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Macromolecular Modelling Of Muscle Structure: 

A Comparison With X-Ray Diffraction Results

Catherine V. Miles

During contraction, the molecular arrangement within muscle undergoes large 
changes which can be traced through corresponding changes in the x-ray diffraction patterns. 
This thesis investigates the relationship between changes in the muscle structure and those in 
the resulting diffraction patterns, in order to shed light on the contractile cycle itself.

High resolution x-ray diffraction patterns were obtained from whole frog sartorius 
muscles using synchrotron radiation. The patterns were obtained at three stages of the 
contractile cycle: rest, isometric contraction and unloaded shortening.

Three-dimensional computer models were built from the main components of 
muscle: the proteins actin and myosin arranged in helical filaments. The specific positions 
and orientations of the protein components were adjusted until the main features of the 
resulting theoretical diffraction pattern matched those of the experimental x-ray diffraction 
patterns.

The results of this study indicated that in rest muscle the main mass of the myosin 
head lies parallel to the muscle’s long axis, and the heads are wrapped around the thick 
filaments from which they protrude forming a compact structure. Introducing disorder into 
the molecular arrangement revealed that a high degree of azimuthal disorder in the myosin 
head arrangement was required to reproduce the pattern from isometrically contracting 
muscle. During unloaded shortening axial filament disorder was the prime candidate.

The main focus of this study was the arrangement of myosin molecules in the thick 
filaments, but initial studies of the arrangement of actin monomers in the thin filaments 
indicated that a random cumulative disorder of 10° r.m.s. is present in the helical 
arrangement of the actin monomers.
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“The beginning of knowledge is the discovery of something we do not understand.”

Frank Herbert

“A conclusion is the place where you got tired thinking.”
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Chapter 1: Introduction To Muscle Diffraction

The conversion of chemical energy into mechanical work is one of the most 

important issues in biology today. Since this is the primary function of muscle during 

contraction, it is an ideal system through which to investigate the energy conversion process. 

Considerable effort has been spent studying muscle contraction using various methods 

including electron microscopy, x-ray diffraction studies, and biochemical and kinetic 

analyses, but the exact sequence of molecular events which result in the generation of 

macroscopic force is still unknown.

Changes in the molecular structure of muscle give important clues as to how the 

contraction mechanism works. If the molecular structure can be determined at key stages of 

the contractile cycle, the physical changes from one state to the next can be correlated with 

the level of force production. Scattering of x-rays of wavelength X~0.1nm from muscle 

samples gives rise to characteristic diffraction patterns, since the protein molecules found in 

muscle are of a similar size to the wavelength; the basic elements of muscle are the contractile 

proteins actin and myosin, whose molecular lengths are ~5.5nm and 160nm respectively. 

The positions and intensities of the reflections in the pattern represent the average structural 

arrangement of the protein molecules at the time of scattering; thus changes in the diffraction 

pattern throughout a complete contraction reflect changes in the average molecular structure.

Muscle fibres are not truly crystallographic structures, but they do contain regular 

helical repeats which give rise to distinctive x-ray diffraction patterns. Like most biological 

samples, muscle is a poor scatterer which needs a very intense source of x-rays to produce 

good quality diffraction images. The experiments described in this work used synchrotron 

radiation to obtain diffraction patterns from highly ordered frog sartorius muscle samples.

In principle, since the diffraction pattern is determined by the Fourier Transform of 

the diffracting structure, it should be possible to reverse the process and obtain the original 

structure from an inverse Fourier Transform of the diffraction pattern (Chapter 3). 

However, the recorded patterns contain no phase information, so the underlying muscle 

structure cannot be determined in this way. Instead, theoretical transforms from
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macromolecular models must be compared with experimental data. Simplified 

representations of the protein molecules are built into three dimensional structures which 

approximate the gross structure of muscle as we know it. The models are mass projected, 

and the mass projections Fourier transformed and squared to give a two dimensional 

intensity distribution comparable to the X-ray diffraction patterns. A “trial and error” method 

is then employed, modifying the models to improve the match between calculated and 

experimental results.

An introduction to the theory of muscle contraction is presented in Chapter 2, 

including the structure of the protein molecules, their arrangement within the muscle fibres, 

and a discussion of the more popular proposed mechanisms of interaction and force 

generation. The theory of x-ray diffraction is described in Chapter 3. Chapter 4 describes 

the experimental procedure for obtaining low angle diffraction patterns from whole muscle 

samples, with the resulting data presented in Chapter 5. In Chapter 6, three dimensional 

computer modelling procedures are discussed, with emphasis on the methods used in this 

work. The results from modelling the structure of muscle at rest are presented in Chapter 7, 

followed by investigations into the structure of the isometric plateau and unloaded shortening 

states in Chapter 8. Chapter 9 summarises the results of this modelling, with conclusions 

and suggestions for further work.
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2.1 Introduction

Through evolution, the structure and properties of different muscle types have 

diversified to perform a wide range of functions, adapting to such criteria as speed or 

strength. The elements of the underlying contraction process which are common to all 

muscles are revealed by the similarities between different types, whilst the differences mean 

that suitable samples may be found for varied investigation techniques. Although the 

molecular structure may differ between muscle types, the insights into the contractile cycle 

which are gained from such varied methods as structural studies and biochemical or kinetic 

analyses can be applied to muscle in general.

All vertebrate muscles can be classed as either smooth or striated muscle. Smooth 

muscle is found in the internal organs of the body, and contracts involuntarily: it gets its 

name from its smooth appearance under an optical microscope. In contrast, striated muscle 

is crossed by alternating dark and light bands when viewed through an optical microscope. 

Striated muscle can be further divided into cardiac muscle and skeletal muscle: cardiac 

muscle is found in the heart, and is capable of sustaining regular, involuntary contractions; 

skeletal muscle is attached to the skeleton and causes motion of the body under voluntary 

stimulation.

Vertebrate skeletal muscle is the most ordered of these muscle groups, making it ideal 

for x-ray diffraction studies which require good structural order. Whole muscles consist of 

fibres arranged roughly parallel to the long axis of the muscle, so that when the muscle 

contracts, the force acts along its length. This lengthways contraction simplifies 

experimental tension and length measurements on a macroscopic scale.

2.2 Muscle Physiology and Energy Supply

Skeletal muscle contraction is triggered in vivo by the nervous system, via the nerve 

attached to each muscle. The sarcolemma membrane surrounds the muscle fibres and 

periodically forms T-tubules leading to the interior of the fibre. The stimulus is a momentary
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depolarisation of the nerve membrane, which propagates as a voltage change through the T- 

tubules to the sarcoplasmic reticulum. When the voltage change reaches the sarcoplasmic 

reticulum calcium ions (Ca2+) are released, and the increased Ca2+ concentration induces 

contraction. When the stimulus is removed, the Ca2+ ions are recovered to the sarcoplasmic 

reticulum and the muscle relaxes.

In an isotonic contraction, the muscle produces macroscopic work by shortening 

against a load. However, if the load is equal to the maximum force the muscle can produce 

and its length is effectively fixed, the muscle will produce internal tension instead of doing 

work, and the contraction is said to be isometric. The energy supply to do work or produce 

tension comes from the hydrolysis of ATP (adenosine 5'-triphosphate) to ADP (adenosine 

diphosphate) and inorganic phosphate:

Mg.ATP2' + H20  -> Mg.ADP' + P i2' + H +

ATP is initially replaced by a creatine kinase buffer system, and in the long term by 

glycolysis or oxidative phosphorylation.

1.0 T

Load £

V elocity
^1 max

Figure 2.1: Relation Between Load, Velocity o f Shortening and Power Output [8]

The power output is at a maximum when both shortening velocity and 
load are one third o f their maximum values, and falls to zero when either 
quantity is zero.

0.5 - -  0.1 P o w e r  (PV)
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The chemical energy released by the ATPase reaction is converted into the mechanical 

force responsible for muscle contraction, plus generated heat energy. The amount of work 

done depends on the shortening velocity of the muscle, which in turn depends on the load 

against which the muscle works. Figure 2.1 shows the relationship between shortening 

velocity and load [54, 55] (after Bagshaw [8]); the velocity is at a maximum for unloaded 

shortening, and is zero for isometric contraction. The power output (PV - also shown) 

peaks when the shortening velocity and load are about one third of their maximum values 

[54, 55], and falls to zero during both the unloaded shortening (P=0) and isometric 

contraction (V=0) phases.

2.3 Vertebrate Skeletal Muscle

A whole vertebrate skeletal muscle consists of bundles of fibres sheathed by 

connective tissue (fig. 2.2). This tissue forms tendons at either end of the muscle which 

attach the muscle to the skeleton. Each muscle fibre contains about a thousand striated 

myofibrils, which are strictly aligned to give the fibre an overall banded appearance. The 

origin of the striations is an alternating series of high and low protein density bands repeating 

lengthways along the myofibril. The basic repeating unit, the sarcomere, is typically 2-3|im 

long depending on the state of the muscle (fig. 2.2), and contains both contractile proteins 

which are actively involved in the force generating process, and structural proteins which 

hold the sarcomere structure in place.

The sarcomere consists of two sets of interdigitated filaments, called the thick and 

thin filaments. The region where the two sets of filaments overlap forms a band of high 

protein density. This band appears dark under an optical microscope and is labelled the A- 

band because it has a relatively anisotropic refractive index (fig. 2.3a). The thin filaments 

alone form a light, low density region which is the relatively isotropic I-band. The thick 

filaments alone form the slightly darker H-band.

A cross-section through the myofibril at overlap (fig. 2.3b) shows that the thick 

filaments form a hexagonal array, with the thin filaments occupying the trigonal points of
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Whole Musc le

Hi S in g le  M u sc le  F ibre

S tr ia te d  M yo fib r il

S a rc o m e re
S tr u c tu r e

S q u a re  th in  H e x a g o n a l  *hin  D o u b le  hexagonal  H e x a g o n a l  th i ck
f i l a m e n t  l a t t i c e  f i l a m e n t . l a t t i c e  la t t ice  in over lap  f i l a m e n t  l a t t i c e

n ear  Z - l in e  ' n e a r  o v e r la p  
r e g io n

region

Figure 2.2: Skeletal Muscle Structure (courtesy R.I.Bayliss)



Figure 2.3: Electron Micrographs o f Frog Sartorius Muscle (courtesy R.I.Bayliss)

(a) Longitudinal slice through a muscle fibre showing the sarcomere 
structure with its alternating light and dark striations.

Magnification: x 14,100 times

(b) Cross sectional slice through a muscle fibre showing various 
regions o f the sarcomere:

O : Full overlap region

M: M-line

H: H-band

Magnification: x 85,000 times





the lattice. The individual sets of filaments are held in register across the myofibril by 

structural protein arrangements. The M-lines connect the centres of the thick filaments [82], 

whilst the Z-lines join the centres of the thin filaments. The filament separation is balanced 

between the elastic attraction forces of these structural formations, and the electrostatic 

repulsion between the filaments. From the overlapping ends of the thin filaments towards 

the central Z-line, the thin filament lattice gradually changes to become more square than 

hexagonal.

Microscopy studies have shown that the macroscopic shortening of a muscle during 

contraction is the result of each of the sarcomeres shortening in length. Observations show 

that the A-band remains at a constant length and the I-band shortens [63, 72], which 

suggests that the length of the individual filaments remains constant during contraction whilst 

the degree of filament overlap increases (fig. 2.4a). This is the Sliding Filament Theory put 

forward by A.F.Huxley in 1954 [63].

Crossbridges regularly protrude from the surface of the thick filament [67], except 

for a bare region around the centre of the filaments, and move out to interact with the thin 

filaments during contraction. This interaction, together with the sliding filament theory, 

explains why the maximum tension reached by a given muscle during isometric contraction 

varies strongly with the sarcomere length before stimulation (fig. 2.4b). At sarcomere 

lengths over 3.5|xm the thick and thin filaments do not overlap at all and no crossbridge 

interaction can occur. As the sarcomere length decreases, the filament overlap and therefore 

the number of crossbridges interacting with the thin filaments increases, corresponding to an 

increase in force production. This trend continues until the sarcomere length is such that the 

thin filaments overlap the bare region of the thick filaments. The number of interactions does 

not change since there is no new crossbridge overlap, and the force produced during 

contraction also remains constant. At still shorter sarcomere lengths, the thin filaments start 

to interfere with the interactions in the other half of the sarcomere, and the force decreases 

rapidly.

The interaction between the crossbridges of the thick filaments and the thin filaments 

results in filament sliding, and is therefore the key to the force generation process.
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(a) Sarcomere Shortening Under an 
Optical Microscope

Sarcomere Shortening in Terms o f the 
Sliding Filament Theory

1.0 -

z

1.0

Sarcom ere Length (/urn)

(b) Variation of Isometric Tension with Sarcomere Length (after Squire [133])

Figure 2.4: The Sliding Filament Theory

(a) The changing length of the striations under an optical microscope 
can be explained in terms of the degree of filament overlap present as 
a muscle contracts.

(b) Similarly, the peak isometric tension produced by a muscle can be 
explained by the degree of overlap between filaments. The amount of 
overlap depends on the sarcomere length at which the isometric contraction 
takes place.
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2.4 Thin Filament Structure

The main constituent of the thin filament is G-actin, a 42kDa (IDa (Dalton) = 1 

atomic mass unit), slightly elongated globular protein with two domains, each consisting of 

two subdomains [79, 32]. The overall G-actin dimensions are 5.5nm by 3.5nm. The G- 

actin monomers polymerise to form F-actin, a somewhat flexible [111] helical structure of 

radius lOnm [29, 31, 32, 156] in which the larger domain of each monomer lies towards the 

centre of the helix [105, 59]. The genetic structure of F-actin is a left-handed helix, with a 

pitch of 5.9nm and an axial translation of 2.73nm (fig. 2.5). Alternatively, it can be 

visualised as a long two-stranded helix where each strand has a pitch of 73.0nm, an axial 

translation of 5.46nm, and is staggered with respect to the other strand by 2.73nm [46, 70, 

104, 44]. The actin monomers are all oriented the same way within a filament, with the long 

axis roughly pointing radially out from the filament axis [156, 104], bestowing polarity on 

the thin filaments.
Troponin Tropomyosin

A ctin

Figure 2.5: Thin Filament Structure [8]

The regulatory proteins tropomyosin and troponin also contribute significantly to the 

thin filament structure. The tropomyosin molecule is a 66kDa two-stranded helix, 40nm 

long [145, 162]. The tropomyosin winds around the groove of the long actin helix with a 

pitch of 38.5nm, with each molecule covering seven actin monomers [113, 114]. Adjacent 

molecules overlap to form a junction [115], which is strengthened by a molecule of troponin 

[127].

Troponin is an 80kDa globular protein [28] which is strongly affected by the Ca2+ 

ion concentration, and together with tropomyosin regulates the interaction between thick and
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thin filaments. The troponin molecule (TN) is composed of three parts, TN-I, TN-C, and 

TN-T. TN-I binds to the actin helix, inhibiting actin-myosin interaction [160, 53, 121]; TN- 

C binds to Ca2+ in proportion to the Ca2+ concentration, reversing the inhibitory effect of 

TN-I at high Ca2+ concentrations [20]; and TN-T binds to tropomyosin [111], bridging the 

junction between adjacent tropomyosin molecules, and holding them at the edge of the actin 

groove at low Ca2+ concentrations [36, 112]. Thus the precise position of tropomyosin with 

respect to the actin helix is determined by the its interaction with troponin, which depends on 

the physiological conditions [114]. The regulation process is discussed further in §2.6.

2.5 Thick Filament Structure

The thick filaments are primarily an aggregation of molecules of the 520kDa protein 

myosin [92]. Each myosin molecule consists of two chains which coil around each other to 

form a double helical chain with two globular heads (fig. 2.6a). The larger 166kDa section 

of this chain, called the light meromyosin chain (LMM) [93, 34], binds strongly to its 

counterpart in other myosin molecules to give rise to a thick rod or backbone of myosin 

molecules 17.6nm in width [83]. The heavy meromyosin (HMM) section of each molecule 

consists of a short lOOkDa length of the coiled coil chain (S2), the two myosin heads (SI) of 

120kDa each, and an additional two ~20kDa chains on each head called the essential and 

regulatory light chains which are thought to be involved in the regulation of the ATP 

hydrolysis [107]. The HMM sections of the myosin molecules protrude from the backbone 

to form the observed crossbridges [68].

The myosin molecules aggregate such that the pairs of myosin heads form a triple 

helix of pitch 42.9nm on the filament surface (fig. 2.6b) [80, 135, 136]. Head levels are 

separated axially by an average of 14.3nm, and each level contains three pairs of heads [72]. 

A slight distortion from the perfect helix has a significant effect on the resulting diffraction 

patterns [144]. The thick filaments are also bipolar, with the molecules aligned such that the 

heads point in opposite directions on either side of the M-band. This results in a bare zone 

around the M-band, where there are no crossbridges [8, 133].

12



M yosin  H eads
L igh t Chains

LM M H M M

(a) The Myosin Molecule

42.9nm
i 14.3nm

(b) Arrangement o f Myosin Molecules in the Thick Filament

Figure 2.6: Thick Filament Structure
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The thick filaments also contain significant amounts of C-protein, a 150kDa rod 

shaped protein approximately 40nm by 2nm [108]. The C-protein molecules bind strongly 

to the thick filament backbone in seven strips on each side of the filament M-line, with an 

axial repeat of 44nm. The slight distortion in the triple helix may be attributable to the 

presence of C-protein molecules [17]. The backbone structure is undetermined at present, 

though recent modelling studies have suggested that the myosin molecules pack closely in a 

curved molecular crystalline layer, with a small tilt of 1-3° from the filament axis [17].

2.6 Filament Interaction

Structural studies have shown that after stimulation of a muscle, but before any force 

is produced, the myosin heads move out radially towards the thin filaments. This enables 

the myosin heads to interact with the actin monomers; a prerequisite for filament sliding. 

There is evidence that the S2 chain is very flexible at both the HMM-LMM and the S2-S1 

junctions [155, 83]. The flexibility and elasticity of the S2 chain confers a certain freedom 

of movement on the myosin heads, allowing the heads to change their position and 

orientation without altering the backbone structure; additional backbone rearrangement is 

possible but it is not a requirement for myosin head movement.

The crystallographic co-ordinates of the atoms in the actin filament (fig. 2.7) [79, 59, 

91] and the myosin head (fig. 2.8) [124] have recently been determined. The positions of 

the myosin binding sites on the actin monomers, and the ATP and actin binding sites on the 

myosin heads, have been established [152]. This breakthrough has allowed Molecular 

Dynamics calculations to investigate the actin-myosin interactions in detail [122, 49, 25]. 

These calculations indicate that the interaction between the thin filaments and the myosin 

heads is likely to be an electrostatic one, rather than a physical connection between the two: 

the actin filament is primarily surrounded by a negative potential, and the interaction sites on 

the myosin head are positively charged [25]. In this work, the term “bonding” will refer to 

the actin-myosin interaction, whatever form it takes.
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(a) G-Actin Monomer

(b) F-Actin Filament 

Figure 2.7: Cry stallo graphic Structure o f Actin (courtesy J. Harries)

11

Figure 2.8: Cry stallo graphic structure o f the Myosin Head (courtesy J.Harries)
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The first step in the contraction process is the release of Ca2+ ions from the 

sarcoplasmic reticulum, as described in §2.2. Troponin and tropomyosin, the regulatory 

proteins found in the thin filament, are strongly affected by the Ca2+ ion concentration; the 

Steric Blocking Mechanism describes how the presence of these ions may initiate contraction 

as follows [134, 138, 87].

In the presence of a low concentration of Ca2+ ions, the tropomyosin molecules 

follow the groove of the long actin helix as described in §2.4, weakly linked to each of the 

seven corresponding actin monomers. X-ray diffraction and electron microscopy studies 

have shown that the preferred myosin head binding site is on the outer face of the actin 

monomer. Therefore in the low [Ca2+] of the rest state, the tropomyosin molecules block 

this site (fig. 2.9a) inhibiting the actin-myosin interaction.

Troponin molecules have a high affinity for both actin and tropomyosin in the 

presence of low Ca2+ ion concentrations, and they pull the tropomyosin into the blocking 

position towards the outer domain of the actin monomer. In high concentrations of Ca2+ the 

troponin loses its affinity for actin and it no longer holds the tropomyosin in position. The 

weak links between the actin monomers and the tropomyosin molecules pull the tropomyosin 

further into the F-actin groove to follow the actin symmetry more closely, leaving most of 

the outer face of the actin monomer accessible to the myosin head. Thus the tropomyosin 

inhibition is removed and binding can take place (fig. 2.9b).

However, recent studies have shown that this is not the whole story by determining 

that each myosin head actually binds to two sites on the actin filament [5, 6]. The major 

interaction is with the outer domain of one monomer as described above, while another 

interaction takes place between the tip of the myosin head and the inner domain of the 

adjacent actin monomer. According to the simple steric blocking model, this second site is 

still blocked by the tropomyosin molecules. Clearly some further movement of the 

tropomyosin is necessary to allow a full interaction. It has been suggested that this extra 

movement may be caused by some internal rearrangement of the inner domain of the actin 

monomer, or by the presence of myosin heads in the vicinity of the thin filament. Whatever 

the cause, this additional step supports the proposal of a two stage interaction between thin
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M yosin  H ead  
1150]

Figure 2.9: The Steric Blocking Mechanism (after Squire [133])

(a) In unactivated muscle, the tropomyosin molecules take positions at 50 ° to 
the line joining adjacent monomers, blocking the favoured myosin binding 
site.

(b) In activated muscle, the tropomyosin moves further into the groove o f the 
F-actin helix to an angle o f 70 °, uncovering the binding site.
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filaments and the myosin heads. This topic will be returned to in the next section.

2.7 Contraction Theories

Numerous theories have been proposed to describe the contraction mechanism, 

ranging from the plausible to the probable. Surveying the comprehensive reviews which 

compare and contrast various models [78, 27, 66], it is interesting to note that although the 

theories themselves vary widely, there are some common elements which keep recurring, 

and are therefore likely to be involved in the real mechanism. This section describes the key 

elements of some of the more popular theories which attempt to explain how the interaction 

between thick and thin filaments generates a force which result in the filaments sliding past 

each other.

2.7.1 Crossbridge Cycle Models

Most models fall into one of two categories: those involving a crossbridge cycle, and 

those which offer an alternative cause of filament sliding. The first group are based on the 

Cycling Head model proposed by H.E.Huxley in 1969 [69], combined with the Lymn- 

Taylor ATP hydrolysis cycle [94]. In its simplest form, this theory suggests that the myosin 

head attaches to an actin monomer in a1 particular orientation, and then the attached head 

moves to take on a distinct orientation. Since the head is still bound to the thin filament, they 

slide relative to one another (fig. 2.10). The head then detaches from the actin filament and 

the release of energy from ATP hydrolysis results in its reorientation, ready to attach to the 

next actin monomer in the thin filament and repeat the process, hence the term cycling head. 

The bipolar nature of the thick filaments ensures that the relative sliding moves the thin 

filaments in both halves of the sarcomere towards the M-band in the centre, and the summed 

effects of many heads asynchronously cycling result in macroscopic shortening.

The precise relation between the ATPase cycle and the crossbridge cycle is not 

confirmed, but in the basic Lymn-Taylor model the hydrolysis of one ATP molecule is 

linked to one crossbridge cycle [94]. If the cycle is interrupted by blocking the recovery of
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ATP after hydrolysis, the myosin head cannot release the actin monomer and is trapped at the 

end of the power stroke. The muscle is then said to be in the rigor state, where the majority 

of the myosin heads are bound to the thin filaments, but are unable to cycle. The high 

proportion of bound heads makes the muscle stiff and gives a high passive tension, but the 

trapped state means it is unable to generate tension upon stimulation.

In this model the rigor state is equivalent to the conformation at the end of the power 

stroke, though other models may differ in their interpretation. It is clear that muscle requires 

both Ca2+ and ATP to contract and generate force; without Ca2+ the heads do not bind 

significantly to the actin monomers, and without ATP they cannot release at the end of the 

cycle. In both cases, no force is generated.

2.7.2 Weak and Strong Binding States

The cycling head model has been modified as research provides new information, but 

this simple mechanism still forms the basis of many current theories. The Lymn-Taylor

Hydrolysis 
of ATP

A ctin  F ilsim ent

F lexible Chain

C rossbridge

Addition
o f ATP

Phosphate
Release

Force
Production

Figure 2.10: Basis Of The Cycling Head Model 

See text fo r details.
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cycle has been modified to allow for the fact that ATPase does not inevitably lead to 

detachment of the actin-myosin bond [142, 33]. In the modified cycle, the crossbridges 

alternate between a weak binding state and a strong binding state, which returns to the 

proposal of a two stage interaction suggested in §2.6. The central supposition of this theory 

is that the myosin heads initially bind weakly to the thin filaments, then undergo a 

conformational change to form a stereospecific strong bond. This strongly bound 

conformation is a strained one, and the power stroke releases the strain energy, returning the 

head to a weak binding conformation.

Many heads are weakly bound at any one time and are in rapid equilibrium with the 

detached state; only a small portion of these heads go on to become strongly bound. The 

mechanism by which the transfer from one state to the other is realised may be modulated by 

the specific nucleotide present at the ATPase site. The concept of two binding states and a 

power stroke transfer between them is attracting a lot of attention, and there is structural and 

biochemical evidence to support the theory [40, 58, 120, 151, 123].

The mechanism of transfer between states could be explained by a model where the 

release of inorganic phosphate triggers the change from weak to strong binding [123]. The 

cycle starts with the myosin head strongly bound to the thin filament, after relative sliding 

has taken place (fig. 2.11). The first step involves a molecule of ATP attaching to the 

ATPase site in a cleft on the myosin head, causing the bond to change from a strong bond to 

a weak one. This results in a reorientation of the head to partially close the ATPase cleft, 

which completely detaches the myosin head from the thin filament. The reorientation causes 

the hydrolysis of ATP, and the ADP and inorganic phosphate hydrolysis products remain in 

the cleft: the phosphate is only released when the head rebinds to the thin filament, triggering 

the power stroke and resulting in relative sliding of the filaments. The power stroke also 

reopens the ATPase cleft, allowing another molecule of ATP to bind to the myosin head to 

start the cycle again.

Again, if ATP recovery is blocked, the rigor state is reached. In this model, the 

rigor state is therefore equivalent to the strong binding state at the end of the power stroke. 

However, there is another puzzle regarding the diffraction data: strongly defined layer lines
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from muscles in rigor take on the spacing of the actin helical repeats, revealing a significant 

amount of binding to actin, but no trace of similar rigor layer lines are observed in 

contracting muscle patterns [70]. If the strong binding state is indeed equivalent to the rigor 

state, why is no rigor pattern observed? In fact, because the diffracted intensity is 

proportional to the square of the number of diffracting centres, no actin-based rigor lines 

would be visible if only a small number of heads were in the rigor state at any one time. In 

the two-state model described above, only a few heads at any one time were in the strongly 

bound state, which is supported by electron paramagnetic resonance (EPR) measurements 

which indicate that about 20% of the myosin heads are strongly attached in isometrically 

contracting muscle [21].

2.7.3 Tilting Crossbridge Controversy

The cycling head models require some sort of conformational change in the myosin 

head whilst it is attached to the thin filament to cause filament sliding. The predominant 

uncertainty with this class of model is whether the conformational change involves a tilting 

of the myosin head or some other movement. The tilting head was an original supposition of 

the cycling head model [64], and it is a neat theory; however, despite many attempts to do 

so, no unambiguous evidence of asynchronously tilting heads has been uncovered. X-ray 

diffraction studies show that the average axial mass projection of the myosin heads becomes 

more spread out during contraction, indicating that the heads have become less perpendicular 

to the filament axis and/or are less axially ordered than at rest. The results could be 

explained equally well by tilting crossbridges, or in terms of a simple axial motion of the 

attached heads without tilting, which is easily provided for by the elasticity in the S2 chains 

joining the heads to the thick filament backbone [76, 169, 172]. Electron microscopy 

studies appear to give conflicting evidence; some indicate that both the weakly bound heads 

and rigor heads are tilted [119]; others suggest that heads during isometric contraction take a 

range of values whose average is perpendicular to the filament axis, whilst at rigor the heads 

are regularly tilted [57, 56].

A high degree of axial order remains during contraction [70, 13]. Further time
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resolved diffraction studies suggest that changes in the axial orientation of the heads may be 

the effect of the strain imposed on them by tension generation, rather than the cause of the 

tension generation itself [13, 76]. The suggestion is that only a small fraction of the total 

number of diffracting heads and/or a small fraction of their mass performs random axial 

motions [98]. Physiological studies show that at least 70% of the myosin heads are attached 

in isometrically contracting frog muscle [116], which indicates that only small sections of the 

myosin head are reoriented during force generation.

Several small mobile loops have been identified in the myosin head structure [12, 

23, 128, 123, 124] which are affected by the nature of the attached nucleotide and the 

presence of actin. Diaz Banos et al [25] have used molecular dynamics calculations to study 

these flexible loops, and their conclusion is that it is possible to visualise a mechanism of 

contraction whereby these mobile loops are the small sections of the head which are 

rearranged during the force generation process; several possible interaction states exist where 

transfer from one state to the next would result in a firmer bond and a more strained 

orientation.

2.7.4 Step Size

Another controversial area is the step size of the contractile cycle; this is usually 

defined as the amount of relative sliding between filaments per molecule of ATP hydrolysed. 

If one molecule of ATP is hydrolysed per myosin head cycle, then this is equivalent to the 

power stroke of the myosin head. On this basis, early tilting crossbridge models set an 

upper limit to the step size of the maximum swing of the myosin head, then estimated at 

40nm (twice the length of the head) [69]. Since then, studies have placed the step size 

between 10 and 20 nm [62, 37, 64, 117]. More recent suggestions have ranged from 

smaller values of 4nm [73], to greater than 200nm [170, 171].

Much of the controversy may arise from the relationship between step size and ATP 

coupling, as well as from the different conditions under which experiments are carried out 

(reviewed by Burton [15]) [15, 39]. The ATP coupling is usually assumed to be one 

myosin head cycle per molecule of ATP hydrolysed, but Yanagida’s results could be
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explained if many head cycles took place for one ATPase: thus the total amount of sliding per 

ATPase would be many times the amount moved by a single head. This suggests that ATP 

hydrolysis is not necessary for detachment of the actin-myosin bond, a theory which has had 

support in the past [117, 118, 65, 60]. The step mechanism itself also remains unclear; if 

the myosin heads are acting asynchronously, those heads which are at the end of their 

working stroke but are still attached may well affect the working heads. The effect of two 

myosin heads on the same S2 chain must also be considered.

Recently, myosin steps of 12nm have been observed directly, and support for one to 

one ATP coupling remains strong [35]. However, given the history of controversy over the 

step size, a lot more work needs to be done before the uncertainty can be removed.

2.7.5 Non-Crossbridge Cycle Models

This section briefly introduces several of the alternatives to the popular crossbridge 

cycle discussed in the previous sections. One model suggests that the contraction force is 

actually generated by a change in the length of the actin filaments [45, 7]. The theory is that 

the binding of myosin to actin induces a change in the structure of the actin helix. ADP is 

exchanged for ATP, which is subsequently hydrolysed. The actin structure reverts to its 

original state, at which point the myosin dissociates from the actin filament [147,149].

A more recent version of the actin force generator model has proposed that the 

change in the actin helix structure is a transformation between ribbon and helix states [129, 

130, 131]. After hydrolysis of ATP on the myosin head, the head binds to the actin filament 

inducing a transformation of that section of actin helix to a ribbon state, whose repeat is 

commensurate with the myosin repeat, and breaking the actin - tropomyosin bond.

The contraction force is produced when the actin segment reverts to the helix 

structure and shortens. The inextensible tropomyosin/troponin complex takes on the role 

which actin holds in the crossbridge cycling models: that of summing the force generated 

from each actin segment, and transmitting the total force to the Z-disc, resulting in filament 

sliding. The actin segment is anchored by the myosin head, and as it shortens during 

helicalisation, the tropomyosin pulls the Z-disc towards the centre of the sarcomere. The
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twisting of the actin helix during the transformation results in the breaking of the actin- 

myosin bond. This theory can explain many of the mechanical observations related to the 

contraction process, and is a perfectly valid model which should be investigated further.

Another interesting approach to contraction involves electric dipole field theory [77].

The myosin heads are considered to act as an array of electric dipoles, negatively charged at

the backbone end and positively charged at the tip. The myosin dipoles induce a charge on

the rod-like thin filaments in much the same way as a magnetic dipole induces magnetism in

a ferromagnetic rod. The dielectric constant of the surrounding material determines whether

the induced charge attracts the rod or repels it, which introduces a dependence on the
2+concentration of free ions, i.e. Ca , in the surrounding environment.

The contractile force is generated by the coulombic interaction between the dipoles 

and the charged rod, and is proportional to the energy density at the tip of the thin filament. 

The electric dipole on the myosin head is formed when it binds ATP, and the ATPase cycle 

allows multiple ATP binding to one head. The rigor state is not considered to be part of the 

active contraction cycle, and is instead a completely separate state where the myosin heads 

and actin monomers are physically cross linked: the active cycle states involve electrostatic 

interaction rather than physical contact between the two components.

The last model to be discussed here is the liquid crystal model of contraction [158]. 

This involves the formation of a trigonal channel by three adjacent myosin filaments and the 

internal actin filament. In relaxed muscle, the myosin heads are situated close to the 

backbone and the thick filaments appear to be approximately cylindrical. Although the thick 

and thin filaments have different periodicities, as quasi-cylinders the difference is negligible 

and the structure is stable. The symmetry is lost, however, when the myosin heads move 

outwards towards the thin filaments upon activation, and the differences in periodicity 

become apparent. The resulting non-equilibrium state causes the filaments to move relative 

to one another, and the polar nature of the filaments ensures unidirectional motion in each 

half of the sarcomere.

Although the crossbridge cycle model is very intuitive, there is as yet no direct 

evidence for it which cannot be explained by an alternative theory. This section has shown
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that a crossbridge cycle is by no means the only possible cause of filament sliding, and all 

the models stated here are theoretically capable of explaining many aspects of the behaviour 

of muscle.

2.8 Summary

The information in this chapter reveals that the basic structural components of 

vertebrate skeletal muscle are helical filaments, occupying a two dimensional hexagonal 

lattice: this then is the starting point for building a model. The structure can be treated as a 

collection of chain molecules, and diffraction from such a structure is discussed in Chapter 

3.

The mechanical force of contraction is believed to originate in an interaction between 

the myosin heads on the thick filaments and actin monomers in the thin filaments. The 

interaction involves both Ca2+, without which the troponin/tropomyosin complex blocks the 

binding sites on the actin helix and myosin heads cannot bind significantly to the thin 

filaments, and ATP, without which the heads cannot release the bonds and are trapped in the 

rigor state. With both elements present, the myosin heads bind to the thin filaments and 

generate the contraction force, causing the thick and thin filaments to slide past each other.

Several mechanisms of contraction were discussed in this chapter, giving examples 

of how the observed behaviour of muscle can be explained without invoking a crossbridge 

cycle. However, the crossbridge cycle is the generally accepted basis of muscle contraction. 

The interpretation of the modelling results in this work was approached with the crossbridge 

cycle in mind, although no assumptions were made about the contraction process in the 

actual modelling process.
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3.1 Introduction

A monochromatic, coherent beam of x-rays falling onto a periodic collection of 

atoms is preferentially scattered in certain directions according to the structure of the 

collection. The x-rays are actually scattered by the electrons in the atoms, and the resulting 

scattered intensity distribution is determined by the Fourier transform of the structure’s 

electron density distribution, F(S) :

I(S) = F(S)*F(S) = |F(5)|2 eqn. (3.1)

where:
S = reciprocal space coordinate
l(S) = intensity distribution given by a structure
F(S) = Fourier transform o f the electron density distribution o f the structure
F( S) is defined in §3.2

Muscle is a polycrystalline structure: the lattice is well defined in small crystallite 

regions which are themselves randomly oriented throughout the muscle fibre. The 

diffraction pattern combines components from both the helical and crystal lattice 

arrangements in muscle [102]. The primary contributions to the low angle x-ray diffraction 

pattern from muscle come from the helical actin and myosin structures within the thin and 

thick filaments, with less intense contributions from other proteins. Thus the majority of the 

pattern can be interpreted in terms of the scattering from a two dimensional array of helical 

structures. This chapter develops the theory necessary to reconstruct such scattering, with 

special reference to the molecular arrangement in muscle [157,19, 81].

3.2 Basic Diffraction Theory

When a wave of wavelength X is elastically scattered by an atom, the scattered 

wave at a distance r from the atom is of the form [157]:

Aei(kr+(l>) eqn. (3.2)



where:
<|> = the initial phase o f the wave

= the incident wavevector

k = H = x

Radiation is scattered equally in all directions, and the scattering power of the atom 

is independent of the direction of observation. However, when the atom is replaced by a 

collection of atoms, the individual waves interfere with each other to produce a scattering 

pattern whose intensity depends on the direction of scattering. For a pair of atoms separated 

by r (fig. 3.1) the resultant scattered wave is of the form:

Incident x-rays (k#) are scattered (k) by two atoms separated by r. The 
rays are parallel until the bottom ray is scattered by the lower atom, and 
again after the top ray is scattered by the upper atom. During the time that 
the rays are non-parallel, the top ray travels kC).r whilst the bottom ray 
travels k.r. Thus the path difference between the two rays is (k - ko).r.

Note that if the wavelength is much larger than the separation of the atoms, then the 

two scattered waves are almost in phase in all directions, and no interference pattern is

eqn. (3.3)

where:
f = the scattering power o f a single atom 

k0 = the incident wavevector 

k = the scattered wavevector at 20 to the incident direction

k

pla

o

Figure 3.1: Scattering From Two Atoms
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observed. This explains why x-rays are suitable for diffraction from atomic structures; the 

wavelength is of the same order of magnitude as the atomic scale.

Bragg scattering occurs in the special case where the atoms form a series of planes 

(fig. 3.2). For constructive interference to give a peak in the interference pattern, the waves 

from the two planes must be in phase, which means that the path difference between the two 

waves must be a whole number of wavelengths. The path difference is the distance ABC in 

figure 3.2: the geometry of this diagram results in the Bragg scattering condition:

2<isin0 = wA, eqn. (3.4)

where:
d = separation o f the planes 
0 = angle o f incidence 
X = incident wavelength 
n = integer order 0,1,2....

plan e 1
d

plane 2

B

Figure 3.2: Bragg Scattering From A Set Of Planes

Incident x-rays (k#) are scattered (k) from two planes separated by a 
distance d. The bottom ray travels a distance ABC further then the top 
ray, leading to a path difference o f ABC between the two rays. This 
length is dependent on the angle between the incident x-rays and the 
scattering planes.

In general the atoms do not form planes, and the simple Bragg condition does not 

hold. In this case the individual interference effects from each atom with respect to an origin 

atom of the form given in equation (3.3) are summed to give the scattering factor for the 

collection of atoms:
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eqn. (3.5)
j=l

where:
n = number o f atoms 

f j  = scattering power o f a single atom

c _ (k-k0)
-  ~  2 k

= the scattering vector

Finally, the discrete scattering units may be replaced by a continuous electron 

density function which allows for atomic structure, rather than treating the atom as a point 

source. This also allows the introduction of scattering centres other than a single atom such 

as molecules or other particles. This generalisation results in equation (3.5) becoming:

This is the definition of the Fourier transform of the electron density distribution. 

Thus the scattering function of a collection of scattering units is the Fourier transform of the 

electron density distribution function, and by equation (3.1) the resulting intensity 

distribution is the square of the modulus of the Fourier transform.

3.3 Crystalline Diffraction

A three dimensional crystal structure consists of a basic unit cell which repeats 

throughout the whole structure. The unit cell can be described in terms of its three vectors 

(fig. 3.3); the repeating nature of the structure means that any point in the crystal can be 

reached by an integer combination of these vectors. The structure factor of the crystal is 

determined by that of the unit cell. Equation (3.6) can be expanded using vectorial 

components:

F(S) = !  p{r)e2K,^-d v eqn. (3.6)
V

where:
p(r) = electron density distribution o f the scattering structure 

dv = volume element
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F(XYl)  = 11 fp(xyz)e2ni(Xx+Yy+Zz)dxdydz eqn. (3.7)

where:
r = x,y,z = real space coordinates 
S = X, Y,Z = reciprocal space coordinates

a

Figure 3.3: General Unit Cell Vectors

Any point in a lattice based on this unit cell can be reached by an integer 
combination o f the unit cell vectors a, h  and c.

For a single unit cell, the electron distribution function need only be considered

between the cell limits. Introducing Miller indices [hkl] to describe the set of planes 

intersecting the unit cell vectors at j a ,  j b  and j c ,  the corresponding structure factor for

the unit cell is:

Fhkl = ] f f p ( w ) e 2m,U,' X+kb*y+lC*Z)dxdydz eqn. (3.8)
0 0 0

where:
Fhki = structure factor arising from the hkl planes in one unit cell 
p(xyz) = electron distribution function for the unit cell

a*,b*,c* = reciprocal space unit cell vectors:
* b x c  , * c x a  * a x b

a = -= —— ; b = —=—— / c = ———
a b x c  a - b x c  a b x c

Fmi is only non-zero for integer values of [hkl], so the diffraction pattern is a set 

of discrete spots. These reflections form the reciprocal space lattice for the crystal. The 

lengths of the reciprocal lattice unit cell vectors are inversely proportional to the 

corresponding real space vectors.
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For the whole crystal, the structure factor is the sum over all unit cells:

eqn. (3.9)
j

where:

f j  = structure factor for one unit cell

By analogy to the three dimensional case, a two dimensional real space crystal 

lattice has a reciprocal lattice consisting of a set of rods perpendicular to the lattice plane, 

separated by a distance inversely proportional to the real space lattice spacing. The reciprocal 

lattice for a one dimensional array of points is a set of planes perpendicular to the one 

dimensional array, separated by a distance inversely proportional to the point spacing.

3.4 Helical Diffraction

3.4.1 Diffraction From An Infinite Continuous Helix

An infinite continuous helix is more easily described in cylindrical polar coordinates 

(r,9,z) than in Cartesian coordinates (x,y,z) (fig. 3.4).

4 -

x
Side view Plan view

Figure 3.4: Cartesian and Cylindrical Polar Coordinates

Any point on the cylindrical helix can be converted to Cartesian coordinates by:
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x = r0 cos0
y = r0 sin0 eqn. (3.10)
_ _  p (e-e0) 
z “  2n

where:
r0 = radius o f the helix
0O = angular position o f the helix at z = 0
p = pitch of the helix

An infinite continuous helix can be defined as the convolution of a single turn of a helix with 

an infinite set of points separated by the helix pitch [157, 81, 19, 132]:

h^irQz) = h](rQz)*P(xyz) eqn. (3.11)

where:
hoo(rQz) = infinite continuous helix 

hj(rQz) = single turn of a helix 
P( xyz) = pitch function

Thus by the convolution theorem, the Fourier transform of the infinite continuous helix is

given by:

F(h00)=F(h])-F(P)  eqn. (3.12)

The pitch function is confined to a one dimensional set of points in the z direction separated 

by a distance p,  by the equation:

P(xyz) = 5(x)5(y) X $(z  “  nP) e9n- (3.13)
n = —oo

The Fourier transform of this function is:

F(P) = f  P(r]e‘- - d r

v eqn. (3.14)
= £ 8  (kz - 2 f )

n
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As described in §3.3, this is a set of planes perpendicular to the helix axis, separated by a

distance — .
P

Considering the helical definition in equation (3.10), a single turn of a continuous helix is 

defined by:

hj(rQz) = S(r -  r0)b(z -  ? % * o)) eqn. (3.15)

Thus the Fourier transform is:

 ̂ ^  i(kx r0 cosQ+kvr0 sinQ+k7 ^^~
F(hi ) = ro f e 2n dQ eqn. (3.16)

0

From equation (3.11), the Fourier transform of the infinite continuous helix is therefore the 

product of equations (3.14) and (3.16):

2n
F ( h ~ )  =  2 > o  J  e i ( k * r ‘ ~ * V o * < * » < ® - « . > > d e  e q n . ( 3 . 1 7 )

n 0

Converting this to reciprocal space cylindrical coordinates (i?,\|/,^), defined by:

X  = 2nR cosy 
Y = 2kR cosy 

Z = 2n^

and substituting for: 

n  = e - y

we find:
271

F(h„) = J e2niRr0cosnelna d a  e(Jn (3 , g)
n  0

Comparing this equation to the definition of a Bessel function of order n :



271

2ninJn(X)= / e ‘XcosC1emC1d n
0

eqn. (3.19)

inn
and substituting for in = e 2 we find that the Fourier transform of an infinite continuous 

helix becomes:

F{h00) = Z r 0ein^ +^  9o)Jn(2nRr0) eqn. (3.20)
n

and thus the intensity of the diffraction pattern is:

/oo = | f ( M  2 = I r02Jn2(2KRr0) eqn. (3.21)
n

In real terms, this is a series of n discrete planes in reciprocal space at axial 

spacings of Z = The intensity is cylindrically symmetric: for a given value of n, the

intensity distribution depends only on R, and is independent of \|/. This means that all the 

intensity information can be recorded in one two dimensional plane, but all phase 

information is lost.

In general, the original diffracting structure can be recovered from its Fourier

transform by performing an inverse Fourier transform on F(S), where the inverse Fourier

transform is defined as:

F(S) = |  p(t)e2Ki-~dv Fourier transform

_7 eqn. (3.22)
p(r) = J ^(S) e ZKl- - d V  Inverse Fourier transform

V

However, the phase information which is lost in the recorded diffraction pattern is required 

to perform the inverse transform, which means that the original structure cannot be recovered 

by inverse transforming the diffraction pattern in this way.

The two dimensional diffraction pattern, then, is a series of layer lines perpendicular 

to the helix axis whose intensity distribution is determined by the helical arrangement of the 

scattering units. The central layer line where n - 0 is called the equator , and since
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J_n2{X) = Jn2(X), the diffraction pattern is symmetrical about the equator. The equator is 

actually determined by the mass projection onto the lattice plane (i.e. along the helix axis) 

and is insensitive to any changes to the helical structure in the axial direction. The pattern is 

also symmetrical about the Z -axis or meridian, due to the cylindrical symmetry of the Bessel 

functions. The meridian is sensitive to changes in the axial mass distribution and is 

unaffected by any variations in the plane perpendicular to the muscle axis.

Bessel functions have many interesting properties and their behaviour is well 

documented [157, 132]. The variation of Jn(2nRr0) with R and n is shown in figure 3.5.

The R-axis position of the first peak increases with n , which results in the distinctive helical 

“X” diffraction pattern.

3.4.2 Diffraction From A Helix of Discrete Atoms

Most helices of practical interest are not infinite or continuous, but are in fact made 

up of a series of units at regular intervals along the helical track. The repeating units may be 

atoms, molecules, or groups of molecules. To introduce discontinuity to an infinite 

continuous helix, the helix is multiplied by a series of planes perpendicular to the helix axis, 

separated by the axial subunit translation, t. The planes sample the infinite continuous helix, 

resulting in a discontinuous helix of points separated by t.

The convolution theorem is invoked again to give:

F(hd ) = F(h00)*F(P) eqn. (3.23)

where:
F{hd ) = discontinuous helix o f points 

F(P ) = plane function

The plane function is defined by:

P{xyz) = £& (z  -  z0 -  mt) eqn. (3.24)
m

which is Fourier transformed to:
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Figure 3.5: Squared Bessel Functions J  2 for-3<n<3
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F(P) = 8(^)8(*j,)e‘̂ zoZ d ( k z - eqn. (3.25)
m

This expression represents a series of points along the Z-axis in reciprocal space at axial 

spacings of

Using the form of F(/z00) calculated in equation (3.20), the discontinuous helix 

Fourier transform is given by:

F(hd ) = { Z r / iV+^~6o)Jn(2nRr0)} * m xm y)eik̂  I 5 ( k z
n m

eqn. (3.26)

This is mathematically complicated but physically simple: the distinctive cross of layer lines

from the continuous helix described above is distributed at each of the series of points along

the Z-axis derived from the plane function. The result is a series of crosses centred on the 

meridian at axial spacings of Each individual cross is identical to the continuous

result, with layer lines separated by ^ .

For a helix where the axial subunit translation is much smaller than the pitch, the 

crosses are spread out along the meridian and do not overlap. However, as the subunit 

translation increases, the cross separation decreases and the different sets of layer lines 

overlap. This means that the layer lines .can no longer be described by the integer n , but 

must also be described with reference to the cross from which they arise (fig. 3.6). The 

helical selection rule simplifies this description, whilst allowing for easy calculation of the 

Bessel function contributions to each layer line.

The selection rule assumes that a helix of pitch p  and subunit translation t can 

always be approximated to an integer helix, where:

— = — for integer a and b eqn. (3.27)
t b

and in this case, the /th layer line from the equator contains contributions from the n th layer 

line of the mth X centred on for combinations of m and n which obey the rule:

I = am + bn
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Figure 3.6: Layer Line Labelling

For helices with larger axial translations, the separate diffraction crosses 
distributed along the meridian begin to overlap. When this happens, the layer 
line labelled I consists o f contributions from the nth layer line o f the mth cross, 
where I, m and n obey the selection rule:

l=am+bn

In this example the helix has a pitch p, axial translation t, a true repeat c, and 
a/b -  p/t = 5/2.
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Since the intensity of the first peak of each squared Bessel Function decreases rapidly with 

n , only the first few values of n which contribute need be considered.

The introduction of a new parameter, c = pb = ah, which describes the true repeat 

of the helix taking account of the positions of the discrete units as well as the helical track 

itself, enables this rather complex Fourier transform to be written mathematically:

2 m lz 0 j  7L \

F(hd ) = £ e ~ £ r 0e Jn(2nRr0) eqn. (3.29)
/  n

The corresponding intensity distribution is a series of layer lines at axial positions of 

Z = ■— , and with contributions from Bessel functions n which obey the selection rule.

i.e. I = L * { Z - 2f ) Z r 02Jn2{2KRr0) eqn. (3.30)
/  n

for n satisfying equation (3.28).

When an identical finite structure is placed at each discrete point of the helix by 

convoluting the structure functions, the corresponding Fourier transforms are multiplied:

F(ha ) = FQid) • F(atom) eqn. (3.31)

which, for the simplest case of a single atom, is simply the atomic scattering factor for that 

atom, f a . The result is that the whole diffraction pattern is sampled by the structure factor

of the repeating unit, which tends to fade the pattern towards higher R values.

3.5 Application to Muscle

The molecular structure of muscle is an array of approximately parallel helical 

molecules placed in a two dimensional lattice which occupies a plane perpendicular to the 

long axis of the molecules. This structure is reproduced by convoluting one helical molecule 

with a two dimensional point lattice; the Fourier transform of the structure is therefore the
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product of the individual transforms of one helix and the lattice. Thus the diffraction pattern 

is given by the helical transform sampled by a set of interference lines running parallel to the 

helix axis. The positions of the interference peaks arising from the lattice provide 

information about the molecular packing of the helices in the structure.

The reflection notation is adapted from the three dimensional crystal case where 

[hkl] referred to the reflection from the three dimensional [hkl] planes. In terms of helical 

arrays, [hkl] refers to the reflection arising from the [hk] set of planes in the two 

dimensional lattice, and the /th layer line from the helical structure.

3.5.1 Multistranded Helices

As described in Chapter 2, both the thick and thin filaments are multistranded

helices: a double actin helix in the case of thin filaments and a triple myosin in the thick 

filaments. An N-fold multistranded helix of true pitch p  has an effective pitch which is j j .

The intensity distribution for an infinite continuous helix was determined by equation (3.21) 

to be a series of layer lines at axial spacings of Z = where n is the order of the layer

line.

/ .  = | f ( M  2 = l r 02Jn2(2nRr0) eqn. (3.21)
n

The multistranded helix pitch of -jy means that the layer lines now occur at spacings 

of Z = * N,  where p is the true pitch of one strand. Thus all layer lines are removed

except those for which n is an integer multiple of N.

In the thin filament actin helix, a single strand of true pitch 73nm would produce 

layer lines at Z = ^p-nm*1. The double helix with an effective pitch of y n m  gives rise to

layer lines at Z = -y j-nnr1, twice the spacing of the nth layer line expected from a single

strand of the helix. The result is that all the layer lines arising from the single strand helix are 

removed except those which were labelled n = 2 x integer.

The triple myosin helix has a true pitch of 128.7nm. The effective pitch of ^ j^-nm

produces a set of layer lines at Z = -j^y-nm '1, effectively removing all layer lines except 

those which were labelled n = 3 x integer in the single strand pattern.
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The remaining layer lines are numbered according to the effective pitch, rather than 

the single helix true pitch. Thus, layer lines occur at Z = | ^ n m _1 from the thin filament

helix and at Z = ^ j^ n n r 1 from the thick filament helix, where rc=0,l,2,3... This gives rise

to a significant uncertainty in determining the pitch and number of strands in a helix from the

diffraction pattern; if the number of strands is unknown, the Bessel function corresponding

to a given layer line is also unknown. Thus the centre of mass of the diffracting structures

cannot be determined unambiguously. A layer line at a spacing of -i- could be produced by

any structure where = 4:* As a result, the Bessel function order n is unknown and cannot 
J P R

be used to determine the radius of the helix, and vice versa [157, 133, 132].

3.5.2 Two Dimensional Hexagonal Lattice

The two dimensional muscle lattice is basically hexagonal: the thick filaments form 

an hexagonal lattice with thin filaments at the trigonal points (§2.3). However, in frog 

sartorius muscle it is not a simple hexagonal lattice; the thick filaments take one of two 

orientations which results in a superlattice arrangement. The unit cells for the simple and 

super lattices are shown in figure 3.7 [133, 70].

4 4
o o 

o o

a

Simple 
Unit Cell

b

Superlattice 
Unit Cell

O thin filament

thick filament:
4  orientation 1 
f  orientation 2

Figure 3.7: Unit Cells fo r  Simple and Super Lattices

The thick filaments take on one o f two distinct orientations in the 
superlattice unit cell as illustrated by this example configuration.

Because the vectors of the unit cell define the [hk] plane notation, the same planes 

are labelled differently in each lattice case; the [11] superlattice planes are equivalent to the
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[10] planes in the simple hexagonal lattice, and the [10] superlattice planes are equivalent to 

the [11] simple lattice planes. Figure 3.8 displays the major planes in both notations. For 

consistency, all lattice planes in this text will be labelled with reference to the simple unit cell 

unless otherwise specified.

[ U ]

[10]

[10]

Super LatticeSimple Lattice

O thin filament

thick filament:
4  orientation 1 
f  orientation 2

Notation Notation

Figure 3.8: Plane Notation in Simple and Super Lattices

The [10] and [11] reflections on the equator of the diffraction pattern are the 

strongest reflections in the muscle pattern; as discussed in §3.4, the equator is sensitive to 

the mass projection onto a plane perpendicular to the helix axis (i.e. projected along the helix 

axis). The relative intensities of the [10] and [11] reflections provide information on the 

amount of mass in close proximity to the thick and thin filaments. The [10] planes contain 

only thick filaments, so a strong [10] reflection indicates that there is a lot of mass near the 

thick filaments lattice positions. Since the [11] planes contain both thick and thin filaments, 

a stronger [11] reflection would indicate more mass close to the thin filament positions. A 

more detailed account of the behaviour of these reflections, and the structure and effects of 

the superlattice, are presented in Chapters 5 and 7 respectively.

3.6 Disorder Effects

A diffraction pattern actually represents the averaged diffracting structure, and any 

information obtained from the data is averaged over the whole structure. If the scattering
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units in a helical structure are not precisely helical in their distribution because of variation in 

their position, orientation or atomic arrangement, an averaged electron density can be 

assumed which does repeat regularly. One side effect of this is that the more variation there 

is in a parameter, the more averaged the data will be, resulting in increased smearing of the 

diffraction pattern.

3.6.1 Helical Disorders

The subunits within a helical molecule rarely occupy the ideal helix positions; all of 

the helical parameters are vulnerable to disorder where the actual values of the parameter take 

a range of values about the ideal value. Within a single helix disorder may appear in the 

position and/or orientation of the subunits; in practice, any combination of the disorders 

discussed here may be observed.

Disorder in the axial translation between subunits has a strong effect on the axial 

mass projection, and therefore is most obvious in the meridional intensities. Axial motion 

also upsets the helical projections and thus affects the layer line intensities. However, the 

mass projection onto the lattice plane is insensitive to axial changes in a perpendicular plane, 

resulting in an unmodified equatorial distribution [164]. Conversely, changes in the radius 

of the centre of mass of each subunit are observed in the equator and layer lines, without 

affecting the meridian [164].

The angular position of the subunits may be subject to disorder which strongly 

affects the intensity distribution along the layer lines [28, 29]. The helical projections are 

disordered whilst the axial and lattice plane projections are largely unchanged, leaving the 

meridional and equatorial reflections unaffected. The subunits may also take a variety of 

orientations, axially and/or azimuthally whilst maintaining the same position of their centres 

of mass.

The effects of helical disorders on the diffraction pattern are generally similar. The 

reflections are centred on the position given by the corresponding averaged parameter, and 

the intensity is spread out according to the amount of the disorder; large disorders result in 

low, broad peaks. The disorder may be cumulative or non-cumulative; non-cumulative 

disorders cause all reflection orders with the same structural origin to smear by a similar
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amount; cumulative disorders result in the smearing effects increasing in the higher order 

reflections.

3.6.2 Lattice Disorders

There are three important types of disorder which can effect the lattice structure: net 

distortions, filament shifts and filament rotations. Bending of the filaments is also possible, 

but it is beyond the scope of this thesis to include such a distortion.

Net distortions occur where the filaments are randomly displaced from their perfect 

lattice positions. Disorder of the first kind displaces each filament from its ideal location by 

an amount randomly drawn from a Gaussian distribution of displacements; thus the 

probability of a certain displacement decreases as the displacement gets larger. Long range 

order is maintained and the amount of disorder is independent of the position of the filament 

with respect to the lattice origin; on average the array retains crystalline order throughout the 

lattice.

Disorder o f the second kind is a more complex case where disorder is cumulative; 

the position of each filament is affected by the displacements suffered by the surrounding 

filaments. There is a statistical probability that the translations between adjacent filaments 

will be the unit cell vectors, but any long range order is completely lost. Figure 3.9 

illustrates the difference between first and second type disorders [157, 101, 146, 147]. Both 

types result in similar broadening of the Bragg diffraction peaks and redistribution of the 

intensity along the layer line continuous helical transform, but differ in that the broadening 

from disorder of the first type is similar for all layer lines, and increases at higher reciprocal 

spacings for disorder of the second type.

An axial shift between filaments causes an averaging of the ideal axial mass 

projection, and a corresponding smearing of the meridional reflections [18]. The loss of 

helical order resulting from the shift removes the Bragg diffraction peaks on all layer lines 

except for the equator, whose lattice projection is insensitive to axial changes [101, 146, 

147]. The effects are worse for higher order Bessel functions and the corresponding layer 

lines.
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Figure 3.9: Comparison o f Disorders of the First and Second Kinds 
(after Vainshtein [153])

Molecular arrangement compared to the ideal lattice positions for (a) disorder of 
the first kind and (c) disorder o f the second kind. In (a) the lattice vectors repeat 
perfectly and the molecules are displaced about their ideal positions, whereas in 
(c) the lattice vectors themselves are distorted from their ideal values.

Resulting smearing of the diffraction pattern reflections for (b) Disorder of the 
first kind and (d) disorder of the second kind. In (b) the retention o f long range 
order results in a similar smearing at all diffraction points; in (d) the long range 
order is lost and the outer reflections are smeared to afar greater extent than 
those closer to the pattern centre.
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The orientation of the filaments as a whole is an important factor, giving rise to the 

superlattice structure in frog skeletal muscle (§3.5.2) which produces radically different 

Bragg sampling peaks on different layer lines. Variation in the precise orientations of the 

filaments removes the layer line Bragg diffraction peaks and redistributes the intensity along 

the layer lines, but again the meridional and equatorial projections are largely unaffected.

3.7 Summary

By reference to the theory developed in this chapter, the reflections from the low 

angle x-ray diffraction pattern can be interpreted to provide information about the helical 

parameters of the actin and myosin helices, as well as the molecular packing of these helices 

into the hexagonal crystal lattice. The broad effects of disorders have been discussed: lattice 

disorders generally smear out the sampling Bragg diffraction peaks and redistribute the 

intensity into the continuous helical transforms; helical disorders tend to broaden the 

underlying helical transforms themselves, redistributing intensity into the background. 

Similar effects are observed from several types of disorder, and more specific results are 

required for a detailed investigation of muscle structure.
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4.1 Introduction

In order to capture transient structural states during muscle contraction, the sample 

must be exposed to X-rays for periods of milliseconds at a time, summed over many 

individual contractions. To obtain high quality, accurate patterns in such low exposure times 

a very high intensity source is required, together with a fast, sensitive detection system. 

Synchrotron radiation is the most intense source of x-rays available for experimental work, 

and, as §4.2 illustrates, it is well suited to producing good quality diffraction patterns from 

muscle.

The experiments described in this thesis were carried out on stations 16.1 and 2.1 of 

the Synchrotron Radiation Source (SRS), Daresbury, UK, and station BL4 (insertion device 

II) of the European Synchrotron Radiation Facility (ESRF), Grenoble, France. Station 16.1 

of the SRS is described in this chapter as a typical example of a small angle X-ray diffraction 

station.

4.2 Synchrotron Radiation and the SRS

Synchrotron radiation (SR) is emitted by charged particles when they are accelerated 

at relativistic speeds; at the SRS the charged particles are relativistic electrons, travelling in a 

near circular orbit and emitting radiation in a direction perpendicular to their centripetal 

acceleration [86]. The charged particles circulate under a vacuum of better than 10‘9 torr: 

this prevents unwanted scattering of the electrons by particles in the air which would reduce 

the intensity of the SR emission. The SR is almost totally linearly polarised in the plane of 

the orbit, and is naturally collimated so that the bulk of the emission is tangential to the orbit.

Figure 4.1(a) shows the classical angular distribution or dipole pattern of emitted 

intensity from a slow moving electron (v«c where c = speed of light) [153, 161]. When the 

electron speed approaches relativistic velocities (v »c) the angular distribution is distorted 

into a narrow cone in the forward direction, largely polarising the radiation in this direction 

(fig 4 .1(b)). The half width of the cone is determined by the velocity:
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r = ^ / - p 2

where:

c

The emitted spectrum is strongly Doppler shifted as the relativistic particles orbit, 

which leads to a continuous distribution of intensity with wavelength [84]. Thus SR is 

white radiation, but if monochromatic radiation is required a particular wavelength can be 

selected by a monochromator. The beam size can be made very small (on the scale of mm or 

smaller), which results in good peak to peak resolution even from poorly scattering 

biological samples. The intensity of the various reflections from muscle diffraction differ by 

several orders of magnitude, and the high intensity of SR ensures that even the weakest parts 

of the pattern are clearly visible. Like most organic samples muscle suffers radiation 

damage, and the shorter exposures permitted by SR reduce the structural damage which 

causes pattern features to be lost.

The radius of orbit R (m) of an electron in a field B (Tesla) at energy E (GeV) is

Given the radius of the ring as a fixed constraint, the Energy reached by the electrons 

depends solely on the strength of the magnetic field obtainable: this is limited by cost, 

practical handling considerations, and technical ability. The power radiated (kW) by a single 

relativistic electron travelling with an energy E(GeV) is given by:

c — speed o f light

P 3 R \m 0c2)4
e = charge on an electron 
mQ = rest mass o f an electron

Thus the total power (kW) radiated for a current of I (A) in a field B is:

Ptotai= 2 6 .6 E 3BI
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Figure 4.1: Dipole Patterns for (a) Classical and (b) Relativistic Electrons [153]
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Figure 4.2: Schematic o f the Synchrotron Radiation Source

Electrons are accelerated to 12MeV in the LINAC, transferred to the booster 
synchrotron for initial acceleration to 600MeV, and finally accelerated to 
2GeV in the main storage ring.
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The SRS is a three stage accelerator (fig. 4.2). Electrons are initially accelerated to 

12MeV in a linear accelerator (LINAC). They are then transferred to a booster synchrotron 

ring (radius 5.1m) and accelerated to 600MeV. Finally, they are injected into the main 

storage ring (radius 15.3m), where they are accelerated to 2GeV. The current travelling 

through the synchrotron at injection is 250-300mA, but this value decreases as electrons are 

continuously lost through collisions with the storage ring walls. Losses are minimised by a 

set of sixteen quadrupole magnets which keep the electron beam tightly focused. Fine 

tuning and stabilisation of the beam is provided by the High Brilliance Lattice, a further set 

of sixteen multipole magnets [86].

The synchrotron ring is roughly circular, being formed from straight sections of pipe 

incorporating the quadrupole and multipole magnets, joined by sixteen dipole magnets which 

actually bend the electron beam path and thus accelerate the electrons. The electrons are only 

accelerated when they are being deflected in the magnets, and it is here that they emit SR at a 

tangent to the deflection curve. The radiation from each magnet is collected at the tangent 

point by vacuum beamline pipes, which lead to experimental stations.

Energy is continuously being lost through synchrotron radiation, at a rate of 

8£(keV) per electron per orbit, where:

8 E = ^  '
R

This energy loss is restored by 500MHz radio frequency cavities synchronised to the 

passage of the electrons, which results in the electron beam becoming pulsed: a series of 

electron bunches separated by ~2ns.

4.3 Wiggler Magnets

The characteristic wavelength of a spectrum, Xc , is defined as the point where half 

the power is radiated at longer wavelengths and half at shorter wavelengths. The
o

characteristic wavelength in Angstroms of the SR emission spectrum from a magnet of 

strength B (Tesla) travelling with an energy E (GeV) in an orbit radius R (m) is given by:
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_ 18.64 _ 5.59R 
c ~ BE2 ~ E3

and is therefore inversely proportional to the strength of the magnetic field. For a 1.2T 

bending magnet, Xc is 3.9A (fig. 4.3). In order to raise the flux at lower wavelengths, 

typically about lA for muscle experiments, a higher magnetic field is required. This is 

provided by incorporating a liquid helium cooled, superconducting magnet array into the 

straight section before the bending magnet [84].

Wiggler 2 at the SRS is a three pole array, producing a peak field of 6T [126, 10]. 

The resulting emission spectrum has a characteristic wavelength of 0.78A (fig. 4.3). The 

two outer poles of the array are half the strength of the central pole, and opposite in polarity. 

The resulting beam path through the array is a characteristic horizontal ‘wiggle’ (fig. 4.4). 

This arrangement allows a localised field increase within the magnet, whilst the beam exits 

the array with no net displacement. The tangent point where the emitted radiation is drawn 

off is at the peak of the central pole, where the radius of curvature of the beam is greatest. .

Radiation is also emitted at the two outer poles, as well as from the bending magnet 

directly after the wiggler magnet. The exact positioning of the tangent point determines the 

spectrum of radiation exiting through the corresponding beamline. On the 16.1 beamline, 

the tangent point has been chosen to superimpose the emission from the central peak and one 

of the outer peaks, thus increasing the intensity output [10,11]. Although the shape of each 

diffraction spot is determined by the shape of the beam cross section, in this case the two 

sources are so well superimposed that no trace of a double spot has been observed.

4.4 Optical System

The multi-wavelength white SR drawn off along the beamline passes through a series 

of optical elements designed to focus the beam and to select a specific wavelength if 

monochromatic radiation is required. Station 16.1 at the SRS is a fixed wavelength non

crystalline diffraction (NCD) station, selecting a wavelength of 1.4A [11]. The source, as
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Figure 4.3: Radiation Spectrum emitted from SRS Magnet Sources

  Spectrum from a 1.2T dipole magnet

Spectrum from a 5T wiggler magnet 

  Spectrum from a 6T wiggler magnet

Intensity is measured in units of photons/sec/mradf/mA/1% bandpass
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described above, is the tangent point of a 6T wiggler magnet. After the tangent point, 

horizontal and vertical apertures limit the angular divergence of the accepted radiation to 

12mrad by 0.9mrad respectively.

The optical system consists of a monochromator, a mirror, and defining slits (fig. 

4.5). Small angle X-ray diffraction optics are usually based on the double focusing X-ray 

camera [52]. The mirror focuses the radiation beam vertically, whilst the monochromator 

selects the required wavelength and focuses the beam horizontally. The original arrangement 

put the mirror upstream of the monochromator so that it accepted white radiation, but these 

components are reversed in the 16.1 system. Here, monochromatic radiation falls on the 

mirror, reducing both the heat load and the damage it causes to the mirror surface, and 

providing a very stable focal point [14,154]. However, this rearrangement means that only 

one wavelength can be selected once the optical system is built. The monochromator uses 

Bragg diffraction to select the required wavelength and reflect it onto the mirror. Once the 

mirror is in position, the angle of diffraction cannot be altered, and thus the wavelength is 

fixed.

The optical elements are adjustable to give the optimum focus, and are precisely 

positioned by computer controlled motors. The vacuum chambers are built on vibration 

isolation systems to prevent motor vibrations interfering with their operation.

The monochromator in the 16.1 optical system is a triangular Germanium 111 

crystal, situated 9.74m from the tangent point. The crystal is 40 x 290 x 1.5 mm (base, 

height, width). The 111 planes are cut asymmetrically (10.5°) to reduce the output cross- 

section [85]. The immense heat load on the monochromator cannot be diffused in a vacuum, 

so the crystal sits in a copper bath of GalnSn (eutectic) which cools it. A piece of ceramic 

behind the monochromator fluoresces when x-rays fly over the crystal tip and hit it, 

providing the only direct observation of the beam. A ceramic cam-wheel at the tip of the 

crystal bends the monochromator, enabling the beam to be focused horizontally.

The mirror is a 1.2 x 0.08 x 0.04m platinum coated rectangle, situated 11.25m from 

the tangent point. It reflects 80% of the vertical aperture falling on it and can be tilted and 

bent to focus the beam vertically [11].
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Figure 4.5: Optical System on SRS Station 16.1



In addition to the optical elements, four sets of defining slits positioned along the 

beamline reduce scatter from both the inside of the pipe and the optical elements. The slits 

combine with the monochromator-mirror arrangement to give a very clean background and 

high output fluxes [154].

In order to prevent station users being exposed to dangerous radiation emissions, the 

optical system is inside a lead shielded hutch which must be sealed before the beam can 

enter.

4.5 Experimental Station 16.1

Passage through the optical system reduces the radiation flux by about two orders of 

magnitude: for a beam current of 300mA, this brings the flux on 16.1 down to the order of 

1012 photons/second. The actual flux at any given moment is measured by an ion chamber 

at the end of the optical system. The cross section of the usable beam depends on the 

beamline in question: the cross section and divergence of the original source, the length of 

the beamline, and the configuration of the optical system all affect the final output beam. In 

the experiments described here, the beam was focused at the detector where the beam size 

was typically 4mm horizontally by 0.5mm vertically.

For muscle diffraction experiments, the equipment arrangement is shown in figure 

4.6. The X-rays pass through the ion chamber, and are scattered by the muscle sample in its 

cell (§4.7). The scattered X-rays then enter an aluminium camera tube, which is under 

vacuum to prevent further scattering by air particles. A lead beamstop at the far end of the 

camera blocks the intense unscattered beam to prevent saturation or overloading of the 

detector.

The peak to peak resolution of the diffraction patterns was determined by the length 

of the camera tube and the size of the beam focal spot, whilst the maximum extent of the 

patterns depends on the camera tube diameter and the detection area. In general, a short 

camera gives a low resolution, wide angle diffraction pattern, whereas a long camera gives a 

higher resolution, low angle pattern. For example, in conjunction with a 200x200mm
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detection area and a 300mm diameter camera tube, a 2.25m camera gives a resolution of 

1x10'3 n n r1 per pixel for peaks spaced between 1/30 nm*1 and 1/4 n n r1. In comparison, a 

6.25m camera with the same configuration gives a resolution of 0.4x10*3 nm*1 per pixel for 

peaks between 1/65 nm*1 and 1/10 nm'1. The minimum spacings given here correspond to 

the width of the beamstop in the axial direction; the beamstop is wider in the equatorial 

direction which results in a larger minimum observable spacing.

X -R ay
Beam

Camera D etectorM uscle

Figure 4.6: X-ray Camera

X-rays pass through the muscle sample, and are scattered down the 
camera tube. The length o f the tube determines the range o f the resulting 
pattern.

4.6 Detectors.

There are several detector systems available for muscle diffraction experiments, 

including film, image plates, and multi-wire proportional counters. The detector must have 

good spatial resolution, low distortion, low parallax, and a uniform response to ensure 

accurate positioning of the reflections. Accurate peak to peak intensity ratios require a linear 

response over a large dynamic range, a low fog level, and a high count rate. In these 

experiments, both image plates and proportional counters have been used and are described 

here.

4.6.1 Gas Filled Multi-Wire Proportional Counters (MWPC)

MWPCs were first developed in 1977 [38], and have been in constant use since then 

[163,89]. Their responses and characteristics are well documented and they are often used 

as standards against which new detectors are tested (table 4.1) [88]. The detection area of a 

gas-filled MWPC consists of three sets of orthogonal wires and a volume of gas (fig. 4.7).
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When a photon enters through the two dimensional mesh of wires it ionises a gas molecule 

and starts a charge avalanche. Signals are sent in both directions along each set of wires 

when the avalanche reaches them, and the difference in time between the pulses reaching 

either end of the wire allows the position of the originating charge to be determined. The 

sets of wires are perpendicular which makes the system position sensitive in both X and Y 

dimensions.

MWPC Param eters
Spatial Resolution (pm) 200
Dynamic Range 107
Linear Range 107
Count Rate Limit (ph/s) 106
Fog Level (ph/mm2) <1

Table 4.1: MWPC Parameters [88]
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Figure 4.7: Principles o f a Gas Filled Multi-Wire Proportional Counter (after Lewis [88])

As an x-ray enters the gas volume it ionises the gas, starting a charge 
avalanche. When the charge reaches a pair o f crossed wires, signals are 
sent in both directions along each o f the perpendicular wires, and the time 
difference between the pulses reaching either end o f a given wire 
determines the exact position o f the originating charge along that wire.
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The MWPC detector has a high count rate, limited only by the electronic dead-time 

between events. It has good spatial resolution and a large linear dynamic range, as well as a 

negligible fog level. However, the depth of the gas volume gives rise to a significant 

amount of parallax, and there is some non-uniformity to the response across the detector. 

These can be corrected for somewhat by regularly exposing the detector to a known uniform 

source through a metal grid. The spatial distortion of the detector can be determined by the 

displacement of the grid points from their true positions, and any non-uniformity in intensity 

measurement can be calculated. The corrections necessary to convert the measured image 

from the uniform source to a true uniform image are then applied to the diffraction images 

themselves. The radiation detected is recorded in user-defined time frames, so that time 

resolution on the scale of < lms is possible. This is an important requirement for capturing 

transient states of the contraction cycle.

4.6.2 Imaging Plate System

The development of the image plate detection system is relatively recent, and the 

system response is not as well-documented as that of the MWPC [106, 3, 2]: table 4.2 

shows parameters compiled from various references. The main advantage over the MWPC 

is the increased spatial resolution. The image plate is an integrating detector which collects 

any radiation that falls on it; thus the count rate is only limited by the saturation of the plate. 

Time resolved data collection is not possible, but a selected time window during the 

contraction can be collected using a shutter to block the X-rays during most of the contractile 

cycle, and opening it to capture the desired state.

Because of the unfamiliarity of this system, its response was calibrated using that of 

a MWPC as standard. The dynamic range, fog level, and spatial distortion were investigated 

(§4.6.3/§4.6.4) in order to confirm its suitability for these experiments, using a Molecular 

Dynamics Image Plate system.

The image plate detection system collects two-dimensional patterns using the 

principle of photostimulable light (fig. 4.8). The surface of the image plate consists of a film 

of photostimulable phosphor crystals (BaFBr:Eu2+) combined with an organic binder.
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When incident radiation falls on the plate, some electrons are excited to the conduction band 

of the phosphor crystals where they become trapped in bromine vacancies within the 

crystals, forming temporary colour centres.

Image Plate Param eters

Spatial Resolution (pm) 88
Dynamic Range 105
Linear Range 104
Count Rate Limit (ph/s) none*
Fog Level (ph/mm2) 750

Table 4.2: Image Plate Parameters

* Although the image plate system has no count rate limit, there is an 
inherent upper limit bound by the saturation level of the plate

When red light from a 633 nm He-Ne laser falls on the phosphor, the trapped 

electrons are released back into the conduction band to form excited Eu2+ ions. These emit 

photostimulated luminescence (PSL) of wavelength 390 nm (blue light). The number of 

trapped electrons excited, and therefore the light energy emitted, is proportional to the 

original incident radiation intensity in that area.

The PSL is collected by a photomultiplier tube, which converts the light signal to a 

current. The current is converted to a linear digital voltage signal, which is stored on 

computer as the intensity in Scanner Units. The image plate can be erased by exposing to 

strong, visible white light, and reused.

4.6.3 Spatial Calibration of the Image Plate System

The scanning of the image plate introduces a significant amount of spatial distortion 

to the diffraction patterns which must be corrected for. To determine the extent of the spatial 

distortions, the image plate was exposed to a uniform x-ray source through a two 

dimensional grid of holes (2mm separation). The measured positions of the intensity peaks 

on the plate were compared with the positions of the holes in the mask [140, 146, 42].
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Figure 4.8: The principles o f Photostimulated Luminescence [4]

Incident x-rays falling onto a surface containing [BaFBr:Eu2+] phosphor 
crystals excite electrons into the conduction band o f the crytals, where they 
become trapped in bromine vacancies. Light from a He-Ne laser releases 
the electrons, which recombine with the phosphor crystals, emitting 
photo stimulated light as they do so.

64



Figure 4.9 shows the displacement of the intensity peaks for each mask hole, in each of the 

two dimensions.

In the X-direction across the plate, the amount of displacement varies sinusoidally. It 

arises from the circular motion of the scanning laser as it is directed across the plate by a 

galvanometer controlled mirror. The exact distortion varies with time, but it is reproducible 

over the period of the diffraction experiments (~2 weeks). This means that a single 

calibration mask exposure per experiment allows the distortion to be predicted and corrected 

for using the FIT2D suite of programs. Typical maximum displacements are 15 x [88fim] 

pixels (fig. 4.10), which can be corrected for to better than 1 pixel.

In the Y-direction along the plate, the displacements do not follow a regular pattern, 

and cannot be reproduced over any length of time. This irregularity arises from the way the 

plate is mechanically pulled past the scanning laser/mirror arrangement. The displacement of 

any given peak could be as much as 5 x [88fim] pixels in places. So although this distortion 

is smaller then in the X-direction, it cannot realistically be corrected for to better than 3 

pixels.

4.6.4 Determination of the Dynamic Range of the Image Plate 

System

The dynamic range of the image plate system is limited at the lower end by the fog 

level of the image plate and at the upper end by its saturation level. It is quoted as 105, 

which is the minimum range that would collect both the strongest and weakest diffraction 

features from a muscle sample. This range was tested by calibrating the image plate system 

against an MWPC which is known to be linear over a dynamic range of 107.

Both the MWPC and the image plate recorded the diffraction from a collagen sample, 

for a range of exposure times. The intensity of each collagen peak was calculated in photons 

per mm2 for the MWPC and in Scanner Units per mm2 for the image plate. A further 

standard correction transformed the Scanner Units into Molecular Dynamics Units (MDU). 

A plot of MDU per mm2 against the corresponding intensity in photons per mm2 (fig. 4.11)
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(a) Displacement of each grid point from its ideal position in the x-direction (across the 
plate) in 88pm pixels. Maximum Red=+15 pixels; Minimum Blue=-15 pixels

(b) Displacement of each grid point from its ideal position in the y-direction (down the 
plate) in pixels. Maximum Red=+5 pixels; Minimum Blue--5 pixels.

Figure 4.9: Spatial Distortion in the Image Plate System
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Figure 4.10: Spatial Distortion in the Image Plate System
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Figure 4.11: Calibration o f the Image Plate

The dynamic range is limited at the bottom by a fog level o f 900 ±  50 
photons/mm2, and at the top by a saturation level o f 6.5 x 106 ±0 .5  x  106 
photons/mm2. The conversion factor from MDU/mm2 to photons/mm2, 
given by the gradient of the linear part o f the plot, is calculated to be 1.95 x 
106 MDU/photon.
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clearly shows the linear range of the image plate, and the conversion factor from MDU to 

photons over this range.

The range as shown in figure 4.11 is only 104 which is much lower than the quoted 

>105. The discrepancy is due to the definition of dynamic range. The quoted value can be 

obtained if the plate is scanned at two photomultiplier tube voltages and the results 

combined. Research has shown that since scanning the image with a laser releases the 

trapped electrons the image cannot be scanned again without degradation of the stored data. 

This means that the image plates must be re-exposed before scanning at the higher PMT 

voltage, effectively doubling the exposure time required to get the same intensity compared 

to the MWPC.

There is a more insurmountable problem in that the fog level of the image plate is 900 

± 50 photons/mm2. For most exposures, this is low enough that it does not affect the 

diffraction patterns. However, for the more transient states which exist for 10s of 

milliseconds or less, some diffraction features cannot be seen above the fog level. For this 

reason, those experiments which involve the transient release state (§4.7.2) used a MWPC 

detector, whilst higher resolution image plate data was collected for the longer lasting rest 

and isometric plateau states.

4.7 Experimental Procedure

4.7.1 Sample Preparation

Sartorius muscles from healthy Rana Temporaria frogs were dissected and clamped 

at the pelvic end into a perspex cell, cooled by a water bath (fig. 4.12). The muscles, 

typically 35mm long by 5mm wide by 2mm thick, were bathed in Ringer’s solution [70] and 

supplied with oxygen to reproduce the natural ionic environment found inside the body. The 

muscles were stimulated by transmitting electrical pulses through two platinum electrodes, 

which ran the length of the cell to ensure even stimulation. A train of 15V square pulses at a 

frequency of >50 Hz applied to a fixed length muscle resulted in a fused isometric tetanus, 

where the tension produced reached a plateau which was considerably higher than the peak
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reached by a single pulse (fig. 4.13). At this plateau a maximum number of cells within the 

muscle were being activated which makes it one of the most useful states to study.

Solenoid
X -ra ys into  

the p a g e

P erspex  
M uscle C ell

R inger's Solution

M uscle

M ylar
W indow

C oolan t from  
w a te r  bath

Transducersupply

Figure 4.12: The Muscle Environment

The natural muscle environment is reproduced by bathing the muscle in 
Ringer’s solution, pumping oxygen through the solution, and cooling it to 
8°C with a water bath

Fused Tetanus

s:
£

Multiple Twitches

Single Twitch

Time

Figure 4.13: Fused Tetanus 

Multiple twitches at a rate >50Hz produce a fused tetanus in the muscle.
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The optimum temperature for these experiments was 8°C, where a smooth, flat 

plateau was reached within 300ms. Figure 4.14 shows the dependence of the tension 

development on temperature: at higher temperatures a high plateau was reached quickly but 

did not flatten out, whilst at lower temperatures the tension developed much more slowly to 

reach a lower plateau tension. The plateau continued until the stimulus was removed or the 

muscle became fatigued, typically after about one second. One muscle contained enough 

fuel reserves for hundreds of isometric contractions, provided a recovery period was 

allowed after each stimulation. When the peak tension had fallen to 85% of the original 

plateau tension, the muscle was replaced.

100

C 50

25

o oo o oo

Time (ms)

Figure 4.14: Variation of Tension Trace with Temperature

The optimum temperature is 8°C. Above this temperature an isometric 
contraction will not produce aflat tension trace, and at lower temperatures 
the muscle response is slow and it produces less tension.

The muscle cell was placed between the station shutter and the x-ray camera tube, in 

a frame which allowed the muscle to be positioned accurately to intercept the beam. The 

long axis of the muscle was vertical, and the x-ray beam passed through the thinnest 

dimension of the muscle, through small (1cm diameter) Mylar windows on either side of the 

muscle cell. The windows were much thinner than the perspex cell and allowed 

transmission of the x-rays without great attenuation. They were screwed in and out to allow 

adjustment for different thicknesses of muscle with a minimum of attenuation from the 

surrounding solution. The cell was oscillated vertically in the x-ray beam during contraction
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to reduce radiation damage to a localised region of the muscle. In addition, a fast shutter 

which could block the x-ray beam in ~lms was closed whenever possible to reduce 

unnecessary muscle exposure when data was not being collected.

4.7.2 Diffraction Protocols

Two sets of experiments are described here, using different protocols. The first 

protocol involved collecting diffraction patterns from muscles at rest and during isometric 

contraction. The muscle was stimulated at a fixed rest length, defined by a sarcomere length 

of 2.3fim. The sarcomere length was determined by diffraction of a He-Ne laser by the 

sarcomere boundaries. When isometric plateau was reached, the shutter was opened and the 

x-ray diffraction pattern was collected by the detector. A time frame generator synchronised 

the stimulation of the muscle and the opening of the fast shutter to ensure that data was 

collected during the required periods of the contraction.

In the second set of experiments, the muscle was allowed to reach isometric plateau 

as in the first protocol. A length change was then applied to the muscle during contraction. 

A sudden decrease in the overall muscle length of around 1mm in 1ms was applied, 

followed by a slower ramp of a few mm in ~30ms. These macroscopic length changes 

correspond to 30 nm and 100 nm of shortening per half-sarcomere respectively. The tension 

dropped almost to rest value after the sharp length change, and then remained isotonically 

close to rest during the ramp (fig. 4.15); data was collected during 15ms of this flat period. 

When the ramp had finished, the muscle remained at the shorter length, whilst the tension 

recovered to the isometric plateau value.

The required length change was programmed into a wavefimction generator to be 

input into a solenoid control box. The solenoid itself was attached to one end of the muscle 

by a vertical arm running perpendicularly between a light source and a photodiode. The 

amount of light detected by the photodiode depended on the exact vertical position of a small 

flag attached to the solenoid arm. This feedback mechanism allowed accurate determination 

of the solenoid position, and therefore of the muscle length, at any time. The length change
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initiation was controlled by the time frame generator to ensure correct timing of the shutter 

operation (fig. 4.16).

The rest and plateau states were relatively static compared to the 30ms period of 

unloaded shortening, so many more contractions were required to get adequate statistics and 

good resolution patterns for this state than for either the rest or plateau states. The time 

frame generator stored the diffraction data collected during each state in separate memory 

bins, which were then added together over thousands of contractions to improve the signal 

to noise statistics.

The tension generated by the muscle was converted into a voltage signal for 

inspection on an oscilloscope, before being converted to a frequency for storage. The 

tension traces revealed any abnormal contractions (i.e. showing muscle slippage or fatigue) 

and the corresponding x-ray data were discarded.

4.8 Data Reduction

The first step in analysing the diffraction data was to determine which patterns were 

usable, and which should be discarded because of poor diffraction, fatigued muscles, or 

slippage during the contraction. The tension traces from each set of contractions were 

examined for any sign of an abnormal contraction, which might have been caused by 

slippage of the knots holding the muscle in place, or incorrect stimulation of the muscle. 

The diffraction patterns from the remaining contractions were examined for deterioration of 

data quality. The unloaded shortening tension traces were also carefully checked to ensure 

that the tension remained level at a value below 10% of the plateau tension during the 

shortening period.

The suitable two dimensional diffraction patterns were then divided by the 

normalised detector’s response to a uniform intensity Fe55 source (§4.6.1) to remove any 

non-uniformities in the detector’s intensity measurements. The spatial distortion was 

calculated by exposing the detector through a uniform grid of holes, as described for the 

image plate system in §4.6.1, and corrected using the FIT2D program [42, 141].
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Figure 4.15: Protocol for Length Change Experiments

Shutter is open to collect diffraction data at the following points during 
the contraction cycle:

1: Rest pattern
2: Isometric contraction pattern
3: Unloaded shortening pattern
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Once the individual patterns were corrected, they had to be summed to give a total for 

each muscle state; data manipulation was carried out using the BSL [9] and OTOKO [97] 

programs. Small changes in the orientation of the muscle from one sample to another 

occurred despite precautions taken to mount all samples vertically, and the corresponding 

patterns were rotated about their centres until the correct vertical orientation was obtained. 

The centres of the rotated patterns were accurately determined and the 2D patterns shifted 

until all centres coincided.

The patterns were then normalised, so that the relative contributions from each 

muscle were equal. The patterns were added together to produce a single diffraction pattern 

for each of the three states: rest, isometric plateau, and unloaded shortening. The sloping 

background was subtracted from these three patterns using the CCP13 program TBACK 

[24] to reveal the actual data arising from the molecular arrangement within muscle. The 

resulting patterns were ready for detailed analysis, as described in the next chapter.
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Chapter 5: 
Results - Diffraction Patterns

5.1: Introduction

5.2: Rest Data

5.2.1: Myosin Reflections

5.2.2: Actin Reflections 

5.2.3: Other Reflections

5.3: Isometric Contraction Data

5.4: Unloaded Shortening at Zero Tension Data

5.5: Summary
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5.1 Introduction

The data presented in this chapter were obtained from the x-ray diffraction 

experiments described in Chapter 4, and have undergone elementary data reduction. The 

two dimensional patterns are shown in figure 5.1 for the three key states: rest, peak of 

isometric contraction and unloaded shortening.

Unless otherwise stated, all spacing measurements are subject to a maximum error of 

±2%. Although the percentage reading error decreases at larger spacings, this is offset by 

the increased difficulty in determining the centre of the peaks themselves which broaden due 

to disorder effects; thus the overall error remains approximately constant.

One dimensional intensity plots were produced from the two dimensional patterns by 

integrating in radial and axial directions as illustrated in figure 5.1(c). Radial integration over 

the meridional region produces a one dimensional plot illustrating the meridional intensity 

distribution. A similar radial integration over a region parallel to the meridian but shifted to 

cover the [10] and [11] equatorial reflections illustrates the relative intensities of the layer 

lines. Axial integration over a particular layer line produces the intensity profile along that 

layer line.

5.2 Rest Data

Relaxed frog skeletal muscles produce a very distinctive diffraction pattern, the 

origins of which are discussed in Chapter 3. The main feature is a series of layer lines 

arising from the helical distribution of myosin heads in the thick filaments. Another set of 

layer lines is produced by the helical arrangement of actin monomers in the thin filaments. 

Both sets of layer lines are sampled by peaks arising from Bragg scattering off the planes in 

the filament lattice. Other reflections come from lesser components of the muscle structure, 

such as troponin, tropomyosin, and C-protein.
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Figure 5.1: Two-Dimensional Diffraction Patterns

(a) From muscle at rest (left) and during the peak of 
isometric Contraction (right).
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Figure 5.1: Two-Dimensional Diffraction Patterns

(b) From muscle at rest (left) and during unloaded 
shortening at zero tension (right).
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Figure 5.1(c): Integration of the Two Dimensional Patterns

Radially integrated strips illustrate the intensity distribution along the 
meridian and the relative intensities o f the layer lines. Axially integrated 
strips illustrate the intensity profiles along the equator or the layer lines.

5.2.1 Myosin Reflections

The series of regularly spaced layer lines attributed to scattering from the myosin 

heads in the thick filaments appear at axial intervals of 1/42.9 nm'1: radial integration of an 

axial strip through the layer lines in the region of the [10] equatorial reflection shows 

theirrelative intensities (fig. 5.2). The 1st layer line at 1/42.9 nm'1 (LL1) and the meridional 

reflection of the 3rd layer line at 1/14.3 nm'1 (3M) are particularly strong. Although the very 

distinct low angle pattern reveals a high degree of structural order exists, the pattern weakens 

towards higher spacings (i.e. above 1/5 nm'1) indicating some disorder must be present in 

the myosin head distribution.

A triple helix with an effective pitch of 42.9 nm and an axial translation of 14.3 nm 

would be expected to produce a series of layer lines separated by 1/42.9 nm '1, with 

meridional reflections only appearing at spacings of 1/14.3 nm’1. Radial integration of an 

axial strip between the isointensity points on either side of the third myosin meridional
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Figure 5.2: Radially Integrated Strip Running Parallel to the Meridian in 
the Region o f the [ 10] and [11] Equatorial Reflections of the Rest Pattern

The myosin layer lines labelled LL1 etc. are clearly visible at 1/42.9 nm'1 
intervals. The sixth and seventh actin layer lines labelled AC6 and AC7 
appear at 1/5.9 nm'1 and 1/5.1 nm'1 respectively.
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reflection clearly shows the presence of significant meridional reflections at additional 

spacings of 1/42.9 nm'1 (fig. 5.3).

The unexpected meridional reflections indicate that the 14.3nm axial translation is not 

perfectly held throughout the myosin helix. A random distortion in the axial translation 

would redistribute intensity from the 1/14.3 nm'1 peak into the background, whilst a regular 

distortion repeating at 43nm intervals would contribute to the meridional reflections at 1/42.9 

nm '1, as observed. This suggests that the perturbation can be visualised in terms of a 

distortion group of three myosin head levels, within which the axial rise is distorted from, 

but averages out to, 14.3nm; the distortion group itself is repeated at 42.9nm intervals along 

the myosin helix.

The width of the myosin meridional reflections is a measure of the extent over which 

the myosin heads are kept in close order. The heads are held in register over a range of 

hundreds of nm; the 3M axial width corresponds to -lOOOnm, and the radial width to 

~400nm. The axial width of the myosin layer lines similarly indicates that helical order is 

maintained over ~500nm. The meridional reflections are axially sampled by an interference 

function which arises from interference between the myosin heads in each half of the 

sarcomere; the separation of the two sets of heads across the M-line is of the order of 900 nm 

[70].

Axial integration of a radial strip between the isointensity points on either side of the

[10] equatorial reflection reveals the equatorial profile. The reflections from the [10] and

[11] lattice planes appear at radial spacings of 1/36.0 nm '1 and 1/20.8 nm '1 (fig. 5.4), 

representing the respective interplanar separations d10 and d}1. The hexagonal lattice spacing 

is calculated to be 41.6 nm using the relationships:

, _ V3 _ a
io 2 a  311 2

Whereas the different helical repeats of the thick and thin filaments allow the two sets 

of layer lines to be separated easily, the equatorial reflections are the result of the mass 

distribution in the lattice plane, and are affected by both the actin and myosin filament
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Figure 5.3: A Radially Integrated Strip along the Meridian o f the Rest Pattern

The myosin meridional reflections labelled 1M etc. are clearly visible at 1/42.9 nm1 
intervals. The sixth and seventh actin meridional reflections labelled AC6 and AC7 

appear at 1/5.9 nm 1 and 1/5. lnrh1 respectively.
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The [ 10] and [11] lattice reflections appear at spacings o f 1/36.0 and 1/20.8 nm'1 
respectively (simple unit cell notation is used throughout this work as described

in Chapter 3.)
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Figure 5.5: Myosin Layer Line Profiles at Rest

The Bragg peaks on the first and second myosin layer lines are different 
to those on the equator and the third layer line, illustrating the presence 
o f a superlattice arrangement in the muscle lattice. The main reflections 
are indexed as described in table 5.1.
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distributions. The [10] peak reflects the amount of mass at the thick filament sites, and the

[11] peak reflects the mass at both sets of filaments (§3.5.2).

The myosin layer line profiles, obtained by axial integration of the corresponding 

layer lines (fig. 5.5), clearly illustrate the positions of the lattice sampling peaks on the 

different layer lines; the peaks on the third layer line coincide with those on the equator, but 

are at different spacings to the peaks on the first and second layer lines (and the fourth and 

fifth - data not shown) (table 5.1). A simple hexagonal lattice structure would produce the 

same sampling peaks on all layer lines, so the different sampling distributions indicate the 

presence of a superlattice structure which is undetectable in certain projections (i.e. the 

equatorial projection).

Sim ple L attice  
Index

S uper Lattice 
Index

C alcu la ted  
Spacing (nm )

M easured P eak  Position  
(nm )

Equator L ayer L ine 1
10 62.4

10 11 36.0 35.9 36.4 w eak
20 31.2 30.6

25.1
21 23.6 23.4

11 30 20.8 21.0
20 22 18.0 17.9 w eak

31 17.3 17.2
40 15.6

21 41 13.6 14.1 w eak
50 12.5

30 33 12.0 12.3 w eak

Table 5.1: Indexing o f Layer Line Sampling Peaks

The calculated spacings are determined for a lattice with a myosin-myosin 
nearest neighbour separation o f 41.6nm. Those measurements marked 
‘weak’ are estimated positions o f the centre o f the reflection.

The sampling peaks on the equator can be indexed on a simple hexagonal unit cell of 

side 41.6 nm, whereas the peaks on the first layer line can only be indexed on a larger unit 

cell of side 72.1 nm, V3 times the simple unit cell side; table 5.1 indexes the sampling peaks 

from both lattices in terms of lattice planes. The superlattice is not maintained beyond a few 

unit cell repeats, as indicated by the diffusion of the sampling peaks with higher layer line 

number. Since the equatorial reflections are the product of the projection of the muscle lattice
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Figure 5.6: Radially Integrated Strip Running Parallel to the Meridian in 
the Region of the [10] and [11] Equatorial Reflections of the Rest Pattern

The sixth actin layer line (AC6) at 1/5.9 nm'1 closely overlaps the seventh 
myosin layer line (LL7) at 1/6.1 nm '1. The seventh actin layer line (AC7) 
appears at 1/5.1 nm'1.
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Figure 5.7: Actin Layer Line Profiles at Rest

The sixth and seventh actin layer lines are faint in comparison to the 
first six myosin layer lines, resulting in a lower signal to noise ratio as 
seen here.
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Figure 5.8: Rest Equator Showing Peak due to Square Lattice

An extra peak is observed in some muscle samples: the peak appears 
at ~1/25 n m a n d  corresponds to the spacing o f the square lattice 
which the thin filaments form near the sarcomere Z-line. The example 
shown here was produced by a single muscle sample.
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along the filament axis, the fact that the equatorial plot gives no indication of the larger unit 

cell reveals that whatever the non-identical factor is between the nearest neighbour filaments, 

it must be undetectable in this end-on view, which suggests an axial displacement or rotation 

between filaments.

The fact that the Bragg peaks are still clearly present on the third layer line indicates 

that a considerable amount of three-dimensional ordering is maintained in the myosin 

filament lattice, both in axial register and orientation.

5.2.2 Actin Reflections

The actin layer lines observed in the rest pattern can be indexed on a helix of pitch 

~36nm, which is the effective pitch of the double actin helix. Radial integration of an axial 

strip in the region of the [11] reflection shows that the strongest layer lines as indexed on this 

helix are the sixth at an axial spacing of l/S.Qnm'1 and the seventh at 1/5.1 nm’1 (fig. 5.6). 

The first actin layer line at 1/36 nm'1 closely overlaps the first myosin layer line at 1/43 nm'1, 

which makes it difficult to determine its position and profile accurately.

The strong sixth actin layer line arises from the left-handed genetic helix of pitch 

5.9nm, and its peak at 0.08 nm '1 corresponds to a J! Bessel function of radius 3.5nm (fig. 

5.7). Similarly, the seventh layer line arises from the alternative right-handed genetic helix 

of pitch 5.1nm.

There is no evidence of radial sampling of the actin layer lines, possibly because of 

the presence of large amounts of disorder in the actin filament lattice. The actin filaments are 

lighter and more flexible than the myosin filaments, and it is likely that they will be more 

easily displaced from their ideal lattice positions than the thick filaments; especially when the 

gradual change from square (Z-disk) to hexagonal (A-band) thin filament lattices is 

considered.

Several individual muscles gave rise to an additional equatorial reflection at a radial 

spacing of -25 nm, believed to arise from the thin filament lattice near the Z-line: in this 

region the thin filaments occupy a square lattice of side 26nm [174, 70]. This reflection is 

not evident in all diffraction patterns, but only particularly clear examples (fig. 5.8).
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Figure 5.9: A Radially Integrated Strip Running Parallel to the Meridian in the 
Region o f the [10] Equatorial Reflection Taken at the Peak o f 
Isometric Contraction

The positions o f the first five myosin layer lines appearing in the pattern from rest 
muscle are indicated. During isometric contraction the myosin layer lines all but 
disappear, leaving a trace o f the first layer line which is too diffuse to accurately 
place. The large peak at -O.MSnm1 is an artefact arising from the edge o f the 
camera tube in this particular set o f experiments.
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Figure 5.10: A Radially Integrated Strip along the Meridian o f the 
Peak o f Isometric Contraction Pattern

The positions o f the myosin meridional reflections in rest muscle are 
indicated (nM). During isometric contraction the third (3M) and sixth 
(6M) meridional reflections remain strong, but the forbidden reflections 
(1M, 2M, 4M, 5M) all but disappear.
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5.2.3 Other Reflections

A series of meridional reflections which occur at spacings of 1/44.2 nm'1 is attributed 

to the distribution of C-protein within the thick filaments [125]. An interference function 

between the two sets of C-protein molecules in either half of the sarcomere samples the C- 

protein peaks by 1/710 nm'1.

A further series of meridional reflections is attributed to the axial distribution of the 

troponin molecules in the thin filaments. The reflections index onto an axial repeat of 

38.2nm. Similarly, the tropomyosin molecules give rise to a series of layer lines 

corresponding to the helical arrangement of the molecules, with a pitch of 38.2nm.

5.3 Isometric Contraction Data

The obvious change between the patterns from rest muscle and muscle contracting 

isometrically is the complete loss of three dimensional helical order evidenced by the loss of 

the off-meridional myosin layer lines (fig. 5.9). A faint first layer line remains, but it is too 

diffuse to accurately determine its spacing.

Along the meridian, the forbidden reflections all but disappear, leaving just the 3M 

and 6M peaks (fig. 5.10). This indicates that the regular distortion which gave rise to the 

forbidden meridionals is almost completely removed, but does not necessarily mean that the 

thick filaments become more ordered. When taken with the overall loss of helical order in 

the whole pattern, it is more likely to represent the conversion of the regular distortion into a 

random disorder. This would also have the effect of broadening the meridional reflections 

axially, which is indeed observed; the axial width of the 3M and 6M meridional reflections 

almost double when compared to the corresponding widths at rest, indicating that the myosin 

head order is now maintained over a much smaller axial length. The large increase in the 

radial widths of the 3M and 6M peaks also point to the loss of helical order in the myosin 

head arrangement.

The myosin meridional peaks also change their axial spacings to reflect a new axial 

repeat of -14.5 nm (fig.5.11). In fact, the 3M peak can be split into a doublet at 1/14.4 nm’1
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Figure 5.11: A Comparison o f the Third Myosin Meridional in Different Muscle States

The third myosin meridional reflection appears at l/14.3nm 1 in rest muscle. During 
isometric contraction the peak widens and shifts to a spacing o f 1/14.5nm1: sampling 
o f the wider peak results in the formation o f two peaks at l/MAnrri1 and l/M.Onm1. 
During unloaded shortening, the third myosin meridional returns to a single peak at a 
spacing o f l/14.3nm'J, but with a much lower intensity.
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Figure 5.12: The Equatorial Intensity Reversal at During Isometric Contraction

A t the peak o f isometric contraction the intensity o f the [10] equatorial reflection 
decreases relative to its intensity at rest, and the [11] reflection increases relative

to its rest value.
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and 1/14.6 nm'1, probably due to sampling of the now much broader meridional reflection 

by the myosin head interference function.

On the equator, the [10] and [11] lattice reflections change both in intensity and 

position. The spacing change is small, and is due to the constant volume of the muscle; as it 

shortens its length, which happens a little even in isometric contractions because of the 

compliance of the muscle tendon, the lattice swells to maintain a constant volume. 

Conversely, the intensity change is considerable; the [10] reflection decreases whilst the [11] 

reflection increases, resulting in a reversal of relative intensity (fig. 5.12). At rest the ratio of 

Ii0:In is 3.0, compared to 1.2 during isometric contraction. The interpretation of this 

reversal is that mass has been transferred from the thick filaments, which contribute to both 

sets of planes, to the thin filaments, which contribute to just the [11] planes.

There are equally important, if less dramatic, changes in the thin filament pattern 

during isometric contraction. The sixth and seventh actin layer lines increase in intensity, 

which can be taken in consideration with the equatorial intensity reversal to indicate that 

myosin heads are moving away from the thick filaments towards the thin filaments and 

binding, thus increasing the mass taking the actin helix repeat, and the corresponding 

intensity of the thin filament layer lines. The helical order of the thin filaments is fairly well 

maintained, since the actin layer lines are still present.

During contraction the left handed actin helix is actually twisted a little more tightly 

than at rest, modifying the 5.9nm helix from an 80/37 helix (2.162 subunits per turn) at rest 

to a 54/25 helix (2.16 subunits per turn) at isometric plateau, and the right handed helix 

untwists to change the 5.1nm helix to a 54/29 helix (1.86 subunits per turn). This change is 

probably triggered by the binding of Ca2+ ions to the troponin upon activation [159]. The 

modified actin axial rise is then commensurate with the myosin repeat.

The C-protein and troponin meridional reflections are maintained during isometric 

contraction, though their intensities are slightly decreased, probably due to general disorder 

in the filament arrangement.
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Figure 5.13: A Radially Integrated Strip along the Meridian o f the 
Unloaded Shortening Pattern

The positions o f the myosin meridional reflections in rest muscle are 
indicated (nM). During unloaded shortening the meridional intensity 
distribution is very similar to the meridian from rest muscle, though 

the overall intensity is greatly decreased relative to the rest meridian.
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Figure 5.14: Changes in the Equatorial Reflections During Unloaded Shortening

During unloaded shortening the equatorial reflections recover some way towards 
the rest intensity distribution, which was reversed during the peak o f  isometric 
contraction. The [10] and [11] reflections also move to larger spacings as the 
conservation o f muscle volume causes the hexagonal lattice o f the shortening muscle 
to increase its spacing.
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Figure 5.15: A Radially Integrated Strip Running Parallel to the Meridian in the 
Region o f the [10] Equatorial Reflection Taken During Unloaded 
Shortening o f the Muscle.

The positions o f the first five myosin layer lines appearing in the pattern from rest 
muscle are indicated. During unloaded shortening there is no trace o f the myosin 
layer lines. This could in part be because o f the lower signal to noise ratio arising 
from the shorter exposure times required to capture this transient state, although 
the layer lines would have to be very faint to fall below the noise level. The peak 
at ~0.145nm-1 is an artefact arising from the edge o f the camera tube in this set o f  
experiments.
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5.4 Unloaded Shortening at Zero Tension Data

The unloaded shortening diffraction pattern represents the average structure of the 

muscle during the 30ms of data collection where the tension produced remained level at 

approximately zero. It should be noted that the total exposure of the unloaded shortening 

state is just 1/20 of the total exposure of the rest state, because of the difficulty in maintaining 

near-zero tension for any length of time. Therefore the statistics for the unloaded shortening 

pattern are poorer than for the rest or isometric contraction patterns.

The diffraction pattern from muscle which is shortening at zero tension combines 

features from both the rest and isometric contraction patterns. The meridional region of the 

pattern closely resembles the rest pattern meridian, albeit with a much lower intensity, whilst 

the lack of layer line structure in the off-meridional pattern follows the isometric contraction 

case.

During unloaded shortening the meridional reflections largely return to the rest 

distribution, complete with forbidden meridionals (fig. 5.13). The third myosin meridional, 

which moved to a larger spacing of 1/14.58 nm'1 during isometric contraction, returns to a 

single peak at 1/14.34 nm’1, and the relative intensities of all the myosin meridionals return 

to the rest ratios. However, the absolute intensity of the meridional reflections falls to a 

fraction (-0.1) of the rest meridian, probably due to axial displacement of the filaments 

caused by the rapid shortening of the muscle. In addition, the troponin reflection at 38.2 nm 

which is prominent in the rest meridian disappears, to be replaced by a new peak at 36.4 nm 

(IT). The new peak, scaled to the 3M reflection, is more intense than the rest reflection 

at38.2 nm, though it is likely that its origin is still the troponin/tropomyosin complex.

The [10] and [11] equatorial reflections return some way towards the intensity ratio 

present at rest, and stop half way between the rest and isometric contraction ratios at 

I10:In=1.2, suggesting that the myosin heads may be leaving the vicinity of the thin filaments 

and pausing between the thin and thick filaments (fig. 5.14). The spacing change of the 

equatorial peaks to [10] at 1/37.9 nm'1 and [11] at 1/21.9 nm'1 again reflects the constant
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volume of the muscle: this time it is more noticeable than at isometric contraction, because 

the amount of shortening is much more marked.

The off-meridional layer lines, which disappeared during the isometric phase of the 

contraction, either reappear at such a low intensity that they cannot be distinguished from the 

background at this resolution, or do not reappear at all. The latter is more likely since the 

row line profile (fig. 5.15) shows an increased background near the equator: this in itself 

indicates an increase in disorder within the structure. The continued absence of the layer 

lines indicates that although the tension produced by the muscle is negligible, three 

dimensional order has not returned to the structure.

5.5 Summary

From the changes discussed in this chapter, some basic details about the contraction 

cycle emerge. The equatorial intensity reversal is taken to represent the myosin heads 

moving away from the thick filament backbone, towards the thin filament. In the process of 

moving, they lose their helical order, resulting in the loss of the myosin layer lines. The 

myosin heads bind to the thin filaments, taking on the helical repeat of the actin helix and 

increasing the intensity of the actin layer lines. In addition, the myosin heads are 

redistributed axially such that the regular perturbation is removed, and the average axial 

spacing of the heads increases significantly.

During unloaded shortening, when the muscle is producing no tension, the myosin 

heads appear to leave the vicinity of the thin filaments, and partially, though not completely, 

return towards the thick filament backbone. The heads recover an axial structure which is 

very similar to the rest pattern, but azimuthally the helical order is not recovered.

The information derived in this chapter is used to create a basic model of the actin and 

myosin filaments which can be modified until the precise arrangements of protein molecules 

which give rise to the patterns described here are determined.
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Chapter 6: Computer Modelling Procedures

6.1: Introduction

6.2: Scope Of The Model

6.3: Previous Modelling Studies
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6.4.1: Building a Three Dimensional Model

6.4.2: Mass Projection into a 2D Plane 

6.4.3: Fourier Transform of the Model

6.5: Modifications To The Basic Model
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6.1 Introduction

The aim of this modelling work is to investigate the arrangement of the actin and 

myosin molecules in muscle at different stages of the contraction cycle, so that structural 

changes between the modelled states can be correlated to the corresponding level of force 

production. The three states to be modelled are rest, peak of isometric contraction, and 

unloaded shortening at zero tension.

The rest muscle structure contains substantial three dimensional order (§5.2), 

resulting in the observed sharp peaks in the diffraction pattern. The presence of such detail 

makes any attempt to model the pattern easier than modelling an indistinct pattern, such as 

that obtained from isometrically contracting muscle (§5.3). In short, a pattern with poorly 

defined features can usually be reproduced by a number of different structural models, 

usually including various disordered components. To overcome this ambiguity, rather than 

try to model uniquely the contracting muscle structure, the isometric contraction and 

unloaded shortening states have been probed by studying the effects of introducing various 

forms of disorder to the model.

This chapter describes the methods used to model the muscle structure, including 

the pseudo-code for the various programming subroutines; the full code for the modelling 

program can be found on a disk at the back of this volume. Computational and time 

constraints are discussed, and the scope of the model is defined within these limits. The 

starting model based on the dimensions obtained from the rest diffraction pattern is outlined, 

and used to describe the mass projection and Fourier transform sections of the program. 

Detailed results from the modelling exercise are presented and discussed in Chapters 7 and 8.

6.2 Scope Of The Model

Ideally, a model of the structure of muscle would include every atom of every 

protein molecule, for a region equivalent in size to a whole muscle sample. The filaments 

would form sarcomere structures, and the sarcomeres would be organised into myofibrils 

and fibres. Only then could the model be expected to reproduce perfectly the experimental
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patterns. In reality, there are two concerns which make this kind of detailed modelling 

unfeasible: the limits set by computational time and memory, and the sheer number of 

parameters which could be varied in such a model. The model components are built up of 

spheres of various sizes, and the greater the resolution required, the more smaller spheres 

must be used, increasing both the computational requirements and the complexity of the 

model. On the other hand, if the model is too simplified it cannot be relied upon to provide 

an accurate representation of the muscle structure. Thus a compromise is reached between 

the practical computational limits and the resolution required to give a realistic model.

The simplified model consists of three components: actin monomers, myosin heads, 

and thick filament backbones. The actin monomers and myosin heads are represented by 

spheres occupying a similar mass/space distribution to the real subunits, and the thick 

filament backbones are modelled by solid cylinders.

This work concentrated on reproducing the major features of the diffraction 

patterns, most notably the meridional intensity distribution, the equatorial reflections, and the 

profiles and relative intensities of the myosin layer lines, and to a lesser extent the actin layer 

lines. Detailed modelling of the thin filament structure was not made a priority; approximate 

intensities comparable to the experimental values could be obtained using the simple helix 

described, and several recent studies have already modelled the thin filament structure with 

interesting results as discussed in the next section. Other components such as C-protein, 

troponin and tropomyosin are not included since they are not believed to contribute greatly to 

the actin and myosin reflections which are the main focus of this work. Lastly, no attempt 

was made to reproduce the sampling effects along the meridian by introducing a sarcomere 

structure to the model.

6.3 Previous Modelling Studies

Computer modelling of muscle structure is a growing area of research, becoming 

more accessible as computers increase in speed and memory capacity. The thin filament 

structure has been modelled in great detail using x-ray diffraction, crystallography and 

electron microscopy data. The F-actin structure and the position of the troponin and

105



tropomyosin proteins relative to the actin helix have been investigated, modelling the actin 

monomer either as four small spheres representing the four subdomains, or using the full 

atomic structure [79, 59, 100, 120, 139, 1]. The tropomyosin and troponin molecules are 

modelled explicitly, and the changes in their position during contraction support the steric 

blocking model of regulation (§2.6); the tropomyosin molecules appear to shift into the 

groove of the F-actin helix upon activation, revealing the myosin binding sites in the thin 

filament.

The generally accepted thin filament model in rest muscle, then, is one where the 

long axis of the elongated actin monomers lies roughly perpendicular to the filament axis, 

and the tropomyosin molecules lie to one side of the F-actin helix groove [90]. One 

conclusion which is particularly relevant to this work is that the actin helix contains a 

significant degree of cumulative rotational disorder, which strongly affects the intensities of 

the actin layer lines [29, 31].

Detailed modelling of the thick filament diffraction pattern is harder to find, though 

two studies are of particular interest with regard to modelling the myosin filaments of frog 

muscle. Both use frog muscles which have been stretched until the thick and thin filaments 

no longer overlap, and lattice order is removed; such muscles produce a diffraction pattern 

devoid of lattice sampling, which greatly simplifies the modelling process since the myosin 

layer lines can be modelled by a single myosin filament and no lattice effects need be 

considered.

The first of these studies by Haselgrove [50] concentrated on reproducing the shape 

and relative intensities of the myosin off-meridional layer lines, and made no attempt to 

include the meridional components of the layer lines, or the equatorial reflections. The 

myosin head was modelled by seven overlapping spheres as first proposed by Miller and 

Tregear [103].

The main conclusion from this study was that the myosin filament could not be 

modelled with just one myosin head at each subunit position. The best model was reached 

when the two myosin heads of each subunit pointed in opposite axial directions at angles of 

±30° to the normal to the muscle axis, and were wrapped around the filament at an azimuthal 

angle of about 80° to the normal to the backbone (fig. 6.1). In addition, an isotropic
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“thermal disorder” component was required to reduce the higher order layer lines to a 

satisfactory intensity. A refined model of the myosin head based on the curved head 

proposed by Moore et al. [173] had little effect on the model’s theoretical diffraction, which 

led to the further conclusion that “the exact shape of the crossbridges is unimportant 

provided they are elongated”.

Malinchik & Lednev [96] used the same basic approach to model the myosin layer 

lines from stretched frog muscle, but expanded the work to include detailed modelling of the 

meridian. Their results supported Haselgrove’s work; the best rest model placed the myosin 

heads at axial angles of ±27°, and wrapped them around the backbone at an azimuthal angle 

of 80°.

The axial distribution of the myosin heads was modelled by a one dimensional mass 

distribution of units, each unit representing one head level. The head levels were grouped 

into triplets 42.9nm apart. Within each triplet, the head levels were displaced such that the 

units were 13nm apart, rather than 14.3 nm (fig. 6.2). This arrangement represents the 

distortion group giving rise to the forbidden meridional reflections (§6.5.1). The best result 

was reached when the distortion group did not extend over the whole length of the thick 

filament, and further contributions from C-protein and the backbone were included [96].

This thesis differs from the above studies in that it aims to reproduce the actin and 

myosin reflections of the two dimensional diffraction pattern from unstretched resting and 

contracting muscle, including lattice effects [137]. The meridional and off-meridional 

contributions are integrated rather than being regarded as independent models.

There is a dearth of published work on modelling the structure of contracting 

muscle, and what there is seems to concentrate on the individual effects of various types of 

structural disorder on fibre diffraction [164, 18, 101, 146, 147, 157].

In particular, Malinchik & Yu [95] discussed various factors which could be 

responsible for the equatorial intensity reversal observed in isometrically contracting muscle. 

Their results indicate that the ratio of the intensities of the [10] and [11] equatorial reflections 

is strongly affected by lattice disorder. Disorder in the thick filament lattice lowers the [10] 

intensity, leaving the [11] largely unaffected; in contrast, disordering the thin filament lattice 

raises the [10] intensity and lowers that of the [11] reflection. They observed that if the
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Figure 6.1: Haselgrove’s Model Subunit Arrangement [50J
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Figure 6.2: Axial Mass Distribution in the Perturbed Region o f Malinchik & 
Lednev's Best Model o f the Thick Filament in Rest Muscle [96]

In this model, the perturbed region o f the myosin head arrangement does 
not extend over the whole length o f the thick filament. The best rest 
model also includes contributions from C-protein and backbone 
structures.
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disorder is thermal in origin, the mass difference is likely to result in a larger average 

amplitude of displacement for the thin filaments than for the thick filaments: an amplitude 

ratio of 1.6:1 was suggested. Taking account of this ratio when combining both lattice 

disorders, the overall effect is to raise the [ 10]: [ 11] intensity ratio.

The characteristic feature of the isometric contraction pattern is the lack of sampling 

indicating the presence of large amounts of disorder, particularly in the myosin head 

arrangement. It is important to distinguish between the effects of the different types of 

disorder so that those which are most likely to contribute to the observed effects can be 

investigated in greater detail. This work differs from the studies referenced above in that the 

disorders are applied specifically to the myosin head arrangement and the filament lattice, 

rather than being generalised discussions.

6.4 General Modelling of Muscle Structure

The general procedure for producing theoretical diffraction patterns can be divided 

into three steps: building the three dimensional model, mass projecting the model structures, 

and Fourier transforming the mass projections (fig. 6.3). The sum of the squared 

transforms for a range of projections covering one complete revolution around the muscle 

axis is equivalent to an experimental x-ray diffraction pattern, though it should be convoluted 

with a two dimensional Gaussian, representing the cross-section of the experimental x-ray 

beam, before a direct comparison can be made. The computer programs which produce the 

result in this thesis make use of methods based on a set of earlier programs written by Diaz 

and Pantos [26] at the SRS. The mass projection and Fourier transform methods are 

implemented in the same way, but the model building section has been completely rewritten.

The basic model used in this work is a three dimensional model of the overlap 

region of the sarcomere (fig. 6.4), consisting of parallel thick and thin filaments in a 

hexagonal lattice. The lattice lies in the x-y plane, and the filament axis is the z-dimension. 

The extent of the modelled region is variable, as is the resolution of the model defined as the 

number of pixels per nm.
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Figure 6.3: Pseudo-Code fo r  Complete Modelling Program

The resolution is determined by the extent of the model and the number of pixels in 

the mass projection buffer, which in practice can only take a limited number of values: the 

Fourier transform uses an optimised fast Fourier transform routine which requires that the 

input mass projection must be square, and that the number of pixels along each side must be 

a power of two. In addition, there is an upper limit to the size of the mass projection buffer 

set by the computational memory and time required to Fourier transform it; a 1024 x 1024 

pixel buffer (210) takes 1.5 minutes, compared to 8 minutes for the next allowable buffer 

size - 2048 x 2048 pixels (211).

Thick Filament Length ~ 1600nm

M odelled
Region
-512n m

+ -H -+

I I I
+

Overlap Region ~ 700nm

Thin Filament Length 
~ llOOnm

M

Figure 6.4: Modelled Region In Relation To A Full Sarcomere
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For a given mass projection buffer size, the extent of the modelled region can only 

be increased by decreasing the resolution of the model, making the spheres smaller in terms 

of pixels. This has its own problems in that it can cause pixelation errors, because the 

position of each sphere is not exact but is in fact centred on the nearest pixel to its exact 

position. At low resolutions, this rounding action can involve a significant displacement 

from the calculated position, distorting the structural repeats. As a result, the diffraction 

pattern may exhibit spurious peaks or incorrect intensities.

So the models used here are limited in size by the time it would take to run the 

program, and in resolution by pixelation errors. A compromise was reached using a 1024 x 

1024 pixel buffer, and a maximum model size of 512nm, giving a resolution of 2 pixels per 

nm.

6.4.1 Building a Three Dimensional Model

The basic model structure is built using the parameters presented in table 6.1, and 

setting all undefined parameters, such as the angles taken by the myosin heads, to a default 

value of zero. In the modelling process, various parameters are modified to obtain a good fit 

to the experimental data. Different subroutines are called by the modelling program 

according to the status of the muscle; the set of routines available when the model status is 

contracting is a superset of the rest subroutines, allowing for increased disorders and 

bonding calculations. The pseudo-code for building the rest status model shows the general 

steps split into various subroutines (fig. 6.5).

The first procedure is to define the two dimensional hexagonal lattice which the 

filaments occupy. It is actually built on a rectangular framework, which allows both the 

thick filaments in the simple hexagonal lattice and the thin filaments at the trigonal points to 

be reached with the same lattice vectors. The rectangular lattice vectors are 12nm in the x- 

direction, and 20.8nm in the y-direction (fig. 6.6), giving a nearest neighbour hexagonal 

lattice spacing of 41.6nm. The program automatically removes any thick filaments which are 

not surrounded by six thin filaments, to give all myosin heads every opportunity to bond 

fully.
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L A T T IC E : C alculate co-ordinates of each th in  filam ent lattice point 

C alcu late co-ordinates of each th ick  filam ent lattice point

FOR each th in  filam ent

C alcu la te  o rien ta tion  of the whole filam ent 

C en tre  one actin  helix on the lattice site 

E N D F O R

FOR each th ick  filam ent

C alcu la te  o rien ta tion  of the whole filam ent (superlattice fo rm ation)

C en tre  th ree  myosin helices on the lattice site, ro ta ted  by 120° re la tiv e  to one 

an o th e r

C alcu late  o rien ta tion  of each individual myosin helix in the filam ent 

E N D FO R

SUBUNIT: In p u t param eters o f the subun it models

FOR each ac tin  helix

H ELIX _A CTIN : C alculate co-ordinates of every subunit in actin  helix

E N D F O R

FO R  each m yosin helix

HELIX_M Y OSIN : C alculate co-ordinates of each subunit in m yosin helix

E N D F O R

FOR each ac tin  helix

C alcu late  full 3D co-ordinates of each actin subun it 

S tore co-ordinates with ac tin  sphere type 

E N D FO R

continued overpage...
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FO R  each th ick  filam ent

C alcu late  full co-ordinates o f each backbone segm ent 

S tore co-ordinates w ith backbone cylinder type 

E N D F O R

FOR each m yosin helix 

FO R  each subunit

C alculate full co-ordinates o f the bases of the two myosin heads 

E N D F O R  

E N D F O R

IF  status is contracting

BOND: Define chosen bonds an d  calculate corresponding head orientation

E N D IF

FO R each th ick  filam ent 

FO R  each subunit

FO R  each of the two m yosin heads

POSITION: C alcu late  the full co-ordinates of each sphere in the

head  given the orien ta tion  and the co-ordinates of the 

base su b u n it 

Store co-ordinates w ith  myosin head sphere type 

EN D FO R  

E N D F O R  

E N D FO R

Figure 6.5: Pseudocode For Building Section Of Modelling Program
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O  Thin filament •  Thick filament

- o o -

41.6nm

XX~
20.8nm

12nm

Figure 6.6: Framework O f The Hexagonal Lattice

Good lattice order is held over -400 nm (§5.2.1), which is well within the 512nm 

maximum extent of the lattice (§6.4). The mass projection buffer size restricts the all three 

dimensions of the model, limiting the filament length to 512 nm. This is shorter than the 

overlap region of the sarcomere in rest length muscle (700nm), but is sufficiently long to 

model the meridional reflections correctly.

PARAMETER VALUE

Lattice spacing 42.0nm

Myosin Helix:
Pitch 43.0nm
Axial translation 14.3nm
No. subunits/tum 9
Radius 7.5nm

Actin Helix:
Pitch 36.0nm
Axial translation 27.3nm
No. subunits/tum 0.2162162
Radius 2.5nm

Table 6.1: Initial Model Parameters

The helical filaments are built to the specifications in table 6.1, with each subunit 

representing one monomer in the actin helix and one pair of myosin heads in the myosin 

helix. Three myosin helices are combined at orientations of 0°, 120° and 240° to produce the 

triple helix structure. In the basic model, all the filaments of each type are identical and have

114



the same orientation, though every helix is generated individually to allow for later inclusion 

of disorder within the helix structure (§6.5.3). The subunit co-ordinates are added to the 

corresponding lattice co-ordinates of each filament, effectively placing the thick and thin 

filaments at the correct lattice sites.

The actin monomer is modelled by a single sphere of radius 2.5nm, centred on the 

co-ordinates of each actin subunit (fig. 6.7a), closely approximating the real elongated 

monomer: the consequences of the spherical approximation are not significant enough to 

warrant more in depth modelling at this stage, and are discussed in the next chapter.

The myosin subunit model is more complex, representing two myosin heads which 

are far from spherical. The individual myosin heads are modelled by a group of spheres 

arranged in one of two structures of different resolution. The simplest model is a low 

resolution head identical to that first suggested by Miller & Tregear [103]. The model 

consists of seven spheres each of radius 2nm, whose centres are separated by 2nm in a 

straight line giving overall dimensions of 16 x 4 x 4 nm for each head (fig. 6.7b). The full 

subunit representation comprises two head models, with the first sphere of each head centred 

on the subunit co-ordinates.

The second head model is a much higher resolution structure, consisting of fifty- 

nine spheres, each of radius 0.8nm, arranged so as to closely mirror the crystalline myosin 

head structure determined by Rayment et al. (fig. 6.7c) [124]. The dimensions of this model 

head are 16.5 x 6.5 x 4.5 nm, and its Fourier transform was almost identical to that of the 

full head structure. Again, each subunit comprises two model heads, and the tertiary sphere 

is centred on the subunit co-ordinates.

The backbone elements of the thick filaments are modelled by uniform cylinders: it 

is assumed that the backbone structure does not change during contraction, since there is 

little evidence to suggest otherwise. The cylinders are built in 14.3nm long sections of 

radius 7.5nm, centred at the thick filament lattice sites and at 14.3nm intervals along the 

length of the filament (fig. 6.7d).

The basic model parameters stay largely the same throughout the modelling process 

and give rise to the fundamental diffraction pattern. Matching this pattern to the experimental 

data is done by modifying the distribution and orientation of the subunits within the helices,
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and the arrangement of the filaments in the lattice. These modifications are discussed in 

detail in the next chapter. When all the components have been arranged, the position of each 

building block in the structure is stored along with its type: sphere or cylinder.

5nm

5nm

(a) Actin M onomer

12nm

13nm

(c) High Resolution Myosin H ead

4nm tdnnD
H— I— I I I I

16nm

(b) Low Resolution Myosin H ead

14.3nm

15nm

(d) Backbone Section

Figure 6.7: Modelled Representations of the Basic Subunits

6.4.2 Mass Projection into a 2D Plane

The three dimensional model co-ordinates are transferred into a two dimensional 

mass projection buffer using rotation matrices, according to the angle of the projection, 

though transferring the subunits themselves to two-dimensional mass projections is a little 

more complex. In general, the mass projection of the subunit will depend on the projection 

angle, which is where the advantage of using spheres for building the model becomes 

apparent; the two dimensional mass projection of a sphere is independent of the incident 

projection angle. Thus a single two dimensional mass projected sphere template can be built 

for each type of sphere used in the model, and simply pasted into the mass projection buffer 

at the required projected co-ordinates (fig. 6.8). Since the backbone sections are also 

spherically symmetric in the lattice plane, which is perpendicular to all projections in this 

program, the template method is still valid.
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To make the templates, each sphere is normalised to the size of the full mass 

projection buffer, and pixels that fall within the sphere outline are weighted by the depth of 

the sphere at that point, taking into account the relative density of the sphere type. The same 

method is employed for the backbone sections, projecting the mass into a depth-weighted 

longitudinal slice. This need only be done once for each sphere type, and the resulting 

templates stored for further use.

The relative densities of the three components - the actin, myosin head and 

backbone subunits - are crucial to generating the correct relative intensities of the actin and 

myosin layer line sets, which vary as the square of the corresponding density. The model 

density of each component was calculated from the known mass and the modelled volume of 

the subunit.

Table 6.2 presents the figures used in these calculations: the sources of the quoted 

actin and myosin head masses are found in Chapter 2. For the actin subunit, the mass of one 

G-actin monomer (42kDa) was used. The mass of one myosin head consists of one myosin 

SI unit (120kDa) plus two light chains (20kDa each), giving a total mass of 160 kDa.

A ctin
M onom er

M y o s in  
Head 1

M y o sin  
Head 2

B ackbone
S e c tio n

M odel U nit 1 sphere 7 spheres 59 spheres 1 cylinder

R adius (nm) 2.5 2.0 0.8 7.5

L ength  (nm ) - - - 14.3

U nit Volum e (A3 ) 6.545 x 104 2.346 x 105 1.265 x 105 2.527 x 106

M ass (kDa) 42 160 160 836

U nit D ensity (Da/A3 ) 0.642 0.682 1.264 0.331

Table 6.2: Parameters o f the Basic Modelling Units

Each cylindrical backbone section corresponds to one level of three myosin head 

pairs, equivalent to three myosin molecules. The mass of this section was taken as the sum 

of the LMM (160 kDa) and S2 (100 kDa) chain sections of three molecules. In addition, a 

third (56 kDa) of a C-protein molecule is incorporated into each section, calculated by 

averaging the mass of seven C-protein molecules (7 x 150kDa) over a half sarcomere length. 

C-protein is a significant proportion of the thick filament mass but does not contribute to the 

helical diffraction of the myosin heads. Evenly distributing its mass over the backbone
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ensures that it contributes to the equatorial reflections but not the myosin layer lines; 

however, the uniform distribution of mass also means that the meridional reflections which 

arise from the C-protein arrangement do not appear either.

This raises a question over the contribution of the troponin and tropomyosin 

proteins to the thin filament mass, and how it might affect the calculated actin monomer 

density. Their contributions to the actin and myosin layer lines are negligible: the 

tropomyosin helix gives rise to its own set of layer lines, whereas the troponin molecules 

produce a set of reflections on the meridian. However, the extra mass centred at each of the 

thin filaments can be expected to have a significant effect on the equatorial reflections and 

cannot be ignored. Distributing the mass evenly over the actin helix would falsely raise the 

layer line intensities, but unlike the thick filaments, there is no backbone component to deal 

with this problem. Without explicitly modelling the regulatory proteins, the simplest way to 

deal with the extra mass is to evenly distribute it over the actin helix when determining the 

equatorial reflections, and leave it out for the layer line calculations. So for the equatorial 

calculations, two troponin molecules at 80kDa each and two tropomyosin molecules at 

66kDa each were added for every 14 actin monomers: a total extra mass of 21 kDa per actin 

monomer, which increases the density to 0.960 Da/A3.

The number of projection angles used is a compromise between the required 

resolution and the total computational time necessary to Fourier transform the set of 

projections. The minimum number of mass projections required to reproduce the model 

completely must cover half of one complete revolution about the muscle axis: the symmetry 

of the model means that this is equivalent to one complete revolution in real terms. A 

standard of 5° increments between 0° and 180° was determined to produce a set of 

reflections with almost identical relative intensities to the ideal case, whilst reducing the 

computational time involved to about one hour; the Fourier transform of a set of 36 

projections at 1.5 minutes each.

6.4.3 Fourier Transform of the Model

Each of the mass projection buffers are Fourier transformed individually using an 

optimised fast Fourier transform routine, which limits the input buffer to a square buffer
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In p u t p ro jec tion  angles

FOR each type of sphere used in the model

TEM PLA TE: generate a  projection tem plate

E N D F O R

FOR each p ro jection  angle

FO R  each myosin head in the model

M A S S _ P R O JE C T IO N : R otate 3D model to pro jection angle requ ired

Mass pro ject co-ordinates of each sphere

Paste assigned tem plate onto p ro jec ted  co-ordinates

E N D F O R

FO R  each th ick  filam ent backbone

M A SS_PR O JEC TIO N : R otate 3D model to p ro jection  angle req u ired

M ass p ro jec t co-ordinates of each cylinder segm ent 

Paste assigned tem plate onto p ro jec ted  co-ordinates

E N D F O R

FO R  each ac tin  helix

M A SS_PR O JEC TIO N : R otate 3D model to pro jection  angle requ ired

M ass pro ject co-ordinates of each sphere

Paste assigned tem plate onto pro jected  co-ordinates

E N D F O R

T R A N S F O R M : F o u rie r transfo rm  the mass pro jection  buffer 

Square FT buffer

A ccum ulate runn ing  total of intensity  over all p ro jections

E N D F O R

Store accum ulated  intensity as a 2D image Hie

Figure 6.8: Pseudocode For Mass Projection And Fourier Transform 
Sections Of The Modelling Program
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with a side of 2n pixels. The routine was tested against a standard NAG library routine and 

gave identical results. The individual transformed buffers are squared and summed over the 

entire set of projections to reproduce the intensity distribution of the diffraction pattern.

6.5: Modifications to the Basic Model

Most modifications to the basic model described in the previous section involve 

changing parameters and dimensions, but there are a few structural modifications which 

require explicit programming. Incorporation of the distortion group which produces regular 

perturbations in the axial translation of the myosin helix is one such case. The distortion 

group is defined by the number of head levels in the group and the displacement of each level 

from its ideal position. The displacements are added to the ideal axial positions at the myosin 

helix building stage, and are non-cumulative. The capacity to model filament extensibility is 

incorporated by translating a percentage filament extension to an increase in the 

corresponding helix pitch before the building stage.

In modelling the superlattice structure, it is assumed that the thick filaments take one 

of two orientations, 0° or 60°, which is equivalent to a 180° relative rotation because of the 

trigonal symmetry [133]. Every thick filament is assigned an angle, which is added to the 

orientation angles of each of the three myosin helices in the filament: thus the triple helix 

structure is maintained.

The introduction of disorder to the model also requires specific programming, and 

can take one of several forms. The modelling program includes the possibility of displacing 

whole filaments laterally or axially within the hexagonal lattice, and randomly orienting them 

about their long axis. Bending of filaments and axial tilting are rather more complex and are 

not included in the programming. Within a given helix, the individual subunits can be 

axially, radially or azimuthally displaced, and/or randomly oriented. In the following 

discussion, the term displacement may refer to a lateral, axial, or angular displacement from 

the ideal value of a parameter.

Random isotropic disorder is the simplest case: the parameter in question is allowed 

to vary in the range p-a < p  < p+a, where the amplitude a is the maximum allowable
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displacement of the parameter from its ideal value. Within this range, the displacements are 

chosen randomly and are all equally likely; the disorder is defined by the statistical rms 

displacement.

Disorder of the first kind is similar, but the displacements are randomly drawn from 

a Gaussian distribution of displacements centred on the ideal position, rather than a uniform 

distribution. The amount of disorder is defined by the half width of the Gaussian 

distribution of displacements. The distribution is normalised to the full number of filaments 

in the model, and the displacements randomly assigned to each filament.

The modelling process is a little more complicated than for the isotropic disorder, 

because of the necessity of drawing the displacements from a defined distribution. The 

effect on the diffraction pattern is similar in most instances, so for simplicity, isotropic 

disorder is used rather than disorder of the first kind. The option of using the more complex 

disorder is retained for modelling lattice disorder, where its effects are slightly more visible. 

Both disorders are non-cumulative, so the displacement of one unit is independent of the 

displacements of adjacent units.

Disorder of the second kind is still more complex, since it is a cumulative disorder. 

The displacement of each unit from its ideal position is affected by the displacements of the 

adjacent units, destroying long range order. Modelling a structure which contains 

cumulative disorder is more involved, because the disorder has to be incorporated as the 

structure is built, rather than building a perfect structure and adding the disorder afterwards. 

In this program, disorder of the second kind was only used in modelling the lattice disorder, 

where the lattice was built point by point from the centre out, using randomly distorted lattice 

vectors to reach the next point.

Much of the contracting muscle diffraction pattern can be modelled empirically by 

introducing various disorders, but there is still a need to study the bonding process by 

forming specific actin-myosin bonds. The program uses specified physical criteria to define 

a suitable bond, and uses this information to choose the most favourable bonds for the 

model. The subroutine BOND deals with determining which bonds are favourable for each 

myosin head, taking account of its position before binding takes place, and moves the heads 

to the orientation they would take in that bond. Control is then passed back to the main
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BUILD routine with the repositioned myosin heads, ready to be mass projected and Fourier 

transformed (fig. 6.9).

BOND: (called from  m ain BUILD section when muscle status is contracting)

FO R  each m yosin helix

D eterm ine the  su rro u n d in g  six actin  chains 

FOR each m yosin head

P O S IT IO N : C alculate in itial position of each myosin sphere

D efine m yosin-actin  bond c rite ria  

D eterm ine which bonds fall w ithin these crite ria  

Select a  bond  for this myosin head 

D eterm ine new orien ta tion  of bound myosin head 

E N D F O R  

E N D F O R

D eterm ine statistics fo r  bond param eters

R etu rn  to BUILD w hich  uses new orientation in model

Figure 6.9: Pseudocode For Bonding Procedure
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Chapter 7: Modelling Of Rest Muscle

7.1: Introduction

7.2: Reproducing the Actin Filament Pattern

7.3: Myosin Filament Pattern - Low Resolution Myosin Head 

7.3.1: Meridional Reflections

7.3.2: Layer Line Profiles

7.3.3: Relative Intensity of the Layer Lines

7.4: Myosin Filament Pattern - High Resolution Myosin Head 

7.4.1: Meridional Reflections

7.4.2: Layer Lines

7.5: Discussion of Results
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7.1 Introduction

This chapter presents an investigation of the structure of rest muscle using the 

programs described in the previous chapter. Results obtained using both the low resolution 

(7 sphere) and high resolution (59 sphere) models of the myosin head are described with 

regard to their suitability for modelling work on this scale.

Subject to the limitations discussed in §6.4/§6.4.1, the standard model size was 

defined as a 360nm by 360nm lattice of 512nm long filaments, incorporating 70 myosin 

filaments and 176 actin filaments. Each actin filament contained 187 subunits, and each 

myosin filament 35 head levels, giving a total of 14700 myosin heads.

Where an R-factor is calculated as a measure of goodness of fit, the following 

definition was used:

y  (I _ /  2̂
R = ^  calculated observed! /  = intensity

I 1 2observed

7.2 Modelling The Actin Filaments

Modelling the thin filament as a helix of 2.5nm spheres, as described in §6.4.1, 

produced a set of layer lines at the correct spacings, with the most intense layer lines being 

the sixth at 1/5.9 nm'1, the seventh at 1/5.1 nm*1, and the first at 1/36 nm'1, as observed in 

the experimental data. The modelling was not intended to reproduce the thin filament pattern 

in any great detail, but the initial model could be improved within the bounds of the spherical 

actin monomer approximation.

The first problem involved the relative intensities of the actin layer lines. The first 

actin layer line was much too intense with respect to the sixth and seventh layer lines, as well 

as when compared to the first myosin layer line at 1/43 nm'1. The first actin and myosin 

layer lines overlap considerably which makes determination of the exact relative intensities 

impossible, but at rest the first actin layer line is significantly lower in intensity than the first 

myosin layer line; in this initial model, the reverse was true. The sixth and seventh layer 

lines were also more intense than the sixth myosin layer line, whereas in the experimental 

data they were less intense.
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Since the model actin subunits are spherical, their orientation is immaterial: this 

leaves the exact position of the subunits in the helix and the position of the filaments in the 

lattice to play with. One disorder which would have the desired effect is a random 

cumulative rotational disorder which disturbs the helical order of the actin subunits: this type 

of distortion is undetectable to the axial or equatorial mass distributions, so its effects would 

only be seen in the off-meridional layer lines. There is evidence to support such a disorder 

in the actin helix [29], which causes the rotational angle between adjacent subunits to vary by 

a random amount whilst leaving the axial translation unaffected. The effect is cumulative so 

the rotational displacement of a given monomer from its ideal position affects the 

displacement of the next. The result is to alter the position of the cross-over points of the 

long, double actin helix; instead of crossing at regular 36nm intervals, the double helix 

crosses at irregular intervals (fig. 7.1) [43]. The effect on the diffraction pattern is to reduce 

the intensity of all the actin layer lines, but preferentially the lower order ones.

Various amounts of disorder were added to the actin helices, and the minimum 

value which sufficiently reduced the actin layer lines was Sm*. -1 0 °: approximately 6% of 

the perfect subunit rotation of 166°. The resulting change in layer line intensities decreased 

the first actin layer line to a level comparable with the experimental data, and the sixth and 

seventh actin layer lines also decreased relative to the sixth myosin layer line (fig. 7.2). The 

rotational disorder did not, however, improve the relative intensities of the sixth and seventh 

layer lines relative to each other, which at 15.1:15.9 ~ 1:2 was significantly higher than the 

experimental ratio of 1:4.

It is likely that the difference in relative intensity is due to the elongated shape of the 

real actin monomer, which is ignored in this simple model. The elongated axis is believed to 

lie approximately at right angles to the thin filament axis [30,105], which could reinforce the 

left handed 5.9nm pitch helix in preference to the right handed 5.1nm pitch helix, thus 

increasing the intensity of the sixth layer line at the cost of the seventh. In addition, the 

radius of the centre of mass of the actin monomers would increase from the modelled 2.5 nm 

to nearer 3.5nm, resulting in a shift of the radial profile of the actin layer lines to better fit the 

experimental data. However, a more complicated monomer representation than this program 

offers is required to study these effects.
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Figure 7.1: The Effect o f Cumulative Rotational Disorder on the Actin Helix
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The actin layer line profiles show sharp sampling peaks which are not present in the 

experimental rest patterns. The peaks were greatly reduced by introducing random isotropic 

disorder to the thin filament lattice of the order of 2.5nm rms.

7.3 Myosin Filament Pattern - Low Resolution Myosin Head

The basic structure of the thick filaments was modelled as described in §6.4.1. The 

backbone components of the thick filaments were assumed to maintain the same cylindrical 

structure in all models, leaving the flexibility of the model in the arrangement of the myosin 

heads. The modelling programs allow many of the parameters to be varied, specifying the 

position and orientation of the two myosin heads in each subunit individually.

The significant number of flexible parameters requires a systematic method of 

investigating the myosin head arrangement. This approach is aided by the fact that the 

meridional region of the diffraction pattern only depends on the axial mass distribution of the 

model. In other words, any model parameter which does not affect the axial mass 

distribution can be varied without changing the meridian of the diffraction pattern. Thus the 

meridian can be modelled independently from the rest of the pattern by altering those 

parameters which modify the axial mass distribution, and setting all others to a default value. 

Once the meridian has been reproduced, these parameters can be fixed and the remaining 

parameters brought into play to model the off-meridional region of the pattern.

7.3.1 Meridional Reflections

The relative intensity of the meridional myosin reflections is determined by the axial 

mass distribution averaged over all the thick filaments in the model. An approximation of the 

distribution can be defined in terms of units representing one myosin head level, containing 

six myosin heads. Figure 7.3 illustrates the case for a distortion group of three head levels, 

represented as uniform functions, though in the model, as in reality, the shape of the 

function would depend on the mass distribution over the head level.

The axial mass distribution is defined by the width, w, (and shape) of the head level 

unit, the configuration of the distortion group, d, and the distribution of the distortion group
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along the thick filament axis. In initial modelling of the distortion group, the myosin heads 

of each subunit were set to their default arrangement, superimposed on each other and both 

oriented perpendicular to the filament axis.

a
D istortion  G roup

I I I
dj d2

nn nnn
O ne M yosin  
H ead  Level

Thick F ilam ent 
A xis

w  = ax ia l w idth o f  each m yosin  h ead  level 
d i, d 2 =  ax ia l separation  o f  head levels within the d istortion  grou p  

s = axia l separation o f  centres o f  distortion  groups

Figure 7.3: Definition of the Axial Mass Distribution

It was assumed that there were three head levels in each distortion group [70, 144], 

and the group repeated at 43nm intervals along every thick filament; thus the overall 43nm 

pitch of the myosin helix was maintained. Within the distortion group, the myosin head 

levels were displaced from their ideal positions, where dI=d2=l43nm. The displacements 

of each of. the three heads, Ah A2, and Ah were added to the ideal positions to calculate the 

distorted d  values (fig. 7.4).

U ndistorted Group D istorted  Group

14.3nm  U ndistorted Spacing

Figure 7.4: Description o f the Distortion Group
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The distortion group was modelled both with positive A values, expanding the head 

separation within the group, and with negative A values, compressing the group. 

Displacements of the order of lnm  were required to produce significant peaks at the 

positions of the 1M and 2M forbidden reflections. Compressing the head levels within the 

distortion group produced slightly better relative intensities than expanding them, and with 

slightly lower displacements. Best results were obtained when the first myosin head level 

was assumed to be in its ideal position (A;=0), and the other two levels were displaced by 

negative amounts of the order of lnm (A2= -lnm, A3= -2nm). An interesting result was 

that the average spacing d=(di+d2)/2 is more important than the individual spacings: thus the 

best result was when d1=d2=l3.lnm  ± 0.2nm.

For larger spacings (d > 13.3nm; smaller displacements) the intensities of the 

forbidden peaks were too low compared to the true 3M and 6M reflections; the 1M and 2M 

reflections in particular were negligible. Smaller spacings (d < 12.8nm; larger 

displacements) caused the forbidden reflections to become too prominent; at displacements 

greater than Aj=0, A2=-3nm, A3=-6nm, they dominated the true peaks.

The shape and width of the head unit level is determined by the arrangement of the 

two heads in the myosin subunit, and of the three subunits in each level. Initially, it was 

assumed that the three subunits were identical, and azimuthally separated by 120°. The 

simple myosin head subunit is defined axially by three parameters: the axial angles of each of 

the two heads, and the vertical offset between them (fig. 7.5). The axial angles and a2 

are defined with a=0° when the heads are perpendicular to the filament axis, and a=90° 

when they are parallel to the axis.

The axial angles of the heads were varied independently of each other, and in 

combination with the regular perturbations A discussed above. As a  increased and the 

myosin head became more parallel to the filament backbone, the mass distribution changed 

from sharply defined high mass concentrations to a more spread out arrangement where the 

mass concentrations overlapped. This resulted in the higher order diffraction peaks 

decreasing in intensity with respect to the lower order peaks, though not uniformly so.

The myosin meridional reflections sample an underlying interference function, the 

shape of which is determined by the shape of the myosin subunit [98]. The function arises

129



from the interference between the centre of mass of each head in the pair, which becomes 

especially noticeable when the myosin heads point in opposite directions along the myosin 

filament. The first peak of the function appears at an axial spacing which is the inverse of 

the centre of mass separation. The exact shape of the function depends on the relative 

contributions of the axial angles and the offset to the total centre of mass separation (fig. 

7.6), and has a significant effect on the meridional diffraction pattern; for the same total 

separation, the combination of smaller axial angles and a larger vertical offset produced a 

function with more well-defined minima and maxima.

Thick Filament Axis ”

The two best matches to the meridional diffraction pattern, U 1 and U2 described 

below, both have similar axial distributions, though in model U1 the two heads of each 

subunit point in the same direction along the filament axis, and in model U2 they point in 

opposite directions. The axial width in each case is 13.5nm ± 0.3nm. The best model, 

model U 1, is where the two heads point in the same direction along the filament axis, taking 

angles of CC]=60° ± 1°, a 2=55° ± 1 °, and the second head is offset vertically by 1.5nm ± 

0.2nm. In model U2, the second best model, the heads point in opposite directions with 

ccj=24° ± 1°, a 2= -24° ±1°, and a vertical offset between them of -0.8nm ± 0.2nm. In both 

models, the distortion group separations were dj=d2= 13.3lnm  ± 0.2nm. The meridional 

intensity plot produced by model U l, with R-factor of 35%, is shown in figure 7.7.

^ o ffse t

Vertical offset 
between heads

a 2

Separation of 
centres o f mass

Figure 7.5: Parameters Defining the Axial Myosin Subunit

130



1.0

0.8

■ftA 0.6

50° \ 20° \10°

0.4

0.2

0.0

0.05 0.25 0.350.15

nm

Figure 7.6: Meridional Strip o f the Subunit Interference Function

The intensity functions shown here illustrate the effect o f varying the separation 
o f the myosin heads’ centres o f mass within a single myosin subunit. In each 

case, the axial angles taken by the two myosin heads are = - a , , so that the 
heads point in opposite directions along the thick filament axis.

The separation of their centres o f mass becomes significant for larger angles 
(~8nmfor a  = 25°): the structure of the resulting interference function 

strongly affects the intensity o f the myosin meridional reflections, whose 
positions are marked by the arrows.
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Figure 7.7: Comparison o f the Experimental Meridian with the Best Rest Model 
Obtained Using the Simple Myosin Head Model (Ul)
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7.3.2 Layer Line Profiles

When modelling the off-meridional pattern, the axial mass distribution was 

alternately set to model U1 or U2, the two best rest models determined in the previous 

section. The defining parameters (a h a 2, Zoffset, d, s) were kept constant during the 

modelling, and only those parameters which had no effect on the axial distribution, and were 

only detected in the helical or equatorial projections, were varied.

The layer line profiles are shaped by the combination of a broad continuous peak 

arising from the helical structure of the thick filaments, sampled by Bragg diffraction peaks 

from the lattice planes. The function underlying the first myosin layer line is a third order 

squared Bessel function, / / .  Calculations for J32 Bessel functions of radius lOnm <rc < 

15nm showed that the best fit to the layer line profile was with a radius of 13.3nm ± 0.3nm 

(fig. 7.8).

The radius of centre of mass also had a strong effect on the equatorial intensity 

distribution. As the mass of the myosin heads moved away from the filament backbone, the 

mass in the [10] planes decreased relative to the mass in the [11] planes, decreasing the 

[10]: [11] ratio. The ratio was also affected slightly by the azimuthal angle taken by the 

heads, even when the radius of centre of mass was unchanged (§7.3.3).

The Bragg peaks on the first and second layer lines can be indexed onto a 

superlattice cell of side V3 x the lattice spacing (§5.2.1). Various models based on this 

superlattice shape were tested, all involving the basic unit cell proposed by Squire [133], 

where the comer filaments and one of the internal filaments take one orientation, and second 

internal filament is rotated by 60° (fig. 7.9). In the first model, this basic unit cell was 

perfectly repeated over the whole lattice. The resulting sampling peaks on the first layer line 

were far too intense and completely overshadowed the underlying continuous peak (fig. 

7.10a). Another model built several unit cells, each with a slightly different distribution of 

the two filament orientations, and distributed the unit cells regularly over the lattice. The 

results were strikingly different, though in neither case did the relative intensities of the 

sampling peaks match the experimental first layer line profile.

Better relative sampling on the myosin layer lines was obtained using a semi

random superlattice. The comer filaments of the basic unit cell were all set to the same
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Figure 7.8: Bessel Function Fitted to the First Layer Line Profile

This f i t  was obtained using a J3 Bessel function o f radius 13nm, which 
indicates that the average centre o f mass o f the myosin heads is close to 13nm.
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orientation (0°), and the two internal filaments were allowed to randomly take one of the two 

orientations, on the further premise that no three nearest-neighbour filaments could have the 

same orientation. A slight improvement was found by rotating every filament by a further 

10° such that the absolute orientations were either -10° or 50° (fig. 7.11).

T
Thin F ilam ent 

Thick F ilam ent

Figure 7.9: Basic Unit Cell Configuration

In addition, a small amount of isotropic myosin lattice disorder was found to lower 

the relative intensities of the Bragg peaks and the background continuous diffraction. Levels 

of the order of 1.7nm rms. significantly improved the match to the experimental layer line 

profile (fig. 7.10b).

7.3.3 Relative Layer Line Intensity

With the meridional intensity distribution and the first layer line intensity modelled, 

attempts were made to produce higher order layer lines with approximately correct relative 

intensities (§5.2). The relative intensities of the myosin layer lines are largely determined by 

the orientation of the myosin heads in the helix; with the axial angles already fixed to give a 

good match to the meridional pattern, this depended primarily on the azimuthal angle of the 

heads around the backbone. The azimuthal angles, 6j and 02, are defined as 0° when 

perpendicular to the filament backbone, and 90° when tangential to the backbone surface (fig. 

7.12).
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Figure 7.10: Profiles o f the First Layer Line for Different Superlattice Arrangements

(a) The unit cell shown in figure 7.9 is perfectly repeated throughout the lattice

(b) The lattice is made up of cells o f the same dimensions as that in figure 7.9, but 
the two central thick filaments are randomly distributed between the two available 

orientations such that there are an equal number o f filaments o f each orientation in
the whole lattice.
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Figure 7.11: Cross Section Through Model Showing the Superlattice Structure

A 14.3nm wide slice is shown with a single myosin head placed at each myosin subunit 
position and oriented perpendicular to the surface o f the thick filament backbone. This 
representation illustrates the distribution of the two possible filament orientations 6CP 

apart, and the offset o f the whole lattice by 10° from the horizontal
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The most obvious way in which varying the azimuthal angle affects the model is in 

altering the radius of centre of mass of the myosin heads, rc; the centre of mass of a head 

which is fixed to the backbone at one end is at a maximum radius when the head is 

perpendicular to the backbone (0 = 0°), and decreases as 0 increases and the head wraps 

around the filament. But even for a fixed radius of centre of mass, the azimuthal angle 

affects the equatorial intensities and layer line profiles. The averaged mass projection of the 

myosin heads occupies a ring of width dr about the filament backbone, which is narrow at 

high Wangles (fig. 7.13).

7^ .0

Azimuthal
Offset

Figure 7.12: Definition o f the Azimuthal 6 Angles

Increasing 6 (0 —> 90°) in models where rc was fixed broadened the underlying 

continuous peaks on the myosin layer lines, which in turn affected the relative intensities of 

the superimposed sampling peaks. The effect of the higher 6 values was also observed in 

the equatorial profile; for a given rc, an increase in 6 moved mass away from the backbone 

towards the radius of centre of mass, reducing the [10] intensity slightly. As a result, it was 

not possible to model the layer line profiles and relative layer line intensities independently: 

rather they must be considered in combination.

For the axial models U1 and U2, the azimuthal orientations of the two myosin 

heads in each subunit were varied independently, and in combination with various centre of 

mass radii. In both cases, the closest approximations were obtained for high azimuthal 

angles of 0]~Q2~65° ± 15°, though neither model gave ideal layer line intensity ratios; none 

of the models tested could give a reasonable match to the rest pattern layer line intensity 

distributions.
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Myosin Head 0 = 60° 

Myosin Head § = 0 °

Figure 7.13: The Effect o f the Azimuthal 0 Angle on the Averaged Thick Filament
Mass Projection

For a given radius o f centre o f mass (rQ), an increase in the azimuthal angle 
o f the myosin head forces the projected mass into a narrower ring about the 
thick filament backbone (dr). The peaks o f the continuous Bessel functions 
underlying the myosin layer lines broaden as a result o f this change, increasing 
the intensity o f those Bragg reflections which fall on the sloping sides o f the 
Bessel function peaks relative to those falling near the centres o f the Bessel 
function peaks.
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Figure 7.14: Relative Intensities o f the Myosin Layer Lines in Model Ula

A radially integrated strip running parallel to the meridian in the region o f the [10] 
equatorial reflection shows the relative intensities o f the myosin layer lines. The first 

three layer lines have comparable relative intensities to the experimental rest 
pattern, but the higher order layer lines are too low in intensity.

140



R
el

at
iv

e 
In

te
ns

ity
 

(a
rb

. 
un

it
s)

1.0

LL1

0.8 LL2

0.6

0 .4

0.2

0.0
0.00 0 .0 4 0 .0 8 0.12

nm  '}

Figure 7.15: The First and Second Layer Lines from Rest Model U2a

The second layer line peaks at too high a radius, 'which gives it a 
different shape when compared to the first layer line.
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Model U la, the best match to the experimental data using axial model U1 where both heads 

pointed in the same direction, produced good relative intensities for the first three myosin 

layer lines. However, the intensity dropped off sharply at this point, and the higher order 

layer lines were much weaker than expected (fig. 7.14).

With model U2a, the best model using axial model U2 with both heads pointing in 

opposite directions, the relative intensities of the first six layer lines were of the right order. 

However, the second and fourth myosin layer lines were the wrong shape; the underlying 

continuous function peaked at a higher radius than on the first and fifth layer lines (fig. 

7.15). The equatorial intensity plots were a good fit to the experimental data for both models 

U la and U2a.

7.4 Results With High Resolution Myosin Head

The higher resolution myosin head is far more complex than the simple seven 

sphere model used up to this point. The positions of the fifty-nine spheres reproduce the 

crystalline structure of the myosin head [124]. With the simple symmetrical head model, 

there were few parameters which needed to be considered, but the introduction of this non- 

uniform head requires the definition of more parameters. The high resolution head model is 

shaped rather like the head of a golf club, with most of the mass in the head and the rest in 

the stick. The default position of the myosin head was defined as that where the minor part 

of the mass lies parallel to the filament backbone, and the majority of the mass is 

perpendicular to the filament surface (fig. 7.16). The axial angle, a , and the azimuthal 

angle, 6, were defined as being zero in this position, and a third angle, p, was introduced, to 

allow for rotation of the myosin head about the normal to the filament surface. All the other 

parameters remain the same as with the previous head model.

With the introduction of the p  rotation, and the non-uniform shape of the myosin 

head, the axial and azimuthal angles can no longer be simply visualised; in general, the head 

is no longer perpendicular to the filament backbone when a=0°, and the azimuthal angle is 

no longer perpendicular to the backbone when 6 = 0°, unless p  =0°.
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Myosin Head

Figure 7.16: Default Orientation for the Complex Myosin Head Model

This is the orientation o f the myosin head at OC = 0*; p = 0°; 0 = 0°. 
For clarity, only one myosin head has been placed at each point in the 
helix in this figure.

a -o

Thick Filament 
Backbone
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7.4.1 Meridional Reflections
The a  and p  angles, and the vertical offset between the two myosin heads, were 

varied in combination to produce a good meridional intensity match. A similar distortion 

group to that found with the simple head model was determined, with dj=d2= 13.3nm. The 

best fit meridian was obtained with «7=cc2=90°, /?=0°, and the vertical offset between heads 

in a subunit was 2.5nm, giving an axial width of ~14nm (model C l). In this subunit 

arrangement, the main mass of the myosin head lies parallel to the filament backbone, as 

shown in figure 7.17.

This was the best fit meridian (fig. 7.18), with an R-factor of 13% (over the 0.03- 

O .lSnnr1 range), but not the only one to give a good fit. The second best meridian was 

obtained when p=90°, a=0°, and the offset between heads was 6nm (model C2). This 

arrangement is shown in figure 7.19, with a similar axial subunit width of 14nm, but a 

slightly worse R-factor of 15% (fig. 7.20). The myosin head has been turned around so that 

the golf club shape now lies in the equatorial plane, roughly perpendicular to the best model.

7.4.2 Layer Lines

The off-meridional patterns for both meridional models were tested for various 

azimuthal angles and centre of mass radii. In model Cl a, the best layer line profiles and 

relative intensities were obtained when the two heads wrapped around the filament backbone 

so that the main mass of the heads made azimuthal angles of -50° - 70° to the normal to the 

backbone (fig. 7.17, 7.21). The direction of wrapping was significant too; wrapping the 

same amount but in the opposite (negative 6 ) sense gave poor layer line intensities. Indeed, 

as the myosin heads moved away from the best azimuthal angle towards and past the normal 

to the backbone, the relative intensities of the layer lines steadily worsened.

In model C2a (fig. 7.19), the azimuthal arrangement was quite different: the best 

layer line profiles and relative intensities were obtained when the myosin heads crossed over 

and were approximately tangential to the backbone surface. The resulting pattern (fig. 7.22) 

is a reasonable match, although not as good as model Cl a, especially at higher resolutions.

The semi-random superlattice cell was used again, with good results. An 

interesting observation is that the lattice disorder needed to reduce the Bragg sampling peaks
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Myosin Head

a = o °

G = 0

Figure 7.17: Orientation o f the Complex Myosin Head in the Best Rest Model Cl a

For the sake o f clarity, the lower o f the two heads pictured here is represented by 
darker spheres.

a = 90 °  
p = 0 °
G = 50 ° ; 70°
Vertical offset between heads is 2.5nm; 
Azimuthal offset between heads is 2.0nm.

''Thick Filament
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Figure 7.18: Comparison o f  the Experimental Meridian with the Best Rest Model 
Obtained using the Complex Myosin Head Model: Model Cl
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Myosin Head
''Thick Filament 
.Backbone

Figure 7.19: Orientation o f the Complex Myosin Head in the Second Best
Rest Model C2a

a  =  o 0 
P = 90 0 
0 = -90 °; 90 0
Vertical offset between heads is 6.0nm; 
Azimuthal offset between heads is Onm.
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Figure 7.20: Comparison o f the Experimental Meridian with the Second Best Rest Model 
Obtained using the Complex Myosin Head Model: Model C2
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Figure 7.21: First and Second Myosin Layer Lines from the Best Rest Model 
obtained using the Complex Myosin Head: Model Cl a

Both layer lines show a good profile, with three main Bragg peaks sampling 
the broad Bessel function underneath. LL2 is approximately half the intensity 

o fL L l ( c f  experimental data in Chapter 5).
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Figure 7.22: First and Second Myosin Layer Lines from the Second Best Rest Model 
obtained using the Complex Myosin Head: Model C2a

Both layer lines show a good profile, though not as well defined as that from model 
C l a. Again, the three main Bragg peaks sample the broad Bessel function 

underneath. LL2 is approximately half the intensity o fL L l (c.f experimental
data in Chapter 5).
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to reasonable levels in models U la and U2a, both based on the simple myosin head, was no 

longer necessary. Indeed, lattice disorder seemed to have a much less significant effect on 

the layer line sampling with the high resolution head model; lattice disorders will be 

investigated in detail in the next chapter. The equatorial plots produced the correct [ 10]: [ 11 ] 

intensity ratios with both models C la and C2a.

The width of the reflections in the experimental diffraction patterns indicate that the

myosin heads are held in helical order over about 400nm. The cross-sectional area of a
6 2typical skeletal muscle myofibril is of the order of 10 nm , equivalent to a few cells of this 

size, and there are thousands of myofibrils in each muscle fibre. This program models a 

single cell and could not be expected to reproduce the correct absolute widths of the 

meridional peaks, but a comparison between various cell sizes and the effects on the 

meridional widths was a useful study.

Using the myosin head arrangement from model Cla, cells of various size were 

modelled and their meridional widths compared. Figure 7.23 shows the profile of the first 

layer line corresponding to cells of diameter 400nm and 200nm. In each case, the number of 

cells was arranged so that the total number of myosin filaments is the same in both models 

(210). The profile for the model of three large cells of 70 filaments produced a much sharper 

meridional peak than the model of seven small cells of 30 filaments each. In addition, the 

intensity of the meridional peak was relatively higher than the rest of the layer line profile for 

the large cell model. From this exercise, it is clear that the area of the model has a significant 

effect on the diffraction features produced, and should be carefully considered, especially 

when comparing different models.

7.5 Discussion of Results

The key factors in modelling the meridional pattern appear to be the axial width of 

the subunits and their distribution in the distortion group. The best meridional intensity plots 

(Ul, U2, C l, C2) were consistently those produced by an axial subunit width between 13.5 

and 14nm, distributed in a compressed distortion group where the myosin head levels were
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Figure 7.23: Effect o f Cell Size on the First Myosin Layer Line Profile

(a) Profile obtained using large cells, corresponding to long-range 
order in the filament lattice structure;
(b) Profile using smaller cells, corresponding to good order being 
maintained over a smaller area of the lattice.

In each case, the number o f filaments in the total number o f cells is 210, 
to maintain an identical total mass overall.
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separated by d }=d2= 13.3nm. The first head of the next distortion group was offset by 

16.3nm, producing a distortion group repeat of 43nm.

Other studies support this favoured distortion group: the equivalent spacings in our 

terminology from various sources are displayed in table 7.1. Malinchik & Lednev’s 

modelling found a good meridional match with an axial separation of d/=d2=13.1nm; they 

also agreed with the finding that the actual head level separations in the distortion group are 

not as important as the average separation [96]. Stewart & Kensler’s electron microscopy 

analysis of frog skeletal muscle [144] determined that the corresponding spacings were 

dj— 12.9nm, d2=13.5nm, and the distortion group repeated at 42.9nm intervals. The average 

separation within the group is therefore 13.2nm. Another modelling study, by Squire [140] 

determined the spacings to be <iy=12.8nm, d2= 13.8nm, giving an average spacing of 

13.3nm. These results are all similar to the best distortion group modelled here.

The above models all found that the best match was a compressed distortion group, 

but a few studies favoured an expanded group where the average spacing was d  > 14.3nm. 

Squire’s alternative model where dy=15.3nm and d2=16.3nm gave an average spacing of 

15.8nm. Yagi [166] suggested a distribution where dj=d2= 16.1nm. The displacements 

from the ideal separations of 14.3nm are therefore of the order of >1.5nm, supporting the 

finding that to give similar results, somewhat larger displacements are required for an 

expanded distortion group than for a compressed group.

S o u rce Subunit Spacings (nm )

d l d-2 d a v e r a z e

Our Models 13.3 ± 0.2 13.3 ± 0.2 13.3

Malinchik & Lednev [96] 13.1 13.1 13.1

Stewart & Kensler [144] 12.9 13.5 13.2

Squire et al. (1) [140] 12.8 13.8 13.3

Squire et al. (2) [140] 16.3 15.3 15.8

Yagi et al. [166] 16.1 16.1 16.1

Table 7.1: Comparison o f Distortion Group Spacings

The compressed distortion group seems to have more support than an expanded 

group. It remains to be seen whether the regular perturbation causing the distortion group
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formation has any implications for the internal structure of the thick filament backbone or the 

arrangement of other thick filament proteins, especially C-protein, in the filament [17]. An 

interesting observation is that the compressed arrangement spacing of 13.3nm is a close 

match to the actin axial translation; 13.6nm corresponds to five actin monomers with an axial 

rise of 2.73nm. It has been pointed out that if three myosin heads attach to the fifth, tenth 

and sixteenth actin monomers in a sixteen monomer length of thin filament (5-5-6 model; fig. 

7.24), the average myosin head separation over the whole thick filament is 14.5nm - close to 

the 14.3nm experimental value. The resulting separations within the distortion group would 

then be dj=d2= 13.6nm. This could indicate that there is some actin-myosin interaction in 

rest muscle, perhaps weak binding, which is aided by the compressed distortion group. 

Further discussion of the 5-5-6 model is presented in §8.3.

3 x  14.34 -  43 .02  nm
T hick F ilam en t * _______

0 ~~U 0 0 D-
Actin -Q O ^O O C C X ^k X X X ^O O O ^M O O O C O ^p O O < M C O O

M on om er
Thin F ilam en t 0  5  10 16

4 ---------------------------------------------------------- p.

1 6 x  2 .73  = 43 .68  nm

Figure 7.24: Near Matching o f Thick and Thin Filament Repeats 
Allows the Formation o f a 5-5-6 model (see text).

The 14nm axial width of the best model, Cla, is slightly larger than the 12.6nm 

axial width of Malinchik & Lednev [96]. This is probably related to the fact that they 

approximated each myosin head level to a uniform function. Our whole model 

representation would result in a more realistic axial shape, with the mass distributed less 

evenly over the axial width. An interesting observation is that the axial width of each subunit 

(14nm) is greater than the separation of the three heads within each distortion group 

(13.3nm), leading to the conclusion that the heads from one level probably overlap slightly 

with the heads from adjacent levels. Previous studies on tarantula thick filaments have made
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similar observations [171, 176], and Offer et al. went further by proposing an interaction 

between the overlapping heads [175].

The axial width does not, however, give any indication about whether the myosin 

heads in each subunit point in opposite directions along the filament axis, or in the same 

direction. Public opinion is divided on this point: a number of electron microscopy studies 

have put the myosin heads pointing in opposite directions along the backbone [22, 50, 144, 

96], whilst others disagree [16]. The modelling results presented here support the latter 

case. The high azimuthal angles taken by the myosin heads indicate that the thick filaments 

form compact structures in rest muscle, a view supported by other modelling studies [50, 

96].

The large effect which the azimuthal angles have on the relative intensities of the 

layer lines can be explained in terms of the helix net shown in figure 7.25. The axial 

orientation of the myosin head determines the extent of the head when it is projected onto the 

helical net; the azimuthal angle determines which of the sets of helical planes the head points 

along. The more parallel the projected head is to a given set of planes, the more intense the 

corresponding layer line will be. An azimuthal angle of around 60° in model C la (fig. 7.17) 

results in most of the mass pointing along the set of planes which give rise to the first layer 

line, and across all the other sets to some extent. Thus the first layer line is much more 

intense than the other layer lines.

It is interesting to note that despite the completely different azimuthal arrangements 

of the myosin heads in model C2a (fig. 7.19), the majority of the mass in the myosin heads 

still follows the same helical planes as the best model (Cla). This explains why two 

apparently different models give very similar diffraction patterns.

This study also indicates that the thin filament lattice is more disordered than the 

thick filament lattice, as evidenced by the lack of sampling on the actin layer lines compared 

to the clear sampling on the myosin layer lines. The ratio of thin:thick filament rms. disorder 

in the best model is 1.6:1; this ratio is in agreement with Malinchik & Yu’s result, and 

supports their suggestion that the mass ratio of the filaments, which would be expected to 

affect any thermal disorder in the model, governs this ratio [95].
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The best fits to the experimental data are all obtained from models where the average 

centre of mass of the myosin heads is typically at 13.5nm. This is slightly higher than the 

generally accepted 12.5-13nm [70, 50]; Huxley & Brown originally determined that the 

outer radius of the myosin heads measured from the first layer line profile was ~13nm [50]. 

The present modelling work supports their further suggestion that this was not actually the 

outer radius, but the point after which the mass became smeared out due to disorder.

LLO

1

LL4

L L 5

L L3

LL1

LL2

Figure 7.25: Helix Net: Example o f Helix Planes (after Squire [133])

The set o f planes labelled LLn gives rise to the nth myosin layer line in the 
diffraction pattern
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8.1 Introduction

This chapter follows on from the work done in the previous chapter to determine the 

macromolecular rest muscle structure. Using the best rest model obtained with the uniform 

myosin head representation, U la (§7.3) as a basis, further investigation was made into the 

structural changes which might take place during contraction. The first part of this 

investigation involved studying the effect of introducing disorder to the key parameters 

defining the model structure. The results of this study were then applied to the specific cases 

of muscle structure at the peak of isometric contraction and during unloaded shortening at 

zero tension. The overall aim was to probe the effects of various disorders and determine 

how effectively they could be modelled, rather than to reproduce the experimental data from 

the isometrically contracting or unloaded shortening muscle closely.

The effects of the different disorders were essentially the same for both models of 

the myosin head, though they were slightly less significant in the case of the more complex 

myosin head model. This can probably be attributed to the fact that the complex head model 

had a non-uniform structure to start with, which would be less sensitive to small changes in 

head orientation than the uniform rod of the simple head model. The simple myosin head 

was used in the disorder study because its uniform structure made it easier to visualise the 

structural effects of the physical changes involved.

8.2 Studies of Disorder

In practice, disorders in polycrystalline materials, such as muscle, fall into one of 

two categories: disorder between whole filaments, and disorder within the filament structure 

itself. This section expands upon the general discussion in Chapter 3.

8.2.1 Disorder Within the Helix

During modelling of the rest structure models, all of the myosin heads were 

identically oriented and uniformly distributed at their ideal helical positions, save for the 

regular axial shifts between subsequent head levels required to produce the forbidden myosin 

meridional reflections. In general, however, the subunits may be disordered positionally 

and/or orientationally within a single filament: positional disorder refers to the position of the
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centre of mass of each myosin head in the filament, whereas orientational disorder refers to 

the orientation of the heads with respect to the filament backbone. Random isotropic 

disorder was introduced to several of the key parameters defining the myosin helix, and the 

effect on the diffraction pattern recorded.

The initial structure in all models was the rest structure in U la  (§7.3), where the 

axial angles were defined as (Xi=60o and a 2=55°, the azimuthal angles as 01=02=65°, and the 

second head was offset vertically by 1.5nm and azimuthally by 2nm from the first. The 

myosin heads were then randomly allocated an axial orientation in the range oto ± Aa, where 

(Xo = the axial angle in the rest model, and the range of disorders tested was 0° < Aa < 30°: at 

greater ranges than this the myosin heads intruded into the filament backbone. This 

procedure constrained the average axial angle to Oo, whilst allowing the individual heads to 

take a range of values over 60°. As predicted in §3.6.1, the effects on the diffraction pattern 

were two-fold.

As the myosin heads became more disordered and occupied a wider range of axial 

angles, all of the myosin meridional reflections decreased in peak intensity and broadened 

axially. The least affected reflection was the first myosin meridional (1M), whose intensity 

only dropped slightly (fig. 8.1).

In addition to the meridional effects, disorder in the axial angle was observed to 

alter the myosin layer line profiles. Random variations in the axial orientation of the myosin 

heads resulted in the centres of mass of the heads occupying randomly shifted positions, 

removing to some degree the helical order in the filament. This was transmitted to the 

diffraction pattern as a partial loss of the underlying Bessel function structure of the layer 

lines (fig. 8.2). The lost intensity was redistributed into the background to axially smear the 

layer lines slightly.

In a variation on the introduction of axial disorder to the rest model, a further set of 

identical models were based on the U la  structure with the axial angles set to a ]= a 2=0° 

(perpendicular to the filament axis), rather than the previous a i= a 2=60°. The range of 

disorder tested was increased to 0° < Aa < 90° without the myosin heads encroaching on the 

filament backbone. The results were similar to those described immediately above, but the 

diffraction patterns were more sensitive to the smaller levels of disorder: since the

159



Re
la

tiv
e 

In
te

ns
ity

 
(a

rb
. 

un
its

)

LOO

All myosin heads at ql-  9CP 

a = 90° ± 50°
0.75 -

0.50 -

0.25 -

0.00
0.060.02 0.100.00 0.14 0.18

nm'1

Figure 8.1: Meridional Effects o f Randomly Varying the Axial Angle o f the Myosin Heads

The introduction o f random disorder to the axial angle, a, taken by the myosin heads 
results in a loss o f intensity in all the meridional reflections. The 2M and 3M peaks

are most strongly affected.
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The introduction o f random disorder to the axial angle, a, results in the partial loss 
o f the Bessel function structure underlying the layer line. The intensity is redistributed

axially into the background.
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myosin heads were initially perpendicular to the filament axis, a position which resulted in a 

very sharp axial mass projection, small variations in the axial head orientation in either 

direction (±) detracted from the regularity of the mass projection. Thus the meridional 

reflections arising from the axial mass projections were more sensitive to the increased 

angular range about cxq = 0° than about the higher angle of <Xo = 60°.

The second parameter to be disordered was 0, the azimuthal angle of the myosin 

heads. The heads were randomly allocated azimuthal angles in the range 0O ± A0, where 0O 

= the initial angle in the rest model U la  (65°), and 0° < A0 < 40° was the range of disorder 

extents tested: at greater ranges than this, the myosin heads again encroached upon the 

filament backbone. A second set of models were built where the undisordered azimuthal 

angle was set to 0O = 0° (perpendicular to the filament axis), and the range of disorders was 

increased to 0° < A0 < 90°.

Since the axial mass projection plane is insensitive to such variations, which are 

observed only in the equatorial plane, the azimuthal angle variation did not affect the 

meridional myosin reflections. Conversely, the layer line profiles were strongly affected: the 

loss of helical order, caused primarily by the shifting radius of centre of mass of myosin 

heads fixed at one end to the backbone as their azimuthal angles changed, largely destroyed 

the Bessel function structure underlying the layer lines, leaving a very different shape to the 

profile (fig. 8.3). The row line profile in the region of the [10] and [11] equatorial 

reflections revealed that the intensity is redistributed between the layer lines, adding to the 

background in these regions (fig. 8.4).

For a given radius of centre of mass, random variations in the azimuthal angles 

taken by individual heads had little effect on the equatorial intensities. Although a cross 

sectional slice through a single azimuthally disordered filament clearly showed the random 

orientations, the averaging effect of the equatorial mass projection along the filament axis 

rendered the corresponding diffraction features largely insensitive to the disorder.

It is important to differentiate between those effects which are due to the change of 

orientation, and those which are secondary effects due to the way in which changing the 

orientation of heads attached at one end to the filament backbone alters the radius of the 

centres of mass of the heads. In both cases of angular disorder, the disordering of the
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Figure 8.3: Effect o f  Randomly Varying theAzimuthal Angle o f the Myosin Heads

Introducing random disorder to the azimuthal angle, 0, taken by the myosin heads 
results in a definite change o f shape of the layer lines. The underlying Bessel 
structure is destroyed.
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Figure 8.4: Redistribution o f the Intensity Lost by Introducing Random Disorder to the
Azimuthal Angle o f the Myosin Heads

Randomising the aximuthal angle, q, causes the background between the myosin layer 
lines to increase due to the redistribution o f the intensity lost from the Bessel strucnire

o f the layer line profile.
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centres of mass of the myosin heads was not enough to explain the significant changes 

observed in the diffraction pattern. A set of models where the radius of centre of mass was 

allowed to vary randomly by up to ±2nm without altering the azimuthal or axial orientation 

of the individual heads showed that such disorder did indeed remove some sampling from 

the layer lines, but on a much smaller scale than was observed with orientational changes.

Regular axial shifts of the myosin head levels were introduced to the rest model 

structures to reproduce the forbidden meridional reflections, as described in some detail in 

Chapter 7. The key point here is that the shifts were regularly repeated displacements, 

repeated along the thick filament structure in the form of a distortion group. The introduction 

of random axial shifts, without altering the orientations of the myosin heads, had markedly 

different results to the presence of regular axial shifts.

Random displacements of the axial positions of the myosin heads in a range of up to 

±4nm were introduced to the already regularly displaced head levels. The meridional 

intensity distribution was most significantly affected, evidenced in particular by a large 

decrease in the 3M myosin meridional reflection: even a ±0.5nm range about the rest 

distribution caused the 3M and 6M reflections to lose intensity. At ±4nm, the intensity of the 

first layer line dropped by around 10%, and the higher order layer lines were even more 

strongly affected.

Eventually, the axial disorder is enough to effectively remove the regular 

perturbations from the axial distribution of head levels, and the forbidden reflections 

disappear. The intensity was redistributed to raise the background on either side of the layer 

lines (fig. 8.5). The equatorial reflections remained unaffected, the equatorial plane being 

insensitive to strictly axial changes.

In this set of models, the source of the axial displacement was a shifting of the 

entire myosin head, without change to its orientation. However, it was noted that the effects 

were similar to those observed with disordered axial myosin head angles. This was a side 

effect of fixing the myosin heads to the backbone at one end, and then allowing the axial 

angles to change: the axial position of the head’s centre of mass would then be highly 

dependant on the axial angle taken by the head. Axial shifts of ±0.5nm had a comparable 

effect on the meridian to introducing an axial angular distribution of a=60°±10°.
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Figure 8.5: Effect o f Introducing Random Axial Shifts to the Position o f 
the Myosin Heads on the Axial Layer Line Profile

Introducing random disorder to the axial positions o f the myosin heads 
results in the loss o f helical order, and the intensity lost from the layer 
lines is redistributed axially on either side o f the layer line. This figure 
shows an integrated strip running parallel to the meridian in the region 
o f the [10] and [11] equatorial reflections.
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The angular position of the base of the myosin heads was determined by the angle 

between adjacent myosin head pairs: in the ideal triple-start helix, the angular separation was 

40°. Here, the separation was randomly chosen in a given range about the (j)0 = 40° value. 

The range maximum varied from ±1° up to ±20°: in the latter case, any point on the filament 

circumference may have been the site of a myosin head pair. Both non-cumulative and 

cumulative angular distortions were tested.

In the case of non-cumulative angular disorder, a range of ±10° caused a decrease in 

the integrated intensity of the first myosin layer line of around 5%. The intensity was 

redistributed axially into the background between layer lines, causing it to rise near the centre 

of the diffraction pattern (fig. 8.6). Radially, the sampling of the layer lines was greatly 

reduced.

Cumulative angular disorder had a much more significant effect: a range of ±10° 

caused a decrease of around 45% in the first myosin layer line. However, the intensity was 

redistributed axially in a more localised way on either side of the reduced layer line (fig. 

8.7), rather than evenly into the background. For large disorders, the forbidden layer lines 

corresponding to n= l, 2, 4, 5 etc. were clearly visible in addition to the n=0, 3, 6 etc. 

(1=0,1,2 etc.) layer lines. These layer lines were forbidden by the triple helix structure, 

which removed all layer lines except those corresponding to n = 3 x integer (§3.5.1). 

Their return indicated that the triple helix structure was destroyed by the cumulative disorder.

In practice, any combination of the disorders discussed here may be observed, and 

modelling such combinations illustrated some serious problems. When two or more types of 

disorder were included in a model, the effects of each were combined in such a way that 

some features were masked and some were accentuated. It became impossible, with this 

relatively simple modelling procedure, to distinguish the effects of the individual disorders.

As an example, figure 8.8 shows the result of introducing disorder into both the 

azimuthal and axial orientation of the myosin heads. Although introducing axial disorder had 

a significant effect on the diffraction patterns, as seen above, when combined with azimuthal 

disorder, little additional effect was observed. In practice, this means that when trying to 

determine the contributing factors to the diffraction pattern, the level of axial disorder is at 

best an unknown quantity, and at worst may be overlooked entirely.
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Figure 8.6: Effect o f Non-Cumulative Angular Disorder on the Axial
Layer Line Profile

This figure shows a difference plot o f an axial strip parallel to the meridian 
in the region o f the [10] and [11] equatorial reflections. The difference is 
between the perfect case with no angular disorder (i.e. the angular rotation 
between adjacent myosin head pairs is 4CP) and the case with ± l ( f  
non-cumulative random isotropic disorder in the angular separation. The 
non-cumulative disorder causes the intensity lost from the layer lines to be 
redistributed into the background o f the pattern. Compare with figure 8.7 
fo r  cumulative disorder.
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Figure 8.7: Effect o f  Cumulative Angular Disorder on the Axial
Layer Line Profile

This figure shows a difference plot o f an axial strip parallel to the meridian 
in the region o f the [10] and [11] equatorial reflections. The difference is 
between the perfect case with no angular disorder (i.e. the angular rotation 
between adjacent myosin head pairs is 4CP ) and the case with - l ( f  cumulative 
random isotropic disorder in the angular separation. The cumulative disorder 
causes the intensity lost from the layer lines to be redistributed locally on 
either side o f  the layer line. Compare with figure 8.6 fo r  non-cumulative 
disorder.
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Figure 8.8: Effect o f Randomly Varying both the Axial and Azimuthal Angles
o f the Myosin Heads

Introducing random disorder to the azimuthal angle, 0, taken by the myosin heads 
results in a significant loss o f the Bessel structure o f the first Myosin layer Line. 
However, introducing further disorder in the form o f randomising the axial head 
angle, a, adds little to the structure loss. Once the structure is disordered in some 
manner, further disorder has a much less significant effect.
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8.2.2 Disorder Between Helices

The main source of disorder between filaments in a polycrystalline material is lattice 

disorder, or net distortions, as described in §3.5.2. In the lattice plane, net distortions are 

seen as an increase in the effective cross-section of the filaments. The displacements from 

the ideal lattice points are averaged over the whole model cross section, resulting in a poorer 

filament definition compared to the average of the ordered filaments. The main result of this 

is seen in the equatorial reflections.

As the averaged mass projection spreads out radially, the mass in the [10] planes 

and the corresponding [10] equatorial intensity decreases rapidly. The mass in the [11] 

planes and the corresponding [11] intensity also decrease slightly, but not as rapidly as the 

[10] intensity. The ratio of Ij0 : In correspondingly decreases, resulting in an equatorial 

intensity reversal similar to that observed during isometric contraction. Random 

displacements of up to ±10nm from the ideal thick filament positions resulted in a decrease 

of Iio to 45% of the perfectly ordered case, and of In to 65% of the ordered case. The 

overall drop in the Ii0 : In  ratio was to 70% of the ordered intensity ratio.

When both the thick and thin filaments were disordered, the reverse occurred and 

the intensity ratio actually increased. Disordering the thin filaments reduced the In intensity 

and slightly increased Ii0. When the effects of disordering both sets filaments were 

combined, I10 decreased a little, but In  decreased far more rapidly to increase the overall 

intensity ratio.

In §7.5, a ratio of 1.6 for the amount of thick:thin filament disorder in the rest 

model was estimated, which resulted in the I10 : In ratio doubling for displacements of up to 

2nm and 3.2nm from the ideal thick and thin filament positions respectively. This small 

amount of random isotropic lattice disorder was included to reduce the Bragg peak sampling 

appearing on the layer line profiles, but disorder was not covered in any great depth. In this 

more detailed approach, lattice disorder was introduced as random isotropic disorder, 

disorder of the first kind, and disorder of the second kind (§3.6.2).

The expected differences between the three types of lattice disorder were not 

observed in practice. The results were very similar in each case: a broadening of the Bragg 

diffraction peaks radially, and redistribution of the intensity along the continuous helical
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transform of the corresponding layer line (fig. 8.9). Disorder of the second kind should 

have had a much stronger effect on the higher order layer lines, compared to a similar effect 

on all layer lines for the other two types, but no significant difference was seen. This is 

likely to be due to the limited scale of the models involved: over a small area, the differences 

between cumulative and non-cumulative disorders are almost negligible.

An interesting observation is that the lattice disorder also removed the underlying 

Bessel structure of the layer lines, indicating that a side effect of lattice disorder is the loss of 

helical order. This is not unexpected because in shifting the filaments away from their ideal 

positions, the helical planes across the model as a whole are disturbed.

In addition to net distortions in the lattice plane, whole filaments can be shifted 

axially with respect to each other, which has a much more immediate effect on the helical 

order. The introduction of axial net distortions to the rest model U la  revealed that, logically, 

the axial disorder had a strong effect on the meridional reflections: the whole meridian 

decreased in intensity, whilst maintaining a similar intensity ratio between peaks. Random 

axial shifts of between ±5nm resulted in an intensity decrease over most of the meridian of 

almost 90%. The lower order peaks appeared to be slightly less affected than the higher 

orders, and the 1M peak became progressively more dominant for shifts between ±3nm and 

greater. However, the peak to peak ratio along the meridian remains remarkably similar to 

the rest values considering the immense overall intensity drop.

In the off-meridional pattern, axial shifts resulted in the loss of the Bragg peaks on 

all layer lines. The only exemption was the equator, which is insensitive to such axial 

modifications. The overall intensities of the layer lines were not affected much, as the 

intensity lost from the sampling peaks is redistributed along the layer lines.

The filaments can also be randomly rotated about the filament long axis: the 

orientation of the filaments gave rise to the superlattice structure in §7.3.2, and illustrated 

that the precise distribution of filament orientations had a strong effect on the Bragg peaks of 

the layer lines. Random variations in the orientations of the filaments resulted in the 

redistribution of the Bragg diffraction peaks into the layer lines, leaving the meridional and 

equatorial projections largely unaffected.
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Figure 8.9: Effect o f Lattice Disorder on the First Layer Line Profile

The sharp Bragg peaks on the layer line are lost with the introduction 
o f lattice disorder. The example shown is for the case o f ± lOnm 
random isotropic disorder. A t this scale o f modelling, little difference 
is seen with disorders o f  type 1 (non-cumulative) or type 2 (cumulative).
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8.3 Isometrically Contracting Muscle

At the peak of isometric contraction, muscle is in a state of dynamic equilibrium. 

The diffraction pattern obtained from muscle in this state represents the average structure 

during the period of exposure to the x-rays. So it is important to remember that in effect, 

these models are trying to reproduce a structure which has been doubly averaged; over the 

whole structure and over time.

A “snapshot” image of any structure in dynamic equilibrium might be expected to 

capture various stages of the dynamic processes involved. For example, a high degree of 

disorder in the axial angles taken by the myosin heads would support the tilting head model, 

capturing myosin heads at various points in the tilting cycle. Thus we can interpret the 

results of the disorder study to the isometric contraction diffraction pattern to provide insight 

into the dynamic contraction process.

8.3.1 Meridional Intensity Distribution

The meridional changes observed during contraction were significant: the forbidden 

meridional reflections all but disappeared, and the remaining 3M and 6M reflections 

broadened axially and increased in intensity. This left just two myosin peaks to model, rather 

than the six peaks in the rest model, which inevitably resulted in a less confident fit to the 

data.

The meridional changes could be directly reproduced without resorting to disorder, 

by simple structural changes. The forbidden reflections arising from the regular axial 

perturbations in the thick filaments were greatly reduced by lowering the size of the axial 

perturbations to about half of their values at rest. The myosin head levels within the 

distortion group were then separated by 13.7nm. This sort of change indicated a structural 

change, perhaps in the backbone structure itself, which was transferred to the position of the 

centre of mass of the myosin head level.

Another possibility was that the axial arrangement was disordered such that the 

average distortion group was the same as that at rest, whilst the actual perturbations varied 

randomly about the rest positions. This had the same effect on the meridian as reducing the
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regular perturbations, reducing the forbidden meridionals. This type of axial disorder is less 

likely to call for structural changes in the backbone structure. In both cases, the reduced and 

disordered axial perturbations, the remaining 3M and 6M meridional reflections were 

augmented by the intensity which had made up the forbidden reflections.

The similarity between the reduction of the axial perturbation and the introduction of 

axial disorder was to be expected, since both remove the regular axial perturbations: one 

directly, removing the perturbations themselves; and one indirectly, removing the regularity 

of the perturbations through disorder, without significantly altering their average size.

A similar increase in the 3M and 6M reflection intensity was observed when the 

axial angle of the myosin heads was changed so that the main mass of the head was 

perpendicular to the thick filament backbone. The peaks in the axial mass projection became 

sharper, resulting in well defined meridional reflections. An axial change of this type did not 

in itself remove the forbidden meridional reflections, but in combination with a lowering of 

the axial perturbations as described above, it had the desired effect.

Since similar results were observed for both the reduction of axial perturbation and 

the change of axial angles described above, this study does not support either the tilting head 

model or the axial shift model. Further detailed modelling of the meridional region including 

sarcomere effects may reveal more subtle differences between the two cases, though these 

differences are likely to be reproducible by a more than one combination of factors, given the 

scarcity of data to fit.

There is some question as to whether the axial broadening of the meridional peaks is 

due to the presence of disorder, or to the removal of interference effects brought about by 

sarcomere misalignment during contraction. Sarcomere studies were beyond the scope of 

this thesis, so this query could not be addressed at this time. However, if sarcomere effects 

were neglected, axial broadening was observed when the thick filaments were axially shifted 

by random amounts relative to one another. There was no need to change the internal 

structure of the thick filaments to reproduce this change.

The increased spacing of the myosin meridional reflections from 14.3nm to 14.5nm 

corresponds to an extension of the thick filaments of the order of 1.5%. Such an extension 

in the modelled filaments reproduced the spacing change as expected. However, 1.5% is a
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much larger increase than expected from other studies. A value of 0.3% was calculated for 

the thin filament extension, using studies of the spacing change of the 2.73nm actin 

meridional reflection during isometric contraction [159, 75]. Similarly, the myosin 

extension was estimated by spacing changes during length change experiments to be 0.2- 

0.3%. Recent work has suggested that nearly all of the elasticity in the sarcomere in fact 

resides in the thin filaments, which alter their helical structure during contraction to allow a 

maximum extension of 0.42% [176].

Given the large discrepancy between the calculated and required values of 

extension, it is highly likely that there is another cause for the spacing change other than 

simple filament extension. In §7.5, it was suggested that at rest some weak interaction may 

take place between the actin monomers and myosin heads such that a 5-5-6 model was 

formed (fig 7.24). Such a model, where the three pairs of myosin heads in a distortion 

group might attach to the fifth, tenth and sixteenth actin monomers of a sixteen monomer 

group, produces an average myosin head separation of 14.58nm, which would produce the 

required spacing change in the myosin meridionals. However, sarcomere interference has a 

significant effect on the exact spacings of the meridional reflections, and confirmation of this 

theory cannot be made until such interference effects are accounted for in more complex 

models.

This section has shown that the observed changes in the meridional region of the 

diffraction pattern could largely be explained with minimum reference to structural disorder, 

though without any great degree of accuracy because of the scarcity of data available in the 

isometric contraction meridian. However, the changes in the rest of the pattern indicate that 

more subtle motions are taking place, calling for further investigation.

In the rest muscle diffraction patterns, the meridian was the best defined part of the 

pattern. It was sensible to initially model this region, before moving on to the rest of the 

pattern. In the case of isometrically contracting muscle, this is not so. The whole diffraction 

pattern is poorly defined, including the meridian.
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8.3.2 Spatial Considerations

Having deduced the effects of various types of forced disorder on the diffraction 

patterns (§8.2), the next step involved investigating the physical likelihood of such disorders 

occurring; were they physical possibilities, or, conversely, were they prohibited by the 

physical arrangement of the molecules within the structure.

Initial models based on the U la rest structure were built, and each myosin head was 

assigned a ‘favoured’ bond, chosen by set criteria. The primary criterion was that the 

distance between the outer surfaces of the myosin head and the chosen actin monomer was 

minimal. The choice was further limited by specifying the range of values that the key 

parameters could take to fulfil the minimum distance criterion. The axial and azimuthal 

angles corresponding to the favoured bonds were calculated and the distribution of these 

parameters was analysed. This process of selecting favoured bonds was based on the 

assumption that there is an electrostatic interaction between the myosin head and the actin 

filaments, which would therefore depend on their separation.

The key finding of this spatial study was that the minimum distance criterion 

invariably resulted in a wide distribution of azimuthal angles in the range 0=O°±9O°. Figure 

8.10 illustrates a typical distribution, for the case where the initial model was the ideal rest 

structure Ula, and no limits were set on the axial or azimuthal angles. The previous disorder 

study indicated that such a wide distribution of azimuthal angles would be required to 

reproduce the myosin layer line profiles during isometric contraction. Similar distributions 

were also obtained when the initial rest model was modified by changing the axial angles to 

a=0°, and when the axial position of each individual myosin head was allowed to vary by up 

to 15 A to mimic the flexibility of the S2 section of chain attaching the head SI section to the 

backbone. In all cases, the favoured bonds took on a wide distribution of azimuthal angles.

In all these statistical models, an important consideration was how to deal with the 

second myosin head in each pair: the two companion heads often selected an identical actin 

monomer, since the compact rest structure of the thick filaments means that the two heads lie 

very close to each other. The concept of a spare bond was introduced, which also accounted 

for the times when a myosin head selected an actin monomer which was already bound by 

another myosin head from a different filament. Determining the spare bond meant taking
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I f  actin-myosin bonds are assigned on a nearest neighbour basis, the 
azimuthal angles automatically take on a wide range o f values, giving 
rise to the disordered azimuthal angle arrangement whose effect is 
shown in figure 8.3.
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into account the recent evidence that each myosin head in fact binds to two adjacent actin 

monomers. This was not a serious problem because the adjacent monomer was usually on 

the other side of the actin helix to the myosin head, and so was discounted by the m i n i m a l  

distance criterion.

The spare bonds were selected in one of two ways, both involving the minimum 

distance criterion and the adjacent actin limitation described above. The first was to select the 

next nearest actin to the outer surface of the myosin head, regardless of which actin chain it 

was found in. The second was to force the myosin head to remain on the same actin chain as 

the original favoured bond it selected, and put the head under strain by moving it up or down 

to the next nearest actin monomer. This is physically more likely if the myosin head is 

drawn to the actin monomer through an electrostatic interaction, since it is unlikely to 

overcome such an electrostatic attraction and move away from that actin filament to another. 

In this initial study, if the actin monomers selected by both the favoured and spare bonds 

were already bound, that myosin head was left unbound.

In the first case, where the spare bond was selected by distance considerations 

alone, investigation of a sample thin filament showed that the bound actin monomers 

approached a repeating 5-5-5-6 pattern: the fifth, tenth and fifteenth and twenty-first actin 

monomers in a group of twenty-one were bound. Such a pattern resulted in an average 

spacing between bonds of 14.3nm, comparable to the rest spacing of the myosin heads. In 

these models, typically 87% of the myosin heads were bound.

However, the second case, where the myosin heads were constrained to select spare 

bonds in the same actin filament as the rejected favoured bond, the same thin filament 

showed a pattern approaching a 5-5-6 pattern: the fifth, tenth, and sixteenth actin monomers 

of a group of sixteen were bound. This pattern gave an average spacing between bound 

monomers of 14.5 nm, comparable to the new spacing of the myosin meridional reflections 

in isometrically contracting muscle. The fraction of heads bound was lower than in the 

unconstrained case at 79%, and was closer to the predicted values of around 70% discussed 

in §2.7.3.

The patterns observed in the thin filaments are not exact 5-5-6 or 5-5-5-6 repeats as 

depicted in figure 7.24. Rather, the statistical separation of the bound actin monomers
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within a given thin filament represents the pattern. Such a statistical variation supports the 

presence of significant disorder in the arrangement of the bound myosin heads. Table 8.1 

illustrates this point by showing the statistical distribution of actin monomers between 

successive bound monomers in the two cases described here, compared with the expected 

statistical distribution for the perfectly repeating 5-5-6 and 5-5-5-6 cases. The unconstrained 

case has a much clearer 5-5-6 pattern than the constrained case has a 5-5-5-6 pattern, and the 

constrained case relies more heavily on the statistical separation of bound actin monomers.

N u m b e r  o f  a c t i n  

m o n o m e r s  s e p a r a t i n g  

s u c c e s s i v e l y  b o u n d  m o n o m e r s

N u m b e r  o f  o c c u r r e n c e s  o f  t h e  g i v e n  s e p a r a t i o n

C a s e  1 -  

u n c o n s t r a i n e d  c a s e

P e r f e c t  5 - 5 - 5 - 6  

p a t t e r n

C a s e  2  -  

c o n s t r a i n e d  c a s e

P e r f e c t  5 - 5 - 6  

p a t t e r n

1 1 3 9 4

2 6 3 4

3 1 2 7 7 6 0

4 1 6 4 7 2 0 2 8

5 8 4 9 1 1 1 0 2 5 2 0 2 8 9 8 0 0

6 4 6 8 9 3 6 7 5 2 5 3 5 4 9 0 0

7 2 5 3 3 0 4 1

8 7 5 9

9 1 5 2 1

1 0

1 1

a v e r a g e 5 . 2 2 5 . 2 5 5 . 4 0 5 . 3 3

Table 8.1: Statistical distribution o f the number o f actin monomer between 
successively bound monomers

The results presented here are by no means conclusive, but they do indicate the 

usefulness of further investigation in such a statistical manner. Several interesting hints have 

been given about the source of the disorder in the isometrically contracting muscle structure.

8.4 Unloaded Shortening at Zero Tension

Modelling of the structure during unloaded shortening should take into account that 

the meridional region of the pattern is very similar to the rest pattern, differing only in

180



absolute intensity, whilst the layer line intensity is reminiscent of the isometric peak pattern. 

Having observed that axial filament shifts caused the overall intensity of the meridional 

reflections to drop sharply in intensity without disturbing the relative intensities between 

peaks, it seems a reasonable explanation for the unloaded shortening pattern.

When the muscle shortens rapidly under very low tensions, it is highly likely that 

the filaments are forced into disorder relative to each other, until the shortening stops, and 

tension begins to rebuild, realigning the filaments through sarcomere shortening.

The fact that the meridional reflections are very well preserved despite the drop in 

intensity implies that the disorder is very specific. The forced slide of filaments past each 

other rips the bound myosin heads away from their bound positions attached to the thin 

filaments. They are thus not attached to the thin filaments, but remain in the vicinity of the 

thin filaments, constantly trying to bind and being ripped away again. Thus the equatorial 

behaviour during unloaded shortening can be interpreted as the heads remaining in the 

vicinity of the thin filaments without actually being so close as when they are bound.

8.5 Summary

Lattice disorders generally smear out the sampling Bragg diffraction peaks and 

redistribute the intensity into the continuous helical transforms; helical disorders tend to 

broaden the underlying helical transforms themselves, redistributing intensity into the 

background. Similar effects are observed from several types of disorder, which causes 

much difficulty in pinpointing the main sources of disorder in contracting muscle.

However, indications are that the primary source of disorder in isometrically 

contracting muscle lies in the azimuthal angles taken by the myosin heads, when they form 

bonds based on the distance between the outer surfaces of the selected actin monomer and 

the myosin head. Such disorder results in a layer line profile similar to that in the diffraction 

pattern from isometrically contracting muscle. At this stage, no firm conclusions can be 

drawn on the axial changes taking place in the thick filaments during contraction, but several 

possibilities have been investigated, and further modelling is suggested in the next chapter.
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Similarly, the loss of meridional intensity in the diffraction pattern from shortening 

muscle appears to be largely due to axial shifts between the thick filaments during 

shortening, which is physically quite likely to occur in such a large length change.

This disorder study has illustrated the problems incountered when trying to model 

disordered muscle; namely that although it is quite possible to model the disorders and 

observe the effects on the diffraction pattern, determining the type of disorder from the 

effects alone is complex and ambiguous.
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Chapter 9: Conclusions and Further Work

The work described in this thesis has provided valuable insight into the structure of 

frog sartorius muscle at rest, resulting in a suggested molecular arrangement which produces 

a theoretical x-ray diffraction pattern close to the experimental rest muscle pattern. In 

addition, a study of disorder in the molecular arrangement has revealed the difficulties 

inherent in modelling other muscle states during the contraction cycle. The modelling 

programs written for this work form a sound basis on which to build more complex models.

The simple uniform myosin head model (U), consisting of seven overlapping 

spheres (fig. 6.7b), was a useful representation in building the initial model, and confirming 

the correct working of the programs. However, it was too simple to accurately reproduce 

the myosin diffraction pattern. Although some success was obtained in modelling the axial 

structure of the thick filaments in relaxed muscle, reproducing the meridional region of the 

rest diffraction pattern, the inability to model the full pattern to any degree of accuracy 

indicated the need for a more complex head model.

Still, this simple model was a good starting place to investigate the superlattice 

arrangement, which depended more on the arrangement of the whole filaments than the 

molecules within them. A superlattice unit cell of the dimensions previously suggested by 

Huxley & Brown [70] and Squire [133] was confirmed (fig. 7.9). The corner thick 

filaments in the unit cell took one orientation, and the central filaments were randomly 

distributed between this orientation and another 60° apart. The random element in this 

distribution proved to be a significant factor in producing the correct layer line profiles. The 

orientations themselves were determined to be offset by about -10° from the [10] lattice 

planes, in agreement with earlier work by Luther & Squire [175] which determined an offset 

of 5-15° from the [10] planes.

The success in modelling the thick filament structure at rest was mainly possible 

because of the large amount of order present. The complex myosin head model (C) (fig 

6.7c) was used to determine the thick filaments as compact structures at rest. The myosin 

heads were wrapped tightly around the thick filament backbone, and axially, most of the 

head mass lay parallel to the backbone (fig 7.17).
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During contraction, the introduction of disorder was seen to be the driving factor in 

deducing the muscle structure. Some success was had at modelling various types of 

disorder to the system, including distortions of the lattice and within the filaments 

themselves. Useful insights into the role the various types might play during contraction 

were obtained: disorder in the azimuthal angles taken by the myosin heads was determined to 

the primary source of the loss of the myosin layer lines from isometrically contracting 

muscle. A good match to the isometric plateau layer line profile was obtained by distributing 

the myosin heads at random azimuthal angles between ±90° from the normal to the thick 

filament backbone. This type of disorder was found to occur spontaneously when the bonds 

between the myosin heads and the actin monomers were assigned according to the initial 

distance between the two surfaces.

However, this approach was unable to unambiguously tie specific disorders to the 

isometrically contracting state: many disorders gave rise to similar results, which combined 

with the lack of sharp features in the corresponding diffraction pattern to produce a high level 

of ambiguity in the results. In particular, models investigating disorder in the orientation of 

the myosin heads (i.e. in the azimuthal and axial angles taken by the heads) indicate that once 

the helical arrangement of heads within the thick filaments has been disturbed, successive 

disruptions have a far less significant effect and in some cases are all but indistinguishable on 

top of the original disorder. The level of difficulty in modelling the isometrically contracting 

state is reflected by the lack of comparison studies carried out on this subject.

No conclusion could be drawn as to the source of the axial structural changes 

during contraction. The primary features of the meridional region of the isometric 

contraction diffraction pattern were reproducible by a number of modelling methods, 

including disordering the axial angles taken by the myosin heads, and introducing random 

axial shifts to the head arrangement. Thus the possibility exists for both swinging of heads, 

in support of the tilting head model, and for axial displacements without swinging.

The final state, unloaded shortening at zero tension, had its own particular features 

which this modelling study suggested was the result of large amounts of axial disorder 

introduced between the thick filaments whilst the basic filament structure returns towards the 

structure at rest. Again, little explicit modelling of this state has been performed in the past,
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so a comparison cannot be made with other work. However, several reports have suggested 

theoretically that axial shifts between filaments may be the primary cause of lack of layer 

lines in what appears to be a structure with a reasonable degree of axial order.

Whilst modelling at this level of accuracy provides much useful information, the 

basic work carried out in this thesis has opened the way for more complex modelling of the 

protein arrangements. The models built here cover a filament length of about one overlap 

region (fig. 6.4), and make no effort to introduce a sarcomere structure: the introduction of 

longer filaments incorporating such a structure would enable detailed modelling of the 

meridional region of the pattern to confirm the initial results obtained here. Similarly, the 

cross-sectional area corresponds to a single cell, and the disorder studies in particular would 

benefit from an area containing many cells. The main problem with increasingly complex 

modelling is the limit set by available computer resources, but detailed modelling is possible, 

as illustrated by Hudson et al with fish muscle [61].

In the same vein, the introduction of the more significant of the minor protein 

components, troponin, tropomyosin, and C-protein, would be a useful modification. 

Numerous studies have modelled the troponin and tropomyosin components in detail, and 

their results could be transferred to these models without too much effort. The return would 

be a greater degree of confidence in the accuracy of the relative layer line intensities, and the 

appearance of the familiar meridional reflections.

As a final point, it would be helpful to look at time resolved data during the 

contraction cycle. Although such data is necessarily less accurate than the high quality data 

obtained at the comparatively static states of rest and isometric contraction, the changes in the 

diffraction patterns will give some insight into the stmctural changes taking place: in 

particular, certain types of disorder may appear at slightly different stages of the contraction 

cycle, allowing some degree of distinction between them.
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