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blooms, or phenology, resulting from changing temperature and nutrient conditions. A satellite remote sensing
approach to retrieving and mapping freshwater phytoplankton phenology is demonstrated here in application
to Lake Balaton, Hungary. Chlorophyll-a (chl-a) concentration mapping using Medium Resolution Imaging
Spectrometer (MERIS) allows new insights into such spatiotemporal dynamics for Lake Balaton as bloom start,
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Phytoplankton and bloom chl-a concentration integral. TIMESAT software is used to extract and map these phenology metrics.

Three approaches to time series smoothing are compared and mapped metrics are evaluated in comparison with
phenology metrics of in situ chl-a. The high degree of both spatial and temporal variability is highlighted and
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Seasonality discussed, as are methodological limitations and correlation between phenology metrics. Both the feasibility of

TIMESAT and novel insights permitted through such phenology mapping are demonstrated, and priority topics for
LMaizlgalaton future research are suggested.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by3.0/).

1. Introduction Trommer, & Ruhenstroth, 2010; Meis, Thackeray, & Jones, 2009;

Lake ecosystems, and especially freshwater phytoplankton, are
sensitive sentinels of environmental and climate changes (Adrian
et al., 2009; Williamson, Saros, Vincent, & Smol, 2009). In comparison
to terrestrial vegetation, the generation times of phytoplankton are
much shorter and thus respond more rapidly to meteorological and
climate forcing. The effects of eutrophication, such as harmful algal
blooms, are anticipated to increase in frequency and intensity under
climate warming scenarios (Moss, 2012). Additionally, the seasonality
of phytoplankton biomass, known as phenology, has been demonstrat-
ed to shift in response to temperature, nutrient and other environmen-
tal changes through field or laboratory mesocosm, modelling and in situ
measurements from several lakes (e.g., Elliot, Jones, & Thackeray, 2006;
Gaedke et al,, 2010; Thackeray, Jones, & Maberly, 2008; Winder &
Schindler, 2004b). Typical phenologic responses to changing environ-
mental conditions reported include shifts in the timing of phytoplank-
ton blooms, in terms of onset, peak and end (e.g., Berger, Diehl, Stibor,
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Winder & Sommer, 2012; Winder et al., 2012), variable growth rates
(Maberly et al., 1994), changes in mean phytoplankton biomass or
bloom magnitude, as well as altered phytoplankton community compo-
sition (Elliot et al., 2006; Lewandowska & Sommer, 2010; Sommer &
Lewandowska, 2011). This last response is generally associated with de-
creased overall biodiversity and increased dominance of cyanobacteria
(Elliot, 2012; Elliot et al., 2006). Phytoplankton form the base of the
aquatic food web and such changes in the timing and magnitude of
phenology may result in the decoupling of trophic levels, notably
between zooplankton and their phytoplankton food source (Winder &
Schindler, 2004a,b).

Over the past decades, satellite remote sensing has been crucial to
advancing knowledge pertaining to terrestrial phenology (e.g., Dash,
Jones, & Nightingale, 2013; Justice, Townshend, Holben, & Tucker,
1985; Malingreau, 1986), and has increasingly been applied to pelagic
ocean settings using retrievals of chlorophyll-a (chl-a), a common
proxy for phytoplankton biomass, from archive Sea-Viewing Wide
Field-of-View Sensor (SeaWiFS) image data (1997-2010; Platt &
Sathyendranath, 2008; Platt, White, Zhai, Sathyendranath, & Roy,
2009; Platt et al., 2010; Racault, Le Quéré, Buitenhuis, Sathyendranath,
& Platt, 2012; Sasaoka, Chiba, & Saino, 2011; Siegel, Doney, & Yoder,
2002; Vargas, Brown, & Sapiano, 2009), with some extending analyses
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back to also include Coastal Zone Color Scanner (CZCS; active from 1978
to 1986) (D'Ortenzio, Antoine, Martine, & d'Alcala, 2012), or also includ-
ing Moderate Resolution Imaging Spectroradiometer (MODIS; 1999-
present) and/or Medium Resolution Imaging Spectrometer (MERIS;
2002-2012) data (Cole, Henson, Martin, & Yool, 2012; Gonzalez
Taboada & Anadén, 2013; Kahru, Brotas, Manzano-Sarabia, & Mitchell,
2011). The quantitative measurement and mapping of phytoplankton
biomass in lakes via satellite remote sensing have presented more consid-
erable challenges due to the optical complexity and variability of inland
waters (IOCCG, 2000). As a result, the quantification of phytoplankton
phenology metrics using remote sensing has only been carried out to a
certain extent and for a few lakes to date (e.g., Binding, Greenberg, &
Bukata, 2011; Duan, Ma, Zhang, & Loiselle, 2014; Hu et al., 2010;
Matthews, 2014; Stumpf, Wynne, Baker, & Fahnenstiel, 2012).

The advent of the European Space Agency's (ESA) MERIS has
contributed significantly to the remote sensing of inland waters due to
its high spectral, temporal, radiometric and spatial resolutions, as
evidenced by the large number of studies in recent years and by the im-
provement in retrievals of chl-a and other lake water constituents over
previous satellite sensors (e.g., Palmer et al., 2014; works reviewed by
Odermatt, Gitelson, Brando, & Schaepman, 2012 and Matthews, 2011).
Ten years of MERIS archive data (2002-2012) are now available and
continuity is intended to be provided by forthcoming data from ESA's
Sentinel-3 Ocean and Land Colour Imager (OLCI). It is thus timely
to consider additional ecological indicators related to the temporal
dynamics of freshwater phytoplankton biomass that might be
mapped from space. Such mapping would provide an unprecedented
spatial component to the understanding of freshwater phytoplank-
ton phenology. Furthermore, very few lakes within the global con-
text are routinely monitored at the high frequency necessary for
analysis of phenology metrics, or have the required long-term data
archive. Satellite imagery can be developed as a tool to fill this gap.
This work intends to demonstrate the TIMESAT retrieval and
mapping of lake phytoplankton phenology metrics through the use
of MERIS data, using validated chl-a time-series of Lake Balaton,
Hungary.

2. Materials and methods
2.1. Study site and in situ data

Lake Balaton is a large (~596 km? surface area), shallow (mean
depth 3.3 m) lake located in the western Transdanubian region of
Hungary. Due to its shallow depth, Balaton is permanently mixed and
tends to be characterized by spatially and temporally variable concen-
trations of fine, calcareous suspended sediment (Istvanovics, Osztoics,
& Honti, 2004). The lake is also optically deep as a result of the typically

high wind-induced suspended matter. A strong trophic gradient domi-
nates, from eutrophic to hypertrophic conditions (>20 mg m™~2 chl-a)
in the southwest to predominantly oligotrophic to mesotrophic condi-
tions (~1 to 20 mg m > chl-a) in the northeast. This is due to the inflow
of nutrient-rich water from the Zala River in the southwesternmost
basin (Basin 1; Fig. 1) of the lake, and gradual water circulation to the
only lake outflow, the Sio canal in the northeasternmost basin (Basin
4; Fig. 1) (Istvanovics et al., 2007). Annual phytoplankton blooms are
particularly severe during the late summer and early fall months
(August/September), especially in Basin 1 but commonly extending to
Basins 2 and 3 and occasionally to Basin 4, and smaller winter/spring
blooms also commonly occur (Hajnal & Padisak, 2008; Mézes et al.,
2006; Présing et al., 2008).

Lake Balaton water is routinely sampled for chl-a analysis by both
the Balaton Limnological Institute (BLI) and the Central Transdanubian
Inspectorate for Environmental and Natural Protection (K6zép-
dunantdli Kérnyezetvédelmi és Természetvédelmi Feliigyeloség (KDT
KTF; formerly KdKVI)) at the centres of the four main basins (Fig. 1).
Sampling takes place approximately once per month during the ice-
free winter season (October through March, although data are not avail-
able for some winter months of some years) and 2 to 3 times per month
otherwise. Archive in situ data spanning the full MERIS archive are
available. Samples are analysed spectrophotometrically following filtra-
tion using Whatman GF/C filters (1.2 pm), extraction using either hot
methanol (BLI) or hot ethanol (KdKVI) and centrifugation.

2.2. MERIS chlorophyll-a mapping and time series aggregation

In situ chl-a data from the same day (within 43 h) as clear sky
MERIS overpasses (n = 201) were randomly divided 70:30 to calibrate
and validate MERIS chl-a retrievals (Fig. 2; Palmer et al., 2014). Chl-a
concentrations of Lake Balaton measured by the BLI and KdKVI have
been found to correlate highly with the Fluorescence Line Height
(FLH) algorithm (Eq. 1; Gower, Brown, & Borstad, 2004; Gower,
Doerffer, & Borstad, 1999) applied to level 1, top-of-atmosphere
MERIS data (Palmer et al., 2014). Several atmospheric correction models
were also tested for application of FLH to L2 data. Some (specifically the
atmospheric components of C2R/Lake (Doerffer & Schiller, 2007, 2008)
and FUB WeW (Schroeder, Schaale, & Fischer, 2007) neural network
processors) were found to perform poorly and thus expectedly reduced
the subsequent performance of FLH. SCAPE-M (Guanter et al., 2010)
was found to generally retrieve water leaving reflectance well, but
also to introduce spatial artefacts that would require manual supervi-
sion unreasonable for such an extensive time series. Raleigh correction
to Bottom of Raleigh Reflectance (BRR; Bourg, 2009) was found to per-
form similarly to results of the application of FLH to L1b data. Given that
the use of BRR data yielded no major improvement, and that the
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Fig. 1. Lake Balaton, Hungary. The four main basins (1-4), regularly sampled sites, the Zala River (main inflow) and the Sio canal (main outflow) are indicated.
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Fig. 2. Calibration and validation of coefficients relating FLH to chl-a for Lake Balaton chl-a mapping and time series analysis, using archive in situ chl-a measurements.

validation of L1b FLH time series has been shown elsewhere to be robust
(Palmer et al., 2014), this was chosen for application here.

FLH = L8-1.005 % [L7 + (L9-L7) ((A\8-\7)/(N9-\7))] (1)

Unlike the original FLH algorithm design, however, with a biophysi-
cal basis in the positive correlation between chl-a concentration and
sun-induced chl-a fluorescence captured by MERIS band 8 centred at
681.5 nm, Palmer et al. (2014) document a strong, negative relationship
between chl-a concentrations greater than 10 mg m~> and FLH (Figs. 2,
3; Eq. 2). This has been observed elsewhere (e.g., referred to by Binding,
Greenberg, Jerome, Bukata, and Letourneau (2010) as an absorption line
depth) and may be explained by the dominance of phytoplankton
backscattering captured by MERIS band 9 (709 nm) over the fluores-
cence signal captured by band 8 (681 nm). Nonetheless, the trough at
band 8 under the baseline between bands 7 (619 nm) and 9 more
robustly retrieves in situ chl-a concentrations than does the band 9
peak above the band 8 to 10 (753 nm) baseline (i.e., the Maximum Chlo-
rophyll Index (MCI) algorithm of Gower, King, Borstad, and Brown
(2005)) (Palmer et al., 2014) or the Maximum Peak Height algorithm
(Matthews, Bernard, & Robertson, 2012; Matthews & Odermatt, 2015).

Wynne et al. (2008) and several subsequent studies (Lunetta et al.,
2014; Stumpf et al,, 2012; Wynne, Stumpf, & Briggs, 2013; Wynne,
Stumpf, Tomlinson, & Dyble, 2010) make use of the same formulation
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Fig. 3. Examples of MERIS spectra for Lake Balaton at various chl-a concentrations, with
bands used in the FLH algorithm highlighted.

as FLH in their Cyanobacteria Index (CI), whereby negative FLH values
indicate cyanobacteria blooms and correlate with bloom magnitude,
since cyanobacteria do not produce a chl-a fluorescence signal near
685 nm and do produce a fluorescence signal near 665 nm. Positive
FLH values therefore likely indicate the absence of a cyanobacteria
bloom. As such, it is considered likely that the negative FLH values
retrieved for Lake Balaton chl-a concentrations > 10 mg m™~> are indic-
ative of cyanobacteria dominance. A similar configuration is also
adopted in the cyanobacteria flag of the MPH algorithm (Matthews
etal, 2012), where cyanobacteria dominance is distinguished by a neg-
ative peak at MERIS band 8 above a baseline between bands 7 and 9 (i.e.,
FLH) coinciding with a positive peak at band 7 above a baseline between
bands 6 and 8. Application of MPH to Lake Balaton elsewhere (Matthews
& Odermatt, 2015) has revealed that blooms (chl-a > ~10 mg m~3) are
indeed often flagged as cyanobacteria. Previous works on Lake Balaton
phytoplankton community composition and eutrophication (e.g., Hajnal
& Padisak, 2008; Istvanovics, Somlyédy, & Clement, 2002; Padisak &
Reynolds, 1998; Présing et al., 2008) have also indicated cyanobacteria
dominance of the large summer blooms, and particularly that of Anabaena
aphanizomenoides, Aphanizomenon issatschenkoi and the subtropical in-
vader Cylindrospermopsis raciborskii. However, in situ data on species
composition or phycocyanin concentrations are lacking in the current
work, precluding definitive confirmation. Therefore, phytoplankton
blooms more generally are referred to here. It should be noted that any al-
gorithm could be used to generate the time series for input into TIMESAT,
provided robust retrieval performance, and that specific algorithm choice
may well vary from lake to lake.

Calibration and validation of FLH chl-a retrievals for Lake Balaton
make use of archive in situ data (n = 201) from all seasons of a
five year period (2007 to 2012) and from all four lake basins (Fig. 1),
and demonstrate that the algorithm performs robustly at chl-a
concentrations > 10 mg m~> (R?> = 0.85, RMSE = 4.81 mg m >
(20.8% relative RMSE)), coinciding with FLH < 0, but is insensitive at
concentrations < 10 mg m~> (i.e., positive FLH values; R> = 0.11,
RMSE = 3.64 mg m™~ > (57.6% relative RMSE)) (Palmer et al., 2014).
Therefore it can be stated that in Lake Balaton the FLH algorithm is
only suited to the examination of high biomass blooms such as those in-
vestigated here, which are likely of cyanobacteria dominance in nature
as mentioned above, and that it is not suitable for low biomass
(<10 mg m~3) conditions.

Processing of all MERIS data overpassing Lake Balaton from June 2002
to April 2012 was carried out using the Calvalus portal, designed to facil-
itate the access to and processing of large volumes of MERIS data
(Fomferra, Bottcher, Zuhlke, Brockmann, & Kwiatkowska, 2012). Screen-
ing for cloud contamination and mixed land-water pixels was performed
after the application of a land mask. The FLH algorithm was then applied
and data were dekad binned (ten-day mean values). Coefficients tuning
FLH chl-a retrieval for Lake Balaton (Fig. 2; Eq. 2) were subsequently
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applied, resulting in chl-a maps. For phenology analysis, data from be-
tween January 1, 2003 and December 31, 2011 were used. Data from
2002 and 2012 were only partially available (after June and prior to
April, respectively), and were thus excluded since TIMESAT requires a
uniform number of images per year as input, in this case, 36.

Chl-a (mg m‘3) — —8.08 + FLH + 10.33 )

2.3. Phenology feature extraction

The TIMESAT programme was developed to explore time series of
EO data and to retrieve and map phenology features from input maps
of terrestrial vegetation indices, such as Normalized Difference Vegeta-
tion Index (NDVI; Jonsson & Eklundh, 2004). These same techniques
and principles can in theory be applied to any time series data with
regular cyclicity. TIMESAT consists of three user-selected options for
smoothing, using least squares fit to an upper-envelope; Double
Logistic, asymmetric Gaussian and Savitzky-Golay filtering. All three
methods were investigated prior to selection for the full time series pro-
cessing. Other user-defined parameters include the definition of the
start and end of season, number of seasons per years, data range and
window size when Savitzky-Golay filtering is used. These must be spec-
ified after preliminary exploratory processing on selected pixels prior to
application to the full input dataset (i.e., full images or regions of inter-
est) (Eklundh & Jénsson, 2012; Jonsson & Eklundh, 2004). Ten randomly
chosen pixels from across the spatial extent of the lake were used to se-
lect the most suitable smoothing function and for parameterization,
similar to Heumann, Seaquist, Eklundh, and Jénsson (2007).

Eleven phenology features can be extracted and mapped for each
identified season (i.e., each of the two annual blooms, although only
the larger, summer blooms are considered here) using TIMESAT, as de-
tailed in Table 1. These are start, end and peak timing; as well as season
duration; base (average of the lowest values before and after the bloom
event), maximum, and amplitude (base subtracted from maximum)
values; rates of increase and decrease; and large (full, from bloom
start to end and 0 to maximum value) and small (from bloom start to
end and base to maximum value) integrals (Jonsson & Eklundh,
2004). Start and end timing can be defined following either one of
two approaches. One is defined as the date at which the input mapped
value (in this case chl-a concentration) rises above or falls below a user-
defined percentage of the detected peak. The other is the date at which
the mapped value rises above or falls below a user-defined value
(Jonsson & Eklundh, 2004). There is no consensus as to a quantitative
definition of bloom events in lakes, which are instead generally charac-
terized by high phytoplankton abundance, uneven phytoplankton
community composition or the presence of indicator species such as
cyanobacteria (Carvalho et al., 2013).

In previous works assessing phytoplankton phenology in pelagic
ocean contexts, a common definition of the start of a bloom event is
chl-a concentrations rising above background median concentrations
plus 5% (Cole et al., 2012; Racault et al., 2012; Siegel et al., 2002). A

Table 1

Description of bloom phenology features extracted for each pixel and mapped with TIMESAT.

similar approach to defining start and end timing was adapted for use
here. Median chl-a concentrations of the lake from the full 2003 to
2011 time series +5% were found to range between 6 and
11 mg m™~>. As values defining start and end timing cannot be assigned
on a per-pixel basis in TIMESAT, a rise in concentrations above
10 mg m™> was chosen to define bloom start. End timing was set to
the date following a detected peak at which concentrations fell below
12 mg m~>. Because concentrations often remained at 10 to
11 mg m~3 post-bloom event, setting the end timing to occur when
concentrations fell below 10 mg m~2, the threshold adopted for start
timing, would result in many missed bloom pixels. The chosen combi-
nation of start and end timing definitions was found to result in the
fewest missed bloom events in the ten pixels used for parameterization.
Summer blooms were considered as bloom events starting between the
months of June and October.

2.4. Phenology feature validation and mapping

All in situ data spanning the MERIS archive from January 2003
through December 2011 were composited to the same dekad-bins as
the MERIS data (described above) for input into TIMESAT. This was
done for in situ data from each of the four main basins. Where more
than one measurement per ten-day bin was available for a basin, the
mean of these was used. Three-by-three pixel kernels centred on the
in situ measurement coordinates were then extracted from the MERIS
FLH chl-a time series. The TIMESAT parameterization described above
was applied to the extracted in situ and matchup MERIS time series,
and resulting phenology metrics for each year were compared and coef-
ficient of determination (R?), bias and relative and absolute root mean
square errors (RMSE) reported.

Maps of all phenology features for each summer bloom were gener-
ated from the MERIS time series. The spatial extent over which a bloom
was detected in a given year was also calculated as a percentage of the
total lake surface area. The percent spatial extent of a given bloom
was divided by the average thereof of all nine years of the time series
to calculate yearly anomalies. For each bloom, the spatial variability of
each phenology feature was assessed through calculating the mean,
tenth and ninetieth percentiles of the full bloom surface area. The phe-
nology features of 30 randomly selected pixels from across the lake
were extracted and input into a Pearson correlation analysis, along
with the associated bloom spatial extent, to explore and quantify possi-
ble relationships between features.

3. Results
3.1. TIMESAT smoothing and parameterization

The three available options for smoothing in TIMESAT, asymmetric
Gaussian, double logistic and Savitzky-Golay filtering, were compared
for ten randomly selected pixels from across the lake, an example of
which is provided in Fig. 4. The three methods produced similar results

Feature (measurement unit) Description

a. Start timing (day of year)
b. End timing (day of year)

c. Length (days) Difference between a. and b.
d. Base concentration (mg m~—3)

e. Mid-season timing (day of year)

f. Maximum concentration (mg m~3)

g. Amplitude (mg m~3)

h. Rate of increase (mg m—> day ")

i. Rate of decrease (mg m—>day~!)

j. Large integral (mg m~> day)

. Small integral (mg m~> day)

Difference between f. and d.

~

Date at which chl-a concentration rises above a defined threshold.
Date at which chl-a concentration falls below a defined threshold.

Average of lowest concentrations on the left and the right sides of the bloom.
Mid-position between the left and the right sides of the peak, at 80% of the maximum concentration.
The highest chl-a concentration of the fitted function during the bloom event.

Amount of concentration increase per unit time on the left side of the bloom, between 20% and 80% of the maximum concentration.
Amount of concentration decrease per unit time on the right side of the bloom, between 80% and 20% of the maximum concentration.
Integral of the fitted function between start and end timings, above 0 mg m~> chl-a.

Integral of the fitted function between start and end timings, above the base chl-a concentrations.
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Fig. 4. Comparison of the three smoothing functions possible within TIMESAT (asymmet-
rical Gaussian, double logistic and Savitzky-Golay (SG) filtering) with input data for an ex-
ample extracted pixel.

over much of the time series, however both logistic and Gaussian
methods were found to introduce artefacts clearly unrelated to the phyto-
plankton dynamics observed in the input time series (e.g., in 2009 and
near the end of 2006; Fig. 4), and to exclude distinct bloom events
(e.g., spring 2004 and 2007; Fig. 4). In comparison, Savitzky-Golay filter-
ing, was found to accurately follow bloom dynamics throughout the time
series and to capture the two annual blooms typical of Lake Balaton (a
small spring bloom and a larger late summer bloom), and was chosen
for further processing. Spring minimum concentrations (<10 mg m™3),
however, were not consistently well retrieved (e.g., 2005, 2006, 2008;
Fig. 4). Further details of the parameterization used for further processing
and mapping are found in Table 2.

3.2. MERIS phenology validation

Annual summer bloom phenology metrics extracted from MERIS
chl-a time series using TIMESAT (Savitzky-Golay filtering) are com-
pared with those from coinciding in situ chl-a time series in Fig. 5.
High correlations are generally found (0.72 <R?<0.84), with rates of in-
crease and decline (R?> = 0.59 and 0.58 respectively) performing less
well (Fig. 5). Most metrics (with the exception of start timing; bias =
+5.04 days) tend to be slightly underestimated by MERIS with respect
to the in situ derived metrics. Furthermore, as in the example for start
timing for matchups from each of the four basins (Fig. 6), temporal
trends are well recovered.

3.3. Phenology feature mapping and variability

An example of the retrieved spatiotemporal variability of the phe-
nology features in a mapping context is provided in Fig. 7, where sum-
mer bloom start timing is mapped at the pixel level for all nine years.
Fig. 7 also highlights the spatial extent over which a summer bloom

Table 2
TIMESAT parameterization used in the current study.

Parameter Description

Selected smoothing function Savitzky-Golay filtering

Window size 4
Number of seasons per year 2
Data range 0to 100 mg m 3

Rise in chl-a concentration above 10 mg m~—>

and fall below 12 mg m~> respectively

Season start/end definition

was detected in each year, ranging from 24% of the full lake surface
area in 2004 to 77% in 2003, and with a mean across all years of 56%.
The yearly anomalies relative to this mean value are presented in
Fig. 8. More extreme anomalies are found to occur between 2003 and
2005, with positive anomalies exceeding 20% in 2003 and 2005 and a
negative anomaly of less than —30% in 2004, and anomalies from
2006-2011 within 4+ 10%. Start timing is seen to typically occur later
from southwest to northeast, following the generalized trophic gradient
and water circulation of the lake (Istvanovics et al., 2007). Across years,
mean start timing ranges from day of year (DoY) 173 (June 22, in 2008)
to DoY 221 (August 9, in 2004), occurring on average on DoY 195 (July
14; Figs. 7, 9). The range of mapped start timings varies from year to
year, with 2008 displaying the lowest variability (difference between
the 90th and 10th percentiles of 17 days, compared with the average
difference between the 90th and 10th percentiles of the nine years of
36 days and the maximum of 53 days), in addition to the earlier than
average start timing of that year. The highest spatial variability, in 2004,
coincided with the lowest bloom spatial extent and later than average
start timing. The years 2003, 2006 and 2009 are also found generally to
be characterized by later than average bloom starts, whereas 2005,
2010 and 2011, in addition to 2008, are found to be earlier than average
bloom starts, with 2007 representing approximately average conditions.

Eight of the eleven phenology features were mapped for each annual
summer bloom from 2003-2011. Three features, base value, amplitude
and small integral, are dependent on spring minimum concentrations.
In addition to chl-a concentrations < 10 mg m™~ > being unreliably re-
trieved by the FLH algorithm, these were found to be poorly and incon-
sistently captured by the time series smoothing (e.g., Fig. 4), and were
therefore excluded from mapping and further analysis. All mapped
features from 2003 are provided in Fig. 10 as an example of each in a
mapping context, and demonstrate the spatial variability of each over
the extent of the lake. Further details on the spatial and temporal vari-
ability of all mapped features, for all nine years are provided in Fig. 9,
through the mean values of each mapped parameter for each year, as
well as the tenth and ninetieth percentile range.

3.4. Correlation analysis

Pearson correlation analysis was performed on the eight mapped
phenology features and associated bloom spatial extents extracted
from 30 randomly selected pixels from across the spatial extent of the
lake, resulting in n = 183 samples (all blooms detected in the 30 select-
ed pixels in all nine years). The correlation matrix is in Table 3, with
shaded values significant at the o = 0.001 level and colour-coding
representing different positive and negative correlation coefficient
(R) values. Spatial extent of the given bloom was not found to correlate
significantly with any of the associated phenology features. Start and
end timing both correlated with bloom length (R = —0.69 and 0.68 re-
spectively), however no correlation was found between start and end
timing. High correlation was expectedly found between maximum con-
centration and large integral (R = 0.80), as well as between length and
large integral (R = 0.89), with lower but significant correlation between
start timing and large integrals (R = —0.65) and end timing and large
integral (R = 0.57). Correlation was also found between rate of increase
and rate of decrease (R = 0.51) and between maximum concentration
and rates of increase (R = 0.64) and decrease (R = 0.66).

4. Discussion

Although consensus is lacking with regard to a universal definition
of bloom events in lakes (Carvalho et al., 2013), the thresholds
employed here have been found to capture the late summer blooms of
Lake Balaton. Furthermore, this approach is considered appropriate for
the current analysis, as the thresholds are held constant over the full
spatial and temporal ranges considered. However, these thresholds
may not be suitable for detecting blooms in lakes where the
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Fig. 5. Validation of the MERIS FLH chl-a derived phenology metrics using phenology metrics derived from dekad-binned and smoothed in situ chl-a measurements.

phytoplankton dynamics are very different from those encountered at
Balaton. The use of differing definitions of start and end timing would
be expected to impact inter-lake comparison and will be important to
consider in such future works.

Three reasons can be found for which a bloom might not be detected
for a given pixel in a given year. (1) In reality no bloom occurred. (2) Too
many missing/invalid values were present in that pixel's time series,
precluding the generation of a smoothed time series. In this case, the
pixel will neither be mapped for any parameter nor for any of the
years in the time series. (3) The criteria for bloom detection as defined
here were not met for that bloom. For a given pixel and bloom event,
chl-a concentrations prior to the bloom were not less than 10 mg m~>
or after the event were not less than 12 mg m™>, even though a
bloom may have occurred. The criteria for a bloom to be detected are
that concentrations must rise from below to above the defined thresh-
old for the start and vice versa for the end. When either of these criteria
is not met, a bloom is not detected. Given that the latter two of the three
reasons listed above imply non-detection of a real bloom event, as
defined here, the spatial extents presented should be considered a
rough, minimum estimate.

The spatial patterns apparent in Fig. 7 provide some insight into
which factors might be responsible where. For example, the occurrence
of too many missing values is clear for a cluster of pixels to the south-
west of the Tihany peninsula which are consistently blank for each

year of the time series. The possibility of dividing the full time series
into shorter increments to identify and exclude specific data gaps
from analysis should be investigated as a means to avoid such phenom-
ena. The exploration of the effect of missing data on data smoothing and
retrieved phenology metrics should also be explored. Error related to
missing SeaWiFS image data on global ocean spring bloom initiation
and peak timing was found by Cole et al. (2012) to be +2 to 3 days
for 10% missing data, and as much as 415 to 30 days for 80% missing
data, common in sub-polar regions. Too many missing values may also
be responsible for some of the noise-like scattering of blank pixels
where a bloom is otherwise detected (e.g., in the southwesternmost
two basins, throughout the time series). However, some of this noise-
like feature is likely due to the criteria of bloom conditions not being
met, despite a bloom event occurring (as detected in adjacent pixels).
Through exploration of the time series functions and bloom detection
of individual pixels, it was found that concentrations prior to or follow-
ing a bloom event were not low or high enough respectively to result in
the detection of a bloom for some pixels in some years. Although the
concentration levels chosen were found to minimize this effect, given
the nature of the definitions possible within TIMESAT this was not
able to be fully precluded.

Aside from clusters of consistently unmapped pixels and noise-like
blank pixels likely related to the two causes mentioned above, a gradient
in spatial extent is also found to parallel that of the trophic gradient. This
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is considered to be related to relatively low chl-a concentrations, espe-
cially in Basin 4, such that a bloom as defined here (chl-a > 10 mg m >
pre-bloom to 12 mg m ™3 post-bloom) did not occur. Although much
lower concentrations characterize Basin 4 overall, in some years this
also extends into Basin 3 where no bloom is detected (Fig. 7). Two annual
blooms were typically detected over at least part of the lake following the
smoothing method used (Fig. 4). However, in both input and smoothed
data it is clear that bloom magnitude and timing vary from year to year,
including some years where either the spring or summer bloom event
is absent (Fig. 4). In addition to the phenology features mapped, insight
into the spatial extent of the blooms is an important factor in year-to-
year variability in itself. Although bloom extent is not found to correlate

Summer bloom start timing

significantly with any of the extracted phenology features (Table 3), it
might be that inter-annual variability in extent is influenced by environ-
mental drivers (e.g., temperature and/or nutrient loading), to be explored
further in future work.

From Fig. 10 it is clear that the phenology features vary, either posi-
tively or negatively, according to the general, well known trophic gradi-
ent of Lake Balaton (Istvanovics et al., 2007). Although maximum
concentration, as well as large integrals of chl-a over the duration of
the bloom would be expected to reveal this gradient, it is also apparent
in timing features (to a greater degree start timing and length, and to a
lesser degree peak and end timing) as well as rates of increase and de-
crease. This is likely related to the inflow of nutrient-rich Zala River

220 235 250

Fig. 7. Summer bloom start timing, mapped for each of the nine years of the time series, as an example of the spatial and temporal variability of the phenology features. In white areas, no

summer bloom was detected during that year.
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water in the southwest and the general southwest to northeast circula-
tion. The reliability of MERIS-retrieved and -mapped phenology metrics,
including the spatial and temporal variability thereof, is further sup-
ported by robust validation using phenology metrics retrieved from in

a Summer bloom start timing

b summer bloom end timing

situ data (Figs. 5 and 6). Given that all features, to greater or lesser
extents, vary across the same longitudinal axis of the lake, and some
similar or inverse patterns apparent in some of the graphs of Fig. 9
(for example start timing and length which are roughly the inverse of
each other), as well as given the conceptual definitions of some of the
parameters which are inherently related (Table 1), correlation between
some extracted phenology features is expected.

Results from the correlation matrix analysis (Table 3) quantify
significant positive and negative correlations of varying correlation co-
efficients. Many of these are intuitive and confirm expectations
(e.g., large integral and length (R = 0.88), and large integral and maxi-
mum concentration (R = 0.77)). However, some provide nuance re-
garding bloom dynamics. For example, although start and end timing
are not correlated, both correlate significantly and highly with length
(R = —0.76 and 0.61 respectively). This reveals that rather than com-
plete shifts of the bloom earlier or later in a given year (but remaining
more or less fixed in length), or increasing in length through both earlier
starts and later ends, longer blooms start earlier with relatively un-
changed end timing and vice versa. It is also found that start timing
and end timing correlate somewhat with maximum concentration
(R = —0.27 and 0.29 respectively) and with large integral (R =
—0.63 and 0.57 respectively), such that blooms that start earlier or
end later are associated with larger bloom magnitude.

Although the retrieval of phenology metrics was demonstrated for
only the annual summer blooms here, which are more important for
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Fig. 10. An example of the extracted TIMESAT phenology features and their spatial variability, mapped for the 2003 Lake Balaton summer bloom. In white areas, no summer bloom was

detected.

Lake Balaton in terms of peak and total biomass, the metrics of annual
spring bloom phenology can be similarly mapped. However, given
that FLH has been found insensitive to lower phytoplankton biomass
concentrations (and likely to eukaryote dominated blooms in this con-
figuration (negative correlation with chl-a), as per Matthews et al.
(2012)), an algorithm better suited to such conditions would need to
be used to generate the input chl-a time series. This would also require
a reparameterization of the TIMESAT settings used here, as lower
biomass Balaton spring blooms would often not be detected using the
start and end thresholds of the current study. Remote sensing has
been found to robustly identify cyanobacteria blooms (Matthews
et al.,, 2012; Wynne et al., 2008) and to retrieve phycocyanin (PC)
concentrations and cyanobacteria cell counts, proxies for cyanobacteria
presence and biomass in phytoplankton blooms (Hunter, Tyler,
Carvalho, Codd, & Maberly, 2010; Li, Li, Shi, Li, & Song, 2012; Li, Li, &
Song, 2014; Lunetta et al., 2014; Matthews et al., 2012; Mishra,
Mishra, Lee, & Tucker, 2013; Simis, Peters, & Gons, 2005; Wynne et al.,
2008). Given this, and that cyanobacteria are of particular interest
from an ecotoxicology perspective and are associated with eutrophic
conditions (Smith, 2003), the extraction of cyanobacteria phenology

Table 3
Pearson correlation coefficient matrix of extracted summer bloom phenology features.
Shaded values are different from 0 with a significance level alpha = 0.001; colour-coding
highlights correlation coefficients (R) within different ranges of positive and negative
values.

=
2
g
=l =
=
‘g 8 o 9
E § % % = =
= =} 53 3] I} s
& 20 g 4 5 S @ 2
g = S =] =l g £ %
£ ‘g k] 2 = < g 2
= = é&) ) E 1) S 5 =
7 s o g
E 2 £ 2 2 £ £ ¥ %
$ @ ] S 5 & & 3 &
Start timing 1

End timing 0.06 1 0.75t0 1
Length - 1 0.50t0 0.75

Mid-bloom timing 020 017 -0.02 1 02510 0.50
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Large integral -0.10 031040 1 -1to -0.75

Spatial extent -0.05 0.02 0.05-0.10 0.10 0.19 0.12 0.08 1

using remotely sensed phycocyanin concentrations and a similar
approach as demonstrated here is of high interest for future work.
It should be noted, however, that to achieve reliable phenology met-
ric retrievals and mapping for lake phytoplankton, whether for
phytoplankton biomass more generally or for cyanobacteria more
specifically, the use of validated, robust retrieval algorithms for
input chl-a or PC (or whichever parameter is selected) mapping is
essential.

A number of previous works have taken different approaches to
considering phytoplankton phenology in lakes using remote sensing,
and particularly that of cyanobacteria. Several have looked at temporal
changes in cyanobacteria surface scum areal extent using the floating
algae index (FAI) applied to MODIS (Hu et al,, 2010) and to both
MODIS and Landsat (Duan et al., 2014) data for Lake Taihu, China. A
threshold is applied to the retrieved FAI maps to indicate the presence
or absence of surface scum, and bloom start timing and duration are de-
termined from the time series, for each pixel. Matthews (2014) investi-
gated time series of lake-wide median chl-a, as well as cyanobacteria
bloom and surface scum (chl-a > 350 mg m~>) areal extent for 50
lakes throughout South Africa using the MPH algorithm (Matthews
etal.,, 2012) applied to MERIS data from 2002 to 2012. Monthly averages
of each were input into time series analysis. Timing (month) of maxi-
mum chl-a concentration and maximum cyanobacteria and surface
scum surface area (referred to as phase) were retrieved, as was yearly
amplitude of chl-a concentrations (the concentration difference be-
tween months with maximum and with minimum concentrations in a
given year). Monthly anomalies and monthly and yearly trends were
also calculated between 2005 and 2011. Binding et al. (2011) investigat-
ed yearly cyanobacteria blooms in the US/Canadian Lake of the Woods,
similarly took lake-wide median chl-a concentrations (retrieved from
MERIS MCI (Gower et al., 2005)) as input into the generation of their
time series (using all available imagery), and subsequently investigated
the timing of maximum chl-a concentrations (referred to as phase in
Matthews (2014) and peak timing here) as well as the maximum con-
centrations themselves, and the surface area of different trophic levels
of the yearly blooms. Stumpf et al. (2012) estimated cyanobacteria
concentrations in Lake Erie using the CI algorithm (Wynne et al,,
2008) applied to MERIS imagery from 2002 to 2011. CI images were
dekad-binned (to maximum CI values) and “bloom intensity” of
each dekad-binned image was calculated as the sum of CI, for all
lake pixels where Cl is greater than 0.001 (indicative of the presence



450 S.CJ. Palmer et al. / Remote Sensing of Environment 158 (2015) 441-452

of a significant cyanobacteria (Microcyctis) bloom), as a proxy for
total biomass of the associated period. Bloom area was calculated
as the total area with Cl greater than 0.001 and annual “bloom sever-
ity” was calculated as the mean of the three highest “bloom intensi-
ties” for a given year.

The TIMESAT approach used here is distinct from most previous
works in that time series (of chl-a as in the current work, but maps of
PC or other parameters with a regular seasonality could also be input)
are generated and phenology metrics retrieved at the individual pixel
level, which can then be examined and analysed through mapping.
Current results highlight the high degree of spatial variability that can
comprise phytoplankton phenology, even within a single lake, which
is not captured through approaches that use lake-wide median or cu-
mulative concentrations to examine the temporal evolution of bloom
events. Although the FAI threshold approach to mapping the presence/
absence of surface scums and the temporal evolution thereof enables
the determination and mapping of start timing and duration of scum-
forming blooms for each water pixel (Duan et al., 2014; Hu et al.,
2010), this type of approach is limited to application for lakes wherein
blooms typically form surface scums, does not account for non-scum
forming blooms (i.e., water column phytoplankton/chl-a), and was
also found to be limited due to the inability of the FAI algorithm to dis-
tinguish surface scums from macrophytes (Hu et al., 2010). Further-
more, since bloom concentration magnitude is not accounted for
(rather seasonality metrics are based on a binary presence or absence
of scum), several of the metrics demonstrated here (i.e., maximum con-
centration, rates of increase and decline, large integral) would be unable
to be calculated. Each approach taken and set of parameters generated
in the previous and current works provide a unique and potentially
complementary perspective on bloom dynamics, and each is associated
with its respective advantages and limitations. The tailoring of some
phenology metrics to the specific contexts of the lake system or systems
studied may be necessary or desirable in some instances. However, the
cross-evaluation and standardization of features where possible would
greatly facilitate the comparison of different lakes' behaviours over
time and the understanding of underlying environmental drivers,
which is of clear importance within the context of global climate change
for example.

Temperature, as well as nutrient availability, grazing pressure and
light conditions are expected to be drivers of phytoplankton dynamics
in lakes such as Balaton, as revealed through laboratory, mesocosm
and field data (Gaedke et al., 2010; Thackeray et al., 2008; Winder
et al., 2012) as well as model simulations (Elliot, 2012; Elliot et al.,
2006). A meta-analysis carried out by Blenckner et al. (2007) demon-
strated coherent direct and indirect responses to the climate forcing of
the North Atlantic Oscillation (NAO) by various biophysical and bio-
chemical indicators using long-term data from European lakes spanning
diverse settings (northern, central and western regions). These include
enhanced cyanobacteria biomass during positive NAO years, for
example. Some of the remote sensing investigations into phytoplankton
phenology in lakes described above have also extended their results to
comparison with potential underlying environmental drivers of vari-
ability. Stumpf et al. (2012) found a significant correlation between
spring discharge and total phosphorous (TP) load of the Maumee
River to Lake Erie and summer cyanobacteria blooms in the latter, and
used this to construct a bloom forecasting model. Binding et al. (2011)
found April through July cumulative rainfall to be significantly correlat-
ed with chl-a concentration peak timing and January through August
cumulative temperature to be significantly correlated with peak con-
centrations. Nutrient ratios (total nitrogen (TN):TP) and preceding win-
ter temperatures were found by Duan et al. (2014) to underlie the start
timing of surface scum-forming blooms in Lake Taihu. Such previous
works as well as the current results encourage the application of the
methodology described here to other lakes, as well as the exploration
of the effect of variable environmental conditions on mapped phenolo-
gy features.

5. Conclusions

Mapping of phytoplankton phenology features using satellite imag-
ery in a freshwater setting has been presented in this work, and is fore-
seen to be an important continued direction in the remote sensing of
inland waters. The spatial variability of these features over the surface
area of Lake Balaton has been demonstrated, in addition to the tempo-
ral, inter-annual variability of these same features and that of yearly
summer bloom spatial extent. The novel, spatial insights provided are
unprecedented through the use of in situ data, and are only feasible
with systematic, high temporal resolution observations from satellites.
Likewise, using this methodology it is possible to extract and map phe-
nology metrics for lakes that lack sufficient in situ data for phenology
analyses, provided robust algorithm validation precedes phenology
analysis. Although the validated FLH algorithm is used for chl-a re-
trievals here, any robustly performing algorithm could also be used to
generate the input time series, and any parameter with a regular cyclic-
ity could be investigated. Several issues have been highlighted that
merit future, related work, including (1) the definition of bloom events
and phenology metrics in an inter-lake comparison, promoting the use
of consistent and comparable metrics where possible; (2) approaches to
reducing the number of missing pixels; and (3) data continuity from
MERIS to the Sentinel missions. The consideration of environmental
drivers of phytoplankton phenology variability, such as nutrient loading
and temperature, and the application of this approach to other sites are
additional highly recommended topics of future work.
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