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Abstract

Four research projects are reported. They are all
concerned with X-ray data analysis techniques and although
egch project is different there is a common theme which
links all four, Part I considers the use of grazing
incidence optics to produce two dimensional X-ray pictures
with the emphasis on the data analysis and presentation.
The mathematical development within this project forms a
foundation for the subsequent reports. The research
concentrates on viable methods of cleaning up blurred and
noisy X-ray images using Fourier filtering and the Maximum
Entropy Method including a practical implementation of the
theory using digital computers. The major product of this
project was a software package for the processing of large

matrices and this is documented in Appendix I. This

package was used to process astronomical X-ray data from a
sounding rocket flight to yield a soft X-ray image of the
Cygnus Loop supernova remnant and these results are
presented to allow gomparison of the analysis techniéues
developed.

The second project presented in Part II applies the
deconvolution theory developed in Part I to the problem
of decoding data from coded mask telescopes. The design
of such devices is described and computer simulations of"
X-ray burst monitors are reported with analysis and
comment toigive a realistic estimate of the expected
performance of proposed instruments and to compare the
different methods of analysis available.

Part III reports a small project in which the

possibility of analysing anode pulse height data from

(1)



proportional counters using the Maximum Entropy Method
was investigated. A computer program was written to both
simulate and analyse real data. The algorithm was used to
analyse pulse height spectra from the Cygnus Loop
observations.,

The final projéct, concerned with the calibration of
crystal spectrometers, -was somewhat different from the
other th;ee and is presented in Part IV, The mathematical
description of crystal spectrometers is shown to be very
similar to that used for imaging devices but instead of
studying data analysis methods which require an accurate
description of the instrument response, the more
fundamental problem of charaeterisiﬁg and calibrating the
response is addressed. Both theoretical and practical
methods for finding crystal reflection parameters are
discussed and then applied to three crystals; Langmudir-
Blodgett lead stearate multilayers, gypsum 020 and beryl
1010. Sophisticated theoretical calculations ﬁsing an
atomic model developed by other workers were used to
predict the crystal response. Direct measurements of the
response at a set of wavelengths through each crystal's
range were made using a two crystal X-ray spectrometer.
The combination of theory and measurement provide a
nearly complete description of current pseudo lead
stearate crystal production while the excellent agreement
between theory and measurement for both gypsum and beryl
demonstrates the power of both the theoretical and
practical techniques employed. The results from all three
crystal types provide excellent calibration data for use

in subsequent spectral analysis using these crystals as
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Bragg Analysers,

Measurement of the response across the sulphur k
and aluminium k edges in gypsum and beryl respectively
also provided direct experimental evidence of k electron

resonance in these two atomic types.
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PART I

THE ANALYSIS OF FOCUSED X~RAY IMAGES.



CHAPTER 1: THE NATURE OF THE IMAGING PROBLEM.

1.1 Introduction to Part I.

Optical plates and radio contour maps have been a ...
ma jor data source for astronomers for many years and their
productioh and interpretation is well understood. Now
X-ray astronomy stands on.the brink of 2-D imaging with
the development of hardware using grazinglincidence optics
to focus soft X-rays (0.1 to 5.0 KeV) into a conventional
image and the first true 2-D X-ray maps of the sky are
being made using sounding rocket payloads. The HEAO-B
satellite, which was successfully launched on November
13th 1978, should provide a wealth of high quality 2-D
image data to open a new era in X-ray astronomy.

Techniques for producing final X-ray maps of the sky
are in their infancy and it will be some time before X-ray
'plafes' approach the quality of their optical counter-
parts. This is partly due to present hardware limitations
and partly because data processing techniques dedicated
to astronomical X-ray images have not been developed.

A review of the problem facing X-ray astronomers is
presented here and the results can be summarized by the
following. Firstly the characteristics of the raw data
must be fully studied and assessed. Secondly the
surprisingly difficult task of deciding what is required
of the finai result must be tackled. This involves tricky
subjective judgements concerning the 'information content'
of the data and how it can best be represented. Finally,
just as optical and radio asfronomers have deve;oped

photographic, optical, Fourier analysis and many other



specialised methods, X-ray astronomers must draw on
expertise in other fields to achieve a final result of

high quality, worthy of their efforts.

1.2 The general characteristies of 2-D astronomical X-ray

images.
The mean X-ray flux from the source f(«,3,t,E)

-3 -1 -1 -1 ‘
photons ecm st~ sec ~keV —, where (d,@) is the angular
ppsition relative to the instrument, t is time and E is
photon energy, is foéused by cenventional ray optics onto
an image plane and is recorded by a position sensitive

X-ray detector. The image is outputted as a set of events

Jxﬁ’yn’tn’En; event n occurring at (xn,yn) in the counter
position sensing plane at time tn and having associated
energy E_ (if available).

The measurement process can be modelled in two stages
although this mathemétical representation is by no means
unique, merely comvenient. Firstly the instrument performs
an integral transform on the source distribution
f(<,8,t,E) to give an image distribution J(x,y,t',E')

-1 1 !

counts Qm-zsec keV"™

J(x,y,t',E") =j-k(“9@;tvE,x,Y;t'vE')

flx,0,t,E) dx da dt dE (1.1)

where k is known as the instrument kernel function.,
Secondly the detector measures a sample of J to provide

the data seﬁ,an,yn,tn,En:

an’yn’tn’En = S{J(X’Y’ﬁ'vE')} | (102)

The discrete nature of the incident X-ray photon beam is



introduced in the sampling stage (1.2), whereas perhaps a
more physical approach would trace the history of each
photon through the instrument. Expressions (1.1) and (1.2)
"neatly divorce the instrument response from the statistical
behaviour of the interaction of the X-rays with the
telescope, providing a very powerful and useful represent-
ation of the behaviour of grazing incidence telescopes
used in X-ray astronomy. ,

The form of the functions S{}{ and k in (1.2) and
(1.1) above must now be dealt with in detail. S{! includes
the statistical fluctuations in the data and the effect of
non-photon background counts induced in the counter by
cosmic rays which cannot all be discriminated out of the
data set. The statistical fluctuation in the number of
counts within an area of the detector sensing plane is
governed by the Poisson distibution. For an area
AA cmgsec keV at nominal position (x,y,t',E') in the
instrument co-ordinates, with cosmic background count

c(x,y,t',E') counts cm-zsec-lkev-l:

N(x,y,t',E') = aAJ(x,y,t',E') + aAC(x,y,t',E')

counts (1.3)

and the fluctuations about the mean will have variance

62 = N providing N 2 8, For very low values of N a more
accurate estimate of variance may be required (see
reference 1), however this is not normally necessary, It
can be seen from (1.3) that the statistics of the recorded’
image are dependent on the image function J(x,y,t'E')

which, of course, in turn is related to the source

brightness distribution f(«,3,t,E). The noise content of

L



the image is therefore dependent on the form of

f@x,@,t,E) (whether the source is a nebula or a star etc.)
and on the behaviour of the instrument described by the
function k(x,@,t,E,x,y,t',E').

A more detailed analysis of the instrument is now
required to provide a breakdown of the instrument kernel.
The fifst element of the telescope system is the mirror
which can be arranged in a variety of geometries. All
configurations involve the two grazing incidence reflect-
ions (£3°) off highly polished metal surfaces to give a
focused image using conventional ray optics. The action
of the mirror can be adequately described using but a few
functions and parameters. The efficiency and image quality
of the system can be handled separately, although they are
not strictly separable, because the efficiency is only a
slowly varying function of source position and the imaging
performance is only weakly affected by photon energy.

The efficiency is conveniently expressed as a
collecting area A(E,x,@) cmz. For the Wolter Type I’
geometry the mirrors are hyperbolcid and paraboloid with
circular symmetry giving A(E,Y) cm2, where ¥ is the off-
axis angle of the incoming X-ray beam. Note that A(E,Y)
repr ~-sents an average efficiency over the complete
pro; cted aperture of the instrument. When using a
bancsidth € 1 keV, the collecting area can be expressed as
the -roduct of an energy dependent efficiency and a beam
shape A(E,¥) = 3m(E) B(¥). 3m(E) will be a function of the
mirror surface material and strongly modulated by
absorption edges. B(?)rcmz, as previously mentioned, is a

slowly varying function of ¥ defining a smooth beam



profile which is determined by the size and figuring of
the surfaces.

The image quality of the mirror is best described by
a point spread function, which for astronomical
applications is the response to a parallel X-ray beam
incident over the entire surface. The function
Pm(xp'—xﬁyp'-y;uq(ﬂ, describing the image of a point
source at (o,3) as a function of image plane co-ordinates
(x',y'),ris a stréng function of (<, @). ((xp',yp') is
related to (<,3) by equation (1.4).) The figuring of the
surfaces can give excellent on-axis performance which
unfortunately degrades rapidly towards the edge of the
field of view., For large Y the point spread is strongly
asymmetric and can be affected by rogue, single reflection
rays which cannot fully be stopped. The quality of the
surface polish also affects the imaging performance., In
general, it limits the on-axis performance by producing a
scattering halo which envelops the image of a point
source. This halo is not a strong function of (d,@) and
is generally dominated by the figuring error at the
extremities of the field of view,

The scale of the image in the focal plane is given by
the focal length L mm. Using the optical axis as the

origin of («,@) and (x',y') and with an arbitrary rotation

angle 6-:

(d,@) = i(ﬁﬁ cos & - y sin &) /L,
(xﬁ sin & + yJ cos 6)/L3 (1.4)

where x',y' are measured in mm and &,Q are in radians.

Expression (1.4) ignores any distortion introduced by



using a flat focal plane , which in practice is very small
because « and @ are both £ 2° (= 3.5 x 10”2 rads).
The mirror kernel can now be expressed using the

efficiency and imaging parameters given above:

Ky = 35(B) B(,@) P (x '=x',y '-y',%,Q) (1.5)

In order that Bm(E) contains all the efficiency information

Pm(xp'-x',yp'-y',q,@) must be normalised to 'conserve

[P(xp'-x',yp';y',d,@) dx' dy' =1 (1.6)

Care must be taken in choo§ing the limits of integration
in (1.6) so that all the blurred flux in the image plane
is included.

The focused image is recorded by a specialiskd,
position sensitive, X-ray qetector placed at the focal
plane. Two types of detector are currently available, both
of which measure the position of a photon absorption event
in, or near, the image plane as an (x,y) co-ordinate éair.
In both devices - the imaging proportional counter and
microchannel plate array - a charge is dumped onto a R=C
line complex, the output pulses of which are used to
derive the (x,y) for the initiating abéorption event, The
action of the R-C lines is very similar in the two cases,
however the physical processes used to provide the initial
charge are.very different,

The imaging proportional counter uses a charge
avalanche onto a grid of very thin anode wires to provide
sufficient charge to drive the R-C lines and associated

electronics, Ideally the photon absorption must occur at



the image plane to prevent blurring. However this is neot
possible because of the exponential absorption of the
X~-ray beam ih the counter gas after penetration of the
thin counter window, The resultant blurring is a strong
function of energy dependent on the geometry of the mirror
and the counter gas mixture and pressure. It is also a
weak function of Gx,@) since the entry angle of photons
into the gas varies with source position. The 'gas
blurring' can be expressed as a point response for the gas
given by Pg(x',y“,x',y',E) (where (x",y") are absorption
co-ordinates relative to the entry point in the image
plane (x',y')), which is normalised in exactly the same
way as Pm in equation (1.6) above. Pg represents the
spatial response of the gas to a point source imaged by a
perfect imaging mirror.

The small, compact charge cloud created by the photon
absorption is then drifted onto the counter grid system
which acts as an R-C line complex. It is sufficient to say
that the overall response of the counter at this stage can
be expressed by a new linear point respeonse
Pl(x-x",y-y",E). The overall spatial response of the IPC

is therefore given by the'point response:

Pd(x-x',y-y',x',y',E) =.{Pg(x"97“7x'sY"E) (107)

Pl(x‘x"’Y‘Y"rE) dx" dy"

The efficiency of the counter is dependent on the window
transmission and the absorption properties of the counter
gas. At low energies the window dominates and provided
that the thickness of the window is uniform, the

efficiency will be independent of (x',y') and simply a



function of the ﬁaterial and thickness }d(E)'

A proportional counter provides energy information on
each detected photon. The response of the system takes the
form of a non-linear convelution of the input system with
a response function R(E-E',E). Hence given a spectrum G(E),

the result has the form:
G'(E') = bd(E) G(E) R(E-E',E) dE (1.8)

G'(E') is then sampled as individual photons by the
function S {}as giveﬁ-by equation (1.2). The efficiency
Bd(E) must obviously be included to describe the actual
pulse heightvspectrum which appears in the data.

The microchannel plate array consists of a honeycomb
of microseopic glass tubes of diameter = liﬂ. The interior
walls of the tubes are coated with MgF which acts as a
photocathode. X-rays hitting the inner walls of the tubes
release an electron. A high p.d. is placed across the
plate to drift the electrons down the tubes creating
secondary electrons on the way. After several steps the
resulting total charge is dumped on an R~C line complex,
Under proper working conditions the performance of the
plate is limited by the tube diameter which bins the
incident photeon flux. The overall response can be expressed
as a single linear point response Pd(x-x',y-y') which is
independent of the angle of entry of the photon relative
to the plate normal,

The efficiency of the microchannel plate is dependent
on the photon entry angle, however when used with a
grazing incidence mirror the entry angle does not alter

appreciably over the field of view and hence the



efficiency is given adequately by‘}d(E) in a similar
fashion to the IPC, '

The overall detector response is therefore given by:
/
kd = }d(E) Pd(x‘x"Y"Y"x',Y"E) R(E-E 1E) (1-9)_

where Pd(x,y,x',y',E) reduces to P, (x-x',y-y') and
R(E-E',E) is unavailable for the MCP detector. Equations
(1.5) and (1.9) combine to yield the complete instrument

kernel:

k(‘x’@’t,Eﬂ[oY’t'v.E') =}m(E) jd(E) R(E"E'9E)
B(d’@)f{Pm(xp"-fx}.’yp'-y"d’@)
Pd(x-x'.y-y'.x',y'.Eli dx' dy'

(1.10)

The above analysis provides a full description of the
instruments'! action going from the initial surface
brightness distrib;tion f(<x,3,t,E) to the measured data
set an,yn,tn,En. Since any such instrument employed by
X-ray astronomers will be aboard a space vehicle, the
data set th,yn,tn,En will be yransmitted to Earth by d
telemetry link, The numger of bits available per data-
element must be adequate so that the experiment is
instrument performance rather than telemetry limited add.
the bandwidth must be sufficient to handle the data rate
expected when imaging astronomical sources. If insufficient
bits are used then the form of the above equations will be
irrelevant and no amount of subtle post-processing of daté
can improve the image quality.

The explicit form of the functions used to describe

the instruments' operation is needed to produce good

10



results and the next section deals with specific systems

to provide some idea of what this entails.

1.3 The performance of existing X-ray telescope systems..

The general form of the instrument response is
summarised by the functions C(x,y,t',E!'), the cosmic
background count,}nAEﬂ the mirror efficiency, B(Y) the

beam shape of the mirror, fm(xp'-x’,yp’-y',q,@) the point
response of the mirror, gy(x”,y*,x',y',E) the gas response
(only present for gas detectors), Pl(x-x",y-y",E) the
detector R-C line point response,.Bd(E) the detector
effi ciency and R(E-E',E) the energy response (only
applicable to proportional counters) of the detector.

Examples are given here of these functional forms for
existing systems. Whenever possible, measured values are
given but this is not always easy because of measurement
difficulties. Details of three specific payloads are given;
the payload built by MIT/ Leicester University for launch
on an Aerobee sounding rocket to image supernova remnants .
in soft X-rays, secondly the Leicester University/ MPI
Germany collaboration to build a payload capable of
imaging an X-ray dust scattering halo about a point source
to be flown on a Skylark sounding rocket and thirdly
the HEAO-B satellite built by a large consortium centred
on SAOQO, |

All three utilise the Wolter Type I mirror geometry
and an IPC, Only HEAO-B, which is a high resolution
instrument, employs a MCP as a detector to provide high
quality (~2"), small field plates to comple ment the wider

field, relatively low resolution (~1') plates. The

11



performance of a complete system, mirror plus detector,
cannot be calculated directly from the individual
responses because of thé gas blurring effect, which

depends both on the mirror geometry and the counter gas.

The MIT mirror.

The mirror assembly consists of a nested pair of
mirrors, each consisting of a front paraboleid and rear
hyperboloid giving a focal length of 1143 mm. The on-axis

fesponse Qas found experimentally to have the form:

2 2 2
Pm(O-x‘,O~y',0,0) = 1 expl-(x'“+y! )/26 %%
I3 )
Zszém (x'2+y'2)% (1.11)
where Sm = 2.8', Mo%ing off-axis caused degradation to the

symmetry of the response but Sm can still be used to
provide a good indication of performance. Figure 1 shows
the theoretical and measured values of 5& as a function of
off-axis angle Y, Figures 2 and 3 show the measured
response of the mirror to. a slit collimated beam giving
the line response of the mirror at two energies: 0.28 keV
and 1.5 keV, Figure 4 shows the measured effective area of
the mirror; A(¥,E) fqr three spot energies E. The
unnormalised beam shape is ohly a weak function of energy
but the absolute value of A(Y¥,E) is strongly modulated by
jm(E). Figure 5 shows the theoretical efficiency of the
nickel mirror surface for a normal grazing incidence angle
of L& 7 = 2°, The quality of the mirror polish limits the

actual efficiency to about 30% of theoretical but leaves

the gross absorption edge structure unaltered.

12
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The MPI mirror.

The MPI mirror has a focal length of 1427 mm and was
designed to have a very high image éuality free from
blurring due to figuring errors or a scattering halo due
to polishing limitations. Figure 6 shows the expected
performance based on theoretical figuring limitations and
scattering measurements performed on optical flats
polished to the mirror standard. The function is expressed
as the fractional flux in an anulus of width d& at radius
& from a point source on-axis. Curves 27 and 29 indicate
the expected limits of the scattering halo. Off-axis

"aberrations affect the performance and the resulting
degradation is summarised by Tigure 7. The effective area
has a very similar functional form to the MIT mirror and
theoretical curves for A(¥,E) and }m(E) are given in
figures 8 and 9. Again, the efficiency acbievéd is limited
by surface quality and is about a factor of 3 below the

theoretical curves.

The Leicester IPC,

Both the MIT and MPI payloads use the Leicester IPC
as a dtector. The gas mix used is A/ CH& in various
possible proportions which must be optimised to provide
adequate gain without breakdown. The X-ray flux focused by
the mirror enters the detector in a cone, the shape of
which is énly weakly dependent on source position. The
entry angle Gé for the MIT mirror is = 9o while that for
the MPI mirror is =~ 6°. The X-rays suffer exponential

absorption in the gas giving the response:

13
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Pg(x",y",0,0,E) = 1 (1.12)

2Wdé(E) sin Ge(x"2+y”2)%
exp 5-(x”2+y“2)%/(dg(E) sin &eﬁ

where dg(E) is the 1/e depth for X-rays of energy E in

the counter gas. The parameter 5g(E) = dg(E) sin 6;
conveniently describes the gas blurring for a particular
instrument as a function of energy and figures 10 and 11
show ég(E) for the MIT and MPI payloads respectively. The
contribution of the gas absorption to the everall blurring
of the image clearly becomes important for E 7 lAkeV.

The ﬁ-C line response of the counter has been
extensively measured both parallel and perpendicular to the
anode wires and at different energies. The performance
depends on the pitch of the anode grid and the counter
gain and can be expressed in terms .of the product of fhe
responses parallel and perpendicular to the anode wires

using a Gaussian form:

P, (x-x",y-y",E) = 1 exp { -(x-x")%- (y-y")?
2Tréx(E)6y(E) 26}{(13)2 ZGY(E)Z
(1.13)

Gx(E) and gy(E) characterise the R-C line response as a
function of photon energy E and values for these
parameters are given in figure 12,

The detector efficiency 3d(E) is entirely dependent
on the window transmission function including all
supports etc. and not the gas since all photons
entering the counter are trappéd because of the very

small absorption depth. Measured values for the thin
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polypropylene window covered in carbon dag used are given
in figure 13, the major feature present being the CK

absorption edge at 0,283 keV,

The HEAO-B satellite.

The mirror consists of a nested set of four Wolter
fype I geometry surfaces yith a focal length of 2450 mm
giving 1" = 16.6/¢in the focal plane (1 mm = 1 arc min, ),
Either an IPC or MCP detector can be used to provide
large field/low resolution and small field/high resolution
images respectively. When used with the MCP, the overall
image quality is dominated by the mirror because of the
very high performance of the MCP with a resolution eof
& 1", limited only by the channel diameter. Therefore
figure 14 shows the complete telescope response on-axis,

- Figures .15 and 16 show the fractional
effective area within a given radius,Athereby showing the
distribution of point source power and clearly showing the
large scattering wings which are present out to very large
radii. Figure 17 shows the full range of the point
response, again highlighting the faint but extensive:
scattering wings. Figure 18 shows the blur circle degrad-
ation as a point source moves off-axis following the same
pattern as demonstrated by figures 1 and 7 for the
souhding rocket mirreors above, Figufe 19 shows the beam
A(Y,E) for the HEAO-B mirror.

The IPC used on HEAO-B has very similar character-
istics to the Leicester version already described, giving
a resolution of = 1' 2 1 mm in the._focal_plane. As already

mentioned the MCP device has very good resolution., The
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efficiency of the MCP Bd(E) is given by figure 20, which
demonstrates how the collecting area of the complete
telescope drops dramatically with increasing energy. This
can be compared to the IPC efficiency used with fhe mirror

given by figure 21.

Background counts in the detector.

The fuﬁction c(x,y,t',E') depends on the structure of
the instrument‘and external environment and cannot be
accurately estimated before flight. However the background
counts are normally fairly isotropic in (x,y) with a flat
spectrum in E', C(x,y,t',E') reduces to a count/mmz/sec/
keV independent of position in the field of view, Typical
values are 4 x 1075 counts mm~> sec™ ! keV™! for an IPC

and 3 x 10”7 counts mm~2 sec™! for a MCP detector over its

complete bandpass as shown by figure 20,

1.4 The quality of astronomical X-ray image data.

The form of the data is an event set an,yn,tn,En
agd the qrality of the raw image is determined by three
distinct phenomena. These are the blurring introduced by
the instrument response, statistical fluctuations inherent
to the X-ray beam and unrejected background counts from

s E
n° n

the detector., All processing on the event set an,yn,t
must be in sympathy with the form and quality of the data
to provide the best image.

In general, the source surface brightness f(«,p,t,E)

2 st7! sec™! kev™! is low and unless long

photons cm”
exposure times are used the total count will be very low,

typically a few thousand counts. A raw image can be
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obtained from an,yn,th,En by plotting the individual
positions (xn,yn) from a chosen energy and time band using
crosses, aots or some other suitable mark. However this is
inconvenient and does not present an easily assimilable
representation of the required distribution.

A better approach is binning the data in cells
X = X+ax and y - y+AyY producing a matrix of numbers
representing the count within each cell. This can readily
be done by truncating the binary representation of the
positions (xn,yn) either by raster display hardware or
computer software. S;nce the events are telemetered to the
ground by digital techniques, the data is already binned
at the bit 1limit of the telemetry. The choice of this
inherent bin size and any subsequent imposed binning must
be made with care.since it potentially limits the image
quality. The final presentation of % must, as far as
possible, be free from distortion and degradation intro-
duced by the digital processing as well as from the
blurring and statistics described above.

Binning is a two stage process; firstly the data
selected from chosen ranges of En and tn expressed as the
function J(x,y) is convolved with the top hat function
T =1, =ax/2 ¢ x <ax/2, =ay/2 ¢ ¥y ¢ ay/2 and T = O
otherwise. Secondly the resulting function is sampled by a

regular grid of delta functions to give the image matrix
ij°

Jiy = S(x-iax,y-jay) |I(x',y") T(x-x',y-y') dx' dy'
(1.13)e

The sampling function T(x,y) imposed by least significant

17



bit truncation is necessarily a top hat but general forms
e.g8. a Gaussian sampling function could be imposed using
computer software. The top hat form is by far the easiest
to apply in practice, although it is not necessarily the
best.

The production of the image matrix J firmly places
the data into a digital environment and marks the end of
the imaging stage. Any subsequent data handling and-;h
display techniques can be considered to be post-prooessing.
However this distinction is arbitrary since both analog
and digital methods are required te obtain Iij and the
image is still in an undeveioped stage analogous to a
freshly exposed photographic emuision. In contrast to the
highly sophisticated photographic methods required to
broduce good quality optical plates? the processing of Jij
must be digitally biased and relies on large computers
utilising many techniques which are still in their
infancy.

Figure 22 provides a summary of the stages of the

imaging process in the form of a flow diagram.

1.5. The introduction of discrete notation.

The action of a digital processor is best stated
using vector, matrix and tensor analysis.. The continuous
function analysis used so far must be carefully transcribed
into discrete notation without destroying the validity of
the statements., The discrete description can then be used
to prescribe the digital processing.

Using the sampling function T(x,y,t,E) defined by

T = 1 for =sx/2 < x £ ax/2, =-ay/2 < y <4 ay/2,

18
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-at/2 4 t ¢ at/2, -aE/2 £ E 4 AE/2 and T = O otherwise,
each of the functions in Figure 22 can be sampled to give

a tensor:

Yijkl = §(x-iax,y-jay,t-kat,E-1aE) (1.14)
IY(I"Y'.t'.E’) T(x-x',y-y',t-t',E-E')

dx' dy' dt' dE'

Equation (1.14) can be conveniently expressed in operator

form:

Yi‘jl‘d:"‘/‘{’f(x,y,.t,E)} o (1.15)

where V is the sampling operator. Providing the increments
AXx, Ay, at and AE are smmll enough the following equation
can replace the continuous analysis summarised in figure

22:

k N (1.16)

Jijkr = 13k1xptE TwgtE * Nijk1

adtE
The first term is the sampled image distribution

v{Jx,y,t',E'} and the second term N introduces the

ijkl

statistics from both the source beam and the detector

background. Each image element-fijkl

count made in the sampling volume nA

represents the total

14kl = AX Ay ot AE at

position (iax, jay,kat,1sE). This count will suffer
statistical fluctuations governed by the Poisson Distrib-
ution and previously stated in equation (1.3). The noise

process N will have a mean of Ci' the background

ijkl jk1°®

count, and a variance given by:

(1.17)

+

2
6ijk1 = > kikixgte fxgte * Cijx1

< otE

the mean count, signal plus background, received in the

19



sampling volume AAijkl'
The general equation (1.16) is very cumbersome and

since the total count is only likely to be a few thousand,

the image tensor Jijkl will be very sparse with most

elements set to zero. Except for a weak spatial response

dependence on energy shown by the IPC, as shown by

figures 10, 11 and 12, the spatial, temporal and energy

variables are separable and equation (1.16) can be

written:

Jije1 = «%E k'ijoa@ St "1 fucte * Vijk1 (1.18)
where
k'ijx@ = .V-{B(”ﬂ@) fpm(xp"x'a?'p")":%:@)

Py(x-x',y-y',x',y')dx" ay'f
k" g = VA (E) 34(E) R(E-g',E)}

an;l the Kronecker delta %‘t has been used for the temporal
response since this is only limited by the detector and
telemetry 'dead time' which is very small and only
seriously affects very high count rates,

Summations over slots il 4 i & 12,31 L 3 ¢ jz,
kl < k <4 k2 and 1

forms:

1 < 1 4« 12 give the contracted image

k1
J = E J. = > > k! S, . k" f
ij 5 Tidkl 1 o atE 1jx@ "kt 1E <@tE

+ N, . (1.19)
% ijk1

Jiik o %

= > > k', S, k". o £ .-
. . _ E LetE
1 i3k ijkl ijx@ kt 1 Gt

ijk <@tE

+ Z Ny k1 (1.20)
ijk
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ijl1
Jk = J = S_ k! g k

ij1 I 45 Gie  1de Kt

+ > N, (1.21)
5 ikl

"
1E Late

where the range of the space, energy and time summations
define the sampling slots corresponding to each
contracted image. If these slots are large enough, the

statistics of Jij’ Jl and Jk will be good. The source

distribution can be contracted in three ways:

k1 < '
foom = 2 S, . kK" f (1.22)
“@ T £ {5 kt 1E "<QtE
ijk
£ = k', S5, f (1.23)
E Gk v 1€ Tkt «GtE
ijl "
f = ;E k', k" . f (1.24)
t ij1 <eE i@ I1E %@tE

where the range of summations in 1ijkl define the spatial,
temporal and energy slots in image co-ordinates spanned
by fijl, fEijt and Qﬁé. Because of the forms of the space,
time and energy kernels, these slots will not represent
independent slots in source distribution co-ordinates

and there will be crosstalk between these slots due t§ the
instrument response.

Equations (1.19), (1.20) and (1.21) can be rewritten

as:

k1 \ K1 k1
s = N ) 1.2
Jlj Jé k 1 =@ qﬂ@ + 1y ( 5)
ijk _ EZ 1jk ik
Jl = % k”lE fE + Nz‘ (1026)
ij1 _ :2 LA (e
J . = > Skt £+ N (1.27)
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Equations (1.25), (1.26) and (1.27) are the foundation of

the digital image.processing. J?? is a matrix of binned

counts selected using a specified time slot (ki 2 k ¢ kz)

if available) and has exactly
t'E! ijk
i j I1

binned counts selected using a specified time

energy slot (1l 1 ¢1,

the same form as J in figure 22. is a vector of

(kl 4k & kz) and spatial (il ¢ i i < 3§ < jz) slot

20 91

and Jijl is a vector of binned counts selected using a

specified spatial and energy slot (11 41 <1, if
available),
1
1,6, The structure of the instrument kernels k i ea and
1
Xk
The kernels k' and k" have a structure

ij=g 1E

dictated by the instrument response as given by equation

(l.l). It is convenient to express k' and equation

iJ%g3
(1.25) in 'stacked form' so that all three equations
(1.25), (1.26) and (1.27) have the same matrix-vector
form rather than the more awkward 4-tensor-matrix form. A
matrix is 'stacked' into a column vector by placing
successive columns of the matrix end to end, thereby
producing a single long column vector., The sub-matrices
of a b4-tensor can be 'stacked' into a matrix in an
analogous fashion. The underlying structure of tensors is
unaltered by the stacking operator although care must be
exercised to avoid disruption of the index relationships
in the final stacked equation. Reference 2 provides an

excellent exposition of this operation. After application

of the stacking operator, equation (1.25) becomes:
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k1 K1 | k1
SN S ol (1.28)
o

i ix i
where

kl k1l

Ti3 = 14wy
k! = k' )

ij=e i+Njﬁ&+NP , N is the number of
fkl _ fkl rows in the image
%@ T "« +Ng k1
matrix Ji'

Nkl _ yk1 J

ij = Ti+Nj /

The ith element of the image column vector Jki (energy
and time contracted) is given by the multiplication of the

1

source vector ﬂf by the ith row of the kernel matrix

k'i«’ The summation involved represents the blurrimg or
crosstalk between source elements in the final image. The
result is then disrupted b& the addition of the noise
process N?l.

Since the position of a point source in the image
plane is related to its sky position by equation (L.4),
the position of the non-zero elements of a row of the
kernel k'£* depends on the row index i. Increasing the
index i shifts the centre of the response across the
matrix giving a band structure. Because the kernel is in
stacked form, each row must contain the crosstalk along
a given column of the image. This introduces a side band

structure to the kernel k' each band representing the

ix’
crosstalk between elements at a specified number of rows

apart.
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The 'profile' across a single band is determined by the
blurring along a column of the source matrix and the
profile across the bands is determined by the blurring
along a row of the source matrix. If the instrument's
spatial  response is good, with no blurring, the side bands
disappear and the primary band reduces to a diagonal of
1's. The kernel is then the unit matrix and the image
 distribution before noise disruption is a faithful
reproduction of the original source surface brightness.
Since the degradation of a point source is position
dependent, the band and inter-band profiles will depend on
the position along the diagonal. The centre of the kernel
matrix will be sparse corresponding to the good on=axis
response while the degradation at the edges will be coarse,
introducing many non-zero elements at the top and bottom,

The structure of k" the energy kernel, is very

1E’
similar to the spatial counterpart described above,

However since the stacking operation is not required, no
side bands are present to give the correlation between
columns. The kernel k“lE has non-zero terms on and near the

main diagonal and because the energy resolution of a
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proportional counter degrades at low energies, the diagonal
band will be wider at the low energy end,

The kernel matrix as presented above also contains an
‘edge discontinuity' at the end of each row. This provides

a natural edge to the image Jkl but leads to the loss of

ij’
some of the source flux outside the boundaries of the image.
The overall band structure and edge effects present in
the instrument kernels have important consequences in the
digital analysis. The success of the digital processing
methods used to produce the final image from the image
matrix Jijkl relies on the understanding of the properties

of the response and noise matrices used in the digital

analysis of the imaging system.

l.7. The processing problem.

The image Ji' must be used to provide an image or

jk1

representation of the source brightness distribution
f(a,@,t,E). The major difficulty is the processing problem
of allowing for the blurring, noise and digitization

degrations present in Jijkl so that the final result is

free from both systematic and random errors. Equation (1.28)
holds the key to tackling this problem since it relates the

image Ji‘ té the source distribution fﬁl.

jk1
Unfortunately it is impossible to simply solve

equation (1.28) because k'i& and Nil are not fully

determined. Measurements of’ k'i<x are somewhat scanty and

k1l
Ni

moments or averages rather than a fully determined number

is a stochastic process characterised by a set of

set. However, given the information that is available about

the response and noise processes it is . possible to
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estimate %fl from Jfl. Some form of criterion is required

to défine a 'best' estimate of the source brightness %51 so

that an ;Optimum' solution to equation (1.28) can be found.
The form of equation (1.28):

k1 k1 k1
Jg =§ k'y, foo o+ N (1.28)

is not peculiar to the present situation and in faect occurs
in'many data processing fields. A solution is required from
a set of linear equations (in this case expressed in matrix
notation) without a complete knowledge of all the
coefficients. The success of methods used to solve such
underdetermined problems depends on the choice of

optimisation criteria and the structure of the kernel k'

i ”
Equation (1.28) is the discrete variable counterpart or
approximation to an integral equation and the processing
involved to find %51 amounts to solving the integral
equation representing the action of the instrument using
discrete analysis. It must be stressed that i€ is impossible
to 'beat the system' and remove all degradations present in
the measured data. However data processing can be an ..
integral part of the experiment rather than a fancy piece
of software and degradation can be so bad that without
digital processing the true result of the experiment cannot
be realised,

‘The solutions to the processing problem fall into two
categories; direct and indirect matrix inversion or
diagonalisation, The feasibility of a given method depends
on both finding an analytic solution and programming a
computer to provide the answer., The analytic answer may

only exist under certain conditions or approximations and
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the computing power may not be available to enable the
solution to be calculated. Consequently the number of

viable methods is restricted.
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CHAPTER 2: THE THEORETICAL APPROACH TO THE PROBLEM.

2.1 Matrix inversion and diagonalization.

A set of linear equations expressed in matrix .

notation can be solved by finding the inverse matrix.

If:

Y, = :; Mg X (2.1)
then: (indices will be dropped for clarity)

a1t vy = 17l x = 03l X (2.2)

where [MI~1IM] = (I], the unit matrix. If the set of
equations is independent and complete (fully determined),
then M-I will exist and the solution can be found by matrix
inversion, However, direct calculation of the inverse
matrix will require O(Nz) operators when N variables are
involved. Another approach is matrix diagonalization., If a
similarity transform exists which diagonalizes the matrix

then:
(Ml = [WI[al(wl™! (2.3)

where A is a diagonal matrix, Substituting in equation

(2.3) gives:

Y = twifaltwi~l x | (é,u)
Multiplying on the left by W 1 gives:

(W=t ¥ = v~ Ywifalowl-t x (2.5)

Putting [w]‘l Y=Y, twl™! X = X and LWJ"-1 (W] = [X]

gives:’
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Y= (AlX (2.6)

Since [A]l is diagonal, the matrix multiplication of
equation (2.1) has been reduced to a direct product in the
transform domain and X can be calculated by element to
element division of ¥ by the diagonal elements of A. The
form of the transform W is easily derived by considering

the eigenvector equation:

My Zg = A" zjn (2.7)

‘where Zjn is the nth eigenvector and_AP is the corresponding

eigenvalue. Substituting for [Ml from equation (2.3) gives:
(Wilalwi~t z® = A" z® (2.8)

If W is constructed by packing the column vectors z? into a

matrix:
twl =zt 22 23 ... 2" ....] (2.9)
and [Al is diagonal with elements AP,
A, = A (2.10)
ii _
then equation (2.8) is satisfied since:

CwILAl w3 cwl = [AlLwW] (2.11)

Providing the transformation [Wl satisfying equation (2.3)
can be found, the matrix transform is reduced to a direct
product and the inverse operation is easy. However the
transforms X and Y must be calculated which will also
require O(Nz) when N variables are involved.-Real imaging

systems are normally illconditioned because there are zero
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elements in the diagonal of the matrix [Al. The matrix [M]
is then said to be singular since these zero elements are
singularities in the system response and Fhe system cannot
- provide any information concerning the eigenvectors
corresponding to the zero eigenvalues., The inverse matrix

M-l

does not exist for such a system and progress can only
be made by using a pseudo-inverse which avoids the
singularities. Direct inversion of [Ml is impractical
because of the large amount of computation involved and in
most instances is impossible because of singularities in M,
Diagonalization provides a method for calculating pseudo-
inverses but the transformation W must be found and the
computing;power must be available to cope with the
calculations required.

The validity of any inversion scheme hinges on
equation (2.3), the diagonalization of the matrix [ MJ
using the transformation W. Rather than considering
arbitrary forms of [Ml, the available forms of W must be
used and the corresponding forms of [MJ] adapted to suit
real imaging systems.

The instrument kernels that occur in practice
approximate to one of the following distinct types.

1., Separable space invafiant point spread function:

P(x,y,x",y") = a(x = x") b(y - y")

The matrix representation of such a system involves two

Toeplitz matrices [A} and [B]. Toeplitz matrices have the

pro perty:
Tjk =T . if j - k=m=n (2.12)

This property has already been described as the banded
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structure characteristic of instrument kernels and
equation (2&2) introduces the added restriction that each
row (or célumn) is identical to its heighbours apart from
a linear shift. This ensures that the system is space
invariant (also called linear or isoplanatic). The system

is represented by the equation:
LGl = [A)(F}[B} (2.13)

where [Fl is the source matrix and [G] is the blurred

image.

2, Separable space variant point spread fﬁnction.
P(x,y,x",y") = a(x,x") b(y,y")

The system can again be represented by two blur matrices

but because of the non-linearity the Toeplitz structure is

lost. Equation (2.13) represents the discrete system.

3. Non~-separable space invariant point spread function.
P(x,y,x",y") = k(x = x",y - y")

Since the kernel is non-separable, the stécked form must

be used as described above:
G = [(KIF (2.14)

The kernel matrix [ K] has the banded structure previously
described and because the system is shift invariant, the

matrix is block Toeplitz.
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%0 CK&

g, [Kll (K
stacked €, . (0]
columns o = . .

Y| [Kd_f SR N
gj+m-—l
N J {03
\

where the submatrices [K,J

i
point spread function:
[(Kgd = |Pig
11 Fi0
Pi’j-l » -
o
\

Each submatrix (K,

C§&

[Kj_f

. J'

(2.15)

are found from the sampled

“

Pi,3-1

Pio

4

n is of Toeplitz form and they are

(2.16)

arranged in Toeplitz form to give the full block Toeplitz

matrix [(K].

4, Non-~separable space variant point spread function.

P(x,y,x",y") =

k(xter“!Y")

Again, the stacked form must be used giving equation (2.14)

as in case 3. However the form of k, the blur matrix or

kernel,

band structure,.

Adequate direct inversion methods are at present

is arbitrary although it still possesses the basic

only available for blur matrices with a Toeplitz structure
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and direct methods ére therefore restricted to dealing
with the space invariant or linear systems. Indirect
methods can be applied to the more general banded matrices
but they are restricted to problems of small dimensionality
because of the vast amount of computation required.
Toeplitz matrices are very closely related to
circulant matrices, A ciculant matrix has the property
that each row is a circular right shift of the row above
it. A Toeplitz matrix can be converted into a circulant by
changing zero elements into'the appropriate circulant
elements. In fact, as the size of the Téeplitz matrix gets
very large compared to the width of the non-zero bands
that construct it, the Toeplitz form approaches that of _
the circulant and the differences only affect the ends or
edges of the transformed vector or matrix (equations
(2.13) and (2.16)). The elements which have to be added to
the Toeplitz matrix correspond to the flux or.data which
is lost off the edge of the recorded image. In fact the
complete data set required to invert the blurring process
is ‘not recorded and the inverse to the Toeplitz matrix
does not exist. However information'is only normally lost
at the edges and using the circulant form which assumes no
loss of data allows us to proceed.
| Circulant matrices and block circulant matrices are
diagonalized by the discrete Fourier Transform which,
fortunately, has a fast transform algorithm. Circulants
are therfore easily diagonalized as described above using
the FFT algorithm and the solution to the circular shift-
invariant system can be found quickly, even when a very

large number of discrete variables are present. In order
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to invert image blur, the effect of the circulant
approximation to the Toeplitz structure of the blur matrix
must be allowed for and the resulting edge errors reduced
to a minimum,

More practical details about diagonalization of blur
matrices using a digital computer will be dealt with
elsewhere. Now the direct inversion ﬁethods involving the

Discrete Fourier Transform will be described,

2,2 Statistical model for the source and noise processes.

Apart from singularities in the system response, the
major difficulty involved in the ‘processing problem is the
noise wvector N?l = N. The complete image formation can be
viewed as a stochastic process which can be characterised
by an underlying probability density function. Moments or
expectation values are used to represent the processes
involved and in discrete analysis, the two most important

are the covariance matrix [¢f1 and the mean value vector

Uf, They are defined as follows:

U. = E{f}§ (2.17)

(1 = B{(f - U)(Ff - Uf)t} . (2.18)

" where E {3}is the expectation value over the ensemble
governed by a particular probability density function and
f is a stacked matrix. Uf describes the mean of the vector
f as a function of position, hence if f = N, Uﬁ would be
the mean noise as a function of.position in the image, If
f represents the source field, then Uf will represent the

underlying structure in the source. [ﬁf] describes the

correlation between picture elements (pixels) as
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a function of position and inter-pixel distance. In
general, [ﬁg» characterises an image type whereas Uf
conveys structure specific to a particular image.

Processes f characterised by U, and E¢fl fall into

f

two distict classes, stationary and non-stationary. A two

dimensional stationary model has the properties that:
E{f} = Up = U_ (a constant vector) (2.19)

and [¢f1 is partitioned by the stacking of columns into

matrices:
t 3\
[ﬁmn] = Eg(fm - Um)(fm - Um) j
for which: L(2.20)
[¢pq1 = [¢rsl when p-q = r-s
and;
[¢p&x3k = [¢p41mn when j-~k = m-n /

Equations (2.20) define a Block Toeplitz matrix and the
one dimensional counterpart would be the simple. Toeplitz
matrix. If ¢f is not a Toeplitz form then the model is
non-stationary. If the mean is known but not constant, it
can be subtracted and the model can still be stationary. A
stationary image model cannot be expected to characterise
more than the gross or 'average' properties of a class of
images whereas non-stationary models are far more specific
and can accommodate the peculiarities of particular
images.

Closely related to the covariance matrix is the

correlation matrix fRfI:

(RJ = Efrr"] (2.21)
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If f is a stacked matrix, [Rfl will be partitioned in
exactly the same way as previously described (equation
(2.15)). Since Rfj = Rji’ R, is symmetric. The blocks [Rij]
along the diagonal represent the correlation of each
column with itself while off-diagonal blocks describe

inter-row correlation with separation Ii -_j!. [Rél and

[¢£& are simply related by the equation:
t
[Rf] = [gif] + EUf u.J (2.22)

Typicaily, images possess no correlation for distances
greater than 20-30 pixels and [¢f3 will have a banded
sfrmcture very similar to the instrument kernels derived
above, Furthermore if inter-pixel correlation is dependant
only on the difference |i - j|, the covariance matrix will
have the Toéplitz structure characteristic of a stationary
process,

The reduction of fﬁfl to a Toeplitz form enables the
FFT to be exploited in computation by using the circulant
approximation to fﬁfl. However this is not the same as
using a circulant to approximate [R_! because of the effect

£

of the mean U_ in equation (2.22). If U_ = O, then

f f
fRél = [¢f3 and no problem arises. However this is
physically impossible since Uf # O for images. I1f Uf = Uc’
a constant vector, then the statistical model gives random
fluctuations about a constant mean and the constant cannot
be affected ( other than a scaling) by the action of the
blur matrix (KJ]. Therefore having [Rfl = [¢fl and
neglecting the mean has no effect on the final result; the

necessary mean shift being provided by the data. Finally,

however, if Uf £ Uc’ the model is non-stationary and if
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[¢f3 is Toeplitz, fluctuations occur about a non-uniform
distribution. This mean will be affeeted by [K1 and in
this case [R,}, including the mean (equation (2,22)), must
be used, [Uf Uftl will not be Toeplitz and the FFT cannot

be utilized to alleviate the computation burden.

2.3 Discrete filtering.

The matrix inversion technique introduced in section
2.1 are sometimes referred to as discrete filtering.
Equation (2.1) is in general solved by multiplication on

the left by a matrix £Q1:
[Ql Y = [(Ql[MIX : (2.23)

(Ql is known as a discrete filter and is in general related
to the matrix M. If the system is noiseless and non-
singular, then [(Ql = LMS-I and (Q] is known as the inverse
filter. However in practice, use of the inverse filter
results in gross distortion due to noise and singularities
and the filter (Q] must be chosen to reduce these errors.

The filtering can be reduced to a direct product by
using a diagonalising transformation as described above
and for space invariant systems, discrete filtering can be
performed in the Discrete Fourier Transform Domain.
Equation (2.6) would then refer to a direct product
operation in the Discrete Fourier Transform Domain and the
filter [(§1 expressed in that domain would be closely
related to [A].

It must be remembered that the processing problem of
finding an estimate %51 from ng by equation (1.27)

includes the noise vector N?I. The construction of Q1
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mustt allow for the singularities in R'Lx (which are
recognised as zeros in the diagonal matrix [4l) and the .
corruption caused by the noise vector. In short,
components of the transform of x(ii) corresponding to
small or zero components of the instrument response.Aii
will be vulnerable to noise and excessive amplification of
noise at these spatial frequencies must be avoided. The
suppression of these frequencies will limit the final
performance of the system according torthe deficiencies in
the system polint response and the noise level,

- The consequences of structure in the noise covariance
matrix and the response kernel are very similar. The
correlation between noise elements is analogous to the
spreading of point sources, both giving rise to an overall
shape or function in the DFD. Correlation of the noise
amplitude is analogous to a space variant point response
which introduces off-diagonal elements in the DFD
description of the system (equation (2.6)). Filtering is
no longer a direct product operation in the DFD for such
non-isoplanatic systems and exact diagonalisation is not
possible, Effective use of direct product DFD filters is
ther;forerestricted to systems with space invariant noise
and blurring processes.

The detailed structure of LQI will depend on the
criteria used to define the 'optimum' result, however most

filters have the general form:

3, = E:q (2.24)

Kk M + 2
PqQ Pq Pq

where p and q index in the two dimgnsional DFD, ﬁpq is the
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DFT of the blur matrix Mij (equation (2.1)), k is

rq
- *
related tO'Mpq and_is often the complex conjugate gpq and
qu is a function of the signal and noise covariance

matrices., If the noise is negligable, qu can be set to

. _ h B ‘
pg = ﬁpq’ qu_reduces to l/Mpq which is the

inverse filter., When the noise process dominates, qu is

designed to act as a moderator preventing the blowing up

zero and if k

of pure noise components when ﬁpq is small,

2.4 The Wiener filter &nd Fourier filtering.

Methods for constructing discrete filters from
knowledge of the blur matrix and noise covariance matrix
appropriate to a system vary in effectiveness and
sophistication. One approach, to be described here, uses
the Principle of Least Squares to arrive at the final
general form given by equation (2.24) and results in the
Wiener filter, named after N. Wiener (1949) who first
applied the principle to the filtering of time series
(reference 3). The application of the technique to image
processing was introduced by C. W. Helstrom (1967), see
reference 4, and has been developed by many other workers:
in recent years.

Equation (1.28) can be rewritten as:
J=(klf + N (2.25)

An estimate of the original source distribution f is
required which minimises the mean square error for both

blurring and noise., The error estimate is defined as:

§ = f - F (2.26)
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and the positive quantity &#é provideé the mean square

error to be minimised:
t& t
minimum E (€€} = E{Tr(c £°)} (2.27)

where E{Eﬁiiis the expectation value of the product ebe .

An operator [Q] is required such that:
£ =10 J (2.28)

which yields E{ €€} where [Ql is chosen to be linear for
practical reasons. Substituting for ¢ in equations (2.27)

and (2.28) and using the correlation matrices

ESf £ = [Rfl

E{N N3 = [RI

E{r N2 = EfN* 88 = (01 signal independent noise
gives:

E{Tr(€ €} = Tri[R3 - 2(Qllkl (R (2.29)

+ (QU[kIIRY [k1%01® + (@l (R [k1%}

Differentiating equation (2.29) with respect to [Q] and
setting the derivative equal to zero yields the mean-square

-error solution:
t t -1
(Ql = [Rflfk] (Ck]CRfltkl + [RNK ) (2.30)

The information or model required to construct 'Ql} from
equation (2.30):is in the form of the noise and signal
correlation matrices [Ry] and [Rf], hence the assumptions
are purely statistical in nature. More sophisticated
procedures known as constrained least squares estimations

can incorporate further information about the image
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processes involved (for example symmetry constraints),

The filter [Q} equation (2.30) can only be successfully
implemented in image processing applications if a quick
method is available for matrix inversion. The only method
available is diagonalisation using the DFT but this is
only valid if [k1l, [Rfl and [RNl can be approximated using
circulants as previously explained. Equation (2.30) can be

rewritten as:
(Ql = rf 301" (k103 O3+ L)t (2.31)

providing UN = 0, which is usually reasonable, and
neglecting the mean source flux since it is unaffected by
the point response., If E¢f][¢N3 and (k1 can be approximated
by the circulants [Cfl, [CNK and [Ck}, equation (2.29)

becomes:

Q@ = fedley I (feg tedled™ + [eg])™h = (@]
(2.32)

where [Qé& is the circulant approximation of the minimum
mean square error filter. Since circulants are diagonalised
by the DFT with transform matrix [Wl, [QJ can be written

as:

(el = (WAJIAT (tay, apar] + (A" Cwl™t
(2.33)

where * denotes the complex conjugate and [Al's are the
diagonal eigenvalue matrices. Substituting this form of the

filter into equation (2.28) gives:

(W3TIE = (AZIASI(AJEAJIALS 4 Lad) tvitl g

(2.34)
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Equation (2.34) is a relation between diagonal matrices, If
[W1™lf = Panda w3t 5= 3 , this. equation can be written
as a direct operation involving the individual discrete
Fourier samples of the blur matrix and covariance matrices

of the source and noise processes:

~ -
f = .
Pa kpq qu (2.35)
‘g 12
Pq * [Pn pq/ Pe pq1

where, by definition, the DFT of the covariance matrices
f¢f] and [¢N] are the power spectra [Pél and [Pﬁ]. The
explicit form of (Wl and the DFT will be considered when
describing the implementation of Discrete Filtering using
a digital computer.

The majof drawback of the Wiener filter is that it is
based on linear assumptions about the image processes. Most
imaging systems are non-linear with space variant noise
and minimum mean square estimations tend to be too smooth,
especially when the signal to noise ratio.is small. The
stationary assumption using only the covariance inform-
ation and not the mean signal and noisé information
tends to 1limit the performance of the Wiener filter in
real situvations where the variation of the mean is of
prime importance.

Although Fourier Domain Filtering is essentiall-
linear, it is possible to adapt the above model to treat
signal dependent and independent multiplicative noise. The
resulting filters have the same general form as equation
(2.2&) and according to reference 5 show no marked
improvement over the Wiener result. Reference 5 also

provides an excellent and thorough discussion on all
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aspects of linear filtering and formed the basis of the

above exposition.

2.5 Algebraic methods.

Discrete filtering can be thought of as a direct
method for image restoration, relying heavily on matrix
inversion and diagonalisation to construct the 'optimum'
filter as well as to speed up the computation. It is
éssentially a.linear technique centred around the DFT
although some refinements. can be made to handle'non-
stationary'noise and signal processes. The stationary
assumption which assigns global properties to the image
model rather than image specific properties, which are
required for good restoration, is felt to be a major
limitation of discfete filtering.

The algebfaic or indirect approach can provide a more
flexible basis for solving the processing problem, but-it
is not’withoutlits difficulties, Most algebraic methods
rely on iteration to arrive at the optimum solution % to
equation (2.25). (This can be costly on central processing
unit time, especially for non-=linear algorithms which do
not con?erge quickly.) Successive guesses at the required
result are made %i and an associated guess at the data set

31 is calculated by using the equation:

3t ootk F (2.36)

Ji is then compared to the actual image data vector J and

the next guess %i+1

is made using the comparison as a
guide. Such a scheme requires a strict criterion to define

the optimum % and a carefully chosen method for updating
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%1 to give §1+1, giving fast convergence to that optimum,

It is not a prerequisite of algorithm techniques that
they involve iteration but ssimply that the specified
solution cannot be found by direct computation. Only one
approach, the maximum entropy method, will be discussed in
detail despite the many varied approaches that exist
(reference 5) because this formulation has the ingredients
necessary for successful algebraic restoration. The label
'maximum entropy method' is perhaps misleading because the
term 'entropy' is borrowed from other fields. 'MEM' is an
apt title but is inadequate in a similar way to the
expression 'Fourier filtering' because it shrouds the
philosophy behind the technique. While Fourier filtering
is concerned directly with the mechanics of the blurring
process and treats noise in a global fashion avoiding the
ill-conditioned nature of the imaging process, MEM brings

the statistics of image formation to the fore.

2.6 The quantum statistics of image formation.

Rathervthan using covariance matrices to categorise
the noise processes involved (see section 2-.2), the
maximum entropy method considers the quantum.statistics of
the image formation. Although the basis of the MEM has
been in existence for some time (B.R. Frieden (1972) in
reference 6 seems to have originated th; method, but
independent atterpts using slightly different approaches
were made subsequently e.g. J. G. Ables (1974#) reference
7) it has only recently enjoyed active rgsearch because of
the ever increasing capability of modern digital computers.

A paper by R. Kikuchi and B. H. Soffer (1977) reference 8
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has also provided a much needed foundation for the method
which previous publications did not give in rigorous
detail and the following discussion uses reference 8 to a
large extent. |

The object distribution f(«,,t,E) is represented in
discrete form by Ffé, a matrix of elements (m,@) giving
the flux from each pixel of area axa@ on the sky. The
number of photons observed from each pixel will be given

\

by:

nﬁé - Ff; tA (2.37)

where t is the observing time and A is an aperture area
for the instrument. In an ideal instrument, all photons
observed from a given sky cell would be positioned
correctly by the instrument without blurring, but as
previously described this is unfortunately not the case in
practice and the process is ip general described by
equation (1.28). The processing problem is to find the
most probable distribution matrix {(nl. To simplify the
analysis, the bandwidth will be assumed to be small and
the object monochromatic. This is not essential but merely
aids the discussion of coherence volume and degrees of
freedom for photons which is to follow.

| Each pixel at («,3) of area 2xaB@ is considered to have
zxg degrees of freedom or quantum states which is
proportional to axa R, the bandwidth ax, collecting area or
aperture A and the observing time t. The nEé photons
from the pixel (x,(3) can be distributed in these z.;
degrees of freedom using Bose-Einsteim statistics (since

photons are Bose particles) and each degree of freedom can
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have multiple occupancy. The number of macroscopically
indistinguishable ways du@ that any arrangement within a
pixel can be formed is given by the familiar Bose-Einstein

formula:

qd@(nt’(@) = (n.x@ + Zyp = 1)! (2-38)

noa! (zag - 1)!

The factor nd@! occurs in the denominator because the
photons are supposed to be indistinguishable and the factor
(z4g- 1)! occurs because the quantum states or degrees of
freedom are also assumed indistinguishable. Formula (2.38)
assumes a single frequency y and more properly a product
should be taken over all frequencies vy using a different z.
for each v,

Each of the qxp arrangements is a quantum mechanical
state of the n&é photons in the object cell (x,R) and it
can be postulated that each of the A different (that is
microscopically distinguishable but macroscopically
indistinguishable) states occurs with equal a priori
probability. q«np can then be interpreted as a weighting
factor, degeneracy or probability for the intensity n&é.

It is mathematically convenient to take the logarithm when

’

dealing with factorials, introducing the function sx@(ndG)‘
S-x@(nv(@) = 1ln Qo((s(noc(g) (2.39)
Expanding equation (2.39) gives:

sxg (Nxa) = 1In (nug+Zag-1)! = 1n (nca!) = 1n (zxpg=-1)!
(2.40)

Stirling's approximation for large x:
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iIn x! = x 1n x - x (2.41)
can be used to simplify equation (2.39):

Su(_l(noL@) - (not@,"'ch.s"l) in (n«'{s"'zd@"l) - (noL@"'zd(a"l)
- Nyxg 1n nug + neg = (z-1) 1n (z«z-1)

+ (zog@-'l)

= (nd@+2a@-l) 1n (n*@+zd3-l) - Dga 1n n.g

= (zgp-1) 1n (zug=-1) (2.42)

Three limiting cases of equation (2.42) are of interest;

a) Zotg = 1 > qQupy = 1 843 = 0, This is reasonable since
all photons must be occupying the same state and they
are indistinguishable, so the degeneracy is unity.

b) When 1 & 2z 3 « ngg - Zxg/Nxg is small and can be

neglected in (2.42) to give:

Sug (Ne@) = (z¢@—l) 1n nga - (Zag=1) 1n (zZez=-1)
(2.43)

c) If Zug ¥ Nxg then n*@/zug can be neglected in equation

(2.42) giving:

sde(n&@) T nga ln z,5 - ngg (1n nu@-l) (2.44)

Expression (2.44) is the classical (Maxwell-Boltzmann)
result for nyz distinguishable particles as expected
for bosons in theclassical limit Zoug W Nuge
So far, only a single pixel («,3) has been considered
but the complete set making up the image can now be
handled. What is the total number of ways that ngp comes
from (x,@), where (d,@) takes all values present in the

image? Assuming each pixel to be independent of all other
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pixels, the complete number of ways that a particular
distribution can occur will be given by the product of all

the un's:
Q(nll’ 312 o o o ) = c(‘—(g Qol@(nd@) (2'1"5)

Again, the logarithm corrgsponding to three cases can be

considered.

a) Zig = 1 - Ssupy = O as before, and hence the number of
arrangements is independent of {n*@i and thus all are
equally likely.

b) 1 <z 4« ngg => S5 = Y s«
S{=0} % > [zup-1) 1n n.e - (Zup=1) 1n (zyg-1)] (2.46)
<e

If z_,, is independent of («,3) then this simplifies to

rgive:
I 2 (z-1) ji[ln Nyg = 1ln (z=-1)1 (2.47)
=3

c) Zgg P Nug gives:

—

Stwey = Z_En*@ 1n z,g = Nug (1n nd@~1)] (2.48)
oG

and again if Zxg = Zz this reduces to:
Stwgy * 1n z > ngs - 2 n, s (in nga=1) (2.49)
<3 =3

The logarithm of degeneracy is normally called the
entropy and therefore equations (2.47) and (2.49) above
define s; .3, the configurational entropy (reference 9) of
the image [nl. The above entropy expressions have been
derived using a well defined model for the image process
evoking Bose-Einstein statistics, degrees of freedom or

quantum states and assuming equal a priori probability for
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the arrangements of bosonsin the quantum states., The two
extremes of many bosons per degree of freedom b) and many
degrees of freedom per boson c¢) lead to different entropy
expressions; b) containing a ;% ln n. g term and c¢)
containing a - Egniéln“dG term. In order to determine when
7 each of these cases is applicable, the concept of degree
of freedom must be studied in greater depth. Tﬁe apparant
anomaly of case a) when z = 1 giving Ssupy = 0, independent
of the distribution [nl can be resolved by considering the
image to be characterised by average counts per pixel ﬁag.
The statistics of the image (n3l can be analysed using an
ensemble of images. This analysis will be given later
because it completes the present model and intimately
connects the configurational entropy S fu@} with the more
familiar statistical description of the image process.
From the above it can be seen that the ratio n/z
dictates the form of the configuration entropy expression.
One degree of freedom is approximated by the coherence
volume for a photon since it is impossible to distinguish
photons by interference experiments within one degree of
freedom or coherence volume., In the direction of propagat-

ion, the coherence length is given by:
1 =c? (2.50)

where T = 1/av, the coherence time. In the transverse
direction, the coherence area s depends on the distance

from the source R and the area of the source a«sai (pixel

area on sky):

s = R? >\2/Ao<A(3 (2.51)
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This: expression is given by the van Cittert-Zernike
Theoremr and is: discussed in reference 10, pages 13-15. The

coherence volume is taken as the product of 1 and s:

\'3 = C3R2 (230 52)

\/2A\)A0k al

The number of degrees of freedom z can now be defined in
terms af“Vth. and the observing instrument parameters., If
the observing time is t, then the photons will be detected
in t/ coherence lengths of degrees of freedom. Using a
collecting area or aperture A will give a further
introduction A/s to the number of degrees of freedom. The
total z will correspond to the number of times Vcoh. is

contained in the 'detection wvolume' ctA:

z = cth = /t\/A (2.53)
(5l
Kikuchi and Soffer distinguish between the spatial
component (A/s) and the temporal component. (t/T) and point
out that the description of degrees of freedom can also be
made in phase space using the conjugate variables time/
fretquency, length/ spatial frequency.

In all the above discussion, the photon distribution
from the source is assumed to be 'closely mirrored' by the
photoelectron distribution which gives rise to the actual
detected distribution. Detailed analysis of detection
processes throughout the electromagnetic spectrum will
reveal deficiencies in this assumption but they are of
little consequence since it is an estimate of the ratio

n/z which is of importance in deciding which entropy
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expression is appropriate to a given observation.

Given the brightness of a source in B(y) (watts m-z

1

steradians” Hz-l) the ratio n/z is given by:

n/z = B(») ¢?/2n3 (2.54)

Using equation (2.5&), the following values arise:
Cygnus A (3C403) at 960 MHz n/z =~1o6

= th

Centaurus A (CTA39) at 178 MHz n/z
All optical astronomical objects~giveAn/z << 1
All X-ray astronomical objects give n/z <«<< 1
In short, for astronomical observations at frequencies
less than infra-red n/z > 1 and at frequencies above infra-
red n/z < 1, although the actual dividing line will
depend on the specific object and waveband under
consideration. Fortunately Frieden (reference 6) working
in the optical region chose -n_ g ln nys for his entropy
measure and Wernecke (1977, reference 11) working with
radio observations chose 1ln Do and both are therefore
consistant with reference 8. The two cases b) and c)
correspond to the classical wave limit and the classical
particle 1limit to the radiation field under observation.
So far the analysis has considered the number of
photons actually detected in each pixel (during a given
observation) and the entropy expressions derived relate to
the probability of the various arrangements of these
observed photons within the image matrix., It is legitimate
to ask what happens if the average number of photons ﬁ&@
rather than a specific observed number n.g is considered.
The number of pixels within the ensemble that contain n

photons is written as an. The function fn has the form of
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a probability density function and is normalised:
Z £ =1 (2.55)
n=0
The complete set of fn's, ffni s then represents a
particular state of the ensemble. In parallel to the
pre#ious analysis the number of ways, Pifn§, an ensemble
with a given anS can be constructed is the product of two
distinct terms. The firs:t arises from the number of ways

a distribution {fnf can- be constructed over the ensemble:

alf} = M! | (2.56)

TA’(an)!

The second term takes account of the degeneracy factor of

the photons within the pixel:
‘ M
Qir ¢ =T a(n)"n (2.57)

q(n) is the a priori weight or degeneracy factor for each
pixel (see equation (2.38). The total number of arrange=-

ments Pffhi is given by the product:

P{fng = M! 11[T1 q(n)an (2.58)

t
Tg(an).

The most probable distribution {f_P{ when n = i will be
the {fnS distribution that maximises expression (2.58).

Again, it is convenient to deal with the logarithm s{fn}:
sif} = lnaif§ + In Qifni (2.59)

In order to find [fnpj, sifﬁ} must be maximised. Since
both terms, the combinatorial and a priori contributions,

must be maximised, expression (2.59) for sifni is
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considered to be the entropy by Kikuchi and Soffer. Using
Stirling's approximation in equation (2.41) gives (assuming
that M is very large):

sIf *M1In M - M - zn (Mf_ 1n(Mf ) - an)

+:§; Mf 1n q(n)

s{f3=1n M -1 - z (£, 1n £_) + }'_— £ 1n q(n)
n n i

...'z.(fn In M- £ )

(2.60)

i
'
N
H
[
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H
+
AN
s
o}
[
e}
2
2

in which the normalisation equation (2.57) has been used
to simplify the expression for the entropy.

Expression (2.60) for the entropy of the ensemblé
must be maximised under constraints in (2.55) and the

following:
B=>nf (2.61)
n
n
to yield the ffnpﬁ distribution. Using Lagrangian
multipliers N and u gives:
maximise -zgfh In £, + :%:fﬁ 1n q(n) + u(n - :% nfn)

s X (1 - > £) (2.62)
n

Differentiating with respect to fn and setting the result

equal to zero for maximum gives:

fnp = exp f-un - x=13 q(n) (2.63)

Substituting equation (2.40) and using the constraints
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(2.55) and (2.61) yields the Lagrangian multipliers:

et = 1 9 u=1nn + z

(1 - e~%)2 n

— N z ln/n + z

which reduces the most probable distribution to:

fhp = z ¥ ( n S (n + 2z - 1)! (2.64)
(ﬁ+z\) n+ z n!(z-—l)!

Using expression (2.64), the three cases cited above.can

be reanalysed in the ensemble context.
a) z = 1 reduces the entropy to = Eé.fn 1n fn and the most

probable distribution becomes:

fhp = 1 ( n Y N (2065)
‘ n+1\n+ 1

Substituting equation (2.65) into the entropy expression

yields:

1 +(n+1) 1n(n + 1) = n 1n n

%

M

1 +1nn ifa» 1 (2.66)

n

The distribution (2.65) is known as the exponential

dis tribution. The expression for entropy (2.66) is closely
related to that used by Shannon in his information theory,
reference 12. The derivation of Shannon's result uses a
set of samples, each corresponding to a given state i.e,

z

1. The summation EE fn in fn is introduced as an
n

averaging procedure for the information content.
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b) If z 44 n then:

sffnp§ =zlnn+ 2z -2z 1n z (2,67)
™

c) when z is large compared to n then using exactly the
same approximation as before, expression (2.64) approxim- :

ates to:

P _ _=>-un n y» \
£, = e z /n! (2,68}

where u = In(z/n) and X ® n. Substituting the Lagrangian

multipliers gives:

fnp = e-ﬁ (ﬁ)n - (2.69)

n!
The corresponding entropy expression has the form:

s{fnpir. nln z -n(lnn - 1) (2..70)

M

It can be seen that the entropy expressions in the
cases b) and c¢) closely resemble the previously described
versions concerning the actual number of photons n rather
than the average n. The ensemble model also provides a
result for case a), the classical wave field limit of
Bose-Einstein statistics, governed by the exponential
distribution. The particle 1limit c¢) is found to be
governed by the Poisson distribution (2.69) which agrees
well with counting statistics experiments. It should be
noted that the Poisson distribution only results because
the a priori degeneracy terms are included and the
degeneracy within each member of the ensemble is significant.

Using the correspondances Ngs = Mﬁ.and‘z“@ = Mz reveals an
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equivalence between (2.43), (2.67) for M >» 1 and (2.44),
(2.70), hence the entropy of a given pixel is' equivalent
to the entropy of the ensemble constructed from that
pixel. The entropy of the entire image will follow in
exacktly the same manner whichever model is chosen.

It is important to realise that the form of the .. -,
ventropy expression depends on the problem in hand and the
correct expression can only be derived by setting up a
representative model for the system. Maximising the
entropy leads to.two important results, Firstly it gener-~:
ates the most probable distribution fnp. Secondly it can
provide the most probable count distribution for the entire
image. fnp was derived by maximising the entropy under
constraints and it will be seen that the most probable
image [npl' can also be found by maximfsing the
configurational entropy S §xp} under constraints imposed by
the Qbserved image data.

There is much suspicion and controversy about the
definition and use of the concept of entropy. The
Principle of Maximum Entropy originated in thermodynamics
and the statistical interpretation was introaduced by J. W.
Gibbs and developed by J,.C. Maxwell, L. Boltzmann and M,
Planck. C. Shannon connected the idea of entropy with that
of information and it ié this. concept which causes the
problem; In order to apply information theory to the image
processing, or indeed any other, problem it is
necessary to introduce 'cells and quanta' but once this is
done information theory takes ovef and gives Shannon's
expression for entropy. Some authors like to think of the

maximum entropy method as being founded on information
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theory without concern for the inital quantization which
is necessary in order to apply it. They argug that image
restoration cannot possibly have anything to do with
thermodynamics, Yet the two disciplines are linked as
clearly indicated by Brillouin in reference 12 and it is
the quantization which links them. The nature of the

quantization has been considered above, providing a basis

. for the use of the MEM in image analysis.

2.7 Maximum entropy restoration.

There are several algebraic methods which are in
current use that are based on the stochastic represent-
ation debcribed briefly in section 2.2. They all have a
very similar form to the basic discrete filtering case of
section 2.3 with additional subtleties to improve the
performance and tailor the response to particular imaging
situations, Instead of developing the discrete filtering
model and adapting it to the algebraic form, there is a
completely different approach which might bear more fruit;
that is to discard the stochastic model of section 2.2
and adopt in its place the quantum statistical model
presented in sectiam 2.6. This approach promises greater
flexibility than discrete filtering but unfortunately
introduces a possibly prohibitive computation burden into
the image processing problem.

Maximisation of entropy is a very well tried
technique in the field of statistical physics but it is
usually only applied to theoretical problems. The so-called
maximum entropy method attempts to apply the concept of

entropy maximisation to the data analysis., The first
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essential step is to derive the correct entropy expression
for the problem given by the logarithm of the degeneracy
and reference 8 makes it clear that the detailed form of
the expression will depend on the problem in hand. Section
2,6 gives the analysis of the image formation case offered
bi Kikuchi and Soffer (reference 8). The analysis provides
the probability distribution that governs the statistics
on each pixel and the configurational entropy sjx@} that
describes the degeneracy of the complete pixel set or
image [nl,

The observed image must, in some way, act as a
constraint on the restored image. In many cases this is
conveniently achieved by using the Principle of Least

Squares setting up a statistic of the form:

X2 - gﬁ (Jup = Jua)? (2.71)

)
Sxa

If the processes invelved were normal, then x2 would be
the chi-squared statistic but without that restriction it
becomes a weighted least square error function, which must
be minimised to achieve the most probable solution. The
estimate [3] must be derived from the data using an image

transformation equation of the form:
[J] = (Al [£][B] ' (2.72)

where [A] and (Bl define the instrument kernel and (£1 is
an estimate of the source distribution. The transforms [Al
and [B] can have many varied forms and need not be a blur
matrix. In radio astronomy applications using aperture

synthesis [A]l = [B1™! would be a Discrete Fourier
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Transform (reference 11),

It is assumed above that the errors or 'noise' in
each pixel are uncorrelated. This will be true in many
imaging experiments, however if the errors are correlated

a more general form of Xz must be used - X?g given by:

g = (3 - D (- F) (2.73)

(Wwlis a weight matrix related to the covariance matrix of

J by:
(81 = 2wl (2.74)

62 is simply a scale factor. If there is no correlation (W]
is diagonal with elements given by the reciprocal of the
variance g% of the individual data éoints-and ng reduce
to the simpler form equation (2;71).

If the data J has a non-zero mean noise component,
this must be allowed for in 3 by introducing the mean

noise level into equation (2.72):
[33 = [AV(FI1(B] + (u (2.75)

Since the minimisation of J? is dependent on the
normalisation or scaling of [J1 the estimate [f] must be
correctly normalised. Normalisation can be achieved by
introducing the extra ¢nstraint that the sum of the total
flux in [f] is consistent with the measured data .flux.

In order to maximise the entropy under the data
constraints an 'objective function' is set up having the

form:

A
Op = Sgugpy = X X2 4+ u(n, - 2 f.0) (2,76)



where » and uw are Lagrange multipliers and o, is tbé
observed photon flux. The expression used for the
configurational entropy sg,} will depend on the observation.
The detailed form of the objective function is of the
utmost importance to the maximum entropy method and if it

is anTproperly compiled, the resultiné solution will not
ﬁave the desired properties.

Taking X-ray imaging as an example and using equation

(2.49) for the configurational entropy, equation (2.76)

becomes:
Of = ;f“@ In z.p - -‘S@-fol(z (ln f.,((}"‘ 1)
A 2 A
-X Z(J“@ -VJoqs) + u(nT - %Qp) (2-77)
2
e
Differentiating with respect to f*'a' gives:
~ t >
d Of = 1n Z it "~ 1n fd,@, +>‘§A¢'@ (JEE -zJ,,(@)
~ i &~
afdlg! d@
B ¥ _g4 (2.78)
ek@'

Setting the derivative to zero to find the maximum gives:

- t* - t*
£ s = Zaig exp{-uf exp zx;;AMAG (Js =9 ) Bog s ;
2
27

(2.79)
u acts as a scaling factor and must be chosen to satisfy

the observed count constant:
Ef"‘@ =n

X controls the X? of the solution [f] and setting A= O

- (2.80)

removes the X2 constraint and gives the solution:
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}$'G' = Z,q expf-u} (2.81)

The most probable solution in fhe absence of'positiongl
data is simply the normalised [z] matrix. This would be
expected since from equation (2.53), z is seen to be
proportional to the response tA for the observation.
Unfortunately eqguyation (2.79) is transcendental and
there is no analytic solution[?], the most probable
solution. Therefore an iterative search must be used to

find the solution. The exponential:

exp{xzéAd; (Jup = Jua) Bok; )i (2.82)

E i

contains the major burden of the computation because it
requires two sets of matrix multiplications, firstly
equation (2.72) to give (31 and then the\
conjugéte form (a crosscorrelation) to calculate expression
(2.82), In the case of image blur, (2,82) performs the
blurring of the instrument and the result is the cross-
correlation of the weighted difference (JA@ - 34@)/6&@2
with the point response. The design and structure of an
algorithm to solve equations like (2,79) will be
discussed in detail later. |

In section 2.6 the statistics applicable to the
photon counting situation were shown to be governed by the
Poisson distribution and the greater the number of photons
received from a particular feature in the field of view,
the greater the significance of that feature. However in

applying the MEM, correlation is introduced between features

close together because of the blurring of the instrument.
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The use of the KZ statistic ensures that all the data

points are given their correct statistical significance
in_the final result, providing a reasonable X2 value is
found. A controls the value of‘X2 and interpretation of

solutions with different XZ values will be discussed in

section 3.6.
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CHAPTER 3: THE PRACTICAL IMPLEMENTATION OF PROCESSING

THEORY..

3.1 General processing requirements and machine

restrictions.

Since all the processing described in Chapters 1 and
2 can be expressed in matrix notation, it is convenient to
regard the processing software required as a system for
handling large matrices. The system must include input and
output in a convenient format and must be able to perform
multiplication, transposition etc.. Because of the large
number of elements in even the smallest images (1024 in a
32 x 32 matrix), 'processing by hand' is impractical and
all the operations must be performed within a digital
computer's central processing unit (CPU),

The power of the CPU in terms of speed and storage
restrict the ;apability of the software. Using the
CDC CYBER 72 computer of the University of Leicester
Computer Department it is impossible to load a matrix
larger than about 100 x 100 into the CPU along with
associated software. Therefore in order to handle large
matrices, the operations must be performed sequentially,
a row or column at a time, Almost all operations required
in image processing can be carriéd out sequentially and
the only drawback to this approach is the channel time
needed for reading and writing data between magnetic
disc and the CPU, Although the storage capacity (~100,000
words for CYBER 72) poses a software problem, it can be
overcome by careful software design and does not remain

a fundamental machine limit., However the speed of the

63



CPU does 1limit the type of processing which can be
achieved.

Performing a matrix multiplication such as a circular
convolution requires a great deal of CPU time. Direct
computation with 128 x 128 matrices, including channel
time for accessing data, would require ~ 6 minutes and
repeated submission of such demanding jobs would be very
costly and turnround would be very slow. If possible, fast
algorithms for calcnlating.such multiplications must be
utilised. Fast algorithms only exist for transformation
matrices which can be factorised into a set of very sparse
matrices. A detailed exposition on fast transforms was
given in reference 13 and the structure of the FFT and
similar algorithms will not be discussed here. A major
difficulty is providing matrix output in a compact and
easily assimilated form. Since the major purpose of the
software is image processing, a method of display
using light intensity levels is obviously advantageous
and meaningful. Various modes of displaying the image
matrices were tried with varying degrees of success
using the full range of peripheral output devices

available.,

3.2 Large matrix processing software.

The software was developed over a period of two years
in order to cope with processing problems as they arose.
Matrices are held on magnetic disc files, one record per
row of data, each matrix element occupying one Cyber word
(60 bits). All processing within the CPU uses square

matrices with a maximum dimension of 1024 x 1024, Non-
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square matrices are easily handled by padding them out
with zeros to form a square equivalent. Fast transform-
ations are restricted to dimensions equal to powers of two
for convenience., This is not strictly necessary since
mixed radix transformations could be used for any
factorisable dimension, however the power of two restrict-
ion does not reduce the power of the software since
matrices can always be padded out to a power of two using
zZeros,

Complex matrix data as found within the DFT domain
is: stored sequentially in records, one record for the
real part of a row and a following record for the
imaginary part.of a row, Since the quadrants of the DFT
domain exhibit a conjugate relatioenship, only one half of
the complex values needs to be stored (reference 14, page
118). This redundancy within the DFT domain saves both
magnetic disc storage space and processing time.

A detailed breakdown of all the routines available and
how to use the software is given in Appendix I,

The processing system has been used to simulate
experimental data of two rocket payloads. The MIT/
Leicester imaging payload for surveying super-nova
remnants and the MPI/ Leicester imaging payload originally
designed to see a scattering halo due to cosmic dust
around a point source., The parameters for both these
payloads were given in section 1.3.

Following on from simulations, the system was used
for the processing of flight data from the MIT/ Leicester
payload providing images of Sco X-1, Cygnus Loop, Puppis A,

ICL4L43 and several update stars. These images had to be
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expesure correcfed to remove the beam profile distortion
and noise filtered because of the counting statistics,
Although the statistics were poor, deblurring was
attempted by the method described in Chapter 2 and despite
the poor noise charactexristics, some 'feature extraction'

was achieved,

3.3 The MIT/ Leicester rocket flight data.

The form of the event set was exactly described in
Chapter 1 except that the axis of the instrument was
scanned across the sky during observation. Therefore the
transformation from detector co-ordinates to sky co-
ordinates included a time factor as well as a scale factor.
Using the equation of motion in sky co-ordinates of the
instrument axis, the event co-ordinates wére transformed
into sky co-ordinates. This procedure is described in more
detail in reference 15. The event set was then bimaned to
form an image matrix,

The first flight payload which looked at the Cygnué
Loop had an on-axis résolution of ~15' FWHM (see figure 1)
and a bin size of 4' x 4' was chosen to give reasonable
definition across the point response. After background
rejection and rémovai of suspect counts mispositioned by
an electronic fault, the total count from the loop was
6741 in the energy range 0.15 - 1.12 KeV (as defined by
the calibrated anode pulse height). Using 4' x 4' bins
gave a largest bin count of 19, The observation was
obviously 'photon limited'. Using 4' x 4' bins, the total
exposed area of sky conveniently fitted onto a 64 x 64

matrix, the edges of which received very little exposure
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(see~1ater) and provided a clear border to the image so
that any 'edge effects' would not be troublesome in the
linear processing (see section 2,1), Figure 23 is the raw
count image of Cygnus Loop.

The degradations present in figure 23 are as follows,
The exposure is not constant over the matrix but a rather
complicated function of the instrumental beam profile and
the equations of motion of the two scans which were made
to give complete coverage of the loop. The image has been
blurred by the- instrument point response, which was
unfortunately non-linear. However because of scanning
(North to South and then South to North), the non-linearity
of the response has been largely removed and a single
linear blur matrix can be used to describe this degradation
adequately. The non-photon background count is fairly low
since most cosmic ray events could be discriminated against
using anticoinqidence signals, Assuming the antico cathode
to be 70% efficient, the estimated residual backgrqund was
428 counts - a mere 0.1 counts per pixel. The observation
is clearly source count limited and because the object is
diffuse, the total 6741 counts are widely distributed over
the pixels with an average of ‘1.6 counts/pixel. It is
believed that errors in unfolding the event set using the
derived equations of motion were small ( <1 pixel) and do
not distort the image to any great extent compared with
the other degradations,

The exposure of each pixel must be calculated in
order to correct for apparant brightness variations caused
by the exposure alone., Fortunately although the magnitude

of the instrument efficiency was a strong function of
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Figure 23a. Haw count image of the Cygnus Loop.
One cross per count, pixels 4' x 4%,

energy range 0.15 - 1.12 KeV,



!

Figure 23b. A contour map of the exposure for the

Cygnus Loop observation. The contour
interval is approximately 40 cm2 sec and

the average exposure is about 240 cm2 sec.



energy, the beam profile was a very weak function of
energy (see figure 4), The relative exposure suffered by
each pixel is therefore dependent upon only a single beam

function and the equations of motion:
E(«,@) = [Bla=f, (x,t), 6 -£,(@,t)) dt (3.1)

where fi and f2 are the equations of motion. Integral
(3.1) was calculated for each pixel (x,@) by a simple
numerical integrafion technique, using a beam matrix to
represent the sampled beam profile. Fortunately fl and fz
were linear and the beam profile smooth so that the finalA
exposure matrix was smooth and a sophisticated integration
method was not needed to give good results. Figure 23bis
the ekposure matrix corresponding to the raw image in
figuré 213,

In order to corréct for exposure difference, each
pixel must be weighted bythe reciprocal of the exposure it
received. However the result must also be normalised in
some way so that the least distortion of scale occurs, The

least mean square difference criterion applied between the

uncorrected and corrected map ylields the following result:

!

J (3.2)

C ij Eij = ij

C is chosen such that:

' 2
- - \ i
Eiﬁij ji(Jij Jijf is a minimum

0Fyy =20 37 B T - 20, 0,0y, (3.3)
ocC

For a minimum it is required that:
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2 (% 2
) c£Jij Eij-E;:‘Jijl = 0

c- % 35y Pij / P (3.4)

That is, if C satisfies (3.4), then the minimum
mean square difference is achieved. Unfortunately in
regions which suffered very low exposure and consequently
have low signal to noise, the exposure correction will
lead to abnormally large fluctuations that are due almost
entirely to the counting statistics noisé. The only way to
avoid this is to rolloff the exposure correction Eid’
avoiding very small exposure values which would otherwise
degrade the image. This distortion of the exposure matrix
has very little effect on the validity of the result
since only very underexposed and therefore low count
regions are affected. (In practice only about 4 counts in
figure 23 had to be suppressed in this way and they
..) The exposure correction

ij
obviously destroys the Polsson nature of the statistics

occured at the very edges of J

but not to a large extent since the dynamic range of the
exposure matrix, figure 23, is not too large.

The presence of fairly severe image blur with low
signal to noise sets a difficult problem in processing.
Tﬁe two degradations are to some extent complimentary,
since suppressing the noise tends to increase the blurring
and sharpening up the image inevitably increases the noise.
The methods discussed in Chapter 2 were carefully tried and
tested using the Cygnus Loop data as the prime example of
a degraded astronomical image.

Information about the point response or blur matrix
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associated with figure 23 was drawn from three sources.
Firstly, the payload calibration data and theoretical
instrument response as already presented in section 1,3,
Secondly, the in-flight response of the payload to Sco X-1
and thirdly, modulations present in the unfolded data
matrix, figure 23, indicating the upper limit of the
blurring present. Figure 24 is an illustrated comparison
of these sources of information. The final response to the
predominantly soft X-rays of the Cygnus. Loop was probably
~15' FWHM and certainly no worse than 20' FWHM, The
detailed shape of the response was not Gaussian and thus
was not as peaked as the theoretical response, however the
precise shape is not important since the observation was
severely count limited and enhancement of detail was

therefore not possible.

3.4 Simple noise suppression for the Cygnus Loop data.

Simple noise suppression can be achieved by correla-
tion of adjacent pixels using a convolution with a
suitable function of the appropriate width. Perhaps the
simplest form is the top hat function, as defined above in

equation (1.13)% The discrete convolution has the form:

X
Tad £ Xy Tiex,i-y (3.5)
If:
T . =1 (3.6)
5
then:
zJiB = z Iy (3.7)
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and the total count contained in J will be unaltered.

Since equation (3.5) is a linear operation, the wvariance

J

covariances involved in the convolution:

of element Ji is simply given by the sum of the weighted

t2 2 2 . '
o, = z s. T, . (3-8)
i L Px i-x,j-
J ny X7 1 J=y
When the statistics are Poisson, S;YZ = ny, so that the
1 T '
variance matrix 6&32 corresponding to Jij is easy to

calculate using equation (3.8). The change in mean signal

to . "+ noise is given by:
ZE Jij =1 convolution with T
-Jﬁ.—_z
Ki.
iz

N
2 2

g g Sxy Ti-x,j-y

Y
<
o
. -
]

4~jt

N
W
<

Providing the convolution limits of x,y are large enough
and no edge effects are present, the denominator can be

simplified:

The signal to noise has bheen improved by a factor:

——eee

S 2

If the function T is very narrow then:

3 = 1 (3.9)

Tyy = Sij (3.10)

. 2
and 5 = 1 as would be expected. As T is made wider, Ez Tij
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will diminish and the corresponding noise suppression
will increase. However the operation (3.5) which produces
the noise suppression also blurs'the image matrix Jij apd
a corresponding loss of resolﬁtion results.

.The summation (3.5) can be calculated directly, but
if T is not a sparse matrix then diagonalisation using
the Discrete Fourier Transform can be used (see section
2.1) to reduce the number of operations required. The
expression of the convolution as a direct product in the
DFT leads naturally to a more general Fourier filtering
approach which will be dealt with in the following
section,

The Cygnus Loop data (figure 23) was subjected to a
'top hat filter' of 12' x 12' (3 x 3 pixels) chosen to be
within the extent of the point fesponse so as not to
degrade the resolution by too much. The result was then
exposure corrected as described above, giving the image
in figure 25. The npise suppression achieved is
obviously considerable but the corresponding loss of
resolution is made apparant by figure 26, which compares
the Sco X-1 image before and after application of the

12' x 12' 'top hat filter'.

3.5 Fourier filtering of the Cygnus Loop data.

Since the linear filtering operation described in
section 2.4 can be reduced to a direct product operation
in the DFT, a parallel dédscription of the operation of
the filter can be made in the Fourier domain. Such a
linear operation is naturally global in effect and its

effect is described in terms of 'means' or averages. In
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Figure 25. Top hat filtered and exposure corrected

Cygnus Loop image.
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the detailed presentation of section 2.4, the ratio of the
signal power spectral density to the noise power spectral
density was shown to be of kef importance. The first step
is therefore to estimate this ratio-for the data matrix
in figure 23.

If both signal and noise processes are assumed white,
which is reasonable for the noise but not justified for

the signal, then:

P = P = z J.. (3-11)

npq © 'm T £ U4
' ~ 2

P ' = P' = J,. = J +.12

fpq y {%— ij ;% ij (3 )

The sgmmations are very easy to calculate and in the case
of Cygnus Loop give P_ = 6741, P, = 23537. The signal to
noise is therefore about 3.5. However the signal has
suffered a powef loss due to the action of 'the point
response and tﬁis represents the image signal to nqise
rather than the source signal to noise. Therefore the
source signal to noise required is probably something l&ke
5. This estimate is obviously very rough and can be
improved a good deal by a study of the modulation
transfer function of the instrument qu (see section 2.4.)
and the precise form of the image spectral density
function,

The MTF of the instrument is shown in figure 27,
corresponding the the ~15' FWHM response to Sco X-1.
Variations present in the FWHM obviously change the
cutoff frequency to some extent but have surprisingly
little effect on the general form of figure 27. The 2-D

power spectrum of the observation was calculated using
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the FFT and in order to improve the statistics, the
averages around annuli of constant sﬁatial frequency
amplitude were calculated yielding a radial power spectral
density function plotted in figure 28,

The spectrum consists of two distinct components, the
(as expected) flat noise spectrum extending to high
spatial frequencies and a low frequency peak due to the
Cygnus Loop. The MTF of the instrument is also shown in
figure 28 for comparison. In order to find the source
radial power spectrum, the noise component an was
estimated using the high frequency region and this was
subtracted from each sample., The resulting image spectrum
is shown in figure 29. This image spectrum was then
divided by the MTF to give an estimate of the original
source spectrum before it was filtered by the instrument
response, This is also shown in figure 29.

A Wiener filter in the Fourier domain (equation (2.34))
was constructed in two ways using the above information.
Firstly using the crude signal to noise ratio estimate
giving a constant value of about 5 (also shown in figure
29 for comparison) and secondly using a 2-function
analytic fit to the estimated radial power spectral
densis- (again shown in figure 29). The resulting images
were < en exposure corrected and plotted along with an
image -f Sco X-1, which was fitfed in exactly the same
way, see figures 30 and 31. Both images are clearly noise
suppressed; the cruder signal to noise estimate causes:
amplification of mid-frequency noise. The 2-functiom .-
analytic fit produced a very smooth result which appears

to be very conservative towards detail. This effect is due
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Figure 30.

i
s g s 2oms0n

Right Ascension (1950)

The Wiener filtered and exposure corrected
Cygnus Loop image using a 'white' estimate
for the signal to noise power spectral
density ratio. The inset shows Sco X-1

filtered in the same way.
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Figure 31b. Isometric projection of the image in figure

3la, Vertical scale 0,3 counts/4' x 4*/mm.



to the global nature of the filter which suppresses
regions of good signal to noise (high count).

Figure 32 compares the MTF's of the top hat, white
Wiener filter and 2-function analytic fit Wiener filters.
The top hat suppresses low frequency noise but allows. some.
leak through of noise at high spatial frequencies.

The white Wiener filter gives optimistic feature extraction
and poor low frequency response while the 2-function
analytic fit Wiener filter provides excellent high Spatial‘
frequency noise suppression with good low frequency

restoration,

3.6 The application of the Maximum Entropy Method to the

Cygnus Loop data,

An algorithm was required to solve equation (2.79)
"with A7 and (BJ as the blur matrices desribing the point
response detailed above, [623 as the variance matrix
corresponding to figure 23, the matrix [z} proportional
to the exposure matrix (see equation (2.53)) and X and u
to be found to satisfy constraints (2.80) and Xz (2.71)
a minimum., The algorithm had to be made to converge
quickly because of the large amount of computation
involved and after much trial and error and with educat=ad
guess work, this was achieved!

An iteration formula based on equation (2.79) was
used with a 'damping factor' included to prevent

divergence and oscillation.
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It was found that X =2 worked well when O < X £ 2 but not
for larger A, (If ¥ =2, then (3.13) effectively takes the
arithmetic mean between the new and old estimates.)
Using ¥ = 3 gave a well controlled convergence for the
Cygnus: Loop data and also in other applications to be
discussed later. The parameter u was not entered explicitly
but introduced by normalising to the total count"z Jxr
in eachrpass when calculating X2. The solution seemed to
be fairly weakly depernident on X\ which only needed to be
incremented slowly if ‘the solution converged with too
large a value for X2. Convergence was quickest if the
initial estimate was the normalised exposure matrix
corresponding to the least solution for X = 0., The final
value of A which gives a small X2 obviously depends on
the severity of the blurring and the signal to noise., The
better the signal to noise and the worse the blur, the
larger X\ must be to yield a small'Xz. For data like the
Cygnus Loop observation, A 2 5 was adequate and the solution
at N ® 2 was not very different from the final solution.
The variance matrix used had to be carefully chosen,
For non-zero pixels the best estimate for éijz was
obviously J but this was useless for zero elements. In

iyJ

order to find an estimate of the averagecou-nt in a zero
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'pixel the image was crosscorrelated with the'point response
and zero pixels set equal to the new value. The exact form
of the function used to find the average was found to have
little effect on the final solution shape and a top hat
would do just as well,

The algorithm could not be said to converge completely
but the solution changed very little after about 6
iterations., Increasing A to try and reduce X? still
further was not very effective because of the very flat
xz against 2 cbrvé, as illustrated by figure 33. In fact,
the interpretation of X2 in this application must be made
with care. If 12 <& the number of data points N, then the
'fit' of the solution to the data is obviously good and if
X? > N, the 'fit' is obviously poor. However Xz can also
be a measure of how significant features in the solution
are. If x2 -> 0 indicating an excellent fit, then
fluctuations due to noise will have penetrated into the
final solution. When?(2 is large (> N), any features
which appear must be way above the noise level and hence
very significant. A feature need not be a single pixel but
is more likely to be a group of pixels and the significance
of such a feature will depend on the total count it
contains, If the blurring is severe and the signal to
noise is good, a x2 < N will be difficult to obtain.
However a solution with X2 > N need not be rejected since
the large X? ﬁerely reflects the inadequacy of the
instrument resolution and features in the solution will be
resolution limited,

Hence the xiin is a measure of the limitation of the

observation rather than just the 'fit' to the observed
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data. This characteristic of Xz used in this way will be
bourne out by other applications of the maximum entropy
method later in this thesis (section 5.4). The parameter
which determines the feature extraction achieved is the
point response assumed, This must be chosen to be
consistent with the observation if the method is to be
successful, It should be noted that if the point response
was very good and no blur was present, then the maximum
entropy solution would be the data itself since it would
indeed be the best estimate of thg original photon
distribution from the source! Although the MEM does
consider the noise present, it is essentially a
deconvolution procedure with g&od noise suppression
characteristics rather than a noise filter. Its all-
important feature is that it cannot produce features due
entirely to counting statistics, which are more significant
than 1s indicated by the count within the features, Unlike
Fourier filtering, it is therefore 'safe',

Figure 34 shows the maximum entropy solutioh to the
Cygnus Loop data including an exposure correction. It
is very similér to the Wiener filter solutions
(figures 25, 30, 31) and exhibits good noise suppression
when cor-ared to figure 23.

The behaviour of the maximum entropy algorithm
towards -oise is obviously very important to the success
of the wethod. In ordef to test the apparant noise
immunity of the MEM solution indicated in the above
discussicn, a flat field observation was simulated using
the same exposure and total count as the Cygnus Loop

observation. The simulated data set is shown in figure 35.
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This data was given to the algorithm and the solution
after exposure correction is shown ;n figure 36. A reduced
chi-squared of 0.8 was achieved with a completely flat
field and A = O, but in order to test the noise immunity,
six jiterations were allowed to bring the reduced 7? down
to 0.72 and some leak through of noise fluctuations is to
be expected. The patchiness indicates a modulation in the
solution, however the striking appearance of the patches
is due to the choice of the grey scale, since the modula=-_
tion only ranges from:1.5 to 2.1 counts and if a grey
level of 1.5 counts had been used, a completely uniform
display would have resulted. The algorithm clearly exhibits
good noise immunity as was expected.

Although further work and experience is needed to
clarify the detailed behaviour of the maximum entropy
solution, especially with respect to'Xz, the method is
clearly a safe one provided that the degradations and
statistical nature of the observed data are well understood

and calibrated.

3.7 Conclusion to Part I,

The research described in Chapters 1, 2 and 3
represents an attempt to apply and develop existing data
processing techﬁiques to the specific problem of producing
good astronomical X-ray images from the raw event set
provided by grazing incidence mirrors used in conjunction
with position sensitive detectors. In order to achieve
this, texts such as reference 5 had to be relied on
heavily to provide the basic theory behind existing image

processing methods. Software was developed to solve the
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equations resulting from the theory, partly to investigate
the various methods available but more importantly to
apply them to real data. The Cygnus Loop data from the
MIT/ Leicester rocket payload was an excellent test bed
for the whole project and now the reflight data including
images of Puppis A and IC443 super-nova remnants are being
analysed using the techniques developed. It is hoped that
fuature projects, such as Leicester's involvement in the:
HEAO-B data analysis, > »will benefit from and utilise the
basic techniques tested in this research.

As with all research projects, a good deal of effort
was expended on problems which cannot be included in the
main body of the account. Therefore Appendix I provides
documentation of the computer software developed and the
methods of displaying data which were tried are

demonstrated in figures throughout this thesis.,
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PART II

THE ANALYSIS OF SHADOWED X-RAY HOLOGRAMS
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CHAPTER 4: DECONVOLUTION METHODS FOR CODED MASK X-RAY

TELESCOPES.,

4.1 Introduction to Part II,.

Grazing incidence telescopes are limited by the upper
cutoff of the reflection efficiency as illustrated by
figures 5, 9, 20 and 21 in Part I. Above about 5 keV some
other method of imaging X-rays must be used. Various
devices using shadowing rather than reflection of X-rays
have been proposed and developed, to try and provide an
imaging instrument at energies > 5 keV which has the
equivalent of the focusing advantage in signal to noise
that grazing incidence telescopes have at lower energies.

The simplest dévice is a slat collimator placed in
front of a detector limiting the solid angle which can be
seen by the detector. Unfortunately the beam of the
instrument must be scanned around the sky to produce an
image and if high resolution is required, the slats must
be made very deep and narrowly spaced. With no focusing
advantage, the incoming signal is far more easily swamped
by background counts in the detector.

If a position sensitive detector is available then
the 'pin hole camera' principle can be used but again
there is no focusing advantage to combat the detector
background. The sensitivities of the slat collimator and
pinhole camera are similar and only differ because of
construction differences. The slat collimator loses by a
factor of |2 because of the triangular response of the
collimator. With a detecting area A cm2 and observing time

T secs, the sensitivity to which an N element imgge, with
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each element .a. steradians, can be made with a detector

background B counts/cmg/sec is:

ne = 3SATa[ N (4.1)

N JBAT

where S is the source strength in.photons/cm?/sec/steradian
in bandpass of detector and 3 is the photon detector
efficiency.

- The essential difference between the slat collimator
and pinhele camera is their mode of operation. The slat
collimator has been ex tensively used for sky surveying, in
which the sky image is slowly built up after many scans,.
‘1The pinhole camera however, can monitor a fixed area of
sky continuously and could be useful for finding transient
phenomena.

‘The sensitivity of a non-focusing instrument can only
be improved in two ways. The detector background B must be
reduced by technological development or the area of
detector visible to a given sky element must be increased
without increasing the fundamental pixel size o, It may be
noted that a further complication arises when there is a
diffuse component in the source distribution., The
detection of a point source is then dependent on the pixel

size 2. In the diffuse background limited case:

n. = 3SAT [ N ' (4.2)

N DAnI3

where D is the diffuse background in photons/cmz/sec/
steradian. In case (4.1) an increase in the area of

sky visible to a detector element can apparently give a
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potential increase in sensitivity but in case (4.2) 'such
an increase wili have less effect because of the diffuse
background component is also.affected. Various methods
have been proposed and tried to increase the area of sky
visible to the detector while keeping the fundamental
pixel size constant. they all consist of coding or
multiplexing the incoming signal, either as a time series
or a sp-atial pattern and any signal to noise advantage
gained by such a procedure is nomally called a multiplex
a&vantage,(reference 16). Such a multiplex advantage is
definitely different from the focusing advantages
enjoyed by grazing incidence telescopes because it involves
the ‘:use of a code.

The ground work for the following research was
presented in reference 17, in which several multiplex
methods were discussed and one chosen as being particularly
promising and worthy of further investigation. Unfortunate-
ly the nomenclature of multiplex devices is still in
turmoil with new variations being dreamt up all the time
and the class of device discussed here has been called
multiplex pinhole cameras, transform telescopes, shadow
cameras, coded mask telescopes; the list is endless.
However the underlying principle is the same in them all.
The original idea stems from two independent papers by
R.H. vicke and I.t. Ables (1968), references 18 and 19.
Subsequently other authors have provided developments
and deeper understanding of the technique, notably T.M,

Palmieri (reference 20).
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4.2 ‘rthe principle of the coded mask ﬁeiescope.

The incident beam of photond is intercepted by a
plane mask perforated with a pattern of holes. Photons
which penetrate the holes are then detected by a planar
position sensitive detector placed parallel and at a
distance d below the mask., A point source at infinity will
produce a sﬁadow of mask pattern on the detector plane
displaced from the centre by a distance proportional to the
off-axis position of the source. When many sources are
present, many such patterns will be shadowed onto the
detector producing a 'hologram' or pattern characteristic
of the source distribution, Figure 37 is a schematic
diagram of the coded mask telescope. It is easy to show

that the hologram has the form of a convolution:

O

hix,y)=* fj f(«,3) m(x+d tano ,y+d tan@ ) dx dg
-
(4.3)

where f(«,3) is the source brightness distribution and
m(x,y) is the mask pattern. Providing the mask is thin

and there are no deep window support members on the
detector, equation (4.3) is an accurate description of the
shadow pattern present in the detector plane, Comparison
with equation (1.1) reveals a close similarity between

the form of the hologram distribution h(x,y) and the
focused image distribution, the only real difference being
that the point response or instrument kernel is a pattern
of holes instead of a single peaked response function. If
only one small hole is present then the device is
obviously a pinhole camera. The hologram distribution is

sampled in exactly the same fashion as the focused image
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yvyielding an event set h xn”yn"th"En" The only differ--.
ence in the recording processes is brought about by the
fact that the photons are not focused into a cone but are
travelling in the same direction as they were before
reaching the instrument. The effect of window supports and
obstructions will therefore be different, as will also the
gas spreading or blur due to the finite absorption if a
gas counter is used,

It is unnécessary to restate the analysis given in
section 1.2, since the difficulty in coded mask imaging
obviously lies in the form of the hologram given by
equation'(h.B) rather than in the minor degradations
introduced by the detector. Whereas processing of focused
event sets is designed to improve the estimate of the
source distribution, the shadowed hologram is not a true
image at all and it must be decoded before anything like a
true'image can be obtained. Since the ceding or multiplex--
ing process has the form of a convolution, the decoding
can be called a deconvolution, The theory already presented
in Chapter 2 can be used to provide decoding methods for
coded mask telescopes and this research is centred about
such methods. However before proceeding, the theory and
design of coded mask telescopes needs to be considered in
greater detail, The coding has the form of the integral
equation (4.3) with imposed physical restrictiens. The
mask pattern is constructed of holes and therefore m(x,y)
only takes the values O or 1. Although the shadow
distribution will be of infinite extent only a small
portion can be recorded by the detector., The range of the

(d,@) integration will depend on the extent of the mask
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pattern or the form of the object distribution f(x,().
Decoding is a matter of solving the integral equation using
a recorded sample of h(x,y) and a detailed knowledge of the
mask pattern m(x,y), where m(x,y) must. be chosen to give a
code which is as.canplete as possible,

If the object distribution and detector are assumed
finite in extent, then the digital form of the transform-
ation (h.B) is Toeplitz (see section 2.1). Unfortunately a
Toeplitz matrix cannot be diagonalised and therefore
perfect coding is not apparantly possible. However the
closely related circulant matrix can be diagonalised by
the DFT and careful design can provide a coded mask
telescope with perfect coding. The Toeplitz form arises
from the fact that the shadow of the mask pattern is' bound
to be cast over the edge of the detector by off-axis
sources. The part of the shadow pattern not recorded is not
therefore availablé for decoding the hologram. This lost
information can be recorded by using a periodic or aliased
mask pattern. The recorded pattern is then a circular
shift of a single period. Using such an aliased mask
converts the Toeplitz form into a circulant form and
enables complete coding to be achieved. This has been
suggested by many authors, notably references 21 and 22,
Unfortunately there is one further physical restriction
which must be allowed for. In practice, the object
distribution f(«,3) is not finite and using a periodic mask
leads to ambiguities, since the same pattern can be
shadowed by at least two distinct sky elements. In order
to pre vent this, a slat collimator must be used to restrict

the field of view of each individual detector element. The
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two possible coding systems based on the Toeplitz form

with a non-periodic mask and the circulant form with a
periodic mask are illustrated by figure 38. Obviously
decoding by the circulant approximation is bound to be

more successful in the periodic mask case but the necessary
introduction of a slat collimator to avoid ambiguities
reduces the sensitivity and therefore the multiplex
advantage (MA).

There must be a trade off between sensitivity (MA)
and coding and the balance is determined by the use to
which the telescope is to be put. If the object field is
sparse and coding ddficiencies are not likely to be too
troublesome, then the non-periodic or simple mask system
will be preferred. Hence for detecting rare, transient
sources in a large field of view with full multiplex
advantage, the simple system should be used. In contrast,
for imaging faint, relatively compact but nebulous sources,
such as clusters of galaxies, the aliased system offers
high resolution imaging without distortion and with a
possible MA, |

Having established the basic form of the coded mask,

the detailed form of the pattern must now be considered.

4.3 The choice of mask pattern for coded mask telescopes.

If the coding of the hologram is to be unique, then
the patterns formed by all possible object configurations
must be different and distinguishable. The pattern must
therefore be aperiodic (except for the aliasing to give a
circular convolution). The circulant matrix describing the

action of the instrument must have an inverse or pseudo-
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inverse so that the hologram can be decoded. The system
must have good signal to noise immunity, which in real
space means that the chance of noise fluctuations emulating
a point source must be as small as possible for all poss=.
ible sources. This implies that in the DPT domain, all
spatial frequencies of the object must be adequately
represented in the hologram so that noise at poorly sampled

frequencies will not dominate.
[h] = C(AY(£I[B] + [N3 (b.4)

Equation (4.4) is the discrete representation of the
hologram formation. [Al and [ Bl are the blur matrices
representing the mésk pattern and (Nl is a noise matrix.
Using the stacked form of the object and hologram, this

can be rewritten as:
h=(M £ +n (4.5)

where (M] is the block Toeplitz matrix corresponding to
the mask pattern. Using the circulant approximation for

(M1, equation (4.5) is diagonalised by the DFT (W1:

h=twilalewi™t £ +n (4.6)

Substituting Ewl'l f =7, (wi™l' n = § and cwiln=a
for the DFT's of the sampled source hologram and noise

processes gives:
F=(0AF +n (4.7)

Since [AJ is a diagonal matrix, decoding is possible by a
direct product operation in the DFT domain. However

eqaution (4,7 ) also indicates what properties are
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~desirable in the mask pattern. The diagonal elements [A]
are formed from the elements of -the DFT of the stacked mask
pattern. Decoding at all spatial frequencies can only be
achieved if all those diagohal elements are non-zero.
Furthermore the presence of n limits the choice to one in
which all the terms of [Al f will dominate n and hence the
diagonal elements of [Al must be as large as possible. The
amplitude of the DFT of the mask pattern must therefore be
non-zero and as large as possible at all spatial frequenc-=
ies to give good noise immunity to the coding process. The
real mask pattern is also limited to taking the values 0 .
or 1 (transmitting or opaque). In short,.the mask must
have a flat, extended spatial frequency power spectrum
which, evoking the Wiener-Khinchine theorem, implies that
the autocorrelation function of the mask pattern must be
strongly peaked (the Wiener-Khinchine theorem states that
the Fourier transform of the autocorrelation function
equals the power spectrum (amplitude squared)).

The choice of mask pattern has been tackled by many
authors, including referencesl?7, 20, 21 and 22. Using the
aliased system in which the instrument performs a circular
convolution, it is possible to construct a 'perfect' mask
with ideal properties using pseudo-noise sequencies which
are designed to be self orthogonal under circular cross-
correlation, Both one and two dimensional masks can be
constructed using such sequences or using the related
Hadamard waveforms, see reference 22, Mask patterns which
have the desired properties are random in the sense that
they show no self correlation under circular shifts. Small

sections taken in isolation do,. in fact, look random but
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often viewed as a whole they exhibit definite structure.

Some examples of mask patterns are given in figure 39.

L. 4 Decoding holograms from coded mask telescopes.

The mathematical construction of the hologrém equa-=_.
tions (4.4) and (4.5) is exactly the same as the linearly
blurred image formulation (1.28). The same techniques
described to solve tﬁe processing problem presented in
Part I can be easily adapted to unravel the hologram data,

In the aliased mask pattern case, the use of a
circulant is not a gross approximation since the only non-
circular effects are relatively minor degradations intro-
duced by the detector response and necessary physical
suppotrt structures. Using an-'ideal' mask provides an easy
way of decoding, simply circularly crosscorrelating the
hohlgram pattern with the mask pattern (reference 21).
This is so apart from a D.C. shift introduced by the 1,0
rather than 1,-1'character of the physical mask, the
inverse of the instrument's circulant is in fact the
transpose of the circulant itself and the circulant M is
said to be orthogonal (real unitary), reference 13 section
1.15. Apart from the noise corruption, the hologram is
therefore an orthogonal transformation of the object field
and exact reconstruction is possible.

A far more severe decoding problem is offered by the
simple mask configuration. The blurring now has a Toeplitz
form which, unlike the grazing incidence case, is not well
approximated by padding out with 