
Comparative and Functional Genomics
Comp Funct Genom 2005; 6: 301–306.
Published online 11 July 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.484

Research Article

Characterization of expressed sequence tags
from a Gallus gallus pineal gland cDNA library

Stefanie Hartman1, Greg Touchton1, Jessica Wynn1, Tuoyu Geng1, Nelson W. Chong2 and Ed Smith1*
1Comparative Genomics Lab, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
2Division of Cardiology, Department of Medicine, University of Leicester, Leicester, UK

*Correspondence to:
Ed Smith, 2250 Litton Reaves
Hall, Blacksburg, VA
24061, USA.
E-mail: esmith@vt.edu

Received: 12 January 2005
Revised: 22 May 2005
Accepted: 1 June 2005

Abstract
The pineal gland is the circadian oscillator in the chicken, regulating diverse
functions ranging from egg laying to feeding. Here, we describe the isolation and
characterization of expressed sequence tags (ESTs) isolated from a chicken pineal
gland cDNA library. A total of 192 unique sequences were analysed and submitted
to GenBank; 6% of the ESTs matched neither GenBank cDNA sequences nor the
newly assembled chicken genomic DNA sequence, three ESTs aligned with sequences
designated to be on the Z random, while one matched a W chromosome sequence and
could be useful in cataloguing functionally important genes on this sex chromosome.
Additionally, single nucleotide polymorphisms (SNPs) were identified and validated
in 10 ESTs that showed 98% or higher sequence similarity to known chicken genes.
Here, we have described resources that may be useful in comparative and functional
genomic analysis of genes expressed in an important organ, the pineal gland, in a
model and agriculturally important organism. Copyright  2005 John Wiley & Sons,
Ltd.
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Introduction

Circadian rhythm is a general characteristic of liv-
ing organisms. Both physiological and genetic fac-
tors involved in this process continue to be very
widely investigated in different organisms. In mam-
malian and avian systems, it is a general consensus
that the physiological and genetic processes of bio-
logical rhythms occur in a loop. The molecular
mechanisms that control the loop appear to be con-
served among diverse species. The avian circadian
rhythm is unique as it involves multiple organs
whose inputs and interactions influence the oscilla-
tory patterns of rhythmic behaviour (Ebihara et al.,
1987). Some of the positive and negative regulator
genes involved in the autoregulatory feedback loop
mechanism for the circadian oscillator in the pineal
gland have been described in diverse birds, includ-
ing the quail (Yoshimura et al., 2000) and chicken
(Okano et al., 2001).

The chicken pineal gland is an important model
for vertebrate circadian clock systems because
of its ability to retain circadian rhythm in cul-
ture. Several important genes have been iden-
tified in the pineal gland. One important com-
ponent of the autoregulatory feedback loop of
the circadian oscillator is the negative regula-
tor gene, cPer2 ; the gene products of cBmal1,
cBmal2 and cClock form heterodimers that bind
to a promoter sequence of cPer2 and activate
transcription (Okano et al., 2001). The photore-
ceptor pinopsin has been shown to be present,
although its expression responds exclusively to
light and not circadian patterns. The arylalkylamine
N -acetyltransferase (AA-NAT) gene product, how-
ever, has been directly linked to melatonin produc-
tion in a circadian rhythm (Takanaka et al., 1988).
In addition, GCAP1, GCAP2 and GC, genes that
are important in resetting rods and cones after light
exposure, have been identified in the pineal gland
(Semple-Rowland, 1999).

Copyright  2005 John Wiley & Sons, Ltd.
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Since the chicken is considered an excellent
model for further understanding the genetic and
molecular basis of rhythmic behaviour, here we
investigated the characteristics of expressed se-
quence tags (ESTs) isolated from the chicken pineal
gland. While previous work by Hubbard et al.
(2005) has yielded a number of ESTs in such
important functional tissues as the liver, pancreas,
heart, cerebellum, kidney and ovary, none has
been described to date from the pineal gland.
Bailey et al. (2003) used microarray technology
to evaluate pineal genes expressed in periods
of light and darkness with a focus on function
rather than sequence comparisons. The primary
goal of our study was to identify novel genes that
could be useful in comparative genome analysis of
the molecular mechanisms that underlie rhythmic
behaviour. Additionally, we evaluated the level of
variation in selected ESTs that matched known
chicken genes using in silico analysis followed by
PCR-based resequencing for validation.

Materials and methods

Sequence analysis

The ESTs were obtained from a previously descri-
bed chicken pineal gland-cDNA library (Chong
et al., 2000). Briefly, the library was established
from 10–11 day-old White Leghorn birds under
12 h light. The ESTs were produced from single-
pass sequencing of randomly selected clones, pro-
cessed by a modification of the toothpick PCR
described by Smith et al. (2001). The modification
involved first converting the original library from
HybriZAP2.1 into phagemid, using the manufac-
turer’s (Stratagene, La Jolla, CA92037) recommen-
dation. The ESTs were characterized using BLAT
(http://genome.ucsc.edu/cgi-bin/hgBlat?com-
mand=start&org=Chicken&db=galGal2&
hgsid=30295 885) and BLAST to identify data-
base matches corresponding to the recently released
chicken genomic DNA sequence and known genes
in GenBank, respectively.

The chicken radiation hybrid panel (Morisson
et al., 2002) was used to map VTEST71 in order to
validate the in silico chromosomal location of the
EST. Forward and reverse primers specific for the
EST, designed using Primer 3 (Rozen and Skalet-
sky, 1997), were used for the genotyping. The

forward and reverse primers were 5′-GAT TTC
AAA ACG GAC TTG AG-3′ and 5′-TGA GCA
GTC ACT TTT AGC ATT-3′, respectively. The
PCR was carried out in a final volume of 10 µl
containing 1.5 mM Mg2+ Buffer (Eppendorf, West-
bury, NY), 200 µM dNTPs, 70 µg primer (MWG
Biotech), 1 U Taq (Eppendorf), and 5 ng template.
The cycling was performed using a Mastercycler
(Brinkmann, Westbury, NY) with the following
program: initial denaturation at 95 ◦C for 5 min fol-
lowed by 95 ◦C for 45 s, 55 ◦C for 45 s, 72 ◦C for
45 s for a total of 38 cycles of denaturation, anneal-
ing and extension, respectively. A final extension at
72 ◦C was carried out for 7 min. The PCR product
was run on a 2% agarose gel stained with ethidium
bromide, and scored as 0, 1 or 2 for absent, present,
or ambiguous, respectively. Mapping results were
determined by the Morisson lab from these data.

SNP analysis

An in silico analysis of 10 ESTs that closely
matched chicken genes was used to identify can-
didate SNPs in the ESTs according to the pipeline
protocol of Buetow et al. (1999). Validation of the
candidate SNPs for three of the ESTs was carried
out by PCR-based resequencing of amplicons from
10 unrelated commercial birds, using previously
described protocols (Smith et al., 2001).

Results and discussion

Of the 200 clones sequenced, a total of 192
sequences exceeded a Phred quality score of 30
(Ewing et al., 1998). These 192 sequences were
submitted to GenBank and have been assigned
accession numbers (Table 1; and at http://filebox.
vt.edu/users/esmith/Hartman Va Tech CFG
supplement/Hartman Va Tech Table 1.doc). A
total of 17 ESTs (9%) matched neither GenBank
cDNA sequences nor the newly assembled chicken
genomic DNA sequence. Additionally, only 80
ESTs matched known chicken gene or cDNA
sequences. All but 28 ESTs aligned with genomic
DNA sequences assigned to chicken chromo-
somes. Ninety-one (about 47%) ESTs aligned with
sequences assigned to macrochromosomes (GGA)
1–6, and four sequences aligned to genomic DNA
sequences assigned to the Z chromosome. An addi-
tional three ESTs aligned with sequences desig-
nated to be on the Z random, while one matched

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2005; 6: 301–306.
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a W chromosome sequence. The highest number
of ESTs, 30, matched sequences from chromo-
some 1, while none aligned with sequences from
microchromosomes 16, 19, 21, 25 and 26. Nine-
teen ESTs (11.7%) aligned with sequences desig-
nated ‘unknown,’ which are reported by the Inter-
national Chicken Genome Sequencing Consortium
(2004) to be about 12% of the chicken genome.
Seven ESTs matched sequences assigned either to
more than one region of a chromosome or on
different chromosomes. A few ESTs aligned with
sequences from Escherichia coli, which could be
due to bacterial contamination or simply to con-
served sequences. The chromosomal assignments
of some of the ESTs should be considered putative,
as there are still many errors in the draft chicken
genomic DNA sequence. The incompleteness of the
Gallus gallus DNA sequence may also account for
the relatively high percentage of ESTs that showed
no significant sequence similarity to known chicken
sequences.

The chromosomal assignment of VTEST71 to
chromosome 18, based on the sequence alignment

with the recently released genomic DNA, was con-
firmed by radiation hybrid mapping. VTEST71 is
designated as locus VTC08 on the chicken radi-
ation hybrid map and is flanked by MCW0217
and ADL0290, with LOD scores of 10.7 and 13.1,
respectively. VTEST71 showed 99% sequence sim-
ilarity to chicken histone protein H3 and 95% iden-
tity with human Histone H3.3 (AK130772). Previ-
ously, chicken H3 was also mapped to chromosome
18 by RFLP, while the human H3 was linked to
chromosome 17 (Levin et al., 1994).

A total of 22 SNPs were identified and vali-
dated in the three ESTs scanned (data not pre-
sented). Eight of the SNPs were non-synonymous
and are described in Table 2. All the SNPs appear
to be novel and have not been previously described
(Smith et al., 2002; Wong et al., 2004). There-
fore, these SNPs, although few, may be useful in
efforts to assign phenotypes to genotypes and iden-
tifying the effects of the three genes on different
chicken traits, e.g. knowledge of the function of
cofilin, an essential protein for depolymerization of
actin filaments, is still limited (Arber et al., 1998).

Table 2. Sequence contexts of SNPs validated by resequencing

ID of VTEST
Matched gene/Accession No./%
similarity/length of match (bp) EST-SNP sequence context/position∗

VTEST 85 Gallus gallus cofilin mRNA/M55659/98% ccatggct(tct, S → tgt, W)ggagtaacag/49†

648/661 tttaatgac(atg, M, → ttg, L)aaagtaa/93†

aagaaag(c/g)cgttctcttctgct/145
gagacaaagga(a/g)tctaag(aag, K → agg, R)ga/320, 328†

aggtattaaacatga(g/a)tggcaagta/443
cagacaagt(g/a)ccatctggatcta/557
tggaatagt(a/g)ttagtctcccttt/610
cctggtagtttta(t/c)gtaggatccaa/734
ggtgggatgg(t/c)agactctatac/900
gcacacaaca(c/t)tatgcatttaa/1018
catatctta(t/c)aaatgaagtagct/1150
aaacatcgg(t/c)catgatggca/1270

VTEST 56 Gallus gallus collapsin response mediator
protein/U17 277/99%

gtgggaagatc(gtc, V → gcc, A)aatgacgac/375†

639/642 tgattac(tcc, S → tgc, C)ctgcacgtggac/708†

tggctttagc(ttg, L → atg, M)tctggcgcact/1922†

VTEST 137 Gallus gallus elongation factor 1α

mRNA/L00677/99% 643/649
ctaaagacca(t/c)ccgaaatgggaa/55

aggaccatcg(a/g)gaagttcg/aagaa/179,187
cttttgtgcca(a/g)tctctggttggaacgg/637
caactgaca(a/g)acctctgcgtct/791
gaaagatgtccgc(cgt,R → ggt,G)ggtaacgttg/1024†

∗ Each sequence context is followed by the position or locus of the SNP in the GenBank sequence of the matched Gallus gallus
gene. Within each sequence context, the two alleles at the SNP locus are shown in parentheses. Each allele was observed in a
minimum of two chromosomes or a frequency of 10% in a commercial population previously described (Smith et al., 2002)
† Represents a non-synonymous change. The amino acid and codon changes are both indicated.

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2005; 6: 301–306.
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The three non-synonymous SNPs described may be
useful in further defining its role in skeletal func-
tion and the dynamics of actin filaments. Similarly,
the recently discovered collapsin response media-
tor gene product is thought to have a role in the
incidence and/or severity of Alzheimer’s disease
(Yoshida et al., 1998). The SNPs described in this
gene in Gallus gallus may be useful in investigat-
ing the role of this apparently important gene that
is also expressed in the chicken pineal gland.

It is not surprising that only 45% of the ESTs
aligned to GGA1-6 DNA sequences, which com-
prise approximately 65% of the chicken genome.
In their analysis of the draft sequence, the Inter-
national Chicken Genome Sequencing Consortium
(2004) reported that the density of CpG islands
showed a strong negative correlation with chro-
mosome length. This distribution supports ear-
lier studies by McQueen et al. (1998) and Smith
et al. (2000) of a higher density of genes on
the microchromosomes than on the macrochromo-
somes. Several explanations are possible for the
9% of ESTs that did not match known sequences
in GenBank, including novelty in vertebrates, too
short to match known sequences, or contamination.
In a recent comparative gene analysis between the
chicken and human genomes, Castelo et al. (2005)
predicted that the undiscovered genes in the human
gene set may be very low, at a predicted lower limit
of about 0.2%.

The number of ESTs and SNPs described in the
present work are small relative to the total num-
bers of both genomic reagents currently available in
GenBank and other databases. That they are poten-
tially useful, however, is evident by the novelty of
some of the sequences. Since a significant fraction
matched mammalian genes and/or DNA sequences,
they can be used as resources for comparative
genome analysis of genes expressed in the pineal
gland. Such comparative analysis may be useful in
assigning function to chicken sequences. A simi-
lar impact on chicken biology is also likely with
the SNPs described. Finally, it is worthy of note
that one of the ESTs matched a W chromosome-
assigned sequence. Currently, the number of genes
assigned to this chromosome is limited. As efforts
such as ours, even though limited in scope, iden-
tify additional ESTs, it will provide the genomic
reagents essential to further increase our under-
standing of a chromosome that continues to be little
understood.
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