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A B S T R A C T

In Chapter 1, we give some properties of distributions and introduce the notions 

of neutrix and neutrix limit with examples, in order to study the problem of defining 

the convolution product and the product of distributions.

The problem of defining the distribution In® such that the ordinary deriva­

tive formula is satisfied for all A and s =  0,1 ,2 , . . .  is studied in Chapter 2 .

In Chapter 3, we define the Beta function using the neutrix limit and

prove that this neutrix limit exists for all A,p\

In Chapter 4 we let /  and g be distributions and let fn{x) — f{x)rn(x),  where 

r„(æ) is a certain function which converges to the identity function as n tends to 

infinity. We then define the neutrix convolution product /@ 5  as the neutrix limit of 

the sequence {/„ * g}, provided the limit h exists in the sense that N —lim„_+oo(/n * 

g,(f)) =  (h, for all ^ in  D. The neutrix convolution products lnæ_ ®æ(^,

In æ_ 0  In In x -  0  .rijl® and x l ’’ 0  xiji® are evaluated, from which other neutrix 

convolution products are deduced.

The neutrix convolution product of distributions in Chapter 4 is not commu­

tative. Therefore, in Chapter 5, we consider the commutative neutrix convolution 

product of distributions, 0  , and also evaluate the neutrix convolution product 

x^ 0 x!jr^.

The problem of defining the product of ultradistributions is considered in Chap­

ter 6, and the neutrix product {Ff)O (Fg)  in Z ',  where F  denotes the Fourier 

transform, is defined as the neutrix limit of {F{fTn).F{gTn)}- Later, we prove that 

the exchange formula holds.

We finally define the neutrix product F{f)oG{g)  of F { f)  and G{g), where F  and 

G are distributions and /  and g are locally summable functions. It is proved that if



/  is infinitely differentiable function with / '(x )  > 0 and if the neutrix product F o G  

exists and equals H, then the neutrix product F { f)  o G{f)  exists and equals / / ( / ) .  

We also give an alternative approach to the form F (f{x))  in V ,  where F  and /  are 

distributions.



CHAPTER I

D IS T R IB U T IO N S  A N D  T H E  N E U T R IX  C A LC U LU S

The problems of defining the convolution product and the product of distri­

butions are well-known. Various definitions of the product of distributions have 

been considered: one by regularization and passage to the limit (Hirata-Ogata [25], 

Mikusinski [33], Itano [27], Fisher [5],...) and another one (Hormander [26]) by 

means of the Fourier transform. It has been shown that these definitions of product 

of distributions are not equivalent; see Colombeau [4].

In the case of the convolution product of distributions, the primary definitions 

are given by Schwartz [34], Shiraishi [35] and more recently by Jones [29], Fisher 

[7] and Kaminski [30]. Despite many efforts from mathematicians, there are still 

problems in defining the convolution product and the product of distributions for 

some cases.

Our main purpose is to extend the convolution product and the product to larger 

classes of distributions. Therefore, in this chapter, we give some basic properties of 

distributions and introduce the concepts of neutrix and of neutrix limit.

D IS T R IB U T IO N S .

The support of a function (j> is the closure of the set on which ^(x) ^  0. An 

infinitely differentiable function with compact support is called a test function. The 

vector space of all test functions is denoted by V.

As an example of test function, consider

. M - ' -(=:-»)-% a < a ; < 6 ,
f 'v') —

' 0 , æ < a, X > h.

This function (j) is infinitely differentiable and its support contained in the closed 

interval [et, 6].



We note that the product of an infinitely differentiable function /  and a test 

function <f) is also a test function.

A sequence {(f>n} of test functions is said to converge to zero in V  if all these func­

tions vanish outside some bounded region independent of n and converge uniformly 

to zero together with the derivatives of any order.

Let an infinitely differentiable function ^ (x ,a ) be defined as follows:

Then {n~^^{x,a)}  converges to zero in V  , but {n~^<p{n~^x, a)} does not, since 

there exists no common bounded region outside which all these functions vanish.

A functional f  on V  satisfying the following conditions is a called a distribution:

(i) For any two real (or complex) numbers and «2 and any two functions (f)i 

and (j) 2  in V  we have

(/ ,  ai<Ai +  OTih) =  + a 2( / , 02)

(ii) If the sequence converges to zero in 2?, then the sequence {{f,4>n)} 

converges to zero.

For instance, let /  be absolutely integrable in every bounded region of R” (we 

call such a function locally summable). By means of such a function we can associate 

every in î> with

(/ ,  4>) =  ^  f(x)(l>ix) dx (1)

where the integral is actually over the support of (j). It is easily verified that condi­

tions (i) and (ii) are satisfied for the functional / .

Equation (1) represents a very special kind of continuous linear functional on V. 

Other kinds of functionals are easily shown to exist. The functional which associates 

with every 4>{x) its value at xo =  0 is obviously linear and continuous and cannot 

be written in the form of (1) with any locally summable function.



Functionals defined by equation (1) wiU be called regular and all others will be 

called singular.

The space of all continuous linear functionals on V  will be denoted by V'\ see 

Schwartz [34].

A distribution /  is said to vanish in a neighbourhood 1Â of xq if ( / , =  0 for all

functions 4>iiiV having their support in U. If /  is a locally summable function and 

if /  vanishes in a neighborhood U of xq as a distribution, then /  vanishes almost 

everywhere in this neighborhood as a function.

The Dirac-delta function 6(x — xq) defined by

(6(x -  xi),(^(x)} =  <ji>(xi)

for all (f) in V , is singular and vanishes in a neighborhood of every point x ^  .xq.

If /  is a distribution which fails to vanish in any neighborhood of xq, then xq 

is called an essential point of the distribution / .  The set of all essential points of a 

distribution /  is called its support.

The support of the regular distribution /  corresponding to the continuous func­

tion /  is the closure of the set on which /(x )  ^  0, i.e. the support of /  .

In order to define the derivative of the distribution, we first of all consider a 

continuous function /  of a single variable, having a continuous first derivative. Then

{ ! 'A )  =  J_ f'{x)<j>{x)dx

= [/(æ)<^(æ)] _ ^  -  y  f{x)(j)'{x)dx

—  (2)

for all 4> in V  . If /  is now an arbitrary distribution, then the functional g, defined 

by

<17,

will be called the derivative of /  and be denoted by f  or df/dx .  It can be easily 

shown that g is also a continuous linear functional on V.  Since differentiation of



a distribution yields again a distribution, the process may be continued. Thus all 

distributions have derivatives of all orders.

Let H  be the Heaviside function, defined by

1 , X >  0 ,
' 0, X <  0.

We will denote a distribution corresponding to the Heaviside function by H  aswell. 

Then

{H' {x  -  x\ ) , ( j )(x))  =  - { H { x  -  xi) ,(j) ' {x)) = -  f  (j)'{x)dx

— ~  ’̂i))

for all ^  in V. In particular, the n-th derivative of è is defined by

_  xi),(f>{x))  =  -  xi),<j)(x))  =

Let us find the derivative of the locally summable function (A > —1) defined

"=+ =  { 0 ,' x < o !

If A > 0 its derivative is the locally summable function Ax^~^, but, if —1 < A < 0, 

is not a locally summable function. However, we wiU still denote the derivative 

of x^ by A.x “̂  ̂ on any interval containing the origin, but it must be defined by

((«+y,<^> = [(f>{x) -  9̂ (0)] d x .

Thus, if —2 < A < —1, we have defined x^ by

{xl ,<f>) =  [  x ^  [<̂ (x) -  <̂ (0)] d x .
J 0

In general, we define x^ inductively by

{xl,<f)) = -(A  +  <?!)'),



for —r — 1 < A < — where r is an integer. It can be proved by induction that if 

—r  -  1 < A < —r, then

, re
(x+,</>) =  / 

Jq «=0  ■

dx

It can be proved that any distribution /  defined on the bounded interval (a,b) 

is the r-th derivative of a continuous function F  on the interval (a,b); see Halperin 

[24^

D E F IN IT IO N  1.1. The product of a distribution f  by an infinitely differentiable 

function g is defined by

for 4> in V.

This is well-defined since g f  is in V  for all It follows that if /  is the r-th

derivative of a ordinary summable function F  on the interval (a, b) it can be proved 

that

where

J,)  *!()' -  «)!'

see Halperin [24] or Fisher [5].

This suggests the following definition.

D E F IN IT IO N  1.2. Let f  be rth derivative of an ordinary summable function F  

in L'P{a,b) and ĝ ^̂  be an ordinary summable function in L'‘{a,b) with l /p -h l /q  =  1. 

Then the product fg  on the interval (a,b) is defined by

= t ( [ )  (-!)■'



D E F IN IT IO N  1.3. Let /  and g be functions. Then the convolution product f  *g 

is defined by

i f  * g)(æ) =  J  fi t)g{x -  t) dt

for all points x for which the integral exists.

It follows easily from the definition that if { f  *g){x) exists then (g * /)(x ) exists

and

( /  * g)(æ) =  (g * /)(æ ) (3)

and if ( /  * </)'(x) and ( /  * g'){x) (or ( / '  * g)(x)) exists, then

( /  * a)'(æ) = ( /  * g')(x) (or ( /  * g)(x)). (4)

If /  and g are functions in i ^ ( —oo,oo) and L ‘̂ {—oo,oo) respectively, where 

l / p +  1/q =  1, then the convolution product ( /*  </)(x) exists for aU values of x. The 

following definition for the convolution product of certain distributions /  and g in 

V',  was given by Gel’fand and Shilov [23].

D E F IN IT IO N  1.4. Let f  and g be distributions satisfying either of the following 

conditions:

(a) either f  or g has bounded support,

(b) the supports of f  and g are bounded on the same side.

Then the convolution f  * g is defined by

<(/ * g)(æ), <̂ (æ)) =  (g(ÿ), ( /(x ), ,^(x +  y)»

for arbitrary (f) in V.

Note that with this definition, if /  has bounded support, then (/(x),<^(x +  y)) 

is in V  and it is therefore meaningful to apply g{y) to it. If, on the other hand, g[y) 

has bounded support while f{x)  may not, {f{x),<f{x + y)) is infinitely differentiable. 

The above equation remains valid since g(y) has bounded support and can therefore 

be applied meaningfully to this function. If the supports of /  and g are bounded



on the same side, then the intersection of the supports of g(y) and {f{x),(f){x + y)) 

is bounded and so {g{y), ( /(x ) ,^ (x  +  y))) is again meaningful. It follows that if the 

convolution f  * g exists by this definition, then equations (3) and (4) always holds. 

A sequence {/„} of distributions is defined to converge to the distribution /  if

for every ^  in V.

One important property of the space V '  is its completeness with respect to 

convergence as defined above. In other words, if the sequence {/„} is such tha t for 

every (j>mV the number sequence { fn A )  has a limit, this limit is again a continuous 

linear functional on V  ; see Gel’fand and Shilov [23].

In the forthcoming chapters, we often use the property that every distribution 

is the limit of a sequence of distributions with support contained in bounded sets; 

see Gel’fand and Shilov [23] or Jones [29].

A sequence of functions, {/„}, is said to be regular li

(i) fn  is infinitely differentiable,

(ii) {fn,f>) converges, for each test function </>, to a limit, say

(iii) L{(f)) is continuous in 0, in the sense that

 ̂0

for any sequence {cfm} of test functions which converges to zero in X>; see Temple 

[36].

There are many ways to construct a regular sequence. In the following, we are 

going to give a specific example of regular sequence.

Let p be a fixed infinitely differentiable function having the following properties:

(i) p{x) =  0 for |x| > 1,

(ii) p{x) > 0 ,

(iii) p{x) =  p (-x ) .



(iv) f i l  p(x) dx = l  .

We could for example take p to be the function defined by

where k~^ = f f ^   ̂ dx.

We now define the function Sn by

ôn{x) — np{nx) for n = 1, 2, ----

It is obvious that is a sequence of infinitely differentiable functions converging 

to the Dirac-delta function ô.

Now let /  be an arbitrary distribution and define fn by

= ( /  * ^n)(æ) =  (/(æ -

Then {/„} is a sequence of infinitely differentiable functions converging to the dis­

tribution / .

N E U T R IX  C A L C U L U S.

The essential use of the neutrix limit is to extract an appropriate finite part from 

a divergent quantity as one has usually done to subtract the the divergent terms via 

rather complicated procedures in the renormalization theory. In the neutrix calculus 

each limit, if properly defined, always exists.

The following two definitions were given by Van der Corput [3].

D E F IN IT IO N  1.5. Let N '  be a non-empty set and let N  be a commutative additive 

group of functions mapping N ' into a commutative additive group N ”. I f  N  has the 

property that the only constant function in N  is the zero function, then N  is said to 

be a neutrix and the functions in N  are said to be negligible.

The property asserts tha t if y is in JV and v[e) = 7 for all e in N ' , then 7 =  0 .



E X A M P L E  1.1. Let N '  be the closed interval [0,1] and let N  be the set of aU 

functions defined on N '  of the form a sin € +  be^, where a and b are arbitrary real 

numbers.

Then A  is a neutrix, since if

a sin e +  be  ̂ =  c 

for all € in N ' , then a ~  b = c = 0.

E X A M P L E  1.2. Let N '  be the open domain {e : 0 < e < 1} and let N  be the set 

of all functions of the form

ae~ 2  +  6(loglog +  0 (e),

where 0(e) is any function which converges to zero as e tends to zero. Then A is a 

neutrix, since if

ne“ 2 -I- 5(loglog i)^  +  0 (e) =  c,

then a — b = c = 0.

D E F IN IT IO N  1.6. Let N '  be a set contained in a topological space with a limit 

point b which is not in N ' . Let N "  be the real (or complex) numbers and let N  be a 

commutative additive group of functions mapping N '  into N "  with the property that 

if  N  contains a function u{e) which converges to a finite limit c as e tends to b, then 

c — 0. Then N  is a neutrix.

I f  now /(e ) is a real (or complex) valued function defined on N '  and it is possible 

to find a constant such that /(e ) — /3 is negligible in N , then /3 is called the neutrix 

limit of  /(e ) as e tends to b and we write

N -lim /(e )  =  /?.

Note that in this definition N  is in fact a neutrix, since if /  is in iV and /(e ) =  c 

for all ^ in iV', then /(^ ) converges to the finite limit c as e tends to b and so c =  0.

9



Also note tha t if a neutrix limit /3 exists then it is unique since if /(e) — (3 and 

/(e ) -  j3' are in N ,  then the constant function /? -  /3' is also in N  and so /3 =  /?'.

E X A M P L E  1.3. Let N  be the neutrix with domain the positive integers and 

having negligible functions aloge +  0 (e), where 0 (e) converges to zero as e tends 

to oo. Then,

N -lim  V ) — = 7

where 7 denotes Euler’s constant. The assertion follows from the relation

^  = loge +  T + 0 (e).

E X A M P L E  1.4. Let N '  be the open domain {e ; 0 < e < 00}, let 6 =  0 and let N  

be finite linear sums of the functions,

e A f n r - i e ,  hP'  0 ( e ) ,

where A < 0, r = 1 ,2 ,. . .  and 0(e) is any function which converges to zero as e 

tends to zero. The gamma function T(x) is defined by

dt
poo

T(x) = /
Jo

for X > 0 , and in general we have

T(x) =  N —lim [  t^~^e~* dt
e-^0 J e

for X < 0 and x ^  —1, —2 ,...;  see [21].

E X A M P L E  1.5. Let N '  be the open domain {e : 0 < e < 1/2}, let 6 — 0 and let 

N  be as in Example 2. The Beta function B{X,p) is defined by

R(A,p) =  /  t ^ - ^ { l - t Y ~ ^  dt

10



for A, p > 0 and by

r l / 2  ,
B { \ ,p )  =  /

Jo
dt +

+ T  _____ +

+ dt T

+ E
( - l ) T ( A )

^ 2f'+ '*!r(A -*)(p  +  *)

for A > - r ,  p > - s ,  A 7̂  0, 1 , 2 , . . . , - r  +  1 and p 7̂  0 ,1 ,2 , . . . ,  - s  +  1. 

It can be shown that

dt (5)

dt (6)

for A,p 7& 0 ,1 ,2 , . . .  . More generally we have

fip+g pi—c
, )  =  N -Jim  I  , 1 - 1 . ' t) 

for p,q = 0 ,1 ,2 ,.. .  and A,p 7̂  0 ,1 ,2 ,----

As we shall see in Chapter 3, equations (5) and (6) can be used to define B{X,p) 

and Bp^q{X,p) respectively, for all values of A,p.

In the next example, the neutrix N  is the one defined in Example 1.4.

E X A M P L E  1.6.

(x:^,(/(x)) =  N -lim  /  x^ f{x )dx
e->0 Je

for A - 1, —2 , . . .  and arbitrary test function (j) in T>, where the distribution is 

the locally summable function defined by

A _  f X > 0 ,
0, x < 0 ,

for A > - 1  and is defined inductively by the equation

“■ + - A +  l

11



for —n  — 1 < A < —n and tî =  1 ,2 ,.. .  . More generally, it can be proved that

(x^ In’" x+ , (fix)) =  N -  lim x^ In’" x^(x) dx

for A 7̂  - 1 ,  - 2 , . . .  , r  =  0 ,1 ,2 ,. . .  and <j) in V. These results were proved in [11].

Note that the negligible functions in the neutrix N  given in Example 1.4 are

selected because these are the functions that occur in mathematics and physics.

12



CHAPTER II

ON DEFINING THE DISTRIBUTION x+

In the following we are going to redefine the distribution In® x+. For A > —1, 

the distribution is a locally summable function defined by

x^, X > 0,
0, X < 0.

When A < — 1 and A ^  —2, —3 , . . the distribution x^ is defined inductively by the 

equation

(x )+ iy  =  (A +  i)x ^ . (1)

It follows that if - 7’ -  1 < A < - r ,  then

Jo i=0 *•
dx

r . >
Jo

dx +
(r -  1)!(A +  r ) ’i\ ' (r — 1)1

for an arbitrary test function <j) in the space V  of infinitely differentiable functions 

with compact support, where H  denotes Heaviside’s function. Note that if r  =  1, 

then is understood to mean an empty sum.

Gel’fand and Shilov [23] define the distribution F_,.(x+,A), when — — 1 < A < 

—r, by the equation

(F_r(x+,A),</»(x))= /
Jo 4 =  0

i! ^ [r -  1)1
dx.

for arbitrary in P .

They then define the distribution xiji’’ by

— F —y-̂ .X̂ -, 7') (2)

13



for r  = 1 ,2 ,.. .  . We will now denote F_,.(.x+ ,-r) simply by F { x + ,- r )  and it 

follows easily that

^ F ( x + ,  - r )  =  - r F ( x + ,  - r  -  1) +

Thus with x f f  defined by equation (2), equation (1) is not satisfied with r = 

—2 , —3 , . . . .

This seems to be rather unfortunate and so an alternative definition of .xiji’' was 

given in [12] by letting In x+ be the locally summable function defined by

Inx, X > 0,
' 0 , % < 0.

(Inx+y =  (3)

and more generally defining x f f  inductively by the equation

(z;^+iy = _ ( r - i ) x ; ' '  (4)

for r  =  2 ,3 ,. . .  . W ith this definition of x f f  preserves the derivative rule, but not

product behaviour:

=  (x+^,x</,(x)) =  ((x:;:^y,-x</»(x))

=  (a:+\ ^(x)> -  <̂ '(0)

It can be proved easily that

=  F (æ + ,- l)

and it then follows by induction that

x;"- =  F (x+ , - r )  +  -  l)g (-" )(x ) (5)

14



tf{r) =

for r =  1 , 2 , . . where
0, T — 0,

E L i l / Û  r > l .

The distribution In® x+ is defined by

a®
x^ = x^ In' x+

for A 7̂  —1, —2 , . . .  and s =  1 ,2 ,. . .  . Then x^ In® x_|_ is a locally summable function 

for A > — 1 and

x^ln®(x^ln®x+,/>(x)) = [  
JO

dx

dx+

+ (r -  1)!(A +  r)^+i 

for —7’ — 1 < A < —r, s = 1 ,2 , . . .  and arbitrary 4> in V.

It follows easily from the definition that

(x^ In® x+y = Axijr^ In® x+ + s x ^ T ^  In®"’- x+. (6)

for A 7̂  —1, —2 , . . .  and s — 0 , 1, 2 , . . .  . Although the distribution xj. In® x+ is con­

sidered as a single entity and not as a product of the distribution x} and the locally 

summable function ln®x+, equation (6) shows us that differentiation of x^ In® x+ 

acts as if it were such a product.

We now consider the problem of defining x f f  In® x+ so tha t equation (6) is sat­

isfied for all A and s =  0 ,1 ,2 , . . .  . Gel’fand and Shilov [23] define xfj' In® x+ by the 

equation

— F_r(x+,A)j =  •'»+’■ In® x+,

for 7’,s  =  1 ,2 ,. . .  . From now on, we will denote this distribution by

F(æ+,-T')ln®x+,

15



so that

(F(x+,-r)ln®x+,</,(x))

Jo
dx,

for arbitary <f> m V.

T H E O R E M  2.1.

[F(x+, -r)ln®  x+]' =  - r F (x + , - r  -  l)ln® x+ +  sF(x+, - r  -  l)ln®“  ̂x+

for r,s = 1 ,2, . . .  .

P R O O F . For arbitrary (f m  T> we have 

([F(x+, -r)In® x+]%<^(x)) =  -(F (x + ,- r ) ln ®  x+,/>'(x))

d x

f X ’’ În® ^ x ( - r ln x  +  s) 
Jo : ) - E :R (1 -  x)x ' dx

— ( - rF (x + , - r  -  l)ln® x+ +  sF (x+ , - r  -  l)ln®  ̂x+,/>(x)),

for r ,s  = 1 , 2, ----□

It follows from the theorem that with Gel’fand and Shilov’s definition of the 

distribution x}]’' In® x+, equation (6) is satisfied for all A and s — 1 ,2 ,. . . ,  even 

though it is not satisfied for r  =  - 1, - 2 ,... when s =  0.

In order to define x}!’’ In® x+ so tha t equation (6) is satisfied for all A and s = 

0 , 1, 2, . . . ,  we first of aU define x],!̂  In® x+ by the equation

(ln®+  ̂x+y — (s + l)x+ i In® x+

for s =  0 , 1, 2 , . . . ,  so tha t equation (6) is satisfied with A = 0 and s =  1, 2, . . .  . 

T H E O R E M  2.2.

x+^ In® x+ =  F (x+ , -l)ln®  x+

16



for  s -  0 , 1 , 2 , . . .  .

P R O O F . We have

(5 +  l) (x /^  In® æ+,/>(æ)) =  -(ln®+^ æ+,/>'(æ))

=  -  J  ln®+  ̂X d[^(x) -  ^(0)] -  J  ln®+  ̂x d(j){x)

— (s + 1) J  x~^ln®x[/>(x) -  ^5>(0)R(1 -  x)]dx 

= (s +  l)(F (x+ ,-l)ln® x+ ,/> (x ))

for s =  0,1, 2 , . . .  and arbitrary <j>mV. □

More generally we now define x f f  In® x+ by the equation

x;»- In® x+ = F (x+, -7-)ln® x+ +  -  l)g (-^ )(x )

for r,s  =  1 , 2 , . . ., where

0 , r  = 0,

A # .  r > l

for s = 1 , 2 , . . . ,  with the particular case V’o(’’) being equal to ifir) defined above. 

Note that in the particular case r  =  1, x+^ In® x+ is in agreement with Theorem 2.2.

THEOREM 2.3.

(x+f In® x+y =  - r x + ’’“  ̂In® x+ +  sx+’’“  ̂ln®~  ̂x+ 

for r ,s  = 1 , 2 , . . .  .

P R O O F . Using the definition of x+’’ In® x+ and Theorem 2.1 we have 

(x+’’ln®x+)' =  - r F ( x + , - r  -  l)ln® x + + s F ( x + ,- r  -  l)ln®“  ̂x+

F ( x + , - r -  l)ln®x+ +   il)s{r)S^'^\x) +

F (x+ , - r  -  l)ln®-^ x+ +  ^" ^ -V .- i(r)g ( '') (x )

( - 1)

+5

+ (r -  1)!

In® x+ +  SX+’'  ̂In®  ̂x+.

17



for r,s  = 1, 2, ----- □

It follows that with this definition of ®;jl’’ln® equation (6) is satisfied for all 

A and s =  0 ,1 ,2 , . . .  .

The distribution In® is defined by replacing x by - x  in the distribution 

In® x+ for A -1 ,  —2 , . .. and 5 =  0 ,1 ,2 , . . .  and the distribution F { x - ,  -r)ln®  æ_ 

is defined by replacing x by - x  in the distribution F{x^,  -r)ln®  for r  =  1 ,2 ,.. .  

and 6 =  0 ,1 ,2 ,.. .  . We therefore define the distribution xZ^' In® X-  by replacing x 

by - X  in the distribution In® æ_ for r =  1 ,2 ,.. .  and s =  0 ,1 ,2 ,.. .  . It follows 

that

.r l ’’ln®.'c_ = F (a ;_ ,-r)ln®  æ_ -   ̂ -  l)g(''-^)(æ)

for r  =  1, 2, . . .  and s =  0 , 1, 2 , . . .  and that

In® x - Y  =  -Aæ;^“  ̂In® x -  -  sxZ^~^ ln®“  ̂x -

for all A and s =  0 ,1 ,2 ,.. .  .

We finally define the distribution æ“’’ln® |æ| by

x~'‘ In® |.t| =  x ’̂'̂  In® +  (-l)^æZ^ In® æ_

for r  =  1 ,2 ,. . .  and s =  0 ,1 ,2 , . . .  . I t follows that

æ“’’ln® |æ| =  F {x+ ,-r ) ln ^  x ^  + ( - l ) ’’F (æ _ ,- r )  In® æ_

so that this definition of æ“ ’'ln® |æ| is in agreement with Gel’fand and Shilov’s defi­

nition. We then of course have

(æ“’’ln® |æ|)' = —ra;~’’~^ln® |æ| + sæ~’’“ ^ln®“  ̂ |æ|

for 7' =  1, 2, . . .  and s = 0, 1 , 2 , . . .  .

18



CHAPTER III

ON PARTIAL DERIVATIVES OF THE BETA FUNCTION

The Beta function is usually defined by

f  dt
Jo

for A,yW > 0 . It then follows that

•»■«>=S I '
where T denotes the Gamma function, and this expression is then used to define the 

Beta function for X,fi < 0  and X,/j, - 1 ,  - 2 , . . . .

It can then be shown, see Gel’fand and Shilov [23], that

/-1/2 , 
B(A,/i) =  /

Jo
dt T

-1 V - -  t y
i=0

dt T

I ^  ~  1):

for A > —r, pL > —s, A ^O , —1 ,. . .  — r  +  1 and ^ ^ 0 ,  —1 , . . . ,  —s +  1, where

r 1, 7 =  0 ,

=  n ( ^ - A  i > i .
i=o

In [20], it was shown that 

ri-c  , , /'1/2 ,J  t ^ - ^ { l - t y - ^  dt = J (1 -  ^
«=0

dt T

È3 <KA + 0

/ 1 /2
+ [  (1  -  

Jl/2
dt T
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for A > —V, n > —s, A 0, —1 , ,  —v -{■ 1 and jU ^  0, —1 , . . . ,  —s T 1, so that 

B(A,/i) = N -lim

where N  is the nentrix having domain iV' =  {e ; 0 < e < |-} with 

functions finite linear sums of the functions

g A g ( A <  0, r  =  1, 2, . . . )

and all functions of e which converge to zero in the usual sense as e tends to zero; 

see van der Corput [3].

This suggests the following definition, given in [20], for

gp+g

for all values of A, fj. and p, ç =  0 ,1 ,2 ,. . .  :

D E F IN IT IO N  3.1. The function j8p^(A,p) is defined by

^P,g('\, j") =  In" f (1 -  M (1  -  <) (1)

for p ,q  = 0 ,1 ,2 ,.. .  and all A, p.

It is not immediately obvious that the neutrix limit in equation (1) exists and 

it was proved in [20] that this neutrix limit existed for the case p =  ç =  0. In the 

following, we prove that this neutrix limit exists for p, ç = 0 ,1 ,2 ,.. .  and all A,p so 

that Bp^q{X,fi) is well defined.

We first of all need the following lemma:

L E M M A  3.1. The neutrix limits, as e tends to zero, of the functions

fl / 2  fl-ep l / 2  f l - e
/  t^ IrF t i l l ‘d ( l - t ) d t ,  /  ( l - i ) M n ^ ’U n ^ ( l - f )

le l l /2

exist for  p,g =  0 , 1 ,2 , . . .  and all A.

P R O O F .  Suppose first of all that p =  q — 0. Then

{ 2 - A - i  __ gA+l

-  In 2 -  In e, A =  - 1 ,

20



and so .1 /2
N -lim  / F d tf - lim  I  

e->0 Je

exists for all A.

Now suppose tha t q — 0 and that

.1 /2
N - l i m /  t^ ln H d t  

6"-4"0 J e

exists for some positive integer p and all A. Then

_2-a-i i ^ p + i 2 _  eA+i i ^ p + i g p_|_i .1/2
.1 /2 ^

J  t ^ \ n P + ^ t d t = l
A + l  X + l l

( - iy in P + ^ 2  -  lnP+2 e
p +  2

and it follows by induction that

fl/2 ,
N -lim  J  t^ liF td t

A = —1

exists for p =  0 ,1 ,2 ,.. .  and all A.

Finally we note tha t we can write

ln®(l - t )  = Y ^ a iq f
i=q

for g =  1 , 2 , ,  the expansion being valid for |i| < 1. Choosing a positive integer 

k such that A +  A; > —1, we have

.1/2 k -l  .1/2 . oo „i/2
/ t^lTFt\ïi'‘{ l - t ) d t  = Y ^a iq  t^'^^ljF’ td t + Y ^a iq  t^ '^^liF tdt. 

i=i i=k

It follows from what we have just proved that

^-1 .1/2 
(Ajç I

exists and further

1 .1 /2  
N —lim V ] «jq /  t^ '^^lïF tdt 

e->0 f - i  Je

- l im V ]  dig /  i^+*ln^id/ =  lim T ^ a ,, /  /“+®ln*’ /d i

00 .1/2 , ,
aiq J  In^ t dt,

i~k
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proving that
fi/a ,

N - l i m /  t ln ^ iln ® ( l- i)d t  
e-^o Je

J l / 2
dt.

exists for p, q =  0 ,1 ,2 ,. . .  and aU A.

Making the substitution 1 — f =  u in

h / 2

it follows that

N - lim  r  '(1  -  t)^ln^tln"(l -  t)

also exists for p, ç =  0 ,1 ,2 ,. . .  and aU A. □

dt

T H E O R E M  3.1. The function Rp_,(A,p) exists for p, q = 0 ,1 ,2 ,.. .  and all A,p.

P R O O F . Choose positive integers r,s  such tha t A > - r  and p > —s. Then we can 

write

f'l — C
dt

( - i y ( p - i ) p . ,
=  j  t ^ - H u H l n ^ ^ i l - t )

+ ~ InP iln " ( l - t ) d t  +
i=o *•

+ r  ' l n P i( l - t f -M n^( l - t )

+  È  — -  ^  InP t M ( l  -  (ft.

dt +

dt +

We have 

.1 /2
dt

/ 1 / 2  , ^
=  /  t^ - ^ ln P t ln ^ ( l - t )

Jo

i

ini ^  ln ^ t(l -  t)^~^ln^(l -  t)

(-I)^ (P  -  1
dt

dt
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dt.
'1/2 L i=o

the integrals being convergent. Further, from Lemma 3.1 we see that the neutrix

limit of the function

i=o *■

i=0 *• -/1/2

exists, implying that

N -lim  InP t( l  -  t) ''- !  ln"(l -  t) dt

exists. This proves the existence of the function Rp,g(A, p) for p,q  = 0 ,1 ,2 ,.. .  and 

aU A, p. □

T H E O R E M  3.2.

p) — Bq,p{p‘>

fo rp ,q  =  0 ,1 ,2 ,. . .  and all A,p.

The proof of this theorem is trivial. □

In the following, we now evaluate some particular values of Rp,g(A,p). In order 

to simplify the proofs, we note that

Rp,g(A,p) =  N ^ m t^ -H iF t{ l  -  f )^ - 'ln " ( l -  t) dt

if p > 0, since the integral is then convergent in the neighbourhood of the point 

t = 1 .

T H E O R E M  3.3.

fo r p =  1 ,2 ,. . .  . 

P R O O F . We have

5p,o(0,1) — 0

\ iF td t=
p + 1
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and so

Rp,o(0,1) =  N - l i m ^  t ^ \iF td t = 0

for p =  1 ,2 ,.. . .  □

T H E O R E M  3.4.

for p, r  =  1 ,2 ,. . .  , where

i j  7!(r — «)!'

PROOF. W e  h a v e

(-1 In" f(l -  t y  dt = £  /-I  Ini’ t fit + ^ ( - l y  Q  Ini’ t dt

and so

S p , o ( 0 , r  +  1 )  =  i i - l ^ j \ - H n H { l - t y d t

=  Pp,o(o, 1 ) + In" ^

for p, r  =  1 ,2 ,.. .  , since it is easily proved that

for 7 =  0 , 1 , 2 , . . . .  □

T H E O R E M  3.5.

B p , o { - n , l )  -  ( 3 )

for p ,n  = 1 , 2 , . . .  .

P R O O F . It is enough to prove for p =  1. Integrating by parts we have 

f“”“ i ln /d f  =  n“ ie~” In e +  77~i ^  t~"^~^ dt 
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and so

= N -lim  j  = - i

proving equation (3) for p = 1 and n =  1 ,2 ,___ □

More generally we have 

T H E O R E M  3.6.

B pfi(--n ,r+  1) =  1

6 IV '
for  p ,n  = 1 ,2 ,.. .  and r = 0 , 1 , . . .  ,n  and

for p ,n =  1 ,2 , . . .  and r  = n +  l ,n  +  2 , . . .  . 

P R O O F . We have

I n "  f ( l  -  t y  (f f  =  Q  ^ dt

and so

5 p ,o (-» ,r  +  l)  =  T ( - i y M  N - l im / \ ' '- " - ^ ln P W f
i=o Vv B

(4)

(5)

(6)

for r  =  0 ,1 , . . .  ,n  . Equation (4) follows on using Theorem 3.3 and Theorem 3.5. 

When r  > n +  1, equation (6) again holds, but this time we have

i= 0  \ V  i = n + l  V V  4 0

and equation (5) follows on using Theorem 3.3 and Theorem 3.5 and equation (2). 

□

T H E O R E M  3.7.

R p ,o ( 0 ,0 )  =  R p , o ( l , 0 )  =  ( - i y p ! ( ( p  +  1 ) ,  

25
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B p,o(-l,0) =  -p ! +  ( - iy p ! ( (p +  1), (8)

for  p  = 1 ,2 , . . .  , where

*=i

denotes the zeta function.

P R O O F . We have

t~^ liF t{ l -  t)~^ dt = [t~^ + { 1  -  t)~^]hF td t,

and so

i3p,o(0,0) =  Pp,o(0,1) +  Rp,o(l, 0) =  Rp,o(l, 0),

on using Theorem 3.3.

Further,

.l-e
Rp,o(l,0) =  N —lim j  (1 -  A) ^IrF tdt

^  n
= T  N -lim  /

Z V  e->0 Jo

r l - e  .
f  Ini’ t dt

=  ( - l f p ! C ( p + 1),

on using equation (2), proving equation (7) 

To prove equation (8), we see that

r l —e
B p f t { — 1 , 0 )  = N —lim y  t~'  ̂liF t{ l -  t)~^ dt

= N - l i m ^  +  (1 -  t)“ i]lni’t dt

= ^ p ,o ( - l , l )  -  Bp,o(0,l) + Rp,o(l,0)

= -p ! +  ( - i y p ! ( ( p + 1),

on using Theorem 3.3 and Theorem 3.5 and equation (7). □
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T H E O R E M  3.8.

i=0

g ( - l y  / r
t = 0

n — I \ % ^ (»  — i) -
(9)

for n =  1 ,2 ,.. .  and r  =  0 ,1 , . . .  ,n  and

n—1
J C ( 2 )  +

J=n+ 1
(10)

for n = 1 ,2 ,. . .  and r — n + l , n  + 2 , . . where the function ^  is defined as ir 

Chapter 2 .

P R O O F . We have

^  ln (l - t ) d t  = » -V -"  ln (l -  e) -  n~^ t “"-(l -  t)~^ dt

and it follows that

R o ,i( -n ,l)  =  - » " ^ - n “ 'R ( - n  +  l,0 ) 

=  — +  n~ '̂f>{n — 1)

= n~'[V’(n) -  2n“^],

since it was proved in [20] that

B { -n ,  - r )  =  - - "•■y y  ~ [V’(») +  i>{r) -  2 'tp{n + r)].

(11)

(12)

for n ,r  = 0 ,1 ,2 ,.. .  . Equation (9) is therefore proved for the case r  =  0 and 

77 — 1, 2, . . . .

More generally we have

ln (l -  t) ( l  -  t y  dt =  g ( - l ) '  r  j  ln (l -  t) dt
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and it follows that

Bo,i{—n ,r  +  1) =  » +  4 !)• (13)

Equation (9) now follows on using equations (7) and (11).

To prove equation (10) we note that

r ( i )  T'js + 1 ) 
s ss!

=  -s~^'tp{s)

and so

B o ,i{-n  +  7,1) =  - (7  -  77)"^^(7 -  n), 

for 7 =  77 +  1,77 +  2 , . . .  . Equation (10) now follows from equation (13). □ 

T H E O R E M  3.9.

■Bi,o(-»'?0) =  -  7  ̂ — C(2), (14)
i = l

^ i,o (—» + 1 , “ 1) —  ̂ ~ »c(2) ~ 1 +  V’(ii)) (15)
i = l

for 77 =  1 ,2 ,.. .  .

P R O O F . We have

2  %”V n t ( l - t ) “ 'd t  =  % ~ 'ln t[r^  +  ( 1 - t ) " ' ] d t

and so

-Bi,o(—1,0) =  Ri,o(—1,1) +  R ip (0 ,0)

= ~ 1 -C (2 ) ,

on using equations (3) and (7). Equation (14) is therefore proved for the case 77 =  1. 

Now assume that equation (14) holds for some positive 77. Then

^  t - " - ^ l n t ( l - t ) - ^ a =  r  % - " - i ln t [ t“ i +  ( l - i ) - i ] d t
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and so

•Si,o(—» — 1,0) = n — 1,1) +  Rx,o(—», 0)
n + l

i=l

on using equation (4) and our assumption. Equation (14) now follows by induction 

for n =  1 ,2 ,.. .  .

To prove equation (15) we note that

/ - n - i  in /( i  _ / ) - i  ^  ln t( l  -  t)“ 'd t “”

= - n “ ' [ t “” l n t ( l +

+ » - '  r  '[ t " '( l  -  t)-^  +  ln t ( l  -  t ) - ^ ] r "  dt

and so

■Bi,o(-»,0) =  n“ ^[l +  J5 (-n ,0 ) +  5 i,o ( -»  +  1 ,-1)]

=  n “ '[ l  -  V>(») +  .0 i ,o ( - » + 1 ,-1 )]

on using equation (12). Equation (15) follows on using equation (14). □ 

T H E O R E M  3.10.

n+r

+  É ^ - '  +  ((2)
i=l

( 16)

for n , r  =  1 ,2 ,. . .  .

P R O O F . We note first of all that equation (16) holds for r =  1 and n — 1 ,2 ,. . .  

by equation (15). We therefore assume that equation (16) holds for some r  — 1 and 

77 — 1 ,2 ,. . .  .

29



We have

^  t - " - i l n t ( l - t ) - '  - i d t  =  r - i  /  % - " - i ln td ( l  - 1)

=  r - [ t - ^ - i l n t ( l - t ) “ ’’]^~' +

■' /  -  (» +  In t]( l -  t ) - ’’dt.

where

(» +  *)!

N -lim e  ” ' i n c f l - e )  ’’ = 0
e^O

and so

B i ,o ( - » ,- r )  =  -  g  - r - ' B ( - . - l , - r + l )  +

H— -—Ri,o(—» — 1, —p +  1)

(» +  %)! (» +  r)!

_  J _ ^ ' A  (» +  r  +  7 - i  +  l)!j!

1 . - ^ 2  * +
M 1 I ]  —r  +  ^  X ~  +  r ) [ 4 "  +  r) -  V(» +  1)]+

n + r  A

+  E i “ " +  « 2 )
Î = 1 )

on using our assumption. This equation can be rearranged to give equation (16) 

which now follows by induction. □
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C H A P T E R  IV

T H E  N O N -C O M M U T A T IV E  C O N V O L U T IO N  PRODUCT O F 

D IS T R IB U T IO N S

The convolution product of distributions is a very important tool in the theory of 

integral equations and differential equations. It exists under certain conditions given 

in Definition 1.3 and Definition 1.4 . However, these definitions are very restrictive 

and can only be used for a smaU class of distributions.

In this chapter we shall consider the neutrix convolution product of distributions 

/  and g which extends the classical definition of the convolution product of functions 

and Gel’fand and Shilov’s definition of the convolution product of distributions. This 

neutrix convolution product is denoted by /0 < /  and is in general non-commutative.

In order to extend the convolution product to a larger class of distributions, 

Jones [29] gave the following definition.

D E F IN IT IO N  4.1. Let f  and g be distributions and let r  be an infinitely differ­

entiable function satisfying the following properties: 

r(a;) =  T (-æ ),

("wj 0 <  r(a:) <  1,

(Hi) r{x) -  1 for |æ| < | ,

(iv) r(x ) = 0 for |æ| > 1.

Let

A(æ ) =  /(æ )r(a;/» ), =  g(æ)r(æ/»)

for n — 1 ,2 , . . . .  Then the convolution f  g is defined as the limit of the sequence 

{ f n *  9 n }  providing the limit h exists in the sense that
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for all test functions (j) in V .

In this definition the convolution f n *  On exists in the sense of Definition 1.4 since 

fn  and gn both have bounded supports.

It is also clear tha t if the limit of the sequence {/„ * gn] exists, so that the 

convolution f  * g exists, then equation (3) of Chapter 1 holds. However, equation 

(4) of Chapter 1 need not necessarily hold since Jones proved that

1 * sgn X =  X =  sgn æ * 1

and

(1 * sgn x)' =  1, 1' * sgn X =  0, 1 * (sgn æ)' =  2.

An alternative extension of Definition 1.3 and Definition 1.4 was given in [7] as 

follows.

D E F IN IT IO N  4.2. Let f  and g be distributions and let fn be defined as in Defini­

tion 4-1. Then the convolution /  is defined as the limit of the sequence { f n *  9 } > 

providing the limit h exists in the sence that

for all test functions in V .

In this definition the convolution f n  * g is, again in the sense of Definition 1.4, 

the distribution fn  having bounded support.

We also note that because of the lack of symmetry in this definition the convo­

lution of two distributions is not always commutative.

In the following we give another non-commutative extension of Definition 1.3 

and Definition 1.4. This definition is also possibly an extension of Definition 4.2 

since not only are all the results proved in [7] in agreement with the new definition 

but further convolutions exist which are not defined by Definition 4.2.
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D E F IN IT IO N  4.3. Let f  and g be distributions and let Tn be the infinitely differ­

entiable function defined by

{ 1, < »,
Tn{x) =  s r(» "$  -  » ”+ ') , X > n,

[ r ( n ”æ +  x < - n ,

where r  is defined as in Definition 4-1. Let

=  /(æ)rn(æ)

for n =  1 ,2 ,. . .  and let N  be the neutrix having domain N ' =  {1,2,

and range N " the real numbers with negligible functions, finite linear sums of the

functions

n^ In’’" '  n , W n  (A > 0, r  =  1 ,2 ,...)

and all functions which converge to zero in the usual sense as n tends to infinity. 

Then the neutrix convolution f  @ g is defined as the neutrix limit o f the sequence 

{fn  * g}, providing the limit h exists in the sense that

N -lim (/„  * g, cf) = {h, cj>)

for all test functions cf) in V .

From now on, we will let N  be the neutrix given above.

The convolution fn*g  in this definition is again in the sense of the Definition 1.4, 

the distribution fn  having bounded support, since the support of is contained in 

the interval (—» —

We now give some results on the neutrix convolution product of distributions 

that we often refer in forthcoming chapters. These were proved in [10].

T H E O R E M  4.1. Let f  and g be functions in oo,oo) and i®(—oo,oo) respec­

tively, where l / p + l / q  =  l .  Then the convolution f  @ g exists and

g =
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This theorem shows tha t Definition 4.3 is an extension of Definition 1.3. The 

next theorem shows that Definition 4.3 is also an extension of Definition 1.4.

T H E O R E M  4.2. Let f  and g be distributions satisfying either condition (a) or 

condition (b) of Definition 1.4- Then the convolution f  ® g  exists and

see [10].

The convolution in the following example exists in the sense of Definition 4.3, 

but not in the sense of Definition 4.1 and Definition 4.2.

E X A M P L E  4.1.

æ" 0  (æ" +  e")2 r-l -

P R O O F . We put

=  æ^Tn(a;), A(æ) =

Then the convolution (æ^)„ * /e(z) exists by Definition 3.1 and

/:
y^ + 

dy+  [
J n

dp

7i+n "+r _  y fir (x  — y)
n+æ  y ^  +  e^  “ ' J n + x  +  é

- n + x  (a; _  y y r { x  -  y)

dy +

+
n —

dy.

Now,

n + x

n + x-n+37
r _x » +  z ^-----  t a n --------------- tan

+ 1 dyy2  g2 y 2 ç2

{n -  z)2 +  g2

L
n +n  "+æ  (g, _  yfip^X -  y) , 

3/2 +  ^
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and similarly
-n+x _  \yŸT{x -  y)I

It follows that

N - ^ ( ( z ^ ) n  * /((z),<^(z)) =  (- (z ^  -  e^),<^(z))

for arbitrary test function (j) m V .  O

Whether or not there exist distributions /  and g which give different results for 

the convolution defined by Definition 4.2, or for which the convolution /  </ exists

in the sense of Definition 4.2 but not by Definition 4.3, are open questions.

The next result holds for the convolutions given by Definitions 4.2 and 4.3. 

However, this result does not hold in general for the convolution given by Definition 

4.1.

T H E O R E M  4.3. Let f  and g be distributions and suppose that the convolution 

f  ®  g exists. Then the convolution f  ®  g' exists and

=  (1)

Note however that equation (4) of Chapter 1 does not necessarily hold for the

neutrix convolution product and that ( /  ®  g)' is not necessarily equal to f  ®  g

since

(sgn x)' ® 1  = 2^ @ 1 = 2

y  0 =  (sgnæ ®  1)'

y  1 =  (sgnæ @ 1)';

see [10].

So far we have described the neutrix convolution in connection with distribution 

theory. The applicability of this concept to particular problems such as the convo­

lution product of xZJ and x!{ and of æ l’’ and æ]I® is of great interest. This requires
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attention since the extraction of the finite part from the divergent terms has to be 

done properly.

However, the following two theorems were proved in [10] and [15] respectively: 

T H E O R E M  4.4. The neutrix convolution product @ exists and

z^ 0  z;. =  z;. 0  z^  =  (-1 ) '+ 'R (A  +  1,3 +  l)z^ + '+ '

for all X y  —2, —3 ,. . .  and s =  0 ,1 ,2 , . . .  , where B denotes the Beta function. 

T H E O R E M  4.5. The neutrix convolution product zV ®  z^ '*  exists and

zi^ 0  z ;r^  =  ( - i y + 'B ( - 3  - 1 , 3  +  1 -  A)z=+' +

+  ̂ - I - cot(7rA).z++' -  z®+' In |z|],

for X y  0, ±1, ± 2 , . . .  and s =  —1 ,0 ,1 ,2 ,.. .  .

The next theorem is an extension of Theorem 4.5 and was proved in [16]. 

T H E O R E M  4.6. The neutrix convolution product zV 0  ziji®"'' exists and

( - 1  -  Ajs_i ( - 1  -  Ajs_i

for A y  0, ±1, ± 2, . . .  and s =  2 ,3 , . . .  .

The next theorem was proved in [17].

T H E O R E M  4.7. The neutrix convolution product zV ®  z^  exists and

z ^ 0 z!{ =  _ B ( _ A - p - l ,p + l ) z f [ + ' '+ ' +  

+ R ( - A - p - l , A + l ) z ^ + ' '+ \

/o r A,p,A +  p 0 ,± 1 ,± 2 , . . .  .

In the following we are going to consider the neutrix convolution products z l ’’ ® 

x^ and .x  ̂ ®  x̂ ’̂’, where ẑ jl’' is defined by
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and æ_’' is defined by z_ ’’ =  ( - z ) ^ -  First though we prove

T H E O R E M  4.8. The neutrix convolution products In z_ @ z[  ̂ and x t  @ lnz+  

exist and

l n z _ ® z ^  =  - ( p  +  l)- 'z !{+ V nz+  +  (2)

z!{@ ln z+  =  - ( p  +  ^ (3)

for p /  0 ,± 1 ,± 2 ,. . .  , where 7  denotes Euler’s constant, $  = F '/F  and F denotes

the Gamma function.

P R O O F . We will suppose first of all tha t p > - 1  and p 7̂  0 ,1 ,2 , . . .  so that z!^ is 

a locally summable function. Put

(lnz_)„ =  In z_r„(z).

Then

((lnz_)M *z!^,^(z)) =  ((ln3/_)n,(z!(:,<^(z +  3/)))
rO ph

= / ln (-y)»n(2/) /  ® -  y)'y^{x) dx dy
J—n —Ti  ̂ J Q,

r b  r O

= J  4>®) j  lvL{-y){x -  y)'y dy dx-\-

+ f <̂(®) f  ln{-y)Tn{y){x -  y Y  dy dx (4)
J Cl J—Tl~Tl ^

for n > —a and arbitrary (j) in V  with support of /  contained in the interval [a, 6]. 

When z < 0, we have, on making the substitution y  = z u " ',

/  ln(-2/)(-'T -  y)+ dy = [  ln(-7/)(z -  y ^  dy
J —n J ~ n

— (—z )^ 4 'ln (—z) /  u~'’‘~'^{l — u Y  du
J —x / n

- ( - z ) '^ 4 ' J  u~^~'^  In u (l -  iiY' du
- x / n  

En — I?.n.
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Choosing an integer r  > p +  1, we have

r  u Y  du =  r
J —x / n  J —x

and it follows that

N -lim  Jifi =  B (—p -  l , p  +  l) ( - z ) ^ + ' In ( -z )  =  0.

Further,

f  u ^ '^lnu{l — u Y  du = [  u ^ ^Inu 
J —x / n  J —x / n

(1 -  -  y ] ( - l y W i

i Z  [(/ -  -  ! ) (-« :/» ) ' ^ '  ln ( - z /n )  +  1 -  ( - z / n ) ’'  ̂ ']
,'=0 *•(/ -  M -  1) 

and it follows that

N -lim  ZgM — Rio(—P — 1, p +  1)(—z)^"^' — 0.

Thus,

N -lim
.0

Im  J  ln(-7/)(z -  y)'y dy -  0.

When z > 0, we have, on making the substitution y =  z ( l -  u " ') ,

/  ln(-g)(a: -  y)+ dy = [  ln(-7/)(z -  y Y  dy
J —n J~^n

= z '^ 4 'ln z  f  du +  z^+ ' /  u"^"^ ln (l -  u) du+

-z ^ '" ' y  In 77 du

— J-On +  J-An J-bn-

Also,

z ^ + 'ln z  /  u ^ ^du =
P + 1  p + 1

(5)
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and it follows that
z ^ + 'ln z  

N -h m  Jsn = -------- .
n-Aoo p + 1

Making the substitution u =  1 — u we have

/  u"^~^ln(l -  u)du =  ln u ( l  -  du
do

L In V (1 _  x;)-M-2 _  ^  (~ iy (p  + 2)j
i~ 0

du+

*=0

and it follows that

I (—l) ’(p +  2 )i
i\

( l  +  z/ra) ' ' l n ( l  +  z / u ) (1 +  z /» )  ® '
7 +  1 (7+ 1)

N -lim  [  u  ̂ ^ ln (l —u )du  =  /  Inu
do

(1 _  ^  ( - l ) ' ( ^  +  2),- ,̂. dv

= -610(1, —p — 1).

Thus,

N^-hm/4„ = i?io(l, - p  -  l)z^‘4 '.

Next, we have

y *  " ô x I 7  +  F h ) ^ ^

and it follows that

N-Hmden =  - ( / /  +  l ) '^ z ''+ '.

Now it is easily proved that the two following equations are true:

and

p~ ' +  $(p ) =  $ (p +  1).

Thus,

B „ ( l ,  -M -  1) -f ( .  +  1)-= =

39



Thus,

N -lim  f  ln {-y ){x  -  dy =  - - — ^— —z^+' .  (6)
n—Î- 0 0 f l  1 /i +  1

Further, with a < x < b and n > —a, we have

/ -n
^  -  g)' 0 (n^ " In n )

and so

ln (-y )»n(2/)(æ -  v Y  dy = 0. (7)

It now follows from equations (4), (5), (6) and (7) that

N^-lim((lnz_),i * x ‘y,<f){x)) =

= '■^4.'*'̂  l n z + + [7 + '3/(—p — 1)](p +  1) '* 4.4 ' ,  </(z))

and equation (2) follows for p  > — 1 and p y / 0 , 1, 2 , __

Now assume that equation (2) holds for - k  < p < -A; +  1, where k is some 

positive integer. This is certainly true when A; =  1. Then by Theorem 4.2, the 

neutrix convolution product ln z_  @ exists and

p ln z _  0  Z4" '  =  - z [{ ln z 4 -  (p +  l)"'z[{. +  [7 +  \P (-p  -  l)]z[{

= -z [^ ln z +  +  [7 +  $((-p)]z[{ ,

since

V’C-p -  1) -  (p +  1) " '  = $ ( - p ) .

Equation (2) follows by induction for p  Y  0 ,±1 , ± 2 , . . . .

To prove equation (3) we will, again, suppose first of all that p > - 1  and 

p y  0 ,1 ,2 ,.. .  , so that zV is a locally summable function. Put

(zü.)n =  z_iq.(z).
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Then

((z!i)n*lnz+,<^(z)) =  ((pf^),i,(lnæ+,</,(æ +  ÿ)))

= / ( - y T ^ n i x )  f  \ n { x  -  y ) + 4 > { x )  d x  d y
J —'Tl — 71 ^ J Q,

=  J  <t>{x)  J  ( -p )'" ln (æ  -  V + d p d æ  +

+ / f  { - y Y T n { y ) M ^  -  y ) d y d x ,  (8)
Ja  J —n —n ~ ^

for n  >  - a  and arb itrary ^  in  %) w ith  su p p o rt o f  4> con ta in ed  in  th e  in terv a l [a, 6].

W h en  æ <  0, w e h ave , on  m ak in g  th e  s u b s titu tio n  y  =  æu“ ' ,

M a: -  7/)+ d y  =  J  { - y Y  ln(æ -  t/) d y

=  - ( —æ )^ 4i f  77"^“ ^In 77d7t +
J - x / n

+ ( - æ ) '^ + 'I n ( - æ )  f  u ~ ^ ~ ’̂ d u - { -  
J —x / n

+ { - x Y ~ ^ ^  J  77"^"^ln(l -  77) d77
.1

- x / n

' J l n  +  J ^ n  +  J o n -

We have

/ '  , r  " - n . .  d .  =  H V d p d  _
J —x / n  P + 1  ( 77+ 1 )- x / n  P + 1  (p +  1)^

and it follows that

N - ] ^  Jm  =  -(/2  +  l ) - " ( - z y + ' .

Next we have

r  = _ E d z z V î r i
J —x / n  p + 1

and it follows that

n^oo p + 1

Making the substitution 77 =  1 -  u, we have

/  77"^"^ln(l -  77) 7/77 =  ln7;(l -  du
J —x / n  Jo
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r In V (—l)®(p +  2 )i
dv+

(1 +  æ/n)®4' ln (l +  x /n )  (1 +  æ/n)*+' 
—

(* +  iy

and it follows, as above, that

N —lim Jsn — 610(1, ~P ~  1)(—

Thus,

N- -lim /  ( -7 /y in (z  -  7/)+ dp =  ^  +  6 i o ( l , - p  -  l ) ( -æ y + '
"*o° J—n p -r 1

(- z y + 1
"T"

(// +  M

_  ( -æ y + 'ln (-z )  7  +  $ ( - p - l )  4 1

p +  1 p + 1   ̂ '' '

as above.

When X  >  0, we have, on making the substitution y  = z(l -  77" ') ,

/ (-y)''M^-y)+dy= f ( - 7 / ) ^ l n ( z  -  7/ )d7/
J —n J — n

= Inz  J  77"^"^(1 — 77)^ d77 — /  77"^"^ In 7 7 (1  — 77)
x-̂ n x+n

— Jin Jbn- 

It follows, as above, that

N - l i m + 4^  =  6 ( - p  -  l , p  +  l ) z ^ + ' l n . T  =  0

and

I ^ - l i m / 5„ =  6 i o ( - p  -  l , p  +  l ) [ z / ( z  +  77)] '̂*'' =  0.

Thus,

(9)

/"dTf

N —lim
.0

l im /  {-y)>’-h x{x -y )j^d yCO J _ , J

Further, with a < x < b and n > —a, we have 

/  _ J -y T '^n {y )  ln(z -  y) dy
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and so

lim /  {-yYTn{y)hx{x -  y )dy  (11)n^oo

It now follows from equations (8), (9), (10) and (11) that 

N —lim((æü )n *ln , <̂ (æ)) =

=  (- ( /r  +  lnæ_ +  [-y +  $ ( - , i  -  l)](jn +  ,^(æ))

and equation (3) follows for /r > - 1  and /r 7̂  G, 1 ,2 ,. . .  .

Finally, assume that equation (3) holds for - k  < n < - k  + 1 . This is certainly 

true when k = 1. The convolution product (æ(î.)„ H=ln æ_|_ exists by Definition 1.3 and 

so equation (4) in Chapter 1 holds. Thus, if (p is an arbitrary function in V  with 

support contained in the interval [a,b],

([(æ^l)n * lnxY',(f>{x)) = -((æ-)?! * In æ+,(?!>'(æ))

=  -fj.{{x'Y^)n*lnx+ ,(l){x)) + {[x’̂ Y (x )]  *lnæ+,<^(a;))

and so

H{{x'Y^)n * In æ+,^(æ)) = {{x'^)n * In x+,cj)'(x)) + ([æ(î.r'(æ)] * In æ+,^(æ)).

The support of x^ t '^[x ) is contained in the interval [ - n  — n ~ " ,—n] and so, with 

n > — a, it follows, as above, that

([æ !ir^ (a:)]* liiæ + ,,^ (a:))= / «/"(æ)/ ( - ÿ ) % ( y ) ln ( z - ÿ ) d y d æ ,
Jq, J—n~'Ti ^

where, on the domain of integration, (—y Y  nnd ln(æ -  y) are locally summable 

functions. Integrating by parts, it follows that

f  ( - 2/)% (z/)ln(æ  -  2/)di/ =  n^ln(æ +  n ) + /  [iJ,{--yY~^ln{x -  y) +

+(-i/)^(æ  -  !/)"^]Tn(ÿ) dÿ.

Choosing a positive integer r greater than f.i, we see that

n'^ln(æ + n) = Inn  +  ̂ _p O il/n )

43



and so, since ji is not an integer,

N —lim ln(æ +  n) = 0.

Further, it follows as in the proof of equation (7) that

lim I  [K~yy''~^ ln(æ -  y) + (~ y Y (x  -  y)~^]Tn(y) dy =  0 .n-+oo

Thus,

N-limyw((a;(î.“ ^)„ *lnæ+,ç!>(æ)) =  N -lim ((æ(lT  * In .r+ ,ç!)'(æ))
n —>-oo n - ^o o

= (æ(î. 01næ + ,^ '(æ )),

by assumption. This proves that the neutrix convolution product .r(!.“ ^® ln æ+ exists 

and

0  In æ_|_ = - {x^t 0  In æ+)'

= - x t  In.T- -  (yt +  +  [7 +  # (-y ( -  l)]x^l

— —x't lnæ_ +  [7 +

as above. Equation (3) now follows by induction for yt 7  ̂ 0, ±1, ± 2 , . . .  .□

C O R O LL A R Y  4.1. The neutrix convolutionproductslnx+@ x'^,x^@ lnx-.,ln\x\@  

©  In |æ|,ln |.r| 0  xt^x^^i ©  In |æ|,ln |æ| ©  |æ|^ and |æ|^ ©  In |æ| exist and

lnx+ ® x> t =  - { p +  ln .r -  +
M + 1

l n | ï |@ . <  = (12)

= 01n|a:|, (13)

In \x\ 0  x t  =  (14)

= 01n|æ|, (15)

In |æ| 0  |æ|^ =
P + l

— |æ |^0 1 n|æ |,
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for  p  7̂  0 ,±1, ± 2 , . . . .

P R O O F . The first two equations follow immediately on replacing x by —x in equa­

tions (2) and (3).

The convolution product lnæ+ * exists in the sense of Definition 1.4 and it is 

easily proved that

ln.r+ * x^  -  {/J.+ lnæ+ +  Rio(l,yt 4- l)æ(f.'''^

Since the neutrix convolution product is clearly distributive with respect to addition, 

it follows that

ln.T_ @ -f In x+ @ =  In |æ| @

-  ^ ( - M - 1 ) - ^ ( m +  2) »+i_ _  .-L+

TTcotTryi n+i

since it can be easily proved that

-  1) -  #(/( +  2) = 7T cot TTfi.

This proves equation (12).

Equation (13) follows on noting that the neutrix convolution products of lnæ_ 

and In with x^  are commutative.

Replacing x by - x  in equations (12) and (13) gives us equations (14) and (15). 

The last two equations follow from equations (12), (13), (14) and (15) on noting 

that

|æ|'' =  xY + xY .n
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T H E O R E M  4.9. The neutrix convolution products x j '  @ and x t  @ X jf exist 

and

a : - @ 4  =  +  +  (16)

= ^ ^ { æ r ' '+ " l i iæ _ - [ 7  + $(-/^ + r - l ) K - ' '+ '} ,  (17)

for p  7̂  0, ±1, ± 2 , . . .  and r -  1 , 2 , . . .  .

P R O O F . We put

( æ l ^ n  =  x Y ' T n ( x )

for r  =  1 ,2 ,.. . ,  so that

(lnæ_)(, =  -(æ l^ )„  + lnæ _r '(a ;) .

Then, if f  is an arbitrary function in V  with support contained in the interval [a, 6], 

we have, from above

([(lnæ_)^*a;^y,<^(æ)) =  -((hiæ_)n*a;!^,(^'(a;))

=  -((æZ^)m * æ!̂ ,<A(a:)> +  (lna;_r^(a:),<^(a:))

and so

((æZ^)n + æ! ,̂<^(æ)) =  ((lnæ_)n * æfj!.,< '̂(æ)) +  ([lna;_T^(a;)] * æ^,<^(æ)).

The support of lnæ_r))(æ) is contained in the interval [—n -  n " ”] and so, with 

n > —a, it follows that

(|ïnæ_r;^(a;)] + æ!{:,</,(a;))=/ <^(æ)/ ln(-ÿ)T;^(ÿ)(a;-y)^(fÿja;,
J a  J —n —n~'^

where on the domain of integration In (-y ) and (æ -  y Y  are locally summable func­

tions. Integrating by parts, it follows, as above, that

rb
N —lim /  ^(æ) /  ln(-y)r;^(y)(a: -  ÿ)''(fÿdæ =  0.

J a  J —n —n ~ ^
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Thus,

N^-lim((æI^)ri * a-’+î^C®)) = N -lim ((lnæ _)„ h= æî^,^'(æ))

by assumption. This proves that the neutrix convolution product xZ^ ®  exists 

and

xZ^ ®  =  - ( In  æ_ @ x'^)'

= æ(^lnæ+ -  [7 + $(-//)]%((.,

as above, for p, 7̂  0 ,± 1 ,± 2 , . . .  . Equation (16) is therefore proved for the case 

r  =  1.

Now assume that equation (16) holds for some r > 1. The convolution product 

(xZ'^)n * æ+ exists in the sense of Definition 1.4 and so equation (4) in Chapter 1 

holds. Thus, if cj) is an arbitrary function in V,

( [ ( a ; I ’’ )n  * æ+]',(y!>(æ)) =  - ( ( æ l ’’)n  * ^ '( æ ) )

=  r((æ :''-^)n  * æ+,(^(æ)) +  ([æ:''T(^(æ)] + æ+,«/'(æ))

and so

r((æ='""̂ )n *æ+,^(æ)> = -((æZ'')n *æ+,< '̂(æ)> -  ([a:Z''Tn(æ)] * æ+,<̂ (a:)).

It follows, as above, that

N ^3l^([æ I’’Tn(æ)] * æ(|.,^(a;)) =  0

and so

N - l im  r((æ=''"^)n * æ! ,̂ (/,(æ)) =  -  N -lim (( .rI’’)„ * ,^'(æ))
n —>00 n~>co

=  -(a:=''@æ+,<^'(æ)),

by assumption. Thus 0  x ^  exists and

C '-^0æ !^  = r-^(æ:'-®æ!;:)'
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= ~  ̂+  !)•'*'’+ '’lnæ+ -  (yt -  r  +  1)[7 +  t ( - y i  +  r  -  l)]æ^

=  ( ^ { æ r i n a ; +  -  [7 +  $ ( - / /  +

Equation (16) now follows by induction for p 0, ±1, ± 2 , . . .  and r  = 1 ,2 ,.. .  . 

Using Theorem 4.3, it follows from equation (3), that

(.^(!© lnæ +)' =  @

= In X-  -  [7 +  $(-//)]æ (l

and equation (17) follows for the case r  =  1.

Assuming equation (17) holds for some r, it again follows from Theorem 4.3 that

( x f  @ x Y ) '  =  - r x f  ®  x Y ~ ^

-  - r  + l)æ(i~’Tn.T_ -  xf~'' + {p -  r + 1)[7 +  ^ { - p  + r -  l)]xf~''

= - [ j  + ^ { - p  + r)]xt~'^}.

Equation (17) now follows by induction for p 7  ̂ 0, ±1, ± 2 , . . .  and r  =  1 ,2 ,.. .  .□

C O R O L L A R Y  4.2. The neutrix convolution products x ^  ® x f ,  x^® xZ ’’, x~’~® 

©  x~'^, x~'^ ©  æü, x ’f  ®  x~'^ and x~"̂  ©  |æ|^ exist and

a  _  { p ) r - l  r u - r + l  -, r vr,/ , _  1= ^ ^ { æ r " + " l i i æ _ - [ 7  +  g (- /^  +  r - l ) K - ' '+ " } ,

x - @ <  =  .-.■ »  (ig)
(r — 1)! ^

I X (19)

(20)

= x t ® x ~ ' ' ,  (21)

. . - r  (X) _  (M )i—1 ^  c o t  u - r + la. æ_

even r.
r (y^ ),-i7T cot ^



fo r  p  7̂  0 ,±1, ± 2 , . . .  and  r  =  1 ,2 ,. . .  .

P R O O F . Replacing x by - x  in equations (16) and (17) gives us first two results 

of the corollary.

The convolution product xY ' * exists by Definition 1.4 and it is easily proved 

that

* ? " +  = ■ -  [7 + -  ■■ +  2 )1 4 - '+ '}

=  æ:;:'' ©

Since

æ -  =  æ;'- +  (_ l ) '- a ; : \

we have

■ -  1

( " l ) ’~~^(A^)r-icot rp
( r - 1 ) !  ' ' +  '

because

^ {p  -  r + 2 ) -  ^ ( - p  +  r  — 1) =  -  cot Tr(p -  r) — — cot irp.

This proves equation (18).

Equation (19) follows on noting that the neutrix convolution products of æ l’’ 

and x f f  with x ^  are commutative.

Replacing x by - x  in equations (18) and (19) gives us equations (20) and (21). 

The last two results follow from equations (18), (19), (20) and (21) on noting 

that

|æ|^ =  +  x f ,  sgnæ.|æ|'^' =  -  x^.U

In the following we will consider the neutrix convolution products In æ_ @ In æ_|_ 

and xZ^ ®  for 7% s =  1 ,2 ,. . .  . First of all, we have
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T H E O R E M  4.10. The neutrix convolution products lno;_ ©  and ©  

In æ_ exist and

lnæ_ © lnæ +  =  -(7r^/6 +  l)|æ | +  |a;|ln |æ| -  |æ| (22)

=  lnæ+ ©  lnæ_.

P R O O F . Putting

(lnæ_)n =  lnæ_r„(æ),

we have

( ( l n a ; _ ) n  * l n æ + , < ^ ( a ; ) )  =  ( ( l n 7 / _ ) „ ,  ( l n æ + , ( ^ ( a ;  +  ÿ ) ) )

=  f  ln{-y)Tn{y) f  ln(æ -  y)+^(æ) dx dy
J —n —n ^ Ja

r b  pO

= J  4 {x) J ln { -y )  ln{x -  y) + dy dx +

+ [  4>{x) [  ln{-y)Tn{y)ln(x -  y)dydx,{23)
J a  J —Ti—Ti ^

for n > —a and arbitrary <j) in T>, with support contained in the interval [a,b].

When X < 0, we have, on making the substitution y — xu~^,

/O P X

h \{-y )  ln(æ -  i/)+ dy -  / In (-y ) ln(æ -  y) dy
- n  J — n

= { - x )  f  [In  ̂u -  lnw ln(l -  u) +  ln (-æ )ln (l -  u) + 
J - x j n

-2 1 n (—æ )lnu +  ln^(-æ)]7i“  ̂du 

— I x n  ~ l 2 n  +  J ^ 3 n  ~~ I  A n  + I h n -  (24)

We first of all note that

J  u ~ ^ l n u d u  = In-u, (25)

J u ~ ^ l n ^ u d u  = ~ 2 u ~ ^  — 2 u ~ ^ \ n u  — u ~ ^ h Y  u,  (26)

j  u~ '^ \n{ l  - u ) d u  = - ( « “ ’■ - l) ln ( l  -  m) -  In rt, (27)

j  u ~ '^ h x u \n { l  -  u)  du  =  -  Inu -  In^ u  -  (u"^ -  1 )  ln (l -  u) +

°° id
- ( w ~ ^  -  l ) l n  w l n ( l  -  « )  +  ^ -72 . ( 2 8 )
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Using equation (26) we have 

J   ̂ u~ ‘̂ ItY udu  = —2 -  2na;“  ̂ -  2nn'“ ^[ln(-æ) -  In n] — na;“ ^[ln(-a;) — In Tif 

and it follows that

N —lim I\n — —2(—3/'). (29)

Using equation (28), and noting that we have

J   ̂ u “ ^ l n u l n ( l  -  7 t ) d u  =  t t ^ / 6 - f  l n ( — æ )  -  I n n  +  | [ l n ( - a ; )  -  I n n ] ^

- ( n a ; “ ^ +  l ) l n ( l  +  a ; n “ ^ ) [ l  +  I n ( - æ )  -  I n  n ]  +

and it follows that

N^-lm l 2n — (?r /̂6 -  l)(-æ ) + |( -æ ) ln ^ (-æ ) . (30)

Using equation (27) we have

J  M“ ^ln (l -  u) du — -{nx~^  +  l ) ln ( l  +  xn~^) + In(-æ ) — Inn
~x/ n

and it follows that

N —lim I^n — —(—3/*)ln(—æ) T (—a;)ln^(—3;). (31)

Using equation (25) we have

/  In udu  — —1 — nx~^ — nx~^ [ln(-a;) — In n]
J —x I n-æ /n

and it follows that 

Finally, we have 

and it follows that

N -lim  h n  = -2 ( -3 :) ln (-æ ) . (32)

£ u  ̂dît =  — 1 — nx  ^
x j n

N -lim  Jsn = -( -3 ,’)ln^(-3;). (33)
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It now follows from equations (24), (29), (30), (31), (32) and (33) that

fO
J  ln(-î/)ln(æ  -  y )+ dæ =  -( tt^ /6  +  l) (-æ ) +  (-æ )ln (-æ ) +

- i ( -æ ) ln ^ ( -æ ) . (34)

When X  > 0, we have on, making the substitution y = æ(l -  n~^),

pO pO
/ ln(-7/)ln(æ -  y)+ dy=^ In(-y) ln(æ -  y) dy

J—n J~n

= æ y   ̂ [In  ̂n -  In n ln (l -  n) +  In a; ln (l -  u) -  2 In x Inn  +  In^ x]u~‘̂ du 

— Jin ~ J 2 n +  Jsn ~ Jin +  Jsn- (35)

Using equation (26) we have

[  u~'^liYudu — —2 +  2(1 +  næ“ ^) +  2(1 +  næ~^)[lnæ — Inn — ln (l +  æn“ ^)] +  

+(1 +  næ“ ^)[lna; -  Inn  -  ln (l + xn ~ ^ ) f

and it follows that

N -lim  Ji„  =  —2x +  æln^ x. (36)

Using equation (28) we have

f  In n ln (l -  n )dn =  t t ^ / 6  +  Inæ -  Inn  -  ln(l +  æn“ ^) +

+  |[ln  X  — In n -  ln (l + x n ~ Y Ÿ  ~ nx~^ ln (l +  xn~^) 

—na;-^[In a; -  In n — ln (l +  a;n“ ^)]ln(l +  xn~^) +

i^{x +  n)®' 

and it follows that

N^-lim J 2 n — (tt^/6 -  l)æ +  ^æln^ x. (37)

Using equation (27) we have 

J   ̂ u~^ ln (i — u)du — —nx~^ ln (l +  xn~^) +  In æ — Inn — ln (l + xn~^)
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and it follows that

N —lim Jsn =  —X In x  +  x  In^ x .  (38)

Using equation (25) we have

f t
/ u ~ ^ l n u d u  = - 1  +  1 +  n x ~ ^  + (1 +  na;“ ^)[lnæ -  Inn  — ln (l +  æn“ ^)] 

and it follows that

N -lim  J^n — —2æIn x + 2 x In^x. (39)

Finally, we have

L u d n = —1 +  1 +  nx'

and it follows that

N -lim  J^n = 0.

/  ln(æ -  y) dy = 0 (n  ” In^ n)

and so

lim [  ln(-î/)r„(y)ln(æ  - y ) d y  = 0.
n -to o

It now follows from equations (24), (34), (41) and (42) that

(40)

It now follows from equations (35), (36), (37), (38), (39) and (40) that

rO
J  ln(-7/)ln(a; -  y)+ dy = —(tt^/6 +  l)æ +  ælnæ -  |a;ln^ x. (41)

Further, with a < x < b  and n > — a, we have

(42)

N -lim ((lna;_)„ *lnæ+,<^(æ)) =  (-(7 t^ /6 +  l)|a;| +  |æ|ln|æ| -  5-|a;|ln^ |æ|,<^(æ)) 

and equation (22) follows.□

53



C O R O L L A R Y  4.3. The neutrix convolution productsln \x \® lnx^ ,  Inæ^ 01 n  |æ|, 

In |æ| 0  In lnæ_ 0  In |æ| and In |æ| 0  In |æ| exist and

-3
In |æ| 0  In =  - ( tt^ /3  -  l)æ  — -  x In |æ| +  \ x  In^ |a;| (43)

=  lnæ+ 0  In |æ|, (44)

In |æ| 0  lnæ_ =  (tt^/3 -  l)æ — + æln |a;| — ^x liY  |æ| (45)

=  Inæ_ 0  In |æ|, (46)

7t2
ln |æ |01n |.T | =  ——|æ|. (47)

P R O O F . The convolution product lnæ+ *ln exists in the sense of Definition 1.4 

and it is easily proved that

In a;+ * In =  (2 -  7t̂ /6).t+ — 2æ+ In In^ .r+ (48)

=  lnæ+ 0  lnæ:|_

Since the neutrix convolution product is clearly distributive with respect to addition, 

it follows that

In X -  0  lnæ+ +  In 0  ln.r+ = In |æ| 0  In

Equation (43) now follows from equations (22) and (48). Equation (44) follows 

on noting that the neutrix convolution product of ln.r_ and lnæ+ is commutative. 

Equations (45) and (46) follow from equations (43) and (44) respectively on replacing 

X  by — X .  Equation (47) follows from equations (43) and (45) on noting that

In |æ| 0  lnæ+ +  In |æ| 0  In æ_ = In |.t | 0  In |æ|.ü

T H E O R E M  4.11. The neutrix convolution products ln.r_ ©  xZ^ 0  ln.r+, 

In 0  xZ^ and a.0® ©  In æ_ exist and

In æ_ 0  = — ̂ sg n a ; -  ^sgnæln^ |æ| (49)
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— 0  Inæq (50)

=  -  In 0  (51)

= 0  lnæ_, (52)

(5 -  1) In a;_ 0  æ+" =  6 ^ 2  “  2)[æ+''+^ +  (-l)^a;Z^+£ +

+æ;"+^ In æ+ +  (-l)"æZ®+^ In æ_ (53)

= ( - l) '(a  -  l)æZ" 0  lnæ+, (54)

(s -  1) In a;+ 0  æZ" =  ^  ̂ g ( '" ^ )(æ ) -  ^(a -  2)[(-l)'æ+ ''+^ +  a;Z^+£ +

+(-l)^æ]jI^+^ lnæ+ +  æZ®’''^lnæ_ (55)

= ( - l) '(a - l)a : ; ''0 1 n æ _ , (56)

for s — 2 ,3 , . . .  , where

(In^ æ+)' =  2æ[jl̂  In æ+,

(æ:j:®+̂  In æ+)' = -  (a -  l)æ+® In æ+,

for  s =  2 ,3 , . . .  .

P R O O F . Using Theorem 4.3 and equation (22) we have

(lnæ_ 01næ4-)' =  lnæ_ 0

— —(tt̂ /G +  l)sgn X +  sgn x  In |.r | +  sgn x  +

-  ̂  sgn æ In^ I ,T 1 -  sgn x In | x |
7t2

= — —sgnæ -  isgn x In^ |æ|,

giving equation (49).

Replacing x by - x  in equation (49) gives equation (51).

The convolution product (ln.r_)„ *ln æ+ exists in the sense of Definition 1.4 and 

so equation (4) of Chapter 1 holds. Thus, if ^  is an arbitrary function in V  with 

support contained in the interval [u, 6],

([(lnæ_)n, *lnæ+]%9!)(æ)) =  -( (In  .r_)„ * In .r+ ,0'(æ))

=  -((æZ^)n * ln x + , f (x ) )  +  ([ln.r_ r'(.r)] *lnæ+,^(æ)),
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and so

H=lnæ+,(^(æ)) =  ((lnæ_)„ *lna;+,<^'(a:)) + ([lnæ_ r'(æ)] *ln+,^(æ)).

The support of In x -  r!^{x) is contained in the interval [—n — —n] and so, with

n > —a, it follows, as above, tha t

([In X- r ' (æ)] =i= In , ^(æ)) =  f  cf){x) [  In (-y ) <(?/) ln(æ -  y) dy dx.
Ja J—n—n- ’̂

Integrating by parts we have

J  ln(-7/) r'(î/)ln(æ  -  y )dy  = In nln(æ +  n)+

-  J  _Jy~^ - y )  -  {x -  y)~^ ln(-î/)] Tn(y) dy.

Now,

In n ln(cc +  n) =  In^ n + 0 {n~^ In n)

and so

N —lim(ln nln(a; +  n)) = 0.

Further,

/  -  y) -  (æ -  y)~^ ln{-y)]Tn{y) dy =  0 {n~'^lnn)

lim [  [y-'^ ln(æ - y ) -  {x -  y)"^ ln(-y)r„(î/)] dy = 0.

and so.

Thus,

N -lim ((æI^)n * In æ+,çi>(æ)) -  N -lim ((ln  æ_)„ * In æ+, ç!)'(æ))
n -ri-O O  71—4-00

=  (In æ_ @ In , <p'{x)) , 

proving that the convolution product xZ^ 01næ +  exists and 

æ l’- 01næ +  =  -(lnæ _  0  lnæ+)'.
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Equation (50) now follows as above.

Equation (52) follows from equation (50) on replacing x by —x.

Using Theorem 4.3 and equation (49) we have

- ln æ _  0  xf."̂  — - ^ 6 (x) -  lnæ_|_ -  æZ^lnæ_,

and equation (53) follows for the case a — 2.

Now assume that equation (53) holds for some s. Then, using Theorem 4.3, we 

have

- s { s  -  l)lnæ_ 0  +  (-5 -  l)V»(a -  2)[.t+® -  (-1)'%:']+

— (a — l)a'^*lnæ^ — (—l)^æ_* +  (—l)®(a — l).'c_^ In æ_

= ' ( 4  + ( « - -  2)[»;p +

- ( a  -  Inæq +  (-l)^+^æZ^lnæ_],

and equation (53) follows for the case a + 1. Equation (53) now follows by induction. 

Equation (55) follows from equation (53) on replacing x by —x.

The convolution product (æl^)n*ln x+ exists in the sense of Definition 1.4. Thus, 

if (j) is an arbitrary function in V  with support contained in the interval [a,&],

([(æl^)n *lnæ+]',<?!>(æ)) = -((.T l^)n * In æ+, ^'(.t))

=  ((æZ^)n * In æ+, </,($)) + ([ælV^(.r)] * In z+,<^(æ))

and so

((æl^)n *lnæ+,^(a:)) =  -((a;I^)n  * In æ+, </>'(a:)) -  ([ælV4(æ)] * In æ+, <?i(a:)). 

W ith n > —a, it follows, as above, that

([ælV'(.'c)] =i=lnæ+,^(.r)) =  f  <j){x) j  { ~ y y ^  Y{y)h i{x  -  y) dy dx .
J  a J —n —n ^

Integrating by parts we have

J  _ ^ ( - 2/)""^T,((î/)ln(æ - y ) d y  = ln(.r +  n)+
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- J  _ J y  ‘̂ l n { x - y )  + y ^ { x - y )  £r„(î/)dy.

Clearly,

J i r ^  n ln(a; +  n) =  0

= lim f  [y~'  ̂ln(æ -  y) + y~'^{x -  y)~^]rn(,y) dyn-^oo

and so

J i^ ([n T ^  T^(æ)] % In æ+,<^(æ)) =  0.

Thus,

N -lim ((a ;I^ ) 7i *lnæ+,ç!)(æ)) =  -  N -lim ((æ l^ )n  * In æ+, ç!>'(a;))
n —4-00 n —4-00

= -{xZ^  ®lnx+,cj)'(x)),  

proving that the neutrix convolution product æl^ ©  Inæ^. exists and 

xZ^ @ lna;+ =  (æl^ ®  lnæ+)'.

Equation (54) follows as above for the case s =  2.

Now assume that equation (54) holds for some s. Then,

([(æ=')n * In æ+]', f>{x)) =  -((a;I*)n * In æ+, f f x ) )

=  s((a;I^“ ^)„ *lnÆ +,^(æ )) +  ([æl* r^(æ)] *lnæ+,<^(a;)),

where it follows, as above, that

Jdn^([a;I® r)[(æ)] * lna:+,<^(a;)) =  0,

and so

N - l im  s((æ l*“ ^)n *lnæ+,<^(æ)) =  -  N -lim ((æ I* )n  *lnæ+,ç!>'(æ))
71—4 0 0  71- 4-00

= -{xZ^ ®lnx.^ ,f) '{x)).

This proves the existence of the neutrix convolution product xZ^~^ ©  lnæ+ and 

sxZ^~^ ©  lna;+ =  (æI® ©  lnæ+)'.
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Equation (54) follows as above for the case a +  1. Equation (54) now follows by 

induction.

Equation (56) follows from equation (54) on replacing x by —æ.ü

C O R O L L A R Y  4.4. The neutrix convolution products In |æ| 0  æiji® 0  In |.r|, 

lnæ+ 0  æ“ ®, x~^ ©  lnæ+, ln|æ| ©  æZ®, æZ® ©  ln |.r|, lnæ_ ©  ©  lnæ_,

In |æ| ©  .r“ ® and æ"® ©  In |æ| exist, and

ln|æ| ©æ:j:̂  = ^ [1  -  3R(æ)] + În  ̂|æ|

= ©  In |æ|

= lnæ+ ©

= ©  lnæ+,
7t2

In |æ| ©  = — [3Æ(x) -  2] +  |  In^ |æ|

=  a;Ẑ  ©  In |a;|

= — In X- ©

= —.T~^01n.T_,

ln|æ| ©  = - ^ s g n æ

= ©  In |æ|,

(a-l)ln |æ |® a:;®  = iy ^ f(® -2 )(æ )_ ^ (^ _ 2 )[-æ ;® + i + (-l)®æZ®+"] +

-a;I|I®+  ̂lnæ+ +  (-l)®æZ®"^  ̂lna;_

= (a -  l)æl|l® ©  In |a;| 

=  (a — l)ln .^+  ©  æ"®

= (a -  l) .r“ ® ©  In 

(a-l)ln|æ |©a;Z® = g7y^^('"=^)(æ)-V'(a-2)[(-l)®a:;®+i-a:Z®+^] +

+(-l)®æ]|I®+^ lna;+ -  .rZ®'*'̂  lnæ_

= (a -  l)æZ® ©ln|æ|

= (-l)® (a -  l)lna;_  @ ,r“ ®
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= (-l)® (a -  l)æ ®*lna,'_,

= æ~®©ln|a;|, 

for 5 = 2 ,3 ,. . .  , where H  denotes Heaviside’s function.

P R O O F . Differentiating equation (48) we get

In =  ~ ^ H { x )  +  In^ æ+

and it can be proved by induction that

(a -  l)lnæ +  * æ:;® =  -  2)^^'^^ -  2æ;®+^lnæ+, (57)

for a =  2 ,3 , . . .  . The results of the theorem now follow on noting that

æ-® = æ;® + (-l)®æ:®,

for a =  1, 2 , . . .  .□

T H E O R E M  4.12. The neutrix convolution products xT'  ©  a)[[[® and ©  æZ® 

exist, and

-  ^ ( r  +  a -  2)[a?;'-®+i +  (-l)'"+®a:Z'-®+^] +

+ a;;'-®+^ In a;+ +  (-l)''+®æZ'"®+4na;_, (58)

-  ip{r + s -  2 )[(-1 )’’+®.t;’-®+^ +  .rZ’-®+£ +  

+  ( - l ) ’'+®.x-;’-®+Mn.T+ +  .TZ’’"®+Mn.r_, (59)

for r ,a  =  1 ,2 ,. . .  .

P R O O F . It follows, as above, that

(lnæ_ ©  æ![]®)(''̂  =  (In æ_)('") ©  aiijl®

= -(? ’ -  1)!.t Z’' ©  æ+®
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and equation (58) follows from equation (53). Equation (59) now follows on replacing 

X by ~ x  in equation (58).□

C O R O LL A R Y  4.5. The neutrix convolution products x~’’ ®  xZ^ @ 

æ l’’ @ x~’’ ©  æl® and x~‘‘' ©  x~^ exist and

--tf{r +  a -  2)[æ+'-®+^ -  ( - l ) ’’+®æI’-®+^] +  

+æ;'-®+^lnæ+ -  (-l)''+®æ:'-®+^lnæ_

- ^ ( r  +  a -  2)[æ:''-®+^ -  (-l)'"+®a;:j:'-®+i] +  

+æ:'-®+^lnæ_ -  (-l)''+®æ;^-®+^lnæ+

for r,a =  1 , 2 , . . .  .

P R O O F . Differentiating equation (57) r times we get

(r -  l)!(a -  l)!.r+’’ * æ+® = - ( r  + s -  l)!lnæ+ * æij]''"® 

and it follows that

-  2 [^ (r  +  a -  2 )æ ;'-® + ^  -  ln.T+].

The results of the corollary now follow as above.
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C H A PT E R  V

T H E  C O M M U T A T IV E  N E U T R IX  C O N V O L U T IO N  P R O D U C T  OF 

D IS T R IB U T IO N S

In this chapter, we consider the commutative neutrix convolution product of 

distributions /  and g which extends both Definitions 1.3 and 1.4 and Definition 4.1. 

We will denote the commutative convolution product of distributions /  and g by 

f ^ g  to distinguish it from the non-commutative neutrix convolution product. If 

the condition (a) or (b) of Definition 1.4 is satisfied for the distributions /  and g, 

then the commutative and the non-commutative neutrix convolution products are 

equal. They might be equal for some cases. But, in general, they are not.

D E F IN IT IO N  5.1. Let f  and g be distributions and let Tn be defined as in Defini­

tion 3 in Chapter 4- Let fn{x) =  f{x)rn{x) and gn{x) = g{x)rn{x) for n = 1 ,2 ,. . .

. Then the commutative neutrix convolution product /0 < /  is defined as the neutrix 

limit of the sequence {/„ * Pn}, provided the limit h exists in the sense that

for all (j) in V , where N  is again the neutrix defined in Definition 4-3-

The convolution /„  * </„ in this definition is again in the sense of Definition

1.4 and, since fn *  Pn =  Pn* fn, the neutrix convolution product is clearly

commutative.

The next theorem, proved in [19], shows that this definition generalizes Definition

1.4 and Definition 4.1.

T H E O R E M  5.1. Let f  and g be distributions satisfying condition (a) or (b) 

of Definition 1-4 so that the convolution product f  * g exists. Then the neutrix 

convolution product /0 < /  exists and

f \ ^ g  =  /  *g.

62



However, equation (4) of Chapter 1 does not hold in the sense of Definition 5.1 

since, in general, / 4(æ) 7̂  (/n(æ))'.

The following theorem was also proved in [19]:

T H E O R E M  5.2. The neutrix convolution product 0>'®+ exists and

Ü K  -  B { -X  - p - l , p +  l>£+^+^ +  R (-A  - p - l , X +  l)æ++^+\ 

for X,p,X + p  0 ,± 1 ,± 2 ,. . where B  denotes the Beta function.

We now prove the following extension of Theorem 5.2:

T H E O R E M  5.3. The neutrix convolution product [^ exists and

= R ( - r - l , r  +  l-A > !l+ ^  +  H ( - r - 1 ,A  +  1).t;+^

(1)

for  A 7̂  0 ,± l ,± 2 , . . .  and r =  - 1 ,0 ,1 ,2 , . . .  .

In [20] it was, in particular, proved that

for r  =  0 , 1, 2 , . . .  and A 7̂  0, d :l ,+ 2, . . .  , where T denotes the Gamma function and 

7  denotes Euler’s constant.

P R O O F . We will first of all suppose tha t A,r — A > — 1 so that x^  and are 

locally summable functions. Put

(a-£)n = æ^rn(a;), (æ!]r^)n = æ!]r^Tn(æ).

Then the convolution product {x^)n * (æ!]r^)n exists in the sense of Definition 1.4 

and

= I  {-y)^Tn(y) [  { x -y ) fr ^ T n {x -y ) ( j ) { x )d x d y  
•/— 71— n “*” Ja
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= y  /  (” 2/)^(« -  2/)+ -  y) dydx  +

+  /  <̂ (‘'*'0 /  {-yŸTn{y){x -  y ) Y ^ T n { x - y ) d y d x  (3)
Ja J —n —n ~ ’̂

for n > —a and arbitrary (j) in X>, with support of 4> contained in the interval [a, b]. 

When X  <  0 and - n  < y < 0, Tn{x -  y) = 1 on the support of 4>. Thus, with 

æ < 0 and —n < y < 0, we have, on making the substitution y = xu~^,

[  i - y ) ^ { x  -  y ) +  ^rn{x - y ) d y  = j  { - y f { x  -  y f
J —n J —n

=  J   ̂ du

= u
- x / n

x j n

U r  -  XV- .1
du+

+  -  ta»l-

It follows that

yO
-l im  / ( -y )  {x -  y)!|r r»(æ - y ) d y  =
I—400 J

N

= -  1, r  +  1 -  A )(-æ y+i +  ( M -a :)

=  B ( - r  -  1, r +  1 -  A)(-æ)^+' -  in(_æ); (4)

see [20].

When X  > 0 and —n < y < 0, we have

/  { -V Ÿ {^  -  yïY^Tn{x  -  y) dy = [  (-y)^(.T -  y f ~ ^  dy +
J —n J x —n

+  /  -  yy~^Tn{x -  y) dy. (5)
J x —n —n~' ’̂

On making the substitution y =  a;(l — u"^), we have

/  (-y)^(æ  -  yY~^ dy =  -  u Y  du
J x —n J x / n>x/n
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and it follows, as above, that

N - l i m /  (-y)^(æ  -  y)’’ ^ dy =  J5 ( -r  -  1, A +  +
n —i-oo J x —n

Further, with n  > 2x,

/  (-ÿ)^(a; -  -  y) dy
J x —n —n~"

yn+n“”
< y (2/ -  «:) f  dy = J  y’’( l -  æ /y£

(n +  A> 0 ,
2-^(n +  « -" /R -" , - 1 <  A < 0,

and so

lim I  i - y Y { x  -  y f  ^Tn{x -  y) dy = 0. (7)
Ti—n ~ ”-

It now follows from equations (5), (6) and (7) that

N -lim  /  (-y)^(æ  -  y)+~^r„(a; -  y)dy =  R ( - r  -  1, A +  1)®’’+  ̂ +
n—400 J —n

(8)

Next, with - \ n  < a < x < b < \n ,  we have

-  y ï ~ ^ T n { x  -  y )  d y

< y  _ _ J , - y ï { ' ^ -  x ! y j ~ ^  dy

( ' 2 ' - ^ ( R  +  » - " y M - " ,  r - A > 0 ,
-  (  2 ^ - ' ' ( n  +  - 1 <  r  -  A <  0 ,

and so

I  i-y)^Tniy)i^  -  yY~^rn{x -  y) dy = o .  ( 9 )n —i-oo y _ „ _ „ - n

It now follows from equations (3), (4), (8) and (9) that 

N -lim  ((æ'}.)n * (æ+“ ^)ra,^(a;)) =
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= (^B{-r  -  l , r  +  1 -  A)æL+  ̂ +  B { - r  -  1, A +  l)æ!£^ +  ln|æ|,ÿ(a;)

and equation (1) follows for A, r  — A > —1 and A 7̂  0 ,1 ,2 ,.. .  .

Now assume that equation (1) holds for —k < X < —k + l  and r  — A > —1 , 

where k is some positive integer. This is certainly true when k = 1. The convolution 

product (æi)n*(a:!|r^)n exists in the sense of Definition 1.4 and so equation (4) holds. 

Thus, if 4> is an arbitrary function in V  with support contained in the interval [a, 6],

where we may suppose that a < 0 < 6,

=  - A((æ^-^)n * d»(a:)> +  ([æ^r;^(a:)] * < (̂^))

and so

A((a:^-^)n*(a;!;r^)»,<^(a;)) =  ((æ^)n*(æ!ir^),i,<^'(æ)> +

+([æ^r'(.-r)] * (æ!]r^)„, (f>{x)). (10)

The support of æir^(æ) is contained in the interval [ -n  -  n “", -n]  and so, with

n > —a > n~” , it follows, as above, that

([æ̂ T̂ (a;)] * (æ!T^)n,^(a:)) =

= /  <6(æ) /  { - y Y K { y ) { x  -  yy~^Tn{x -  y) dydx
JQ, J —n~Ti ^

= /  ^{^) [  i - y Y r ^ { y ) i x  -  yY~^ dy dx +
J a, «y —71—71 ^

- f  i  { - y Y K { y ) { x  -  yY~^ dy dx +
J —n ^ «/ —71 — 71 ^

+ /  ^{^) [  { - y Y K i y ) { x - y Y ~ ^ T n { x - y ) d y d x ,  (11)

where, on the domain of integration, {—y Y  and (æ -  yY~^  are locally summable 

functions.

Putting M  = sup{|T%æ)|}.sup{|(^(æ)|}, we have

/  <̂ (æ) /  -  y)'""̂ Tn(a; -  y) dy dæ
J — J —n—

< M n” f  I  { - y Y { l  -  x /yY ~ ^  dydx
J  — 71~ ” J  —71—71""”

r 2 '-+i-^M (» +  n-")"-»-", r  -  A > 0,
2i-'"+:^M(M+  - K r - A < 0 ,
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and it follows that

Ji™ /  4'{x) [  { - yYK( . y ) i x - y y - ^Tn{ x - y ) dy dx  = 0. (12)

Similarly,

lim /  /  { - y Y Y { y ) { x - y y - ^ d y d x  = 0. (13)

Integrating by parts, we have

y^_^_^(-2/)^7-'(y)(æ -  y)'-^ dy = n {̂x + n)’’"̂  +

+ dy.(14)

Now,

n (r -  X)jx^
i!n®

and so

N -lim  M̂ (æ + M)'--'̂  = (15)
n-+oo r!

As in equation (9)

jlm, ~ + ( ^ -  ^)i-y)^i^ -  yy~^~ ]̂Tn{y) dy = 0. (16)

It follows, from equations (11) to (16), that

= y  xL'i>(x)dx

_  ( - 1 ) ’ {r — X)r (æL,^(æ)). (17)

It now follows, from equations (10) and (17), that

N j i m  A((æ^-i)» * (æ!T^)»,.^(æ)> =

= N -m ((æ f[)»  * (2-r^)»,,^'(æ)) +

= { x ^ ^ x f r ^ , 4>'{x)) + ■■ y— — (æZ,9^(æ))
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by our assumption. This proves that the neutrix product  ̂0   ̂ exists and

that

0a-+~^y
A

_  (r +  -  1, r  +  1 -  A) (r + l ) B ( - r  -  1, A +  1)
^ A Ar!

( - i y ( A - i )+ r!

- r ,  A)%; +  L J L . 1 2 ^ J ^ ^ r  |g.|=  B { - r , r  + 1  -  X)xL + B { - r ,  A)%  ̂

on using equation (2) and the equations

r '( -A )  1 r ' ( i  -  A)
r ( -A )  A "  r ( i  -  A) '

(r _  A)r =  ( - i y ( A  -  1),.

Equation (1) now follows by induction for A 7̂  0 ,± 1 ,± 2 ,. . .  , r — A > - 1  and 

r — - 1, 0, 1, 2 , . . .  .

Finally, assume that equation (1) holds for -fc < r -  X < -& +  1 and A ^  

0 ,± 1 ,± 2 , . . . .  This is certainly true when /s =  1. Then, since

* (æi)»,

an argument similar to that given above shows us that equation (1) follows by 

induction for A 7̂  0, ±1, ± 2 , . . .  and r = —1,0 ,1 ,2 , . . .  . This completes the proof of 

the theorem.□

T H E O R E M  5.4. The neutrix convolution product x ^ ^ x ^ ' ' '~ ^  exists and

(18)
—i — f —i —
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fo r  A y  0, ±1, ± 2 , . . .  and r  =  2 ,3 ,. . .  . In  particular

(18)
(,~2 ~

for s = 0 ,± 1 ,± 2 ,. . .  and r  =  2 ,3 ,. . .  .

P R O O F . It follows from Theorem 5.3, with r  =  — 1, that

=  (jB(0, - A ) [ l  -  R(æ)] +  R (0 ,  A +  l )R (æ )  -  In |æ|,

for A 0, ± 1 ,± 2 ,. . .  , where H  denotes Heaviside’s function. Thus

= N - l™  (-A (z^-^)n * +  x^T^(x)  * (z+^-'^)»,<^(a:))

= ( - R ( 0 , - A ) 6 (x) +  J5(0, A +  l)^(z) -  x~^,<p(x)}

= (x cot(7rA)^(z) -  x~^,(j){x)), (20)

using equation (2) and the equation

Equation (11) still holds for the case r  =  -1 . It is easily seen, from equations 

(12) and (13), that

, ^ ( z ) /  ( - ÿ ) ^ r ^ ( y ) ( z - 2 / ) ^ \ » ( z - ÿ ) d y d a ;
n —f o o j _ ^ - n  V - M — n,-"

^  -  y)~^~^ dydx  =  o

and

/  4>{x) I  {-y)^r^{y){x -  y)  ̂ ^dydx  = 0 {n ^).

Thus,

l^ ( [ .z V '( z ) ]  % (z+^-^)n,4^(z)) =  0.

69



It now follows from equation (20) that

- 1 ^ - : ^  X{{x^~^)n * (z+^'"^)n, <^(z)) =  (x cot(xA)5(z) -  x~~ ,̂ (f){x))

= - A ( z i - : 0 z ; " - M ,< ^ ( z ) ) ,

proving equation (18) for the case r = 2.

Now assume that equation (18) holds for some r > 2. Then,

N -lim  {{x^)n * (z+’’ ^)n,<^(z))

(xcot(xA)g(’"'^)(z) -  ( - l ) ’'( r  -  2)!z"''+^,^(z))
1

( - 1  -  A)r_l

for A y  0, ±1, ± 2 , . . . .  Thus,

* (x:^^~\]',(j){x))

= N - ^  (-A (z^-^)n * (z+ '"^)n  +  [z^r^(z)] * (z+’'-^ )„ , (j){x))

= ,  ̂ . (xcot(xA)^(’ -^)(z) -  ( - l ) ’’+^(r -  l)!æ“ ’’,<)f)(æ)). (21)
V~-‘- “  AJr-l

It follows, as above, that

and so, from equation (21), we have

- N - l h u  A((z^"^)n* (æ+'""^)n,<^(z)) =

(xcot(xA)^(’’“ ^)(.z) -  ( - l ) ’’+ ^ (r -  l)!z" ’",^(z))
(—1 — A)r

proving equation (18) for the case r  +  1. Equation (18) now follows by induction, 

and equation (19) follows easily.O
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C H A PT E R  V I

C O M M U T A T IV E  N E U T R IX  P R O D U C T  O F 

U L T R A D IS T R IB U T IO N S  A N D  T H E  E X C H A N G E  F O R M U L A

The problems of defining the product of distributions and ultradistributions in 

the dual spaces V  of V  and Z '  of Z  (see below), respectively, are well-known. 

The object of this chapter is to define the neutrix product (.F /)0(.Fg) in Z ' , 

where denotes the Fourier transform, to be the neutrix limit of the sequence 

{ .f (/r„)..F(£fr„)}. Later, we prove that the exchange formula holds. The product 

in V  will be considered in the next chapter.

As in [23], we define the Fourier transform of a function </> in î> by

dx.

Here <r = a\ + ia2  is a complex variable and it is well known that 0(cr) is an entire 

analytic function with the property

(1)

for some constants Cq and a depending on The set Z ,  of all analytic functions 

with property (1), is, in fact, the space

@(D) =  {^ :3^€% ),.F (,^ ) =  V}.

The definition of convergence in Z  can be carried over from V. That is, the 

sequence of functions ^„((T) converges to zero in Z  if the sequence of their inverse 

images (inverse Fourier transforms) f>v(x') converges to zero in V.  We say that a 

sequence converges to zero in Z  if for each function in this sequence we have
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The Fourier transform, / ,  of a distribution /  in V , is an ultradistribution in Z ' , 

i.e. a continuous linear functional on Z .  It is defined by Parseval’s equation:

if,ï>) = 27t(/,^).

The exchange formula is the equality

.F(/*!7) =  :F(/).F(g). (2)

It is well known that the exchange formula holds for all convolution products of 

distributions /  and g, provided /  and g both have compact support; see for example 

Treves [37].

We now consider the problem of defining multiplication in Z'.  To do this we 

need the Fourier transform of r„, defined as in Definition 4.3, and write

which is a function in Z .  Putting -0 =  ^, we have, from Parseval’s equation,

Since

/ OO POO

Tn{x)(l){x) dx = / (f){x)dx =
-OO J — c o

for all ^  in V,  and since P{1) = 2x^, we obtain

for all y» in Z . Thus is a sequence in Z '  converging to the Dirac delta function 

ê.

If /  is an arbitrary distribution in V , then, since is a function in Z ,  the 

convolution product /  =h is defined by
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for arbitrary 'ip in 2 .  If we have

'tp{a P v )  — (j){x)]

and it follows from Parseval’s equation that

V'(0' +  W) =  =  (Tn(z),

/ OO
Tn{x)e^^''p{x) dx (4)

J  e^ '̂’4>{x)dx — 'ij){v).

Thus,

=  (/,V ’),

for arbitrary ip in Z , and it follows that { /*  6 n} is a regular sequence of infinitely 

differentiable functions converging to /  in 2 '.

This leads us to the following definition:

D E F IN IT IO N  6 .1 .Let /  and g be distributions in V  having Fourier transforms 

f  and g respectively in 2 '  and let f^  — f  * 6 n and cjn =  g * 6^. Then the neutrix 

product fO g is defined to be the neutrix limit of the sequence {fn-gn}, provided the 

limit h exists, in the sense that

N-lm (/„.g„,V>) = {h,ip),

for all Ip in 2 .

In this definition we use f n g  to denote the neutrix product of /  and g to distinguish 

it from the usual definition of the product, fn-gn, of two infinitely differentiable 

functions /„  and If

for all V» in 2 ,  we simply say that the product f .g  exists and equals h. We then, of 

course, have

f '^9  =  f-9- 
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It is immediately obvious that if the neutrix product fO g  exists then the neutrix 

product is commutative.

The product of ultradistributions in Z ' also has the following property:

T H E O R E M  6.1. Let f  and g be ultradistributions in Z ' and suppose that the 

neutrix products fU g and f ^ g '  (or f'O g ) exist. Then the neutrix product f'O g  (or 

f o ÿ )  exists and

= + (5)

P R O O F . Let Ip be an arbitrary function in Z . Then,

(M .V ») =  N-lim (/„.g„,y>), (/□ g ','0 ) =  N -lim (/„.gG, V’)-
H-+00 n —>00

Further,

= - N “ l™(gn,(/n.V’y - /^ y ’)

= N -lim (g[,,/„.V ’) +  N -hm {g„,/'.V ’)

and so

Hence the neutrix product fO g  exists and equation (5) follows.

It follows similarly tha t if fC lg  exists then fO ÿ  exists.□

We can now prove the exchange formula.

T H E O R E M  6.2. Let f  and g be distributions in V  having Fourier transforms f  

and g respectively in Z ' . Then the neutrix convolution product / 0 g  exists in V  if 

and only if the neutrix product fO g exists in Z ' , and the exchange formula
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is then satisfied.

P R O O F . We have from equation (4) that

{0n{cr),i{}{a + u)) =  F{rn4>) 

and then, from equation (3), that

(/niV’) =  ( /  * =  (Â^(7h<^)) =  2x(/,TR<^)

= 2 x (/„ ,0 ) =  (.F(/„),V’>

on using Parseval’s equation twice. It follows that P {fn) = fn- Similarly, we have 

P{gn) = (Jn- Now, since /„ , g„ both have compact support, the convolution product 

fn  * 9 n exists in the sense of Definition 1.4 and so

* gn) =  ^ (A )-^ (g » ) =  Â  g»

and so, on using Parseval’s equation again,

‘I'^i.fn * 9n, 4’) ~  {d~ifn * Qnfi'P) — {fnfin, ‘4’) •

Suppose the neutrix convolution product / 0 g  exists. Then

2îr(/0g,9!>) =  N -lim 2 x (/„  * g„,</>) =  N -lim (.F (/„ =i= g„),V’)n—̂oo n—+oo

= N^-lim(/„.g„,y;) == (/.g,V’>

for arbitrary <f) in V  and in Z , proving the existence of the neutrix product /D g 

and the exchange formula.

Conversely, if the neutrix product /ü g  exists then the argument can be reversed 

to prove the existence of the neutrix convolution product /  0  g and the exchange 

formula. □

Gel’fand and Shilov define the distributions (z +  *0)  ̂ and {x — *0)^ as follows:

(z +  *0)  ̂ =  z |  +

(z -  =  z^  +
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see [23]. We now prove the following theorem.

T H E O R E M  6.3. The products (a  +  *0)^.(o +  lO)^ and (a -  iO)^.(a — io y  exist 

and

+  +  +  (6)

(?)

for all A and p .

P R O O F . It is easy to show

z ^ * z [ ; i  =  R(A +  l , A t + l ) z y - ' ' + \  (8)

for A, //, A T yU T 1 y  — 1, —2 , . . . .

Further (see [23]),

:F(z^) =  %e'^''/^r(A +  1)((T +  , (9)

for A 7̂  —1, —2, —  On using the exchange formula, it follows, from equations (8) 

and (9), that

-e*(^+^)’r/2r(A +  l)F(yU +  1)(ct +  m )-^ -\((7  +  *0)“ ^“  ̂ =

=  R(A +  1 , yu +  l)* e '(^ + ''+ ^ )’" /^ r(A  +  yti +  2 )(cr +

for A,yu,A +  yw 7̂  0 ,1 ,2 ,. . .  , the product (cr +  îO)~^"'^.((t +  iO)~'^“  ̂ existing since 

the convolution product * x(p exists. Equation (6) now follows for A, ytt, A +  /Lt 7̂  

0 , 1, 2, . . .  .

Now suppose that A,yw, A +  yw > — 1 and put

(cr +  iO )n =  (o- +  tO)^ * ^n(o-).

Then, since

(o- +  m)^ =  (7  ̂+
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(see [23]), it follows that {(cr +  «0)^.(a +  iO)'(} is a sequence of locally summable 

functions which converges to the locally summable function (a + *0)^+^. Equation 

(6) follows for A, yU, A +  yu > - 1  .

Now suppose that equation (6) holds when -  1 < A < - k ,  for some positive 

integer k, and A +  yu = 0, ±1, ± 2 , . . . .  This is certainly true when k = Q. Then,

J i ^ ( o  +  m)^.((T +  %0)(; =  (cT + *0)^+",

by our assumption when —fc — 1 < A < —fe. It follows that

[((̂  +  *0)^.(cr +  m)((]'

+  *0)» +  /f((7 + *0) .̂((T +  ïO)([-^]

= (A +  yu)(o-+

and so

j.ir^((7 +  m )^ - \(o  +  io x  = (a + m )^+ ^-\

Equation (6) follows by induction for A ^  -1 ,  —2 , . . .  and A +  y« =  0, ±1, ± 2 , . . . .

We are finally left to prove equation (6) for the case A =  r  =  - 1 , - 2 , . . .  and 

y[t =  s = 0 ,1 ,2 , . . .  . Since (see [23]),

ln(cr +  *0) =  In |cr| +  ixJÏ(-o-)

and

(o +  *0)' =  a%

for s = 0 ,1 ,2 ,.. .  are locally summable functions, it follows, as above, that if

ln(cr +  iO)„ =  ln((7 +  *0) * &(cr),

then the sequence {In(c7 +  i0)„.(cr +  i0)^} converges to the locally summable function 

{a +  iO)*ln(o- +  iO). Thus, as in [23],

J .i^ [ln (o  +  îO)„.(ct +  îO)^]'

= ji^ [ ( c r  +  fO)~ .̂(<T +  *0)n +  s ln(cr +  iO)(cr +  «0)®“ ]̂

=  [(cr +  *0)"ln(c7 +  iO)]'

=  s(a  +  iOy~^ ln(cr +  *0) +  (<r +  *0)®“ ,̂
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and so

+  iO ) “ ^.(cT +  * 0 )n  =  ( o  +

Equation (6) follows for A =  — 1 and p = 0 ,1 ,2 ,.. .  . Another induction argument 

shows that equation (6) holds for A =  —1, —2 ,. . .  and ytt =  0 ,1 ,2 ,.. .  .□

COROLLARY 6.1.

( 10)

 ̂ ( - ! ) ■ ( . - I ) ! ) , . . . , , ,  (11)
{r -  s -  1)! ^

for r = 1 ,2 ,. . .  and s =  0 ,1 ,2 ,. . .  .

( 12)

=  y § : f ' ( , ) .  (13)

for r — 0 , 1 , 2 , ----

P R O O F . Since

(c r  +  îO )®  =  O'®,

for s =  0 ,1 ,2 , . . . ,  and

(<, +  .0 ) - ' =  „ - '  +  M ^ « ( '- ' ) ( < T ) ,

for r  =  1 ,2 , . . .  , see [23], it follows from equation (6) that 

( (r -  5 -  1)!

the product clearly being distributive with respect to addition. Equating real and 

imaginary parts, equations (10) and (11) follow.
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It follows from equation (6), that

= ["■ ' +  ■ ["■’ +

for r  = 1 ,2 ,.. .  . Expanding and equating imaginary parts gives equation (12). 

Again from equation (6), it follows that

(o- +  iO)-’’“ ^/^(cr +  =  (o- +

for r — 0 ,1 ,2 , Expanding and equating the imaginary parts gives equation

(13).o

T H E O R E M  6.4. The neutrix product a ^ o 6 ^^\a) exists and

(T^OgW((r) =  0, (14)

for real A ^  0 ,± 1 ,± 2 ,. . .  and g =  0 ,1 ,2 ,. . .  .

P R O O F . It was proved in [19] that

0  z® =  0, z^ 0  z® =  0,

for real A ^  0, ±1, ± 2 , . . .  and s =  0 ,1 ,2 , . . .  . Thus,

(z -  (0)^ 0  z® =  (z^ +  e” *’̂ ’̂ z^) 0  z® =  0,

for real A ^  0, ±1, ± 2 , . . .  and s =  0 ,1, 2 , . . .  . On applying the exchange formula to 

this equation we get

o--^-^D^(®)(ct) = 0,
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for real A ^  0, ±1, ± 2 , . . .  and s =  0 , 1,2 , . . .  , since 

for A y  0, ±1, ± 2 , . . .  and

.F ( z " )  =  2 ( - t ) 'x g ( " ) ( o r )

for s =  0 ,1 ,2 ,. . .  ; see [23]. Equation (14) follows immediately.□

C O R O LL A R Y  6.2. The neutrix product exists and

(T^agM((T) =  0, 

for real A 7̂  0 , ± 1, ± 2 , . . .  and s =  0 , 1, 2 , . . .  .

P R O O F . The result follows immediately from equation (14) on replacing a by —a 

in equation (14).

T H E O R E M  6.5. The neutrix product (cr — i0)^O(cr + io y  exists and

(o- -  m )^ 0 (o r  +  *0)'' =  (1 5 )

for real A,/c 7̂  0,4:1, ± 2, . . . .

P R O O F . It was proved in [19] that

=  R(A +  yU +  1, -yu )z :^ -^-" +R (A  + yU +  l , - A ) z ; ^ - ^ - \

for real A,yU 7̂  0, ±1, ± 2 , . . . .  Applying the exchange formula to this equation, using 

equation (9) and

.F ( z ^ )  =  -% e -'^ ’' /^ r (A  +  l) (c r  -  m ) - ^ - \

we get

e*'(^-^W2r(-A )r(-y u )(a  -  io)^D(o +  io y  =

=  e'(^+A)W2^ (^  +  /i +  1, -  p){a -  iO)^+^‘ +

+ e - ' ( ^ + ' ' ) ' ' /^ B ( A  +  /f  +  1 , - A ) T ( - A  -  yu)(cr +  *0 )^ + " , 
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and so

(cr -  iO)^n(cr +  sin(Ax) cosec[(A +  ytt)x](cr -  +

sin(jttx) cosec[(A +  yu)x](cr +

= cr^+^ +  gi(f«-A)x^A+;.^

proving equation (15) for real A,/c 7̂  0 , ± 1,± 2, . . .  .□

81



C H A P T E R  V II

T H E  C O M P O S IT IO N  O F D IS T R IB U T IO N S

There are two methods of defining the product of distributions: one by regu­

larization and passage to the limit (Hirata-Ogata [25], Tillmann [28] and Kaminski 

[30]) and another one (Hormander [26]) by means of the Fourier transform. These 

two methods are compared in [4]. The definitions of product of distributions given 

by Mikusinski, Hirata-Ogata, Tillmann and Kaminski are not equivalent since the 

Delta sequences considered by each author were different;see for example [31] or 

[28]. In this chapter, we will use symmetric model sequences, whilst in some of 

above mentioned work, non-symmetric delta sequences were used. However, we 

shall not examine the relation betweeen our product and the other products.

We begin this chapter by considering another extension of the product of dis­

tributions in V ', so that we will be able to study the substitution of infinitely 

differentiable functions in the product of distributions. In [2 ] , the composition of a 

distribution and an infinitely differentiable function is extended to distributions by 

continuity provided the derivative of the infinitely differentiable function is different 

from zero. Later, in [13] and [14], Fisher defined the composition of a distribution F  

and a summable function /  which has a single simple root in the open interval (o, 6), 

and it was recently generalized in [32] by allowing /  to be a distribution. This gen­

eralization is also an extension of the definition of the composition of distributions 

given in recent paper by Antosik; see [1]. In this chapter we give another alternative 

approach.

Here, we let {^^(z)} be a regular sequence of infinitely differentiable functions 

defined as in Chapter 1. Then the following definition was given in [8].
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D E F IN IT IO N  7.1. Let f  and g be arbitrary distributions and let gn = g * bn- 

We say that the product f.g  of f  and g exists and is equal to h on the open interval 

(0,6) ÿ

j™

for all test functions 4> with compact support contained in the interval (a,b).

Since this definition of the product is not symmetric, the product f.g  is not 

necessarily commutative. However, many such products are in fact commutative as 

is seen from the following theorem, which was proved in [8].

T H E O R E M  7.1. Let f  and g be distributions. I f  the product fg  exists on the open 

interval (a,b) in the sense of Definition 1.2, then the products f.g  and g .f  exist and

f-9 = 9 -f =  f-9

on this interval.

Thus, Definition 7.1 is also an extension of Definition 1.1. In the following, a 

definition for the product of two distributions extends Definition 7.1 to an even 

wider class of distributions.

D E F IN IT IO N  7.2. Let f  and g be arbitrary distributions and let g^ = g* 6 n- We 

say that the neutrix product f o g  of f  and g exists and is equal to h on the open 

interval (a, b) if

N -lim (/g„,<^) = N-lim(/,g„</>) = (h ,^), (1)
n —>00 n-ri-oo

for all test functions cp with compact support contained in the interval (a,b).

Note that if we put , we have

and so the equation (1) could be replaced by the equation

N —lim
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It was proved in [8] that if the product f.g  exists in the sense of Definition 7.1, 

then the neutrix product f o g  exists and defines the same distribution. It was also 

proved that if the neutrix products f o g  and f o g '  exist on the open interval (a, b), 

then the neutrix product f o g  exists on the interval {a, b) and

( / o g ) '=  f  og + fo g ' .

Some properties of the above neutrix product were proved in [18].

The definition of composition of the delta function and an infinitely differentiable 

function is as follows:

where /  has n simple roots z’i,.Z2, • • • ,z„  and / '  > 0 at these roots.

In general, by formal differentiation, 6 ^ '^\f{x)) is defined by

see Gel’fand and Shilov [23].

The following definition for the change of variable in distributions is an extension 

of the definition above and was given in [13].

D E F IN IT IO N  7.3. Let f  be an infinitely differentiable function. We say that the 

distribution b ’̂’\ f ( x ) )  exists and is equal to h on the interval (a,b) if

N - l i m  /  g ^ ) ( / ( z ) ) ( ; A ( æ ) d z  =  ( A ( z ) , ,^ ( z ) ) ,
n—>co J —CO

for all test functions with compact support contained in the interval (a,b).

An extension of Definition 7.3 was given in [14] as follows:

D E F IN IT IO N  7.4. Let F  be a distribution in V  and let f  be a locally summable 

function. We say that the distribution F {f{x )) exists and is equal to the distribution 

H  on the interval (a,b) if

N -lim  /  Fn{f{x))4>{x)dx =
n —>-oo J —OO



for all test functions <j) in V  with support contained in the interval (a, h), where 

Fji(z) — (F  % ^„)(z).

The following theorem was, however, proved in [22].

T H E O R E M  7.2. Let F  be a distribution in V ' and let f  be an infinitely differ­

entiable function with f'{ x )  > 0, (or < 0 ,̂ for all x in the interval (a,b). Then the 

distribution F { f(x ))  exists on the interval (a,b).

Further, if F  is the p-th derivative of a locally summable function on the

interval ( f  (a), f{b)) (or f{b), f{a )), then

=  ( - i r X > ' - ' ( / ( . ) ) i / ' ( . A i [ 7 5 ) A ] ' [ i | i ] , , .  (4)

for all 4> in V  with support contained in the interval (a,b).

Using equation (3), it was proved that, if /  has a single simple zero at the point 

X = x i  in the interval (a, 6), then

1 r i d

on the interval (a,b), for a =  0 ,1 ,2 , . . .  , showing that Definition 7.4 is in agreement 

with the definition of S^^\f{x))  given by Gel’fand and Shilov see [13].

The problem of defining the product F (f)o G (g )  was considered in [14]. Putting 

F { f)  — Fi and G{g) — Gi the product o Gi =  Hi is, of course, defined by the 

equation

N —lim N -lim (T im G in,

for all (pin V , where Fim = F\ * 6 m and Gin = Gi * 6 n-

However, it has been pointed out (see [14]), that since the distributions F { f)  

and G{g) were defined by the sequences {Fm} and {G„} the product F { f)  o G{g) 

should be defined by these sequences, leading to the following definition.
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D E F IN IT IO N  7.5. Let F  and G be distributions in V ,  f  and g be locally 

summable functions, and Fm = F  * Sm and Gn =  G * 6 n- We say that the neu­

trix product F { f)  o G{g), of F ( f )  and G{g) exists and is equal to the distribution H  

on the interval (a,b), if  Fm{f)Gn{g) is a locally summable function on the interval 

(a,b), and

N - l i m  [ N - l im < F r n ( / ) G n ( g ) , ,^ ) l  =n—̂co L $-00 J

for all (f> in V  with support contained in the interval (a,b).

The following two examples were given in [14] and show that the neutrix product 

F { f)  o G{g) can be equal to, but is not necessarily equal to, the neutrix product 

F lo G i.

E X A M P L E  7.1. Let F  =  G = 6 '{x), f  = and g =  z+. Then 

F m  = F i =  æ+, G(g) =  Gi =  l y ( z )

and

E X A M P L E  7.2. Let F  = z ;^ ^ \  G =  6 {x), f  =  z and g = z j /^  Then 

F (y) — Fi = G{g) =  Gi = 0

and

f '( / ) o G (g )  =  6(z)ÿ6 0 =  F io G i.

The following theorem was also proved in [14].

T H E O R E M  7.3. Let F  and G be distributions in V , f  be a locally summable 

function and g be an infinitely differentiable function. I f  the distributions F { f)  — Fi 

andG{g) — Gi exist, and the neutrix product F {f)oG {g) exists on the interval {a,b), 

then

F ( / )  o  G ( g )  =  F i  0  G ( g )



on the interval (a,b). In particular, if g(x) — x, then

f  ( / )  o G(g) =  0 Gi

on the interval (a, 6).

In this theorem, F\ o G{g) was used to denote the distribution defined by

We now prove the following theorem.

T H E O R E M  7.4. Let F  and G be distributions in V  and f  be an infinitely dif­

ferentiable function with f'{ x )  > 0 (or < 0), for all x in the interval (a,b). I f  

the neutrix product F  o G exists and is equal to H  on the interval { f{a ),f(b )) (or

on the interval {a,b).

P R O O F . Note first of aU that the distributions F { f)  and G {f)  exist on the interval 

( /(a ) ,/ (^ ) )  (or ( /(6 ) ,/(a )) ) , by Theorem 7.2.

We will suppose that / '( z )  > 0 and that g is the inverse of /  on the interval 

(a, b). Letting p  be an arbitrary function in V  with support contained in the interval 

(a ,6), and making the substitution t = /( z ) ,  we have

/ CO POO

F;n(/(a:))Gn(/(z))</*(z)dz =  /
-CO  J — OO

=  J  Fm {t)G n{t)i>{t) d t,

where i f f )  =  <p{g{t))g'(t) is a function in V  with support contained in the interval 

( f{a ),f(b )). It follows that

N —lim

for all 0 or ip.
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Further, on making the substitution t =  / ( z ) ,  we have

/ OO POO

Hn{t)'4){t)dt =  / Hn{t)(p{g{t))g'{t)dt
-CO  J  — CO

=  j  Hn(f{x))(j){x)dx,

and so

T H E O R E M  7.5. Let F  and G be distributions in V  and f  be an infinitely dif­

ferentiable function with f '{ x )  > 0 (or < 0  ̂ for all x in the interval (a,b). I f  the 

neutrix products F  o  G and F  o  G' (or F ' o  G), exist on the interval ( /(a ) , /(&)) (or

on the interval (a,b).

P R O O F . The usual law

( F  o  G ) '  =  F '  o G  +  F  o  G '

for the differentiation of a product holds and so the result of the theorem follows 

immediately from Theorem 7.4.

T H E O R E M  7.6. Let f  be an infinitely differentiable function with f { x )  > 0 

(or < Q), for all x in the interval (a,b), and having a simple zero at the point 

X =  z i in the interval (a, 6). Then the neutrix products (/(z))!]_ o 5(®^(/(z)) and 

d(®)(/(z)) 0 (/(z))!j. exist and

( /(z ) ) ;.g W (/(z ))  =  g W (/(z )) .( /(z )) ; =  0 (6)

for  s =  0 ,1 , . . . ,  r — 1 and r — 1,2, —  Further,

( / ( z % o g W ( / ( z ) )  =  6 W ( / ( z ) ) o ( / ( z ) ) ;

( - I f a !  1 r 1 d
2(s -  r)! | / '( z i ) | L f ( z )  d x

j  6 { x  -  z-i),  (7)



fo r  r  =  0 ,1 ,. . .  ,a, and s =  0 ,1 ,2 , . . . ,  on the interval {a,b).

P R O O F . If g is an s times continuously differentiable function at the origin, then 

the product g.fW = (W .g is given by

g(z).gW (z) =  gW (z).g(z) =  ^ ( - 1 ) '+ '  M g ( '- ') (0 )g M (z ).
i=o v v

It follows that

z!]..gW(z) =  =  0,

for s =  1 ,2 , . . .  , r  -  1 and r = 1 ,2 , Equation (6) follows immediately on using

Theorem 7.4.

It was proved in [9] that

z ;  o gW(z) =  gW(z) O =  ( ^ ^ -,F('-'-)(z),

for r  = 0 ,1 ,2 , . . . ,  s and s =  0 ,1 ,2 , Using Theorem 7.4, it follows that

( / ( z ) ) ;  O gW (/(z)) =  gW (/(z)) o ( / ( z ) ) ;  =

for r  = 0 ,1 ,2 , . . . ,  s and a =  0 ,1 ,2 , . . .  . Equation (7) follows immediately on using 

equation (5).D

E X A M P L E  7.3. For all z e R ,

(z +  ẑ )!]_ O +  Z^) — +  z^) o (z +  z^)+

= i ( - iy r ! [ ^ ( z )  +  d(z +  1)], (8)

(z +  z^)!]. O ^(’’+^)(z +  Z^) =  +  Z^) O (z +  z^)!j.

= l ( - l / ( r  +  l)![^'(z) +  26(z) -  6 '{x + 1) +

+2g(z + 1)] (9)

for r  =  0 ,1 ,2 ,----
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P R O O F . The function f{x )  =  z +  has simple zeros at the points z =  0 ,-1 . It 

follows from equations (5) and (7) that

(z +  ẑ )Ij_ o ^M(z +  z^) =  6(’)(z +  z^) o (z +  ẑ )!]_

= i ( - l ) ’>!^(z + z^)

=  l ( _ i y r ! [ ^ ( z )  +  g (z  +  l ) ] ,

proving equation (8) for r =  0 ,1 ,2 , . . .  .

It again follows from equations (5) and (7) that

(z +  z^)!j. o +  z^) =  +  z^) o (z +  z^)y

=  f  +  !)![«'(“;) +  2«(a.') -  <'(ie + 1) +  2S(x +  1)],

proving equation (9) for r =  0 ,1 ,2 , . . .  .□

T H E O R E M  7.7. Let f  be an infinitely differentiable function with f'{ x )  > 0 (or 

< Oj, for all X in the interval (a,b), having a simple zero at the point z =  z j in

the interval {a,b). Then the neutrix products ( / ( z ) )“ ’' o 6 ^^ \f{x )) and 6 ^ ^ \f{x ))  o

( / ( z ) ) " ’’ exist and

( / ( . o r  o f ' ( / ( A )  =

=  0, (11)

for r = 1 , 2 , . . .  and a =  0 , 1 , 2 , ,  on the interval (a, b).

P R O O F . It was proved in [9] that

z - ’- 0 6 W (z ) =  |^ ^ )^ ^ ;g W ( z ) ,

5^®)(z) o z~’’ = 0,

for r  =  1 ,2 ,. . .  and a — 0 ,1 ,2 ,.. .  . Equations (10) and (11) follow immediately as 

in the proof of Theorem 7.6.□
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E X A M P L E  7.4. For all z € R,

(z^ -  1)“  ̂ 0 6 {x^ -  1) =  -^ [d '(z  -  1) +  6 ( z  -  1) -  6 '{x +  1) +  6 {x +  1)], (12)

^ M ( z ^ - l ) o ( z = - l ) - ’' = 0 ,  (13)

for r  =  1 , 2 , . . . ,  and a =  0 ,1 ,2 ,----

P R O O F . The function / ( z )  =  z^ — 1 has simple zeros at the points z =  ±1. It 

follows from equations (5) and (10) that

(z^ -  1)“  ̂ o ^(z^ -  1) =  - ^ [ ^ ( z  -  1) +  ^ (z  +  1)]

-  - |[ d '( z  -  1) +  8 {x -  1) -  6 '{x +  1) +  6 {x +  1)],

proving equation (12).

Equation (13) follows immediately from equations (5) and (11) for r  =  1 ,2 ,.. .  

and a — 0 ,1 ,2 ,.. .  .

T H E O R E M  7.8. Let f  be an infinitely differentiable function with f '{ x )  > 0 (or 

< 0), for all X  in the interval {a,b), having a simple zero at the point x = z% in 

the interval ( a ,  b). Then the neutrix products ( / ( z ) ) ^  o {f{x))Z^~’' and {f{x))Z^~' o 

( / ( z ) ) +  axist and

_  xcosec(xA) 1 r i d
2 ( r - l ) !  | f ( z i ) | | . / ' ( z i ) d z ]  )

for A y  0, ±1, ± 2 , . . .  and r  =  1 ,2 , . . . ,  on the interval {a,b).

P R O O F . It was proved in [9] that

for A y  0, ± 1 ,± 2 ,. . .  and r  = 1 ,2 ,. . .  . Equation (14) follows immediately as in the 

proof of Theorem 7.6.□
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E X A M P L E  7.5. Let / ( z )  = t be the inverse of the function g(t) = t + f  — x. 

Then, for all z G R,

= -  ixcosec(xA )d(z), (15)

(/(«:))+ o (/(a:))-"^ =  ° (/(æ))+

= -  IX  cosec(xA)[6'(z) +  ^(z)], (16)

for A y  0, ±1, ± 2 , . . . .

P R O O F . Since

g '(t) =  1 +  >  0

for all t, it follows tha t / '( z )  > 0 for all z and so, on using equation (3) with p =  1, 

we have, for all <f> in V ,

{b if{x ))A {x))  =  -  j  H{x)d[{l + 3xf(l){x + x^)] 

-  -  [  d[(l +  3x^)(p(x + z^)] = (p{0 ).

It follows that

^(/(a:)) =  <̂ (æ). (17)

Using equation (3), again with p =  2, we have, for all p in V ,

(F (/(z)),.^ (z)) =  r d [ ( l  +  3z2),^(z +  z")y
JO

POO

= -<^'(0) -  d[(l +  3x^)(f){x +  z^)]

=  _,^'(0) +  ,^(0).

It follows that

F ( /(z ) )  =  F (z) +  g(z). (18)
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It now follows from equations (14) and (17), that

(/(«:))+ o (/(æ )):^"^  =  (/(æ )):^"^  o (/(æ ))^

= -  ITT cosec(7rA)^(/(a;))

=  -  17T cosec(7rA)^(æ),

proving equation (15) for A ^  0 ,±1, ± 2 , . . . .

It again follows, from equations (14) and (18), that

(/(«:))+

= -  I  7t cosec(7rA)^'(/(.T))

=  i  7T cosec(7rA)[y(æ) +  f(æ)],

proving equation (16) for A ^  0, ±1, ± 2 , . . .  .□

In the following, we consider another alternative definition of composition which 

extends Definition 7.4.

D E F IN IT IO N  7.6. Let F  and f  be distributions in V . We say that the distribu­

tion F (f{x ))  exists and is equal to the distribution h{x) in V , on the interval (a,b),

if
r rb 1

(/i(æ),<^(æ))N —lim N -lh n  J  Fn{fm{x))(f){x) dx 

for all (j> in V  with support contained in the interval (a, b), where 

F;i(æ) =  (F*g»)(a;), ym(a:) =  (/*^m )(«)-

An alternative generalization was considered in [32], where the order in which 

the neutrix limits were taken in Definition 7.6 were reversed.

T H E O R E M  7.9. Let F  be a bounded, continuous function on the real line. Then 

the distribution F(6W(æ)) exists on the real line and

F(gW(æ)) =  F(0),
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fo r  s =  0 ,1 ,2 ,.. .  .

P R O O F . Let (f> be an arbitrary function in V  with support contained in the interval 

(a, 6). Then, since F  is a continuous function, it follows that

=  (19)

Now,

=  f'(O), k l > 1/?^,

where

[F(6W(æ)) -  F(0)] ,^(æ) dæ <

K  -  sup{|F(æ)|} < DO,

since F  is bounded. Thus,

rl/rn 

- 1/to

which tends to zero as m  tends to infinity. It now follows, from equation (19), that 

N -lim  k - U m  (fk(^(;)(æ)),,^(æ))l =  (F(0),<^(æ)>.O
m —)-oo L ^ —)"Oo \ / I

THEOREM 7.10. The distribution exists on the real line and

R(gH (æ )) =  1,

for 5 =  0 ,1 ,2 ,.. .  , where H denotes Heaviside’s function.

P R O O F . We put

H n { x )  —  { H  *  S n ) { x ) ,

for n =  1 ,2 ,.. .  , so that

{ 1, æ > 1/n,
J  Sn(t)dt, |æ| <  1/n,

0, X < -1 /n ,
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for n =  1 ,2 , . . .  . Thus

for |æ| > l /m  and

0 < Hn{x) < 1,

^n(O) =  i ,

=  ^n(O) = 

< 1,

for m, n = 1 ,2 ,.. .  .

Now, let 4> be an arbitrary function in V  . Then,

J \ x \ > l l m  J \ x \ < \ / m

J \ x \ > l l m  J |æ |< l /m

and so

' ' I J\x\<llm '■ ■'

Choosing an arbitrary e > 0, there exists an M  such that me > 1 for m  > M . 

Then, with m >  M , we have

=  ^u(O) =  i ,

for |æ| > e and n =  1 ,2 ,.. .  . It follows that, for m  > M ,

' ' ' ' V|a;|<6 '■ J

for n — 1 ,2 ,. . .  . Thus

T H E O R E M  7.11. Let F  be a bounded, locally summable function on the real line 

which is continuous everywhere except for a simple discontinuity at the origin. Then 

the distribiUion F (ê^^\x)) exists on the real line and

F(gW(æ)) =  l[F (0 + ) +  F (0 -)] ,
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fo r  s = 0 ,1 ,2 ,.. .  .

P R O O F . Let

F (0+) -  F (O -) =  c.

Then, the function G, defined by

=  F(æ) -  cR(æ),

satisfies the conditions of Theorem 7.9. Thus,

G(gW(æ)) =  G(0) =  F(O -),

and so

G(g(")(æ)) +  cR(gH(æ)) =  F(O -) +  %[F(0+) -  F (0 -)] 

=  l[F (0+ ) +  F (0 -)],

for 5 =  0 ,1 ,2 ,.. .  .□

T H E O R E M  7.12. Let F+(æ, A) be the continuous function where A > 0. 

Then, the distribution A) exists on the real line and

F+(gW(æ),A) =  0, (20)

for  sA +  A 7̂  1 ,2 ,. . .  and a =  0 ,1 ,2 , . . . ,  also

F+(6W(æ),A) =  ^

for sA +  A =  1 ,2 ,. . .  and s =  0 ,1 ,2 , . . .  , where

c(/),a,A) =  y   ̂F+(p(')(2/), A)i/^^+^-^ dÿ.

P R O O F . We put

F + n { x )  =  (F+ * S n ) { x ) ,
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for n =  1 ,2 , . . .  .Then, since F|_ is a continuous function,

j™  =  F^(gW(æ),A),

for m =  1 ,2 , . . .  . Further, 

and in particular

F+(gW(æ),A) =  m'^+^F+(0) =  0, 

for |æ| > 1/m. Thus, if <j) is an arbitrary function in V , then

(F+(fW(æ),A),<^(æ)) =  F+(pM(mæ),AMz)dæ. (22)
'  '  1- 1/to

On making the substitution m x — y, we have

fl/TO
/  f+(p(')(ma;),A)</»(a;)da: =  m - ^ /  T+(pH(%/),A)^(y/m)d^
1- 1/to 1-1

= g § | / > l 4 ' W . A ) l % +

where 0 < ^ < 1 and k is the smallest integer greater than or equal to sA +  A -  1. 

It follows, from equation (22), that

( f + (4 > W .A ) ,« .t)) = /A + (4 > (!/),A )!/V !/ +
i= 0  *•

™ sA-fA—A:“ 2 p 1

’*” ~ ( r + T ) r ~ J - i  (̂ 2/),A)^('=+^)(^?/)i/+^dy.

Now,

(SA-j-A—/:—2 />!

F k o T  A )# ‘+ '> ( f» ) /+ ' 4
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which tends to 0 as m tends to infinity. Thus,

N - l im  A), ^(æ)) =rri'-̂ oo ' /

=  0 ,

for sA +  A 7̂  1 ,2 ,. . .  and s =  0 ,1 , . . .  , proving equation (20). For sA +  A =  1 ,2 ,. . .  

and 5 =  0 ,1 ,2 ,.. .

proving equation (21).O

C O R O L L A R Y  7.1 Let F -{x,X ), F (x,X ) and G{x,X) be the continuous functions

, x^  +  x ^ , -  x^

respectively, where A > 0. Then the distributions F_(fW(æ), A), F(^(^)(æ), A) and 

G(6W(æ), A) exist on the real line and

F_(6W(æ),A) = 0, (23)

F(gW(æ), A) =  G(/)(')(æ), A) =  0, (24)

for sX +  A 7̂  1 ,2 ,. . .  and 5 =  0 ,1 ,2 , Further,

F - ( i W ( ï ) , A )  =  ( 2 6 )

F ( « W ( a i ) ,A )  =  ( - 1 ) * ^ + - '  ' k ( f , « , A )  +  (2 6 )
(sA T A — 1)!

G(6H(æ),A) =  (-1)'^+^
(5A + A — 1)! 

for  sA T A = 1 ,2 ,.. .  and 5 =  0 ,1 ,2 ,.. .  , where

b{p,s,X) =  j  ̂  F_(p(®)(y), A)7/^+^~^ dy.

In particular,

F(6W(æ),A) =  |fH(æ)|^ =  0, (28)
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fo r  sA +  A =  2 ,4 , . . .  and a = 0,1,2, —

P R O O F . The proofs of equations (23) and (25) are similar to the proofs of equations 

(20) and (21). Equations (24), (26) and (27) follow immediately.

Further,

c(p,s,A) +  6(p,s,A) =  J   ̂ dy = 0,

and equation (28) foliows.D

T H E O R E M  7.13. Let f  be a locally summable function on the real line and 

suppose that inf{/(æ) : -o o  < x < oo} =  c > 0. Then, the distribution 6 ’̂' \ f { x ) )  

exists and

gW(/(æ)) =  0,

for r  =  0 ,1 ,2 , . . .  .

P R O O F . We have

IA.(æ)| =  |(/*^)m (æ)| > c,

for m =  1 ,2 ,. . .  and all x. Choosing I f  > c~^, we have

R/m(æ) > RC > 1,

for m =  1, 2 , . . .  , all x, and n > K . It follows that

4")(/m(a;)) =  0,

for n > K , and so

N -lim  [N -lim  (gW(/,,,(æ)),<^(æ))l =  0.0
m —i-oo L fT'—̂ oo \  /  J

C O R O L L A R Y  7.2. Let f  be a locally summable function on the real line and 

suppose that sup{/(æ) : -o o  < x < oo} =  c < 0. Then, the distribution 6 ’̂''>{f{x)) 

exists, and

gW(/(æ)) =  0,
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fo r  r  = 0 ,1 ,2 , . . .  .

P R O O F . Defining g(x) =  —/(æ), we have

inf{(/(æ) : —oo < x < oo} =  - c  > 0.

It follows from the theorem that

g('-)(g(æ)) =  0 =  (- iy g W (/(æ )) ,

for r  =  1 ,2 ,. . .  , proving the corollary.

The neutrix product in Definition 6.1 was defined for ultradistributions. If /  and 

g are distributions in V  then the neutrix product of /  and g is similarly defined as 

follows:

D E F IN IT IO N  7.8. Let f  and g be distributions in V  and let

fn{x)  = ( /  * gni,x) =  (<7 * bn)(xf

Then, the product f.g  is defined to exist and be equal to the distribution h on the 

interval (a, b) if

for all test functions 4> in V  with support contained in the interval (a,b).

We note that with this definition of the product of two distributions, the defini­

tion of the distribution as the composition of the function x^ and the distribution 

/ ,  if it exists, is distinct from the definition of the product / . / ,  if it exists. However, 

the following theorem holds:

T H E O R E M  7.14. Let f  be a distribution in V . Then the distribution exists 

on the interval {a,b) if and only if the distribution f . f  exists on the interval (a,b). 

Then,

f  =  / . /
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on the interval (a,b).

P R O O F . We have

rV" . . o  . ,  . . F /'

where

( x ^ ) n  =  x ^  * 6 n { x )  =  [  { x  -  d t  =  [  t ^ 0 n { t ) { t )  (It +  X

J —l / n  1 —1 /n

yl/M
lim /  t  S J t )  (It — 0.

[(/m(æ))^]^ = dt + [fm{x)f .

f l / n  

-1 /n

Thus,
f l / n  

-1 /n

It follows that p  exists on the interval (a, 6), if and only if

N -lim  [ n - l im /[(/„,(a;))2] ,<f>(x))] (29)
m —)-oo L \ L J n  / J

exists for all çi in P  with support contained in the interval (ft, 6). But

N -% n([(/m (æ))^]^,<^(a:)) =  j^ ([(/m (æ ))^ ]^ ,< ^ (æ )) =  </m(æ)/m(æ),<^(æ))

certainly exists, and so (29) exists if and only if f . f  exists. □
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