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1 Introduction

Conventionally forecast accuracy is assessed using statistical measures, which are usually

based on point forecasts and some measure of the forecast errors, however these measures

convey little information about the value of the forecast. Work by Leitch and Tanner

(1991), Granger and Pesaran (2000) and Pesaran and Skouras (2004) asserts that given

forecasts are ultimately intended to inform decision making they should be evaluated in

the decision making context for which they are intended. In light of this, decision-based

forecast evaluation1 is becoming increasingly popular, where forecasts are assessed from

the forecast user’s perspective using measures like profit and utility.

Predictability in asset returns and decision-based forecast evaluation in the context of

investment decision making is examined by those including West et al (1993), Pesaran and

Timmermann (1995), Marquering and Verbeek (2004), Thornton and Valente (2012) and

Fuertes and Olmo (2013).2 Barberis (2000) finds if returns are predictable and not i.i.d.

then horizon effects may in fact be observed3, and further the importance of parameter

uncertainty is highlighted with the investor who ignores estimation risk over allocating

to the risky asset.4 Studies that use decision-based criteria to evaluate the predictive

power of theory informed models include Abhyankar, Sarno and Valente (2005, henceforth

ASV), who find exchange rate predictability to significantly alter the optimal allocation

and evidence of economic value to exchange rate predictability; further evidence is provided

by Garratt and Lee (2009, henceforth GL) who also incorporate model uncertainty. Della

Corte, Sarno and Thornton (2008, henceforth DST) present support for the Expectations

Hypothesis of the term structure of interest rates under an economic value measure.

However, the literature that examines asset return predictability and the economic

value of this predictability focus their attention on stock returns and exchange rates,

with little attention being paid to interest rate predictability. This is what we seek

to address here. Previous research concerned with assessing interest rate predictability

largely use statistical evaluation criteria to compare forecasts generated from models that

make differing assumptions regarding predictability.5 In this paper we consider first, how

the allocation decisions of the investor are influenced by parameter uncertainty and pre-

dictability. Second, if a utility maximising investor gains, in terms of higher wealth, from

assuming returns are predictable and using a model informed by economic fundamentals

to forecast interest rates, as opposed to assuming they are not predictable and using a

1We use the terms economic value measures and decision-based measures interchangeably.
2See also Xia (2001), Avramov (2002), Brooks and Persand (2003), Boudry and Gray (2003), Han

(2010) and Cenesizoglu and Timmermann (2012).
3Contrary to the early findings of Samuelson (1969) and Merton (1969) who show that if returns are

i.i.d. then an investor with power utility has an optimal allocation that is insensitive to the investment
horizon.

4Barberis models stock returns as (1) i.i.d. under the assumption of no predictability and (2) in a VAR
under the assumption of predictability. Under i.i.d. returns the mean and variance evolve linearly. Bar-
beris highlights that allocations will differ under (1) and (2) because the variance of the cumulative returns
grow slower/faster than linearly with the investment horizon when predictability/parameter uncertainty
is considered.

5See Fama (1990), Hafer et al (1992), Gosnell and Kolb (1997), Fauvel et al (1999), Diebold and Li
(2006), De Pooter et al (2007) and Guidolin and Timmermann (2009).
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random walk model, in that we use decision-based forecast evaluation to assess if there is

economic value to interest rate predictability.

The findings of ASV, DST and GL illustrate that the conclusion of how well the

forecasts of models that assume predictability and are informed by economic fundamentals

perform, compared to models of no predictability like the random walk, is sensitive to

the evaluation criterion used. To be precise, under statistical measures no predictability

models like the random walk are diffi cult to beat, but under decision-based methods

encouraging evidence in favour of predictability is found.

When considering interest rate predictability, we turn to the leading theory of the term

structure, the Expectations Hypothesis (EH), which postulates that the long term rate is

a weighted average of expected future short term rates. In their key study Campbell and

Shiller (1991) consider if the yield spread of the term structure has predictive power for

future interest rate changes. The explanatory power of the EH has been examined exten-

sively, with empirical support for the EH found to be sensitive to the dataset, time period

considered and testing method employed. However, many report a strong comovement

between the actual spread and the spread predicted by the EH, thereby making it diffi cult

to reject a hypothesis that is economically significant.6 Here we use a Multivariate VAR

in Transformed Interest Rates (MVART) model, which embeds the cointegrating relations

between the yields as implied by the EH, to capture predictability.

The contributions of this paper are empirical. We consider asset return predictability

and the economic value of this predictability in the context of interest rates, and to our

knowledge DST is the only other. Our work differs from DST in several ways; they

focus on testing the EH and seeing if there is economic value to departures from the EH.

We however, use an unrestricted VAR, i.e. the MVART model, since we do not seek to

test the EH. We are concerned firstly with our models’ability to forecast out-of-sample

and secondly with the effects of parameter uncertainty and predictability on the optimal

allocation, neither of which DST consider.

In brief, we compute the optimal portfolio allocation for a buy-and-hold investor with

power utility over terminal wealth, using weekly data for the UK during 1997 week 10

to 2007 week 19, for two assets the 1-month and the n-month T-bill for n = 3, 6, 12

months, over investment horizons of up to 2 years. The assets considered here provide

risk-free returns and only differ in their maturity. We consider two models that make

opposing assumptions regarding return predictability. If the investor believes returns

are not predictable, she uses a random walk with drift model to forecast returns and

inform her allocation decisions. If she believes that returns are predictable she uses the

MVART model. Using these two models we examine the impact of predictability and

parameter uncertainty on portfolio allocation, and further see if there are significant gains

to an investor in terms of wealth from assuming returns are predictable and given by

the MVART model. We do not take into account transactions costs and our work is

based on the asset allocation framework used in Barberis (2000), ASV and GL. Both

6Other key studies include Taylor (1992), Cuthbertson (1996), Cuthbertson et al (1996, 2003), Longstaff
(2000) and Sarno et al (2007).
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statistical and decision-based criteria are used to evaluate the out-of-sample forecasting

performance of the models. Two types of uncertainty are considered here, future and

parameter.7 Initially parameter uncertainty is ignored, however potentially insignificant

standard errors may imply that the true forecasting ability of the estimated coeffi cients

may be weaker than that suggested by the coeffi cient estimates, Barberis (2000). Hence,

by accommodating parameter uncertainty an improvement in the portfolio decision may

be observed.

We find that an investor allocates differently when she assumes predictability to one

who assumes that returns are not predictable. Further, the results under the statistical and

decision-based criteria do not entirely coincide, with the evidence in favour of predictability

being different under each criterion.

We recognise that it may be unlikely that an investor will have a portfolio consisting

only of T-bills, however, we use this illustrative strategy to ascertain the effect of pre-

dictability and parameter uncertainty on allocation decisions, and determine if there is

economic value to interest rate predictability.

The setup of this paper is as follows: Section 2 provides details of how the interest rates

are modelled, the investment decision and the framework used to evaluate the economic

value of predictability; Section 3 describes the dataset, the estimated models and provides

a statistical forecast evaluation of each model; in Sections 4 and 5 we analyse the effects of

predictability and parameter uncertainty on the optimal allocations and judge the models’

forecasting performance by comparing their realised end-of-period wealth, and Section 6

concludes.

2 Allocation, Parameter Uncertainty and Predictability

We examine how a utility-maximising investor allocates her portfolio between 1-month

and 3-, 6-, or 12-month T-bills and consider if there are gains in utility for an investor who

believes returns are predictable and employs a model informed by economic fundamentals

to forecast interest rates. Here we describe the models and the decision-based measure

used.

2.1 Modelling the Interest Rate

The EH in a linearised form, see Campbell and Shiller (1991), states that the return on a

n-period zero coupon bond should equal the return on a rolling investment in a sequence

of k m-period bonds, where the integer k = n/m and n > m, plus a time invariant term

premium/liquidity premium c(n,m):

r
(n)
t =

1

k

[
k∑
i=1

Et

(
r
(m)
t+(i−1)m

)]
+ c(n,m) (1)

7Where future uncertainty is that surrounding forecasts which is the result of unobserved future shocks.
Parameter uncertainty for a given model, is that "concerned with the robustness of forecasts to the choice
of parameter values" Garratt, Lee, Pesaran and Shin (2006, pp. 153).
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That is, the long rate is given by an average of the expected future short rates plus a

liquidity premium. Further, the EH can be formulated as:

s
(n,m)
t =

k−1∑
i=1

(
k − i
k

)
Et

(
∆r

(m)
t+im

)
+ c(n,m) (2)

which describes the spread by expected future changes in the short rate. That is, aside

from the constant premium, the spread is a reflection of the expected change in the

short term rates over the life of the long bond. If the yields share a common stochastic

trend, then we should find (q − 1) cointegrating vectors, as implied by stationary bivariate

spreads, in a set of q non-stationary yields. This is one method by which the validity of

the EH is tested.

Assuming that yields are difference stationary and there exists a cointegrating re-

lationship between n- and m-period yields, such that spreads are stationary, then there

exists a Wold representation which can be approximated by the following VAR(p) model:

xt = µ+ B1xt−1 + B2xt−2 + ...+ Bpxt−p + εt (3)

where in this multivariate case q = 4 with xt =
(
s
(12,1)
t , s

(6,1)
t , s

(3,1)
t ,∆r

(1)
t

)′
. This VAR(p)

is denoted the Multivariate VAR in Transformed Interest Rates (MVART) model, and

describes the change in the m-period rate and the spread between the n- and m-period

yields using past changes and spreads.

The EH can be further tested by imposing restrictions on the MVART model.8 Here

we do not impose such a stringent structure, but use the MVART model that embeds the

cointegration as implied by the EH to explain and capture the UK term structure and in

turn forecast the yields. As such, if the investor believes bill returns are predictable she

employs the MVART model to forecast future returns.

In contrast, if however the investor believes that returns are not predictable, the ran-

dom walk with drift (RW) model is used to forecast returns. In this case the VAR(p),

equation (3), has xt =
(

∆r
(12)
t ,∆r

(6)
t ,∆r

(3)
t ,∆r

(1)
t

)′
and no predictor variables hence

Bi = 0 and ∆r
(n)
t = µ+ εt.

By modelling T-bill returns in these two ways allows us to examine whether it is

beneficial to the investor, in terms of wealth gains, to assume that returns are predictable

as opposed to assuming they are not. Both the RW and the MVART models are estimated

when parameter uncertainty, which is the uncertainty about the true values of the model’s

parameters, is both ignored and accounted for.9

8Such that the spreads are determined in accordance to the EH. That is, the restrictions impose the
EH structure on the VAR, see Campbell and Shiller (1991).

9We differentiate between when the model is estimated subject to stochastic uncertainty only and when
it is estimated subject to stochastic and parameter uncertainty, by denoting them as RW and MVART,
and RWPU and MVARTPU respectively.
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2.2 Investment Strategies

The buy-and-hold investor faces the problem of how to optimally allocate her wealth over

a H month investment horizon between m- and n-month T-bills. Where r(n)t and r(m)t are

the annualised, continuously compounded nominal zero coupon yields on m- and n-month

bills respectively.

If H = n, then the investment horizon is equal to the asset with the longest maturity

considered, so the investor allocates the proportion ω of her initial wealth in a sequence of

m-month bills and (1− ω) in a single n-month bill. If H > n then the investor allocates

ω in a sequence of m-month bills and (1− ω) in a sequence of n-month bills. That is, she

invests ω in a sequence of s = H/m rolling investments in short m-period bills and (1− ω)

in a sequence of l = H/n long n-period bills. Assuming that initial wealth is WT = 1,

then the cumulative return at the end of the investment period WT+H is:

WT+H = ω

{
exp

(
1

s

s∑
i=1
r
(m)
T+(i−1)m

)}
+ (1− ω)

{
exp

(
1

l

l∑
i=1
r
(n)
T+(i−1)n

)}
(4)

If H = n, then the return from the investment in the long n-period bill is known

with certainty10, such that ET
(
r
(n)
T

)
= r

(n)
T and WT+H can be found by setting H = n

in equation (4). Into this decision making process risk aversion can be incorporated,

using the end-of-horizon wealth WT+H from the standard constant relative risk aversion

(CRRA) power utility function11, the utility is:

υ (W ) =
W 1−A

1−A (5)

where A is the coeffi cient of risk aversion. The investor faces the following optimisation

problem in T :

max
ω
ET (υ (WT+H (ω)) | ΩT ) (6)

where the investor computes the expectation above conditional upon the information set

available at T . That is, the investor maximises the expected utility with respect to the

proportion of the portfolio allocated to m-month bills.

Assessment of the above strategy requires expectations of υ (WT+H (ω)) to be formed

based on the information available at T . Due to the non-linear nature of WT+H the

entire joint probability distribution of the forecast values of r(m)T+(i−1)m and r
(n)
T+(i−1)n, where

i = 1 to s, or l respectively, is required over the H period investment horizon to evaluate

ET (υ (WT+H (ω)) | ΩT ).12 From which the expected utility can be calculated for each

possible proportion, and the optimal allocation is that which yields the maximum expected

utility.

10 In this sense the long n-period return is riskless, but the return from the rolling investments in m-
period bills are risky since future short rates are unknown. However, when H > n then the cumulative
returns from both the n- and m-period investments will contain unknown future returns.
11See Campbell and Viceira (2003, pp. 24 and 42) for details on the properties of the CRRA utility

function.
12 It can be shown that the expected value of a non-linear variable is a function of its mean, variance

and covariance, i.e. E (exp (t′X)) = exp
(
t′µ+ 1

2
t′Σt

)
.
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Fundamental to this optimisation problem is the distribution the investor employs to

evaluate this expectation, the distribution used depends upon whether the investor believes

bill returns are predictable. To ascertain the influence of predictability on allocation

decisions a comparison between the allocations of an investor who ignores predictability,

to one who takes it into account can be made, this is discussed in greater detail below.

The above investment strategy will be explored with n = 3, 6 and 12-month T-bill

rates and m = 1-month rate, where each of the three pairwise combinations of n and m

will be examined. So over the investment horizon H, the investor will consider how to

optimally allocate when faced with the following three portfolio choices:

(1) 1-month vs 3-month under H = 3, 6, 12, 18, 24 months

(2) 1-month vs 6-month under H = 6, 12, 18, 24 months

(3) 1-month vs 12-month under H = 12, 24 months

In the case where H = n there is uncertainty surrounding the future values of the

short rates only and for H > n there is uncertainty about the future long rates too. Each

of (1), (2) and (3) are considered for the levels of risk aversion A = 2, 5, 10, with A = 10

being the highest level. Under these three portfolio combinations we consider how (i)

the assumptions regarding predictability, (ii) whether the investor incorporates parameter

uncertainty or not, (iii) her level of risk aversion and (iv) the length of the investment

horizon, affect the way in which she allocates her portfolio.13

2.3 The Predictive Density Function

The approach taken to estimate the density function when parameter uncertainty is ig-

nored and when it is incorporated will now be discussed. The form the density function

P (XT+1,H | XT ) takes is determined by the types of uncertainty surrounding the fore-

casts, as well as the way in which the function is characterised and estimated. Studies

including Kandel and Stambaugh (1996), Barberis and ASV estimate the density function

using a fully Bayesian approach. We follow an alternative approach proposed by Garratt,

Lee, Pesaran and Shin (2003 and 2006, henceforth GLPS) and GL, which takes a classical

stance on the Bayesian approach to estimating the density function. This approach avoids

the need for priors since approximations of certain probabilities of interest are made. We

will now discuss the methods employed to estimating the predictive density, as proposed

by GLPS and GL.

To evaluate each investment decision over the investment horizon the investor needs

the probability density function of the forecast values of the m- and n-month rates. Fol-

lowing GL xt = (x1t, x2t, ..., xqt)
′ is a q × 1 vector of q variables (including at least the

variables of interest i.e. r(m)t and r(n)t ), and XT = (x1,x2, ...,xT )′ is a q × T vector con-
taining the observations 1 to T of the q variables. The conditional probability density

13We assume that there are 4 weeks in a month and 13 weeks in 3 months. This assumption is made
for ease of notation, in practice interest is accured daily and the length of time each investment is held for
are equivalent.
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function P (XT+1,H | XT ) is required for the forecasts of the variables, this predictive den-

sity function gives the probability density function of the forecast values of the q variables

over the horizon T + 1 to T +H, where XT+1,H = (xT+1,xT+2, ...,xT+H)′ conditional on

the observed values of the q variables from 1 to T.

The investment problem that the investor is faced with depends on whether she con-

siders the uncertainty surrounding the parameters. In the case where the investor ignores

parameter uncertainty, she calculates the expectation over the distribution of returns con-

ditional on the fixed parameter values θ̂, so the predictive density is P
(
XT+1,H | XT , θ̂

)
.

The investor’s problem to solve ignoring parameter uncertainty is:

max
ω

{
ETυ (WT+H (ω)) =

∫
υ (WT+H (ω)) .P

(
XT+1,H | XT , θ̂

)
dXT+1,H

}
(7)

However, if the investor incorporates parameter uncertainty then the predictive density

for the returns, which is conditional on the observed data only, is given by:

P (XT+1,H | XT ) =

∫
P
(
XT+1,H | XT , θ̂

)
P (θ | XT ) dθ (8)

The posterior probability of θ, denoted P (θ | XT ) gives the uncertainty surrounding the

parameters given the observed data. So the investor’s problem now is:

max
ω

{
ETυ (WT+H (ω)) =

∫
υ (WT+H (ω)) .P (XT+1,H | XT ) dXT+1,H

}
(9)

where the posterior density P (θ | XT ), equation (8), is proportionate to the product

P (θ) .P (XT | θ) , i.e. of the prior on θ and the likelihood function.
GLPS and GL suggest that the predictive density P (XT+1,H | XT ) can be estimated

using Monte Carlo integration techniques if meaningful priors exist. However, in the

circumstance where meaningful priors are diffi cult to obtain, they propose the use of

approximations to the key probabilities needed to estimate the predictive density. They

make the following assumption for the posterior probability of θ:

θ | XT

ω
˜N

(
θ̂T , T

−1V̂θ

)
(10)

where θ̂T is the maximum likelihood estimate of the true parameter value of θ and T−1V̂θ

is the asymptotic covariance matrix of the estimated parameters θ̂T .

The forecasts are influenced by various uncertainties including stochastic, parameter

and model uncertainty, here we consider both stochastic and parameter uncertainty. We

abstract from model uncertainty, but do model interest rates under two different assump-

tions, first assuming returns are not predictable as given by the RW model, and second

that they are predictable as given by the MVART model.

For these two models an estimate of the probability density function of the forecasts

can be obtained using stochastic simulation techniques, where these simulations provide

an estimate of the predictive densities P
(
XT+1,H | XT , θ̂

)
in the case where parameter

uncertainty is ignored and P (XT+1,H | XT ) when it is considered. It is then possible to
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evaluate ET (υ (WT+H) | ΩT ) for a range of portfolio weights ω. In practice υ (WT+H (ω))

is computed R̃ times for each value of ω, then the mean across these R̃ replications is

calculated, from which the investor chooses the weight ω that maximises the expected

utility ETυ (WT+H (ω)) . Here ω takes values 0, 0.01,...,0.99,1, where ω = 0 suggests that

the investor should allocate all to n-month bills and ω = 1 suggests that all should be

allocated to 1-month bills. Since the weight is between 0 and 1 we do not allow for short

selling. Details of the estimation procedure, how the computations are carried out and

the method by which the errors are calculated14 are provided in Appendix A.

Here we consider four possibilities for the distribution of future returns given by when

the investor assumes no predictability compared to predictability, both when ignoring and

then incorporating parameter uncertainty. From this, how the optimal allocations differ

under the assumptions of predictability and parameter uncertainty can be observed.

3 Modelling the UK Treasury Bill Rates

3.1 Interest Rate Data

We employ data for UK Treasury Bills of maturities 1, 3, 6, 12 months over the period

1997 week 10 to 2007 week 19. Specifically, Wednesday observations of the nominal

government spot rates, giving a total of 532 observations for each maturity, all yields15 are

continuously compounded and annualised.16 These n-month nominal government spot

interest rates refer to those applicable today on a n-month risk-free nominal loan and by

definition this (the nominal government spot rate) is the yield to maturity of a nominal

zero coupon bond.17

From Figure 1 the 1-, 3-, 6- and 12-month T-bill yields in general appear to decline

until 2003, after which an upward trend is apparent, with average yields of 4.98%, 4.97%,

4.96% and 4.99% for each rate respectively. Further, we find the yields are difference

stationary, and the (n,m) rate spreads between the (3, 1) , (6, 1) and the (12, 1) rates are

stationary. Stationary spreads provide support for the EH, we find further support in the

form of yields sharing a common stochastic trend with cointegrating vectors being (1, -1)

as implied by the EH.18

The two models are each estimated over the period 1997 week 10 to 2004 week 18

(374 observations) and then recursively at weekly intervals from 1997 week 10 to 2005

14The errors can be drawn using either parametric or non-parametric methods, see GLPS (2006, pp.
166-168). Here parametric methods are utilised, where the errors are assumed to be i.i.d.N (0,Σ) serially
uncorrelated white noise errors.
15We assume a buy-and-hold investor, so the investor requires the holding period returns for the bills in

order to assess the investment strategies. Since the investor receives zero coupon payments, the yields used
here reflect the total return from holding this asset, which are equivalent to the holding period returns.
So what we refer to as returns/yields denoted r(n)t , are the holding period returns.
16We use offi cial Bank of England estimated yield curve data because T-bill data is unavailable during

some periods of our sample. However, little difference is observed when plotting the constructed data
against the available T-bill data.
17See Bank of England data notes, refer to the Data Appendix for further details.
18We only report the outcomes of the unit root and cointegration test results here, however full results

are available on request.
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week 18 (427 observations), giving 54 recursions in total. For each recursion we generate

h-step ahead out-of-sample forecasts19 for h = 1, 2, ...,H, ... where the investment horizons

H = 3, 6, 12, 18 and 24 months. So for the first recursion we forecast over the period

2004 week 19 to 2006 week 18 and for the last recursion 2005 week 19 to 2007 week

19. For each recursion the investor will use her generated forecasts to determine how

to allocate her portfolio optimally. For each of the three portfolio choices, i.e. 1-month

vs n-month n = 3, 6, 12, under each A and H, we will have 54 allocation decisions with

which to compare the allocations and utility gains under each model, both without and

with parameter uncertainty.

3.2 Model Estimation

Here we describe how we estimate the two models and present the estimated regression

results for the first recursion over 1997 week 10 to 2004 week 18. Estimates of the RW

model are given in Table 1. The optimal lag for the MVART model is chosen by estimating

a set of VAR(p) models for p = 0, 1, ...12 over 1997 week 10 to 2004 week 18, the optimal

lag length is that which minimises the Schwarz Information lag selection criterion and

based on this a MVART model of order 9 is estimated, Tables 2 and 3.20 Comparing

the two models, a gain in explanatory power for the 1-month return is observed when

assuming returns are predictable and all coeffi cients are jointly significant at the 1% level

under the MVART model. The diagnostics show evidence of serial correlation in the

RW model, in contrast to the MVART model. Further, the nulls that the residuals are

homoskedastic and normal are rejected under both models, which is not surprising given

that we are using financial data. These results indicate gains in terms of explanatory

power and having a model free of serial correlation when predictability is assumed.

3.3 Statistical Forecast Evaluation

A statistical evaluation of the out-of-sample forecast performance of the two models can

be made using the root mean squared error (RMSE). The RMSEs of the 1-, 3-, 6- and

12-month return forecasts, for forecast horizons H = 1, 3, 6, 12, 18 and 24 months for each

model, both ignoring and incorporating parameter uncertainty are given in Table 4, and

Table 5 reports the ratio of the RMSEs for each model to the benchmark model. The

RW model when parameter uncertainty is ignored is taken as the benchmark, and a value

of the ratio less than one indicates that the RMSE of the model is lower than that of the

benchmark.

The RMSEs of the bill return forecasts indicate that only at H = 1 for the 1-month

return does the MVART model beat the benchmark. The RW and RWPU models, that

make the strong ‘no change’assumption, outperform the models that assume predictability

at each horizon for the 3-, 6- and 12-month returns. The RMSEs of the RW models
19We denote the investment horizon H in months because the T-bills are denoted as n-months to ma-

turity. However, the data has a weekly frequency, so when we refer to the ‘h-step’ahead forecasts each
‘step’is a week.
20Estimates of each model for the first recursion only are provided to give an overall impression of the

in-sample predictability. At the forecasting stage the models are estimated recursively.
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without and with parameter uncertainty are virtually the same, which is not surprising

since we only estimate µ; whereas small differences are observed between MVART and

MVARTPU. In general, the differences observed in the RMSEs amongst the models are

small. These results broadly correspond to those found in the interest rate and exchange

rate forecasting literature, which reports that under statistical criteria sophisticated theory

informed models are outperformed by a simple random walk.

From the ratios it is apparent that not only do the RW models outperform the MVART

models21, but the ratio of the MVART models to the benchmark increases with H, sug-

gesting their forecasting ability deteriorates relative to the RW model with the investment

horizon. Generally, the RMSEs increase up until H = 6 before decreasing, implying that

they are non-monotonic. That is, they do not increase with H but instead oscillate in

relative value, suggesting that both models are better at forecasting over longer horizons.

This statistical evaluation does not provide an indication of how these models perform in

an investment decision making context.

4 Predictability & Parameter Uncertainty Effects

We now examine the implications for the optimal allocation when the investor assumes

returns are not predictable compared to when predictability is assumed, in both cases

parameter uncertainty is ignored and accounted for. In the case where parameters are

assumed fixed the maximisation problem is given by equation (7) and under parameter

uncertainty by equation (9).

The models are estimated first over 1997 week 10 to 2004 week 18, the optimal weights

are then calculated from the forecasts generated from each estimated model. This is then

repeated as we move forward by one week, re-calculating the expected utility to find the

optimal weight for this new augmented sample. This is repeated for each recursion, such

that we have results for 54 recursions over the total evaluation period 2004 week 19 to

2007 week 19. Figure 3 and Table 6 are based on the optimal allocation results averaged

over the 54 recursions for a particular A, H, model and portfolio combination.

Figure 2 shows the expected utilities for each recursion from a rolling investment in

the 1-month bill given by E(U1) and n-month given by E(Un) for n = 3, 6, 12, A = 2 and

H = 24. We only present the plots for A = 2 and H = 24 for illustrative purposes, the

results under A = 5, 10 and H = 6, 12, 18 are not significantly different. It can be seen

that the computed expected utilities, although of similar magnitude, are different under

each model. Further, there are differences in the way the expected utilities change over

the recursions under the RW and MVART models, these differences will be reflected in

how the investor ultimately allocates.

Figures 3 provides an illustration of the link between the expected utilities computed

by the investor and the optimal allocation. It depicts the optimal allocation to the 1-

month, 100ω%, given the difference in E(U) between the ‘all in the 3-month’ and ‘all

21The ‘RW models’ and the ‘MVART models’ refer to those estimated without and with parameter
uncertainty. When analysing the results later we compare RW with MVART first ignoring parameter
uncertainty and then when it is incorporated.
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in the 1-month’investments, for each investment horizon, for A = 2 under the MVART

model ignoring parameter uncertainty. It can be seen that when the difference is positive,

where we expect to gain a higher utility from investing ‘all in the 3-month’than ‘all in

the 1-month’, the investor allocates her entire initial wealth in 3-month T-Bills, and vice

versa when the difference is negative.22

The impact of the various effects upon the allocations is summarised in Table 6. Here

under each portfolio combination for a given A,H and model the table gives as a percentage

the number of times out of the 54 recursions the investor allocates everything to the 1-

month bill, i.e. ω = 1. The results are presented this way, firstly, because nearly all

the allocation results suggest an optimal weight of ω = 0 or 1. This implying that the

investor, given the aim is to maximise expected utility, invests everything either in 1-

month or n-month bills depending on which yields the higher expected utility, and not a

mix of the two bills considered. Secondly, using these percentages we can see how the

allocations differ under varying degrees of risk aversion, investment horizons, assumptions

of predictability and the inclusion of parameter uncertainty.

The allocations vary by 0 to 8% amongst the three levels of risk aversion, A, consid-

ered.23 These small differences in allocation are arguably not surprising given that the

assets considered here belong to the same asset class, only differ in their term to maturity

and are positively correlated. So even though the investor may be highly risk averse,

the opportunity for the investor to diversify out the risk here is small because the risk is

non-diversifiable.

Now comparing the allocations for different investment horizons for a particular 1-

month vs n-month portfolio combination and model, the allocation to the 1-month gen-

erally increases with the investment horizon, where the increases are larger under pre-

dictability. This suggests that if the investor assumes predictability, then the allocations

are more sensitive to the investment horizon.

If the returns are modelled as being non-stationary, the variance of the returns continue

to grow linearly with H. However, if the yields are modelled as stationary the variance

grows less than linearly and in the long run converges to some long-run value.24 How

the variance evolves will be translated through to the variance of the cumulative returns,

which will determine how risky the asset appears in the long run compared to the short

run, and thus how the investor’s allocation will differ with the investment horizon. Here

the yields are found to be and thus modelled as non-stationary under both the RW and

MVART models. Hence both the RW and MVART models’variances will evolve in the

same way, i.e. faster than linearly with H, suggesting that the bills appear riskier in the
longer run than the shorter horizons for both models. Since it is not possible to rank

22We only present the plots for A = 2 because a significant difference in allocations between the different
A is not observed. Further, we only show the plots under the MVART model for the 1-month vs 3-month
strategy to provide a general impression of the link between the expected utilities the investor calculates
and how she eventually allocates between the two bills.
23The results were not significantly different when this exercise was carried out with extreme levels of

risk aversion i.e. A = 20, 50, 100.
24An appendix discussing the mean and variance of returns when the returns are modelled as non-

stationary, in comparison to when they are treated as stationary is available on request.
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the variances under each model a priori, we later discuss how the actual variances of the

forecasts evolve with H here under each model using our computed RMSEs.

4.1 Effect of Predictability

We now examine the effect of predictability ignoring parameter uncertainty on the optimal

allocation. When comparing the RW with the MVART model the investor moves from

assuming no predictability to predictability of returns. Under predictability if the investor

is better able to capture and explain the yields, i.e. in-sample R
2
is higher, then assuming

that the relationship remains stable over the forecast horizon, we would expect the MVART

model to produce more accurate forecasts. Thus the variance of the forecasts under the

MVART would be lower than that under the RW, and hence the asset would look less

risky under the MVART.

Moving from the RW model to the MVART model there is a gain (in-sample) in

explanatory power with the R
2
for ∆r

(1)
t increasing from 0% to 27%. Although only ∆r

(1)
t

is directly comparable under both models, it is reasonable to expect that all the n-month

bills will gain when moving from the RW to the MVART model in terms of explanatory

power25, such that it applies to all the returns that as they become more predictable they

become more attractive to the investor.

However, this gain in in-sample predictability is not translated into an out-of-sample

gain, as the RMSEs of the MVART model are higher than those of the RW. However, GL

note "...as shown in Clements and Hendry (2005), using RMSE as a criterion penalises

models for including variables with low associated t-values even if the model is misspecified

by their exclusion", so the poor performance of the MVART model according to the RMSE

criterion may be largely due to the fact that it is heavily parameterised in comparison to

the RW model.

The difference in allocations between the RW and MVART models varies from 8 to

58%. Under 1-month vs 3-month, for all H, the MVART models allocate more to the

1-month. However, under the 1-month vs 6-month and the 1-month vs 12-month for each

H, it is the RW models that allocate more to the 1-month. For each portfolio combination

(1-month vs n-month, for n = 3, 6 and 12-month bills) both of the assets will go from being

‘not predictable’as determined by the random walk, to being ‘predictable’as described

by the MVART, so how the allocation differs under the RW to that under the MVART

will depend on which of the two bills gains more from the assumption of predictability.

Generally, large differences are observed between the allocations of the RW models

and MVART models, suggesting that the investor who assumes that returns are not pre-

dictable will allocate differently to one who assumes that they are predictable. Thus the

assumptions made regarding predictability are important in determining how the investor

allocates.
25Regression results showing that past changes and spreads have explanatory power for ∆r

(n)
t for n =

1, 3, 6 and 12 months are not included here, but are available upon request.
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4.2 Effect of Parameter Uncertainty

Looking now to the effect of parameter uncertainty, incorporating parameter uncertainty

increases the variance of the forecast returns at all H, so the asset looks riskier relative to

when it was modelled ignoring parameter uncertainty. If all the assets are affected by this

additional form of uncertainty, how the allocation changes when parameter uncertainty

is incorporated to when it is ignored, under a given model, will be determined by which

asset’s variance has increased the most.

Comparing the allocations without and with parameter uncertainty for both the RW

and the MVART models in turn allows the impact of parameter uncertainty to be isolated.

The impact on allocation varies by 0 to 21% under the RW model. In the 1-month vs

3-month portfolio combination, at all H the allocation changes by 0 to 2%; 1-month vs 6-

month by 0 to 6%; 1-month vs 12-month H = 12 by 0 to 2% and up to 21% for H = 24. In

most cases the allocation to the 1-month increases under parameter uncertainty, suggest-

ing that the 1-month looks comparatively less riskier than the n-month when parameter

uncertainty is incorporated.

Under the MVART model parameter uncertainty has more of an impact, where the

change in the allocation ranges from 0 to 17%. For each of the portfolio combinations, for

all H, in the 1-month vs 3-month the allocation changes by 0 to 6%; 1-month vs 6-month

by 7 to 17% and no change is observed in the 1-month vs 12-month. Mostly the allocation

to the 1-month decreases under parameter uncertainty, implying that under the MVART

model with parameter uncertainty the 1-month looks riskier.

To help explain the optimal allocations observed we can consider how the variances

about the distribution of future predicted returns evolves over the forecast horizon.26 Here

it is reasonable to suppose that the RMSEs and the variances are closely related27, allowing

us to use the RMSEs as an indication of how the variances of the forecasts evolve. Recall

Tables 4 and 5, the non-monotonic RMSEs imply that the variances of the forecasts are
also non-monotonic28, they increase up until H = 6, 12 months and then decline.

Since the variance about the forecasts contracts and expands with H, the asset will

appear more risky at some horizons than at others. Further, the variances of the different

returns oscillate at different rates, otherwise the RMSE for each return would be equal.

This indicates that some n-month returns have a greater variance about their distribution

of forecasts than others, so at some horizons the 1-month bill will appear more risky than

the n-month and at others less. Under the RW models a clear ranking emerges with the

1-month having the largest variance and the 12-month the smallest, for all H. Under the

26Given that the bill returns are non-stationary in levels, then the variances will grow faster than linearly
with H under both the RW and MVART models.
27The RMSE measures the dispersion around the actual value of a variable, whereas the variance mea-

sures the dispersion about the mean of the distribution. If the distribution is unbiased then the mean of
the distribution equals the actual value, in which case the RMSE equals the variance of the forecast.
28Non-monotonic variances may not be so surprising as Hall and Hendry (1988, pp. 256-7) highlight

"Hendry (1984) has demonstrated that the standard error need not increase monotonically, as there is a
term in the formulae for the model standard error which reaches a maximum and which then may decline.",
further Hall and Hendry suggest that if this non-monotonicity (in the model standard error) is stronger
than the rest of the formulae, then the total standard error will behave in this non-monotonic way.
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MVART models the variances are not only bigger for each bill and H, but seem to oscillate

more, with the 1-month looking less risky than the n-month over the shorter horizons and

more risky over the longer horizons.

This non-monotonicity combined with the fact that the variances of the returns expand

and contract at different rates could provide an explanation for the optimal allocations

observed here. In that, when computing expectations of υ (WT+H (ω)), due to the non-

linear nature of WT+H the investor requires the variances and the covariances of the

forecast returns at each step ahead as well as their means. So how the variances of the

forecasts differ for each n-month bill over H, together with the assumptions regarding

predictability and parameter uncertainty, will influence expected utility because of the

way it is calculated and hence the ultimate optimal allocation.

5 Economic Value of Predictability

It is clear from the results that the allocations are sensitive to the assumptions made re-

garding predictability, whether parameter uncertainty is incorporated and the investment

horizon. In this investigation we also seek to ascertain if there is economic value to inter-

est rate predictability. The RMSE provides a statistical measure of forecast accuracy, we

now will assess forecast performance by considering the economic value of the forecasts

to the investor. An economic evaluation of the forecast performance of each model is

reported in Table 7 under each portfolio combination for A = 2 and each H. Results are

reported for A = 2 only because those for A = 5 and 10 are not considerably different.

We compute the end-of-period wealth29 that the risk averse investor would have achieved

over 2004 week 19 to 2007 week 19, had she allocated her portfolio as suggested by the

optimal weights. Where the optimal weight ω is that calculated by solving the utility

maximisation problem30, these realised wealths are averaged over 54 recursions and then

ranked in descending order so the performance of each model can be compared.

Apart from the RW and MVART models described above, under which parameter un-

certainty is both ignored and incorporated to derive the optimal allocations, we introduce

two passive ‘lazy’strategies. Here the investor makes no attempt to model or predict the

returns, but instead either invests (1) all in 1-month bills (A1) or (2) all in n-month bills

(An) for n = 3, 6 or 12.

The top position is mostly occupied by the lazy ‘all in 1-month’strategy, with the ‘all

in n-month’strategy coming last. This is not surprising given that during a large part

of the forecast horizon 2004 week 19 to 2007 week 19, over which this evaluation of the

models is made, the 1-month return was higher than the others, Figure 1. Looking to

positions 2 to 5, under the 1-month vs 3-month the RW models perform well at H = 3, 6

and the MVART models at H = 12, 18, 24. Under 1-month vs 6-month and 1-month vs

12-month the success of the RW models is apparent at all A and H.

29We follow ASV and GL in our measure of economic value being based on wealth.
30The forecasts produced by each model are used to determine the optimal weight. These weights are

then combined with actual/realised returns to give the realised end-of-horizon wealth.
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We have considered two different forecast evaluation criteria, the RMSE which provides

a statistical measure and the realised wealths which is an economic value measure of

forecast accuracy. When comparing the results under the two criteria, under the 1-month

vs 3-month the RW models outperform the MVART models at all H when considering the

RMSEs, whereas the MVART models achieve a higher realised wealth at H = 12, 18, 24

under the economic value measure. So the conclusions drawn under each criterion do

not entirely correspond. Under the 1-month vs 6-month and 1-month vs 12-month both

the statistical and the economic value criteria do correspond, to find that the RW models

perform best at all H.

Further, from the RMSE ratios in Table 5, the performance of the MVART models

relative to the benchmark deteriorates asH increases. In which case, we would also expect

the difference between the realised wealths of the two models to increase as H increases.

But the differences in the realised wealths between the RW and MVART models are small

and the ratios of the realised wealths to the benchmark, Table 8, are quite constant over
H.

So the RMSEs suggest that the forecasting errors of the MVART models are larger

than those of the RW models. But when considering realised wealths a huge difference is

not observed, with this economic value measure not exhibiting such an obvious difference

between assumptions of no predictability and predictability.

We ignore transactions costs in this exercise, but appreciate that the transactions costs

of a rolling investment in m-period bills will be higher than that of an investment in a

n-period long bond. From the realised wealths in Table 7, the differences in the realised

wealths between the two strategies are very small, with any gain from adopting a rolling

strategy likely to be eradicated with the inclusion of transactions costs.

6 Conclusion

Previous studies find that by using an alternative assessment criterion that considers the

economic value of the forecasts, in comparison to conventional statistical methods can

yield support for theory informed models. This highlights the importance of judging

forecasts in the decision making context for which they are intended.

In this investigation we examine how the optimal allocations of a utility maximising

investor are affected by the assumptions she makes regarding the predictability of returns

and parameter uncertainty. If the investor believes that returns are not predictable she

uses a random walk with drift model in her decision making. Alternatively, if she believes

they are predictable she uses the fundamentals informed MVART model, that embeds the

cointegration relations implied by the EH. Further, we evaluate the economic value of the

out-of-sample forecasts of bill returns generated under these two models.

The effect of assuming predictability on the optimal allocation is considerable, where

the optimal weights under predictability are in some cases greatly different to those under

no predictability. The effect of parameter uncertainty is small over the investment horizon

considered here.
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Under the statistical evaluation criterion the RW models outperform the MVART

models at almost all horizons when forecasting bond returns, even though evidence of

misspecification at the estimation stage is found under the RW model. When an economic

value approach is used, we find some evidence to suggest that an investor seeking to

optimally allocate her wealth between 1-month and n-month UK T-bills is better off, in

terms of higher end-of-horizon wealth, by assuming predictability than an investor who

assumes no predictability.

From Clements and Hendry (2005) as quoted in GL, the RMSE criterion penalises

heavily parameterised models. Here, this could be exaggerating the superior performance

of the RW model relative to the MVART under this criterion. Although the realised

wealths imply that in some cases there are no gains from assuming predictability, the

realised wealths of the two models are of the same magnitude and their ratios are very

close to one. What can be deduced from these results is that the performance of the

MVART model under the economic value criterion is not as poor as the RMSEs would

suggest. This evidence of disparity between the results obtained under the two criteria

suggests that the results are sensitive to the criterion used.

In conclusion, our results highlight the importance of evaluating the forecasts using

an appropriate criterion. Here the investor is concerned with optimally allocating her

portfolio, so it is necessary to incorporate the investor’s feelings about risk and to consider

the distribution about the predicted returns in the decision making and forecast evalu-

ation process. In which case, the RMSE criterion seems somewhat inadequate for this

purpose compared to the decision-based measure, which considers the objectives of the

forecast user. In the context of investment decision making, we find some evidence of eco-

nomic value to interest rate predictability, such that the investor may gain from assuming

predictability.
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Data Appendix
Here we provide details of the data used.

• Source: Bank of England (BoE)

http://www.bankofengland.co.uk/statistics/yieldcurve/archive.htm

• Definition: Nominal government n-month spot interest rate obtained from ‘UK Nom-
inal Spot Curve’ at the short end. The curve is estimated using gilt prices and

General Collateral (GC) repos rates. We use Wednesday observations from the

reported daily data on the annualised and continuously compounded 1-, 3-, 6- and

12-month rates.

• Notes on the BoE UK yield curves provides further details:

http://www.bankofengland.co.uk/statistics/yieldcurve/

notes%20on%20the%20bofe%20uk%20yield%20curvesV2.pdf

Appendix A: Computing Density Forecasts based on the VARmodel
Here we describe how an estimate of the probability density function of the forecasts

can be obtained through stochastic simulation techniques. We follow the discussion

provided in GLPS and GL. The estimation procedure is discussed firstly for given values

of the parameters and then by taking parameter uncertainty into account.

From equation (3), the maximum likelihood estimates of the model parameters are

denoted θ̂ =
(
µ̂, B̂i, Σ̂

)
, for i = 1 to p. In the absence of parameter uncertainty the

investor assumes there is no uncertainty about the model parameters and they are fixed

at the estimated values. The model is iterated forward to produce the point estimates

of the h-step ahead forecasts, conditional on the observed data XT and the estimated

parameter values θ̂:

x̂T+h = µ̂+
p∑
i=1

B̂ix̂T+h−i (11)

for h = 1, 2, ...,H, ... Using the initial values of the variables xT,xT−1,...,xT−p+1, these

forecasts are produced recursively.

First considering stochastic uncertainty only, the forecast values of the variables xT+h

can be computed using stochastic simulations, providing an estimate of P
(
XT+1,H | XT , θ̂

)
from:

x
(r̃)
T+h = µ̂+

p∑
i=1

B̂ix̂T+h−i + γ
(r̃)
T+h (12)

where xT+h is the h-step ahead forecast. Given that H is the end of the investment

period, the investor is concerned with forecasts from h = 1 to H. Further, let R̃ denote

the total number of replications of the above simulation, r̃ = 1 to R̃ and gives the r̃th

replication. Furthermore, for current and past values of x the actual values are used such

that x
(r̃)
T+h−i = xT+h−i for each replication.

To generate forecasts in the presence of parameter uncertainty the monte carlo proce-

dure is used. First, the (in-sample) past values of xt are simulated H̃ times, t = 1, 2, ..., T,
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denoted x
(h̃)
t , h̃ = 1, 2, ..., H̃.31, as follows:

x
(h̃)
t = µ̂+

p∑
i=1

B̂ix̂
(h̃)
t−i + γ

(h̃)
t (13)

where the actual realised values of xt,xt−1, ...,xt−p are used for initial values, together

with the estimated model parameters θ̂ obtained using the actual observed data. With

the H̃ simulated ‘histories’for xt i.e. x
(h̃)
1 ,x

(h̃)
2 , ...,x

(h̃)
T , now estimate the VAR(p) model

given by equation (3) H̃ times, yielding H̃ sets of ML parameter estimates µ̂(h̃), B̂
(h̃)
i , γ

(h̃)
t

and Σ(h̃). For each monte carlo replication compute h-step ahead point forecasts of xT ,

where R̃ replications of these forecasts are generated by:

x
(h̃,r̃)
T+h = µ̂(h̃) +

p∑
i=1

B̂
(h̃)
i x̂

(h̃,r̃)
T+h−i + γ

(h̃,r̃)
T+h (14)

for h = 1, 2, ...,H; r̃ = 1, 2, ..., R̃ and h̃ = 1, 2, ..., H̃, noting that h refers to the horizon and

h̃ to the number of histories generated and S = (H̃ + 1).R̃ = total number of simulations.

The γ(r̃)T+h, γ
(h̃)
t and γ

(h̃,r̃)
T+h values can be drawn using either parametric or non-parametric

methods (see GLPS (2006, pp. 166-168 and Cuthbertson and Nitzsche (2004, pp. 648) for

further details), here parametric methods are utilised where the errors are assumed to be

i.i.dN (0,Σ) serially uncorrelated white noise errors.

Given that the simulations provide an estimate of the predictive densities P
(
XT+1,H | XT , θ̂

)
when ignoring parameter uncertainty and P (XT+1,H | XT ) when it is considered, it is pos-

sible to evaluate ET (υ (WT+H) | ΩT ) for a range of portfolio weights ω. υ (WT+H (ω))

is computed R̃ times for each ω, then the mean across these R̃ replications is calculated,

from which the ω that maximises the expected utility ETυ (WT+H (ω)) is chosen.

The predictive densities here are computed using the methods described in GL and

GLPS, all of the steps below are conducted for both the RW and MVART models.

Considering stochastic uncertainty only: P
(
XT+1,H | XT , θ̂

)
Using the estimated model parameters θ̂, forecasts of the returns are generated r(r̃)T+h

for h = 1, ...,H and r̃ = 1, ..., R̃. Here R̃ = 50, 000. From these forecasts values of

W
(r̃,ω)
T+H can be calculated for each replication, where ω = 0, ..., 1 increasing in steps of

0.01. So for each value of H we have R̃ × 101 values of W (r̃,ω)
T+H , here H = 3, 6,12,18 and

24 months. Further, these wealths are used to calculate utility as given by the CRRA

definition, υ(r̃,ω,A)T+H where A = 2, 5 and 10. For the given values of ω,A and H the expected

utility is given by averaging across the replications as follows:

ETυ (WT+H) =
1

R̃

R̃∑
r̃=1

υ
(r̃,ω,A)
T+H

Hence for a given investment horizon H and level of risk A, the investor selects that

31Note that ‘̃r’refers to the number of ‘futures’generated in the simulation, ‘r’refers to the asset return,
‘̃h’refers to the ‘histories’generated and ‘h’refers to the step ahead forecasts.
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portfolio weight which maximises expected utility.

Considering stochastic and parameter uncertainty: P (XT+1,H | XT )

Using the estimated model parameters θ̂, in-sample values of xT are simulated H̃

times, where t = 1, ..., T and h̃ = 1, ..., H̃, here R̃ = 1000 and H̃ = 2000. Using each

of these H̃ ‘histories’of xT estimate the model, this yields H̃ sets of parameter estimates

θ̂(h̃). For each history compute R̃ replications of the h-step ahead point forecasts of xT ,

where r̃ = 1, ..., R̃. Repeat the above steps from the stochastic uncertainty only method

above for each history and its corresponding set of R̃ simulated futures. Such that H̃

sets of ETυ (WT+H) are calculated for given values of ω,A and H, the investor selects the

portfolio weight that maximises ETυ (WT+H) for a given H and A, for each history H̃.
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Figure 1: Nominal Spot Yields 1997 to 2007
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Figure 2: Expected Utility under RW and MVART Models, for H=24 and A=2
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Figure 3: 1-month vs 3-month Allocations under the MVART Model, for A=2
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Figure 4: Root Mean Squared Errors of Return
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Table 1: Estimation of Random Walk (RW) Model

Equation ∆r1t ∆r3t ∆r6t ∆r12t
µ −0.000046

(0.000041)
−0.000043
(0.000033)

−0.000042
(0.000038)

−0.000044
(0.000049)

R2 0.000 0.000 0.000 0.000
σ̂ 0.0008 0.0006 0.0007 0.0009

eqnLL 2137.27 2219.11 2167.24 2067.53
χ2N [2] 358.23∗∗∗ 261.98∗∗∗ 76.42∗∗∗ 32.80∗∗∗

χ2SC [1] 0.44 20.29∗∗∗ 11.20∗∗∗ 0.78
χ2SC [2] 0.55 21.97∗∗∗ 13.05∗∗∗ 1.47
χ2SC [6] 20.73∗∗∗ 49.08∗∗∗ 33.34∗∗∗ 12.87∗∗

χ2SC [12] 29.45∗∗∗ 57.84∗∗∗ 40.17∗∗∗ 16.83

χ2SC [9] 38.15∗∗∗

χ2SC [12] 12.34

Notes: Standard errors in parenthesis (.). The R
2
, standard error of the regression (σ̂) , log likelihood

of the equation (LL) are presented together with the chi-squared statistics for Breusch-Pagan Serial

Correlation test (SC) and the Jarque-Bera Test for Normality (N). The random walk with drift model

assumes that ∆rnt = µ+ εt for n= 1,3,6 and 12, and each is estimated over 1997 week 10 to 2004 week

18 (373 observations). Null rejected at *** 1% level, ** 5% level, * 10% level of significance.
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Table 2: Estimation of MVART(p) Model

Equation s12,1t s6,1t s3,1t ∆r1t

s12,1t−1 1.054∗∗∗
(0.216)

0.289∗∗
(0.144)

0.159
(0.099)

0.172
(0.151)

s12,1t−2 0.214
(0.259)

−0.028
(0.174)

−0.054
(0.109)

−0.153
(0.184)

s12,1t−3 −0.489∗
(0.249)

−0.435∗∗
(0.176)

−0.285∗∗∗
(0.110)

0.089
(0.137)

s12,1t−4 0.337
(0.264)

0.232
(0.186)

0.115
(0.112)

0.056
(0.192)

s12,1t−5 −0.055
(0.280)

−0.009
(0.198)

0.047
(0.124)

0.294
(0.245)

s12,1t−6 0.209
(0.263)

0.075
(0.181)

−0.020
(0.118)

−0.325∗
(0.178)

s12,1t−7 −0.329
(0.263)

−0.329∗
(0.183)

−0.225∗
(0.119)

0.055
(0.179)

s12,1t−8 0.216
(0.283)

0.124
(0.199)

0.106
(0.130)

0.051
(0.172)

s12,1t−9 0.013
(0.208)

0.156
(0.143)

0.131∗
(0.094)

−0.068
(0.150)

s6,1t−1 −0.407
(0.514)

0.392
(0.337)

−0.120
(0.234)

−0.540
(0.357)

s6,1t−2 −0.186
(0.582)

0.257
(0.398)

0.247
(0.268)

0.250
(0.449)

s6,1t−3 1.102∗
(0.595)

0.942∗∗
(0.422)

0.543∗∗
(0.266)

−0.021
(0.362)

s6,1t−4 −0.771
(0.621)

−0.520
(0.441)

−0.245
(0.278)

−0.379
(0.464)

s6,1t−5 0.234
(0.664)

0.123
(0.465)

−0.068
(0.289)

−0.471
(0.538)

s6,1t−6 −0.159
(0.614)

−0.030
(0.426)

0.122
(0.276)

0.385
(0.434)

s6,1t−7 0.235
(0.61)

0.373
(0.411)

0.231
(0.256)

0.236
(0.402)

s6,1t−8 −0.242
(0.659)

−0.099
(0.454)

−0.068
(0.298)

−0.633
(0.443)

s6,1t−9 −0.068
(0.485)

−0.383
(0.338)

−0.337
(0.232)

0.369
(0.357)

s3,1t−1 0.081
(0.467)

−0.060
(0.283)

0.525∗∗∗
(0.184)

1.126∗∗∗
(0.338)

s3,1t−2 0.089
(0.538)

−0.125
(0.360)

−0.095
(0.242)

−0.391
(0.393)

s3,1t−3 −1.040∗
(0.570)

−0.883∗∗
(0.406)

−0.489∗
(0.255)

0.061
(0.358)

s3,1t−4 0.786
(0.606)

0.559
(0.419)

0.251
(0.266)

0.512
(0.424)

s3,1t−5 0.034
(0.607)

0.052
(0.443)

0.183
(0.288)

−0.145
(0.478)

s3,1t−6 −0.546
(0.546)

−0.468
(0.381)

−0.371
(0.256)

0.380
(0.413)

s3,1t−7 0.080
(0.514)

−0.089
(0.344)

−0.037
(0.206)

−0.4512
(0.347)
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Table 3: Estimation of MVART(p) Model (continued)

s3,1t−8 −0.074
(0.600)

−0.025
(0.388)

−0.024
(0.260)

0.909∗∗
(0.441)

s3,1t−9 0.191
(0.453)

0.402
(0.325)

0.358
(0.220)

−0.543∗
(0.319)

∆r1t−1 0.034
(0.114)

0.053
(0.083)

0.032
(0.054)

0.089
(0.085)

∆r1t−2 0.167∗
(0.094)

0.171∗∗
(0.069)

0.127∗∗∗
(0.047)

−0.175∗∗∗
(0.061)

∆r1t−3 −0.016
(0.096)

0.015
(0.065)

0.024
(0.038)

−0.023
(0.056)

∆r1t−4 0.065
(0.104)

0.080
(0.068)

0.041
(0.042)

0.066
(0.073)

∆r1t−5 0.255
(0.155)

0.263∗∗
(0.104)

0.184∗∗∗
(0.059)

−0.176∗∗
(0.078)

∆r1t−6 −0.018
(0.091)

−0.003
(0.070)

−0.005
(0.047)

0.088
(0.067)

∆r1t−7 0.045
(0.93)

0.028
(0.064)

−0.001
(0.040)

−0.066
(0.067)

∆r1t−8 −0.069
(0.092)

−0.034
(0.059)

−0.021
(0.035)

0.090
(0.071)

∆r1t−9 −0.111
(0.069)

−0.086∗
(0.046)

−0.044
(0.030)

0.040
(0.052)

inpt −0.0001
(0.00007)

−0.00009∗
(0.00005)

−0.00004
(0.00003)

0.000005
(0.00004)

R2 0.934 0.901 0.829 0.273

σ̂ 0.001 0.0007 0.0004 0.0007

F [36, 327] 144.42∗∗∗ 93.27∗∗∗ 50.02∗∗∗ 4.80∗∗∗

eqnLL 2028.0 2163.5 2337.9 2172.6

system LL 9659.1

χ2N [8] 35.03∗∗∗

χ2H [720] 910.12∗∗∗

χ2SC [16] 18.48

Notes: Standard errors in parenthesis. A MVART(9) is estimated over 1997 week 10 to 2004 week 18

(364 observations). The regressions are estimated with Newey-West heteroskedastic and autocorrelation

corrected errors. The R
2
, standard error of the regression (σ̂), F-statistic to test the joint significance of

the estimated coeffi cients and the log likelihood of the equation (LL) are presented together with the

model diagnostic tests which are all carried out on the VAR residuals. No roots of the characteristic

polynomial lie outside the unit circle so the VAR is stable. Chi-squared statistics presented for: (N) the

VAR Residual Normality Test; (H) the VAR Residual Heteroskedasticity Test, and (SC) the VAR

Residual Serial Correlation LM Test for the null of no serial correlation at lag 9. Null rejected at ***

1% level, ** 5% level, * 10% level of significance.
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Table 4: Root Mean Squared Errors of Returns

(a) 1-month returns
(
r1t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000439 0.000510 0.000608 0.000560 0.000318 0.000076
MVART 0.000438 0.000519 0.000671 0.000751 0.000454 0.000184
RWPU 0.000439 0.000509 0.000607 0.000558 0.000316 0.000074
MVARTPU 0.000440 0000525 0.000683 0.000755 0.000447 0.000175

(b) 3-month returns
(
r3t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000444 0.000505 0.000595 0.000513 0.000262 0.000065
MVART 0.000447 0.000535 0.000692 0.000718 0.000404 0.000185
RWPU 0.000444 0.000504 0.000594 0.000512 0.000262 0.000065
MVARTPU 0.000450 0.000543 0.000706 0.000720 0.000397 0.0001762

(c) 6-month returns
(
r6t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000437 0.00482 0.000556 0.000444 0.000206 0.000071
MVART 0.000449 0.000538 0.000687 0.000654 0.000350 0.000199
RWPU 0.000437 0.000481 0.000554 0.000441 0.000204 0.000069
MVARTPU 0.000453 0.000547 0.000699 0.000652 0.000342 0.000191

(d) 12-month returns
(
r12t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 0.000431 0.000451 0.000496 0.000360 0.000150 0.000119
MVART 0.000454 0.000528 0.000643 0.000536 0.000272 0.000236
RWPU 0.000432 0.000452 0.000496 0.000361 0.000151 0.000120
MVARTPU 0.000458 0.000538 0.000652 0.000530 0.000265 0.000229

Notes: The RMSEs are computed for each model for the horizons H= 1, 3, 6, 12, 18, 24 months, and for

each model as follows

√∑54
i=1(rT+H−r̂T+H)i

54 , where rT+H is the actual monthly return i.e.

r1t , r
3
t , r

6
t , r

12
t , r̂T+H is the forecast and the difference between the two (rT+H − r̂T+H) is computed

for each recursion i, there are 54 weekly recursions. The RW and MVART models are estimated subject

to stochastic uncertainty only, the RWPU and MVARTPU models consider parameter uncertainty too.
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Table 5: Ratio of RMSEs of Returns

(a) 1-month returns
(
r1t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 0.9957 1.0175 1.1026 1.3409 1.4268 2.4348
RWPU 0.9997 0.9991 0.9982 0.9966 0.9951 0.9831
MVARTPU 1.0002 1.0297 1.1239 1.3480 1.4051 2.3168

(b) 3-month returns
(
r3t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 1.0079 1.0605 1.1635 1.3995 1.5427 2.8367
RWPU 0.9998 0.9994 0.9989 0.9981 0.9981 0.9890
MVARTPU 1.0141 1.0765 1.1860 1.4021 1.5145 2.7034

(c) 6-month returns
(
r6t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 1.0287 1.1166 1.2365 1.4733 1.6996 2.7928
RWPU 0.9994 0.9983 0.9969 0.9940 0.9909 0.9700
MVARTPU 1.0372 1.1366 1.2588 1.4689 1.6629 2.6872

(d) 12-month returns
(
r12t
)

Model H = 1 H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 1.0518 1.1697 1.2972 1.4897 1.8120 1.9793
RWPU 1.0002 1.0002 1.0007 1.0025 1.0081 1.0048
MVARTPU 1.0620 1.1916 1.3144 1.4733 1.7645 1.9198

Notes: The above ratios are that of the RMSE for each model to the RMSE of the RW model, which is

taken as the benchmark.
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Table 6: Effects on Allocation

Model
Strategy RW RWPU MVART MVARTPU

1 vs 3, H=3
A = 2
A = 5
A = 10

35
33
33

35
35
31

39
39
38

33
33
33

1 vs 3, H=6
A = 2
A = 5
A = 10

35
35
33

35
35
35

56
56
56

54
54
52

1 vs 3, H=12
A = 2
A = 5
A = 10

41
41
35

43
41
37

93
93
93

93
93
91

1 vs 3, H=18
A = 2
A = 5
A = 10

44
43
41

44
4
39

96
96
94

93
93
93

1 vs 3, H=24
A = 2
A = 5
A = 10

44
44
43

44
44
44

100
100
100

100
100
100

1 vs 6, H=6
A = 2
A = 5
A = 10

46
46
46

46
46
46

19
19
19

9
9
7

1 vs 6, H=12
A = 2
A = 5
A = 10

48
48
46

52
52
52

26
26
24

13
11
11

1 vs 6, H=18
A = 2
A = 5
A = 10

48
48
48

54
54
52

39
35
31

26
26
24

1 vs 6, H=24
A = 2
A = 5
A = 10

52
52
48

56
56
54

44
43
41

31
30
24

1 vs 12, H=12
A = 2
A = 5
A = 10

48
48
48

50
48
48

0
0
0

0
0
0

1 vs 12, H=24
A = 2
A = 5
A = 10

52
52
52

37
37
31

0
0
0

0
0
0

Notes: Here under each portfolio combination, for a given A, H and model, the table gives as a percentage

the number of times out of the 54 recursions the investor allocates everything to the 1-month bill.
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Table 7: Realised Wealth under each 1-month vs n-month Strategy, for A=2

(a) 1-month vs 3-month

Position H = 3 H = 6 H = 12 H = 18 H = 24

1st A1
1.046746

A1
1.046877

A1
1.04654

A1
1.046072

A1
1.046091

2nd RW
1.046740

RWPU
1.046804

MVARTPU
1.046511

MVART
1.046062

MVARTPU
1.046091

3rd RWPU
1.046740

RW
1.046796

MVART
1.046511

MVARTPU
1.046044

MVART
1.046091

4th MVART
1.046511

MVART
1.046774

RWPU
1.046432

RWPU
1.045910

RW
1.046010

5th A3
1.046509

MVARTPU
1.046769

RW
1.046431

RW
1.045910

RWPU
1.046009

6th MVARTPU
1.046505

A3
1.046649

A3
1.046252

A3
1.045755

A3
1.045967

(b) 1-month vs 6-month

Position H = 6 H = 12 H = 18 H = 24

1st RW
1.047030

A1
1.046877

A1
1.046544

A1
1.046072

2nd RWPU
1.047027

RWPU
1.04638

RWPU
1.045804

RWPU
1.045836

3rd A1
1.046746

RW
1.046372

RW
1.045792

RW
1.045828

4th MVARTPU
1.046634

MVARTPU
1.046079

MVART
1.045625

MVART
1.045740

5th A6
1.046609

MVART
1.046078

MVARTPU
1.045542

MVARTPU
1.045666

6th MVART
1.046602

A6
1.046041

A6
1.045444

A6
1.045548

(c) 1-month vs 12-month

Position H = 12 H = 24

1st RWPU
1.047033

A1
1.046072

2nd RW
1.047027

RW
1.045806

3rd A12
1.046566

RWPU
1.045629

4th MVARTPU
1.046566

MVARTPU
1.044899

5th MVART
1.046566

MVART
1.044899

6th A1
1.046746

A12
1.044889

Notes: The realised wealths above are the end-of-investment horizon wealths that the investor would

have achieved over 2004 week 19 to 2007 week 19 had she allocated according to the optimal weights for

each model, A and H. These end-of-investment horizon wealths have been averaged over the 54

recursions. The realised wealth for each model are ranked in descending order, for a particular A and H.

The tables above show how the two models, RW and MVART, without and with parameter uncertainty

perform, together with the lazy strategies in terms of their achieved realised wealths. The actual realised

wealths are given below the model code. ‘A1’is the ‘all in 1-month’and ‘An’is the ‘all in n-month’lazy

strategy for n = 3, 6 and 12 months. The realised wealths are presented for A = 2 only because the

wealths under A = 5 and 10 are not significantly different.
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Table 8: Ratios of Realised Wealth

(a) 1-month vs 3-month

Model H = 3 H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000 1.0000
RWPU 1.0000 1.0000 1.0000 1.0000 1.0000
MVART 0.9998 1.0000 1.0001 1.0001 1.0001
MVARTPU 0.9998 1.0000 1.0001 1.0001 1.0001

(b) 1-month vs 6-month

Model H = 6 H = 12 H = 18 H = 24

RW 1.0000 1.0000 1.0000 1.0000
RWPU 1.0000 1.0000 1.0000 1.0000
MVART 0.9996 0.9997 0.9998 0.9999
MVARTPU 0.9996 0.9997 0.9998 0.9998

(c) 1-month vs 12-month

Model H = 12 H = 24

RW 1.0000 1.0000
RWPU 1.0000 0.9998
MVART 0.9996 0.9991
MVARTPU 0.9996 0.9991

Notes: Ratio of Realised Wealths under each model to that of the RW model, are presented for A = 2

only because the Ratios under A = 5 and 10 are not significantly different.
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