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Abstract We performed a comprehensive structure

validation of both automated and manually generated

structures of the 10 targets of the CASD-NMR-2013 effort.

We established that automated structure determination

protocols are capable of reliably producing structures of

comparable accuracy and quality to those generated by a

skilled researcher, at least for small, single domain proteins

such as the ten targets tested. The most robust results ap-

pear to be obtained when NOESY peak lists are used either

as the primary input data or to augment chemical shift data

without the need to manually filter such lists. A detailed

analysis of the long-range NOE restraints generated by the

different programs from the same data showed a surpris-

ingly low degree of overlap. Additionally, we found that

there was no significant correlation between the extent of

the NOE restraint overlap and the accuracy of the structure.

This result was surprising given the importance of NOE

data in producing good quality structures. We suggest that

this could be explained by the information redundancy

present in NOEs between atoms contained within a fixed

covalent network.

Keywords Protein � NMR � Structure determination �
Quality � Validation � Blind testing � NOE � CASD-NMR

Introduction

In the CASD-NMR-2013 effort (see accompanying paper,

Rosato et al. 2015), 164 entries were submitted across ten

targets. Together, these data provide for the opportunity to

assess the current state of automated structure calculation

methods for small- to medium-sized proteins. Automated

methods (summarized in Donald and Martin 2009; Gossert

et al. 2011; Guerry and Herrmann 2011; Güntert and

Buchner 2015; Herrmann et al. 2002; Huang et al. 2006;

Linge et al. 2003a; Williamson and Craven 2009) greatly

speed up the process of NMR structure determination by

providing an alternative to the manual, labor intensive step

of NOESY peak assignment. In addition, it is to be ex-

pected that these procedures also provide a more unbiased

interpretation of the available data. Some automated

methods are even purely chemical-shift (CS) based (Shen

et al. 2008), thus requiring no additional data at all and
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further reducing the required experimental time and asso-

ciated costs in terms of equipment and labor.

For any structure, whether derived by automated meth-

ods or manually, it is imperative that the result is accurate

and properly reflects the underpinning data. Ultimately, it

is the aim to use the structure to explain biology, either by

the researchers that generated them or indirectly by others

through deposition in the PDB archive. Prompted by in-

stances of serious errors and allegations of fabricated data

underpinning published structures the wwPDB, as curator

of the PDB archive, initiated a number of policy changes to

improve its quality and integrity. Consequently, it is now

mandatory to deposit experimental NMR restraints and

assigned NMR chemical shifts. In addition, an expert NMR

validation task force (NMR-VTF) has published a set of

recommendations for validating NMR-derived structures

and accompanying experimental data (Montelione et al.

2013).

In the following, we present a comprehensive validation

report on the entries and targets of CASD-NMR-2013 in

line with the NMR-VTF recommendations. The analysis

draws upon the tools for validating geometric quality in

relation to known structural data and the assessment of

structural quality in relation to the experimental data. We

used commonly available program suites CING (Dorelei-

jers et al. 2012a), Molprobity (Lovell et al. 2003) and

PSVS (Bhattacharya et al. 2006). By validating all of the

entries in the same way, we are able to show the strengths

and weaknesses of the various automated structure gen-

eration programs and assess the complementarity of these

structure validation tools. In addition, we are able to draw

broader conclusions across the range of automated struc-

ture generation routines participating in the CASD-NMR-

2013 effort.

Methods

The CASD-NMR-2013 entries and their metadata were

downloaded from the WeNMR (Wassenaar et al. 2012)

web site whereas the targets were obtained from the BMRB

and RCSB wwPDB repositories. We adopt the definitions

of target and entry given in the accompanying paper de-

scribing the CASD-NMR-2013 data (see Table 1 and the

accompanying paper, Rosato et al. 2015), where the target

comprises all originating data, the manually derived re-

straints and resulting structural ensemble. An entry denotes

an ensemble of conformers and the accompanying re-

straints generated by a specific program for a specific

target.

The data sets were reorganized into a uniform directory

structure to allow processing by the software analysis

pipeline. Ambiguous header data and missing and damaged

files were queried with the depositors, and errors discov-

ered during processing, such as incorrect file formats, un-

supported naming conventions or atom name errors in the

structure files, etc., were corrected. Structure ensembles

were read into CcpNmr Analysis 2.4 from PDB-type files

using the Analysis structure reader (built on CcpNmr

FormatConverter parsers) (Vranken et al. 2005), which

disambiguated the varied naming conventions employed,

and reported errors for correction. The deposited sequences

were aligned automatically with those read from the target

data to identify truncations. Restraint files were read into

the same CCPN project using CcpNmr FormatConverter in

automatic mode to identify, classify, read, and integrate the

restraint files for each submission. The resulting CCPN

projects each contained all data for a single target or entry,

grouped so that they could be automatically extracted by

CING for analysis. Due to technical limitations we were

not able to incorporate data from the so-called ARIA ‘swap

files’ that describe conformer-specific stereospecific reso-

nance assignments. Accordingly, we were forced to reduce

the precision of the deposited restraints to non-stere-

ospecific for the one program that uses different assign-

ments of prochiral groups in each individual structure of

the ensemble.

Entries were assigned three-part names with each part

separated by an underscore. The first part of the name is the

target dataset. The second part is the program used in

generating the entry, merging CS-ROSETTA and CS-DP-

ROSETTA together as ‘Web Rosetta Server’; CS-HM-

ROSETTA and CS-HM-DP-ROSETTA as ‘CS-HM-

ROSETTA and Cheshire and Cheshire-YAPP as ‘Che-

shire’. The last part of the name describes what input data

were used. The first character indicates curated NOE peaks

(c), un-curated NOE peaks (u), raw spectra (r), and CS only

(s); if RDCs were used, ‘r’ has been appended to the end of

the data identifier. Finally, if the input sequence was

truncated manually, the truncated range used is indicated in

parenthesis. Using this merging strategy, no information is

lost—for example Cheshire uses only CS data and entries

are listed as ‘Cheshire_s’, while Cheshire-YAPP uses both

CS and NOE data and entries are listed as either

‘Cheshire_c’ or ‘Cheshire_u’.

All analyses were conducted using CING (Doreleijers

et al. 2012a), except where noted. CING integrates the

results of a number of external programs, such as WHAT-

IF (version 6) (Vriend 1990), PROCHECK_NMR (Las-

kowski et al. 1996), Wattos (Doreleijers et al. 2009) and

VASCO (Rieping and Vranken 2010), combined with its

own internal routines. All analyses were conducted on

residues within the well-defined areas of the reference

ensembles as determined by CyRange (Table 1) (Kirchner

and Güntert 2011). The analysis of Discriminating Power

(DP) scores (Huang et al. 2005) and number of atomic
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clashes was performed using the PSVS (Bhattacharya et al.

2006) server (http://psvs-1_5-dev.nesg.org/). PSVS inte-

grates analyses from several widely-used structure quality

evaluation tools, including RPF (Huang et al. 2005),

PROCHECK (Laskowski et al. 1993), PROCHECK_NMR

(Laskowski et al. 1996), Ramachandran (Lovell et al.

2003), Verify3D (Lüthy et al. 1992), Prosa II (Sippl 1993)

and probe (Word et al. 1999). For the DP score determi-

nation the (curated) NMR peak lists and chemical shifts

from the targets were used. The number of clashes was

obtained as the number of disallowed atom pair overlaps

C0.4 Å given by the probe (Word et al. 1999) standalone

program.

All-by-all RMSD values are calculated as follows. For

each of the M conformers in the query ensemble, the RMSD

between the backbone N, Ca and C’ atoms in the well-de-

fined region of the reference ensemble as defined by

CyRange (Kirchner and Guentert 2011) (see Table 1) of

each of theN conformers in the target ensemble is calculated,

yielding a list of M 9 N RMSD values (or
MðM�1Þ

2
values for

convergence calculations where the same ensemble is both

the query and target). If an entry is lacking any atoms within

the well-defined range, the corresponding atoms in the

compared ensemble are ignored. The average value of this

list of values is then reported as the mean RMSD. The ac-

curacy of an ensemble is defined as the all-by-all RMSD of

an entry to the appropriate target ensemble. Ensemble con-

vergence values are reported as the average all-by-all RMSD

of the conformers in an ensemble. The ensemble conver-

gence calculation is rapid and independent of both the nature

of the experimental input data and the structure determina-

tion algorithmmethod used and should not be confused with

ensemble precision. Ensemble convergence often underre-

ports the actual precision of an ensemble, as prior research

showed that ensembles with a much larger RMSD could be

generated that equally well satisfied the experimental re-

straints (Buchner and Güntert 2015; Spronk et al. 2003).

Accordingly, ensemble convergence is used here as a diag-

nostic criterion only.

NOE overlap values were calculated using a custom

Python script, available from the authors on request. Each

value was calculated as follows: each NOE in the query list

(row in Fig. 5c, d) was compared to each NOE in the

subject list (column in Fig. 5c, d) until either a match was

found or there were no more NOEs in the subject list. To

ensure ambiguous restraints were counted only once, the

search was terminated once a match was found to any of

the options. Note that handling ambiguous restraints in this

way has the side effect that multiple ambiguous restraints

in the query list can match a single restraint in the subject

list. Heatmaps of all restraint overlaps for all ten targets are

shown in the Supplementary materials.

Supplementary Table 1 lists entry and validation statistics

of all 169 entries, including for reference also six entries

marked ‘incorrect’ by the depositing authors. The CING

validation reports and csv files of all the accumulated data,

including restraint violation statistics and all values under-

pinning the figures in this manuscript, are available from our

website http://nmr.le.ac.uk/CASD-NMR-2013. A Post-

greSQL database containing the complete CING analysis for

Table 1 CASD-2013 targets

Target ID PDB ID Valid range(s) Reference ensemble authors

HR2876B 2LTM 13–105 Liu, G., Xiao, R., Janjua, H., Hamilton, K., Shastry, R., Kohan, E., Acton, T.B., Everett,

J.K., Lee, H., Huang, Y.J., Montelione, G.T.

HR2876C 2M5O 17–91 Liu, G., Xiao, R., Janjua, H., Hamilton, K., Shastry, R., Kohan, E., Acton, T.B., Everett,

J.K., Pederson, K., Huang, Y.J., Montelione, G.T.

HR5460A 2LAH 14–25, 33–158 Liu, G., Shastry, R., Ciccosanti, C., Hamilton, K., Acton, T.B., Xiao,

R., Everett, J.K., Montelione, G.T.

HR6430A 2LA6 14–99 Liu, G., Xiao, R., Janjua, H., Lee, H., Ciccosanti, C.T., Acton, T.B.,

Everett, J.K., Huang, Y.J., Montelione, G.T.

HR6470A 2L9R 554–608 Liu, G., Xiao, R., Lee, H.-W., Hamilton, K., Ciccosanti, C., Wang,

H.B., Acton, T.B., Everett, J.K., Huang, Y.J., Montelione, G.T.

HR8254A 2M2E 15–56 Lemak, A., Yee, A., Houliston, S., Garcia, M., Ong, M., Arrowsmith, C.

OR135 2LN3 4–74 Liu, G., Koga, R., Koga, N., Xiao, R., Lee, H., Janjua, H., Kohan,

E., Acton, T.B., Everett, J.K., Baker, D., Montelione, G.T.

OR36 2LCI 2–46, 53–125 Liu, G., Koga, N., Koga, R., Xiao, R., Lee, H.T., Janjua, H.,

Ciccosanti, C., Acton, T.B., Everett, J., Baker, D., Montelione, G.T.

StT322 2LOJ 23–63 Wu, B., Yee, A., Houliston, S., Garcia, M., Savchenko, A., Arrowsmith, C.H.

YR313A 2LTL 17–41, 45–115 Liu, G., Xiao, R., Hamilton, K., Janjua, H., Shastry, R., Kohan, E.,

Acton, T.B., Everett, J.K., Lee, H., Huang, Y.J., Montelione, G.T.

The PDB ID, valid ranges and reference ensemble sources for comparison of each target is given
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all targets and entries in CASD-NMR-2013 is available from

the authors upon request.

Results

Accuracy and ensemble convergence

The ensemble convergence of each of the CASD-NMR-

2013 entries and target ensembles and the similarity of the

entry to the corresponding target ensemble were assessed

using the deviation of the backbone coordinates, expressed

as the average of the pairwise root mean square deviation

(RMSD) between the conformers in the reference and entry

ensembles using the well-defined regions defined for the

reference ensemble by CyRange (Kirchner and Güntert

2011). For the targets, the convergence ranges from 0.4 to

1.0 Å (Fig. 1). Therefore, we consider 1.0 Å to be an ap-

propriate threshold to identify satisfactorily converged

calculations. The median convergence for the entries is

0.6 Å with 77 % of the entries having an ensemble con-

vergence of 1.0 Å or less. Only five entries have values

larger than 2 Å: three ensembles calculated from aug-

mented CS data and two ensembles calculated from CS

data only. For programs that submitted entries based on un-

curated and curated NOESY peak lists, we observed a

weak tendency to obtain better ensemble convergence with

the curated list when the ensemble convergence for the un-

curated list was above the 1 Å threshold.

In the CASD-NMR effort, the manually determined

target ensemble is assumed to be the correct representation

of the three-dimensional structure of the target protein.

Hence, the RMSD between the target ensemble and the

entry ensemble constitutes a measure of accuracy (Fig. 1a).

An entry is considered to be indistinguishable from the

target when the RMSD between the two ensembles is less

than the sum of their ensemble convergence. Given the

average ensemble convergence of 0.63 Å for the targets

and 0.74 Å for the entries, a threshold of 1.5 Å appears to

be reasonable. Above this threshold, any ensemble de-

scribes a structure with differences from the corresponding

target beyond experimental uncertainty. Each entry was

evaluated relative to the corresponding target with the

exception of ensembles marked as not converged by the

programs used to generate them. The median accuracy over

the entire dataset is 1.14 Å, with 71 % of the entries below

the 1.5 Å threshold. Approaches using curated NOESY

peak lists achieved the highest accuracy with a median

accuracy of 1.05 Å and 80 % of the entries below the

threshold. The performance was essentially the same when

un-curated NOESY peak lists were used (median accuracy

1.08 Å; 79 % of entries below the threshold). In contrast,

calculations based on either raw spectral data or CS only

data performed less well, with median accuracies of 1.45

and 1.52 Å, respectively, both yielding only 50 % of

ensembles below the threshold.

The data collected within CASD-NMR-2013 allowed us

to evaluate the dependence of the performance of auto-

mated structure generation methods on the input data,

specifically comparing the use of curated NOESY peak

lists relative to un-curated NOESY peak lists and/or raw

spectral data. Only programs with multiple submissions

using different types of input data for the same target were

included in this analysis (cf. Table 2).

Firstly, we compared the use of curated and un-curated

NOESY peak lists for methods that rely predominantly on

NOESY data. ARIA submitted entries for five targets that

allow for such a comparison. The median accuracy is 0.91 Å

for the un-curated peak lists and 0.78 Å for the curated peak

lists, suggesting that the use of curated peak lists does im-

prove the accuracy. However, it should be noted that the

accuracy of each entry is well within the 1.5 Å threshold for

good quality ensembles regardless whether un-curated or

curated peak lists were used. Similarly, for the ten qualifying

entries (for five targets) submitted by CYANA, the median

accuracy for entries generated from un-curated peak lists is

slightly lower at 0.97 Å when compared to the values ob-

tained for entries generated from the curated peak lists

(0.84 Å), again with the accuracy for all entries comfortably

within the threshold. Overall, ASDP performed slightly less

well thanARIAorCYANA (but see below). Based on entries

for six targets, four ensembles generated by ASDP-Rosetta

achieved the required accuracy using either un-curated or

curated peak lists and the median accuracies were similar at

1.43 and 1.16 Å, respectively. Interestingly, for ASDP-CNS

the proportion of entries within the accuracy cutoff rose from

five out of eight generated from curated peak lists to six out of

eight entries generated from un-curated peak lists, with

median accuracies of 1.27 and 1.20 Å, respectively.

One deficiency in our analysis is the incomplete nature of

the dataset. For example, ARIA and CYANA both sub-

mitted five paired entries, four of which were for the same

targets, but of the six target pairs submitted by ASDP-

Rosetta, only three pairs were also submitted by ARIA and

two pairs were also submitted by CYANA (and for one pair

RDC restraints are used by ASDP-Rosetta and not by

CYANA). As a result, any comparisons made across pro-

grams could lead to inappropriate conclusions. Indeed,

ASDP-Rosetta is the only program to submit paired entries

for both of the two most challenging targets [StT322 and

HR8254A (Rosato et al. 2015)], where ARIA and CYANA

both failed to generate realistic converged structures from

un-curated peak lists. Overall, our results would suggest

that for algorithms relying primarily on NOESY data,

ensembles of equivalent accuracy can be obtained regard-

less of whether curated or conservatively chosen un-curated
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Fig. 1 Comparison of targets and entries. a Structural similarity

(accuracy): the mean all versus all pairwise backbone RMSD for

well-defined residues for each of the entries with respect to the target.

The dashed line at 1.5 Å indicates a reasonable upper threshold for

identity within experimental uncertainty (see text for details). b The

pairwise backbone RMSD for well-defined residues within each

ensemble for each of the targets and entries. The dashed line at 1.0 Å

indicates an estimated upper threshold for a converged structure.

Symbols for each target are indicated on the left. Open symbols

indicate entries generated from truncated input sequences. Horizontal

axis labels: targets are labeled in green, entries generated from

curated lists in black, curated lists plus RDCs in bold-black, un-

curated lists in blue, un-curated lists plus RDCs in bold-blue, CS only

in magenta, CS plus RDCs in bold magenta and raw data in purple
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peak lists are used as the input. It is worth noting that the

two targets using the most liberal peak picking algorithm

(i.e., StT322 and HR8254A,) and therefore including the

largest fraction of probable noise peaks, proved the most

difficult to solve using these fully automated analysis

methods.

Cheshire-YAPP generates ensembles based on CS data

then filters these ensembles based on NOESY distance

restraints. Using un-curated peak lists, Cheshire-YAPP

submitted entries for seven targets achieving a median

accuracy of 1.24 Å with four entries within the 1.5 Å

threshold. In this case, the use of curated peak lists sig-

nificantly improved the accuracy of the entries as, out of

the eight targets submitted, the median accuracy for the

seven matched pairs improved to 1.05 Å and the accuracy

of all eight entries was within the threshold.

Only one program, UNIO, submitted entries based on

both peak lists (Un-curated) and raw spectral data. Entries

were submitted for six targets with all of the ensembles

generated based on un-curated peak lists displaying an

accuracy within the 1.5 Å RMSD threshold. Similarly, five

of the six entries generated from raw spectral data achieved

the desired accuracy, with the sixth entry (OR36) yielding

a still acceptable accuracy of 1.6 Å. A small decline in the

median accuracy (from 1.01 to 1.11 Å) was observed for

the UNIO entries derived from raw spectral data compared

to those calculated from un-curated peak lists.

Finally, we note that all but one of the entries

misidentified the only cis-Proline in the target set,

Pro142 in HR5460A as a trans-proline. Cis-prolines are

normally identified using the chemical shift difference

between 13Cb and 13Cc, with 0 ppm B 13Cb–13-

Cc B 4.8 ppm strongly indicative of a trans conforma-

tion and 9.15 B 13Cb–13Cc B 14.4 strongly indicative of

a cis conformation (Schubert 2002) and/or by charac-

teristic sequential Ha/Ha NOEs. The 13Cb–13Cc value for

Pro142 in HR5460A is 7.88 ppm, hence in the transition

region between these two chemical shift ranges. Only

CS-HM-Rosetta successfully identified Pro142 as a cis-

proline, but only in six out of ten conformers in the

ensemble. This suggests that more rigorous determination

of proline isomer state may be appropriate for all

methods (including CS-HM-Rosetta).

Geometric and packing quality

Structures can be validated by comparison of a set of

metrics relative to those obtained from reference structures.

We used the scores of the programs Molprobity (Lovell

et al. 2003) and WHAT-IF (Vriend 1990), as implemented

in the CING framework. Figure 2 displays four such met-

rics, i.e. the fraction of backbone dihedrals in the Ra-

machandran disallowed region (Fig. 2a), the number of

high energy interatomic contacts per 1000 atoms in the

ensemble (Fig. 2b), the Ramachandran backbone angle

distribution (Fig. 2c) and the side chain dihedral angle

distribution (Fig. 2d), for both the targets and the entries.

WHAT-IF values (Fig. 2c, d) are given as the mean of the

values calculated for each conformer in the ensemble. The

scores reveal that the targets constitute well-refined struc-

tures, with near-zero percent of Ramachandran outliers

(Fig. 2a) and Ramachandran Z-scores generally larger than

-2 (Fig. 2c). Relatively few clashes are observed (Fig. 2b)

and WHAT-IF side-chain Z-scores (Fig. 2d) of around zero

are comparable to those observed in well-refined X-ray and

NMR structures.

The values observed for the different entries vary con-

siderably and correlate to some extent with the structure

generation method, i.e. the engine used to generate the

entry, with some targets displaying relatively better or

worse scores across all programs. The effect of the gen-

erating method is most clearly observed from the WHAT-

IF side chain dihedral scores (Fig. 2d). Structures from the

Rosetta web server, CS-HM-Rosetta, Autonoe (also

Rosetta-based) and ASDP-Rosetta, all display excellent

median Z-scores. Conversely, CYANA, UNIO, Ponderosa,

and Cheshire-YAPP have scores of around -5, whereas the

other entries are intermediate between these two extremes.

The excellent scores for the Rosetta-based protocols is no

surprise, as its conformational sampling engine draws upon

Table 2 Median accuracy of

paired entries
Program Curated (Å) Un-curated (Å) Raw (Å) Number of targets

ARIA 0.78 0.91 – 5

ASDP-CNS 1.27 1.20 – 8

ASDP-ROSETTA 1.16 1.43 – 6

CHESHIRE-YAPP 1.05 1.24 – 7

CYANA 0.84 0.97 – 5

UNIO – 1.01 1.11 6

Only targets calculated using both curated and un-curated data (or un-curated and raw data, in the case of

UNIO) are included. Note that no program submitted paired entries for all targets and therefore comparison

of accuracies made across programs is potentially inappropriate (see text)
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structural reference data similar to those used to generate

the WHAT-IF side chain dihedral score. Low scores are

indicative of non-optimal local geometry and do not imply

errors in the overall fold.

The quality of the backbone geometry is expressed by

the MolProbity fraction of Ramachandran outliers (Fig. 2a)

and the WHAT-IF Ramachandran Z-Score (Fig. 2c). These

two scores are complementary, as the MolProbity score

reports the fraction of residues having nearly impossible

dihedral angles while the WHAT-IF score reports the

overall dihedral distribution. The entries generated by cu-

rated or un-curated Cheshire and UNIO display the poorest

scores, with Cheshire also showing a large variability of the

outliers scores within its submitted entries. ARIA also

shows a substantial number of entries with larger outlier

percentages, yet the WHAT-IF Ramachandran Z-scores are

often better than those of the targets. The three Rosetta-

based protocols (Autonoe, CS-HM-Rosetta and Web server

Rosetta) and Ponderosa are generally good according to

these two criteria, with nearly all entries displaying only

small fractions of outliers and generally better Z-scores

than the targets. Finally, the scores of ASDP-CNS and

CYANA entries appear en-par with those of the targets.

Figure 2b shows the number of high-energy interatomic

interactions, per 1000 residues, as determined by MolPro-

bity. Here, the three Rosetta-based protocols, CYANA, and

ASDP-Rosetta display the best values, below ten clashes

per thousand atoms. ARIA, ASDP-CNS and Cheshire have

values around twenty clashes per 1000 atoms, and UNIO,

Ponderosa, and Cheshire-YAPP have median clash scores

somewhat higher than the targets, with values of thirty or

higher and extending up above forty. Close examination of

the scores obtained for individual targets across the dif-

ferent entries reveals that entries for HR6470A and OR135

Fig. 2 Overall quality scores of the targets and the entries. a Mol-

probity Ramachandran outliers (Lovell et al. 2003). b Molprobity

number of clashes per thousand atoms in the ensemble. c WHAT-IF

Ramachandran Z-scores (Vriend 1990). d WHAT-IF side chain Z-

scores. Symbols and labels are explained in the legend for Fig. 1
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tend to be among the best scoring, whereas entries for

StT322, HR2876C and OR36 are among the worst.

In addition to overall validation scores as provided by

programs such as MolProbity and WHAT-IF, it is also

advantageous to examine residue-specific validation crite-

ria. The CING program suite (Doreleijers et al. 2012a)

implements such a residue-specific score as the so-called

ROG-score. The ROG (red–orange–green) score represents

a compounded measure of confidence for an individual

entity, such as a residue, expressed as red for potentially

problematic, orange for suspect and green for likely cor-

rect. The residue ROG score includes an assessment of the

Ramachandran quality, the Omega dihedral and side chain

dihedrals. The criteria are detailed in Table 2 of Doreleijers

et al. (2012a). ROG-scores reported in the current paper

represent the fractions of the total number of residues in the

well-defined range (as identified by CyRange), with a

specific red or green classification. As a rule of thumb, the

number of green residues should exceed 50 % while the

number of red residues should be below 30 %. Figure 3a, b

display the green and red ROG-scores, respectively, for all

entries and targets. In line with the overall scores, the data

show that the targets display generally very good ROG

scores, with all of the targets scoring better than the

50/30 % criteria. For the entries the results are more di-

verse. As expected, and as observed before (Rosato et al.

2012), the CS-only based methods display very good ROG

scores. Good scores were also obtained for many of the

NOE/RDC based protocols, e.g. ARIA, ASDP-CNS,

ASDP-Rosetta, Autonoe and most of the CYANA entries.

In contrast, Cheshire using peak lists, Ponderosa and UNIO

score substantially worse. StT322 appears to be a prob-

lematic target, which has the worst scores of all the ref-

erence structures and consistently scores poorly for the

entries as well. Most automated methods had their poorest

performance with the filtered peak list for StT322, and did

not even provide a submission for this target with un-cu-

rated peak lists. For methods which did provide results

using the un-curated or raw StT322 data, including ASDP-

CNS, ASDP-Rosetta and Ponderosa, the resulting struc-

tures were clear outliers, with low accuracies. Potentially,

this target has some special features, e.g. related to either

the distribution of the chemical shifts, the quality of the

data or the occurrence of conformational equilibria in so-

lution, that distinguish it from the other targets.

Agreement with experimental data

The completeness of the experimental data and its agree-

ment with the ensemble of conformers constitutes another

class of useful metrics to assess the structural results. The

quality of the structure produced by any given method is

expected to depend on the amount of experimental data, i.e.

to a large extent the number of correct NOEs that can be

assigned and their information content. During the

evaluation of the CASD-NMR-2010 round the dis-

criminating power (DP) score was used as a measure of the

goodness-of-fit of the unassigned NOESY peak lists to the

obtained structures. The DP score compares the unassigned

NOESY peak lists to the generated structure, using the

improvement in fit relative to a random coil reference

structure to evaluate the structure quality. With possible

values of 0–1, a DP lower score cutoff of *0.7 has been

considered to represent a reliable structure (Huang et al.

2012). For this round, the DP scores of the targets and the

different entries are shown in Fig. 4a. As in the CASD-

NMR-2010 results (Rosato et al. 2012), a correlation was

observed between DP score and the structural accuracy

Fig. 3 ROG scores (Doreleijers et al. 2012a) of the targets and the

entries. a The fraction of residues with a green ROG score. The lower

threshold of 0.5 is indicated by a dashed line. b The fraction of

residues with a red ROG score. The upper threshold of 0.3 is

indicated by a dashed line. Symbols and labels are explained in the

legend for Fig. 1
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(Fig. S1). The DP scores of most of the entries are above

0.7, with the large majority in the 0.85–0.95 range,

indicative of excellent agreement between experimental

data and structural results. These CASD-NMR-2013 data

further suggest a more practical cutoff for DP scores of

reliable models should be above *0.75 (RMSDs to ref-

erence\*3 Å).

The expected number of NOEs that should be observed

for a given structure ensemble presents a related measure

correlating structural accuracy to experimental data. The

so-called NOE completeness score can be calculated using

the program Wattos, which is part of the CING suite. In

practice, it is impossible to obtain all possible NOEs due to

relaxation, peak overlap and alternating local conforma-

tions that can lead to conflicting assignments. In the NRG-

CING database (Doreleijers et al. 2012b), the median NOE

completeness is 44 %, and this represents a realistic goal

for modern structure determination by NMR. Figure 4b

shows the NOE completeness score for each of the targets

and entries calculated from NOESY lists. For all the tar-

gets, the NOE completeness was well above the median

database completeness consistent with the high quality of

the target input data and the resulting structures. On av-

erage, the entries generated 64 % (range 31–87 %) of the

expected number of restraints. With the exception of the

algorithms using methods that rely exclusively on raw

spectral data, i.e. UNIO and Ponderosa, all other entries

produced assigned NOE peak lists that yielded a com-

pleteness well above the database median. In comparison to

the targets, three tools (ARIA, CYANA and I-TASSER)

performed better than the expert in assigning NOE peaks.

This high level of NOE completeness, combined with

the high level of accuracy and the generally good quality of

the structures generated, led us to hypothesize that there

would be significant overlap between the restraints identi-

fied and used by the expert researcher and any one of the

automated protocols as implemented in the different pro-

grams. To investigate this, we started from the list of re-

straints generated manually by the expert researcher or by

each of the programs for each target. We removed the

differences between the expert’s and the algorithms’

treatment of stereochemical assignment by treating all re-

straints as pseudo-atom restraints. This list was then cu-

rated to include only long-range restraints, i.e. those

between atoms at least five residues apart, since these are

the restraints that are known to carry the majority of the

structural information (Nabuurs et al. 2003). The results of

this analysis are shown in Fig. 5a. To our surprise they

revealed that none of the automated methods identified

more than 50 % of the restraints produced manually and

some even obtained less than 10 %. As an example, Fig. 5c

shows the restraint overlap between target OR36 and all

entries (the majority of which were within 1.5 Å from the

target structure). The aforementioned low degree of over-

lap between the manually derived, i.e. target, restraints is

evident from the top row of this graph. The overlap be-

tween entries derived by the different programs is also

highly variable, albeit that within a single program group

the values are, as expected, consistently much higher.

Following this somewhat unexpected result, we decided

to look at the overlap on a residue-to-residue basis rather

than atom-to-atom, as it could be expected that the

Fig. 4 Agreement with experimental data of the targets and the

entries. a The DP score (Huang et al. 2005). The dashed line indicates

the lower threshold of 0.75 for agreement between the structure and

the input data. b The NOE completeness determined by Wattos. The

dashed line indicates the median NOE completeness (44.2 %) for all

structures in the NRG-CING database (Doreleijers et al. 2012b).

Symbols and labels are explained in the legend for Fig. 1. Only entries

calculated from NOESY lists have been included
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proximity of two residues rather than the exact NOE is the

determining factor. Starting from the same curated pseudo-

atom restraint lists generated above, we then generated a

list containing only residue-to-residue restraint informa-

tion. The results shown in Fig. 5b were much more con-

sistent with our hypothesis, as for most of the targets the

restraints obtained by the automated algorithms were now

overlapping by more than 80 % with the manually derived

restraints. A similar increase was obtained for the restraint

overlap between the entries generated by the different

programs, as illustrated for the OR36 target (Fig. 5d).

Given the importance of NOE data in producing an

accurate structure for many of the programs used in the

CASD-NMR-2013 effort, we wanted to explore a possible

correlation between the accuracy of the results, as ex-

pressed by RMSD (cf. Fig. 1) to the target, and the NOE-

derived restraint overlap (Fig. 6). Although an extremely

weak correlation can be inferred for some targets and

Fig. 5 Overlap of long-range NOE restraints between the targets and

the entries. Fraction of overlapping NOE restraints between the target

and each entry determined on the basis of a pseudo-atom or b residue.

Symbols and labels are explained in the legend for Fig. 1. c,
d Heatmaps of the fractions of overlapping long-range NOE restraints

between the OR36 target and entries, determined on the basis of

pseudo-atom (c) or residue (d). The total number of long-range

restraints present for each target/entry is shown on the diagonal. The

off-diagonal values denote the percentage of restraints used in the

entry indicated along the row that are also found in the entry indicated

along the column. The top row shows the percentage of NOE’s used

in the reference structure that were found in each entry, while the left-

most column shows the percentage of NOE’s used by each entry that

were found in the reference structure. For example, the entry in the

square marked by the black box in (c) shows that 238 restraints

(22 %) used in the OR36 target are also present in the OR36_ASDP-

CNS_c entry
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methods (data not shown) no overall correlation patterns

are supported by the data, neither on a pseudo-atom basis

nor on a per-residue basis. Some clustering based on pro-

gram group is also observed for some targets, however the

clustering observed is not consistent across targets in either

the pseudo-atom or per-residue based plots. We speculate

that this unexpected lack of correlation can be explained by

the information redundancy present in NOEs between

atoms contained within a fixed covalent network.

It is clear from the figures in this paper that both RMSD

values and validation scores are correlated for individual

targets across different calculations; some targets tend to be

either among the best or among the worst for all calculation

protocols. The observation is semi-quantitative at best,

given the variability of results across programs and

program types, and the fact that not all targets were at-

tempted (or resulted in converged structures) for all pro-

grams. It was not possible to determine any systematic

variation with structure type: CASD-2013 included six a/b
proteins and three all-a proteins, and both groups contained

both ‘good’ and ‘bad’ targets. Two of the targets stood out

for unrelated reasons, as discussed in the accompanying

paper (Rosato et al. 2015). Producing converged entries

from the un-curated peak lists for HR8254A and StT322

proved difficult, and entries for these targets were missing

for a number of programs. These targets were both small

(ca. 40 defined residues), were the only targets to use non-

uniformly-sampled NMR data, had no RDC data, and had a

high proportion of probable noise peaks in their un-curated

peak lists. HR8254A gave consistently good validation

scores, but had among the highest RMSD values for both

accuracy and convergence. HR8254A is a three-helix

protein with one very long helix extending outside a small

core; clearly RMSD calculations will be quite sensitive to

small variations in the inter-helical angle that, in the ab-

sence of RDC data, is difficult to determine precisely.

StT322 is the only all-b protein in the set, and has a par-

ticularly large ill-defined tail. It gave consistently poor

validation scores, and also gave high RMSD values for

both convergence and accuracy.

Discussion

The above results provide for a comprehensive evaluation

of the performance of the currently available programs for

automated protein structure generation from NMR data.

The reference structures for all of the ten CASD-NMR-

2013 targets are well converged (ensemble convergence

0.4–1.0 Å). The quality of these structures is higher than in

the CASD-NMR-2010 round (ensemble convergence

0.4–1.7 Å) suggesting that either the quality of the input

data has improved, most likely as a result of improved

NMR hardware and acquisition schemes, or that there have

been significant improvements in manual data analysis and

structure calculation routines. Most likely, it resulted from

a combination of both these factors.

Overall, the performance of the automated structure

determination methods, in terms of accuracy and ensemble

convergence, was excellent (median ensemble convergence

0.6 Å; median accuracy 1.14 Å). An accuracy threshold of

1.5 Å was imposed in this work to identify acceptable

structures, which was achieved by 71 % of the entries. The

less stringent 2.5 Å threshold imposed previously (Rosato

et al. 2012) was achieved by 72 % of the entries in CASD-

NMR-2010. Applying the same more relaxed criterion to

the present CASD-NMR-2013 effort raises the success rate

to 85 % of the entries. This improvement relative to

Fig. 6 Correlation between entry pairwise RMSD and NOE restraint

overlap. For every pair of entries for a given target, the all-by-all

RMSD and NOE restraint overlap between those entries is shown.

NOE restraint overlap are calculated on a a pseudo-atom or b residue

basis. Symbols are explained in the legend for Fig. 1
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CASD-NMR-2010 may partly be attributed to the quality

of the input data as discussed above, but more likely also to

advances in the structure generation engines, as also the

overall quality indicators have improved. The success rate

is even higher (78 % using the 1.5 Å cutoff) if the most

challenging targets, HR8254A and StT322, are excluded.

As for CASD-NMR-2010, the performance of the pro-

grams depended on the nature of the input data and once

again the best results were obtained by methods using

NOESY data, either as the primary input or to augment CS

data.

The comparison between the entries obtained from ei-

ther the use of curated NOESY peak lists versus un-curated

peak lists revealed that for programs relying on NOESY

data as the primary input the use of curated peak lists does

not lead to significantly better structures. It appears that the

iterative procedures implemented in these protocols are

efficient at filtering the peaks for consistent information.

For example, CYANA performs the so-called network-

anchoring and restraint-combination methods to perform

such peak filtering (Herrmann et al. 2002). However, pro-

grams such as Cheshire-YAPP that use NOESY data to

augment the input CS data performed significantly better

when using curated peak lists. The data also suggest that

UNIO performs better with an un-curated peak list than

with raw spectral data. The use of curated peak lists may

however improve convergence. It is interesting to note that

five out of ten ARIA calculations and three out of eight

CYANA calculations with un-curated peaks failed to

converge, where the equivalent calculations using curated

peaks led to good quality structures. The non-converging

seemed to correlate with the proportion of extraneous

peaks in the un-curated peak lists (data not shown).

As for CASD-NMR-2010, three validation parameters

were used to assess the geometric and packing quality of

the CASD-NMR-2013 submissions: Ramachandran back-

bone angle distribution, side-chain angle distribution and

the number of high-energy interatomic contacts (Fig. 2).

As in the previous CASD-NMR-2010 round, these pa-

rameters varied over a wide range of Z-score (up to 15

standard deviations), and were overwhelmingly determined

by the choice of structure calculation protocol. The three

Rosetta-based protocols (Autonoe, CS-HM-Rosetta, and

Web server Rosetta) and also the Rosetta-refined ASDP-

Rosetta all did extremely well based on geometric criteria.

This result is not surprising, given that these programs

derive their backbone conformations and refinement pa-

rameters from databases of known good geometries. ARIA

performed moderately well across all criteria, whereas

ASDP-CNS, CYANA, Cheshire, and Ponderosa achieved

acceptable but more mixed validation scores. Nevertheless,

the relatively good validation scores for ARIA and ASDP-

CNS confirm that water refinement in a realistic force field

has a very positive effect on the geometry of the final

conformer, also when performed in automation. Finally,

UNIO and Cheshire-YAPP consistently received the lowest

scores across all criteria, which is likely due to the lack of

the aforementioned refinement procedures. Our investiga-

tions did not reveal any promising correlations between

any of the geometric parameters and either accuracy or

convergence.

Residue-specific ROG scores are indicators of local

conformation and sensitive to errors in restraints. Within

the set of entries, Rosetta/chemical-shift based methods

show very good ROG scores (Fig. 3). Again, this is an

expected result as some of the parameters that underpin the

ROG score are also based upon comparison with fragments

from structures contained within the PDB database. The

results for Cheshire however, display an interesting phe-

nomenon; whereas the chemical-shift-only entries display

the expected good ROG scores, inclusion of the NOE peak

lists does improve accuracy, albeit at the expense of much

poorer ROG scores. It has been shown that for NOE/RDC-

based structures consistently poor local conformation, as

expressed by poor ROG scores, correlates with propensity

for errors in the overall fold. It is notable that the entries for

the StT322 target generally display among the worst ROG

scores combined with the lowest accuracy scores (Fig. 1a).

Generally however, the accuracy of the entries is high,

suggesting that other factors may also depress the ROG

scores. Proper refinement in a force-field that implements

an explicit water-shell has been shown to substantially

improve local conformation as well as the agreement with

experimental restrains (Linge et al. 2003b; Spronk et al.

2002). Whereas some protocols, e.g. ARIA, ASDP and

Autonoe, do implement such a refinement step as a stan-

dard procedure, for others like CYANA and UNIO this is

generally not the case. As the accuracy of the latter pro-

tocols is similar to the accuracy of the former, it is likely

that the observed differences in their ROG score patterns

could be the result of the (lack of) final refinement, rather

than of significant differences in the interpretation of the

underlying data.

For the CASD-NMR-2013 entries we investigated the

quality of the NOE input data and the accuracy of the

structure generated by the different methods. For both the

reference structures and the CASD-NMR-2013 entries the

NOE completeness scores (Fig. 4b) were well-above the

median in the CING database and the DP-scores (Fig. 4a)

largely exceeded the lower cutoff of 0.7. Together, this

indicates that all of the automated methods perform well

with regard to assigning NOE restraints. We also deter-

mined the extent of NOE restraint overlap between dif-

ferent entries using either pseudo-atoms or residues as the

basis for comparison (Fig. 5). When using pseudo-atoms as

the basis for comparison, the restraint overlap was
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surprisingly low between the reference structure and the

CASD-NMR-2013 entries but the degree of overlap in-

creased significantly when determined at the residue level.

This discrepancy between the extent of restraint overlap

observed when using pseudo-atom to pseudo-atom re-

straints compared to residue to residue restraints could be

explained by experimenter bias when manually generating

restraint lists. For example, a human researcher, having

identified NOE patterns consistent with an alpha helix, may

invest more time and energy identifying all of the NOEs for

the helix than the unbiased automated methods. Similarly,

the human researcher may devote more attention to as-

signing as many NOE’s as possible in an under-restrained

portion of an intermediate structure while the automated

methods would be expected to spend equivalent amounts of

effort on each region in the molecule. In support of this

notion, we observed that at the pseudo-atom level the

overlap between any two of the entries was higher when

compared to the overlap between the target restraint list

and any one of the entries. This is exemplified by the OR36

target (Fig. 5c, d). The results obtained for the pseudo-

atom basis (Fig. 5c) show that, in general, overlap is

greater between automated methods than between an au-

tomated method and the manual assignment. However, the

overlap does not reach 100 % in either case, suggesting

that differences cannot be entirely due to experimenter bias

alone. It has been previously observed that multiple cal-

culations starting from the same data may result in different

restraint sets, with only a subset of restraints common to all

calculations (Buchner and Güntert 2015). In contrast, there

is little difference at the residue level in the extent of

overlap between two automated algorithms or between an

automated algorithm and the expert researcher (Fig. 5d).

Notably, the methods based on raw spectral data have a

lower overlap with all other methods, also on the per-

residue basis. Given that they generated accurate structures

for the majority of targets, this suggests that not all long-

range contacts are equally important to define the correct

protein fold. Finally, we found that there was no significant

correlation between the extent of NOE restraint overlap

and the accuracy of the structure. This result was surprising

given the importance of NOE data in producing good

quality structures. We suggest that this could be explained

by the information redundancy present in NOEs between

atoms contained within a fixed covalent network.

Conclusions

The ten targets of CASD-NMR-2013 constitute a high-

quality set of NMR structures, exemplifying the quality

that can be attained by a skilled researcher using state-of-

the-art techniques. Overall, the results from CASD-NMR-

2013 demonstrate that automated structure determination

protocols are capable of reliably producing structures of

comparable accuracy and quality, at least for small, single

domain proteins such as the ten targets tested. The most

robust results appear to be obtained when NOESY peak

lists are used either as the primary input data or to augment

CS data, with limited need to manually refine such lists.

Since no single method performed consistently better than

the others for all ten targets it is advisable to use more than

one program routinely and combine the results.
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S, Dal Pra S, Mazzucato M, Frizziero E, Bonvin AMJJ (2012)

WeNMR: structural biology on the grid. J Grid Comput

10:743–767. doi:10.1007/s10723-012-9246-z

Williamson MP, Craven CJ (2009) Automated protein structure

calculation from NMR data. J Biomol NMR 43:131–143. doi:10.

1007/s10858-008-9295-6

Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK,

Richardson JS, Richardson DC (1999) Visualizing and quanti-

fying molecular goodness-of-fit: small-probe contact dots with

explicit hydrogen atoms. J Mol Biol 285:1711–1733. doi:10.

1006/jmbi.1998.2400

J Biomol NMR

123

http://dx.doi.org/10.1016/S0022-2836(02)00241-3
http://dx.doi.org/10.1016/S0022-2836(02)00241-3
http://dx.doi.org/10.1021/ja047109h
http://dx.doi.org/10.1002/prot.20820
http://dx.doi.org/10.1002/prot.20820
http://dx.doi.org/10.1093/nar/gks373
http://dx.doi.org/10.1186/1471-2105-12-170
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1093/bioinformatics/19.2.315
http://dx.doi.org/10.1002/prot.10299
http://dx.doi.org/10.1002/prot.10286
http://dx.doi.org/10.1038/356083a0
http://dx.doi.org/10.1016/j.str.2013.07.021
http://dx.doi.org/10.1021/ja035440f
http://dx.doi.org/10.1021/ja035440f
http://dx.doi.org/10.1002/prot.22756
http://dx.doi.org/10.1016/j.str.2012.01.002
http://dx.doi.org/10.1073/pnas.0800256105
http://dx.doi.org/10.1002/prot.340170404
http://dx.doi.org/10.1002/prot.20449
http://dx.doi.org/10.1007/s10723-012-9246-z
http://dx.doi.org/10.1007/s10858-008-9295-6
http://dx.doi.org/10.1007/s10858-008-9295-6
http://dx.doi.org/10.1006/jmbi.1998.2400
http://dx.doi.org/10.1006/jmbi.1998.2400

	Analysis of the structural quality of the CASD-NMR 2013 entries
	Abstract
	Introduction
	Methods
	Results
	Accuracy and ensemble convergence
	Geometric and packing quality
	Agreement with experimental data

	Discussion
	Conclusions
	Acknowledgments
	References




