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Abstract—The ability to reverse-engineer models of software
behaviour is valuable for a wide range of software maintenance,
validation and verification tasks. Current reverse-engineering
techniques focus either on control-specific behaviour (e.g. in the
form of Finite State Machines), or data-specific behaviour (e.g.
as pre/post-conditions or invariants). However, typical software
behaviour is usually a product of the two; models must combine
both aspects to fully represent the software’s operation. Extended
Finite State Machines (EFSMs) provide such a model. Although
attempts have been made to infer EFSMs, these have been
problematic. The models inferred by these techniques can be
non deterministic, the inference algorithms can be inflexible, and
only applicable to traces with specific characteristics. This paper
presents a novel EFSM inference technique that addresses the
problems of inflexibility and non determinism. It also adapts an
experimental technique from the field of Machine Learning to
evaluate EFSM inference techniques, and applies it to two open-
source software projects.

I. INTRODUCTION

Context: Reverse-engineered models that accurately cap-
ture the behaviour of a software system are useful for a broad
range of software maintenance, validation, and verification
tasks. Their use is becoming increasingly popular from a
testing perspective, where they have been used as oracles
for regression testing [1], to detect intrusions / anomalous
behaviour [2], and to automatically generate test cases [3],
[4]. Beyond testing, models can aid software comprehension
[5] and requirements engineering [6].

This range of applications has given rise to a multitude
of model inference techniques. Most techniques are dynamic;
they take as input a set of traces of the system in question and
aim to infer models that generalise upon these traces. These
have largely focussed either on the inference of sequential
models in the form of Finite State Machines (FSMs) [7], [8],
[9], or as data pre-/post-conditions, as espoused by tools such
as Daikon [1].

Such models tend to only provide a partial view of software
behaviour. In practice, behaviour is often the result of inter-
play between the sequencing of events or function calls (as
modelled by FSMs) and the values of the associated parame-
ter or data-state variables (as modelled by invariants). This
observation has prompted attempts to infer more complete
models that are able to combine the two facets of behaviour.
A pioneering technique that sought to address this issue was
developed by Lorenzoli et al.[10], who devised the GK-Tails
algorithm that combined the k-tails FSM inference algorithm

[9] with the Daikon invariant detection system [1] to produce
fully-fledged Extended Finite State Machines (EFSMs) [11]
(FSMs with data-guards on the transitions). Though useful,
current approaches suffer two drawbacks:

Non-determinism and lack of a connection between data
constraints and sequential events: In current approaches,
inferred data constraints carry out a descriptive role (sum-
marising the data for individual transitions). They are not
inferred in such a way that specific configurations of data are
causally linked to subsequent control-events. As a consequence
they fail to capture the explicit logical relationship between
data and control. A walk through a machine can involve
numerous points at which there are several possible paths to
take for a given data-state.

Inflexibility: Current inference approaches are limited to
highly specific combinations of control and data-inference
algorithms. However, software systems can be very diverse,
which demands flexibility. Depending on the domain, systems
might differ substantially in the typical trace size and diversity,
the proportions of spurious events, noise, numerical variables,
boolean variables, or structured variables such as lists etc.
These can require completely different learner configurations;
no single, specific learning algorithm will be effective on all
types of system.

Contribution: This paper presents a generalised inference
technique for EFSMs to address the problems listed above. The
specific contributions are as follows:
• An EFSM inference technique that is (1) capable of

inferring EFSMs that are deterministic and (2) modular,
allowing the use of a wide family of data classifier
algorithms to analyse the data-state.

• An openly available proof of concept implementation that
incorporates the WEKA classifier framework [12].

• A preliminary evaluation of our EFSM inference tech-
nique on two open-source modules - a worker-pool
module from the Basho Riak distributed database imple-
mented in Erlang, and an SMTP protocol implementation
from the Oracle Java Mail framework.

II. BACKGROUND

This section presents the core definitions that are to be
used throughout the rest of this paper, namely traces, Finite
State Machines, and Extended Finite State Machines. Finally,
it provides a small motivating case study.



A. Definitions

As is the case with most behavioural model inference tech-
niques, the technique presented in this paper takes as input a
set of program traces. These are of a generic format, consisting
of sequences of event or function labels accompanied by
variable values [10]. They can be defined as follows:

Definition 1: Traces A trace T =< e0, . . . , en > is a
sequence of n trace elements. Each element e maps to a tuple
(l, v), where l is a label representing the names of function
calls or input / output events, and v is a vector of variable
values (this may be empty).

The selection of which variables to trace depends on the
tracing capabilities and the level of abstraction at which the
trace is being recorded. This may vary according to the
purpose of the model. The choice of trace abstraction makes
no difference to the inference technique presented here. As
with other approaches to this topic [10], [7], the mechanism
and encoding used to collect the traces is left to the user, and
depends to an extent on the intended purpose of the model.

Definition 2: Finite State Machine A Finite State Machine
(FSM) can be defined as a tuple (S, s0, F, L, T ). S is a set
of states, s0 ∈ S is the initial state, and F ⊆ S is the set
of final states. L is as defined as the set of labels. T is the
set of transitions, where each transition takes the form (a, l, b)
where a, b ∈ S and l ∈ L. When referring to FSMs, this paper
assumes that they are deterministic.

In intuitive terms, Extended Finite State Machines [11]
augment conventional FSM with a memory. Transitions be-
tween states are not only associated with a label, but are also
associated with a guard that represents conditions that must
hold with respect to the variables in the memory:

Definition 3: Extended Finite State Machine An Extended
Finite State Machine (EFSM) M is a tuple (S, s0, F,
L, V,∆, T ), where S, s0, F and L are defined as in a conven-
tional FSM. V represents the set of data states, where a single
instance v represents a set of concrete variable assignments
as defined in Definition 1. The data guard set ∆ is the set of
data guards, where each guard δ takes the form (l, v, possible),
where l ∈ L, v ∈ V , and possible ∈ {true, false}. The set of
transitions T is an extension of the conventional FSM version,
where transitions take the form (a, l, δ, b), where a, b ∈ S,
l ∈ L, and δ ∈ ∆. Unlike conventional FSMs, the transition
system of an EFSM can be non-deterministic.

It should be noted that the EFSMs as defined here and by
Lorenzoli et al. are abstracted versions of the EFSMs defined
by Cheng and Krishnakumar [11]. In the original definition,
variables in V are updated by an update function, the execution
of which is subject to the satisfaction of the data guard. In our
and Lorenzoli et al.’s case, the models are declarative, in the
sense that they capture the sequences of events and variable
values that are (or are not) possible, but do not necessarily
explicitly capture how the individual variables are updated.

B. Motivating Example

To motivate this work, we consider a scenario where we
need to reverse-engineer the behaviour of a mine pump con-

troller [13]. The pump controls water levels in a mine, and
is activated or deactivated depending on the levels of water.
However, it also monitors the levels of methane in the mine,
and must switch the pump off if the levels of methane become
too high.

Let us consider the scenario where we are confronted with
such a controller, the source code is unavailable, but we are
able to obtain a trace of its behaviour - which gives us its
actions, and the associated levels of water and methane and
pump activity (i.e. whether it is on or off). Thus, we end up
a trace of 2931 events, from which a snippet is shown below:
...
turn_on 73.44274560979447 596.7792240239261 false
low_water 28.898501010661718 584.0357656062484 true
switch_pump_off 28.898501010661718 584.0357656062484 true
turn_off 28.898501010661718 584.0357656062484 true
highwater 31.47476437422098 588.4568312662454 false
switch_pump_on 31.47476437422098 588.4568312662454 false
...

So the question we are faced with is this: Given such a
trace, what is the sequential behaviour of the system? We know
intuitively that the activities are based on the data, but how?
In other words, what is the EFSM that can accurately capture
this behaviour for us?

III. BASIC INFERENCE TECHNIQUES

EFSMs combine two complementary perspectives on soft-
ware behaviour: (1) the FSM component that shows the order
in which various events or functions can be executed and (2)
the rules that relate the data state of the system to the execution
of these events. Both of these model families have been the
subject of a substantial amount of model inference research,
both within the fields of Software Engineering and Machine
Learning. The remainder of this section presents a high-level
overview of these techniques, providing enough information
for the next section to show how they can be combined in
a modular way. It concludes with a short overview of the
weaknesses of existing EFSM inference techniques that have
attempted to combine FSM and data rule inference.

A. Evidence-Driven State Merging

The challenge of inferring an FSM from a set of example
sequences has been an established research challenge since
Gold’s pioneering research on language identification in the
late 60s [14]. Numerous inference techniques were developed,
spurred by several competitions that encouraged novel tech-
niques to infer models from training sets made available over
the internet [15], [8]. Evidence-Driven State Merging is one of
the most popular and accurate inference techniques to emerge.
It won the Abbadingo competition [15] and was used as a
baseline for the recent STAMINA competition [8]. We use the
basic steps of the EDSM algorithm as a basis for our EFSM
inference algorithm. Its basic functionality is described below.
More in-depth descriptions of the individual components of
the algorithm are available in Lang’s original paper [15], or
one of the selection of Software Engineering references that
describe its use [6], [8] .



Data: S, s0, F, L, T, s1, s2, s3, s4, Traces
/* S, s0, F, L, T are as per definition 2, s0, . . . s4 ∈ S,

Traces is the set of input traces */
Result: A deterministic FSM consistent with Traces

1 infer(Traces) begin
2 (S, s0, F, L, T )←generatePTA(Traces);
3 while (s1, s2)← choosePairs((S, s0, F, L, T)) do
4 (S, F, T )← merge(S, F, T, s1, s2);
5 end
6 return (S, s0, F, L, T )
7 end
/* Function to merge s1 to s2 and ensure that the result

is deterministic. */
8 merge(S, F, T, s1, s2)begin
9 S ← S \ {s1};

10 F ← F \ {s1};
11 T ← changeSources(s1out, s2, T);
12 T ← changeDestinations(s1in, s2, T);
13 while (s3, s4)←findNonDeterminism(S, T ) do
14 (S, F, T )←merge(S, F, T, s3, s4);
15 end
16 return (S, F, T )
17 end

Algorithm 1: Basic state merging algorithm.

Most FSM inference techniques (including the popular k-
tails algorithm [9]) fit into the family of “state-merging” tech-
niques. These are variants of the same underlying algorithm1,
which is shown in Algorithm 1. From here on, we use sout to
refer to the outgoing transitions from state s, and sin to refer
to the incoming transitions.Traces are as defined in Definition
1, but the data variable values are ignored (given that FSMs
do not incorporate data).

The algorithm begins by composing the traces into the most
specific possible correct FSM — the PTA — and then proceeds
to merge states to produce progressively smaller and more
generalised hypothesis FSMs. The key steps are introduced
below:

line 2: the set of traces Traces is arranged by the
generatePTA function into an initial FSM in the form
of a prefix-tree acceptor (PTA) [6]. This can be described
intuitively as a tree-shaped state machine that exactly accepts
Traces, where traces with the same prefix share the same path
from the initial state in the PTA up to the point at which they
diverge. Leaf states are added to F as final / accepting states.
For an intuitive illustration, there is an example PTA in Figure
1

lines 3-5: The state merging challenge is to identify pairs of
states in the current hypothesis FSM that represent equivalent
states in the subject system, and to merge them. Starting
off from the PTA, pairs of states are iteratively selected and
merged, until no further pairs of equivalent states can be found,
which indicates convergence at the final hypothesis FSM.
choosePairs: This function is responsible for choosing a

pair of states that are most likely to be equivalent from a given
FSM. The general process is described in Algorithm 2. The
selectPairs function selects a set of state pairs in the cur-
rent machine that are deemed to be suitable merge-candidates

1Unlike many similar Machine Learning techniques, we cannot presume the
presence of negative examples – in our scenario we only have software traces
to work from, which are by definition positive. Accordingly, the algorithms
presented here omit negative traces.

Data: S, T, s1, s2, score, PairScores, t1, t2
1 choosePairs(S, T) begin
2 PairScores← ∅;
3 foreach (s1, s2) ∈ selectPairs(S) do
4 score← calculateScore(s1, s2);
5 PairScores← PairScores ∪ {(s1, s2, score)};
6 end
7 return sortDescending(PairScores)
8 end
9 calculateScore(s1, s2) begin

10 score← 0;
11 while (t1, t2)← equivalentTransitions({s1, s2}) do
12 score← score + 1;
13 score← score+calculateScore(t1dest, t2dest);
14 end
15 return score
16 end

Algorithm 2: The EDSM candidate pair selection procedure

(using an approach known as the Blue-Fringe algorithm [15],
[6]). These pairs are then scored by the calculateScore
function. This operates by counting the number of transitions
in the outgoing paths from the two states that share the same
labels (this is always finite because one of the states is always
the root of a tree [15]). Finally, the state pair with the highest
score is deemed to be most likely to be equivalent, and is
returned.
merge: The merge function merges s1 into s2 by first

removing s1 from S and (if s1 ∈ F ) replacing s1 with itself
in F . It continues by redirecting all transitions s1in to s2,
and changes the source states of all transitions s1out, making
s2 their new source state. The resulting transition system is
checked for non-determinism, and this is eliminated by re-
cursively merging the targets of non-deterministic transitions.
A more detailed description of this process can be found in
Damas et al.’s description [6].

B. Data Classifier Inference

To extend the inference approaches beyond FSMs, and to
produce EFSMs it is also necessary to learn succinct rules of
behaviour over the data parameters present in the traces.

The process that is referred to here as “data classifier
inference” refers to a broad range of techniques that seek
to identify patterns or rules between variables from a set of
observations, and to map these to a particular outcome or
‘class’. The possible classes could be {true, false} if the aim
is to infer whether a given set of variable values is possible or
not, or more elaborate, e.g. {rain, sun, overcast} if the aim
is to predict the weather from a set of factors.

A huge variety of techniques have been developed in the
Machine Learning domain, spurred by problems in domains as
diverse as Natural Language Processing, Speech Recognition,
and Bioinformatics. A part of the reason for this diversity
is that techniques can contain specific optimisations for their
target domain. Amongst the hundreds of different techniques,
core techniques include Quinlan’s C4.5 Decision Trees infer-
ence algorithm [16], ensemble-learning approaches such as
AdaBoost [17], and Bayesian inference techniques such as the
simple naive Bayes approach [18].

Classifier inference techniques start with a sample of obser-
vations (referred to here as a ‘data trace’), which map a set of



variable values to their respective ‘classes’, where a class is
some categorical outcome. The goal is to produce some form
of a decision procedure that is able to correctly predict the
class of a set of unseen variable values. More formally, a data
trace and the classifier inference problem can be defined as
follows:

Definition 4: Data trace: Given a variable domain V and
a set of classes C, a data trace TD of size n can be defined
as a set {(v0, c0), . . . , (vn.cn)}, where a vector of variable
assignments vi is mapped to its corresponding class ci.

Definition 5: Data classifiers and the inference problem:
A data classifier DC : V → C is a function that maps
samples of variable assignments to their respective classes. The
inference problem can be characterised as inferring a classifier
DC from a trace T that generalises upon the observations in
the trace to classify further elements correctly when v /∈ T .

As with FSM inference techniques, the choice of data rule
inference technique depends on a multitude of factors (e.g.
noisiness and potential bias in the data, the need for efficiency
versus accuracy, readability of the inferred model etc.), and has
itself been the subject of extensive research within the Machine
Learning community [19]. Several comprehensive implemen-
tation frameworks have emerged to facilitate experimentation,
such as the Java WEKA API [12] used for our work, which
includes implementations of approximately 100 of the most of
the established inference techniques.

C. Current EFSM Inference Approaches

The area of software model inference is vast, and has been
active for the past 40 years [9]. Aside from the wealth of
FSM inference and data-specification inference techniques,
there are several techniques that have sought to combine the
two. Notable examples include Dallmeier et al.’s ADABU
technique [20] and Lorenzoli et al.’s Gk-tails algorithm [10].
Both have been generally evaluated on Java programs, but can
in principle be applied to arbitrary program traces.

ADABU obtains models by obtaining a detailed record
of the data-state at each point in the execution. It then
adopts a simple, prescribed mapping to obtain abstract data
characterisations at each point. For example, numerical values
x are mapped to x > 0, x == 0, or x < 0, and objects are
mapped to null or instance of c for some c. These are
then combined into an abstract state machine according to the
sequence in which these abstract states appear in the traces.
The result is not strictly-speaking an EFSM (transitions do not
have guards), but is mentioned here because it still combines
data with control, and formulates this as a state machine.

For Gk-tails the basic idea is to build on top of the normal
state-merging approach described above (they choose the well
established k-tails variant [9]). However, each state transition
is labelled not only with a label, but also with the set of
variable values that correspond to the execution at that point.
As transitions are merged into each other during the state
merging process, they map to increasing numbers of data
values. The GK-tails algorithm uses Daikon [1] to infer rules
that link the variables together for each transition. These

rules are then factored in to the selection of state pairs (the
choosePairs function above) to prevent incompatible pairs
of states from being merged. This is an important contribution;
it shows how data from traces can factor in to the inference
process, and has influenced the development of our algorithm,
which we will describe in the following section.

Although they have proven to be successful for certain tasks,
both approaches are hampered by key limitations. The first
problem is flexibility. Both approaches are tied to very specific
forms of data abstraction: the ADABU data-abstraction is
hard-coded, and in the case of GK-tails it is tied to Daikon.
However, it is well established from the field of Machine
Learning that in practice different algorithms excel (and under
perform) according to the specific characteristics of a given
data set. It is implausible that a data abstraction technique
would be well suited for for arbitrary sets of software traces.
Some software behaviour may vary according to subtle nu-
merical computations, others might vary according to specific
configurations of boolean and string variables. These require
different learners to yield the most accurate models.

The second problem is specific to GK-tails (since it in-
fers EFSMs, whereas ADABU does not). Data rules that
summarise the guards on a transition are inferred on a per-
transition basis. This has two downsides. The first is the
sheer volume of trace data that is required; each transition
(in the ultimate model) needs to have been executed with
a sufficiently broad range of data to yield a model that is
accurate in its own right. The second is non-determinism.
Since each transition data model is inferred independently, it
is possible (and probable) that the resulting model contains
states where there a given data set-up can lead to multiple
outgoing transitions.

Models inferred by Gk-tails still have an intrinsic value for
several purposes, and the inaccuracies discussed above can
often be tolerated depending on the purpose of the model.
For example, such models can still be useful if the model
is intended as a descriptive overview of system behaviour.
However, for purposes where the model might be required
for classifying correct / incorrect behaviour, or to simulate
a software system, models have to be more precise and
deterministic.

IV. THE EFSM INFERENCE ALGORITHM

This section presents our EFSM inference algorithm. It
adopts a similar template to the approach proposed by Loren-
zoli et al. [10]. It also builds upon established state-merging
techniques, and also works by attaching data values to tran-
sitions. However that is where the similarity ends. Instead
of relying on a single data model inference approach, the
algorithm proposed here is modular; it enables the incorpo-
ration of arbitrary data classifier inference techniques (there
are over fifty in the WEKA library used by our reference
implementation). Secondly, by using classifiers, the data rules
and their subsequent control events are explicitly tied together.
Finally, instead of inferring rules on a per-transition basis,
a set of global data rules are inferred (e.g. some classifiers



Data: EFSM,∆, k, c,DataTrace, s1, s2, t1, t2, V ars
/* Here A is shorthand for the collection

(S, s0, F, L,∆, T ) as per definition 3. Components of A
are denoted by subscript (e.g. AS). */

/* s1, s2 ∈ S */
/* t1, t2 ∈ T, */
/* DataTrace is a trace as in definition 4. */
/* V ars is a one-to-many mapping from transitions in T

to trace elements in Traces. k is an (optional)
integer ≥ 0 representing a minimum merge score. */

Result: An EFSM consistent with Traces

1 Infer(Traces, k) begin
2 DataTraces← prepareDataTraces(Traces);
3 ∆← inferClassifiers(DataTraces);
4 (A, V ars)←generatePTA(Traces,∆);
5 while (s1, s2)← choosePairs(A,∆, k) do
6 (A′, V ars′)← merge(A, (s1, s2), V ars));
7 if consistent(A′,∆, V ars′) then
8 A← A′;
9 V ars← V ars′;

10 end
11 end
12 return A
13 end
14 merge(A, s1, s2, V ars)begin
15 AS ← AS \ {s1};
16 AF ← AF \ {s1};
17 AT ← changeSources(AT , s1out, s2);
18 AT ← changeDestinations(AT , s1in, s2);
19 while (t1, t2)←equivalentTransitions(AT , s2, A∆) do
20 if (t1dest == t2dest) then
21 V ars(t2)← V ars(t2) ∪ V ars(t1);
22 AT ← AT \ {t1};
23 else
24 (A, V ars)← merge(A, (t1dest, t2dest), V ars);
25 end
26 end
27 return (A,∆)
28 end

Algorithm 3: EFSM Inference Algorithm

infer them as if-then-else constructs), so they are able to take
advantage of all of the available data, instead of just those data
points that are attached to individual transitions.

The section starts off with a description of the algorithm
itself. This is followed by a description of the state-merging
algorithm that underpins the inference of the transition system.
Finally, a small example is included to illustrate the key steps,
and to provide an intuition of the final machine.

A. Inference Algorithm

The inference algorithm builds upon the state-merging base-
line in Algorithm 1. In simple terms, there is an extra step
beforehand, which is the inference of a set of classifiers.
Each classifier corresponds to a label in the trace (e.g. the
signature of a method in a Java trace). From a set of inputs
to the method, the classifier serves to predict the next label
in the trace (i.e. the name of the next method to be called).
In the rest of the inference algorithm, the purpose of most
functions remains the same, however this time their behaviour
is modulated by the classifiers. Also, there is a new function
consistent, which ensures that the model that is produced
at each iteration is consistent with all of the classifiers.

The algorithm is shown in Algorithm 3, and the key steps
are illustrated in Figure 1. For an intuitive understanding, it is
easiest to start with Figure 1, and to then trace the equivalent
steps in Algorithm 3. The following description will draw upon
both. Starting with a set of initial traces (top left), the algorithm

starts by processing them to create one ‘data traces’ per label
(shown to the right in the diagram). This adds a ‘class’ variable
to each data point, showing for every data configuration what
the label of the subsequent event is. These data traces can then
be used to infer a set of classifiers (moving to the right in the
diagram). The examples used here are decision trees (such as
those produced by the C4.5 algorithm [16]), but they could be
any suitable representation of a decision procedure, such as
neural nets or if-then-else clauses [12].

At this point, the initial set of traces is re-analysed, but this
time to produce a Prefix Tree Acceptor (PTA) [8] (line 4 in
the algorithm, bottom left in the diagram). There are however
two important differences from the prefix trees used in the
conventional algorithm. In this PTA, transitions are labelled
not only with the name of a function, but also with the sets of
data variable values that correspond to each transition (in the
algorithm this mapping is represented by V ars). For example,
in Figure 1, the transition 0

mult−−−→ 1 would map to {(x =
4, y = 2, res = NaN), (x = 1, y = 1, res = NaN), (x =
2, y = 0, res = 0)}. Secondly, a pair of states (a, b) only
share the same prefix in the PTA if the inferred classifiers
yield identical predictions for every data-configuration in the
prefix of a as they do for b. This means that the PTA represents
the most specific EFSM that exactly represents the given set
of traces.

Together, the embellished PTA and the data classifiers
are used as a basis for iterative state-merging, following a
similar iterative loop to the original state-merging procedure
in Algorithm 1. The key differences are as follows.

The choosePairs function (line 5) takes several addi-
tional variables into account. k is an optional parameter to
represent the minimum score before a pair of states can be
deemed to be equivalent. A pair of transitions can only be
deemed to be equivalent if their attached data values lead to
the same predictions. The other additional parameter is self-
explanatory; the set of classifiers ∆ is required to compute the
equivalence of transitions for the computation of the scores.

The merge function (line 6 - shown in full in lines
14-28) differs from the generic version. The is similar in
nature to the previous differences and is centred on the
equivalentTransitions function. This function does
not not just deem two transitions to be equivalent if the labels
are the same, but also factors in the equivalence of the attached
data values, as determined by the relevant data classifiers. So
although the initial steps of generating the initial merge remain
identical (see Figure 1), the difference lies in how any non-
determinism in the resulting transition structure is handled.
In the generic FSM inference approach in Algorithm 1, non-
determinism is simply eliminated by recursive merging. Here
a similar recursive merging process takes place, however (as
with the PTA generation), transitions are not merely compared
to each other in terms of their labels, but also in terms of their
attached data.

Once states and transitions have been merged, the merge
function has the additional responsibility of reallocating the
data values from the source transitions to the target ones. This



Initial traces:
mult, x=4, y=2, res=NaN
add, a=0, b=4, res=NaN
add, a=4, b=4, res=8
disp, val=8, res=8
==================
add, a=1,b=1, res=2
disp, val=2, res=2
==================
mult, x=1, y=1, res=NaN
add, a=0, b=1, res=1
disp, val=1, res=1
==================
mult, x=2, y=0, res=0
disp, val=0, res=0

Data traces:
mult, x=4, y=2, res=NaN, class=add
mult, x=1, y=1, res=NaN, class=add
mult, x=2, y=0, res=0, class=disp
===================
add, a=0, b=4, res=NaN, class=add
add, a=4, b=4, res=8, class=disp
add, a=1, b=1, res=2, class=disp
add, a=0, b=1, res=1, class=disp 
===================
disp, val=8, res=8, class=null
disp, val=2, res=2, class=null
disp, val=1, res=1, class=null
disp, val=0, res=0, class=null
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Figure 1. Illustration of the key inference steps with respect to traces from an imaginary calculator system. The classifiers used in this example happen to
be decision trees, but could assume any representation depending on the chosen data rule inference algorithm.

is achieved by updating the map V ars from transitions to data
variables (line 21). The resulting merged model and updated
mappings from transitions to data are returned as (A′, V ars′).

Finally, once the merge has been processed, the resulting
model is checked by the function consistent. This makes
sure that the merged machine A′ attached data V ars′ are
consistent with the classifiers in ∆. For each transition t ∈ A′T ,
the corresponding the data variable values are obtained from
V ars′(t). This is provided to the corresponding classifier in
∆, which returns a predicted subsequent label (i.e. the name
of the method to be executed subsequently). This is checked
against the transition structure of A′. If the target state of t
does not have an outgoing transition with the predicted label,
consistent returns false.

If A′ is consistent with ∆ and V ar′, the ‘current’ state
machine A is updated to A′, V ar is updated to V ar′, and the
whole process iterates until no further merges can be found. If
consistent returns false, the current merge is ignored, and
the next merge is attempted. This whole process continues
until no more merges can be identified, when the process
returns (A,∆).

B. The Mine Pump Case Study

This section is concluded with a small example to provide
an intuition of what the inferred machines look like, and to
show how the data-rules and state machines can be interpreted
as an EFSM. To do this we recall the example of the mine
pump controller, as briefly discussed in Section II-B. We have
a trace of 2931 events (illustrated previously), and we wish
to better understand the underlying behaviour by inferring an
EFSM. The full set of traces for this example and the other
evaluation material, along with the proof of concept program
are available from the project URL2.

2http://www.cs.le.ac.uk/people/nwalkinshaw/efsm/

The following output is obtained by running our tool, using
the WEKA J48 decision tree learner (the C4.5 algorithm [16])
to infer the underlying data relations. Although the tool is
equipped to visualise the data-guards and state transitions in
a GUI, we show them separately here, to provide a better
intuition of what an inferred EFSM looks like. The resulting
decision trees (inferred using the WEKA default settings) are
shown below:

====== MODEL FOR:critical ======
pump = true: switch_pump_off
pump = false
| methane <= 607.2162
| | methane <= 602.640094: not_critical
| | methane > 602.640094
| | | water <= 31.699162: not_critical
| | | water > 31.699162: critical
| methane > 607.2162
| | water <= 74.875037: highwater
| | water > 74.875037: critical

====== MODEL FOR:not_critical ======
: switch_pump_on

====== MODEL FOR:highwater ======
methane <= 598.525559: switch_pump_on
methane > 598.525559: critical

====== MODEL FOR:turn_off ======
methane <= 597.355089: highwater
methane > 597.355089: not_critical

====== MODEL FOR:turn_on ======
methane <= 590.815697: low_water
methane > 590.815697
| water <= 35.75304: low_water
| water > 35.75304: critical

The decision trees be read as a set of if-then-else rules,
where the conditions are on the values of the variables,
and the outcomes represent the next event. For exam-
ple, looking at the highwater tree, if methane <=
598.525559 the model predicts that the next event is
switch_pump_on , otherwise the next event is critical.
For the not_critical tree, there are no conditions on the

http://www.cs.le.ac.uk/people/nwalkinshaw/efsm/


variables, the next event is always switch_pump_on.
These data models already provide some basic constraints

on the sequential behaviour of the system. They show which
combinations of variable values lead from one function to
another. However, they fail to provide a macroscopic view
of the order in which the events can occur. This is provided
by the state transition diagram, shown in Figure 2.

Together, the data-models and the state transition system
form the EFSM. The inference algorithm ensures that the state
transition system fully obeys the inferred data-models; if a
state has an incoming event with a model that predicts a given
event X , it will always have an outgoing transition for X .

Every transition corresponds to a particular “case” in the
data model - a set of conditions in the model that yield a
specific outcome. So the model is completely deterministic.
Although there are states in Figure 2 with multiple outgoing
transitions with the same label (e.g. state 0), the choice
between which transition to take is decided by the data values
at state 0. This is difficult to visualise without the GUI, but
can in most cases be derived from the data-models by looking
at the data-models. For state 0, the critical transition
to state 113 occurs when pump = false, methane >
607.2162, water <= 74.875037 , because this is the
set of conditions that leads to the event highwater .

The model is intuitively useful. It is relatively compact,
reducing 2931 trace events to a transition system of 17 states,
accompanied by a reasonably compact description of the
associated data rules. It also gives a good intuition of how
the system behaves. The outgoing trajectories from state 0
correspond to what happens when (a) there are critical methane
and water levels (state 113), (b) there are just critical methane
levels (state 1027) and (c) there is just high water (state 1).
It shows the order of events involved in switching the pump
on and off, when these can occur, and how the different states
are interrelated.

V. PRELIMINARY EVALUATION

The EFSM inference algorithm was implemented in Java,
and is freely available2. For the evaluation the implementation
has been applied to traces of test executions from modules in
two systems. These are used to explore the accuracy of the
models, and to illustrate the scalability of the approach with
respect to realistic traces.

A. Experimental Setup

1) Subject systems: The SMTPTransport class in Oracle
JavaMail3 provides the functionality to send emails by SMTP.
This choice was inspired by its use by Dallmeier et al. [21].
The test cases used were its own JUnit tests, coupled with
the test sets for Apache Commons Mail4 (which is built upon
Java Mail). The Erlang Poolboy module in the Basho Riak
distributed database5, which implements a process for pooling

3http://www.oracle.com/technetwork/java/javamail/index.html
4http://commons.apache.org/proper/commons-email/
5http://basho.com/riak/

connections. As test cases we used its own set of E-unit test
cases.

Traces of test cases in Java were collected by developing
a tracing-aspect in AspectJ6, and traces for Erlang modules
were collected with an automated instrumentation system
developed using the Wrangler refactoring API [22]. No manual
abstraction was used (to avoid biasing the results). The tracers
recorded trace-data for any invocations of interface functions
to the module of interest. The recorded data included all
parameter inputs, outputs, and (for Java) all instance variable
values.

2) Measuring accuracy: EFSM inference techniques are in-
trinsically difficult to evaluate. Current approaches are ‘model-
based’, in the sense that they rely upon some reference model
that can be used as a basis for computing accuracy [23],
[24], [21], [25]. This requirement for hand-crafted models can
however be restrictive in terms of the size and complexity of
the model against which a technique can be evaluated.

In Machine Learning this problem is common - there are
typically no gold-standard reference models. One of the most
popular evaluation techniques that can be used in such a
situation (which we adopt for this study) is a technique
known as k-folds cross validation [26]. Here, the simplifying
assumption is made that the given set of examples (test cases
in our case) collectively exercise the full range of behaviour
from which we are inferring a model. The set is randomly
partitioned into k non-overlapping sets. Over k iterations, all
bar one of the sets are used to infer a model, and the remaining
set is used to evaluate the model according to some metric
(discussed below). For each iteration a different set is used
for the evaluation. The final accuracy score is taken as the
average of the k accuracy scores.

Of course, given the probability that test sets are not
“rich enough”, the accuracy score cannot be interpreted as
an absolute score of the accuracy of the model with respect
to the system in question. As with all dynamic analysis
techniques, an incomplete test set will yield an incomplete
model [21]. However, it can be used in our experimental
setting to compare the relative performance of different model
inference configurations. If we go further and accept that the
test set represents a reasonable sample of typical program
behaviour, then the resulting scores can be interpreted as being
at least indicative of the actual accuracy score.

There are several metrics by which to assess ‘accuracy’,
such as Precision, Recall (also known as Sensitivity) and
Specificity. All are computed from the sets of true-positives
(TP), true-negatives (TN), false positives (FP) and false-
negatives (FN). We chose Sensitivity (TP/(TP + FN)),
Specificity (TN/(TN + FP )), and BCR, which is the mean
of the two [25].

3) Negative traces: To compute the true and false positive
/ negatives, it is not only necessary to have a useful base-
sample of program traces, but also a set of ‘negative’ traces
- traces that do not belong to the system in question (but

6http://eclipse.org/aspectj/

http://www.oracle.com/technetwork/java/javamail/index.html
http://commons.apache.org/proper/commons-email/
http://basho.com/riak/
http://eclipse.org/aspectj/
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Figure 2. Inferred state transition diagram for mine pump controller

remain characteristically similar in terms of their contents).
To obtain these negative test cases we adopted an approach
inspired by the work of Dallmeier et al. [21]. We provided
the same inputs to the program that were used to obtain the
‘positive’ traces, but mutated the program first. For this we
use established mutation frameworks: MAJOR [27] for Java,
and for Erlang a mutation testing tool based on the Wrangler
refactoring API [22]. For each trace from the mutated program
we manually inspect a text-diff of the trace with respect to the
original to make sure that the mutant is not ‘equivalent’ - i.e.
that it actually changes the behaviour. All of the traces used for
the experiment are available on the project web page refprojURL.

Once the traces are obtained, we use the positive traces
for the k-folds cross-validation, and add the negative traces to
the evaluation set at each iteration. We set k for the k-folds
cross validation to 5, to ensure that there was an adequate
sized evaluation set at each iteration. For both systems we
controlled the experiment by attempting every combination
of data classifier inference algorithm and minimum merging
score k (not to be confused with the fold number).

The details of the experimental variables are as follows.
We used eight classifier inference algorithms implemented
in WEKA [12], using the default WEKA settings for each
algorithm. The algorithms were selected to fit a broad range
of numerical or discrete systems, and are: C4.5 [16] (listed as
J48), NNGE, Naive-Bayes [18], AdaBoost [17], AdditiveRe-
gression, JRIP (also known as RIPPER), M5 and M5Rules. We
varied the minimum merge score k from 0 (only rely on data)
to 1 (rely on data, but there must be at least one suffix that
is the same for two states to be merged). Each configuration
was repeated six times with different random seeds. For each
system this resulted in 98 configurations. Since we were using
k = 5 for the cross validation (five models were inferred
per configuration), this meant that overall 490 models were
inferred per case study. The experiments were executed on a
1.4GHz Intel Core2 Duo laptop with 2 GB of memory running
Ubuntu Linux 12.04.

4) No baseline: This study is entirely exploratory, in the
sense that it does not compare the accuracy of the models
against a baseline technique. The reason for this is that there
are no comparable baseline techniques that the authors are
aware of. As mentioned in the related work, there are other

Poolboy (Basho Riak) SMTPTransport (Java Mail)
k Classifier BCR ms Classifier BCR ms

0

NNGE 0.688 1604 JRIP 0.728 1877
Bayes 0.665 1816 Bayes 0.715 663
JRIP 0.616 353 J48 0.677 1137

AdaBoost 0.613 321 AdaBoost 0.673 969
J48 0.592 1320 NNGE 0.598 786

1

Bayes 0.715 180 JRIP 0.986 1386
NNGE 0.704 398 Bayes 0.986 484
JRIP 0.691 398 NNGE 0.986 584

AdaBoost 0.67 138 AdaBoost 0.967 1312
J48 0.65 107 J48 0.967 426

Table I
TOP FIVE CONFIGURATIONS PER SYSTEM, FOR EACH k.

techniques that produce EFSMs and conventional FSMs with-
out data. However, the specific nature of these machines are
so fundamentally different that it makes no sense to attempt to
compare their accuracy. The EFSMs produced by Lorenzoli et
al. [10] are non-deterministic (the models are mainly intended
to be descriptive). However, when used to reason about their
languages, it is possible that a given sequence might be
both possible and impossible in the same machine, which
hampers the comparison to our deterministic EFSMs in terms
of accuracy. Conventional FSMs (e.g. as produced by k-tails
[9]) do not incorporate data, but surely the data guards are
a fundamental aspect for evaluating EFSMs. In both cases, a
path through the model means something completely different,
and as such attempting to draw a quantitative comparison
would give few valid insights.

B. Results

Since there is not enough space to present the results here
in full, they can be downloaded2. The results are summarised
in Figure 3. The key column is BCR (the harmonic mean of
Sensitivity and Specificity). A BCR value of 0.5 indicates that
the ability of the model to correctly determine whether a trace
is valid or not is no better than a random guess.

The results, together, show that if you choose a suitable
learner (regardless of the value of k), the inferred EFSM will
achieve an accuracy value of approximately 0.7 or more. There
is however a substantial variance in the accuracy, depending on
the system, the choice of learner, and k. These are discussed
further below.
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Figure 3. Overview of results. Box plots show an overview of all BCR scores, in terms of individual data classifier algorithms and values of k.

The first point is that the performance largely depends upon
the selection of a suitable data classifier inference algorithm.
This underscores our motivation for the paper as discussed in
the introduction. There is no single combination of inference
algorithms that will uniformly perform well for every type
of system. For both systems, all of the configurations that
involved the learners M5, M5Rules, and AdditiveRegression
performed badly, especially for the PoolBoy system. This is
because these numerical learners were not suited to the largely
string-based trace data, which meant that their classification
accuracy was very poor. However, other learners such as J48,
NaiveBayes, and NNGE all performed relatively well on both
systems.

The difference in performance between the two systems is
apparent. The accuracy results on PoolBoy are significantly
lower than on SMTPTransport, and the effect of setting
k = 1 is much less pronounced. The reason for this comes
down to a combination of factors: differences in the range of
behaviours exhibited by the two systems, and the ‘learnability’
of their data constraints. SMTPTransport has a much nar-
rower range of sequential behaviours, which makes its states
easier to infer; this also explains why setting k = 1 has such a
pronounced effect. Secondly, SMTPTransport makes use of
basic data variables (e.g. numbers and booleans) from which
models are often easy to infer. PoolBoy, being an Erlang
program, makes use of complex nested lists and tuples, which
are often difficult to untangle, and which rarely form the basis
for meaningful data models.

Finally, there is the time factor. Perhaps surprisingly, there
is no correlation between the time taken and the accuracy of
the final result. Often inaccurate models take a lot longer to
infer. The use of data classifiers does not necessarily lead
to a substantial overhead in execution time, as shown by
the SMTPTransport results when compared to k-tails. One

reason for this is that suitable classifiers are good at ruling-
out poor merges before they are attempted (saving the time),
whereas unsuitable classifiers can lead to time-consuming
merging operations that ultimately end up being inconsistent,
and so have to be dismissed.

a) Threats to validity and discussion: It has to be em-
phasised that this study is only preliminary, and that these
results can therefore only be interpreted as indicative. There
are several other factors that a study on a larger number of
systems will have to control (to be addressed in future work).
For example, the number and diversity of test cases needs to
be taken into account [21], [3], as does the type of system
(the extent to which its behaviour is dependent on data, and
the number of variables involved).

In k-folds cross validation it is assumed that the trace
set as a whole is ‘representative’ of software behaviour in
general (this is a universal assumption of dynamic analysis
techniques). Of course, the accuracy results can therefore only
be interpreted in this light. If the trace sets are incomplete,
the models are equally incomplete. One means by which to
reduce the possibility of incomplete trace samples is to adopt
a model-guided test input generation strategy, as proposed by
Dallmeier et all [21], and in previous work by the authors [3].

Finally, it is important to note that quantifying accuracy
only gives a partial view of the value of the technique. As was
shown with the small mine-pump example, the inferred model
and data constraints have a qualitative value that is difficult to
quantify. They can provide a useful insight into the behaviour
of a system. Even inaccurate models can play a useful role
in understanding a system [1], or in assessing the extent to
which a system has been tested [3].

VI. CONCLUSIONS AND FUTURE WORK

This paper has introduced a new algorithm for the inference
of EFSMs. It enables the combination of established state-



merging techniques with arbitrary data classifier inference al-
gorithms, to infer models that more fully capture the behaviour
of a software system. The approach does not rely on source
code analysis, and has accordingly been demonstrated with re-
spect to two systems written in entirely different programming
languages and paradigms.

One of the contributions of the paper is a novel evaluation
methodology that does not rely on the prior existence of hand-
crafted models. This combines the k-folds cross validation
method with program mutation (which is used to identify
‘negative’ examples). Our preliminary results from the ex-
periments indicate that the algorithm is capable of returning
accurate models if it uses suitable data classifiers. This latter
point is especially important, and supports one of the key
motivations for this work; there is no single combination of
learners that will perform uniformly well for arbitrary software
systems. The algorithm presented here offers the flexibility to
incorporate different data classifier algorithms, depending on
the characteristics of the data. In the immediate future we will
carry out a more extensive, systematic evaluation. This will
seek to assess some of the factors that were not controlled in
this study, and will also look at qualitative factors, such as
readability.

Alongside the work on further evaluation, we intend to use
the models to build upon our early research on combining
model inference with test generation. So far, this has concen-
trated solely on simple finite state machines [28], [29], [4] and
data classifiers [3]. It is envisaged that the ability to incorporate
these richer models will lead the the ability to produce more
more rigorous test sets.

Finally, there remains the fact that the EFSMs inferred here
(and by other techniques) are missing an important component.
Although they produce state machines with guards, they are
missing the actual data functions that transform the data state
at each transition. Although this has been the subject of
previous work by the authors [30], the technique proposed
at the time relied on source code analysis. Our future work
will investigate alternative dynamic analysis techniques that
do not require source code (and are not restricted to specific
languages), by exploring the use of techniques such as Genetic
Programming.
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