4^ )]))

=  sB{B[7rs{sA{r1)), tts(sa {t2)), . . . ,  vrs(s4 (r6))]).

That is, 7Ts(tA(xi)) = irs(s4 (r)) =  sb (t ) = tB(xi), and so At Bt .
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Suppose that um+1, um+2, . . . ,  ud £ \A\ and vm+i,vm+2, . . . , v d e \B\ are such that:

(A, tA(xi ) , . . . ,  tA(xm), um+1, . . . ,  ud) (£, tB(xi ) , . . . ,  V i .  • • • >

and let 7rt be the natural map from cons(^4.) U {tA(xi ) , . . .  , tA(xm),urn+i , ... ,ud} to 

cons(B) U {tB(xi ) , . . . ,  tB(xm),vm+1, . . . ,  vd}. Rewriting, we obtain that

(A, sA(x!), . . . ,  sA(xm), um+1, . . . ,  ud) =£d°°“ (B, sB(x i ) , . . . ,  sB(xm), vm+u • • •, vd),

and let tts be the natural map from cons(^4) U {s'4(xi), . . . ,  sA(xm),um+1, . . . ,  ud} to 

cons(B) U (s s (j:i), . . . ,  sB(xm),vm+1, . . . ,  vd}. Note that ns and 7rt are identical. Also, 

no value of any array element changes in the transitions from sA to tA and from sB to 

tB. By assumption,

tt, ( s^(B [w ])) =  sb (S [tts(w )])

whenever

• B  is an array symbol, of arity 6, say, and different from the associated array sym

bol of a , if there is one, and w £ (cons(*A) U{s'4(xi) , . . . ,  sA(xm)ium+1, ...  ,ud})b

or

• there is an associated array symbol A of a, B = A and w £ (cons(A) U 

{ ^ ( z i ) , . . . ,  s ^ m ) ,  um+1, . . . ,  ud})a with Wi = sA(xi), for each i £ {1, 2, . . . ,  /} .

Thus

7rt(tA(B[ w])) =  tB{B[nt{w)})

whenever

• B  is an array symbol, of arity 6, say, and different from the associated array sym

bol of a, if there is one, and w £ (cons(*4) U . . . ,  tA(xm), um+u. . . ,  ud})a

or
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• there is an associated array symbol A of a, B  =  A and w G (cons(^4) U 

{tA(xi ) , . . .  i tA(xm)1um+1, . . .  ,ud})a with Wi =  tA(xi), for each i G {1,2, . . . , /}.

Hence, tA and tB are array-consistent.

Suppose that a  consists of an instruction of the form A[ti, r2, . . . ,  r j  := r, for some 

terms 7i, r2, . . . ,  ra, r , and where A is the associated array symbol of a, if a is in the 

scope of a forall-do-od block with an associated array symbol. As no variable value has 

changed in the transitions from s '4 to tA and from sB to tB, we have that At =c°°“ Bt- 

Let Ujji-i-i) • • • ? 'U'd C |*4| and vm-̂ 2 ) • • • ? ^d ^ j^| he such that.

(A, tA(x i ) , . . . ,  ^ ( x m), um+i , . . . ,  ud) (#, ^ ( x i ) , . ; vm+u . . . , v d),

and let 7rt be the natural map from cons(*4) U {tA(xi ) , . . . ,  tA(xm),um+1, . . . ,  ud} to 

cons(#) U {tB(xi ) , . . . ,  tB(xm), vm+i , . . . ,  Vd}- Rewriting, we obtain that

(A, S (Xi), . . . , S (^m)j ^m+l? • • • 5 ^d) — °°u; (^5  ̂ • • • j & ^m+1? • • • j ^d)j

and let 7rs be the natural map from cons(̂ 4) U {sv4(xi) , . . . ,  s'4(a:m), um+i, . . . ,  to 

cons(H) U (sB(a;i),. . . ,  sB(xm), vm+u • • ■, vd}. By assumption,

=  s b ( S [ tts ( w ) ] )

whenever

• B  is an array symbol, of arity 6, say, and different from the associated array sym

bol of a, if there is one, and w G (cons (.4.) . . . ,  sA(xm),um+1, . . . ,  Ud})b

or

• there is an associated array symbol A of a, B = A and w G (cons(.4) U 

(s^Ozi), • • •, sA(xrn),urn+i, • • •, ud})a with Wi = s-4^ ) ,  for each i G {1, 2, . . . ,  /} .

Hence,

■Kt(tA(B[w})) = tB(B[7T,(w)])

whenever
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• B  is an array symbol of arity 6, say, and different from the associated array symbol 

of a , if there is one, and w £ (cons(^4) U {tA(xi ) , . . . ,  tA(xm),um+1, . . . ,  Ud})b (as 

the value of neither jE?[w] nor B[irt(w)] changes between s4 and tA and between 

sB and respectively)

or

• there is an associated array symbol 4  of a, B  = A  and w  £ (cons(A) U 

{tA(xi ) , . . . ,  tA(xm),um+1 , . . . ,  ud})a with Wi = tA(xi), for each i £ {1, 2 ,. . . ,  /}  

(which holds as the value of tA(A[tA(Ti), tA(r2) , . . . ,  tA(ra)]) is sA(r) and the 

value of tB(A[tB(ri), £e (r2) , . . . ,  tB{ra)}) is sfi(r)).

Hence, tA and tB are array-consistent.

Thus, whatever the form of the assignment block a , we have that At Bt and 

tA and tB are array-consistent.

Case (i) Let a  be an active forall-do-od block of the form

FORALL xm+i WITH Ap DO forall-do instruction

ai block of instructions

0,2 block of instructions

ai block of instructions

OD forall-od instruction

where our induction hypothesis holds for the blocks ai,ct2 , . . .  ,&i. Let Im4 (o;) and 

ImB(a) be images of a  such that A s =£°°* Bs and s4 and sB are array-consistent. 

Note that A is the associated array symbol of a and that we may assume that Xi is 

active in A for ft at index i, for each i G {1, 2, . . . ,  m  + 1}.

Pick some um+1 £ |*A| and let sA+l be the child of sA in Q(pA) for which sA +1 = 

um+1 . Let vm+i £ \B\ be such that

(A, sA(xi), sa (x2), • • •, sA(xm), um+1) (H, sB(xi), sb (x2), . . . ,  sB(xm), vm+1)
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(at least one such vm+i exists since m < d) and let s^ +1 be the son of sB in G{pB) for 

which s^ +1 = vm+i. Rewriting, we obtain that

(A > Sm+1 ( * i ) >  ^m+1 ( ^ 2 ) , • -  • ,  ^m+1 (x m+1))

— °°w (5 , sm+1(a;i), sm+1(x2), . . . ,  sm+1(a^m+i))

and so A am+l =c^  BStn+1.

Let umjr2 i ^m+35 • • • 1 'U'd ^ \A\ ^nd vrn-\-2 ') ^m+3? • • • 5 ^d C \B\ be such that

(•^■5 Sm+1 (*^l) j • • • 5 Sm+ 1 ( ^ m + l ) )  um+2? • • • j u d)

= Cd°°w (#, S^+I(x 1) , . . . ,  S®+1(zm+i), vm+2t . . . , v d).

Rewriting, we obtain that

(A, sA(x1) , . . . ,  sA(xm), um+1, . . . , u d) =cd°°“ (B, sB(x 1) , . . . ,  sB(xm) , vm+1, . . . , v d), 

and the corresponding maps 7rSm+1 and tts are identical. By assumption,

tt̂ s^ B I w])) =  s0(R[7rs(w)])

whenever

• B  is an array symbol, of arity b, say, and different from A, and w  £ (cons(*4) U

. . . ,  sA(xm) ,urn+1, . . . ,  ud})b

or

• B  =  A  and w  £ (cons(^4) U {s^(a;i),. . . ,  sA(xm), itm+ i, . . . ,  ud} )a with Wi =  

sA(xi), for each i 6 {1 ,2 , . . . ,m}.

Note that the transitions from s '4 to sA+l and from sB to s^ +1 cause no array element 

to change value. Hence,

7r«m+ i ( s ^ + l ( - B W ) )  =  s m + l ( S k m+i ( w )] )

whenever
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• B  is an array symbol, of arity b, say, and different from A, and w G (cons(4) U

(xi ) , . . . , Sm+1 (^m+l)? um+2 i • • • i ud})

or

• B  = A  and w € (cons(.A) U {s^+1(xi), . . . ,  sA+1(xm+i), um+2, . . . ,  ud})a with

= sA(xi), for each i G {1,2, . . . ,  m  + 1}.

Hence, sA +1 and s^ +1 are array-consistent.

By the induction hypothesis applied to oq, q?2, . . . ,  ai, we have that Atm+1 =c°°“ 

Btm+1 and tA +1 and t ^ +l are array-consistent, where tA +1 (resp. t®+1) is the parent of 

tA (resp. tB) for which tA+1 (xm+1) = um+1 (resp. t ^ +1 (xm+i) =  vm+i).

We have just proved that for every ‘child process’ in the image Im ^ a ), there is a 

‘similar’ process in Im^(o;). Now we must show that the converse is true. Pick some 

vm+i G \B\ and let s^ +1 be the child of sB in G(pB) for which s^l+1(xm+1) = vm+i. Let 

wm+i £ \A\ be such that

(B, S (^l)j • • • 5 S (^m)j ^m+l) — °°u’ (Ay S (^l), • • • , S (^m)?

An identical argument to the above yields that B tm+1 =c A trn+1 and t^ +1 and tA +1 

are array-consistent (where the notation is as above). Consequently, either

• tA(xm+1) =  0 and tB(xm+1) =  0

or

• tA(xm+1) =  max and tB(xm+1) = max;

and so At =c°°“ Bt.

Let um+1, um+2, . . . ,  ud G \A\ and vm+i,vm+2, . . . ,  Vd G \B\ be such that

(.4, tA{x 1) , . . . ,  tA(xm),um+1, . . . , u d) (B, tB(x 1) , . . . ,  tB(xm),vm+1, . . . , v d),

with 7rt defined as usual.
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Case (i)(a) Let B  be an array symbol, of arity b, say, and different from A , and let 

w E (cons(^4) U {tA(xi ) , . . . ,  tA(xm), wm+1, . . . ,  ud})b. Rewriting, we obtain that

(A, SA{x i), . . . , SA(xm),Um+1, . . . , Ud) (B , S^Zi), . . . , SB{xm),Vm+U . . . ,Vd)

and, with tts defined as usual, irs is identical to irt. Consequently, by assumption,

7Ts ( s -4 ( B [ w ] ) )  =  SS (B[7Ts ( w ) ] ) .

Note that no transition from sA to tA and from sB to tB causes an array element of B  

to change value and so

TTt(tA(B[w])) =  tB(B[7T((w)]).

Case (i)(b) Let w E (cons(*4.) U {tA(xi), . . . ,  tA(xm), um+1, . . . ,  ud})a with Wi =  tA(xi),

for each i E {1,2, . . . ,  m}. Note that the value of A[w] at tA (resp. -A[7r*(w)] at tB) is 

identical to the value of A[w] at tA +1 (resp. A[irt(w)] at t ^ +l) where tA +1 (resp. t ^ +1) 

is the parent of tA (resp. tB) for which tA(xm+1) =  wm+1 (resp. tB(xm+1) = 7Tt(wm+i)).

Suppose that w E ( c o n s ^ U f ^ f z i ) , . . . ,  tA(xm), wm+i, um+u ., ud})a, for

some i E {m  + 1, m  +  2 , . . . ,  d}, where Ui means with the value of U{ removed. Then 

w E (cons(^l)U {^+1(xi), ' * 1 5 ^m+1 (^m+l)) um+li • - • ? ■ i ^d})a and also

i ’ Cn+1 (^m+l)j wm+lj • • • 3 ^3 • • • 3

=  00 w ($, tm+i(xi) , . . . ,  um+i , . . . ,  i)j,. . . ,  vd):

with 7rtrn+1 defined as usual. Note that either ntm+1 is a restriction of 7rt or identical to 

7rt. By assumption,

and so in any case

TTt(tA(A[w]))=t‘i (A[-Kt(w)}).

Consequently, we are left with the situation where
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• Ui /  Uj, for each i, j  E {m  +  l ,m  +  2, . . . ,  d}, i ^  j;

• Ui £  cons(*4) U {tA(xi), tA(x2) , . . . ,  tA(xm), wm+i}, for each i E {m + l,ra  +  

2 , . . . ,  d}\ and

• Wi is a component of w, for each i E {m + 1, m  +  2 , . . . ,  d}.

Suppose that the value of the array element A[w] is changed between and tA.

As w contains d — m  components that are pairwise distinct and different from every 

value of cons(^l) U {tA(xi), tA(x2), ■ ■ ■ :tA(xm),wm+i}, Lemma 4.9 implies that any 

change to the array element A[w] must be done via an instruction in the scope of 

m -\- I + (d ~  m) = d + 1 forall-do-od blocks. This yields a contradiction as p has 

depth of nesting d. Similarly, the value of the array element A[7rt(w)] does not change 

between sB and tB. Thus we have that

(A, s^Ori), .. •, sA(xm)Jum+1, . . . ,  ud) (B , tA(xi ) , . . . ,  tA{xm),vm+1, . . . ,  vd),

and with tts defined as usual, tts is identical to TTt. By assumption,

7Ts(s-4(yl[w])) =  SS (^[7rs(w)])

and so

TXt (tA {A[ w])) =  tB (A[lTt(w)]).

Thus, tA and tB are array-consistent.

In conclusion, we have that At =c°°u Bt and tA and tB are array-consistent.

Case (n) Let a  be an inactive forall-do-od block of the form

FORALL xm+i WITH Ap DO forall-do instruction

ai block of instructions

a.2 block of instructions

block of instructions
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OD forall-od instruction

where our induction hypothesis holds for the blocks oq, a2, . . . ,  on. Let lmA(a) and 

ImB(a) be images of a  such that A s =c%°“ Bs and s4 and sB are array-consistent. 

The proof of Case (z) can be applied when some /%, for i € { 1 , 2 , . . . ,  m} has an active 

control variable and also when no such $  has an active control variable.

Case (in) Let a  be a repeat-do-od block or an if-then-fi block. In both cases, immediate 

applications of the induction hypothesis yield the required result.

Consequently, we have that the induction hypothesis holds for every constituent 

block of p. Let sA and tA be the source and the sink of G(pA), with sA and tA the 

source and the sink of G(pB). Clearly, A s Bs and sA and sB are array-consistent. 

Hence, At = £°°w Bt and tA and tB are array-consistent, and our result follows. □

Let RFDPSd be those program schemes of RFDPS with depth of nesting at most d 

(and also the class of problems definable by such program schemes). Note that RFDPS^ 

is a logic (in Gurevich’s sense).

Corollary 4.13

RFDPSq C  RFDPSi C  . . .  C  RFDPSd c  RFDPSd+i C  ...

P roof Let a = (E,C,D),  where E  is a binary relation symbol and C and D are 

constant symbols. Hence, a a-structure can be thought of as a directed graph with two 

distinguished vertices. Fix d > 1. Define the a-structure Ad as follows. The vertices 

CAd and DAd are distinct vertices of in-degree 0 and out-degree d + 3 so that they have 

no neighbour in common (this constitutes all vertices and edges of Ad)- Define the 

cr-structure Ba as follows. The vertices CBd and DBd are distinct vertices of in-degree 0 

and out-degree d +  2 and d-f-4, respectively, so that they have no neighbour in common 

(this constitutes all vertices and edges of Bd).

Consider the following program scheme p of RFDPSd+i.
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IN P U T S , x2, . . x d+u y)

FORALL x\ DO 

FORALL x2 DO

FORALL X d + i  DO 

y := max

IF A x i /  x j  A f \ i { x i /  0 A X i  /  max) A E(C , x{) 

AE(C, 0) A E(C, max) THEN 

y := 0

FI

OD

OD

OD

IF X! =  0 THEN

(x,y) =  (max, max)

ELSE

(x,y) =  (0, 0)

FI

OUTPUT(a:i, x2, . . xd+1, y)

Clearly, A  is accepted by p but B  is not. By Theorem 4.12, the problem defined by p 

is not in RFDPS^. The result follows (as clearly RFDPS0 C RFDPSi). □

Note that the proof of Corollary 4.13 can be used to show that the problem consist

ing of all those digraphs for which every vertex has even out-degree is not in RFDPS.

Corollary 4.14 There are problems in PTIME which are not in RFDPS. □

Let (p be a formula of inductive fixed-point logic. The quantifier-rank q.r.(^) of <p 

is defined inductively as follows.
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• If (p is first-order quantifier-free then q.r.(y?) =  0.

• If ip is of the form —>-0 then q.r.(c/?) = q.r. (?/>).

• If <p is of the form ipi V or Vh A ^2 then q.r.(y>) =  max{q.r.(V>i), q .r .^ )} -

• If ip is of the form 3ip or Mijj then q.r.(y?) = 1 + q.r.(^).

• If (p is of the form IFP[Ax, R , -0(x, y, R)](z) then q.r.(<p) =  |x| 4- q.r.(^>).

Let IFPd be those formulae of inductive fixed-point logic with quantifier rank at most d 

(and also the class of problems definable by such sentences). The proof of Corollary 4.13 

suffices to prove the following.

Corollary 4.15

IFP0 C  IFPi C  . . .  C  IFPd C  IFPd+i C  . . .

The above corollary has not been studied before but, as pointed out by Martin 

Grohe in a personal communication, it follows quite easily from known results. The 

fragment IFP^ is contained in L ^ .  This implies that the problem consisting of all those 

structures over the empty signature having at least d +  1 elements is not expressible 

in IFPd; but it clearly is in IFP^+i (actually in FO^+i). We remark that our proof of 

Corollary 4.15 relies on no existing results from finite model theory (and not even on 

an understanding and appreciation of bounded-variable infinitary logic).

4.5 Conclusion

Whilst our concerns in this chapter have been the development of the class of program 

schemes RFDPS and an investigation of its refined structure, we feel that RFDPS will 

make a good stepping-off point in the quest for a logic for P T IM E , as we now explain. 

Throughout any computation by a program scheme of RFDPS, we construct arrays of 

values. It will be relatively straightforward to incorporate Lindstrom quantifiers (see



Chapter 4: Program Schemes with Forall Instructions 108

[30]) into the program schemes of RFDPS by extending if instructions so that the test 

can be an application of some Lindstrom quantifier to some arrays, the values of whose 

elements are either 0 or max (so that the arrays model relations as in the proof of 

Theorem 4.8). It will also be entirely natural to include variables of a different type. 

For instance, one might allow an additional universe {0,1, . . . ,  n — 1}, when the input to 

some program scheme is a structure of size n, with some appropriate numeric relations 

and a mechanism for ‘tying’ the two universes together; for example, an instruction x 

where x  has numeric type and ip is first-order, whose semantics are such that 

the number of values of y for which <p(y) holds is assigned to the variable x. We shall 

pursue such extensions in future work.

A natural question to consider is how the class of problems accepted by the program 

schemes of RFDPS (and any extensions that we might develop, as explained in the 

preceding paragraph) compares with those accepted by the programs of CPTime and 

by other models more prevalent in database theory. We have not so far considered 

this question: however, let us remark that the problem consisting of those digraphs 

for which every vertex has even out-degree is not accepted by any program scheme of 

RFDPS yet can be accepted by a program of [66].

Whereas we feel that it will be fruitful to extend the program schemes of RFDPS, 

as hinted above, and investigate the expressive power of any resulting class of program 

schemes, there are still questions to be asked of RFDPS. For example, as was the case 

for the program schemes NPS, NPSS and NPSA of [6, 70, 81], can the class of problems 

accepted by the program schemes of RFDPS be realized as a vectorised Lindstrom 

logic? Does this class of problems have a complete member (via some suitable logical 

translation)? Is this class of problems nothing other than an extension of inductive 

fixed-point logic?



Chapter 5

Generating New Tractable 

Problem s From Old

5.1 Introduction

In previous chapters, we have defined problems as sets of structures (over some signa

ture) which satisfy some logical formula or program scheme. We now turn our attention 

in a slightly different direction, and consider problems which can be defined as a con

straint satisfaction problem (CSP), in which the aim is to find an assignment to a given 

set of variables which satisfies one or more constraints. We refer the reader to Section 

2.3 for a more detailed definition of the constraint satisfaction problem, as well as for 

other definitions which we shall use throughout this chapter.

The constraint satisfaction problem is known to be NP-hard in general [60]. Fur

thermore, many combinatorial problems within N P can be naturally expressed as 

instances of a CSP [51]. However, by imposing conditions on the forms of constraints 

allowed (see, amongst others, [18, 28, 37, 55, 56, 58, 65, 85]) it is possible to obtain 

restricted versions of the problem which are tractable (that is, provably solvable in 

polynomial time).

Given that so many tractable classes have been identified, it is pertinent to ask

109
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whether they may be combined, to yield new, larger constraint classes which are still 

tractable. This question has been posed before [15], but whereas the authors of that 

paper considered the effect of combining tractable classes over some fixed domain, in 

the present chapter we generally consider the effect of combining two tractable classes 

from disjoint domains.

We focus in particular on the “multiple relational union” of two sets of constraint 

relations, defined in Section 5.2. We show that whenever both sets of relations are 

tractable, then their multiple relation union is a tractable set also. In addition, we 

show that its tractability cannot in general be deduced from previously known results 

about tractability. Using the results of [51] we then show that the multiple relational 

union is itself just one small subset of a much larger set of tractable relations, whose 

proof of tractability is much less obvious than that of the multiple relational union 

itself.

The results presented in this chapter are joint work with Peter Jeavons, at the 

University of Oxford, and David Cohen, at Royal Holloway, University of London.

5.2 Combining Sets of Relations 

5.2.1 M ultiple Relational Unions

D efin ition  5.1 Let Ti and T2 be sets of relations over the non-empty sets D\ and 

D 2 respectively. Then the multiple relational union of Ti and r2, denoted Ti I><1 r2, is 

defined to be the following set of relations over D\ U D2:

th r 2 := (i?i U R 2 : R\  E Ti, R 2 G T2 A arity(Ri) = arity(R2)}

Note that if | r 11 =  |T2| =  1, and the two relations have the same arity, then Ti ixi T2 

simply reduces to being the union of the two relations. In this case we shall sometimes 

write Ri m R 2 rather than R\  U R2. This is for the sake of clarity. Also, note that it is
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quite possible to have ixi r 2 =  0  even though /  0  and T2 0: it may be the case 

that no relation in I \  has the same arity as any relation in T2.

Operations similar to the multiple relational union have been considered before in 

the literature. The definition of the disjunction operation V of [15] for example, is such 

that whenever each Tj contains the empty relation of every arity, then

Ti v r2 = Ti M r2

X
One significant difference between the V and the m operators however, is that the 

former is only defined when D\ =  D2: that is, when the relations of 1  ̂ and T2 are 

defined over the same set. By contrast, in the present chapter we shall generally 

consider the case when D\ and D2 are disjoint sets. In particular, we shall show how 

this allows us to combine well-studied tractable sets of relations in order to generate 

previously unknown tractable sets. The following theorem is our main tool in this 

regard.

Theorem 5.2 Let Ti and T2 be two tractable sets of relations over the disjoint do

mains Di and D 2 respectively. Then Fi m T2 is also a tractable set of relations.

P roof Let V  be a problem instance of m r2 • The following algorithm decides 

whether V  is a yes-instance of the problem. The algorithm assumes that the hypergraph 

of constraint scopes is connected; if it is not then we may simply apply the algorithm 

over each connected component in turn.

First, determine whether or not there is an assignment to the variables of V  in 

which every variable takes a value from D\. This test is tractable since every relation 

R  E Ti M r 2 can be decomposed into the union of two relations Ri and R2 over 

the domains Di and D2 respectively, and the R 2 part simply “thrown away”. The 

tractability of the test then follows from the tractability of Ti. If there is such an 

assignment, then return True.



Chapter 5: Generating New Tractable Problems From Old 112

If there is no such assignment, then determine whether or not there is an assignment 

to the variables of V  in which every variable takes a value from Z)2. If there is, then 

return True. Otherwise, return False.

It is easy to see that this algorithm runs in polynomial time, and that if it returns 

True then V  is a yes-instance of C rx mt2- To show the converse, we must observe that 

in any satisfying assignment to the variables of V, if some variable v is assigned a value 

from Di (say), then all the variables from V  must be assigned values from D\. This 

follows immediately from the definition of the ixi operator, and the connectivity of the 

constraint hypergraph. □

Technically, the above proof relies on the implicit assumption that it is tractable 

to decompose a relation R  E Ti m T2 into its two component parts. The assumption 

is valid provided that we represent relations in such a way that every relation is the 

same size (to within a polynomial factor) as it would have been if it had been encoded 

in the natural way as a set of tuples.

Theorem 5.2 provides us with a method of combining two tractable sets of relations 

to produce another tractable set of relations but it is not, in and of itself, a particularly 

far-reaching result. The relations of Ti i>c] T2 are all easily decomposable into their 

constituent parts: there is no tuple in any relation which contains elements from both 

D\ and D2.

Example 5.3 The relation R  defined by

R  := {(2,3, 2,2,2),

<0 , 1, 2 , 0, 0),

(0,0,2 , 0,1),

(1, 0 , 2 , 0 , 0),

(2 , 2 , 2 , 3 , 3),

<1, 1 , 2 , 0 , 1)}
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cannot be shown to be tractable using previously known methods. That is, it is not 

closed under any operation which is known to guarantee tractability. Furthermore, 

there is no apparent hope of showing it to be tractable using Theorem 5.2, since the 

tuples of R  cannot be split apart into tuples over disjoint domains. We shall return to 

this example later, when we have learned how to apply the above tractability result to 

more general sets of relations.

There is a partial converse to Theorem 5.2, which states that if either or T2 is 

an NP-complete set of relations, then Tx [x] T2 is normally NP-complete also.

Proposition 5.4 Let be a relational clone over the domains Di, and suppose that 

Pol{Ti) contains no constant operations. Let T2 be any set of relations over some 

disjoint domain D2. Then whenever C r2 is NP-complete, C r lC«r2 ls NP-complete 

also.

Proof Since Pol{Yi) does not contain any constant operations, it follows that it 

contains no operations of arity 0, and hence that Ti contains the empty relation of 

every arity. Thus r 2 C Ti M r 2. □

(Of course, the proof does not make full use of the assumption that Ti is a relational 

clone; merely that it contains the empty relation of every arity. However, the most 

commonly encountered sets of relations which satisfy this property are the relational 

clones. Consequently, this is the form in which we state the proposition.)

As indicated above, Theorem 5.2 holds out the promise that we may be able to 

construct novel tractable sets of relations by taking the multiple relational union of 

two known tractable sets, Ti and T2, over disjoint domains. For this promise to be 

fulfilled however, it had better not be the case that Ti m T2 is tractable for previously 

known reasons. The remainder of this section is devoted to developing a theoretical 

framework which will allow us to prove that in many cases (though not all) one does 

indeed end up with a genuinely new tractable class.
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The tractability of a set of relations is intimately bound up with its polymorphisms 

(see the end of Section 2.4, as well as [51]). Consequently, to compare the tractable 

classes generated by the txi operation with the four classes given in [53], we need to be 

able to compute Pol(Ti m r2). The next example shows that the relationship between 

the sets Pol(Ti m I^), Pol(Ti), and Pol(I^) is not straightforward.

Example 5.5 Let D = {0,1} and D' = {2,3} be sets, and consider the following 

three binary relations over D, D, and D' respectively.

R, = {(0, 0), (0, 1)}

R 2 = {(0,0), (1,0)}

R! = {(2,3), (3,3)}

Of course, R\ and R 2 are permutations of each other, and so it follows immediately 

from Lemma 2.19 that Pol({Ri}) =  Pol({R2}). But consider (p : (D UD ')2 —> (DUD1) 

defined by the following table:

V 0 1 2 3

0 0 1 3 3

1 0 1 0 3

2 0 1 2 3

3 0 1 2 3

(so, for example, 1, 2) = 0, and so on).

It is easy to verify that cp G Pol(Ritk\ R') \  Pol(R2 ixi R f). In particular there

fore, knowledge of Pol({Ri}) and Pol({R'}) is not in itself sufficient to determine 

Pol{R\ Mi?'): more information is required.

Definition 5.6 Let D be a set, and fix k G N (note that k may be 0). A k-ary pattern 

on D is just a /;:-tuple of subsets of D.
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D efin ition  5.7 Let D  be a set, and let p be a k-ary pattern on D. For any total k-ary 

operation <p on Z), the restriction of ip to p , written ipp, is the partial operation defined 

so that

whenever each Xi G p[i], and which is undefined everywhere else. We say that the 

arguments of (pp must all be of pattern p.

Example 5.8 Consider the operation ip defined in Example 5.5. The partial opera

tions p>(d,d), <£<£>',£>)> and <P(d',d') are all simply projections onto their second argument; 

the partial operation p>(d,d') is defined by

3 otherwise.

Clearly, a k-ary operation is completely defined by giving its restriction to all pos

sible k-ary patterns. The next lemma goes further, and says that if we consider just

morphisms of Fi t>cF2 by putting together arbitrary partial closure operations: one for 

each possible pattern.

Lemma 5.9 Let Ti and r 2 be sets of relations over disjoint domains D\ and D2 re

spectively. Let p  : (D iU D 2)k —> (DiUD2) be some operation. Then ip G Pol(Ti txir2) 

if, and only if, Ti ixi T2 is closed under ipv for every p G {Zh, D2}k.

P roof We begin by proving the “if” direction. If Ti M T2 = 0 then the result is 

trivially true. Otherwise, pick an arbitrary relation R e  Tj M T2; we shall show that 

R  is closed under ip. Consider an arbitrary £-tuple (Zi, Z2, . . . ,  tk) of tuples from R. By 

definition, R = Ri UR2 for some relations Ri G Ti, R2 G T2. Thus, each ti comes either 

from R\ or from R 2. Define the pattern p G {Di,D2}k by:

ipp(x 1, x2, . . . ,  xk) =  ip(x 1, z2, . . . ,  x k)

0 if (x, y) = (1,2)

patterns from {D i,D 2}k (where D\ and D2 are disjoint) then we can build all poly-

p[i\ :
D\ if t{ G R \ ; 

D2 i i u e R 2.
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Then by assumption, pp(ti, t2, • • •, tk) is defined and equal to some tuple t G R. Thus 

p(t\, £2, . . . ,  t*;) =  t G P, and we are done. The proof of the converse is trivial: any set 

T of relations is closed under all partial versions of each of its polymorphisms. □

D efin ition  5.10 Let Ti and T2 be sets of relations over the disjoint domains D\ and 

D 2 respectively. Fix k G N, and let p be a pattern of arity k. Then we define the 

restriction of Pol{Ti txi r 2) to p to be the set of partial operations given by:

Pol(Ti [xi r 2)p := {(pp : p  G Pol{T 1 ex T2) A p has arity k}

An immediate consequence of Lemma 5.9 is that if pp is a partial closure operation 

on Ti [x] r 2 which is defined for all tuples of pattern p (where p G {Di, D2}fc), then pp 

can be extended to a total closure operation. This follows because Pol{T\ cx T2) always 

contains at least one function of every arity: in particular, it contains every projection.

Lemma 5.9 thus tells us that Po/(FiCxr2) is precisely characterised by the set 

{Po/(ri cxi r 2)p : p G {D i,D 2}*} of restrictions of P o /(r itx ]r2) to each possible 

“natural” pattern of each possible arity. It is therefore reasonable to ask how each 

set P ol(rl ^ r 2)p depends upon Pol(Ti) and Po/(r2), since this will tell us how 

Pol(Ti tx ir2) itself depends on and Po/(r2). Proposition 5.13 will show that

for each p G {Ph,D 2}*, there are certain partial operations which we can always ex

pect to be present in Pol{Ti 1x 1 T2)p. Before we can state and prove this result precisely 

however, we first need the following definition.

D efinition 5.11 Let D be a set, and let be a set of operations over D, where each 

operation 'ip G ^  is a total operation tp : D^ —> D^ for some i and D^ C D.

We say that a total operation p  : Dk —> D is synthesisable from if the following 

conditions both hold.

• There is some \k' C \I> such that |J{^V : ^  and

• For every p = with each ^  G (not necessarily all dis

tinct), there is some set which occurs at positions u i,u 2, . . .  ,u r of p, and
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some r-ary operation i p G \k', such that i p : D J, —> D ^ and the following identity 

holds:

p p ( x  i, x 2, . . . ,  x k ) =  i p ( x Ul , x U2, . . . , x Ur)

That is, pp ignores all of its arguments, except for some subset which all lie in

and on these it behaves exactly like ip.

The set of all operations which are synthesisable from will be denoted Syn(\k).

Note that any total operation p  is synthesisable from {p}. In addition, if p G

Syn($>) for some <I>, then p  G Syn($') for each <£' D <L.

Example 5.12 Suppose that D = {0 ,1,2,3}, that consists precisely of the pro

jections of every arity > 0 on the domain {0,1}, and that \k2 consists precisely of 

the negations of the projections of every arity > 0 on the domain {2,3}. That is, 

\ki contains operations such as ip(x,y,z) = y , where x ,y ,z  G {0 ,1}; and contains 

operations such as ip{x, y, z) =  5 — z, where x, y G {2,3}.

If =  \kiU\l/2 then the restriction of any ft-ary operation p  G Syn(ty) to a pattern p 

from {{0,1}, {2, 3}}fc will be such that pp will depend on exactly one of its arguments: 

Xi, say, and furthermore:

We are now in a position to state the following proposition.

Proposition 5.13 Let I \  and T2 be sets of relations over the disjoint domains Di and 

D 2 respectively. Then

Xi if p[i] =  {0,1}

5 -  Xi if p[i\ = {2,3}.

Syn(Pol(Fi) U Pol(T2)) C Pol(Fi [xi T2). 

Proof Fix any p  G Syn(Pol{F\) U Pol(f 2)), of arity k.
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By Lemma 5.9, it is enough to show that for every p G {D \,D 2}k, it is the case 

that Ti ixi r 2 is closed under pp. So fix p. Without loss of generality, there exists some 

ip G Pol(Ti) of arity r with the property that

i fp ( x  1 , Z2, • • • , Xfc) =  , Xu2, - - - , X u r )

where the U{ are those values, in ascending order, for which p[m] =  D$ = D\. (The 

case where ip G P o /(r2) is entirely similar.)

Now, take any R  G Ti txi r 2, and suppose that R  is the union of Ri G Ti and 

R2 £ r 2. We shall show that R  is closed under pp. Consider a A:-tuple (ti, t2, of

tuples from R  with the property that for each i, ti comes from relation Ri if p[i] =  Di, 

and from R 2 otherwise. (By the definition of closure, these are the only tuples which 

we need to consider.) Then

Cf p  ( t l ,  t 2  j  • • • ) t k  )  V *  ( j ' U l  5 ^1 1 2  1 • • • J t u r  )

= t

for some t where, since Ri is closed under ^  t G i?i. But Ri C  R, so t G R , and hence 

i? is closed under (pp.

Example 5.14 To continue Example 5.12, observe that the domains {0,1} and {2,3} 

of and 'L2 respectively are disjoint. Consequently, all of the operations described in 

that example are contained within Pol(Ti m T2).

Example 5.15 Let r \  and T2 be sets of relations over the disjoint domains D\ and 

D2 respectively, and suppose that every relation in I \  contains the constant tuple 

(d, d , . . . ,  d) for some fixed d G D\. Then for every 0 < a it is the case that Pol(Ti) 

contains the constant-d function on D\ of arity a.

Now, given any arity k > 0, define p : (D\ U D2)k —> (Di U D2) to be the 

constant-d function of arity k. Then by the above comment, it is easy to see that 

ip G Syn(Pol(Ti) U Po/(T2)), for we may always take the 'ip required by the definition 

of synthesis to be a member of Pol(Fi). Hence, by Proposition 5.13, p  G Pol(Ti M T2).
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Of course, this could have been immediately deduced from the definition of the i x i  

operator -  all relations in Ti M T2 must by definition contain a constant-d tuple. The 

point of the example is that because we allow operations of arity 0, the result falls 

cleanly out of Proposition 5.13. This observation will simplify several proofs below 

which would otherwise have had to deal with constant functions as a special case.

5.2.2 R estricting the Possible Polymorphisms

Proposition 5.13 is a positive result: it tells us that no matter which sets Ti and r 2 of 

relations we begin with, we can always guarantee the existence of certain operations 

in Pol(Ti i x i  r 2). In this section we turn our attention in the other direction, and 

examine how placing restrictions on the allowable Ti restricts the polymorphisms of 

their multiple relational union. The motivation for doing this is provided by Example 

5.5. That example shows that the containment demonstrated in Proposition 5.13 is 

not, in general, an equality. By restricting the polymorphisms of the multiple relation 

union of two sets of operations however, we will be able to give a sufficient condition 

to ensure that equality does hold in many important cases.

D efinition 5.16 Let T be a set of relations over the domain D, and let p be some 

/c-ary pattern on D. For any a-ary relation R  £ T, we define the /^-induced graph of 

pattern p to be the undirected graph GP(R) constructed in the following way:

• The vertices of GP{R) are all those elements of Dk which are of pattern p ; i.e., 

the vertices are elements of p[ 1] x p[2] x ... x p[k\.

• There is an edge between vertices u and v if, and only if, there is a sequence

ri, r 2, . . . ,  Tk of tuples from R  (not necessarily distinct), and some c, d with 1 <

c, d < a such that for each i < k, r*[c] = u[i] and r*[d] =  v[i}.

Example 5.17 Consider again the relation R  from Example 5.3. If we take p =

({0,1}, {0,1, 2}, {1,3}) then GP(R) contains twelve vertices, viz: (0,0,1), (0,0,3),
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(0,1,1), . . . ,  (1,2,3). There is an edge between vertices (1,2,1) and (0,2,1) (say) 

because we may take r l5r2, r 3 to be the fourth, fifth, and sixth rows respectively of 

R, along with c = 1 and d = 2. Similarly, if we take r i , r 2, r 3 to be the third, third, 

and sixth rows of R, and take c = 1 and d = 5, then we obtain that there is an edge 

between (0,0,1) and (1,1,1). On the other hand, there is no edge between (0,0,1) 

and (0, 0, 3) for there is no row of R  which contains both a 1 and a 3.

We shall primarily be interested in the question of whether or not GP(R) is con

nected. The reason for this is given by the following proposition.

P ro p o sitio n  5.18 Let Ti and T2 be sets of relations over disjoint domains D\ and 

D2 respectively. Fix k , and let p G {D\, D2}k. If there is some R  G Ti M T2 such that 

GP(R) is a connected graph, then for every pp G Pol(Ti txi T2)p it is the case that either 

range(ipp) C D\ or range((pp) C D2.

P ro o f Choose any cpp G Pol(Ti m r 2) . Since R  G r iM r 2, it must be that R  is closed 

under <pp. Now, choose any /c-tuple t over (D\ U D2) which has pattern p. Of course, t 

is one of the vertices of GP(R). Let t' be any A;-tuple to which t is directly connected. 

Then by the definition of the graph, there are tuples (7*1, r2, . . . ,  r*) from i?, and some 

c and d such that t[i\ = rjc] and t'[i\ =  for every i. Now, pp(ri, r2, . . . ,  r^) is 

well defined (since for each i, (ri[z], r2[z],. . . ,  r*[z]) is of pattern p), and hence equal to 

some r G R. Of course, r consists either entirely of elements from D\ or else entirely of 

elements from D2. But <pp(t) = r[c] and pp(t') = r[d], so in particular, ipp(t) and pp(t') 

are either both elements of D\ or else are both elements of D2. A simple transitivity 

argument therefore allows us to conclude that for any &-tuple s (of pattern p) which 

can be reached from t in GP(R), it is the case that pp(s) lies in the same domain as 

<pp{t). Since the graph is connected, all such vertices may be reached, and the result 

follows. □

Proposition 5.18 places some severe restrictions on the variety of functions which 

may be found within Pol(Yi m f 2) , but it is rather unwieldy to use: the condition of
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connectivity of GP(R) is not always an easy one to check. We now define the “star 

property” of relations, a very simple condition which will allow us to state a much 

more usable sufficient condition to ensure the connectivity of GP(R).

D efinition 5.19 Let R  be a relation of arity a over some domain D. Assume without 

loss of generality that D = {1 ,2 ,.. .  ,\D\}. R  is said to have the (c, d)-star property, 

for c,d < a, if there exist tuples r l5 r2, . . . ,  r\o\ G R , along with « e D ,  such that for 

each i < \D\, r^[c] =  u and Ti[d\ =  z.

E xam ple 5.20 If D =  {1, 2, 3} then the relation R defined by

R :=  {<1,1,1), (2,3,1), (3,1,2), (1,2,1)}

has the (3,2)-star property, since on taking u = 1 we find that tuples r\ = (1,1,1), 

r2 =  (1, 2,1), and r$ =  (2, 3,1) have the desired property.

L em m a 5.21 Let r \  and V2 be sets of relations over disjoint domains D i and D2 

respectively. Suppose that there is some Ri G Ti and R2 G r 2, along with c, d G N so 

that Ri and R 2 are both of the same arity, a, and both have the (c, d)-star property. 

Then there is an R  G Ti ixi T2 such that for any pattern p € {D i,D 2}k, GP(R) is 

connected.

P ro o f  Assume without loss of generality that D\ =  {1, 2 , . . . ,  |Lh|} and that D2 = 

{|Di| +  1, |Di| +  2 , . . . ,  |Di| +  |D2|}. Fix k: and let p e {D i,D 2}k. Since Ri (resp. 

R 2) has the (c, rf)-star property, there are r 1} r2, ..., r\Dl \ G Ri (resp. r\Dl\+i, r\Dl\+2,

• • |̂Di|+|z?2| ^ ^ 2), along with U\ G D\ (resp. u2 G D2) so that the conditions of 

Definition 5.19 are fulfilled in each case. That is:

• For every z, Ti[d\ =  z;

• for every z G |D i|,ri[c\ = u\\ and

• for every z G |D2|, r*[c] = u2.
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Define R  = R\ U R 2, and define the ft-tuple t by setting

u\ if p[i\ = Di

u2 if p[i\ = D2

for each i < k. Clearly, t has pattern p , and is thus one of the vertices of GP(R). Let 

t' be any other vertex of GP(R). We will show that t and t' are connected by an edge.

Intuitively, we show that GP(R) contains as a subgraph the star graph whose central 

vertex is t.

So choose such a t1, and consider the sequence si, s2, . . . ,  s* of tuples from R  defined 

for every i < k by

Therefore, the tuples si, s2j. . . ,  Sk are witnesses to the existence of an edge between 

vertices t and t' in GP(R). So GP(R) is connected (indeed, has diameter at most 2). □

Corollary 5.22 Let Ti and I  ̂ be sets of relations over disjoint domains Di and D2 

respectively. Suppose that there is some Ri e Ti and R 2 G r2, along with c, d G N 

so that R\ and R2 are both of the same arity, and both have the (c, d)-star property. 

Then for every (pp G Pol(T\ >3r2)p of arity k (with p G {D i,D 2}k) it is the case that 

either range((pp) C D\ or range((pp) C D2.

Proof Immediate from Proposition 5.18 and Lemma 5.21. □

Then for every i < k, it is the case both that Sj[d] = =  t'[i\ and

Si[c] =  rt'in[c\

u\ if t’[i\ G \Di

u2 if t'[i] G | D2

U\ if p[i] = D\

u2 if p[i\ = D2

*[*]•
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Exam ple 5.23 Let us turn our attention once again to the relations Ri, R 2 , and R! 

of Example 5.5. Observe that whilst each of these relations has the (c, d)-star property 

for some c and d, R\ has the (l,2)-star property, whereas R 2 and R! each have the 

(2, l)-star property. Thus Corollary 5.22 tells us that every ip G Pol(R2 ^ R ! )  of 

arity k must be such that for any pattern p G {D ,D '}k, either range(ipp) C D or 

range(ipp) C D ' . However, if we examine the operation ip defined in the example, we 

notice that range(p^D,D>)) = {0,3}. Thus, ip cannot be a member of Pol(R2 tk R'). 

This is what we had discovered by hand.

The next step we take towards restricting the possible polymorphisms of r \  tx)r2 is 

motivated by the following example.

Example 5.24 Consider Ri over the domain D\ = {0,1} and R2 over the domain 

D2 =  {2, 3} defined by

Ri := {(0,1), (1,1)}, and 

R2 := {(2,3), (3,3)}.

It is easy to see that Ri and R 2 both have the (2, l)-star property, and so the range of 

any polymorphism of R\ when its arguments are restricted to having a specific

pattern, is a subset either of {0 , 1} or of {2,3}. Consider one such polymorphism, cp, 

defined on pattern ( p 2,D\) by

y?(D2,z?1)(2 ,0) =  0

<̂(£>2,£>i)(3>0) = 1 

1) =  1 

<P<£>2,01>(3, 1) =  1

Such a ip exists by Lemma 5.9. Note that <P(d2,Di) depends on both of its arguments: 

(̂£>2,£>i)(2, 1 ) 7̂  <£(l>2,£>i)(2> 0 ) /  <£(£>2,.Di)(3> 0 )- From this, we can immediately conclude 

that cp £ Syn(Pol(Ri) U Pol(R2)). For if it were, then the restriction of p to any
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pattern p G {D\, D2}2 could depend only on those of its arguments which came from 

the same domain as did range(ipp). In particular, <P{d2,D\) could depend only on its 

second argument.

The following definition and lemma will give a condition which will enable us to 

assert that the polymorphisms of Ti m T2 are precisely those operations contained 

within Syn(Pol(Fi) U Pol(r 2)).

Definition 5.25 Let D be a domain. Then the equality relation of arity a on D is 

defined to be the relation

= a := { (x ,x , . . . ,x )  : x G D} 

where the number of occurrences of x in each tuple is a.

Lemma 5.26 Let T i and F2 be sets of relations over the disjoint domains D\ and D2 

respectively. Suppose that there is a G N such that each Tj contains the relation 

and suppose further that there is some R  G Ti also of arity a, with the property 

that GP(R) is connected for every pattern p G {Di,D2}k of every arity. Fix some such 

p. Then for every ip G Pol(Y\ ixi r2), it is the case that tpp depends only on those of its 

arguments which come from the same domain as does range((pp).

Proof Suppose without loss of generality that range(ipp) C f i j .  If \D2\ =  1 then there 

is nothing to prove: pp cannot depend on those of its arguments which come from D2, 

since these arguments cannot vary. So assume that \D2\ > 2, and let ui ,u2, ■ ■ ■ ,us be 

those indexes (in ascending order) such that p[uj\ — D2.

Now R = Ri U R 2, where Ri G and R2 G r 2. Define R' G Ti txi T2 by R! := 

(—f 1) GR2. By definition, R! is closed under ipp. Also, G'(d2,o2,...,d2)(^ /) ls a connected 

graph, where the number of occurrences of D2 in that expression is s.

Let t i , t 2 G (Di U D2)k be tuples of pattern p with the properties that:

(i) whenever p[i\ = it is the case that ti[i] = t2[i]; and
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(ii) there is an edge in G(D2iD2̂__yD2)(Rr) between (ti[ui\, ti[u2],.. .  T iM )  and 

(t2[ui]:t2[u2\i . . . , t2[us}).

We now show that <pp(ti) = (pp(t2), whereupon the connectivity of G(d2,d2,...,d2){R') 

will mean that we are done (for we will have shown that varying those arguments of 

(pp which come from D2 does not change the value of <pp{ti)).

The second of the properties above implies that there exist tuples rUl,rU2, ... ,rUs 

from R , along with c, d E N with the property that for each i < s, rUi[c] = t\[uj\ and 

rUi[d] = t2[ui]

Define the sequence iq, v2, . . u* of tuples from R  by:

Given this definition, it is not hard to see that (?q[c], u2[c],. . . ,  u*[c]) = ti, and that 

(vi[d\, v2[d],. . . ,  Vk[d}) = t2. Now, (pp(v\, v2, . . . ,  v^) is defined, and by assumption is 

equal to some r E = ? 1- But by the definition of equality, r[c] =  r[d], and hence

D2 respectively. Suppose that there is some a E N such that each T* contains the 

relation and suppose further that there is some R  E Ti t><3 r 2, also of arity a, with 

the property that GP(R) is connected for every pattern p E {Di, D2}*. Then

P roof That the synthesisable operations are in follows immediately

from Proposition 5.13. It is the converse that we prove here. In particular, we will 

show that the converse holds when we take in the definition of synthesis to be the 

whole of PoZ(ri) U PoZ(r2).
Clearly, every operation from is total (on its own domain), and the union of all

the domains of the operations in is D\ U D2, as required.

if p[i\ =  D2

<Pp{ti) — ^ ( ^ 2), as required. □

Corollary 5.27 Let r  1 and T2 be sets of relations over the disjoint domains D\ and

PoZ(ri ^ r2) = Syn(Pol{TJ U PoZ(r2)).
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Now for any k, {D^ : ip G ^ ' } k is just {.Di,.D2}fc. So choose some p  G Pol(Ti ixir2) 

of arity k, and let p be some pattern from {Di, D2}k. Assume without loss of generality 

that range((pp) C D\. Let iti, u2, . . . ,  ur be those values, in ascending order, for which 

p[ui] = Di, and consider any r-ary operation p' over Di, which has been obtained 

from p p by arbitrarily fixing those of its arguments which come from D2. Since every 

relation in Ti m T2 is closed under pp, it is clear that every relation in I \  is closed 

under p'\ that is, that p' G Pol(Ti) C ty'. Now, by Lemma 5.26, the same operation 

p' results regardless of how the arguments from D2 are fixed. Thus,

P p  { % 1 5 ^ 2  j • • • j % k )  { x U l  i  % U 2  • > • • •  ■•) % u T  )  •

Since this holds for any pattern p , it follows that p G Syn(Pol(Ti) U Pol(T2)). □

The following corollary is immediate from Lemma 5.21.

Corollary 5.28 Let r \  and T2 be sets of relations over the disjoint domains D\ and 

D2 respectively. Suppose that there is some R\ G Ti and R2 G T2, with R\ and R2 both 

being of arity a, and each having the (c, d)-star property for some c and d. Suppose 

too that each Tj contains the relation Then

Pol(T1 m  r2) =  SyniPoHTx) U Pol{r2)).

Corollary 5.29 Let Ti and T2 be relational clones over the disjoint domains D\ and 

D2 respectively. Then

Syn(Pol{r x) U Pol(r2)) = Pol{rl i x i r 2).

P roof Fix a — 2. Then the two relations and D\ x D\ must both be present in

Ti, since it is easy to see that adding them to any set of relations over D\ does not

change the polymorphisms of that set of relations. Similarly, the two relations 2 

and D2 x D2 must both be present in T2. Now, D\ x Tfi and D2 x D2 both have the 

(1, 2)-star property. The result follows from Corollary 5.28. □
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5.3 Combining Tractable Sets of Relations

5.3.1 G enerating Novel Tractable Classes

We are now in a position to determine whether or not the multiple relational union 

operator is capable of generating genuinely novel tractable classes. The following propo

sition shows that the classes it generates are not always novel.

Proposition 5.30 Let Ti and T2 be sets of relations over the disjoint domains Di and 

D2 respectively. Then the following statements all hold.

1. If Ti is closed under a constant function <p, then I \  m  T2 is closed under that 

constant function.

2. If Ti and T2 are closed under ACI operations pi and p 2 respectively, then Tiixir2 

is closed under an ACI operation.

3. If IT and T2 are closed under majority operations p\ and p2 respectively, then 

Ti t>cr2 is closed under a majority operation.

P roof 1. We may assume without loss of generality that p  is an operation of arity

0. Then Proposition 5.13 tells us that tp§ is a member of Pol(Ti txi r 2)^ . Since 

(Pq = if, it follows that Ti txi T2 is closed under p.

2. Define the binary operation ip by:

^ P{x,y)

P i { x , y )  i fp = (D i ,D i)  

x if p = ( D u D2)

y  if p = ( D 2,D 1)

(p2(x,y) i fp = ( D 2,D 2)

Since ip is built from pi, ip2, and various projections, Proposition 5.13 tells us 

that ip G Pol(Yi tx] r2). It remains to show that ip is an ACI operation, ip is 

clearly idempotent, because each ipi is. That ip(x,y) =  ip(y,x) follows from the
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commutativity of each ifi (if x and y come from the same domain) and from the 

symmetry of the rest of the definition (if not). That ip(ip{x, y), z) = ip(x, 'ipfy, z )) 

is a little less obvious, but can be demonstrated by performing a case analysis on 

the possible domains of x, y , and 2:

X y z ip(ip(x,y),z) ip{x,ip(y,z))

A A A <pi(x ,<pi(y,z ))

A Di A ix , y) M x , y )

A A A (pi{x,z) <pi(x >z )

A A A X X

A A A <pi(y,z) <Pi ( y , z )

A Di A y y

A A A z z

A A A (p2(v2(x ,y)>z ) <p2(x,<p2(y,z))

ipp(x,y ,z) := <

Since <£>1 and (p2 are associative, the table shows that the whole of ip is associative 

also.

3. Define the ternary operation ip by:

Wi (x,y,z)  if p = (A, A, A)

x if p = (A, A, D2) or (A, A, A)
y iip  = (A, A, A) or (A, A, A)

2 if p  = (A, A, A) or (A, A, A)
cp2(x, y, z) if p = (A, A, A)

Once again, Proposition 5.13 guarantees that ip G Pol(Ti m T 2); we must show 

that ip is a majority operation. Consider ip(x,y,z). If x, y , and z all come 

from the same domain, then the result follows from the fact that (pi and <p2 are 

majority operations. Suppose not, and suppose that (say) x and 2 are equal. 

Then x and z must clearly come from the same domain, and (by assumption)
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that must be a different domain from y. Thus, by definition, y, z) = z. All 

other cases are similar.

□

Note that the analogous result to Proposition 5.30 fails to hold when we turn our 

attention to affine operations. That is, if Ti and T2 are both closed under an affine 

operation then the same is not in general true of Ti This is because any relation 

R  which is closed under an affine operation defined via some Abelian group G , must 

be such that \G\ is an exact multiple of \R\. But \Ri U R2\ is not, in general, a divisor 

of|G |.

Proposition 5.31 Suppose that Ti and 1̂  are relational clones over the disjoint do

mains Di  and D 2 respectively. Let <£ be some property of operations which can be 

defined by identities, and suppose that there is no ip G Pol(Ti) which has the property 

$. Then there is no non-constant p  G Pol(Ti tk T 2) which has property $.

P roof Let <p G Pol(T i t h r 2) be a non-constant operation. Since Ti and I^ are 

relational clones, we can deduce from Corollary 5.29 that (p G SyniPolfix)  U Pol(T2)). 

Now, p  has a strictly positive arity, and so the restriction of p  to the domain D\  is a 

member of Pol(Y i), and thus does not have property <E>. Since $ is defined by identities, 

it follows a fortiori that p  itself does not have property $. □

Corollary 5.32 Suppose that Ti and T2 are relational clones over the disjoint domains 

Di  and D 2 respectively, and that Pol(Ti) contains no binary ACI operations (resp. no 

majority operations, resp. no affine operations). Then Pol(Ti cx]r2) contains no such 

operations either.

P roof Follows immediately from Proposition 5.31 and the fact that constant opera

tions are never binary ACI (resp. majority, resp. affine) operations on domains of size 

two or more. □
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Recall that four different classes of tractable sets of relations were defined in [53]. 

Of these, one consists of those sets of relations which are closed under a constant 

operation, and is therefore relatively uninteresting. The immediate consequence of 

Corollary 5.32 however, is that if I \  and r 2 are maximal tractable sets of relations 

from two of the other three classes, then I \  m T2 is a tractable set of relations which 

doesn’t fall into any of the classes from [53].

We can go further however, and observe that since all known tractable sets of 

relations can be defined by closure under some operation defined by identities, it follows 

that the m operation is capable of generating genuinely new tractable sets of relations. 

For let be any class of non-constant operations which is defined by identities and 

which guarantees tractability (this class may be one of the four classes from [53] or 

some other class: perhaps even a class not yet identified). We may then construct two 

sets of relations. The first, Ti, is closed under an operation from $, but not under 

any other operation known to give tractability. The second, T2, is not closed under 

any operation from <L, but is closed under some other non-constant operation known 

to give tractability: a binary ACI operation, for example, or a majority operation.

Let us assume, without loss of generality, that Ti and T2 are relational clones. 

Then their multiple relation union will be a tractable set of relations. The reason for 

its tractabilty cannot be because of closure under an operation not from <L, because 1  ̂

is not closed under any such operation. Neither can the reason for its tractability be 

because of closure under an operation from <L, because T2 is not closed under such an 

operation. Consequently, Ti m T2 is tractable for a hitherto unknown reason.

5.3.2 The Full Tractable Class

In the previous subsection we saw how combining two tractable sets of relations over 

disjoint domains could lead to novel tractable sets of relations. The question then arises 

as to whether there are any other relations, apart from those in TiCx]r2, whose tractabil-
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ity we can now deduce. Theorem 2.21 says that in fact the whole of Inv(Pol(Ti m r 2)) 

is tractable, so our question reduces to the following: What relations are present in 

Inv(Pol(Ti c * r2)) which are not present in Ti cxir2?

In some sense this is a trivial question: if we assume that equality is present, then 

the relations are precisely those which can be constructed from Ti m r 2 by applying a 

sequence of relational join and project operations [51]. Nevertheless, in this subsection 

we shall give some examples of relations from Inv(Pol{T\ dxj r 2)) \  (Ti &<r2), and show 

how they lead to tractable classes of relations whose tractability is not given directly 

by Theorem 5.2. The point is that our algebraic framework allows us to take one new 

tractable class of relations, and from it to generate yet more new tractable classes.

Consider, for example, the Cartesian product operator, x, defined on pairs of rela

tions by:

R 1 x  R 2 :=  { r i r 2 : r\ G R l A r2 G R 2}

(where r\r2 denotes the concatenation of the two tuples).

The following lemma comes essentially from [51].

L em m a 5.33 Let Ti and T2 be sets of relations over the disjoint domains Di and D2 

respectively, and let R},R? G Inv(Pol(Ti m T2)) be two relations. Then R 1 x  R2 G 

inv(Poi( r  i m r 2)).

P roof Choose any tp G Pol(Yi M T2), and suppose p has arity k. We shall show that 

R 1 x R 2 is closed under p. For let H, r2, . . . ,  r* be tuples from R 1 x R 2. Each r* is 

the concatenation of two tuples; one from jR1, and one from R 2. Let these two tuples 

be r\ and r2 respectively. Now, r^ ,. . . ,  rl) and p(r2, r | , . . . ,  r^) are both defined, 

and equal to some r 1 G R 1 and r2 G R2 respectively. Thus y?(ri,r2, . . . ,  r*) = r lr2 G 

(R1 x R 2). □

E xam ple 5.34 Let Ri = {ri} be a relation of size 1 over some domain D\, and let 

R 2 be a tractable relation of the same arity over some disjoint domain D2. Suppose
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that neither Ri nor R 2 contains a constant tuple. Let Ti =  Inv(Pol(Ri)) and r 2 = 

Inv(Pol(R2 )). Then Ri £ Ti M r 2 and R 2 £ Ti ix ir2. Now, R\ must be tractable; 

consequently I \  and hence Inv(Pol(T 1 m T2)) is tractable also. So by Lemma 5.33, 

Ri x R 2 is a tractable relation. But Ri x R2 is just the concatenation of r\ onto the 

front of every tuple in R 2. That is,

Ri x R2 = {rir2 : r2 £ R 2}.

This is obviously not a relation present in Ti m T2.

Exam ple 5.35 Suppose that

Ri = {<0,0,1,0), and R2 = {(3,2,2,3),

<0 , 1 , 0 , 0 ) ,  <2 , 3 ,2 , 2 ) } .

<1 , 0 , 0 , 0 ),

<1,1,1,0)}

Let T1 =  Inv(Pol(Ri)) and T2 =  Inv(Pol(R2)). It is easy to check that Ri is closed 

under an affine operation, but not under any other operation known to yield tractabil

ity. Similarly, R2 is closed under both majority and affine operations, but not under 

anything else significant. By Proposition 5.31 therefore, Ti n T 2 is a tractable set of 

relations which does not fall into any previously known tractable class (it is simple to 

verify that it is not closed under any affine operations). Moreover, Inv(Pol(Ti m T2)) 

contains further relations whose tractability could not have been previously deduced. 

It can be verified that amongst these is not only the relation Ri x R 2 itself, but 

also the relation R  of Example 5.3. For it is easy to see that R  is a permutation of 

(Ri U R 2) x {<2)}, where {<2)}, being a projection of i?2, is a member of Ti

The point of these examples is to demonstrate that the algebraic framework devel

oped above, and in [51, 52, 54], allows us to immediately deduce that far more sets of 

relations are tractable than those that are explicitly given by Theorem 5.2 above. Put 

another way: although the algorithm given in Theorem 5.2 is a straightforward one, it
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gives rise at once to a collection of more complicated algorithms, each of which can be 

used in more general situations than can the original algorithm itself.

5.4 Multiple Relational Unions on Binary Domains

In this section we investigate how the results of Section 5.2 can be used to analyse the 

tractability of sets of relations over pairs of disjoint 2-valued domains.

Note that a pair of binary domains is the smallest interesting case to which the 

results of section 5.2 can be applied. If either of the two domains contained just one 

element -  if D\ =  {e} for example -  then the only relations which could be built 

over D\ would be the empty relation (of each arity), along with {()}, {(e)}, {(e, e)}, 

{(e,e,e)}, etc. In particular, each of these, except for the empty relation, is closed 

under a constant operation, and so combining them with other sets of relations is 

not very interesting (in particular, it yields a set of relations which is closed under 

a constant operation, by Proposition 5.30). The empty relation itself is closed under 

every non-nullary operation, and combining it with other sets of relations turns out

once again to be an uninteresting exercise. The proof of this is left to the reader.

Throughout this section therefore, we will take D\ to be the set (0,1}, and D2 to 

be the set {2,3}.

Post showed that there are exactly seven distinct minimal clones over a binary 

domain [67]. Each of them may be defined as the smallest possible clone containing 

some (non-trivial) operation. Specifically, the seven minimal clones on {0,1} are:

1. 0, containing the constant-0 operation;

2. 1, containing the constant-1 operation;

3. - 1, containing the negation operation;

4. A, containing the binary conjunction operation;
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5. V, containing the binary disjunction operation;

6. maj, containing the ternary majority operation; and

7. par, containing the ternary parity operation.

Given any set T of relations over {0,1}, it may be the case that Pol(T) contains one 

or more of the above minimal clones. If it contains any of 0, 1, A, V, maj, or par then 

T is tractable [51, 68]; if it contains only -i (or contains none of the minimal clones) 

then it is NP-complete. Thus the tractability (or otherwise, assuming PT IM E  ^  NP) 

of T can be determined in an efficient manner for all T.

Each of the above clones may be alternatively characterised as the set of polymor

phisms of the corresponding relational clone (Inv(0), Inv(l), etc.). This follows from 

the fact [83] that for any clone <I>, Pol(Inv($)) = $. Therefore, in order to determine 

the complexity of Piixir2 for arbitrary Ti and r2, it suffices to consider the cases where 

Ti and T2 are the invariants of minimal clones over their respective domains.

Since there are seven minimal clones, there are 49 possibilities for the two sets of 

relations. By symmetry however, we can immediately discard 21 of these combinations, 

leaving 28 which need to be examined in more detail. It is easy to see that 0 and 

1 are identical up to renaming the domain elements; the same goes for A and V 

(conjunction and disjunction are the same function, but with the concepts of Truth 

and Falsity reversed). So we need not consider either Inv(l) or Inv(\/) as being worthy 

of attention.

It follows from Proposition 5.30 that if Ti = 7m;(0), or if Ti =  r 2 =  Inv(A), or if 

Ti = r 2 = Inv(maj), then 1̂  M r2 is tractable for known reasons. There is nothing 

more to say in these cases. Similarly, if I \  = 7ni>(-i) then Ti m T2 is NP-complete by 

Proposition 5.4. This leaves us with just four essentially different cases to consider, all 

of which can be seen to be tractable by Theorem 5.2:

1. Ti =  Inv(A) and T2 =  7m;(maj);
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2. Ti =  Inv(A) and T2 =  Inv(par);

3. Ti =  Inv(maj) and T2 =  Inv(par);

4. Ti =  Inv(par) and T2 = Inv(par).

By Proposition 5.31, none of the corresponding classes Ti have previously been 

known to be tractable.

Exam ple 5.36 Consider once again the relations R\ and R2 from Example 5.35. As 

we implicitly observed in that example, Pol({Ri}) is the minimal clone par. Similarly, 

if we take R 3 to be defined by:

Rs = {(3,2,2)

(2.3.2)

(2.2.3)

(2 , 2 , 2)}

then Pol({R2, i?3}) is just maj. Finally, if we define

R a =  {(5,5,4), and R5 = {(4,4,4),

(4,5,5), (4,5,4),

(4,5,4)} (5,4,4),

(5,5,5)}

then Pol({R4 , R 5}) = A.

Some of these relations are of arity 3, and some are of arity 4. Consequently, if we 

are not careful then their multiple relational union might be empty. We can circumvent

this problem however by replacing each arity-3 relation R  over the domain D by the

arity-4 relation R' := R  x D. R' clearly has the same polymorphisms as does R.

Once this transformation has been performed, we may take the disjoint union of 

any pair of these sets of relations, and end up with a new tractable class of relations.
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5.5 Conclusions

In this chapter we have shown how combining tractable sets of constraint relations 

on disjoint domains can yield new, hitherto unknown, tractable sets of relations. The 

algorithm which establishes the tractability of this combination is particularly simple, 

yet we have been able to exploit algebraic properties of the new sets of tractable 

relations to show that even more sets of relations are tractable than those which can 

be directly solved by the algorithm. This result clearly demonstrates once again the 

power of the algebraic approach to analysing constraint satisfaction problems.

This work is related to that of [15]. In that paper, the authors considered the 

effect of combining tractable sets of relations on a single domain. One question which 

naturally arises is to ask what happens when there are two domains which are partially 

disjoint, but which overlap in one or more places. Could there be a continuum, of which 

the results presented here and those in [15] form the ends?

We have also shown how the polymorphisms of a set of relations can sometimes be 

presented in an extremely compact way. In the case where Pol(Ti) is the clone A on 

{0,1} for example, and P o / ^ )  is the clone m aj on {2,3}, there are a total of 48384 

possible ternary polymorphisms of Ti th T2, yet these can be precisely described by 

giving just the 11 operations from Pol(Fi) U Po/(r2). Such a reduction means that 

computer programs which seek to calculate polymorphisms as part of their operation 

can be speeded up by an exponential factor under appropriate circumstances.

Finally, the results presented in this chapter take us one step closer to the ulti

mate goal of classifying the complexity of all possible sets of relations over domains of 

arbitrary finite size.
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