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ABSTRACT

In Chapter 1, we give some properties of distributions and introduce the notions
of neutrix and neutrix limit with examples, in order to study the problem of defining

the convolution product and the product of distributions.

The problem of defining the distribution 'Lfl\_ In® @4 such that the ordinary deriva-

tive formula is satisfled for all A and s = 0,1,2,... is studied in Chapter 2.

In Chapter 3, we define the Beta function B, 4(A, 1) using the neutrix limit and

prove that this neutrix limit exists for all A, p.

In Chapter 4 we let f and g be distributions and let fn(2) = f(2)rn(z), where
(2) is a certain function which converges to the identity function as n tends to
infinity. We then define the neutrix convolution product f& g as the neutrix limit of
the sequence {fy * g}, provided the limit A exists in the sense that N —limy,—, oo (/s *
9,9) = (h,¢) for all $in D. The neutrix convolution products Inz_ @z, =" ® 2k,
Inz- @®lnay, Ine- @2y’ and 277 @ 27 ° are evaluated, from which other neutrix

convolution products are deduced.

The neutrix convolution product of distributions in Chapter 4 is not commu-
tative. Therefore, in Chapter 5, we consider the commutative neutrix convolution
product of distributions, , and also evaluate the neutrix convolution product

o flaA

The problem of defining the product of ultradistributions is considered in Chap-
ter 6, and the neutrix product (Ff)O(Fg) in Z’, where I’ denotes the Fourier
transform, is defined as the neutrix limit of {F(fr,).F(g7,)}. Later, we prove that

the exchange formula holds.

We finally define the neutrix product F(f)oG(g) of F(f) and G(g), where F and

G are distributions and f and g are locally summable functions. It is proved that if

il




f is infinitely differentiable function with f/(2) > 0 and if the neutrix product Fo G
exists and equals H, then the neutrix product F(f) o G(f) exists and equals H(f).
We also give an alternative approach to the form F(f(z)) in D/, where I’ and f are

distributions.
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CHAPTER I

DISTRIBUTIONS AND THE NEUTRIX CALCULUS

The problems of defining the convolution product and the product of distri-
butions are well-known. Various definitions of the product of distributions have
been considered: one by regularization and passage to the limit (Hirata-Ogata [25],
Mikusinski [33], Itano [27], Fisher [5],...) and another one (Hérmander [26]) by
means of the Fourier transform. It has been shown that these definitions of product
of distributions are not equivalent; see Colombeau [4].

In the case of the convolution product of distributions, the primary definitions
are given by Schwartz [34], Shiraishi [35] and more recently by Jones [29], Fisher
[7] and Kaminski [30]. Despite many efforts from mathematicians, there are still
problems in defining the convolution product and the product of distributions for
some cases.

Our main purpose is to extend the convolution product and the product to larger
classes of distributions. Therefore, in this chapter, we give some basic properties of

distributions and introduce the concepts of neutrix and of neutrix limit.

DISTRIBUTIONS.

The support of a function ¢ is the closure of the set on which ¢(z) # 0. An
infinitely differentiable function with compact support is called a test function. The
vector space of all test functions is denoted by D.

As an example of test function, consider

I Cal e ol R I )
¢(@)_{ 0, z<a,z>Db

This function ¢ is infinitely differentiable and its support contained in the closed

interval [a, b].




We note that the product of an infinitely differentiable function f and a test
function ¢ is also a test function.

A sequence {¢n} of test functions is said to converge to zeroin D if all these func-
tions vanish outside some bounded region independent of n and converge uniformly
to zero together with the derivatives of any order.

Let an infinitely differentiable function ¢(x,a) be defined as follows:

o(w,0) = { el

=) el < a,

0, || > a.

Then {n~'¢(z,a)} converges to zero in D , but {n~*¢(n"'z,a)} does not, since

there exists no common bounded region outside which all these functions vanish.
A functional f on D satisfying the following conditions is a called a distribution:

(i) For any two real (or complex) numbers a1 and e and any two functions ¢

and ¢y in D we have

(f, 101 + cad2) = as(f, $1) + aa{f, ¢2)

(i) If the sequence {¢,} converges to zero in D, then the sequence {{f, )}
converges to zero.

For instance, let f be absolutely integrable in every bounded region of R (we
call such a function locally summable). By means of such a function we can associate
every ¢ in D with

(£.)= [ f@)p(e)do ™)
where the integral is actually over the support of ¢. It is easily verified that condi-
tions (i) and (ii) are satisfied for the functional f.

Equation (1) represents a very special kind of continuous linear functional on D.
Other kinds of functionals are easily shown to exist. The functional which associates
with every ¢(z) its value at @g = 0 is obviously linear and continuous and cannot

be written in the form of (1) with any locally summable function.




Functionals defined by equation (1) will be called regular and all others will be
called singular.

The space of all continuous linear functionals on D will be denoted by D’; see
Schwartz [34].

A distribution f is said to vanish in a neighbourhood ¥ of z¢ if (£, ¢) = 0 for all
functions ¢ in D having their support in /. If f is a locally summable function and
if f vanishes in a neighborhood ¥ of zo as a distribution, then f vanishes almost
everywhere in this neighborhood as a function.

The Dirac-delta function §(z — 1) defined by

(8(z — 21), ¢(w)) = ¢(w1)

for all ¢ in D, is singular and vanishes in a neighborhood of every point & # ;.

If f is a distribution which fails to vanish in any neighborhood of =g, then zg
is called an essential point of the distribution f. The set of all essential points of a
distribution f is called its support.

The support of the regular distribution f corresponding to the continuous func-
tion f is the closure of the set on which f(z) # 0, i.e. the support of f .

In order to define the derivative of the distribution, we first of all consider a

continuous function f of a single variable, having a continuous first derivative. Then

1l

(9 = [ F @)
[f@e@]” - [~ s ds

—{£:¢), 2

Il

for all ¢ in D . If f is now an arbitrary distribution, then the functional g, defined
by

(98) = (£, ¢),
will be called the derivative of f and be denoted by f’ or df/dz. It can be easily

shown that g is also a continuous linear functional on D. Since differentiation of
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a distribution yields again a distribution, the process may be continued. Thus all
distributions have derivatives of all orders.

Let H be the Heaviside function, defined by

[1, z>0
H(w)‘{o, @ < 0.

We will denote a distribution corresponding to the Heaviside function by H aswell.

Then

(e~ 6(@)) = (e =m),¢(@) =~ [ $a)da

¢(a‘1) = (‘5(‘17 - ml), ¢(‘1‘)>7

It

for all ¢ in D. In particular, the n-th derivative of § is defined by
(HO (@ = 1), 8(2)) = (6 (@ = 21),4(2)) = (~1)"¢M (w1).

Let us find the derivative of the locally summable function &} (A > —1) defined
by

o = 2}, 2 >0,
T 0, 2<0.

If A > 0 its derivative is the locally summable function Aw}:l, but, if -1 <A <0,

237" is not a locally summable function. However, we will still denote the derivative

of a,i by A:vf‘,__l on any interval containing the origin, but it must be defined by

(@), 9 = [ 6* [4(e) - 40)] do.
Thus, if -2 < A < —1, we have defined x:\,_ by
@) = [0 6@) - O] do.

In general, we define a,f‘l_ inductively by

(2}, 9) = ~(A+ )Yz}, ),




for —r — 1 < A < —r, where 7 is an integer. It can be proved by induction that if
—r—1< A< —r, then
o r=1 g
0= [ |ote) - T 500 4
It can be proved that any distribution f defined on the bounded interval (a,b)
is the r-th derivative of a continuous function F on the interval (a,b); see Halperin

[24].

DEFINITION 1.1. The product of a distribution f by an infinitely differentiable

function g is defined by
(Fg,0) = (},9¢)
for ¢ inD.
This is well-defined since g¢ is in D for all ¢ in D. It follows that if f is the r-th

derivative of a ordinary summable function F' on the interval (e, b) it can be proved

that

»

fg = Z (:) (_1)i [Fg(i)](T_i) 7

1=0

r 7!

This suggests the following definition.

where
see Halperin [24] or Fisher [5].

DEFINITION 1.2. Let f be rth derivative of an ordinary summable function F
in LP(a,b) and ¢\") be an ordinary summable function in L4(a,b) with 1/p+1/q = 1.
Then the product fg on the interval (a,b) is defined by

T

=Y (:>(_1)i [Fg(i)](r_i) '

1=0




DEFINITION 1.8. Let f and g be functions. Then the convolution product f * g
is defined by

Ur)@) = [~ fogle-t)at
for all points x for which the integral exists.
It follows easily from the definition that if (f * g)(x) exists then (g f)(x) exists
and
(f# 9)(@) = (9% F)=) 3

and if (f # g)’(2) and (f = ¢')(2) (or (f + g)(2)) exists, then
(Fxg)(@)=(F+g')z) (or (f'*g)(=))- 4)

If f and g are functions in LP(—oc0,00) and L(—00,00) respectively, where
1/p+1/q = 1, then the convolution product {f  g)(z) exists for all values of . The
following definition for the convolution product of certain distributions f and ¢ in

D', was given by Gel’fand and Shilov [23].

DEFINITION 1.4. Let f and g be distributions satisfying either of the following

conditions:
(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

Then the convolution f * g is defined by

((f % 9)(@), ¢(2)) = (9(y), (F(2), b(x + 9)))

for arbitrary ¢ in D.

Note that with this definition, if f has bounded support, then {(f(z), #(= + ¥))
is in D and it is therefore meaningful to apply g(y) to it. If, on the other hand, g(y)
has bounded support while f(2) may not, (f(z), ¢(z +y)) is infinitely differentiable.
The above equation remains valid since g(y) has bounded support and can therefore

be applied meaningfully to this function. If the supports of f and g are bounded

6




on the same side, then the intersection of the supports of g(y) and (f(z), ¢(= + y))
is bounded and so {g(y), (f(2),¢(z + ¥))} is again meaningful. It follows that if the
convolution f * g exists by this definition, then equations (3) and (4) always holds.

A sequence {f,} of distributions is defined to converge to the distribution f if

Bim (fo, ) = (f,9)

for every ¢ in D.

One important property of the space D' is its completeness with respect to
convergence as defined above. In other words, if the sequence {f,} is such that for
every ¢ in D the number sequence (f,, ¢) has a limit, this limit is again a continuous
linear functional on D; see Gel’fand and Shilov [23].

In the forthcoming chapters, we often use the property that every distribution
is the limit of a sequence of distributions with support contained in bounded sets;
see Gel’fand and Shilov [23] or Jones [29].

A sequence of functions, {f,}, is said to be regular if

(i) f. is infinitely differentiable,

(i1) (fn,$) converges, for each test function ¢, to a limit, say L(¢),

(iii) L(¢) is continuous in ¢, in the sense that
L(¢m) — 0

for any sequence {¢,,} of test functions which converges to zero in D; see Temple
[36].

There are many ways to construct a regular sequence. In the following, we are
going to give a specific example of regular sequence.

Let p be a fixed infinitely differentiable function having the following properties:

@) p(z)=0for |z| > 1,

(i) pa) >0,

(ili) p(a) = p(~2),




() [Yp@)de=1.

We could for example take p to be the function defined by

(@) = U B P |
)= 0, l2] > 1,

where k1 = [, e=(1=2")7" gg.

We now define the function 6, by
8,(2) = np(nz) forn=1,2,....

It is obvious that {6,} is a sequence of infinitely differentiable functions converging

to the Dirac-delta function 4.

Now let f be an arbitrary distribution and define f, by

fn(l) = (f * 611)(93) = (f(it - t)a 5n(t)>‘

Then {f,} is a sequence of infinitely differentiable functions converging to the dis-

tribution f.
NEUTRIX CALCULUS.

The essential use of the neutrix limit is to extract an appropriate finite part from
a divergent quantity as one has usually done to subtract the the divergent terms via
rather complicated procedures in the renormalization theory. In the neutrix calculus

each limit, if properly defined, always exists.
The following two definitions were given by Van der Corput [3].

DEFINITION 1.5. Let N be a non-empty set and let N be a commutative additive
group of functions mapping N' into a commutative additive group N". If N has the
property that the only constant function in N is the zero function, then N is said to
be a neutriz and the functions in N are said to be negligible.

The property asserts that if » is in N and v(e) =« for all ¢ in N', then v = 0.
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EXAMPLE 1.1. Let N’ be the closed interval [0,1] and let NV be the set of all
functions defined on N’ of the form asine + be?, where a and b are arbitrary real
numbers.

Then N is a neutrix, since if
: 2 _
asine+ be‘ = ¢

forallein N, thena=b=c=0.

EXAMPLE 1.2. Let N’ be the open domain {e:0 < ¢ < 1} and let N be the set

of all functions of the form
1 1 2
ae” 2 + b(loglog 2) + O(e),

where O(¢) is any function which converges to zero as ¢ tends to zero. Then N is a
neutrix, since if
ae™% + b(loglog %)2 +0(e) = ¢,

thena=b=¢=0.

DEFINITION 1.6. Let N' be a set contained in a topological space with a limit
point b which is not in N'. Let N" be the real (or complex) numbers and let N be a
commutative additive group of functions mapping N' into N" with the property that
if N contains a function v(€) which converges to a finite limit ¢ as ¢ tends to b, then
¢ =0. Then N is a neutriz.

If now f(€) is a real (or complex) valued function defined on N' and it is possible
to find a constant B such that f(e)— B is negligible in N, then 8 is called the neutriz

limit of f(€) as ¢ tends to b and we write

N—l;ljmf(e) =p.

Note that in this definition IV is in fact a neutrix, since if fisin N and f(e) = ¢

for all £ in N’, then f(£) converges to the finite limit ¢ as ¢ tends to b and so ¢ = 0.

9




Also note that if a neutrix limit 8 exists then it is unique since if f(e) — 8 and

f(e) — B are in N, then the constant function § — (' is also in N and so 8 = §'.

EXAMPLE 1.3. Let N be the neutrix with domain ZT, the positive integers and
having negligible functions aloge + O(¢), where O(¢€) converges to zero as ¢ tends

to co. Then,
‘1
Nolimd, o=
where v denotes Euler’s constant. The assertion follows from the relation

€

Z%zloge-l—l‘—{-O(e).

n=1

EXAMPLE 1.4. Let N’ be the open domain {¢:0 < € < 0o}, let b = 0 and let N

be finite linear sums of the functions,
A, In"e, O(e),

where A < 0, r = 1,2,... and O(e) is any function which converges to zero as €

tends to zero. The gamma function I'(2) is defined by
T'(x) :/ 1=~ le7t dt
0
for > 0, and in general we have
o0
T(2) = N—lim / #let gy
e—0 €
for # < 0 and @ # —1,-2,...; see [21].

EXAMPLE 1.5. Let N’ be the open domain {¢:0 < € < 1/2}, let b = 0 and let

N be as in Example 2. The Beta function B(A,p) is defined by

1
B\ p) = /0 P11 = 1Pt

10




for A\, > 0 and by
B(\p) = /01/2 1 [(l—t)”‘ Z(ﬂrl&r(u)t’] dt +
- (=1)'T(p)
+ X TG ()
+/ (1— )t [tA— E('Fl();T(A)(l )} gt +

5 (=1'T())
+ % SFTITON — 4)(5 + )

for A\> -7, u>—-5,2#0,1,2,...,~r+1and p #0,1,2,...,~s+ L.

It can be shown that
1—e¢
B(\,u) = N=lim / P11 = 1) gt (5)
€ €

for A\, # 0,1,2,.... More generally we have

—apl—B(,\ @) = N—lim /H P (1 — 1) In?(1 — ¢) dt (6)
AP -0 Je

for p,¢=0,1,2,...and \,u #0,1,2,....

As we shall see in Chapter 3, equations (5) and (6) can be used to define B(\,p)
and By 4(A, p) respectively, for all values of A, p.

In the next example, the neutrix N is the one defined in Example 1.4.
EXAMPLE 1.6.
oo
(0, 4(e)) = N—lim [~ &*¢(0) do
e €

for A # —1,~2,... and arbitrary test function ¢ in D, where the distribution wi is

the locally summable function defined by

’72)‘— :L‘/\, ZI)>0,
Tl 0, 2<0,

for A > —1 and is defined inductively by the equation

- (@'\H)/
=N

11




for -n-1< A< —nandn=1,2,.... More generally, it can be proved that
o
(2} In" 2y, d(x)) = N—«lé’m/ 2 " ag(a) de
€— €

for A # -1,-2,...,7=0,1,2,... and ¢ in D. These results were proved in [11].

Note that the negligible functions in the neutrix N given in Example 1.4 are

selected because these are the functions that occur in mathematics and physics.
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CHAPTER II

ON DEFINING THE DISTRIBUTION x;"In®x

In the following we are going to redefine the distribution 2" In® z4. For A > ~1,

the distribution m:,\_ is a locally summable function defined by

A
A (E,(B>0,

0, a<0.
When A < —1and A # —-2,— ., the distribution 27 is defined inductively by the
equation
(#371) = (A4 el M

It follows that if —r —1 < A < —7, then

()
@@= ["a [¢() z¢ il 4 }

= /(;oo .Z'/\ [¢(‘ ) Z ¢(1)(0)_ (T—‘l)(O)H(l . CU)J}T_I:I do 4+ ¢(’I‘—1)(0)

= (r—1)! (r—=DA+7)

for an arbitrary test function ¢ in the space D of infinitely differentiable functions

with compact support, where H denotes Heaviside’s function. Note that if r = 1,
then 30721 is understood to mean an empty sum.

Gel'fand and Shilov [23] define the distribution F_,(z4,)), when —7 — 1 < A <

—r, by the equation

o0 =2 4) (-1)
(a4, 0, 00) = [ wk[aﬁ(w) I e (LR el

for arbitrary ¢ in D.

They then define the distribution 27" by

ey’ = oy, —7) @)
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for r = 1,2,... . We will now denote F_,(zy,—r) simply by F(zi,~7) and it

follows easily that
d (_1)7‘ 7
de(:m., )= —rF(24,-r— 1)+ Té( ().

Thus with 2" defined by equation (2), equation (1) is not satisfied with r =
-2,-3,....
This seems to be rather unfortunate and so an alternative definition of ay" was

given in [12] by letting In @ be the locally summable function defined by

Ina. = Inz, z>0,
*T1 0, 2<0,

then defining =3 by the equation
(Inzg) =23t (3)
and more generally defining 27" inductively by the equation
(:v__|_T+1)' =—(r—1)ay" (4)

for r = 2,3,... . With this definition of 21" preserves the derivative rule, but not

product behaviour:

(v’ ¢(e))

It

(7, 56(0)) = (o7, ~24(z)
(77 {29(2)}) = (25, 9(2)) ~ #(0)
(@3 9(@)) + (¥, ¢(2))

It can be proved easily that
a7t = F(eg,—1)

and it then follows by induction that

(=1
(r—1)!

al" = F(zy,—7)+

p(r = 1)60"V(a) (5)

14




for r = 1,2,..., where
_ 0, r=0,
w(r) = { T )i, v L
The distribution 2} In® z,. is defined by

as

A
et = 'L+1n 2y

for A # —1,-2,...and s =1,2,.... Then mf‘,_ In® 2 is a locally summable function
for A > —1 and

(wilnsm+,¢(m))=/ z* In® {(JS( z)— Ti:gb(’)( )a,} da

) Hlr-1)
~/ M n® 'Lliqﬁ(’c) Zb¢ (0) ('r 1()2) (1 —m):c"_l] da+

(=1)*slg(=D(0)
O ST

for —r—1< A< —-r,s=1,2,... and arbitrary ¢ in D.

It follows easily from the definition that
(@} Inf2y) = Aef I’ ey +se) It ey, (6)

for A # —1,-2,... and s = 0,1,2,... . Although the distribution rf,‘_ In® 24 is con-
sidered as a single entity and not as a product of the distribution 'Lf‘,_ and the locally
summable function In®z.., equation (6) shows us that differentiation of zf\l_ In® 2y
acts as if it were such a product.

We now consider the problem of defining «1" ln® 2. so that equation (6) is sat-
isfied for all A and s =0,1,2,... . Gel’fand and Shilov [23] define ;" In° ¢ by the
equation

%F_T(mq_, ) L, = e Intay,

for r,s =1,2,... . From now on, we will denote this distribution by

Fay, —r)In® 2y,

15




so that

(F(a).;., ~‘7’) In® Ty qS(w))

= [T </>’)(0) A () -
_/0 1nz[¢(z)—2 w—(r_l)'H(l )1 da,

for arbitary ¢ in D.
THEOREM 2.1.
[Flag,—r)In°ay] = —rF(oy, —r — DIn® oy + sF (g, —r — 1)In* "1,
forr,s=1,2,....
PROQOF. For arbitrary ¢ in D we have
([F(zg, =)0 2y], ¢(r)) = —(F(z4, —7)In° 24, ¢/ (z))

=- /O°° 27" In® [45’(@) Z ¢(l+1)(0)‘ ) H(l- w)gf_l] o

(r—1)
(2) (r)
_/ —r— llns—- 'c(—rlnx-}-s) [qﬁ(m) ZQS (0) z _ ol (O)H(l ) :|d{b‘
= (=rF(zq,—7 — 1)In® 2y + sF(ay,—r — DIn*"tay, ¢(2)),
for r,s = 1,2,....0
It follows from the theorem that with Gel’fand and Shilov’s definition of the
distribution 1" In® a4, equation (6) is satisfied for all A and s = 1,2,..., even
though it is not satisfied for r = —1, -2, ... when s = 0.

In order to define «3" In’ 2y so that equation (6) is satisfied for all A and s =
0,1,2,..., we first of all define :v_T_l In® 2. by the equation
(In*tay) = (s + Va3t In® oy
for s =0,1,2,..., so that equation (6) is satisfied with A = 0 and s =1,2,....
THEOREM 2.2.
el o’ oy = Flay, ~1)In° oy
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fors=0,1,2,....

PROOF. We have

(s+ V(e ey, d(2)) = —(InHay,¢(e)
- - /0 "1neH g dig(e) — $(0)] — /1 “ 10t 5 di(o)
= (s+1) fo * e n® of(e) — SO)H(L — )] da
= (s+ 1)(F(z4,-1)In" x4, (2))
for s =0,1,2,... and arbitrary ¢ in D. O

More generally we now define 2" In° x4 by the equation

s R -1 —
27" In® ey = F(zy,—7)In’ 24 + Eg——)l)!-%(r —1)8¢ 1)(9:)

for r,s = 1,2,..., where
r =0,

0,
b=y 3ty
1=1 ?

for s = 1,2,..., with the particular case o(r) being equal to ¥(r) defined above.

Note that in the particular case r = 1, m;l In® 24 is in agreement with Theorem 2.2.
THEOREM 2.3.

(27" 0’ wp) = —ral"'In’ ap + s27 ey
forr,s=1,2,....

PROOF. Using the definition of 21" In® 2. and Theorem 2.1 we have

1l

(27" In° 2y ) —rF(zq,—r — DIn’ ey + sF (g, —r — DIn* 1oy

= —r [F(aur,—r - Dn®ay +

C- ws(r)a“)(m)] T

(-1yH
r!

+s {F(m_, —r — 1) In*"tay +

(_1)'r 8 |
A [ = D = )+ Za(0)

¢s_1(r)5<")(w)] +

= —re7" 'In g + st ey,
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for r,s =1,2,....0

It follows that with this definition of 1" In’ 2, equation (6) is satisfied for all
Aand s =0,1,2,....

The distribution 22 In® @_ is defined by replacing by —= in the distribution
mﬂ‘r In® 2y for A # —1,-2,...and s = 0,1,2,... and the distribution F(z—, —7)1n° a_

is defined by replacing = by —= in the distribution F(e4, —r)In®zy forr = 1,2,...

and s = 0,1,2,... . We therefore define the distribution =" In® z_ by replacing z
by —z in the distribution 2" In°x._ for » = 1,2,... and s = 0,1,2,... . It follows
that
— 1 -1
2"In*e_ =F(z_,-r)ln°a_ — (r—_—T)—!z/)s(r - 160V (z)

forr=1,2,...and 8 =0,1,2,... and that
(@ In’e_) = -da) e — s M Int g

for all A and s=10,1,2,....

We finally define the distribution @~"1n® || by
a7 "I’ o) = 27" In" 2y 4 (—1)"2”" In"w_
forr=1,2,...and s=0,1,2,... . It follows that
a7 I’ 2| = F(ey, —r)In® ey + (1) Fle-, —r)In®2_

so that this definition of ™" 1n® |2| is in agreement with Gel’fand and Shilov’s defi-

nition. We then of course have
(27" 10 |2]) = —ra™" " n® || + seT " n® " g

forr=1,2,...and s =0,1,2,....
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CHAPTER III

ON PARTIAL DERIVATIVES OF THE BETA FUNCTION

The Beta function B(A, x) is usually defined by

1
B(\ ) = / P11 = 1)t dt

0

for A\, 0 > 0. It then follows that
_ TIT (k)
where I' denotes the Gamma function, and this expression is then used to define the
Beta function for A\, x < 0 and A\, p # —1,-2,
It can then be shown, see Gel’fand and Shilov [23], that

B(\p) = /01/ - 1[(1 ey Z———( s 1)%’] dt+

=0
(Li(p~1)
+ Z 2’\+1z‘()\ + 1)
+/ (1 t)l-t—* [tA -1 Z( 1) ()‘ 1)1(1 t){l dt +
=0
Z ( 1) (A - 1)z
BT )
for A>—r,up> -5, A#0,-1,...—r+1and p#0,-1,...,—s + 1, where
1, i=0,

(A% - ﬁ(’\_]),

j=0
In [20], it was shown that
1—e 1/2 i o,
/ t’\—l(l _t)u—l dt = / t’\ 1 [(1 t)u—- Z( l) 1)ztz] dt+
€ ¢ =0
LM = 1 ormi
+§ ATy ¢ et

+/1- (-t lt’\“l - Z —~—-————(_1)i(:!‘ “ Ui - t)"] dt +

(=1 (A—-1); 1)1 gh~i _ ki
g ip+19) )

19




for A>—r,u>—-5,A#0,-1,...,—r+1and g # 0,-1,...,—s+ 1, so that
1—¢
B(A,@:N_%m/ P11 )
€—! €

where N is the neutrix having domain N’ = {e : 0 < ¢ < 1} with negligible
functions finite linear sums of the functions
2

=1

eln" e, In"e (A<0, r=1,2,...)

and all functions of ¢ which converge to zero in the usual sense as € tends to zero;

see van der Corput [3].

This suggests the following definition, given in [20], for

ort+a
Bpg(Ap) = mﬂ(/\»ﬂ)
for all values of A, u and p,q¢ =0,1,2,...:

DEFINITION 3.1. The function Bpq(A, p) is defined by
1—¢
Bpy(A, ) = N-lim / 1 InP (1~ )P~ Ind(1 — 1) dt (1)
e— €

forp,q=0,1,2,... and all \,p.

It is not immediately obvious that the neutrix limit in equation (1) exists and
it was proved in [20] that this neutrix limit existed for the case p = ¢ = 0. In the
following, we prove that this neutrix limit exists for p,¢ = 0,1,2,... and all A, u so
that By 4(A, ) is well defined.

We first of all need the following lemma.

LEMMA 3.1. The neutriz limits, as € tends to zero, of the functions
1/2 1—c
/ M P tin?(1 — 1) dt, // (1— &) P t1n?(1 — ¢) dt
€ 1/2

exist for p,q =0,1,2,... and all \.

PROOF. Suppose first of all that p = ¢ = 0. Then

9=A=1 _ M1

1/2 - ]
/ dt = A1 A# -l
¢ —In2-Ine, A=-1,

20




and so
1/2
N—lim /  dt
=0 €
exists for all A.

Now suppose that ¢ = 0 and that
1/2
N-tim [ P var
e—0 €

exists for some positive integer p and all A. Then

—9=A-1ypptl g M pprtl _ptl 1/
/1/2t)\1np+1tdt: /\-|-1 /\+1 €
c (=1)P 1?22 — InP*2¢
p+2 ’

2
P InPtdt, A# -1,

and it follows by induction that

1/2
N-—lim M nPtdt

e—0 €
exists for p = 0,1,2,... and all \.
Finally we note that we can write
s .
n?(1—-1t)= z ot
i=q
for ¢ = 1,2,..., the expansion being valid for |¢| < 1. Choosing a positive integer
k such that A+ k& > —1, we have
1/2 k-1 1/2 . 0 1/2 .
/ tMnP ¢ In?(1 - t) di = Zaﬁ-q/ M Pt dt + Za,-q/ P In? ¢ dt.
¢ i=1 ¢ i=k €
It follows from what we have just proved that
k-1

i
N-limY oy, [ O vds
-0 =1 €

exists and further

Ml

: = 1/2 A8 1D f & 1/2 o+t 1.0
N‘__}%’mgaiqff 1P ¢ dt ll_%gaiqfe T InP ¢ dt

o 1/2 A
= Yoy f MimPede, -

i=k 0
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proving that
/2
N—lim/ P InP (1 — t) dt
e~—+0 €
exists for p,¢ = 0,1,2,... and all A.
Making the substitution 1 —¢ = u in
1—¢
/ (1— ) n? t1n?(1 — 1) d,
/2
it follows that

e—0

1—e¢
N—lim (1— ) MoP tin?(1 — ¢) dt
1/2
also exists for p,¢ = 0,1,2,... and all A\, O
THEOREM 3.1. The function By o\, 1) ezists for p,q = 0,1,2,... and all A\, .

PROQOF'. Choose positive integers r,s such that A > —r and p > —s. Then we can

write

1—¢
/ 1P ¢ (1 — )1 Ing(1 — ) dt

= /l/zt)“llnptlnq(l—t) [(1—t)“‘1 Z—————( L 1)’t’]dt+

=0

Z D) 1)1(“ =1 / 0P ¢n9(1 - 1) dt +

+/ 1P (1 — £ In9(1 — t)[t\l Zﬂ——l)’a )]dt+

=0

Py SO 1)(/\ i [0 pyeti=1 100 191 — ) dt.

i=0 1/2

We have

1/2 ) .
lim / t1n? t1n?(1 — 1) [(1 ) Z ~(—1—)(11—3’—#] dt

e—0
=0

= /01/2 71 0P 41n?(1 — 1) [(1 ) i———————(_l)i(ﬁ - l)it’} dt

=0
and

lim ;—cln”t(l—t)“‘lln"(l—t) [t’\‘l Z(——Q(L—l-)i(l )}

¢
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= fj P #(1 — £)*~ 1 1n9(1 — ¢) [tA—l Z( 1) (A - 1)1(1 i

=0

the integrals being convergent. Further, from Lemma 3.1 we see that the neutrix

limit of the function

T Dl — 1) 12
pPL A Y (Z,‘f L / MLRP ¢ nd(1 - 1) di+
s . .

Z( 1)t (A—l)z/ (1 — £)4H=11nP ¢1n9(1 — ) dt

=0 1/2

exists, implying that

1—c¢
N-lim / PP 81— ¢)*~ 1n9(1 — ¢) dt
e d €

exists. This proves the existence of the function By 4(A, ) for p,¢ = 0,1,2,..

all A, p. O
THEOREM 3.2.

Bypg(As 1) = Byp(s A)
forp,g=0,1,2,... and all A, p.

The proof of this theorem is trivial.d

.and

In the following, we now evaluate some particular values of By 4(A, ). In order

to simplify the proofs, we note that

1
Bpg(A, ) = N-lim / PP 41 — ) nd(1 — 1) dt

if p > 0, since the integral is then convergent in the neighbourhood of the point

t=1.
THEOREM 3.3.

By0(0,1)=0
forp=1,2,....

PROOF. We have
InPH ¢

1
™ Pt dt = —
/e p+1
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and so
1
Byo(0,1) = N—lim / Pt dt = 0
e—0 €
forp=1,2,....0
THEOREM 3.4.
T (7 (=1)Ptipt
Byo(0yr +1) =) () (_.i;)“_

i=1 \!

Y 7t
i) T illr =

forp,r=1,2,..., where

PROOF. We have

1 1 L ) 1
ft‘llnpt(l—t)Tdtzf t—llnptdtJrE(—l)‘(:)/ P ¢ di
€ € =1 €

1
and so

Il

1
Byo(0,r+1) = N-lim / =1 P o1 — 1) dt
[ d €

T A 1.
= Bp,o(0,1)+2(-1)’(1.> /0 1P e dt

=1
ZT: (7> (—=1)PTipt
= T T
=1 v wtt
for p,r =1,2,..., since it is easily proved that
L (=1)Pp!
% 1P [ WA A
/otln vt = G @)
for¢=0,1,2,.... 0
THEOREM 3.5.
p!
Bpo(=n,1) = == 3)

forp,n=1,2,....

PROOF. It is enough to prove for p = 1. Integrating by parts we have

1 1
/ ™ tntdt =n"te " Ine+ n! f 1l dt
€

€
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and so

1
Bio(—n,1) = N—lim/ " Untdt = —n?
e—0 €
proving equation (3) forp=1and n=1,2,.... O
More generally we have

THEOREM 3.6.

T fr) (=1)i1pt
Z(i)((_nj_l[)—m-il’ r<mn,

i=0
Byo(-n,r+1)=4¢ ° 4
P,O( ] ) n—1 ” (—l)i'Hp! - ( )
2 i) 7=
forp,n=12,...andr=0,1,...,n and
T () (=1)F1p!
Bpo(—n,7+1) = ; (z) [CEn ©)
i¥n
forpn=1,2,...andr=n+1,n4+2,....
PROOF. We have
1 r R 1,
/ T P o1 — ) dt =y (-1 (:) / £~ InP ¢ dt (6)
€ =0 €

and so

r . 1,
Byo(—n,r+1) Z(—l)‘ (:) N—l‘i)m/ L nP ¢ dt
€t €

i=0
S (1) Byol(i=n,1)
=0

for r = 0,1,...,n . Equation (4) follows on using Theorem 3.3 and Theorem 3.5.

Il

When = > n + 1, equation (6) again holds, but this time we have

Bpo(—n,r) = i)(——l)" (:) Bpo(i—n,1) + Z (-1) (:) /0 " 1p g gy

=0 i=n+1
and equation (5) follows on using Theorem 3.3 and Theorem 3.5 and equation (2).

[m]
THEOREM 3.7.

By,0(0,0) = Bypo(1,0) = (—1)pl¢(p + 1), (M
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Bpo(—1,0) = —p! + (=1)’pl{(p + 1), (8)
forp=1,2,..., where
{p) = ZZ P,op>1,
denotes the zeta function.

PROOY. We have

1-¢ 1-¢
/ T Pl — )M dt = / 4 (1 =) InP tdt,
€ €

and so
BPyO(O:O) = BP.O(Oy 1) + B,,,o(l,(]) = pr0(170)’

on using Theorem 3.3.

Further,
i—e
Bpo(1,0) = N-lim (1—t)tnPtdt
€e— 0
Rl l—c
= ZN——lim/ t*1nP t dt
- E (=1t
= (i + 1Pt

= (—1)”17!((19 +1),

on using equation (2), proving equation (7).

To prove equation (8), we see that

1—c¢
N-lim 172 1nP 4(1 — )" dt

e—0 €

1—€
= N—lg’m/ F 24t 4+ (1 —8) Pt de
€— €

BP,O(_]-vO)

= Bpo(—1,1) ~ Bpo(0,1) + Byo(1,0)

= —pl+ (=1)Ppl((p+1),

on using Theorem 3.3 and Theorem 3.5 and equation (7). O
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THEOREM 3.8.

g%(:) [1/)("—@')—7—{2_—1.], r<n,

Boa(—n,7+1) = N 0 9
) b0 ] e oo
=0
forn=1,2,...andr =0,1,...,m and
n—1 i r
Boy(—n,r+1) = 2 (n——j)z- (2) [¢(n —1) = n2— z] - (-1 (;) ¢(2) +
- > S (wi-m, (1)
i=n+1

forn = 1,2,... and » = n + 1,n + 2,..., where the function 1 is defined as in

Chapter 2 .

PROOF. We have
1 1
/ " (1 - ) dt = n "t In(l — €) — n7! / (1 - t)tdt
€ €
and it follows that

Bo,l(—n, 1) —n"z - n‘lB(—n + ].,0)

I

—n7? 7 M(n - 1)

= n7g(n) — 2071, (11)
since it was proved in [20] that
(n+7)
B(-n,-1) = - | [h(n) + ¥(r) — 2¢(n + 7)), (12)
for n,7 = 0,1,2,... . Equation (9) is therefore proved for the case r = 0 and

n=12,....
More generally we have

r

[ tm - o - oy = Y1y (1) [ - pa

=0
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and it follows that
Boa(—n,r+1) =Y (-1) (:) Boa(-n+1i,1). (13)
=0

Equation (9) now follows on using equations (7) and (11).

To prove equation (10) we note that
2 T
Op DA+ p) I =
M1y I's+1)

K] ss!

= —s7(s)

BO,1(37 1)

and so
Boi(—n+1,1) = —(i — n)"'p(i — n),
fori=mn+1,n+2,.... Equation (10) now follows from equation (13). O

THEOREM 3.9.

Bro(=n,0) = — 3" — ¢(2), (14)
i=1
Buo(—n+1,-1) = —n > i — n((2) — 1 + p(n), (15)
=1

forn=1,2,....

PROOF. We have
1—¢ 1—e
/ 21 —1)"tdt = / T n et 4 (1 - )Y dt
€ €
and so

Bio(—1,0) = Bip(-1,1)+ B1,0(0,0)

1l

-1- C(z)s
on using equations (3) and (7). Equation (14) is therefore proved for the case n = 1.

Now assume that equation (14) holds for some positive n. Then

1— 1-—-¢
f S ing(1— 1)l di = / T Tt + (1 - 1) de

€
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and so

Bllo(—’n - 1,0) = Bl'o(—'n -1, 1) + B1,0(—7Z, 0)
n+1
= =) i -((2),
i=1

on using equation (4) and our assumption. Equation (14) now follows by induction

forn=1,2,....

To prove equation (15) we note that

1-c
/ 7" (1 — )"t dt
€

1—e¢
—n71 / Int(1—t)"tdt™
€
= —n7 [t (1 - t)'l]l_e +

1-—e
+nt j -t +Int@ — )" dt
€

and so

Bio(-n,0) = n Y1+ B(-n,0)+ Bio(-n+ 1,-1)]

1l

771 — 9(n) + Bro(—n+ 1,-1)]

on using equation (12). Equation (15) follows on using equation (14). O

THEOREM 3.10.

L (ntr4i—j-1)4
Byg(—n,-1)= n'r' E;O;) (G—t+1)! "

7 ntr =1 i
nJﬂ)'{Z WD 5™+ )+ 1) — wlml+

i=n+1 =0 47—

n+r
+3i77 4 4(2)}

i=1
(16)
forn,»=1,2,....
PROOF. We note first of all that equation (16) holds for » = 1 and n = 1,2
by equation (15). We therefore assume that equation (16) holds for some r — 1 and
n=12,....

29




We have

1—¢
/ T (1 - ) de
€

1—e¢

r“1/ " ntd(l~ )"
€

T s VO

1—¢
~7~“1/ "% — (n+ Dt 2nt](1 - )" dt,
€

where
~i — )1 _ - — (n+z)'
Nﬁ}(l]m(l €) In(l—e€)e™" = ; o= il
N-lime™ ! lne(l — €)™ =0
e—0
and so
71 .
n+1)! _ ;
Bl,o(—n,—r) = - Z ;-(-E:_—Z)—z'-m -7 1B(—n bl J., —r 4 1) +
+n+ BIO( n—1,-r+ 1)

_ _S (n+)! (n+7)!

r(r =3l i (n+1)! [l 1) + 9(r = 1) = 29(n + )] +

=0

L (ntr4i-j+ Dl
n!rv;:);) (G-i+Dit T

. n+tr i r—2 ;
_(“+___’)’.{E”’() DI ‘b() — 2(n 4 )(n + 1) - b(n+ ]+

[Ty]
nlr! o2 n+r—

n+r
+y i+ 6(2)}
i=1
on using our assumption. This equation can be rearranged to give equation (16)

which now follows by induction. O
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CHAPTER IV

THE NON-COMMUTATIVE CONVOLUTION PRODUCT OF

DISTRIBUTIONS

The convolution product of distributions is a very important tool in the theory of
integral equations and differential equations. It exists under certain conditions given
in Definition 1.3 and Definition 1.4 . However, these definitions are very restrictive
and can only be used for a small class of distributions.

In this chapter we shall consider the neutrix convolution product of distributions
f and g which extends the classical definition of the convolution product of functions
and Gel’fand and Shilov’s definition of the convolution product of distributions. This

neutrix convolution product is denoted by f @ ¢ and is in general non-commutative.

In order to extend the convolution product to a larger class of distributions,

Jones [29] gave the following definition.

DEFINITION 4.1. Let f and g be distributions and let T be an infinitely differ-
entiable function satisfying the following properties:

(i) 7(@) = 7(~2),

(#) 0<r(®)<1,

(ii)) () =1for o] <,

(i) 7(x)=0 for|e| > 1.
Let

£a(®) = F@)r(@/m),  ga(e) = g(e)r(z/n)

forn=1,2,.... Then the convolution f * g is defined as the limit of the sequence

{fn * gn} providing the limit h exists in the sense that
1im (Fo * gar8) = (h,9)
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for all test functions ¢ in D.

In this definition the convolution f, g, exists in the sense of Definition 1.4 since
frn and gy, both have bounded supports.

It is also clear that if the limit of the sequence {f, * g,} exists, so that the
convolution f * g exists, then equation (3) of Chapter 1 holds. However, equation

(4) of Chapter 1 need not necessarily hold since Jones proved that
lisgne =a =sgna*1

and
(Lxsgnz) =1, 1U'+sgnez=0, lx(sgna) =2.

An alternative extension of Definition 1.3 and Definition 1.4 was given in (7] as

follows.

DEFINITION 4.2. Let f and g be distributions and let f,, be defined as in Defini-

tion 4.1. Then the convolution f g is defined as the limit of the sequence {f, * g},

providing the limit h exists in the sence that

7}35%0<fn *g,8) = (h, $)

for all test functions ¢ in D.

In this definition the convolution f, * g is, again in the sense of Definition 1.4,
the distribution f, having bounded support.

We also note that because of the lack of symmetry in this definition the convo-
lution of two distributions is not always commutative.

In the following we give another non-commutative extension of Definition 1.3
and Definition 1.4. This definition is also possibly an extension of Definition 4.2
since not only are all the results proved in [7] in agreement with the new definition

but further convolutions exist which are not defined by Definition 4.2.
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DEFINITION 4.3. Let f and g be distributions and let 1, be the infinitely differ-

entiable function defined by
L |2l < 7,
m(z) =4 r(ntz —n"tl), 2 >a,

r(n"z +n"t), @< -n,

where T is defined as in Definition 4.1. Let
fa(2) = f(z)ma(2)

for n = 1,2,... and let N be the neutriz having domain N' = {1,2,...,n,...}
and range N" the real numbers with negligible functions, finite linear sums of the

functions
2 ln"tn, " (A>0,r=1,2,...)
and all functions which converge to zero in the usual sense as n tends to infinity.

Then the neutriz convolution f & g is defined as the neutriz limil of the sequence

{fn * g}, providing the limit h exists in the sense that
anl(iom<fn *d, ¢> - <hy¢)
for all test functions ¢ in D.

From now on, we will let N be the neutrix given above.

The convolution f,*g in this definition is again in the sense of the Definition 1.4,
the distribution f, having bounded support, since the support of 7, is contained in
the interval (—n ~ n™",n 4+ n™").

We now give some results on the neutrix convolution product of distributions

that we often refer in forthcoming chapters. These were proved in [10].

THEOREM 4.1. Let f and g be functions in LP(—o0,00) and LI(—o0,00) respec-

tively, where 1/p+ 1/q = 1. Then the convolution f ® g exvists and
f®g=[fxg
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This theorem shows that Definition 4.3 is an extension of Definition 1.3. The

next theorem shows that Definition 4.3 is also an extension of Definition 1.4.

THEOREM 4.2. Let f and g be distributions satisfying either condition (a) or

condition (b) of Definition 1.4. Then the convolution f ® g ewists and

F®g=[f*g;

see [10].
The convolution in the following example exists in the sense of Definition 4.3,

but not in the sense of Definition 4.1 and Definition 4.2.

EXAMPLE 4.1.

2@ @@+l = -E('LZ — ).
PROOF. We put
@Mn = 2?m(z), f(e)=(@?+ &N
Then the convolution (z%), * fe(x) exists by Definition 3.1 and

(o i) = [ LRG0

y2 + €3
me (2 - y)? mETE (o — y)?r(z — y)
; e [T e e,
/n+'vy+€2 vt y? + €2 vt
N Ol ) A Gl )
~ 7 T d
+/n n=na y2 + €2 v

Now,

[ e gy [ [wz_ez‘ o +1] dy

—nta Y2+ € —ntz | Y2+ €2 Y24

z? — ¢ intaw 4% —7 (n+2)? +¢?
. [tan ——] zln -———(n m)2+52+2

— tan

(,n + n~n)2n—n
(n+ )2+ ¢

[ e |

nt Y% + €2

= 0(n ™),
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and similarly

[ ey

—n—n""4gz ?/2 + €2 dy = O(n‘“").

It follows that

N—lim((a?)s # fu(e), #(2)) = (Z(” = ¢),6(2))
for arbitrary test function ¢ in D. O

Whether or not there exist distributions f and g which give different results for
the convolution defined by Definition 4.2, or for which the convolution f * ¢ exists
in the sense of Definition 4.2 but not by Definition 4.3, are open questions.

The next result holds for the convolutions given by Definitions 4.2 and 4.3.
However, this result does not hold in general for the convolution given by Definition

4.1.

THEOREM 4.3. Let f and g be distributions and suppose that the convolution

f ® g exists. Then the convolution f @ ¢' ewists and

(f@®g)=f®g. M)

Note however that equation (4) of Chapter 1 does not necessarily hold for the

neutrix convolution product and that (f ® g)' is not necessarily equal to f' ® g

since
(sgnz) ®1 = 260®1=2
# 0=(sgna®1)
# 1= (sgnz®1);
see [10].

So far we have described the neutrix convolution in connection with distribution

theory. The applicability of this concept to particular problems such as the convo-

lution product of =" and @ and of 2-" and 3’ is of great interest. This requires

35




attention since the extraction of the finite part from the divergent terms has to be
done properly.

However, the following two theorems were proved in [10] and [15] respectively:

THEOREM 4.4. The neutriz convolution product x* & z5 ewists and
22 ®af = el @) = (=1 B + 1,5 + 1)zttt

forall A\ # —-2,-3,... and s =0,1,2,... , where B denotes the Beta function.

THEOREM 4.5. The neutric convolution product 2 @ xf;’\ exists and

@ = (1)PB(-s— 1,8+ 1 - Nttt 4

(=D (Nsg1

G [r cot(rA)zitt — 2t In|2|],

for A #0,%£1,£2,... and s = —1,0,1,2,... .
The next theorem is an extension of Theorem 4.5 and was proved in [16].
THEOREM 4.8. The neulriz convolution product z @ :c;s')‘ exists and

for X #£0,£1,£2,... and s = 2,3,... .
The next theorem was proved in [17].
THEOREM 4.7. The neutriz convolution product &> @ zly ewists and
C) af = B(-A-p-1lp+ 1)x’l+“+1 +
+B(=A — p = LA+ Da ety
for Ay, A+ #0,£1,£2,.. ..

In the following we are going to consider the neutrix convolution products =" ®

@y and 2" @ 2", where 27" is defined by

1)1

36




and 2Z" is defined by -7 = (—2)3". First though we prove

THEOREM 4.8. The neutriz convolution products nz. ® o and a* @ Inay

ewist and
U(—p—1
Ine-®a2f = —(u+ 1)_1:ci+1 Inzy + l—t—ﬁ(_l_—/i———zwiﬂ, )
e ®lne, = —(u+1)"'e*Mine_ + li%(iiiilwﬁ+1 (3)

Jor i # 0,41,%2,... , where v denotes Euler’s constant, ¥ = I'/T and T' denotes

the Gamma function.

PROOF. We will suppose first of all that s > —1 and g # 0,1,2,... so that &/ is

a locally summable function. Put
(lnz_)n = lna_m(a).

Then

((ln :I:—)n * mi, ¢(’L)> ((ln y_)n, (a;f:_, (]5(1 + y)»

/—(;—n—" In(~y)ru(y) /:)('L — y)f‘|_¢(.z) do dy
b 0

[ o) [ m-s)e - v dyda +

b -n
+[o@ [ monme - dde @)

1l

1l

for n > —a and arbitrary ¢ in D with support of ¢ contained in the interval [a,b].

When & < 0, we have, on making the substitution y = zu™!,

I

4] 2z
/_ In(=y)(e ~ y)i dy f_ In(=y)(z-y)dy

(—2) T n(—2) /;/n uTFTE (1 — w) du

I

1
—(—:c)“"'l/ y w2 (1l — w)* du
—z/n

i

Iln - IZn~
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Choosing an integer r > u + 1, we have

/_110/7L w1 w)rdu = /;/n u—h—2 [(1 — ) — i (;%:(L)zu“ N

=0

n 72 (=1)"(n)i )[1 ~ (a/n)=1]

Sili-p—1

and it follows that
Nnjliomjlﬂ = B(—p - 1,p+ 1)(-2)* 1n(-2) = 0.
Further,

1 1 T =)
/ y w2 lnu(l — w) du = / y wF 2 Iny {(1 —up =3 g——l—)-'(L)zu du+
—z/n —z/n .

i=0
_ i (=)
il - p—1)2
and it follows that

[~ = 1)(=a/m)~#*In(~2/n) + 1~ (~a/n)~1]

N—lim Iyn = Bio(—pu— L+ 1)(=2)"+* = 0.
Thus,
0
~li —o)z — ) du =
Nnﬁléomf_nln( y) (& — )y dy =0. (5)

When @ > 0, we have, on making the substitution y = (1 — 1),
0 0
[ =) - gtdy = [ () -y dy
-n —n

1 1

Ttn ztn

1
—ghtt / w* 2 lnudu
&

ztn

= Iap + Ian — Isp.
Also,

z**t1ina + nhtt

1
ahtl lna:/ w2 gy = - —— 2
Y p+l 0 p4l

a+n

1+ z/n)*ing
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and it follows that

Wit ot "
N—lim Iy = — S 128

Making the substitution w = 1 — v we have

1 -
/ w2 (1 — u)du = /”" Inv(l - v)"# 2 dy
Eo 0
n . .
_ pr N (D)
_/0 lnv[(l—v)“ —Z—Tv; dv+

=0

~ (Dt 2); [+ e/a) " In(L +@/n) | (14 o/n)~ "
L { i1 T av ]

and it follows that

I

1
N-lim w2 1n(1 ~ u) du

/01 Inv {(1 — )t Zr: (-1)"(5 + 2)_i1,i] do
=0 °

n—+00 ﬁ.ﬁ-
"~ (1)'(p +2); —im1
B YD)
e il 4 2)2
= B10(l, 2 1).
Thus,

N-—lim Iu, = Byo(1, —p — Da*+L,
n—oo

Next, we have

o (z +n)*tna + In(z + n)] 1 (x + n)rt?
w—2 — —
/m u Inudu (i Dorti TEBNE + (i + D2ar i’

a+n

and it follows that
Nn:)lgnlsn = —(p+ 1)"2grHL,

Now it is easily proved that the two following equations are true:

—y = ¥(1
Buo(1, 1) = _7_%5)

and
P () = W (p+ 1),

Thus,
o 2 _ 7+ (p -1y
Bro(L,—p -1+ @p+1)"" = i
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Thus,

. 0 e llng 4+ U(—p -1
Notim [ (e~ dy = - B LA Do)

Further, with ¢« <2 < b and n > —a, we have

U_:in_n In(—y)7a(y)(2 — y)* dy| = O(n*""1lnn)

and so

lm [ (- - ) dy=o. (1)

n—oo J_ .,

It now follows from equations (4), (5), (6) and (7) that
Nn—lim((ln T )p kel , p(z)) =

=(=(p+ D7 ey + [y + U(—p - D](p+ 1) e, é(2))
and equation (2) follows for g > —1 and p #0,1,2,....
Now assume that equation (2) holds for —k < p < —k + 1, where k is some

positive integer. This is certainly true when & = 1. Then by Theorem 4.2, the

neutrix convolution product Ina_ ® x‘_f_"l exists and

i

plne_ @ af™! —2flney — (p+ D7 + [y + U(—p - D)2k

o Iney 4 [y + U((—plet,

since
Bl = 1) = (ut 1) = B(op).
Equation (2) follows by induction for p # 0,41,42,... .

To prove equation (3) we will, again, suppose first of all that 4 > —1 and

u#0,1,2,...,s0 that 2" is a locally summable function. Put

(a2)n = z_mp(a).
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Then

(@L)n *Inwy, d(2))

((¥)ns (0 g, Bz + 1))
[ o) [ )bt dody
b 0
[ 9@ [ (ot -y dydo +
+ ' o) [ Corn@ne - hdyds, )

for » > —a and arbitrary ¢ in D with support of ¢ contained in the interval [a, b].

When 2 < 0, we have, on making the substitution y = zu1,

[ oyina v, ay

We have

g
/ (-9)*In(2 — y) dy
-n
1
= —(——a;)”'H/ v 2 lnudu +
—z/n
1
(=)t 111(—:1:)/ uH 2y
—z/n
1
+(—m)“+1/ w2 n(1 — u) du
—z/n

= —Jin+ Jon + Jan.

1 — utl 2t
2 (—n/z) _1=(-n/w)
/_w/n U Inudu = ) it 1)?

and it follows that

N-lim Ji, = —(p + 1) 72(—2)# 1,
n—00

Next we have

1 _(— o et
[t LmCnier
—z/n w1

and it follows that

. (=2)"In(-2)
-1 g = L
Nn_)éom Ja )

Making the substitution u = 1 — v, we have

atn

1
/ w2 (1l — u)du = / " Inw(l— )" 2 dy
—a/n 0
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- ]0% Inv [(1 —v)H 2 i—-——(_l)i(g + 2)%‘] dv+

=0

*(—1i(ut 2 [(Lta/n) (Lt ofn) (L4 o/n)t
10 [ il L }

and it follows, as above, that
N-lim Jgn = B10(17 —p - 1)(—113)”—'—1.
n—o0

Thus,

_ (=) in(—2)

0
Nn—limf (=9)*In(z —y)rdy = + Bio(1, —p — 1)(—z)*+! +
—> 00 —-n

S
(coyt
MOESE
—2)**n(—2 —p -

as above.

When & > 0, we have, on making the substitution y = &(1 — u™1),
0 0
[ oy - pady = [ (-gpuae - g)dy
1 1
= gttt lnn:/ CwTRT(L - w)du — :u”""l/ u " Enu(l - u)* du
T E=
= Jan — Isn.
It follows, as above, that
N-limJun = B(—p~ Lp+ DaFline =0
=00
and
N-lim J5n = BIO(_/L - 1,/-L + 1)[@/(!1? + n)]“'” =0.
n—0o
Thus,
0
N—lim/ (=) In(z — y)4. dy = 0. (10)
n—o0 J_p
Further, with @ < ¢ < b and n > —a, we have

L oG - | = 0" tun)
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and so

lim [ (~g)*ra(y)In(e — y)dy = 0. (11)

n—co J_.n_ o

It now follows from equations (8), (9), (10) and (11) that
N-lim((z" )pln a4, d(z)) =
n—roo

=(—(e+ D72 e+ [y + U(—p — D]+ 1), ¢a))
and equation (3) follows for g > —1 and g # 0,1,2,....
Finally, assume that equation (3) holds for —k < p < —k + 1 . This is certainly
true when k& = 1. The convolution product (z* ), +In 2. exists by Definition 1.3 and
so equation (4) in Chapter 1 holds. Thus, if ¢ is an arbitrary function in D with

support contained in the interval [a, b],

([(@%)n *In 2y ], d(2))

i

—{(@*)p *Inzy, ¢ (=)

=p{(#2 ) # In ey, §(2)) + ([ (a)] * lnwy, $(e))

and so
B0 D)o+ I g, $(2) = (@) 5 T g, (2) + ([t (0)] ¥ n 24, ().
The support of & 7/(z) is contained in the interval [~n — n~™", —n] and so, with
n > —a, it follows, as above, that
’ b - !
(i@l elney, d@) = [ o) [ (o)) in(@ - v)dyd,
a —n—-n""
where, on the domain of integration, (—y)* and In(z — ) are locally summable

functions. Integrating by parts, it follows that

[ cornmhe-nd = whesn+ [ ep g - o)+

H=y)* (= — y) " I7n(y) dy.

Choosing a positive integer r greater than u, we see that

IR
n#In(z +n) = n¥lnn + n“z(—;z)e—%— +0(1/n)
i=1
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and so, since p is not an integer,
N-limn*In(e +n) = 0.
n-—00

Further, it follows as in the proof of equation (7) that

—-n

lim [1(=y)* (e — y) + (—y)*(o — y) M ra(y) dy = 0.

n—00 J_,_ p-m

Thus,

N-lim (@) # 2y, §(2)) = N—lim((@h), ¥ lney,¢/(e))

(2L @lnwy, ¢ (2)),

by assumption. This proves that the neutrix convolution product "~ *@In 2 4. exists

and

1l

(= ®@lnay)

= —aflne. — (p+ D)7 e” [y + O(—p — D))"

et @ Inay

= —ollno_ +[y+ ¥(-plt,
as above. Equation (3) now follows by induction for x # 0,41, +2,... .0

COROLLARY 4.1. The neutriz convolution productslnz, @z, zf ®lnz_,In |2|®

af el @lnlelln)e| @ 2,24 @ lnle],1n|z| @ |¢|* end |2|* @ In|z| evist and

Ine, ®e* = —(u+1) e ne_ + T+ U(-p - Uﬂ:‘i’”,
p+1
o @me. = —(u+ 1) el ey ¢ TENTEZD) ‘f’f;ﬁ mEDWES
T cot )
Injz| @y = _.l'rl/”b_mi—(-l (12)
= ok @nla}, (13)
Inje| @t = E.;_O_Eil'l_’imﬁ"'l (14)
= 22 @ lnlel, (15)
T ot
1 T 2¢ = 2 M
1ol @ ol = T2
= [|e]*®lnle,
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for pw#0,41,42,... .
PROOF. The first two equations follow immediately on replacing @ by —= in equa-
tions (2) and (3).

The convolution product In x4 + & exists in the sense of Definition 1.4 and it is

easily proved that

Iney 2 = (u+1)7TeM Inay + Bio(l,pu+ 1)eht!
_ U +2) 41
- D1zt g, — 1T it

(p+ 1) "2 Inay ] 2k

li

Inz, ® af.

Since the neutrix convolution product is clearly distributive with respect to addition,

it follows that

Ine. @ el +Iney @ o) In|z|® )

Y(p-D-U(E+2)
p+1 *

7rco1:7r,uﬁc,,+1

w1t

fl

since it can be easily proved that
U(—p—1)—U(pu+2) = wcot wp.

This proves equation (12).

Equation (13) follows on noting that the neutrix convolution products of In x_
and Iney with 2% are commutative.

Replacing by —a in equations (12) and (13) gives us equations (14) and (15).

The last two equations follow from equations (12), (13), (14) and (15) on noting
that

o] = ak +2*.0
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THEOREM 4.9. The neutriz convolution products =" @ = and z* ® 27" ewist

+
and
27 @k = I ey 4 Wt - DR (6)
o @ur = L e [ Ut - DR ()

forp#0,£1,£2,... andr = 1,2,....
PROOF. We put
(2" = a2 m(2)
for r =1,2,..., so that
(Inz ), = (22" + lna_7(2).

Then, if ¢ is an arbitrary function in D with support contained in the interval [a, b],

we have, from above

ey« 2k, 9(@) = —((no)axa,@/(2))

il

—((2Z")n # 2, ¢(2)) + (In2_7h(2), d(z))
and so
((@ZHn x 2, ¢(@)) = ((Ine-)n * 2, ¢/ (2)) + (I a7} (2)] * &, $()).

The support of Inz_7)(z) is contained in the interval [~n — n~™] and so, with’

n > —a, it follows that

(Ino-ri(e) + o, ¢(e)) = [ " 4(z) [ mpn)e - g dyds,

where on the domain of integration In(—y) and (2 — y)* are locally summable func-

tions. Integrating by parts, it follows, as above, that

b —n
N—lim/ qS(:L)/ _ In(=y)7(y)(z ~ y)* dy dz = 0.
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Thus,

anlgom((mzl)n * el o)) Nn:liom((ln z_), 7k, ¢ (2))

(ne_ @4, ¢(2)),

i

by assumption. This proves that the neutrix convolution product 2= @ o'y exists

and
2T @k = —(lne. @)
= ahlnwy — [y +¥(-p)lk,
as above, for u # 0,£1,£2,... . Equation (16) is therefore proved for the case
r=1.

Now assume that equation (16) holds for some r > 1. The convolution product
(2Z")n * @} exists in the sense of Definition 1.4 and so equation (4) in Chapter 1

holds. Thus, if ¢ is an arbitrary function in D,

Il

([(2Z7)n = 24T, () ~{(@Z ) # 2l ¢'(2)

(@7 w2k, d(@) + ([27 7 ()] % 2k, 6(w))

1l

and so

@ 2, 8(2)) = (@2 % 2, 8 (2) — ([0 7h(0)] % 2, B(0)-

It follows, as above, that

N —lim([o" 74 (2)] # 2%, §(2)) = 0

n—00

and so

N-lim (02" o o, d(0)) = —N=lim((Z")o + 2%,6(2))

—(@2" @ <, ¢(2)),

1l

by assumption. Thus =77 @ !y exists and

m:r—-l @ mi — T—1($:r @ mi)l
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= et oy 1ot Iy 4 2 = (v + Dl + B 7 - Do)

= B oty [y W,
Equation (16) now follows by induction for p # 0,41,42,... and r = 1,2,... .
Using Theorem 4.3, it follows from equation (3), that

(= ®lnay)

1l

@ o7t

ellne. —[y+ U(-p)et

il

and equation (17) follows for the case r = 1.

Assuming equation (17) holds for some 7, it again follows from Theorem 4.3 that

@ @ey") = —rat @yt

- (('“)71;'{ (p=r+ D2 e — 2"+ (w—r+ Dy + Cl—p +r— D]

= G by W

Equation (17) now follows by induction for 4 # 0,41,42,... and r = 1,2,... .00

COROLLARY 4.2. The neutriz convolution products z3" ®a*, e ®21", 277 ®

i, 2 e, e @k, 2 @2 and " @ |2)* ewist and

'l:;T @fgﬁ = ((”')rlil{ la—r+11n 2 — [’Y+‘F(—N+1‘— 1)]:1:,1_,._“}’
li@m_—_r — (ll’)r 1‘{a;+ 7+11na,+—- [’Y+\I/( wtT— 1)] u——7+1}
(r—1)!

L~ po_ (=17 1(H)r-17rcot7r,u J—

Tos - - (18)
= @, (19)

T @ak = :(_'L‘)(_TT_-i_’rlL)c"ﬂl_‘_zzi—r+1 0
= =@ (21)

. _ww-m, even 7,

CTORE = Wearcotmr

sgna.fe[*~", odd 7,

(r—1
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for w#0,£1,4+2,... andr =1,2,....

PROOF. Replacing @ by —a in equations (16) and (17) gives us first two results
of the corollary.

The convolution product @;" &% exists by Definition 1.4 and it is easily proved

that
ey wal = (—_—l()rit_l(l'u)—%'_l-{wi_rﬂ Inay — [y + ¥(u—r+2))eh "}
= 27" ® 24,
Since
e =)+ (1) el
we have

e @ah + (1) 2" @2y = 7T @k
= —(:(17):(—“1))7!;1[\1’(;5 —r+2) = U(—p+r— 1)]9;1‘”’1
_ (‘I)T_I(N)T—l sy [p—t
- (r—1)! T

because
U(p—r+2)~-V(—p+7r—1)=—cotm(u—1r)=—cot mu.

This proves equation (18).

Equation (19) follows on noting that the neutrix convolution products of aZ"
and 3" with 24 are commutative.

Replacing @ by —a in equations (18) and (19) gives us equations (20) and (21).

The last two results follow from equations (18), (19), (20) and (21) on noting
that

|e[* =24 + 2, sgnolo|t =af —ak.0

In the following we will consider the neutrix convolution products Inz_ @ lnazy

and 27" @ o1° for r,s = 1,2,... . First of all, we have
+
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THEOREM 4.10. The neutriz convolution products Ine_ ® lnzy and Inzy @

Inz_ exist and

Inz_ @Inay

PROOF'. Putting

we have

((Ina_)n *Inay, (e))

Il

~(x?/6+ Dlo| + [e|In]a] - Hlo|n?[e] (22)

il

Inzy ®lnz_.

(Ine_)n =lnz_m(e),

= ((Iny-)n, (Inay, (2 +y))
0 b

= /_ R In(—y)ra(y) / In(z — y)4+¢(2) dz dy
b 0

= [o@ [ m(-p)tnte - y)s dyda+

+f ' 4(z) / :in_ In(—3)7(y) In(e — y) dy de,(23)

for n > —a and arbitrary ¢ in D, with support contained in the interval [a,b].

When 2 < 0, we have, on making the substitution y = zu~!

il

)
/ In(~y)In(e — y)+ dy
-n

i

’

/_: In(—y)In(z — y) dy

1
(—=) ﬁm/n[lnzu —Inwln(l — u) 4+ In(—2)In(1 — u) +

—2In(—2)lnu +1ln?(~2)u "2 du

= Dp—Iop + In — Lin + Isn- (24)

We first of all note that
/u‘z Inude = —ut—utinw, (25)
/ v ?lnfudy = —2u' —2utlnu—utn?a, (26)

/u‘z In(1 — u)du
/u“z Inuln(l — w)du

—(u™t = D)l - ) - Inw, (27)

I

—Inu—3n%u— (v - Dl —u)+

~(u ' = Dlnuln(l —u)+ i ?j—; (28)

i=1
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Using equation (26) we have
/;/n v 2ln%udy = —-2-2na"' - 2nm_1[1n(—:u) —lnn] - m;“l[ln(—:u) — Inn}?
and it follows that
Nn—_}gom I, = —2(—2). (29)
Using equation (28), and noting that .32, i7% = 162-, we have
/;/n w2 Inuln(l —w)du = 7r2/6 +In(—2)-lnn+ —%[ln(~rv) —Inn]?

—(ne™! + 1) In(L + 2" H[1 +In(~2) — Inn] +

= (<o)
—g i2nt
and it follows that
Nn:)lgom I = (72/6 — 1)(—2) + 2(-2) In?*(—2). (30)

Using equation (27) we have
/—Ix/n w?In(l - uw)du = ~(ne™t + Dln(l 4+ en™) + In(—2) —Inn
and it follows that
Nn:lgn Inp = —(—2)In(—2) + (—z)In®(—z). (31)
Using equation (25) we have

1
/ wlnudu = ~1 —na™! —na"ln(—2) — Inn]

~z/n
and it follows that
Nn;léén Ly = —2(~a)In(-2). (32)
Finally, we have

1
/ w2du=—-1—nat

—z/n

and it follows that

N-lim I, = —(=2)In*(~z). B (33)
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It now follows from equations (24), (29), (30), (31), (32) and (33) that

/_(; In(—y)In(z — y)y de = —(7%/6+ 1)(—=)+ (—2)In(—2) +

—%(—2)In*(-z). (34)
When & > 0, we have on, making the substitution y = 2(1 — 1),

0 4]
[ mG-pine =g dy= [ in(-g)n(e - )dy

i

1
m/m n?u—Inuln(l —u)+Inzln(l —u) - 2Inzlnw + In?cju~? du

a+tn

Jin = Jan + Jan — Jan + Tsn. (35)

I

Using equation (26) we have

1
/z wPnuduy = ~2+42(1+ne)+2(1+nene —Inn —In(l+ e~ +
tn
+(L4+ne Hlne —lnn —In(l + zn™1))?
and it follows that
N-lim Ji, = —22 + zIn% 2. (36)
n—oo

Using equation (28) we have

/6 +Ine —Inn—In(l +an™t) +

i

1
/z v ?lnuln(l — u) du

a+n

+ilnz —lnn —~In(l + 22" - na~tin(1 + en~t)

—nz"Ine —Inn—In(l + 2z~ H)In(1 + 2n™t) +

LT Ay
and it follows that
Nn:lgom Jon = (7r2/6 - D+ %’L In?z. (37)

Using equation (27) we have

1 .
/z v ?ln(l - u)du=—nz ' In(14+ 207t +lne —Inn — In(l + zn~1)

z+n
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and it follows that

N-lim Js, = —zlnz + 2 ln? 2.
n—00

Using equation (25) we have

1
/m v ?lnudu=~1+1+ne™t + (14 ne"Yne —lnn —In(l+ zn"1))

4n
and it follows that

N-lim Jyn = —2zlne + 22 1n? 2.
N~ 00

Finally, we have

1
/m v 2du=—-1+1+nz"?!

z+4n

and it follows that

N-lim Js, = 0.
n—00

It now follows from equations (35), (36), (37), (38), (39) and (40) that

0
/ In(—y)In(e — y)4 dy = —(v%/6 + L)z + zlne — taln®a.

Further, with @« < @ < b and n > —a, we have

[ nom@)iae - ] = 0@ 1)

and so

—n
lim In(—y)7(y) In(z — y) dy = 0.
-

n—00 f_,_

It now follows from equations (24), (34), (41) and (42) that

(38)

(39)

(40)

(41)

(42)

N lim((Ino_ ) I o4, §(2)) = (~(x*/6+ Dlal + [o] In o] ~ o] In? [a], 4(=))

and equation (22) follows.O
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COROLLARY 4.3. The neutriz convolution productsln |z|®lnzy, Inzy @ln |z,
Injz| ®lnz_, Inz_ ®1n|z| endIn|z| @ In|2| exist and

2
Inlg| ®lney = —(x?/3— 1)z — %—x_ —zlnle] + Lo ln?|s| (43)
= Inzy ®lnlz, (44)
2
Injzg| ®@lne. = (7%/3 - 1)z — %w+ +zln|z| — teln® |z (45)
= Ine_ ®In|af, (46)
a2
Injz| ®Inje| = —?lﬂ (47)

PROOF'. The convolution product Inz, *In & exists in the sense of Definition 1.4

and it is easily proved that

Inzypxlnaey = (2—72/6)2y —2eylney +apln?ay (48)

1l

Inzy ®lnay

Since the neutrix convolution product is clearly distributive with respect to addition,

it follows that
ne_@®lney +Iney @lney =l @ nay.

Equation (43) now follows from equations (22) and (48). Equation (44) follows
on noting that the neutrix convolution product of In@_ and In a4 is commutative.
Equations (45) and (46) follow from equations (43) and (44) respectively on replacing

@ by —a. Equation (47) follows from equations (43) and (45) on noting that

Injeg| ®lney +1nle|@ e =Inje| @ Inje|.0

THEOREM 4.11. The neutriz convolution products Inz_ @ ¢i°, 22° @ lnzy,
Inzy ®aZ° end 27° @ Inaw_ ewist and
2

Inz_ ® m;l = —%sgnw — %sgnm]n2 |2] (49)
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= —2'®lney (50)

- —lney ®at " (51
= 27'@lna_, (52)
(=D @a7 = (T Ta00) — pls - et + (-1 4
+eitiney 4+ (=122 ne. (53)
= (-1)°(s— 122’ @Inay, (54)
(s=Dhaey®a=® = 3(87r—_22)!6(3‘2)(m) — (s = [(—= 1)t + 2T +
+(=1er  ney + 22 ne (55)
= (-1)°(s—1)23’ ®Ina_, (56)
for s =2,3,..., where
(In*zy) = 227wy,
(27" ney) = 27" —(s—Le’lnay,
fors=2,3,....

PROOF. Using Theorem 4.3 and equation (22) we have

(lne- @lnay)

I

. -1
Inz_ ®al
= —(n?/6+ l)sgne + sgnalnje| + sgn ¢ +
—3sgnaln® || — sgnwln el

n? 2
= —?sgnw - %sgnn;ln ||,

giving equation (49).

Replacing @ by —a in equation (49) gives equation (51).

The convolution product (Inx_), *In @4 exists in the sense of Definition 1.4 and
so equation (4) of Chapter 1 holds. Thus, if ¢ is an arbitrary function in D with

support contained in the interval [a, D],

(a2 ), +In2y), (z)) —((Ina_) *Inay,¢'(z))

—{(&ZNn ¥ Inzy, ¢(e)) + (Ine— 74(2)] * In ep, d(2)),

Il
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and so

(@7 ) # In 2, @(0) = (n2-)s ¥ Iney, ¢/(2)) + (Ina_ 7(2)] ¥ Ing, §(a)).

The support of In&_ 7,() is contained in the interval [-n — n=™, —n] and so, with

n > —a, it follows, as above, that

(Inz_ ) (x)] *In 2y, d(x)) = Ab ¢(a:)/~:in_" In(—y) 7, (y) In(z — y) dy da.

Integrating by parts we have
/w In(—y) (y)In(z — y)dy = nnln(z + n)+
e

- [ e -y - - ) gl ) d

N
Now,
lnnln(z +n) =In%n+ O(n~tinn)
and so
anlolcm(ln nln(z + n)) = 0.
Further,
[0 e =) = - 9) in(-)lra) dy = O~ )
—p—n T

and so.

lim [ [y (e - ) ~ (@ - 3) " In(=y)ma(y)] dy = .

n—00 J _p_p-n
Thus,

Il

Nn-;lgom((mzl)n *n 2y, o)) anléom((ln ) # In g, ¢'(2))

(Inz_ @ ey, ¢'(2)),

I

proving that the convolution product =! @ Inz . exists and
2 ®lney = —(lne- @lney).
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Equation (50) now follows as above.
Equation (52) follows from equation (50) on replacing @ by —=.

Using Theorem 4.3 and equation (49) we have
72
~lha_ @237 = —?6(."0) -z lngy —altlne.,

and equation (53) follows for the case s = 2.
Now assume that equation (53) holds for some s. Then, using Theorem 4.3, we

have

—s(s—Dhnae_ @23t = %6(*‘”(3}) + (s — D)p(s — 2)[23° — (—1)°=Z°+

+a7’ = (s — 12 lney — (—=1)°22° + (—1)°(s — D)2”°lna-
_ (=1)°x? (s—1) : -5 s41,,~s
=35 2)!6 () + (s = D)p(s — D[a3° + (-1)*T 2%
~(s = DlaF lnay + (1) e na_],
and equation (53) follows for the case s+ 1. Equation (53) now follows by induction.
Equation (55) follows from equation (53) on replacing 2 by —a.
The convolution product (#*),, #In ;. exists in the sense of Definition 1.4. Thus,

if ¢ is an arbitrary function in D with support contained in the interval [a, 8],

~((@=n # 2y, ¢(2))

(2= * Iy, $(2) + (077 (0)] # In 2y, B()

([(2="n * ln a4, ¢(a))

il

and so
(@022)n $ 004, 9(0)) = (@) # I 0y, #(2)) — {[271rA(@)] ¥ In oy, B(2)).
With n > —a, it follows, as above, that
(@ e tnon, o) = [ 9w [ (o) o) nte — g dyde.
Integrating by parts we have

[ o) G - y)dy = 7 n(a + )t

—pe—p—T
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- [ tme =)y e = ) () dy.

Clearly,
lim n~! In(z4+n) = 0
n—od
—n
= lim [y In(z — ) + v~ (e — y) " Im(y) dy
—p—n—T
and so
lim ([ 74(0)] # In 24, 6(2)) = 0.
Thus,

N—lim((2=")n # In 2y, ¢(2)) = = N —lim((@Z ) *In 2y, ¢(2))
= —({L’:l @ In Topy ¢I(m)>a
proving that the neutrix convolution product 2% @ Inz,. exists and

2 2@ney = (@12 @ ey,

Equation (54) follows as above for the case s = 2.

Now assume that equation (54) holds for some s. Then,

il

(=) ¥ Inay] (@) = —((2") ¥Inay, ¢(2)

{22 # Inay, d(2)) + (02° rp(2)] # In 2y, d(2)),

1l

where it follows, as above, that

—s

Jim (12 ()] # Iy, 4(2)) = 0,
and so

N-lim s{(2="""), * In 24, ¢())

n—00

1l

- Nn:lgom((:v:s)n xInag, ¢'(w))
= —(@Z @y, ¢(2).
This proves the existence of the neutrix convolution product 2-°71 @ lnz.,. and
e ' @lney = (22° @lney).
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Equation (54) follows as above for the case s + 1. Equation (54) now follows by

induction.
Equation (56) follows from equation (54) on replacing @ by —z.0
COROLLARY 4.4. The neutriz convolution products In|z| @ 2, «7° @ In ||,

Iney e, 2° ®@lney, Injz| @ 2%, 22° @ Inje|, lnz- ® 2%, 27° ® na_,
In|z|® 2~ and 27° @ In|z| exist, and
-1 n? 11,2
e @y = =[1-3H(@)]+ 310" 2|
= o7 @lujol
= lnay@a!
= 2 @®lnay,
-1 ? 11,2
Inje|®a" = ?[3H(m)—2]+-2-1n ||
= 22! ®ln|el
= -l @a!
= —z 1 @lna_,
2
Injz| @2t = —%sgnw
= ¢ @nle,
—5 (_1)3,”2 (s—2) —s1 5, —s+1
(s—=Dhj|®ay” = 3(5—_2),6 (®) = P(s = 2)[~2F + (-1’22 ] +
—.’L‘_T_S+1 lnzy + (——1)3@':”‘1 Ina_
= (s—- 12} ®In|z|
= (s—1hey®a"°
= (s—-1Dz7°®lnay,
72
_ . 8 (5=2) ¢\ _ _ _1Ye,—s+l o —s+1
(s=Dlnlel @o=* = ZTgd () = (s — -1+ ] 4
+(~1)*27 Inwy — 22" Inac
= (s— D22 ®Injz|
= (-1)°(s—1)lnz_@®a"°
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Il

(-1)°(s—1)z "+ Ine_,

—1\52
Injg|®a™® = %6(8“2)(.@)

e @nlol,

il

for s =2,3,..., where H denotes Heaviside’s function.

PROOF. Differentiating equation (48) we get
2
Inoy el = ——6—H(z) +1n? e

and it can be proved by induction that

—1)3 2
(s—Dnay*al® = ﬁé(s_z)(m) + 29(s — 2)a 7"t — 207" Inay.,  (57)

for s =2,3,... . The results of the theorem now follow on noting that
8 = m-‘—_s + (—-1)‘9:1::8,
for s =1,2,... .0

THEOREM 4.12. The neutriz convolution products a~" @ a3’ and 27" ® «2°
exist, and

(=1y*i(r — Di(s — 1)
(r+s—2)!

. _ -1 1'+sﬂ.2 _
oI @3 = 3(735—_2)16(”“ (z) +

_ 1/)(7‘-|- s — 2)[:”;7‘—5—)—1 + (_1)1‘+s$:T—s+1] +

+ e ey + (-1 e  ne, (58)
(wl)T-H(T - 1)!(8 — J')! -7 =5 2 (r+s=2)(,.
Grsoai o @0 = gyt e

= B+ = 21 e e

+ (=1t M ey 22" ne ., (59)
forr,s=1,2,....

PROOF. It follows, as above, that

Il

(Inz_ @& m;s)(” (lnz_ )" @ ey’

—(r=Dl®ey®

—1)"(r -
= (—)(ii_i;)!—)lnw_rvf_s,

il
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and equation (58) follows from equation (53). Equation (59) now follows on replacing
@ by —« in equation (58).0

COROLLARY 4.5. The neutriz convolution products ™" @ «3°, 23" ® 2~¢,
2" @ e 7" ®el® and 27" @® a7 ewist and

(r — Dl(s = 1)
(r+s-2)

. s —1)rt+stig2 o
@ = (Z(T—)Fs—2)35(+ D) +

—p(r+ 8 = 2)[a3" 7 - (—1) ez 4

ey ney — (1) e ng

B Gl ) L Clnl D B
T (rds—2) o @a
2= @ 275 = ————7‘-2—-6(T+8—2)('U)—|—
- 2(r + s —2)! ’

—p(r + s — Y[ — (1) Fep o 4

(=1)(r = L)l(s — 1)
(r+s-2)!

+aZm " el — (=1t ey,

I LG I
- (r+s-2) e @
—r s —1 7‘+s+17r2 s
TOR = )

forr,s=1,2,....

PROOF'. Differentiating equation (57) r times we get
(r=DWs—Dlai" 27 = —(r+s - Dllnay x27™°

and it follows that

(r—Ds=1) _,

(_1)7'-0-.9-[-17[.2
(r+s-2) O+

6(r+s—2)!

2p(r + s — ay ! — o7  ng, ).

e’ = §TFe=D () 4

The results of the corollary now follow as above.
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CHAPTER V

THE COMMUTATIVE NEUTRIX CONVOLUTION PRODUCT OF
DISTRIBUTIONS

In this chapter, we consider the commutative neutrix convolution product of
distributions f and g which extends both Definitions 1.3 and 1.4 and Definition 4.1.
We will denote the commutative convolution product of distributions f and ¢ by
flxlg to distinguish it from the non-commutative neutrix convolution product. If
the condition (a) or (b) of Definition 1.4 is satisfied for the distributions f and g,
then the commutative and the non-commutative neutrix convolution products are

equal. They might be equal for some cases. But, in general, they are not.

DEFINITION 5.1. Let f and g be distributions and let T, be defined as in Defini-
tion 3 in Chapter 4. Let fo(z) = f(2)m(z) and gn(e) = g(2)m(2) forn = 1,2,...
. Then the commutative neutriz convolution product f[+|g is defined as the neutriz

limit of the sequence {fy * gn}, provided the limit h exists in the sense that
Nn:léom(fn * Gy §) = (hy ),
for all ¢ in D, where N is again the neutriz defined in Definition 4.3.

The convolution f, * g, in this definition is again in the sense of Definition

1.4 and, since f, * gn = gn * frn, the neutrix convolution product f[x]g is clearly

commutative.
The next theorem, proved in [19], shows that this definition generalizes Definition

1.4 and Definition 4.1.

THEOREM 5.1. Let f and g be distributions satisfying condition (a) or (b)
of Definition 1.4 so that the convolution product f * g ewists., Then the neutriz

convolution product f[x|g exists and

Mg =fxg.
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However, equation (4) of Chapter 1 does not hold in the sense of Definition 5.1
since, in general, fi(z) # (fa(2))'.

The following theorem was also proved in {19):

THEOREM 5.2, The neutriz convolution product aX [/ 2 evists and
ed Fet = B(=X—p—Lp+ D)2 4 B(=X - p— 1, A+ D},

Jor Ay, A+ p # 0,21, £2,.. ., where B denotes the Beta function.
‘We now prove the following extension of Theorem 5.2:

THEOREM 5.3. The neutric convolution product @2 [{a’,™ evists and

X a7 = B(—r—1Lr 41— A" 4 B(—r — 1,A 4+ 1)

C N1 pgry
+'—U;:_—1—)!i9« + In |al, 1)

for \#0,£1,42,... andr = —1,0,1,2,... .
In [20] it was, in particular, proved that

B-r = ELG= [y -y - TR0, @

forr=0,1,2,...and XA # 0,£1,£2,... , where I' denotes the Gamma function and

7 denotes Fuler’s constant.
PROOF. We will first of all suppose that A\,» — A > —1 so that 2* and :v_q__’\ are
locally summable functions. Put

(@ =2dm(e), (@5 = a5 ().

Then the convolution product (z), * (:vT,_'A)n exists in the sense of Definition 1.4

and

(@) * (@5 )nr #(2)) (@2)nr (@) 9 + 9)))

0 b
L 05 [ @ =0 (e~ 0)6(e) da dy

Il

63




= 40 [ 0@ - e - v dyde +
[0 [ O RWe- IR dd @

for n > —a and arbitrary ¢ in D, with support of ¢ contained in the interval [a, ].

When ¢ < 0 and —n < y < 0, 7 (¢ — y) = 1 on the support of ¢. Thus, with

# < 0and —n < y <0, we have, on making the substitution y = 2u™1,

/_ [;(—y)*(w — ) m(z - y)dy /_ wn(—y)*(m —y)ydy

1
(——-:L‘)T'H/ , u—r—2(1 _ u)r—-/\ du

= (—:z;)r+1 /—10:/n w2 [(1 _ u)r—/\ Ti m__)‘_)_' z] dut

=0

- a)T“Z——‘(u(? 1 (/)
=0

—Inn).

It follows that

0
B A (o o \TA . =
Nn»»léom/_n( ) (e - ) (e —y)dy

B(=r—1,r+1-=2)(—2)"* + (—1_)(:(2%%“(“”)?“ In(~=)

B(or = L+ 1= (o) — S ) ¥ (o) @

il

see {20].

When z > 0 and —n < y <0, we have

1l

0
f —p)Mw —y)" N dy +
xr— 'ﬂ

A SRR RO

[ 06 - - v

+

On making the substitution y = 2(1 — «™!), we have
0 1
/ (—)Me - y)" A dy = &' / w31 — ) du
o—n z/n

64




and it follows, as above, that

0
Nn—lim/ (-)Me -y dy = B(-r—1,A+ D"+
= Jy—-n
(=1)"(N)rt1_rg1yq
] 2™ ine. (6)

Further, with n > 2z,

LT
[ ey d)
r—n—n""
ntn=" A A ndn~ A
5/ (y— &)y dy:/ y(1—a/y) dy
n n

< (n+n~")n", A>0,
= 2 Mr+ "R, ~1< A<,

and so

m [T (e -9 e - ) dy =0, ™

=0 fo n_m

It now follows from equations (5), (6) and (7) that

0
N—lim/ (- - y)q_"’\rn(a; —ydy = B(-r-—1,A+1)" 4+
(1 Ness_raa

] " ine. (8)
Next, with —%n <ae<z<b< %n, we have
- A A
‘ A e Y () = 9) T (e —y) dy
—n
<[ wra-e/yay
—n—n""
< 2= 4 nm) 0", r—A>0,
=) 24y R, 1< r—A<0,
and so
-n
Jm (=9 7a(¥)(@ = 9)" P alw — y) dy = 0. 9)
_n_n—’"

It now follows from equations (3), (4), (8) and (9) that

Nn:léom <($’l)n * (CL‘Q__)\)TH ¢(9")> =
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= <B(—r —Lr+1=XNa™ + B(—r— LA+ 1)a%t + (—511—)1T)!x’+1 ln|m|,¢(9;)>
and equation (1) follows for A,7 — A > —1land A #0,1,2,....
Now assume that equation (1) holds for ~k < A < —k+1land r— A > -1,
where k is some positive integer. This is certainly true when & = 1. The convolution
product (z2 )n*(a::__’\)n exists in the sense of Definition 1.4 and so equation (4) holds.

Thus, if ¢ is an arbitrary function in D with support contained in the interval [a, b],

where we may suppose that ¢ < 0 < b,

([(@2)n * (25l #(2))

Il

~((@2)n # (@5 )n, ¢'(2))
=M@ # (2N 6(2)) + (2270 (@)] * (25 )n, 9(2))

Il

and so
M@+ (@4 s $(2)) = ((@2)n # (@3 ), ¢'()) +
(A @)+ @ Ve @) (10)

The support of @} 7/(2) is contained in the interval [-n — n~", —n] and so, with

n > —a>n~", it follows, as above, that
(272 * (@ o)) =
= [ [ 0P 9y ) dyde
= [[8@) [T P - o dyda +
[ 6@ [ e - vy dyae
[0 [T 0P~ 0 e - ) dyda, (i)

where, on the domain of integration, (—y)* and (z — y)™™> are locally summable

functions.

Putting M = sup{|7'(z)|}. sup{|¢(=)|}, we have

‘/_1; #a) [ Zn*n(—y)%(y)(w = 9) (e — y) dy da

<ua [ [ oy ey iyde

2 =AM (0 4 nmY R, r—A>0,
=) 2RAM(n YR, —1<r—A<0,
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and it follows that

fm [0 6@ [ (coruee - e - dde =0, (12)

Similarly,

i [* @) [ 0MeE- S ae=0

n—co f_

Integrating by parts, we have

—n
/ (=) @) -y dy = oM@ + )+
J——

* [;in—n[A(“y)A—l($ =)+ (0= NN e = )T () dy- (14)

Now,
Wty =y LML o),
i=0
and so
Nn:lgom (& +n) " = Q——;—:'/\lz’ (15)

As in equation (9)

fim [ 0N =0 = N0Ne -0 () dy = 0. (16)

n—+rod

It follows, from equations (11) to (16), that

Nt @) @) = 2 ey
= glll(f__’\_)rf 2" ¢(z) da

= EO= Do gy, an)

It now follows, from equations (10) and (17), that

N—lim M(2X™1), # (@), () =

00

= N=lim (@2 ) # (o), #/(2)) + L= 1)7'(:; &

= (2 Hei () + EC Dy o)

(22, 4(2))
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by our assumption. This proves that the neutrix product a1 a:fl__A exists and

that

A =AY}/ r
A1 T S (m— {L‘+ ) ( 1) (T - )\)7' 2’
o e = -3 wl oo
(7*+1)B(—1‘——1,7‘+1 A) . _(r+1)B(= 7‘—]. A+1) o+

A
_(_1)T(>‘— l)r[(T-I- 1" In 2| + 2] + (=1 (" - A)T‘ r

(r+ 1)
SECH 1 PRI (S
_QA=Dr e GO =N,
T T v R
+(_.£)(’\_1)I_ [¢(1'+1)—7—£\((:\\ :))] ahy +
( 1)7 ()‘_ 1)1 1- (_1)7()\_ 1)7‘ T1n|m|
(r+1)t " P! v ’

Il

. —1)-Y(N=1), .
B(—r,r 4+ 1~ X2l + B(—», N2 + (—)——T(T————-zl'z,’ In|a|,

on using equation (2) and the equations

(=) 1 (1)

T(—x) X Ta=A)

(r=2)r = (-1)(A = 1.
Equation (1) now follows by induction for A # 0,4:1,42,..., 7 — X > —1 and
r=-1,0,1,2,....
Finally, assume that equation (1) holds for —k < r — A < —k + 1 and X #
0,+1,%2,... . This is certainly true when % = 1. Then, since

(@) * (@5 = (5N # (@2)n,

an argument similar to that given above shows us that equation (1) follows by
induction for A # 0,+1,42,... and 7 = —1,0,1,2,... . This completes the proof of

the theorem.O
THEOREM 5.4. The neutriz convolution product ™ [¥] E —* evists and

.CL_T A WCOt(ﬂ"\) (5(T—2)(m) ( Dl (7’—-2) —r+1

T (=1= A1 (=1 = Ay (18)
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for A#0,£1,£2,... and r = 2,3,... . In particular

1 1
.’L'i—-i m;r—~s+§ - ( 1) (r — 2)! —'r+1

19
(== sh-1 (19)
fors=0,£1,£2,... and r = 2,3,... .
PROOF. It follows from Theorem 5.3, with r = —1, that
N-lim ((m’l)n*(mjrl"‘)n, o(z)) =
n—ro0
= (BO,~N[L - H(&)] + BO,A + )H(z) — Inlal, 6(=)),
for A #0,41,£2,..., where H denotes Heaviside’s function. Thus
N—lim ((@2)e # (&3l 6(@))
= Nolim (=A@ # (271N + 22750 # (31N, $())
n—oo
= (=B(0,~\)3(a) + BO + Di(z) — ™, ()
= (mcot(xA)é(z) — 27, (), (20)
using equation (2) and the equation
(=) T+ _
TN TOFD - w cot(wA).
Equation (11) still holds for the case » = —1. It is easily seen, from equations

(12) and (13), that

n =T —n
Jm [ 6@ [ (o) - 9 e - ) dyde
—_pn prp——

0 —n
= lim [ 6@) [ (~uP e -y dyde = 0

and

L6 [ 0w -n 7 dyde = o)

Thus,

Jim (227 ()] + (2317 ), 9(2)) = 0
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It now follows from equation (20) that

— N—lim (@2, % (@57, 6(2))

n—roo

(x cot(xN)6(z) — 271, f())

= MM Ee O, 6o,

1l

proving equation (18) for the case » = 2.
Now assume that equation (18) holds for some ¢ > 2. Then,
N —lim ((z2)n # (67", ¢(2)
1 _ . .
= (—:fT)r_l-(w cot(wA)T =D (2) — (—1)"(r — 2)la~"*L, ¢(2))
for A # 0,41,42,.... Thus,

Nl ([(a2)n # (557l $(2))
= N—lim (=M(@2 ) # (277 + [ 77, (2)] # (277 Mn, 6(2))

= Ty et (@) - (1T - D). (2D

It follows, as above, that
lim ([ 7(2)] % (237N, 6(0)) = 0,

and so, from equation (21), we have

= N—lim M2 # (237, ¢(e)) =

(‘:TTI/\)T_TUr cot(mA)60 () — (—1)"(r = Do ™", $(e))

M e ),

I

proving equation (18) for the case 7 4+ 1. Equation (18) now follows by induction,

and equation (19) follows easily.0
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CHAPTER VI

COMMUTATIVE NEUTRIX PRODUCT OF

ULTRADISTRIBUTIONS AND THE EXCHANGE FORMULA

The problems of defining the product of distributions and ultradistributions in
the dual spaces D’ of D and 2’ of Z (see below), respectively, are well-known.
The object of this chapter is to define the neutrix product (Ff)O(Fg) in 2/,
where F denotes the Fourier transform, to be the neutrix limit of the sequence

{F(fr).F(gm)}. Later, we prove that the exchange formula holds. The product

in D' will be considered in the next chapter.

As in [23], we define the Fourier transform of a function ¢ in D by

F(p)o) = ¢(o) = / B(z)e™ da.

o0
—00
Here o = 01 + 707 is a complex variable and it is well known that ¢~$(0') is an entire

analytic function with the property
lol?|@(o)] < Cyecl2l, ®

for some constants C,; and ¢ depending on é. The set Z, of all analytic functions

with property (1), is, in fact, the space

S(D)=A{y:3¢ € D,7(¢) = ¥}.

The definition of convergence in Z can be carried over from PD. That is, the
sequence of functions %, (o) converges to zero in Z if the sequence of their inverse
images (inverse Fourier transforms) ¢, () converges to zero in D. We say that a

sequence ¥,(o) converges to zero in 2 if for each function in this sequence we have

|09, ()| < Cpe®lo2l,
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The Fourier transform, f, of a distribution f in D’, is an ultradistribution in 2,

i.e. a continuous linear functional on Z. It is defined by Parseval’s equation:

(f) qz) = 27"(f,¢>-

The exchange formula is the equality

F(f*9) = F()F(g). )

It is well known that the exchange formula holds for all convolution products of
distributions f and g, provided f and g both have compact support; see for example

Treves [37].
We now consider the problem of defining multiplication in Z’. To do this we

need the Fourier transform F(7,) of 7,, defined as in Definition 4.3, and write
bn(0) = 5= F(ra)
n - 271_ njs
which is a function in Z£. Putting ¢ = q~3, we have, from Parseval’s equation,
1
(Tn7¢) = %(F(Tn)ry:(qs)) = (6m'¢)~
Since
. . o0 o0
Jim (r,d) = lim [” ra@)p(e)do = [ do)de = (1L,0),
for all ¢ in D, and since F(1) = 27§, we obtain
Jim (8, 9) = (6,9),

for all 9 in Z. Thus {§,} is a sequence in Z’ converging to the Dirac delta function

8.
If f is an arbitrary distribution in D’, then, since §, is a function in Z, the

convolution product f 6, is defined by
((f % 62)(9),%(0)) = (F(), (8n(0), (0 + ), (3)
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for arbitrary ¢ in Z. If ¥ = ¢, we have

$(o +v) = Fle™ ¢(a)]

and it follows from Parseval’s equation that

(Sn(a)y (o +v)) = %(f(%)(a)»f(ei””qﬁ)(ff)) = (Tu(2), € ¢(2))
= /_o:o o (2)e $(2) de (4)
~ [ ég@)da = p).
Thus,

Jim (F %80, 9) = (F9),
for arbitrary ¢ in Z, and it follows that { fa 8,} is a regular sequence of infinitely
differentiable functions converging to f in 2.

This leads us to the following definition:

DEFINITION 6.1.Let f and g be distributions in D' having Fourier transforms
f and § respectively in Z' and let f, = F % 6, and §p = §+ 8,. Then the neutriz
product fO§ is defined to be the neutriz limit of the sequence { .G, }, provided the

limit b exists, in the sense that
N—lim(fa-gn, ) = (R, 9),
for ally in 2.

In this definition we use fOF to denote the neutrix product of f and § to distinguish
it from the usual definition of the product, fy.jn, of two infinitely differentiable
functions fn and §,. If

nli—»néo<fn-§m ¥) = <il’ ¥),

for all % in 2, we simply say that the product f.§ exists and equals h. We then, of

course, have

“hy
O
=
1!
e
o




It is immediately obvious that if the neutrix product fOj exists then the neutrix
product is commutative.

The product of ultradistributions in Z’ also has the following property:

THEOREM 6.1. Let f and § be ultradistributions in Z' and suppose that the
neutriz products f0§ and fog (or f'l:lg) exist. Then the neutriz product f'O0F (or
fOg) ewists and

(fog) = f'og+ fog'. (5)

PROOF'. Let ¢ be an arbitrary function in Z. Then,

(fog,%) = N-lim(fu.gn,$), (fOF,9) = N-lim(fo.57,, ¥)-

Further,
(o), ) = —(fog,¢') = = N-lim(Fougas ¥)
= - N":].ol})n(gn, (fn"p)l - f:z@b)
and so

N-Lim(f5.gn, %) = ((fOGY, ) ~ (FOF, 4)-
Hence the neutrix product f/0§ exists and equation (5) follows.
It follows similarly that if f/017 exists then fO§F exists.O

We can now prove the exchange formula.

THEOREM 8.2. Let f and g be distributions in D' having Fourier iransforms f
and § respectively in Z'. Then the neutriz convolution product f[¥]g exists in D' if

and only if the neutriz product fO§ ewists in 2/, and the exchange formula

F(fBlg) = fog
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is then salisfied.

PROOF. We have from equation (4) that

{0a(0), (0 + )} = F(ra9)

and then, from equation (3), that

(Fur ) (F %60, 9) = (f, F(19)) = 27(f, )

27r(fna¢) = (]:(fn)yz/))

Il

1l

on using Parseval’s equation twice. It follows that F(f,) = fn. Similarly, we have
F(gn) = Gn. Now, since fp, gn both have compact support, the convolution product

fn * gn, exists in the sense of Definition 1.4 and so

-F(fn *gn) = f(.fn)]:(gn) = fn!}n

and so, on using Parseval’s equation again,

2w f * gm(b) = (F(fn* gn)ﬂyb) = (fngna¢>

Suppose the neutrix convolution product f[+| ¢ exists. Then

2r(fflg,¢) = N-lim2n(fy*gn,) = N-Hm(F(fn * gn), %)
= N-lim(fu.gn, ¥) = (F.5,%)
for arbitrary ¢ in D and F¢ in Z, proving the existence of the neutrix product fO7
and the exchange formula.

Conversely, if the neutrix product fO§ exists then the argument can be reversed

to prove the existence of the neutrix convolution product f[¥]g and the exchange

formula.0l

Gel*fand and Shilov define the distributions (z + $0)* and (z — 40)* as follows:

(x4 iO)’\ = f”-\l- + ei’\"mi\_,
(2 - 1'0)’\ = zi + e"”‘"a:’l;
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see [23]. We now prove the following theorem.

THEOREM 6.3. The products (o + i0)*.(¢ + i0)* and (o — i0)*.(c — 10)* ewist

and

(0 4+0) (6 +40)* = (o+i0)", (6)

(o — 0 (o — 0 = (o—i0)HH, (7
for all N and p .
PROOQOF. It is easy to show

@} xak = B(A+1, p+ Day™ 1, (8)
for A, p, A p+1#-1,-2,....
Further (see [23]),

F(a}) = i3 20(\ 4 1)(o +i0)™ 1, 9)

for A # —1,-2,.... On using the exchange formula, it follows, from equations (8)

and (9), that

—fRT2D(N\ 4 1) (i + 1)(0 + 10)"*L(o + d0)7*L =
= B+ 1, + 1)iefOtrt0m2D(\ 4 p 4 2) (o + i0) 242,
for A, i, A + g # 0,1,2,... , the product (¢ - 10)"*~1.(c + i0)"#~1 existing since
the convolution product @3 * 2/ exists. Equation (6) now follows for A, ui, A + p #
0,1,2,....
Now suppose that A, g, A+ ¢ > —1 and put
(o +i0)) = (o + 60)* * 6,(0).
Then, since

(o + i0)>‘ = Ui 1 et
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(see [23]), it follows that {(o + 0)3.(c + i0)#} is a sequence of locally summable
functions which converges to the locally summable function (¢ + #0)**#, Equation
(6) follows for A, p, A+ p > —1.
Now suppose that equation (6) holds when —k — 1 < A < —£, for some positive
integer k, and A\ 4+ p = 0,4£1,42,... . This is certainly true when & = 0. Then,
dim (0 +140)3.(0 +i0)f; = (o + 0,
by our assumption when —k — 1 < A < —k. Tt follows that
Jim [(o +40)).(o + )]
= lim [A(o +0)7 (0 + i0)f4 + (o + i0)} (o + §0)4™"]
= (A +p)(o iyt

and so

Jim (00X o + ) = (o +i0) e,
Equation (6) follows by induction for A # —1,~2,...and A4+ p = 0,41,42,....

We are finally left to prove equation (6) for the case A = r = ~1,-2,... and
u=s=0,1,2,.... Since (see [23]),
In(o + i0) = In|o| + ix H(—0)
and
(o +10)° = o°,
for s =0,1,2,... are locally summable functions, it follows, as above, that if
In(o + i0)n = In(o + ¢0) * 8,(0),
then the sequence {In(o +140)n,.(c+10)3 } converges to the locally summable function
(o + ¢0)°In(o + ¢0). Thus, as in [23],
Jim [In(o + i0)n.(o + i0)2)

= lim [(o + i0);" (0 + i0);, + sln(o + i0)(o + 0);7]

= [(e + i0)® In(o + 70)]

= s(o +40)° L In(o + 40) + (o + i0)*L,
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and so

lim (o +140)7%.(0 + 0); = (o +0)°" .

Equation (6) follows for A = —1 and g = 0,1,2,... . Another induction argument

shows that equation (6) holds for A = —1,-2,... and ¢ = 0,1,2,....0

COROLLARY 6.1.

s>,

G_T.Us — O.S—T
(r-1) { S
87 (0)0® = ¢ (10 = D!y
(7‘-—5—1)!6 (), 7>
~r o(r—1) _ (_1)7‘(7. _ 1)' (2r-1)
o8 (o) = 502r — 1] § (o),

forr=1,2,... and s=0,1,2,....

1y
U;r—1/2. =172 _ (=1) 7r62"(a),

- 2(27)!
forr=10,1,2,....
PROOPF. Since

(o +10)’ = 0°,

for s =0,1,2,..., and
YT — T iﬂ-(_l)r (r—1)
(e+i0)"=0""+ ) ) (o),

for r =1,2,... , see 23], it follows from equation (6) that

US_T,
o+410)"".0° = sop o tm(=L)ts
() " + —————(Tfsll)ﬁ( Do),

—-r s iW(—l)T (r-1) s
o "o’ + (r—l)!6 (0).0°,

(10)
(11)

(12)

(13)

the product clearly being distributive with respect to addition. Equating real and

imaginary parts, equations (10) and (11) follow.
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It follows from equation (6), that

(o +i0)".(0 +i0)" = (c4+i0)"%
— —7 iﬂ-(_l)r (r-1) ] [ — iﬂ-(_]‘)r 6(1’—1) ]
= o @ T @)
— —2r i (2r—1)
A c ey TR GO
for 7 = 1,2,... . Expanding and equating imaginary parts gives equation (12).

Again from equation (6), it follows that

(0 +140) Y2 (0 +i0)""2 = (o+i0)" 2!

[0;,._1/2 B i(_l)ra:r—-l/Z] . [U;T—I/Z _ z.(_I)T‘T:r-l/z]

= g1 i 6(27‘)(0),

(2r)!
for r = 0,1,2,.... Expanding and equating the imaginary parts gives equation

(13).0
THEOREM 6.4. The neutriz product 0} 08()(a) ewists and
03060 (a) = 0, (14)
for real A # 0,+1,%2,... and s =0,1,2,....
PROOF. It was proved in [19] that
:vj‘_a:s =0, 22[2*=0,

for real A # 0,41,42,... and s =0,1,2,... . Thus,

(& — 0 [{]e® = (2} + e 22 )]« = 0,

for real A # 0,£1,+2,...and s =0,1,2,... . On applying the exchange formula to

this equation we get

a;’\“llﬂé(s)(a) =0,
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for real A # 0,£1,+2,... and s =0,1,2,..., since

2re=id/2

Fl(z —i0)"] = Ty oF

for A #0,41,4£2,... and
F(a®) = 2(—i)*76() (o)
for s =0,1,2,... ; see [23]. Equation (14) follows immediately.00
COROLLARY 6.2. The neutriz product 0206() (o) evists and
02060 (0) = 0,
for real A # 0,£1,42,... and s =0,1,2,....

PROQOF. The result follows immediately from equation (14) on replacing o by —¢

in equation (14).
THEOREM 6.5. The neutriz product (o — i0)*0(0 + 40)* evists and
(0 —i0*0(0 + i0)* = g™ 4 eilu=Nmgdte, (15)
for real A\, #0,£1,£2,... .
PROOF. It was proved in [19] that
e el = BO A p 4 1, —p)e T B p - 1, =)

for real A\, p # 0,41,42,.... Applying the exchange formula to this equation, using

equation (9) and
F(ad) = —ie™ DA 4 1)(0 — i0),
we get
fO=BIT/2D(_\)T(—p)(o — i0) Do + i0)* =
= OFOT2BON 4 4 1, —p)T (=X = p)(o — 0P +
e HMIT2BON 4+ 1, —A)D(=A — p)(o + 10)ME,
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and so

(o — i0)*a(o + i0)*

™7 sin(Ar) cosec](A + p)r](o — 0)M* +
+e~ sin(ur) cosec[(A - p)r)(o + i0) M

oAt g gile=Nm e

proving equation (15) for real A,y # 0,£1,42,... .0
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CHAPTER VII

THE COMPOSITION OF DISTRIBUTIONS

There are two methods of defining the product of distributions: one by regu-
larization and passage to the limit (Hirata-Ogata [25], Tillmann [28] and Kaminski
[30]) and another one (Hérmander [26]) by means of the Fourier transform. These
two methods are compared in [4]. The definitions of product of distributions given
by Mikusinski, Hirata-Ogata, Tillmann and Kaminski are not equivalent since the
Delta sequences considered by each author were different;see for example [31] or
[28]. In this chapter, we will use symmetric model sequences, whilst in some of
above mentioned work, non-symmetric delta sequences were used. However, we
shall not examine the relation betweeen our product and the other products.

We begin this chapter by considering another extension of the product of dis-
tributions in D', so that we will be able to study the substitution of infinitely
differentiable functions in the product of distributions. In [2], the composition of a
distribution and an infinitely differentiable function is extended to distributions by
continuity provided the derivative of the infinitely differentiable function is different
from zero. Later, in [13] and [14], Fisher defined the composition of a distribution F
and a summable function f which has a single simple root in the open interval (a, b),
and it was recently generalized in [32] by allowing f to be a distribution. This gen-
eralization is also an extension of the definition of the composition of distributions
given in recent paper by Antosik; see [1]. In this chapter we give another alternative
approach.

Here, we let {6,(2)} be a regular sequence of infinitely differentiable functions

defined as in Chapter 1. Then the following definition was given in [8].
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DEFINITION 7.1. Let f and g be arbitrary distributions and let g, = ¢ * 6y.
We say that the product f.g of f and g exists and is equal to h on the open interval
(a,0) if

Jim (fgn, ¢) = lUm (f,9nd) = (h, )

n—00

for all test functions ¢ with compact support contained in the interval (a,b).

Since this definition of the product is not symmetric, the product f.g is not
necessarily commutative. However, many such products are in fact commutative as

is seen from the following theorem, which was proved in [8].

THEOREM 7.1. Let f and g be distributions. If the product fg ewxists on the open
interval (a,b) in the sense of Definition 1.2, then the products f.g and g.f exist and
Jo=9f=1Fyg

on this interval.

Thus, Definition 7.1 is also an extension of Definition 1.1. In the following, a
definition for the product of two distributions extends Definition 7.1 to an even

wider class of distributions.

DEFINITION 7.2. Let f and g be arbitrary distributions and let g, = g*6,. We
say that the neutriz product f o g of f and g exists and is equal to h on the open

interval (a,b) if
N—lim(fgn, ¢) = N-lim(f, ga) = (h,9), (1)
Jor all test functions ¢ with compact support contained in the interval (a,b).

Note that if we put f,, = f # 6n, we have

<fyna ¢) = Nﬂ;_}g“(fmgm ¢>7

and so the equation (1) could be replaced by the equation

N-tim [N =l fgo, )] = (8, 9)- @)

n—o0
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It was proved in [8] that if the product f.g exists in the sense of Definition 7.1,
then the neutrix product f o g exists and defines the same distribution. It was also
proved that if the neutrix products fo g and fo g’ exist on the open interval (a,b),

then the neutrix product f’ o g exists on the interval (a,b) and
(fog) =flog+fog.

Some properties of the above neutrix product were proved in [18].
The definition of composition of the delta function and an infinitely differentiable

function is as follows:

1
§(f(z)) = —=0(z — z,),
where f has n simple roots 21, 23,...,2, and f' > 0 at these roots.
In general, by formal differentiation, 6 ( f()) is defined by

1 1 d\k
§B(f(e)) = ;m(ma) 8z —wn);

see Gel’fand and Shilov [23].

The following definition for the change of variable in distributions is an extension

of the definition above and was given in [13].
DEFINITION 7.3. Let f be an infinitely differentiable function. We say that the
distribution §0)(f(z)) ewists and is equal to h on the interval (a,b) if

N-tim [ 80(f(e)¢(e) do = (h(a), 4(2),

for all test functions with compact support contained in the interval (a,b).

An extension of Definition 7.3 was given in {14] as follows:

DEFINITION 7.4. Let I be a distribution in D' and let f be a locally summable
Junction. We say that the distribution F'(f(2)) emists and is equal to the distribution

H on the interval (a,b) if
N-lim [~ Fo(f(0)¢(e) do = (H,9),
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for all test functions ¢ in D with support contained in the interval (a,b), where

Fo(x) = (F +6,) ().
The following theorem was, however, proved in [22].

THEOREM 7.2, Let F be a distribution in D' and let f be an infinitely differ-
entiable function with f'(z) > 0, (or < 0), for all x in the interval (a,b). Then the
distribution F(f(z)) exists on the interval (a,b).

Further, of I is the p-th derivative of a locally summable function F(-P) on the

interval (f(a), £(b)) (or f(b), f(a)), then

£(8)
(FUE), 6@ = (1P [ CFOEI @) de ®)
= v [T PO @ ] [Fa] @

Jor all ¢ in D with support contained in the interval (a,b).

Using equation (3), it was proved that, if f has a single simple zero at the point

@ = @1 in the interval (a,b), then

@) = ey | ) 0~ o )
on the interval (a,b), for s = 0,1,2,..., showing that Definition 7.4 is in agreement
with the definition of §)(f(«)) given by Gel’fand and Shilov see [13].

The problem of defining the product F'(f)o G(g) was considered in [14]. Putting
F(f) = Fy and G(g) = G4 the product F} o G4 = Hy is, of course, defined by the
equation

N-tim [N —lim(Fin G, )] = (1, 6),
for all ¢ in D, where Fy,,, = Fy * 6, and G, = Gy % by,

However, it has been pointed out (see [14]), that since the distributions F'(f)
and G(g) were defined by the sequences {Fp,} and {G,} the product F(f) o G(g)

should be defined by these sequences, leading to the following definition.
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DEFINITION 7.5. Let I' and G be distributions in D', f and g be locally
summable functions, and Fp, = F * 6, and G, = G * 6,. We say that the neu-
triz product F'(f)o G(g), of F(f) and G(g) evists and is equal to the distribution H
on the interv.al (a,b), if Fr(F)Gn(g) is a locally summable function on the interval

(a,b), and
N -lim N—__}iogn(Fm(f)Gn(g)aﬁb)] = (H,¢),

n—00 m

for all ¢ in D with support contained in the interval (a,b).

The following two examples were given in [14] and show that the neutrix product

F(f) o G(g) can be equal to, but is not necessarily equal to, the neutrix product

F oG,
EXAMPLE 7.1. Let F = o}/%, G = §'(z), f = @} and g = ay. Then
1
F(f)=Fi=ay, G(g)=G=38()
and
1
F(f)oGlg) = —58(z) = F10Gr.
— 2 V2 s f= = g2
EXAMPLE 7.2. Let F=2a""", G=6(z), f =2 and g = 2}/". Then
F(f)=F =2{'"% Glg)=Gi1=0

and

F(f)oG(g) = 6(z) # 0= F0Gy.

The following theorem was also proved in [14].

THEOREM 7.3. Let I and G be distributions in D', f be a locally summable
function and g be an infinitely differentiable function. If the distributions F(f) = I}y
and G(g) = Gy ewist, and the neutriz product F(f)oG(g) ewists on the interval (a,b),
then

F(f) o G(g) = Fi o G(g)
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on the interval (a,b). In particular, if g(z) = x, then
F(f) o] G(g) = F1 (o] G1
on the interval (a,b).

In this theorem, Fy o G(g) was used to denote the distribution defined by
anlgom(F1Gn(g),¢).

‘We now prove the following theorem.

THEOREM 7.4. Let F and G be distributions in D' and [ be an infinitely dif-
ferentiable function with f'(z) > 0 (or < 0), for all © in the interval (a,b). If
the neutriz product F o G ewists and is equal to H on the interval (f(a), f(b)) (or
(f(6), f(a))), then

F(f)o G(f) = H(f)

on the interval (a,b).

PROOF. Note first of all that the distributions F'(f) and G(f) exist on the interval
(f(a), £(b)) (or (f(b), f(a))), by Theorem 7.2.

We will suppose that f/(z) > 0 and that g is the inverse of f on the interval
(a,b). Letting ¢ be an arbitrary function in D with support contained in the interval

(a,b), and making the substitution ¢ = f(x), we have

| Bl @)Galf@b@)de = [~ Fu®Galdlo)g @)t

/_o:o Frn(8)Ga(t)9(t) dt,

i

where ¥(t) = ¢(g(¢))g'(t) is a function in D with support contained in the interval

(f(a), f(b)). It follows that
N=tim [N lim(Fn(1)Ga(1), )] = (,8),
for all ¢ or 9.
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Purther, on making the substitution ¢ = f(z), we have

|

I mapoa = [ " HL09(90) ()
/_o; H,(f(2))¢(z)d=,

I

and so

N—lim{H,,$) = (H(f),$).0

THEOREM 7.5. Let F' and G be distributions in D' and f be an infinitely dif-
ferentiable function with f'(z) > 0 (or < 0) for all @ in the interval (a,b). If the
neutriz products F o G and F oG’ (or F' o G), exist on the interval (f(a), f(b)) (or
(7(8), f(a))), then

[F(f)o G = [F(HY o G(f) + F(f) o [
on the interval (a,b).

PROOF. The usual law
(FoGY=F'oG+Fod

for the differentiation of a product holds and so the result of the theorem follows

immediately from Theorem 7.4.

THEOREM 7.6. Let f be an infinitely differentiable function with f'(z) > 0
(or < 0), for all & in the interval (a,b), and having o simple zero at the point
& = @ in the interval (a,b). Then the neulriz products (f(z)) o 8)(f(z)) and
§G(f(2)) o (F(2)), eaist and

(F@)); 69 f(2) = 6D (@)-(f@)) = 0 (6)

fors=0,1,...,r =1 andr = 1,2,.... Further,

(F@)5 0 6@(f(2)) = 6CN(f(2)) o (f(2))}
(=1)st 1 [1 d

o e e @
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forr=0,1,...,s, and s =0,1,2,..., on the interval (a,b).

PROOF. If g is an s times continuously differentiable function at the origin, then
the product ¢.6¢) = §().g is given by
9(2).80)(z) = 60)(z).g(e) = Y (~1)* () g(0)6 (o).
=0
Tt follows that

2.80)(z) = 66 (z).2%, = 0,

for s =1,2,...,7— 1 and r = 1,2,.... Equation (6) follows immediately on using
Theorem 7.4.

It was proved in [9] that

r s s —1)"s! s—r
o 0 89(a) = 60z 00, = L Es00)

forr=10,1,2,...,5 and s =0,1,2,.... Using Theorem 7.4, it follows that

() o8O = S o (FE) = L),

forr=0,1,2,...,5 and s = 0,1,2,... . Equation (7) follows immediately on using

equation (5).0
EXAMPLE 7.3. Forall z € R,

(@42} 08 +2?) = §(x+a?) o (¢ 42,

= H(=1yrl[8(e) + (e + 1), ()

(x4 2%} 080 (w4 2?) = 60 (a4 2?)o(a+a?)}
= (=17 (r + DIE () + 26() - &'(a + 1)+

+26(x + 1)) (9)

forr=0,1,2,....
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PROOF. The function f(z) = 2 + 2% has simple zeros at the points & = 0,—1. It
follows from equations (5) and (7) that
@+ 06 (@+2”) = 82+ o(v+a?)
= (=1)r6(= + z?)
= J(-1)r6(@) + 6(e+ D),

proving equation (8) for r = 0,1,2,....

It again follows from equations (5) and (7) that

(z+2%)7 0 S0 (a4 22)

Il

§U ) (2 4 2%) o (2 + 27}
1
1422

= 2(=1)"(r + D& (2) + 26(2) — 6'(x + 1) + 26(= + 1)],

= (-1 (r+ 1) [6(2) + & (2 + 1)]

proving equation (9) for » =0,1,2,... .0

THEOREM 7.7. Let f be an infinitely differentiable function with f'(z) > 0 (or
< 0), for all & in the interval (a,b), having a simple zero at the point x = 21 in
the interval (a,b). Then the neutriz products (f(2))™" o §&(f(2)) and 6©)(f(z)) o
(f(=))™" ewist and
(~1yst 1 [ 1 4 ]T+s

=z S —
NG [Fyas] o

§9(f(2)) o (f(2))" =0, (11)

(F(2))™" 0 69)(f(x)) =

(10)

forr=1,2,... and s =0,1,2,..., on the interval (a,b).
PROOF. It was proved in [9] that
=t o 60y — TS gy
27" 0 6% (2) (r+s)!6 (),
6O (e)or™ =0,

forr = 1,2,... and s = 0,1,2,... . Equations (10) and (11) follow immediately as

in the proof of Theorem 7.6.0
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EXAMPLE 7.4. For all € R,
(@ =1t ob(a® —1)=-L§(z -1+ -1)-8@+1)+6@+1)], (12)
6?1 o (2~ 1) =0, (13)
forr=1,2,...,and s=0,1,2,....

PROOFT. The function f(z) = 2 — 1 has simple zeros at the points = £1. It

follows from equations (5) and (10) that

(22 -1 toéd(a?-1) —%[6'(.@ - 1)+ 6 (x+1)]

il

Il

—3[(x = 1)+ 8(x — 1) = §(z + 1) + 6(= + 1)],

proving equation (12).
Equation (13) follows immediately from equations (5) and (11) for » = 1,2,...

and s =0,1,2,....

THEOREM 7.8. Let f be an infinitely differentiable function with f'(z) > 0 (or
< 0), for all © in the interval (a,b), having a simple zero at the point @ = z1 in
the interval (a,b). Then the neutriz products (f(x))} o (F@)=*" and (f(z))=* "o

(f(’b))f‘}_ exist and

(@)} o (PN

1l

(F@)" o (f(2))
mcosec(wA) 1 1 d

r=1
-7 2(r = 1)1 | F(=1)] [f'(-’b‘l) Z{] §(z —w1), (14)

for A #0,£1,42,... end r = 1,2,..., on the interval (a,b).
PROOF. It was proved in [9] that

m cosec(TA)

WA AT — AT
TromT = 2(r — 1)1

80 (a),

X
oxy =

for A # 0,4+1,42,... and » = 1,2, ... . Equation (14) follows immediately as in the

proof of Theorem 7.6.00
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EXAMPLE 7.5. Let f(z) = ¢ be the inverse of the function g(t) =t + 3 = 2. .
Then, for all z € R,

(f@)r o (F@N = (F@) o (f@))

— & cosec(rA)8(=), (15)

Il

il

(F@)) o (F@NX? = (f=)2 2o (f(2))}

— & 7 cosec(m\)[6'(z) + 6(x)), (16)

for A #0,+1,42,....

PROOF. Since

F®)=1+3t2>0

for all ¢, it follows that f/(z) > 0 for all # and so, on using equation (3) with p = 1,

we have, for all ¢ in D,

I

(8(f(=)), () - /_ Z H(z)d[(1 4 32%)¢(z + 2)]

- /0 (1 + 362 + 2%)] = $(0).

I

It follows that
6(f(2)) = §(). (17)

Using equation (3), again with p = 2, we have, for all ¢ in D,

(6'(f(2)), b(=))

i

[ i+ 3oty + a0y
~#(0) — A = A1 + 362 + o]
—¢'(0) + ¢(0).

il

It follows that

8'(f()) = 6'(2) + 8(w). (18)
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It now follows from equations (14) and (17), that

Il

(@)} o (F@)T (SN2 o (fa))h

- % w cosec(wA)8(f(=))

— & 7 cosec(nA)8(w),

proving equation (15) for A # 0,+1,+£2,... .
It again follows, from equations (14) and (18), that
@i (F@NTF = (FE@N7 o (f@)
= —Lmcosec(m )6 (f(x))
= 1rcosec(w )8 () + 6()],
proving equation (16) for A # 0,+1,42,... .0

In the following, we consider another alternative definition of composition which

extends Definition 7.4.

DEFINITION 7.6. Let F and f be distributions in D'. We say that the distribu-
tion F(f(2)) ewists and is equal to the distribution h(x) in D', on the interval (a,b),
if

m—+00

b
N—lim [Nn;{gn | Fln(e)d(e) de| = (), 8(=)

for all ¢ in D with support contained in the interval (a,b), where

Fo(z) = (Fx8,)(2),  fm(2) = (f % 6m)(2).

An alternative generalization was considered in [32], where the order in which

the neutrix limits were taken in Definition 7.6 were reversed.

THEOREM 7.9. Let F' be a bounded, continuous function on the real line. Then

the distribution F(6()(x)) exists on the real line and

F(64)(2)) = F(0),
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fors=10,1,2,... .

PROOF. Let ¢ be an arbitrary function in D with support contained in the interval

(a,b). Then, since F is a continuous function, it follows that

N-lim (B (6 (2)), 4() )

il

Jim / Fr(68)(2))b(2) da

- /a F(69)(2))g(2) da. (19)
Now,
F(Ed(@) = F(0), o> 1/m,
[FED@)| < K, lel<1/m,
where

K = sup{|F(2)]} < o,

since F is bounded. Thus,

[ [ - £ ey

/m
= f-ll,m”" + [F(0)|]¢(2)] da,

which tends to zero as m tends to infinity. It now follows, from equation (19), that

N-tim [N—lim (£, (6)(2)),6(0)) | = (F(0), 8(w)).0

THEOREM 7.10. The distribution H(6()(c)) ewists on the real line and
HEO@) = 4,

for s =0,1,2,... , where H denotes Heaviside’s function.

PROOF. We put

Hu(@) = (H * 8,)(),

forn =1,2,..., so that

1, x> 1/n,
Ho(a) = /_ 0, el <1/n
0, z < —1/n,
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0< Hy(2) <1,
H(0) = 3,
forn =1,2,.... Thus
Ha(63)(2)) = Ha(0) = §,
for |2| > 1/m and
EACO)ES
for m,n=1,2,....

Now, let ¢ be an arbitrary function in D . Then,

SN z = 5) (@ 2)dx ) (a ) da
(Ha(69)(2)), $(2)) /mzl/m Ha(8$) () () de + /|m|51/m (69 (2))0(2)
= /lezllm 1o(z)dz + /IwISI/m Ha (89 (2)) () de,
and so

[Ha(6(2)) - §] $() da|.

KHn(ﬁ,(,f)(m)) - %’45(‘”))! = {/|m|

<i/m
Choosing an arbitrary € > 0, there exists an M such that me > 1 for m > M.

Then, with m > M, we have
H(55)(w)) = Ha(0) = 5,

for |&¢| > € and n = 1,2,... . It follows that, for m > M,

’

[(Ha(@2(2)) - 3 8(2))| = [ Je, [0 3] 602 o

forn =1,2,.... Thus

Jim [ tim (#,(55)(2)), 6(2))] = (3,4(2)).0

=0

THEOREM 7.11. Let F be a bounded, locally summable function on the real line
which is continuous everywhere except for a simple discontinuity at the origin. Then

the distribution F(6()(x)) euists on the real line and

P59 (w)) = 3[F(0+) + F(0-)],
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fors=0,1,2,....

PROOF. Let

F(04) - F(0-) =c.
Then, the function G, defined by
G(z) = F(z) — cH(),
satisfies the conditions of Theorem 7.9. Thus,
G(69(2)) = G(0) = F(0-),
and so

G(6)(2)) + cH (6 (2)) F(0-) + 31F(0+) = F(0-)]

Il

= $LF(O+)+ F(0-)),
for s =0,1,2,....0
THEOREM 7.12. Let Fy(x,)) be the continuous function a}, where X > 0.
Then, the distribution Fy.(8)(x), ) exists on the real line and
Fy(69)(2),A) = 0, (20)

for sA+A#£1,2,...and s=0,1,2,..., also

(=1 e(p,s, )

Fi(80)(2),2) = (A +A-1)

N ), (21)

forsA+A=1,2,... and s=0,1,2,..., where

1
(pro.X) = [ Fr(pw), A dy

PROOF. We put
Fyn(z) = (Fy  6n)(2),
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for n =1,2,... .Then, since F)y. is a continuous function,
lim Fra(6§)(2),A) = 1 (68)(2), \),
form =1,2,.... Further,
P (6(2), 3) = m AR (o) (ma), ),

and in particular

Fy(88)(w), ) = m™ AR (0) = 0,
for |&| > 1/m. Thus, if ¢ is an arbitrary function in D, then
(s) e [Hm (s)
(B (0(@),2),9(0)) = m [ - FalOma) g(e)de. (22)
On making the substitution ma = y, we have

o
S B ma), ooy do = m [ B (00 ), (o fm) dy

_1/
k@) 1 )
= 20 [ R Ow), Dt

=0
1

1
() (k+1) k+1
oy Ly P W) D ey d,

where 0 < ¢ < 1 and k is the smallest integer greater than or equal to sA + X — 1.

It follows, from equation (22), that

k mS/\ A—i—1 4(3) .
(PN 0@) = X O [ e (0, aay +

1=0

sA+A—k—2 1
+%I—T)!— /_1 Fr(p®) (), oD ey )y dy.

Now,

mSAFA—k—2

1
TEEDT /_1 Fi(p19(9), Vo™ )yt dy| <

2msA+)\—k—2
< ———— sup {|F (), Ny L. sup {l()]},
(k+1)! {|y|s1}{’ WA, } g, Hel
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which tends to 0 as m tends to infinity. Thus,

N—lim (F4(88)(2), ), §(a)) =

ko osA+A—i—1 (1) 1 .
=N-tim 3 P O (0, dy
M—+00 i=0 3! —1
= 0,

for sA\+ A #1,2,...and s = 0,1,... , proving equation (20). For sA + X = 1,2,...
and s =0,1,2,...

(sA+A~1)( )3T s
iA A —(1))! = ((SAJE o (0@, ),

proving equation (21).0
COROLLARY 7.1 Let F_(x,)), F(z,)) and G(z,)) be the continuous functions

A

e, :ujl\_—l—:v’l, :z:j‘_~:v’\

respectively, where A > 0. Then the distributions F_(6()(2), ), F(6()(2),\) and
G(6G)(w), \) ewist on the real line and

F_(ﬁ(s)(rv),,\) =0, (23)

F(8E)(z), A) = G(6©) (), \) = 0, (24)

for sA+ A#1,2,... and s = 0,1,2,.... Further,

_1\sAFA=-1 s.)

R = S, (25)
—1)#MA-1e(p, s, ) s, )

RO @),y = SO <s[,\(fi’,\’_\)1; Mo Msern(z),  (26)
_1)sMA-T, _ 5.

G(ﬁ(s)(ﬂﬁ),/\) — (-1) (s[/\(ia;7:\)l)! b(p, 7\)]5(3/\+z\-—1)(w) (27)

forsA+A=1,2,... and s=0,1,2,..., where

1
b(p,s,\) = [_1 F_(p(a)(?/),)\)ys’\"")‘"l dy.

In particular,

F(E9(z),3) = [§9@)] =0, (28)
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forsA+A=2,4,...and s=0,1,2,....

PROOF. The proofs of equations (23) and (25) are similar to the proofs of equations
(20) and (21). Equations (24), (26) and (27) follow immediately.
Further,

1 A
e(py5,X) + b(p,5,)) = /_1 Py Mty = o,

and equation (28) follows.OO

THEOREM 7.18. Let f be a locally summable function on the real line and
suppose that inf{f(z) : —co < & < 00} = ¢ > 0. Then, the distribution 6(’”)(f(rv))

exists and

8U(f(w)) =0,
forr=0,1,2,....
PROOF. We have

fm (@) = 1(f * ) (2)] 2 €,

for m =1,2,... and all 2. Choosing K > ¢!, we have
nfm(z) > ne > 1,
form=1,2,..., all z, and n > K. It follows that
80 (fm(2)) = 0,

for n > K, and so

N-lim [anlgom(a;r)( fm(w)),¢(w)>] = 0.0

m—+o0

COROLLARY 7.2. Let f be a locally summable function on the real line and

suppose that sup{f(z) : —~oo < v < 00} = ¢ < 0. Then, the distribution §()(f(z))

exists, and
§0)(f(2)) = 0,
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forr=0,1,2,....

PROOF. Defining g(z) = — f(z), we have
inf{g(z) : —o0o <@w < o0} =-¢>0.

Tt follows from the theorem that

§(g(2)) = 0 = (=1)"80)(f(2)),
for r = 1,2,..., proving the corollary.

The neutrix product in Definition 6.1 was defined for ultradistributions. If f and

g are distributions in D’ then the neutrix product of f and g is similarly defined as

follows:
DEFINITION 7.8. Let f and g be distributions in D' and let
fa(z) = (f#6a)(2), gnlz) = (9% 6a)(2).
Then, the product f.g is defined to exist and be equal to the distribution h on the
interval (a,b) if
N —lim fu(@)gn (@), $(2)) = (h(2), 6()),
for all test functions ¢ in D with support contained in the interval (a,b).

We note that with this definition of the product of two distributions, the defini-
tion of the distribution f? as the composition of the function 22 and the distribution
f, if it exists, is distinct from the definition of the product f.f, if it exists. However,

the following theorem holds:

THEOREM 7.14. Let f be a distribution in D'. Then the distribution f? exists

on the interval (a,b) if and only if the distribution f.f ewists on the interval (a,b).
Then,

P=rf
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on the interval (a,b).

PROOF. We have

1/n 1/n
(@) = 0% # 6a(2) = / o= ) = / ROCIOEETS
—-1/n -1/n

where

oo J

. 1/n 2
lim 16, (t) dt = 0.
n—= 1/n
Thus,
1/n
[n(@)?], = [ 0u() a4 Ul

It follows that f2 exists on the interval (a,b), if and only if

N~ tisn [N —tim ([ (@))7], ,#(2))) (29)

m—00

exists for all ¢ in D with support contained in the interval (¢,b). But

N-lim ([(fm(@))?] - 6(@)) = lim ([(fn(@)?] ,6(2)) = (Fn(@)fn(2), #(2)

n—+00

certainly exists, and so (29) exists if and only if f.f exists. O
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