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This paper proposes an explicit model predictive control design approach for regulation of linear time-invariant

systems subject to both state and control constraints, in the presence of additive disturbances. The proposed

control law is implemented as a piecewise-affine function defined on a regular simplicial partition, and has two

main positive features. Firstly, the regularity of the simplicial partition allows one to efficiently implement

the control law on digital circuits, thus achieving extremely fast computation times. Moreover, the asymptotic

stability (or the convergence to a set including the origin) of the closed-loop system can be enforced a-priori,

rather than checked a-posteriori via Lyapunov analysis.
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Model predictive control (MPC) is becoming increasingly popular both in academia and in

industry due to its ability to solve control problems while satisfying constraints on state and

control variables (Rawlings and Mayne 2009). The main drawback of MPC is the computation
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time required for solving an optimization problem on line, which has historically prevented its

application to fast processes. To circumvent this problem, two main research directions were

pursued in the last decade (we limit our overview to the control of linear time-invariant (LTI)

systems, that are the subject of this paper). The first relates to fast algorithms for on-line opti-

mization (Ferreau et al. 2008, Wang and Boyd 2010, Richter et al. 2011, Patrinos and Bemporad

2014, Rubagotti et al. 2014). The second regards computing the control law off-line as an ex-

plicit piecewise-affine (PWA) function of the state vector (Bemporad et al. 2002): the off-line

computation employs a multiparametric programming solver, and leads to the same solution

obtained by solving the optimization problem on-line. The on-line computation in explicit MPC

relies on determining the region of the PWA partition where the current state is located (usually

referred to as the point location problem, which typically takes a high percentage of the overall

on-line computation time), and then on evaluating an affine function from a pre-stored lookup

table. To simplify the complexity of explicit MPC controllers, approximate explicit MPC, in

which optimality is sacrificed for a control law defined over a smaller number of regions, has

been considered in the last decade (see, e.g., Grieder et al. (2005), Jones and Morari (2010),

Kvasnica et al. (2011), Kvasnica and Fikar (2012), and the references therein).

In a recent work (Bemporad et al. 2011), an approximate MPC controller for LTI systems was

proposed, based on a special class of functions, hereafter referred to as piecewise-affine simplicial

(PWAS) functions, proposed by Julián et al. (2000). The choice of PWAS functions leads to a

regular partition, so that the point-location problem is solved with a negligible effort compared

to explicit MPC defined on generic PWA partitions (the reader is also referred to Oliveri et al.

(2012) for the practical implementation). The control law proposed by Bemporad et al. (2011)

presents feasibility and local optimality properties, but the asymptotic stability of the origin of

the closed-loop system and the evaluation of its domain of attraction can be determined only

a posteriori (see, e.g., Rubagotti et al. (2013) and the references therein). We would like to

remark that PWAS functions are not the only choice for approximation of explicit MPC aimed
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at hardware implementation: for example, two different approaches based on the use of PWA

hyper-rectangular partitions have been recently proposed by Genuit et al. (2011) and Lu et al.

(2011). In all of these approaches (Bemporad et al. 2011, Genuit et al. 2011, Lu et al. 2011),

the possible presence of disturbance terms acting on the system is not taken into account. Note

that all the proposed techniques for approximation of explicit MPC lead to a reduction of the

computation time, but are applicable only to relatively small-size problems, which is an inherent

limitation of explicit MPC.

In this paper, we propose an approximation method for explicit MPC based on PWAS func-

tions, which can be implemented on digital circuits as in Bemporad et al. (2011). However,

in addition to that, we guarantee a-priori the convergence to a minimal set including the ori-

gin for the resulting closed-loop system (also obtaining the domain of attraction in which hard

constraints on state and input variables are satisfied), in the presence of external disturbances.

More specifically, two different methods are hereafter proposed to design a robust MPC control

law u∗(x), based on tightened constraints: an approximation procedure is carried out, in order

to find an approximate PWAS control law u(x), such that the approximation error u(x)−u∗(x)

satisfies the previously-defined bounds. As a drawback, u∗(x) must be explicitly computed in

order to obtain u(x). Also, the proposed method, like all explicit MPC techniques, can only be

applied to small-sized problems, due to the exponential increase of the problem complexity as the

prediction horizon or the number of states/inputs increases. However, we can obtain a consid-

erable decrease in the time needed to compute the control law if compared to directly applying

u∗(x), mainly due to the strong simplification of the point-location problem. A preliminary ver-

sion of the theoretical development in this paper is presented in Rubagotti et al. (2012), where

one of the two synthesis methods here considered is proposed in the case of systems without

disturbances.

The paper is organized as follows: the main notation used throughout the paper and the

formulation of the control problem are introduced in Sections 1 and 2, respectively, while Section
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3 describes the structure of the PWAS control law. In Section 4, the synthesis of the robustly

stabilizing MPC control law is described, while Section 5 deals with the approximation procedure

leading to the stabilizing PWAS control law. In Section 6, two simulation examples are shown.

Finally, conclusions are drawn in Section 7.

1 Notation

Let Z>0, Z≥0, R, R>0 denote the sets of positive integers, non-negative integers, real, and positive

real numbers, respectively. Given a set A ⊂ Rn, its interior is referred to as int(A). Given two

sets A and B, A ⊕ B , {a + b : a ∈ A, b ∈ B} and A ∼ B = {a : a + b ∈ A, ∀b ∈ B}

are their Minkowski addition and Pontryagin difference, respectively. Also, given λ ∈ R≥0, we

define λA , {x ∈ Rn : x = λa, a ∈ A}. We denote by ‖v‖1 and ‖v‖∞ the 1-norm and the

∞-norm of v, respectively. Given two vectors u, v ∈ Rn, the notation u ≤ v refers to component-

wise inequalities. Given a square matrix H ∈ Rn×n, its trace is tr(H), its Cholesky factor is

H
1

2 , and its positive definiteness is referred to as H � 0. The symbol In represents the identity

matrix in Rn×n. Given a vector v ∈ Rn and a matrix H ∈ Rn×n, ‖v‖2M , v′Mv. Given a matrix

H ∈ Rn×m and a compact set W ⊂ Rm, the product HW denotes the image of W under the

mapping defined by H, HW , {v ∈ Rn : v = Hw, ∀ w ∈ W}. When convenient, the explicit

dependence on time of the dynamic variables will be omitted for the sake of readability.

2 Problem statement

The controlled plant is described by the following discrete-time LTI state space model

x(t+ 1) = Ax(t) +Bu(t) + d(t) (1)

where t ∈ Z≥0, x, d ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m. The whole state vector x is available

for feedback, while u and d represent the control input and an unknown and unmeasurable
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disturbance term, respectively. The state and input values are required to satisfy

x ∈ X , X , {x ∈ Rn : Cxx ≤ gx} (2)

u ∈ U , U , {u ∈ Rm : Cuu ≤ gu} (3)

with Cx ∈ Rsx×n, Cu ∈ Rsu×m, gx ∈ Rsx , gu ∈ Rsu , while the disturbance term is assumed to be

such that

d ∈ D, D , {d ∈ Rn : Cdd ≤ gd} (4)

with Cd ∈ Rsd×n, gd ∈ Rsd .

Assumption 2.1 The following holds for system (1):

(i) the pair (A,B) is stabilizable;

(ii) X and U are nonempty, compact, and contain the origin in their interiors;

(iii) D is nonempty, compact, and contains the origin.

The objective of the control law is to solve a regulation problem to the smallest possible set

containing the origin, without violating the constraints (2)-(3). The control variable u(x) is a

state-feedback control law defined on a PWAS partition, whose structure is described in the next

section.

3 Control law on a simplicial partition

The function u(x) is defined on a closed hyper-rectangle S = {x ∈ Rn : xmin ≤ x ≤ xmax},

which is partitioned as S =
⋃LS−1
i=0 Si, where {Si}L−1

i=0 are simplices, i.e., polytopes given by the

convex hull of their n + 1 vertices x0
i , x

1
i , . . . , x

n
i ∈ Rn. The partitioning of S is performed as

follows:

(1) Every dimensional component xj of S is divided into pj subintervals of length (xmax,j −

xmin,j)/pj . These intervals define a number
∏n
j=1 pj of hyper-rectangles, and S contains



June 16, 2014 17:28 International Journal of Control Rubagotti˙etal˙IJC

6

Nv ,
∏n
j=1(pj + 1) vertices vk, collected into a set named VS .

(2) Every rectangle is partitioned into n! simplices with non-overlapping interiors. The set S

contains LS , n!
∏n
j=1 pj simplices Si, such that S = ∪LS−1

i=0 Si and int(Si)∩ int(Sj) = ∅,

∀i, j = 0, . . . , LS − 1.

Note that, since the partitioning of the hyper-rectangles into simplices is univocally determined,

the resulting number of simplices is determined by p1, ..., pn. After defining the sets Si, it is

possible to introduce the related PWAS function. We choose to define each component of u(x),

namely uj(x), j = 1, ,m, as the weighted sum of Nv linearly independent α-basis functions

(Julián et al. 2000). Every element of the j-th basis is affine over each simplex and satisfies

αj,k(vh) =


1 if h = k

0 if h 6= k.

After ordering the functions of the α-basis, we can consider them as an Nv-length vector φ(x).

Then, each component of u(x), namely uj(x), is a scalar PWAS function defined as

uj(x) ,
Nv∑
k=1

θj,k φk(x) = φ(x)′θj (5)

where θj = [θj,1 . . . θj,Nv
]′ ∈ RNv is the weight vector. Note that the coefficients θj,k coincide

with the values of the PWAS function uj(x) at the vertices of the simplicial partition. The PWAS

vector function u : Rn → Rm is defined by the weight vector θ = [θ′1 θ
′
2 . . . θ′m]′ ∈ RmNv , as

u(x)=


u1(x)

...

um(x)

,

φ(x)′θ1

...

φ(x)′θm

=



φ′(x) 0 · · · 0

0 φ′(x) . . . 0

...
...

. . .
...

0 0 · · · φ′(x)


θ=Φ(x)θ. (6)

The main reason for defining u(x) as in (6) is that PWAS functions can be implemented in

digital circuits using linear interpolators. In fact, by exploiting the regularity of the partition, the

point location problem becomes much easier than for the case of generic PWA partitions. The
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value of u(x) can be obtained, for any x ∈ S, as a linear interpolation of the values of u at the

n+ 1 vertices xi,0, ..., xi,n of the simplex Si that contains x. For a summary of the actual FPGA

implementation (also employed to design virtual sensors in Poggi et al. (2012)), the interested

reader is referred to Storace and Poggi (2010).

4 Robustly stabilizing optimal MPC

The next step is to obtain a function u(x) as in (6) using a procedure that leads to asymptotic

convergence to a set containing the origin for the closed-loop system. The proposed approach

consists of expressing the control variable u(x) as

u(x) = u∗(x) + w(x)

where u∗(x) is an optimal control law which satisfies

u∗ ∈ U , (7)

while w(x) represents an approximation error (a priori unknown), and is considered as a bounded

disturbance. System (1) can therefore be expressed as

x(t+ 1) = Ax(t) +Bu∗(t) +Bw(t) + d(t) (8)

4.1 Definition of the auxiliary control laws

In order to formulate the MPC control law u∗(x), we first need to define an auxiliary control

law, for which we introduce two alternative choices.

The first control law is synthesized on the nominal system, as follows:

Statement 4.1 The auxiliary control law is defined as u∗(x) = Knx, where Kn is the solution

for the nominal system

x(t+ 1) = Ax(t) +Bu∗(t) (9)
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of the infinite-horizon linear quadratic regulator (IH-LQR), given the weight matrices Q = Q′ ∈

Rn×n on the state and R = R′ ∈ Rm×m on the input, with Q,R � 0.

Remark 1 : Note that, by classical results of LQR theory, the closed-loop system obtained by

imposing u∗(x) = Knx in (9) is asymptotically stable.

The second choice concerns an auxiliary control law which is robustly stabilizing for

x(t+ 1) = Ax(t) +B (u∗(t) + w(x(t))) , (10)

where each component wi of w is such that

|wi(x)| ≤ α‖x‖1, i = 1, ...,m (11)

and α is a tuning parameter. This formulation of the uncertainty can be shown to be a structured

feedback uncertainty, as in Kothare et al. (1996). To this purpose, let 1 ∈ Rm×n be a matrix

of ones, and ∆ = diag(δ1, δ2, ..., δn) be a matrix of uncertain parameters such that |δi| ≤ 1 for

all i ∈ 1, ..., n. Then, (11) can be equivalently formulated as w(x) = α1∆x. More precisely, this

latter expression is equivalent to wi = α
(∑n

j=1 δjxj

)
for all i = 1, ...,m, which leads to (11).

Statement 4.2 The auxiliary control law is defined as u∗(x) = Kpx, where Kp = YΠ−1,
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Π = Π′ � 0 and Y are the solution of the following semidefinite program:

min
γ,Λ,Π,Y

γ (12a)

s.t. Λ > 0 (12b)

tr(Π) = 1 (12c)

Π Y ′R
1

2 ΠQ
1

2 Π (AΠ +BY )′

R
1

2Y γI 0 0 0

Q
1

2 Π 0 γI 0 0

Π 0 0 Λ 0

AΠ +BY 0 0 0 Π−BpΛB′p


� 0 (12d)

where Bp , αB1 and Λ = diag(λ1, λ2, ..., λn).

Remark 2 : The control law obtained in Statement 4.2 is related to the result in (Kothare et

al. 1996, Th. 1). While in Kothare et al. (1996) a semidefinite program is solved on-line, we

here fix the gain Kp off line. Also, as α → 0 (i.e., the dynamics of the uncertain system (10)

approaches the nominal dynamics (9)), the gain Kp tends to the gain Kn (with the same weight

matrices Q,R) defined in Statement 4.1 (Kothare et al. 1996, Rem. 4). Every possible realization

of matrix A+B(Kp +α1∆) has eigenvalues strictly inside the unit circle, which means that the

closed-loop system (10) with u∗ = Kpx is absolutely asymptotically stable as defined by Gurvits

(1995).

In conclusion, two different auxiliary control laws have been defined, both assuming no external

disturbance d, the first assuming no approximation error w, and the second assuming that w is

vanishing as x approaches the origin as described in (11). By defining either K , Kn or K , Kp,

the resulting closed-loop system is

x(t+ 1) = Aκx(t) +Bw(t) + d(t), (13)

where Aκ , A + BK. Both of these control laws will be used in the remainder of the paper as
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baseline to design the MPC controller.

4.2 Preliminary concepts for the definition of the MPC control law

A robust MPC control law is now described, which leads to robust convergence of the state to

the origin without violating constraints (2) and (7). Let w̄ ∈ R≥0 be a fixed scalar such that

w(x) ∈ W , {w ∈ Rm : ‖w‖∞ ≤ w̄}, ∀x ∈ X (14)

which represents a requirement on the maximum approximation error. At this point, two additive

disturbances are present in the system. We define

ξ(t) , Bw(t) + d(t)

from which it follows that ξ ∈ Ξ = BW ⊕D, and rewrite system (8) as

x(t+ 1) = Ax(t) +Bu∗(t) + ξ(t). (15)

The following standard definition is used in the following:

Definition 4.3: A set P is robust positively invariant (RPI) for system (15), if x(0) ∈ P

implies x(t) ∈ P for all ξ(t) ∈ Ξ and for all t ∈ Z≥0.

First of all, we define

Rk ,
k−1⊕
i=0

AiκΞ (16)

which is the set of states reachable by system (13) in k time steps from the origin. Then, we

compute the minimal RPI set R∞ for the closed-loop system (13), assuming that (14) holds. The

minimal RPI set for system (13) with ξ ∈ Ξ is defined as R∞ , limk→∞Rk. Considering that

this set can be computed exactly only under very restrictive assumptions, one usually needs to

compute a polytopic over-approximation (not necessarly RPI) R̂∞ such that R∞ ⊆ R̂∞. Details

on the characterization and computation of R∞ and R̂∞ as compact polytopes are given in



June 16, 2014 17:28 International Journal of Control Rubagotti˙etal˙IJC

11

Appendix A.

Referring to a generic gain K, which can be determined equal to Kn or to Kp, let the MPC

control law acting on system (1) be

u∗(x) , Kx+ µ∗(x), (17)

so that (1) becomes x(t + 1) = Aκx(t) + Bµ∗(t) + ξ(t). Note from (17) that µ∗(x) represents

the difference between the MPC control move and the baseline linear control law Kx. In the

following, we will make use of tightened constraints on the nominal evolution of (15) to ensure the

fulfillment of the actual constraints for the perturbed system. Starting from the initial condition

x(t) = x at time t, the nominal evolution of (15) at time t+k is denoted by x̂(t+k|t), while the

evolution of the actual system with the same initial condition by x(t+ k|t). Both evolutions are

obtained by applying the corresponding control sequence denoted by µ∗(t|t), . . . , µ∗(t+ k− 1|t).

It is well known from the set-theoretical analysis in Chisci et al. (2001) and Kolmanovsky and

Gilbert (1998), that, given Xk , X ∼ Rk and Uk , U ∼ KRk, one has that, for all k ∈ Z≥0,

x̂(t+ k|t) ∈ Xk ⇔ x(t+ k|t) ∈ X and Kx̂(t+ k|t) ∈ Uk ⇔ Kx(t+ k|t) ∈ U , for all ξ ∈ Ξ.

The next step is to find the maximal output admissible robust set for system (13), defined as

Xf , {x(0) ∈ Rn : x(k|0) ∈ X , Kx(k|0) ∈ U , ∀k ∈ Z≥0, ∀ξ ∈ Ξ}. (18)

Details on computating Xf as a compact polytope are given in Appendix A.

Assumption 4.4 It is supposed that 0 ∈ int(X ∼ R∞) and 0 ∈ int(U ∼ KR∞) (which ensures

the computability of Xf , see Appendix A). Moreover, we assume that R̂∞ ⊂ int(Xf ).

Remark 3 : The condition R̂∞ ⊂ int(Xf ) represents only a slightly stronger requirement with

respect to condition R∞ ⊆ Xf , which always holds. Note that, if R̂∞ ⊂ int(Xf ), being R̂∞ a

closed set, any state trajectory that converges to R̂∞ asymptotically, converges to Xf in finite

time.
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Recalling the sets Si defined in Section 3, we introduce the set

Sf ,
⋃
Si : Si ⊆ Xf , i = 0, ..., L− 1 (19)

which will be useful to formulate the subsequent results. Being Xf a convex set, Sf is connected,

but not necessarily convex.

4.3 MPC with tightened constraints

For the proposed robust MPC strategies, the prediction of the system trajectory on the finite

prediction horizon N ∈ Z>0 will make use of the nominal model of the system and of tightened

constraints, as in Chisci et al. (2001). The vector of optimization variables (inputs) to be de-

termined at time t is M , [µ′(t|t) · · · µ′(t|t + N − 1)]′ ∈ RmN . The definition of the optimal

sequence µ∗(x) is based on the solution of the following finite-horizon optimal control problem

(FHOCP) at each time t, with x(t) = x:

M∗(x) = arg min
M

N−1∑
k=0

‖µ(k)‖2Ψ, Ψ = Ψ′ � 0 (20a)

s.t. x̂(k) ∈ Xk, k = 0, . . . , N − 1 (20b)

Kx̂(k) + µ(k) ∈ Uk, k = 0, . . . , N − 1 (20c)

x̂(N) ∈ Xf ∼ RN (20d)

For ease of notation, implying that the solution of the FHOCP is computed at time t, we set

µ(k) , µ(t+ k|t) and x̂(k) , x̂(t+ k|t). Note that (20b) and (20c) lead to the fulfillment of (2)

and (7), respectively, along the prediction horizon. Finally, (20d) guarantees that x(t+k|t) ∈ Xf

for all possible disturbance sequences.

The FHOCP (20) is quadratic with respect to the decision variable M , and is subject to

linear constraints. Also, the current state x can be considered as a parameter. Therefore, (20)

can be recast as a multi-parametric quadratic program (mpQP), where the set of parameters

x for which a feasible solution exists is called FN . Since X , U and Ξ are convex polyhedra,
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FN is a convex polytope and can be easily computed using linear programming and projections

(Chisci et al. 2001). Also, an increase of the prediction horizon leads to a larger set FN , i.e.

FN ⊇ FN−1 ⊇ . . . ⊇ F1 ⊇ Xf . The nominal case (i.e., Ξ = 0) can be seen as a limit of the robust

case, and FN is always included in the corresponding set obtained for the nominal case.

Recalling Remark 3 in Chisci et al. (2001), matrix Ψ can be chosen such that (20) coincides

with the solution of the constrained IH-LQR associated to the weight matrices Q and R.

The application of the receding horizon principle leads to defining the MPC control law µ∗(x)

as µ∗(x) , [I 0 . . . 0]M∗(x). Following the development in Bemporad et al. (2002), explicit

expressions for the optimal value of the cost function in (20a), namely J∗(x), and for M∗(x),

can be obtained solving an mpQP. In particular, both J∗(x) and M∗(x) are Lipschitz continuous,

and more precisely J∗(x) is piecewise-quadratic, while M∗(x) is piecewise-affine. This implies

that also µ∗(x) and u∗(x) are piecewise-affine function defined in FN . The set FN is then

partitioned as FN =
⋃LF−1
i=0 Fi, where {Fi}LF−1

i=0 are polytopes (not necessarily simplices) with

non-overlapping interiors.

Next, define the following two sets: Rn∞, the minimal RPI set for the closed-loop system

x(t+ 1) = (A+BKn)x(t) + d(t) (21)

and Rp∞, the minimal RPI set for the closed-loop system

x(t+ 1) = (A+BKp + αB1∆)x(t) + d(t). (22)

In both cases, the presence of the disturbance w(t) is not taken into account. The computation

of sets Rn∞ and Rp∞, and of their over-approximations R̂n∞ and R̂p∞ are described in Appendix

A.

We are now ready to state the first main result of the paper.

Theorem 4.5 : Let Assumptions 2.1 and 4.4 hold for system (8) with ξ ∈ Ξ, and let u∗(x) be

defined in (17).
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(I) Let the MPC control law in (17) be designed with K = Kn, w(x) such that

w(x) = 0, ∀ x ∈ Sf , (23)

with 0 ∈ int(Sf ) (this latter being defined in (19)), and R̂∞ ⊂ int(Sf ). Then, for all

possible realizations of the disturbance term d(t), if x(0) ∈ FN then x(t) ∈ X and u∗(t) ∈

U for all t ≥ 0, and moreover x(t)→ Rn∞ ⊆ R∞ as t→∞.

(II) Let the MPC control law in (17) be designed with K = Kp for a given α > 0. Moreover,

|wi(x)| ≤ α‖x‖1, ∀i = 1, ...,m, ∀x ∈ Xf (24)

i.e., condition (11) be satisfied for all x ∈ Xf . Then, for all possible realizations of the

disturbance term d(t), if x(0) ∈ FN then x(t) ∈ X and u∗(t) ∈ U for all t ≥ 0, and

moreover x(t)→ Rp∞ ∩R∞ as t→∞.

In both cases, if D = {0}, then Rn∞ = Rp∞ = {0}, i.e., the origin is an asymptotically stable

equilibrium for system (1), with domain of attraction FN .

Proof: See Appendix B.1.

5 PWAS approximation

In this section, we describe how to obtain the control law u(x) defined on a PWAS partition as

in (6) approximating the control law u∗(x) in (17), in order to obtain asymptotic stability and

constraints satisfaction for system (1).

5.1 Approximation procedure

Assume that a control law u∗(x) has been computed for system (1) with domain of attraction

FN . Let S be defined as the smallest hyper-rectangle such that FN ⊆ S, as described in Section

3. Then, we partition the (not necessarily convex) set S \ FN as S \ FN =
⋃L̂F−1
i=0 Fi, where

{Fi}L̂F−1
i=0 are polytopes with non-overlapping interiors. In this way, a generic partition of S as
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S =
⋃L̃F−1
i=0 Fi is obtained, where L̃F , LF + L̂F , while we denote its set of vertices as ṼF .

In order to introduce the used approximation procedure, we use the concept of mixed partition

(see, e.g., Bemporad et al. (2011)), as the partition of S induced by the facets of both simplicial

(Si) and generic (Fi) partitions. As a result, S is further partitioned into convex polytopes, and

the partition is completely defined by the sets of vertices VS , ṼF and VM , the latter representing

the set of vertices given by the intersection of the two partitions and belonging neither to VS

nor to ṼF . Finally, let VI ,
{
v ∈

(
VS ∪ ṼF ∪ VM

)
: v ∈ FN

}
, and note that FN is the convex

hull of all v ∈ VI .

Let u(x) be defined as the control law that minimizes the maximum discrepancy with respect

to u∗(x) for all x ∈ FN (note that u∗(x) is not defined on S \ FN ), that is

F∞ , max
j=1,...,m

sup
x∈FN

{∣∣uj(x)− u∗j (x)
∣∣} (25)

When minimizing F∞ in (25), some constraints have to be imposed for all x ∈ FN . Since the

minima and maxima of the PWA function w(x) = u(x) − u∗(x) on any of the regions of the

mixed partition are on vertices, it is sufficient to impose constraints only on the vertices of VI .

In particular:

(1) The control law u(x) must satisfy the constraint (3), which is already satisfied by u∗(x).

This can be done imposing Cuu(v) ≤ gu for all v ∈ VI , which implies Cuu(x) ≤ gu for all

x ∈ FN .

(2) The value of u(x) must be computed such that ‖u(x)− u∗(x)‖∞ ≤ w̄, in order for system

(1) to satisfy (14). This can be obtained by simply imposing ‖u(v)− u∗(v)‖∞ ≤ w̄ for

all v ∈ VI ;

(3) • If K = Kn, in order to obtain (23), we impose that u(v) = u∗(v) for all v ∈ VI ∩ Sf ;

• If K = Kp, in order for system (1) to fulfill (24) we require that |wi(x)| ≤ α‖x‖1 for

all i = 1, ...,m and all x ∈ FN , which is obtained by forcing |ui(v) − u∗i (v)| ≤ α‖v‖1

for all v ∈ VI ∩ Xf .
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Therefore, after recalling the relationship between vector θ and the control variable u(x) in

(5)-(6), we obtain u(x) by solving the following linear program:

min
θ,η

η (26a)

s.t. η ≥ ±
(
φ(v)′θj − u∗j (v)

)
, v ∈ VI , j = 1, . . . ,m (26b)

CuΦ(v)θ ≤ gu, v ∈ VI (26c)
Φ(v)θ = u∗(v), v ∈ VI ∩ Sf , if K = Kn

|ui(v)− u∗i (v)| ≤ α‖v‖1, i = 1, ...,m, v ∈ VI ∩ Xf , if K = Kp

(26d)

η ≤ w̄ (26e)

The formulation of the cost function (26a) together with the constraint (26b) leads to finding

the vector θ that minimizes the maximum difference between uj(x) and u∗j (x) for all x ∈ FN and

all components j. Conditions (26c) and (26d) lead to the fulfillment of (3) and (23) (or (24)),

respectively. Condition (26e) ensures the fulfillment of (14). Once a feasible solution to (26) has

been found, vector θ determines the control law u(x) for all x ∈ S.

5.2 Properties of the PWAS control law

The following result holds when the approximate control law u(x) is applied to system (1).

Theorem 5.1 : Let (14) and Assumptions 2.1, 4.4 hold for system (1). Assume that a feasible

solution for the FHOCP (20) exists, and define u∗(x) as in (17). Finally, suppose that one of

the following holds:

(i) The MPC control law in (17) is designed with K = Kn, all the assumptions in case (I)

of Theorem 4.5 are satisfied, and there exists a realization of u(x) obtained through a

feasible solution of (26).

(ii) The MPC control law in (17) is designed with K = Kp. Moreover, all the assumptions

in case (II) of Theorem 4.5 are satisfied, and there exists a realization of u(x) obtained
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through a feasible solution of (26).

Then, if x(0) ∈ FN , one has x(t) ∈ X and u(t) ∈ U for all t ≥ 0. Moreover the state is

asymptotically driven to Rn∞ in case (i), or to Rp∞ ∩ R∞ in case (ii). Finally, if D = {0}, in

both cases (i) and (ii) the origin is an asymptotically stable equilibrium point for system (1),

with domain of attraction equal to FN .

Proof: See Appendix B.2.

Remark 4 : Due to the properties of the α-basis chosen to formulate u(x), (26) imposes con-

ditions only on a subset of the components of θ related to the vertices v ∈ VS . In particular, if

v ∈ Si with Si ∩ FN = ∅, then any value assigned to the corresponding component of θ is not

influencing the solution of (26), because their values do not affect u(x) in FN .

5.3 Parameter tuning

Considering that the feasibility of (12), (20) and (26) is not guaranteed a priori, we give some

guidelines on choosing the design parameters of the proposed approach. We assume that the

number of vertices Nv of the simplicial partition is fixed, which fixes the memory occupation

and latency time on the digital circuit implementing the control law, since these quantities only

depend on the structure of the chosen PWAS structure, and not on its values. Given the sets X

and U , the tuning parameters on which the designer can act to design u∗(x) are w̄ (if K = Kn)

or both w̄ and α (if K = Kp). In case K = Kn, we can fix a value of w̄, compute R̂∞ and Xf

checking if Assumption 2.1 is satisfied, check if 0 ∈ int(Sf ) and R̂∞ ⊂ int(Sf ), and then solve

(20). If (20) is feasible and all the required assumptions are satisfied for a given w̄ = w̄1, then

the same will hold for any w̄ ≤ w̄1. Then, one can find by bisection the maximum feasible value

of w̄, namely w̄max, and then (20) will be feasible for all w̄ such that 0 ≤ w̄ ≤ w̄max.

In case K = Kp one can choose a sufficiently small value for the parameter α (such that (12)

be feasible), and compute Kp. Then, one would act on the value of w̄ as in the previous case,

but without checking the condition relative to the set Sf , since the equality constraints in (26d)
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are not imposed if K = Kp.

In any case, we know that, once all the other parameters are fixed, a smaller value of w̄ leads

to a larger set FN . On the other hand, a small value of w̄ could impose a too tight approximation

in problem (26), making it infeasible. In conclusion, the designer can start obtaining a feasible

realization of the PWAS control for a value of w̄ close to w̄max. Then, this value can be decreased

in order to enlarge the set FN and obtain the desired performance.

6 Simulation examples

6.1 Example 1

As a first example, we consider the problem of regulating to the origin the LTI discrete-time

system proposed in Bemporad et al. (2011), where system (1) is defined by

A =

1.2 1

0 1.1

 , B =

0 1

1 1

 (27)

with the sets in (2)-(4) defined as X = {x ∈ R2 : ‖x‖∞ ≤ 2}, U = {u ∈ R2 : |u1| ≤ 0.5, |u2| ≤

0.6}, D = {d ∈ R2 : ‖d‖∞ ≤ 5 · 10−2}. In this case, we decide to design the auxiliary control

law with K = Kn =
[

0.9337 −0.1540
−1.0333 −0.9373

]
, obtained using the weight matrices Q = I2 and R = 0.1I2,

and we set w̄ = 0.1. The MPC control law u∗(x) in (17) is computed with Ψ = I2 and N = 4,

and its domain of attraction FN is shown in Fig. B1, together with sets R̂∞, Xf and R̂n∞.

The control law u∗(x) is composed of 83 irregular regions, and the point location problem (see,

e.g., Bemporad et al. (2002)) uses a binary search tree with 427 nodes, and a depth between 6

and 9. The approximate control law u(x) is computed with p1 = p2 = 50 (defined in Section

3), obtaining Nv = 2601 vertices and Ls = 5000 simplices, with a maximum approximation

error η = 0.0373. In Fig. B1 the set Sf is also shown, and it is possible to verify that all the

assumptions required in case (i) of Theorem 5.1 are satisfied. The PWAS control law so obtained

is shown in Fig. B2. In Fig. B1 the set F ′N of feasible states using the optimal MPC control law



June 16, 2014 17:28 International Journal of Control Rubagotti˙etal˙IJC

19

(designed with W = {0}) is shown, and one can note a reasonably contained reduction of the

region of attraction with respect to the direct employment of u∗(x).

6.2 Example 2

As a second example, we design the approximate MPC controller for the same system in form

(1) described by matrices A and B in (27), in case D = {0}. In this case, we set α = 0.05, and

design the auxiliary control law with K = Kp =
[

0.9385 −0.1696
−1.0387 −0.9570

]
, which is obtained using the

same weight matrices as in Example 1. The MPC control law u∗(x) in (17) is computed with

Ψ = I2 and N = 4, and its domain of attraction FN is shown in Fig. B3, together with the other

sets related to this example. The approximate control law u(x) is computed with p1 = p2 = 50,

obtaining Nv = 2601 vertices and Ls = 5000 simplices, with a maximum approximation error

η = 0.0297. In this case the control law u∗(x) is composed of 104 irregular regions, thus the point

location problem uses a binary search tree with 701 nodes, and a depth between 7 and 10. Since

all the conditions required in case (ii) of Theorem 5.1 are satisfied, the asymptotic stability of

the origin is guaranteed for all initial conditions in FN . In Fig. B4, the time evolution of the

state and control variables are shown starting from the initial condition x(0) =

[
0.88 −0.2

]′
.

6.3 Circuit performance comparison

In order to test the performance of the proposed control laws on real circuits, we used a Xilinx

Spartan 3 FPGA (xc3s200) board to implement the PWAS law of Example 2, coding the state

variables (circuit inputs) with 12 bits words. The employment of architecture B (serial) in Storace

and Poggi (2010) for the simplicial approximation uses 7.8 KB of RAM, 165 slices, and one

multiplier, allowing the control law computation to occur in 12 clock cycles. The simplified

circuit design allows an effective circuit frequency of 80MHz, which leads to a sampling time

interval of 150 ns. Note that implementing the PWAS control law of Example 1 requires exactly

the same circuit specification on the FPGA.
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The optimal MPC control law, which is a generic PWA function described in (17), in case

W = {0} (i.e., no approximation error) and serial implementation uses 1.012 KB of RAM,

1684 slices, and one multiplier, allowing the computation to occur in 49 clock cycles. Using the

parallel architecture, the circuit uses 1.012 KB of RAM, 1267 slices, and two multipliers, allowing

the computation to occur in 25 clock cycles. Both architectures can push the circuit frequency

to 60 MHz, leading to latencies of 813 ns and 415 ns for serial and parallel implementations,

respectively.

As one would expect given the more involved hardware architecture, the generic PWA imple-

mentations have greater computation latency. Moreover, the number of used slices is increased

by a factor of 10 with respect to the simplicial approximation, which, however, requires more

RAM to store data relative to the greater number of regions. Notice, however, that the ongoing

trend in computer hardware technology is not, as few decades ago, to push on frequency, but

to increase the number of processing units and RAM memory. Evidently, an upper limit to the

execution efficiency of hardly parallelizable algorithms (such as optimization) is reached, sug-

gesting the manufacturers to invest in quantity rather than in pure speed. As a consequence, the

tradeoff between time and space resources has changed, making RAM occupation an increasingly

negligible issue when compared to on-line computation power (as required by on-line MPC). The

parameters of the described circuits are summed up in Table 1.

Control law PWAS PWA(serial) PWA(parallel)

RAM (kB) 7.800 1.012 1.012

# Slices 165 1684 1267

# Multipliers 1 1 2

# Clock cycles 12 49 25

Frequency (MHz) 80 60 60

Latency (ns) 150 813 415

Table 1. Parameters relative to the FPGA implementation of the described control laws
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7 Conclusions

In this paper, an approximate MPC control law for uncertain LTI systems based on PWAS

functions has been proposed, which can be efficiently implemented on digital hardware. The

proposed synthesis methods guarantees a-priori the asymptotic convergence of the closed-loop

system to a terminal set (or its asymptotic stability in case no external disturbance is present).

In particular, the approach with K = Kn does not require the introduction of the additional

tuning parameter α, but can be applied only if the simplicial partition is dense enough to obtain

a non-empty set Sf . The approach with K = Kp, instead, requires the introduction of α, but

can be applied also with a coarser simplicial partition. The applicability of the proposed control

strategy is effective for the case of small-sized systems, similarly to standard explicit MPC. The

theoretical properties of the control law have been proved based on robust MPC synthesis, and

the simulation results have confirmed the expected results, both for the theoretical properties of

the PWAS controller and for the performance of the related FPGA implementation.

Appendix A: Characterization and computation of RPI sets

Relying for instance on (Blanchini and Miani 2008, Proposition 6.9), one can prove that R∞

is a polytope in our case. Nonetheless, an explicit computation of R∞ is in general impossible

(apart from the very specific case of Aκ nilpotent, as stated by Mayne and Schroeder (1997)).

The (not necessarly RPI) polytopic over-approximation R̂∞ can be computed using various

numerical algorithms: the reader is referred to (Blanchini 1999, Sec. 6.4-6.5), and Rakovic et al.

(2005) for an overview (an implementation of the algorithm described in the latter paper is also

available, see Riverso et al. (2013)). The same procedure, in the particular case W = 0, leads to

the computation of Rn∞ and R̂n∞. Analogous considerations are valid for the characterization of

Rp∞ and for the computation of R̂p∞, which can be obtained as a polytope after a finite number

of iterations of the numerical algorithm described by Kouramas et al. (2005) (note that the

system with structured feedback uncertainty (22) is equivalent to a linear time-varying system,
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as highlighted by Kothare et al. (1996)).

The set Xf in (18) can also be conveniently expressed, using tightened constraints, as

Xf = {x : Akκx ∈ Xk, KAkκx ∈ Uk, ∀k ∈ Z≥0} (A1)

and can be computed by Algorithm 6.1 in Kolmanovsky and Gilbert (1998) using linear pro-

gramming. In particular, exploiting the results in Theorems 6.2 and 6.3 in Kolmanovsky and

Gilbert (1998), Xf is finitely generated, if 0 ∈ int(X ∼ R∞) and 0 ∈ int(U ∼ KR∞). If R∞

is not computable, one can use the above mentioned over-approximation R̂∞ instead. Efficient

methods for the computation of Xf are implemented in the MPT Toolbox for MATLAB (Herceg

et al. 2013).

Appendix B: Proofs

B.1 Proof of Theorem 4.5

The first part of the proof holds for both choices of K. We recall that Assumptions (A1)-(A5)

in Chisci et al. (2001) are automatically satisfied if Assumptions 2.1 and 4.4 hold, together with

(14). Therefore, according to Lemma 7 and Theorem 8 in Chisci et al. (2001), recursive feasibility

is ensured if x(0) ∈ FN . Therefore, x(t) ∈ X and u∗(t) ∈ U for all t ∈ Z≥0. Also, x(t)→ R∞ as

t→∞, for all choices of K that are stabilizing for the nominal system (i.e., both Kn or Kp). On

the other hand, according to the expression of Xf in (A1), the evolution of the nominal system

given by x̂(k) with initial condition x ∈ Xf and µ(t + k|t) = 0, ∀k = 1, ..., N − 1, fulfills the

constraints (20b)-(20c). Also, as noticed in Chisci et al. (2001), the constraints x̂(k) ∈ Xk and

Kx̂(k) ∈ Uk for k ≥ N are equivalent to the terminal constraint (20d). Then, we conclude that

V = [0 · · · 0]′ is a feasible solution for (20) whenever x ∈ Xf , and is the minimizer of (20), since

it is the global minimum of the objective function, i.e., x ∈ Xf =⇒M∗(x) = [0 · · · 0]′.

Consider now case (I). Since R̂∞ ⊂ int(Sf ), then there exists ε ∈ R>0 arbitrary small, such

that (1 + ε)R̂∞ ⊆ int(Sf ). Considering that R̂∞ is a RPI set for system (13), it is a RPI set for
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system (21) as well. Therefore, by linearity of the system, (1 + ε)R̂∞ is also a RPI set for (21).

Considering now the actual dynamics (8), from the trivial relation R̂∞ ⊂ (1 + ε)R̂∞ it follows

that, for all initial conditions x(0) ∈ FN , there exists t1 ∈ Z≥0 such that x(t1) ∈ (1 + ε)R̂∞.

Since it is assumed that w(x) = 0 for all x ∈ Sf , and (1 + ε)R̂∞ is positively invariant for the

system (21), one has that the system dynamics is given by (21) for all t ≥ t1, which leads to the

asymptotic convergence of the state of system (8) to Rn∞ for all x(0) ∈ FN .

Consider now case (II). By Assumption 4.4, for any initial condition x(0) ∈ FN there exists

t2 ∈ Z≥0 such that, applying dynamics (8), x(t2) ∈ Xf . Considering that Xf is by definition

an RPI set for system (13), we get u∗(x) = Kpx for all t ≥ t2. As a consequence, since, given

x(0) ∈ Xf , both x(t) → R∞ and x(t) → Rp∞ as t → ∞, it follows that x(t) → R∞ ∩ Rp∞ as

t→∞ for all x(0) ∈ FN .

In both cases (I) and (II), if D = {0}, it is immediate to see that the asymptotic stability of

systems (21) or (22) implies Rn∞ = Rp∞ = {0}. Therefore, the origin would be an asymptotically

stable equilibrium point with region of attraction equal to FN . �

B.2 Proof of Theorem 5.1

In both cases (i) and (ii), conditions (26d)-(26e) allow one to consider w(x) = u(x) − u∗(x) as

a disturbance term that satisfies all the requirements to synthesize u∗(x) in (17). Therefore, by

application of Theorem 4.5, all the mentioned properties are proved. �
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Kvasnica, M., Löfberg, J., and Fikar, M. (2011), “Stabilizing polynomial approximation of ex-

plicit MPC,” Automatica, 47, 2292–2297.

Lu, L., Heemels, W.P.M.H., and Bemporad, A. (2011), “Synthesis of low-complexity stabiliz-

ing piecewise affine controllers: A control-Lyapunov function approach,” in IEEE Conf. Dec.

Contr., Orlando, FL.

Mayne, D., and Schroeder, W. (1997), “Robust time-optimal control of constrained linear sys-

tems,” Automatica, 33, 2103–2118.

Oliveri, A., Barcelli, D., Bemporad, A., Genuit, B.A.G., Heemels, W.P.M.H., Poggi, T.,

Rubagotti, M., and Storace, M. (2012), “MOBY-DIC: A Matlab toolbox for the circuit de-

sign of explicit MPC,” in IFAC Conference on Nonlinear Model Predictive Control, August,

Noordwijkerhout, the Netherlands.

Patrinos, P., and Bemporad, A. (2014), “An Accelerated Dual Gradient-Projection Algorithm

for Embedded Linear Model Predictive Control,” IEEE Trans. Aut. Contr., 59, 18–33.

Poggi, T., Rubagotti, M., Bemporad, A., and Storace, M. (2012), “High-Speed Piecewise Affine

Virtual Sensors,” IEEE Trans. Ind. Electr., 59, 1228–1237.

Rakovic, S., Kerrigan, E., Kouramas, K., and Mayne, D. (2005), “Invariant approximations of

the minimal robust positively invariant set,” IEEE Trans. Aut. Contr., 50, 406–410.

Rawlings, J.B., and Mayne, D.Q., Model Predictive Control: Theory and Design, Nob Hill Pub-

lishing (2009).

Richter, S., Morari, M., and Jones, C.N. (2011), “Towards computational complexity certification



June 16, 2014 17:28 International Journal of Control Rubagotti˙etal˙IJC

26 REFERENCES

for constrained MPC based on Lagrange relaxation and the fast gradient method,” in IEEE

Conf. Dec. Contr., Orlando, FL, pp. 5223–5229.

Riverso, S., Battocchio, A., and Ferrari-Trecate, G., “PnPMPC Toolbox v. 0.9 - User manual,”

http://sisdin.unipv.it/pnpmpc/pnpmpc.php (2013).

Rubagotti, M., Barcelli, D., and Bemporad, A. (2012), “Approximate Explicit MPC on Simplicial

Partitions with Guaranteed Stability for Constrained Linear Systems,” in IFAC Symposium

on Nonlinear MPC, Noordwijkerhout, Netherlands, pp. 119–125.

Rubagotti, M., Patrinos, P., and Bemporad, A. (2014), “Stabilizing Linear Model Predictive

Control Under Inexact Numerical Optimization,” IEEE Trans. Aut. Contr., 59, 1660–1666.

Rubagotti, M., Trimboli, S., and Bemporad, A. (2013), “Stability and Invariance Analysis of

Uncertain Discrete-Time Piecewise Affine Systems,” IEEE Trans. Aut. Contr., 58, 2359–2365.

Storace, M., and Poggi, T. (2010), “Digital architectures realizing piecewise-linear multi-variate

functions: two FPGA implementations,” Int. J. Circuit Th. Appl., 37, 1–15.

Wang, Y., and Boyd, S. (2010), “Fast model predictive control using online optimization,” IEEE

Trans. Contr. Sys. Tech., 18, 267–278.



June 16, 2014 17:28 International Journal of Control Rubagotti˙etal˙IJC

REFERENCES 27

List of captions
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Figure B2 Control function u(x) on the simplicial partition of the set S in Example 1.

Figure B3 Sets F ′N , FN , Xf , R̂∞ for the obtained robust MPC control law u∗(x) in Example 2.

Figure B4 Time evolution of the state and control variables in Example 2 (solid line for optimal

values, dashed line for approximate PWAS solution).
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Figure B2. Control function u(x) on the simplicial partition of the set S in Example 1
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Figure B3. Sets F ′N , FN , Xf , R̂∞ for the obtained robust MPC control law u∗(x) in Example 2
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Figure B4. Time evolution of the state and control variables in Example 2 (solid line for optimal values, dashed line for

approximate PWAS solution)


