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Abstract

Historically, quantization has meant turning the dynamical vari-
ables of classical mechanics that are represented by numbers into
their corresponding operators. Thus the relationships between clas-
sical variables determine the relationships between the corresponding
quantum mechanical operators. Here, we take a radically different
approach to this conventional quantization procedure. Our approach
does not rely on any relations based on classical Hamiltonian or La-
grangian mechanics nor on any canonical quantization relations, nor
even on any preconceptions of particle trajectories in space and time.
Instead we examine the symmetry properties of certain Hermitian op-
erators with respect to phase changes. This introduces harmonic op-
erators that can be identified with a variety of cyclic systems, from
clocks to quantum fields. These operators are shown to have the char-
acteristics of creation and annihilation operators that constitute the
primitive fields of quantum field theory. Such an approach not only
allows us to recover the Hamiltonian equations of classical mechanics
and the Schrödinger wave equation from the fundamental quantization
relations, but also, by freeing the quantum formalism from any phys-
ical connotation, makes it more directly applicable to non-physical,
so-called quantum-like systems. Over the past decade or so, there has
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been a rapid growth of interest in such applications. These include,
the use of the Schrödinger equation in finance, second quantization
and the number operator in social interactions, population dynamics
and financial trading, and quantum probability models in cognitive
processes and decision-making. In this paper we try to look beyond
physical analogies to provide a foundational underpinning of such ap-
plications.
Keywords: quantization; quantum-like systems; number operator;

quantum counting

1 Introduction

The importance of the theoretical framework of classical mechanics in early
attempts to develop quantum theory in the mid to late 1920s is well docu-
mented [1], [2]. Even in later stages of the search for a systematic quantum
formalism, classical mechanics, particularly the elements involving Hamil-
ton’s equations and canonical variables, continued to influence the often
intuitive developments. Heisenberg, in his famous paper of 1925 [3] had
recognized the importance of replacing abelian variables of classical mechan-
ics by non-abelian ones in quantum mechanics. Dirac cemented this view
further with his idea of an analogy between the Poisson brackets of classical
mechanics and the canonical commutation relation between non-commuting
canonical variables in quantum theory [4], [5]. Canonical quantization be-
came the focus of intense research by Jordan, Born, Dirac and others in the
years 1926 and 1927 [6], which laid the essential theoretical foundations to
much of the quantum mechanics and, what is considered to be, the even more
fundamental quantum field theory that we know today.
Despite rapid progress made during that first intense burst of activity

many unresolved questions remained, and the following decades saw a period
of consolidation and reflection. Feynman, for example, while still recogniz-
ing the importance of classical mechanical relationships to quantum theory,
was reportedly unhappy with Dirac’s idea of an analogy only and sought a
more direct connection [7]. Despite these concerns, Feynman was content
to include classical concepts in quantum methods, as for example, when he
directly incorporated the classical Lagrangian function into his revolution-
ary phase integral approach to quantum mechanics [8]. Wigner [9], from a
different point of view from Feynman’s, asked to what extent canonical quan-
tization was essential, while retaining the Hamiltonian function of canonical
variables from the classical theory. Wigner actually answered his own ques-
tion, to some extent, by showing that there were alternatives to the usual
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canonical commutation relations, that were still consistent with Hamilton’s
equations. Wigner’s question spawned new research into the significance of
these alternative relations. Subsequent studies by Green [10], Greenberg and
Messiah [11], and Kamefuchi and Takahashi [12] showed that these alterna-
tive relations were generalizations of the canonical forms that gave rise to
particle descriptions that were neither purely fermionic nor purely bosonic
and eventually lead to the notions of para-quantization and para-statistics
[13]. One drawback of this theory is that such particle properties are not seen
in nature. Moreover, Bialynicki-Birula [14] showed that these para-statistical
fields could, in any case, be constructed from more fundamental ones. A
number of other generalization procedures to the usual form of canonical
commutation rules have also been considered. These include so-called q-
calculus versions of the canonical quantization rule [15] that are consistent
with q-derivatives and the pseudo-boson formalism [16] in which operators
for different fields do not commute.
Despite many new developments in the formalism and understanding,

there has still been a tendency to stick to a largely historical perspective in
developing new quantum theory. This essentially consists of following the
Dirac prescription of starting with a classical theory and then quantizing it.
However, it has been pointed out that there is something intellectually unsat-
isfactory about this approach [13], [17] and that we should be starting with
the more fundamental quantum field theory and recovering the classical. In
this paper, we attempt to explore such a route. Here, as in the case of para-
quantization, mentioned above, we do not presume canonical quantization,
but unlike para-quantization, we do not presume classical mechanics either.
That is to say we do not rely on Lagrangian or Hamiltonian formalism as a
starting point. There are a number of motivations for this. One is to find a
more intellectually satisfactory starting point for physical theory. Another is
to see just how little one needs to assume, a priori, and still wind up with a
recognizable physical theory. In particular we want to avoid the presumption
of physical entities like particles and their space-time trajectories that are the
foundation of classically based concepts. This then leaves us free to interpret
our results in a way less constrained by our foundational assumptions. This
is important since considerable interest has arisen, over the past decade or so,
in the application of quantum formalism to non-physical systems, ranging,
for example, from finance [18], [19] and population dynamics [20] to social
science [21], psychology [22], cognition [23] and neuroscience [24]. Khren-
nikov [25] has coined the phrase quantum-like to describe such processes.
However, there are legitimate questions to be posed about how applicable
quantum methods are to non-physical systems that are not subject to the
constraints placed on the physical world by say, the relationship between en-
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ergy and momentum and their corresponding conservation rules. Khrennikov
[25] and Haven and Khrennikov [21] have argued that quantum mechanics is
not essentially a physical theory. This paper goes some way to supporting
such a view. We should like to stress that this work is not intended as a
detailed investigation into the mathematical structure of quantum theory,
but is, rather, a fresh look at some of its conceptual foundations.
We begin this exploration, in section 2, by introducing the mathematical

preliminaries that involve a Hilbert space of vectors and operators on the
vectors. In section 3 we outline the properties of vectors and operators as
functions of a continuous variable (not necessarily of time) and the differen-
tials of the vectors and operators. In section 4 we investigate the symmetry
properties of operators that can be written as the product of an operator
and its adjoint. Self-adjoint fields are introduced in section 5, from which
the basic Hamiltonian equations of classical and quantum physics are recov-
ered. The Schrödinger formalism is then recovered in section 6. The overall
results are summarized in section 7, where we also briefly touch on some
issues regarding applications to non-physical quantum-like systems.

2 Mathematical preliminaries

In this section we briefly outline the basic mathematical framework needed
to represent the state of a system. By system, we do not necessarily mean
anything physical and it certainly does not have to be thought of as a par-
ticle located in space and time. Rather it is simply something that can be
characterized in a mathematical way. The basic mathematical elements that
we need require no more than is to be found in almost any modern text book
on quantum mechanics (see in particular the recent authoritative volume
by Steven Weinberg [26] in which the development of the basic equations is
based on symmetry arguments rather than on any analogies with classical
mechanics).
Then, the state of a system is specified by a vector, Ψ, in a complex,

Hilbert space, H. In briefly reviewing the essential mathematical develop-
ments we adopt Weinberg’s mathematically more transparent notation than
the Dirac notation that is traditionally used by physicists [27]. Then, if Ψ, Ψ′

and Ψ′′ are three vectors in the same space and α is a complex scalar, we can
define an inner (scalar) product [28] of the form (Ψ,Ψ′), that is distributive
over addition, (Ψ,Ψ′+Ψ′′) = (Ψ,Ψ′)+(Ψ,Ψ′′), commutative with respect to
scalar multiplication, (Ψ, αΨ′) = α(Ψ,Ψ′) and also has a symmetry property
involving the complex conjugate, (Ψ,Ψ′)∗ = (Ψ′,Ψ). In addition, we can
then identify ‖Ψ‖ as the norm or modulus of Ψ by ‖Ψ‖2 = (Ψ,Ψ), where
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(Ψ,Ψ) > 0 as long as Ψ is not a null vector.
This situation can be made more explicit by utilizing a complete set of

orthogonal unit basis vectors,Ψi, to specify the space, such that any vector
in the Hilbert space may be represented as

Ψ =
∑
i

λiΨi, (1)

where (Ψj,Ψi) = δij and the λi are complex numbers that are relate to Ψ as
follows: λi = (Ψi,Ψ). Then

‖Ψ‖2 = (Ψ,Ψ) =
∑
i

λ∗iλi. (2)

This shows that (Ψ,Ψ) > 0, as long as Ψ is not a null vector. In fact, in
this case not all of the λi are zero. The number of unit basis vectors in the
Hilbert space is a measure of its dimensionality, which, in principle could be
infinite.
Now consider a linear operator, A, operating onΨ that mapsΨ to another

vector, Φ, in the same space, i.e.,

AΨ = Φ. (3)

It is well known that if A is defined on all of the vectors of H, i.e., if the
domain of A, D(A), coincides with H, then A is bounded. However, in many
interesting physical situations, A turns out not to be everywhere defined, but
still can be defined on some proper dense subset of H. This is the case when
A is unbounded. For instance the derivative operator is not defined for all
square integrable functions, L2 (R), but it is surely defined on a set C∞ of
compactly supported functions that are dense in L2 (R).
Following Weinberg’s prescription, we can define the adjoint (if such ex-

ists), A+ of A as that operator for which(
Φ, A+Ψ

)
= (Ψ, AΦ)∗ = (AΦ,Ψ) . (4)

Of course, Eq. (4) only makes sense for all Φ and Ψ in H, if A is bounded.
In this case, also A+ is bounded, so is everywhere defined. On the other hand,
if A is unbounded, Eq. (4) only makes sense on suitable subsets of H, which
are always assumed to be dense in H. In particular Φ, must belong to D(A)
and to Ψ to D(A+) and both D(A) and D(A+) must be dense in H.
If A is closed [28], it is a simple matter to show that (A+)+ = A, and,

(αA+) = α∗A+. Also, for a pair of operators, A and B, operating sequen-
tially, then, (AB)+ = (B+A+), at least when these two sides are well defined.
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Again, while this is obvious whenever A and B are bounded, it is not nec-
essarily true if A and B are unbounded. For instance, it may happen that
given Ψ is in D(B), but BΨ is not in D(A). When this happens, BAΨ is
not well defined.
Before proceeding further, however, it is worth stressing that, even if we

are encountering several complications whenever unbounded operators are
considered, for many concrete applications these complications really disap-
pear. This has been discussed, for instance, by Bagarello [20], who showed
that, because of the existence of some integrals of motion attached to the sys-
tem in question, the relevant unbounded operators are inevitably restricted
to act in an effective, finite dimensional, Hilbert space whose explicit dimen-
sionality depends on initial conditions. Hence, from now on, we will assume
that all of the relevant operators are indeed bounded. However, we would
like to add also that, even in different models where this is not possible, for
instance in the absence of integrals of motion, the relevant unbounded opera-
tors involved are always at least densely defined, since they are combinations
of lowering and raising operators that map the vectors of an orthonormal
basis into other vectors of the same basis.
For a given operator A, it might happen that some special vectors exist

that are mapped by A into themselves. If Ψα is such a non-zero vector, then

AΨα = αΨα, (5)

where α is, in general, a complex number. In this case, Ψα is called the
eigenvector of A and α is its eigenvalue. We also note that, in this case, if
Ψα is a unit vector, such that (Ψα,Ψα) = 1, then

(Ψα, AΨα) = (Ψα, αΨα) = α (Ψα,Ψα) = α. (6)

There are also special operators that are self-adjoint or Hermitian, such
that (Φ, AΨ) = (AΦ,Ψ), for all Ψ and Φ in H (remember we are assuming
A is bounded). Then, if Eq. (5) applies, it follows that

(Ψα, AΨα)∗ = (Ψα, AΨα) . (7)

Hence α∗ = α. Thus, as is well known, Hermitian operators have real
eigenvalues. It is also well known that the converse is not true. There
exist examples of non-Hermitian operators having real eigenvalues both for
bounded and unbounded situations [29], [30].
A particularly relevant situation, interesting for what follows, arises when

we consider a generic, possibly bounded, closed operator Z, which is not
Hermitian. This can be used to construct a second operator, Z+Z, which is
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in fact Hermitian and positive. Therefore, the eigenvalues of Z+Z, if they
exist, are unambiguously non-negative, and they are actually strictly positive
if Z is invertible. This non-negative property will prove important in what
follows later. We next consider the differentiation of Hilbert space vectors
that are functions of continuous variables.

3 Functions of real, continuous variables and
quantum differentiation

We wish to explore some symmetry properties of the vectors and operators
in the Hilbert space framework defined above. To do this we first assume
that the vector Ψ is a function, Ψ (ξ), of a continuous real variable ξ. Then,
assuming that the function Ψ (ξ) is differentiable, we assume that the differ-
ential of Ψ (ξ), with respect to ξ, is equal to a second vector, Φ (ξ), in the
same Hilbert space, that is also a function of ξ, i.e. dΨ(ξ)

dξ
= Φ (ξ). We also

assume that these vectors are dense in the Hilbert space. We then seek an
operator, Dξ, on the Hilbert space, that maps from Ψ (ξ) to Φ (ξ). Thus,

dΨ (ξ)

dξ
= DξΨ (ξ) . (8)

Notice that, here, we are treating the mathematical expression dΨ(ξ)
dξ

as a
single compound entity, a hieroglyph in some sense representing the function
that is the derivative of Ψ (ξ), and not the product of d

dξ
with with Ψ (ξ).

Thus, in no sense is the symbol d
dξ
equivalent to Dξ. Also we can assume

that Dξ is not itself a function of ξ.
Now we wish to explore a symmetry property of the norm of Ψ (ξ) that

leaves it unchanged when ξ varies. This may seem a somewhat arbitrary and
restrictive definition of ξ. However, the significance of this constraint will be-
come clearer shortly. As we shall see, this property also leaves unchanged the
general inner product of two vectors that are functions of ξ. The invariance
of the norm with respect to changes in ξ implies

(Ψ (ξ) , DξΨ (ξ)) + (DξΨ (ξ) ,Ψ (ξ)) = 0. (9)

Using the definition of adjoint and the distributive properties this leads
to

(Ψ (ξ) , DξΨ (ξ)) +
(
Ψ (ξ) , D+

ξ Ψ (ξ)
)

=(
Ψ (ξ) , (D+

ξ +Dξ)Ψ (ξ)
)

= 0, (10)
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from which we can infer Dξ + D+
ξ = 0, as long as Ψ (ξ) is not null. Thus

Dξ must be anti-Hermitian. It is convenient therefore to write Dξ = −iKξ,
where Kξ is a self-adjoint (Hermitian) operator. Thus,

i
dΨ (ξ)

dξ
= KξΨ (ξ) . (11)

We can formally integrate Eq. (11) to yield Ψ (ξ) = exp (−iξKξ) Ψ (0),
from which it is straightforward to show that

(Ψ (ξ) ,Ψ (ξ)) = (Ψ (0) ,Ψ (0)) , (12)

as required. It is also clear why this form of dependence on ξ does not
alter the length of the Hilbert space vectors. It is because the functional
dependence formally takes the form of a phase shift, albeit in operator form.
In establishing Eq. (12) we need to use (exp (−iξKξ))

+ = exp (iξKξ), which
follows from expanding both sides in a power series in ξ and equating term by
term. It is also clear that Eq. (11) is quite generally applicable to any vector
in the same Hilbert space that is a differentiable function of ξ. So, Φ (ξ) =
exp (−iξKξ) Φ (0), from which we can infer the invariance of (Ψ (ξ) ,Φ (ξ)) .
Now, suppose an operator F , which is itself not a function of ξ, mapsΨ (ξ)

to Φ (ξ), such that F (0)Ψ (ξ) = Φ (ξ), where the argument, 0, emphasizes
the fact that F is not a function of ξ, then it follows that

(Ψ (ξ) , F (0)Ψ (ξ)) = (Ψ (0) , exp (iξKξ))F (0) exp (−iξKξ) Ψ(0)). (13)

We can thus define a new operator F (ξ) which is now an explicit function
of ξ, such that

F (ξ) = exp (iξKξ)F (0) exp (−iξKξ) . (14)

Note that F (ξ) only reduces to F (0) if F (0) commutes with Kξ, which it
generally is not assumed to do. Formal differentiation of F (ξ) then yields

i
dF (ξ)

dξ
= F (ξ)Kξ −KξF (ξ) = [F (ξ) , Kξ] . (15)

The rule, Eq. (15) has a number of interesting properties that are worth
noting. First, from the definition of adjoint, F+(ξ) = exp (iξKξ)F

+(0) exp (−iξKξ),
which has exactly the same form as Eq. (14) and so the differential of the
adjoint obeys Eq. (15) too.
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Second, the form of Eq. (15) is interesting from an algebraic point of view.
The final (commutation) bracket in Eq. (15) is a Lie product. Using the anti-
Hermitian Dξ instead of the Hermitian Kξ, we can define a Lie product using
a product symbol, ∧, as

Dξ ∧ F (ξ) = DξF (ξ)− F (ξ)Dξ = [Dξ, F (ξ)] . (16)

The product, ∧, is not associative, i.e., if G (ξ) is a second operator
function of the same form as F (ξ) in Eq. (14), then

Dξ ∧ (F (ξ)G (ξ)) = (Dξ ∧ F (ξ))G (ξ) + F (ξ) (Dξ ∧G (ξ)), (17)

which defines an algebraic derivation and so automatically obeys Leibniz
rule for the differentiation of a product. This works precisely because of the
expansion rule of the Lie product, i.e.,

[Dξ, (F (ξ)G (ξ))] = [(Dξ, F (ξ)]G (ξ)− F (ξ) [(Dξ, G (ξ)] . (18)

Note that this is true even when the associative rule applies to the product
DξF (ξ)G (ξ), i.e., Dξ(F (ξ)G (ξ)) = (Dξ(F (ξ))G (ξ). Then, clearly, this
product with Dξ is not a derivation, whereas Dξ∧ is. Thus, we cannot
have dF

dξ
6= DξF , but by contrast, dF

dξ
≡ Dξ ∧ F is correct. This feature

has important implications for the representation of operators by matrices
and group algebra, whose products do obey an associative rule. Historically,
Dirac [4] used an argument based on the relation between Lie products and
Leibniz rule to deduce Eq. (15) directly for the differentiation of matrices.
We should emphasise that the operator, Kξ, that appears in Eqs. (11)

and (15), is not yet defined. When the formalism above is applied to idealized
physical systems such as single particle dynamics, the continuous variable,
ξ, is chosen to be time t. The corresponding operator in Eq. (11), Kt, is
then conventionally identified with the particle energy operator. Eq. (11) is
then of course the Schrödinger equation. Historically, this energy operator
has been set equal to the Hamiltonian written as a function of the canonical
variables, namely position coordinate and momentum, but with the classical
scalar quantities replaced by a pair of non-commuting operators. This pro-
cedure is referred to as first quantization. The corresponding version of Eq.
(15) is then referred to as Heisenberg’s equation of motion. Here we do not
follow this procedure and make no assumptions about Kξ based on canon-
ical quantization, Hamiltonian mechanics nor on considerations of particle
trajectories in space and time. Rather we apply these results to a general
harmonic system, by which we mean some cyclic system with a sinusoidal
variation, not necessarily in time. We introduce such a system as a symmetry
property of certain Hermitian operators in the next section.
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4 Symmetry, non-negativity and harmonic am-
plitudes

Consider an operator J on vectors in a complex Hilbert space with an inner
product as defined above. Assume that J itself is invariant i.e., not a function
of a real continuous variable, and that it is equal to the product of another
operatorA on the same space and its adjoint, such that J = A+A. As pointed
out in section 2, we know that such an operator is not only Hermitian, but
also has non-negative eigenvalues. We could assume A also to be invariant
in this sense. However we note that J is invariant to a phase shift in A, i.e.,
A → exp (−iθ)A, where θ is a (real) phase. Incidentally, it is important to
distinguish between phase, which is a continuous variable with an infinite
domain, as here, and a phase angle that is a representation of phase by the
direction of a vector on a 2-dimensional plane. Then, because the directions of
a vector with phase angles that differ by 2π are indistinguishable, the values
of the phase angle are conventionally restricted to an arbitrary domain of
size 2π. What is really restricted of course is the amplitude of each of the
components of the vector. Similarly, we do not regard time as restricted to
a 12 hour domain simply because the position of the hands of a clock repeat
every 12 hrs.
In order to explore the properties of this phase symmetry, we define a

new operator A (θ) = exp(−iθ)A(0) that is a function of θ. Of course we
also have A+ (θ) = exp(iθ)A+(0) and so J = A+ (0)A(0) = A+ (θ)A(θ), as
expected. Direct differentiation of A(θ) and A+(θ) yields

dA(θ)

dθ
= −iA(θ) (19)

and

dA+(θ)

dθ
= iA+(θ). (20)

Applying Eq. (15) with ξ = θ, gives

A(θ) = [A(θ), Kθ] . (21)

and

−A+(θ) =
[
A+(θ), Kθ

]
. (22)

From Eqs. (21) and (22), it is a trivial matter to show that

d (A+(θ)A(θ))

dθ
=
[
A+(θ)A(θ), Kθ

]
= 0, (23)
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with a similar result for
d(A(θ)A+(θ))

dθ
.

It is interesting to note that Eqs. (21) and (22) may be obtained without
differentiation, directly by equating

A (θ) = exp (−iθ)A(0) = exp(iθKθ)A(0) exp(−iθKθ), (24)

and then expanding the exponential functions as power series. Since Eq. (24)
must be true for all θ, then the power series must balance term by term. The
first few orders yield

θ0 ⇒ A(0) = A(0),

θ1 ⇒ A(0) = [A(0), Kθ] ,

θ2 ⇒ A(0) = [[A(0), Kθ] , Kθ] ,

etc (25)

Reassuringly, when the first order result is substituted into all of the
higher order results, then they all give Eq. (21). But notice, Eq. (21)
is satisfied by either A(0) or A(θ). This is because [A+(0)A(0), Kθ] =
[A+(θ)A(θ), Kθ] = 0. This is significant, bearing in mind that the form
of Kθ has yet to be determined.
Thus far, no assumptions have been made about the properties of Kθ.

However, it is possible to infer certain properties from Eqs. (21) and (22).
Let us define Ψλ as a unit vector in a complex Hilbert space that is an
eigenvector of Kθ, with an eigenvalue of λ, i.e. KθΨλ = λΨλ. Then, from
Eq. (21) we get

Kθ (AΨλ) = AKθΨλ − AΨλ = (λ− 1)AΨλ. (26)

Thus AΨλ is also an eigenvector of Kθ, with an eigenvalue of (λ− 1), and
must thus be proportional to Ψλ−1. Similarly, one finds that A+Ψλ is also an
eigenvector of Kθ, but this time with an eigenvalue of (λ+ 1). Furthermore,
A2Ψλ is an eigenvector of Kθ with an eigenvalue of (λ− 2). Obviously, re-
peated operation with A on Ψλ will yield a spectrum of eigenvalues for Kθ,
that has the form (λ0 + n), where λ0 is an ordinary number that is indepen-
dent of Ψλ, and n is an integer whose values depend on the eigenvector. Let
us call the operator on the same Hilbert space with these eigenvectors and
with this eigenvalue spectrum, L, i.e. Kθ = L, and relable the eigenvectors
Ψλ → Ψn. So LΨn = (λ0 + n) Ψn.
At this point there is no constraint on what integer value n can have,

so its value can run through both positive and negative integers as well as
zero, since L is not yet fully defined. However, we can infer, from Eqs.
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(21) and (22) that both A+A and AA+ commute with L and can thus each
be some arbitrary function of L. To be specific, and noting that we are
interested mainly in the integer eigenvalues, we can let A+A = f(L − λ0I),
where I is the identity operator and f(L − λ0I) is some arbitrary function
of L − λ0I, defined in the usual way [26], i.e. since (L− λ0I) Ψn = nΨn,
then f(L − λ0I)Ψn = f(n)Ψn. To be clear the symbol, f , here, is neutral,
in the sense that, if its argument is an operator, then the function is an
operator also, while if the argument is a scalar, then the function is a scalar.
Thus, f(L − λ0I) is an operator while f(n) is a scalar. The precise form of
f remains undetermined in this case, but we can infer that AA+ = f(L +
I − λ0I), as follows. If we let AΨn = g(n)Ψn−1 and A+Ψn = h(n)Ψn+1,
where g(n) and h(n) can be assumed to be real without loss of generality,
then (Ψn, A

+AΨn) = h(n− 1)g(n). But (Ψn, A
+AΨn) = ‖AΨn‖2 = g2(n), so

we must have, h(n− 1) = g(n).Writing g2(n) = f(n) then yields the desired
result [see ref. 13]. As we have seen, these relations also reflect the fact that,
from Eqs. (21) and (22), both A+A and AA+ commute with L and hence
are functions of L. However, even though the relations A+A = f(L − λ0I)
and AA+ = f(L+ I − λ0I) imply that f(L− λ0I) and f(L+ I − λ0I) must
have non-negative eigenvalues, this still does not force L itself, necessarily,
to have non-negative eigenvalues.
As already mentioned, if we were dealing with physical systems as func-

tions of time, then, conventionally, we would associate L with the energy
operator. Here we make no such assumption, but simply postulate that
the spectrum of eigenvalues of L should be non-negative. This implies that
(λ0 + n) ≥ 0. If we take λ0 to be a positive constant, then n can run through
all of the non-negative integer values from zero to infinity. We can then
represent L as N + λ0, where the operator N has an eigenvalue spectrum
corresponding to the non-negative integers, i.e., NΨn = nΨn, where n ≥ 0.
Because of this non-negative property identified in section 2 above, we

can further infer that N itself can be expressed in terms of a closed num-
ber amplitude operator Z and its adjoint, Z+, such that N = ZZ+, since,
(Ψn, NΨn) = ‖ZΨn‖2 = n. It should be emphasized that here, N = Z+Z, is
regarded as essentially defining Z, to within the arbitrary factor exp (−iθ).
Then we can again use the symmetry, Z(θ) = exp (−iθ)Z(0) and hence,
N = Z+(0)Z(0) = Z+(θ)Z(θ). Then, applying Eqs. (21) and (22), to Z and
Z+, with Kθ = L = N + λ0I, produces

Z = [Z,N ] =
[
Z,Z+Z

]
, (27)

and
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−Z+ =
[
Z+, N

]
=
[
Z+, Z+Z

]
, (28)

where we have used the fact that [Z, λ0] = [Z+, λ0] = 0. In this case, from
the arguments above we can deduce the form of f(N), as follows. Since
Z+Z = f(N) = N , then ZZ+ = f(N + I) = N + I, and hence1[

Z,Z+
]

= I. (29)

The above results may be obtained in an even more telling way as follows.
Since Z and Z+ are clearly non-abelian we could have started with N = ZZ+

instead of N = Z+Z, since to begin with, [Z,Z+] is not known. Indeed, in
that case, the most general form for N should contain a combination of Z+Z
and ZZ+. Defining λ0 = α0 +β0, where α0 and β0 are two arbitrarily chosen
non-negative numbers, apart from the fact that we will insist that 0 ≤ β0 ≤ 1,
we can write

N + β0I = S2Z+Z + C2ZZ+ = S2f(N) + C2f(N + I), (30)

where S and C are real numbers. Now we can always scale the right hand
side of Eq. (30) by dividing by S2 + C2, so we can quite generally assume
that S = sin γ and C = cos γ where γ is some arbitrary angle. Operating
with Eq. (30) on Ψn and rearranging leads to the iterative relation

f(n+ 1) = (β0 + n) sec2 γ − f(n) tan2 γ. (31)

Taking f(0) = 0, then leads to

f(n) = sec2 γ

n∑
m=1

(
(β0 + n−m)(− tan2 γ)m−1

)
. (32)

Thus, after a little manipulation

f(n+ 1)− f(n) = 1 +
(
β0 sec2 γ − 1

) (
− tan2 γ

)n
. (33)

Eq. (33) implies that [Z,Z+] appears to be generally dependent on n and
hence is not a fixed number times I. However, since both β0 and γ are quite
arbitrary, we can choose, without loss of generality, to set β0 = cos2 γ. Then
we get f(n + 1)− f(n) = 1, which recovers [Z,Z+] = I quite generally. We
also then have

N = sin2 γZ+Z + cos2 γZZ+ − cos2 γI = Z+Z. (34)

1Notice also, that since N is an unbounded operator then so are Z and Z+. Thus,
properly speaking, we should have [Z,Z+]++ = I, where ++ denotes closure.
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So remarkably, N = Z+Z is quite general after all, and the self-adjoint
version of the phase differential operator L is just

L = N + λ0I = Z+Z + λ0I. (35)

The above result implies f(n) = n. Also, recalling that f(n) = g2(n),
where ZΨn = g(n)Ψn−1, leads directly to the number amplitude operator, Z
and its conjugate having the well-known properties of ladder operators, i.e.

ZΨn =
√
nΨn−1 and Z+Ψn =

√
n+ 1Ψn+1 (36)

and hence that ZΨ0 = 0, so that the eigenvectors of N have the expected
lower bound, with the eigenvector, Ψ0. As is well-known, the ladder operators
in Eq. (36) are interpreted as creation and annihilation operators in quantum
field theory and constitute a primitive field. The excitation of this field is
interpreted in terms of particles and Ψ0 the vacuum state with no particles
in the context of quantum field theory. The condition, ZΨ0 = 0, implied by
Eq. (36), effectively shuts off access to the negative integers in the spectrum
that would destroy the non-negative property of N and L. The existence of
this terminating vacuum state is thus essential.
Below we outline how the basic laws of classical mechanics and also of

Schrödinger wave mechanics can be recovered from Eqs. (29) and (35). First
we need to separate the creation and annihilation operators into their self-
adjoint parts.

5 Self-adjoint fields and Hamiltonian mechan-
ics

Here we examine the consequences of replacing the pair Z+ and Z in Eq.
(35) by a pair of Hermitian variables X and Y , defined by

X =
(Z+ + Z)√

2
and Y =

i(Z+ − Z)√
2

. (37)

The self-adjoint nature of variables X and Y , can be seen by noting that
Z is closed and then that, from Eq. (37), and X+ = X and Y + = Y . L may
now be written

L =
(
X2 + Y 2 + i (XY − Y X) /2

)
+ λ0I. (38)

Now Eq. (29) leads to
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XY − Y X = [X, Y ] = iI, (39)

and so

L =
(
X2 + Y 2 − I

)
/2 + λ0I. (40)

At this point, in order to establish a connection with Hamiltonian me-
chanics it is convenient to introduce time, t. This is simply done by replacing
phase by θ = ωt, where ω is an arbitrary scaling factor with dimensions of
angular frequency. Here the time merely serves to parameterize the phase.
Then Dt = ωDθ and we can define a frequency operator Ω = ωL. Then

Ω = ω(Z+Z + λ0I) = ω(N + λ0I) = ω(X2 + Y 2 + 2λ0I − I)/2. (41)

Eq. (41) could be put into standard Hamiltonian form by multiplying it
by ~ and choosing λ0 = 1/2, but we can just as well take Eq. (41) as a scaled
Hamiltonian operator in what follows. Then X and Y can be interpreted as
a pair of real bosonic fields, such as those that comprise the electromagnetic
field or a mechanical oscillator. In the Hamiltonian context they represent a
pair of generalized co-ordinates.
Having obtained the basic equations of quantum field theory and the field

relations without the aid of classical mechanics, we are now free to derive the
equations of classical mechanics from the forgoing rules. First, the time
derivatives of the self-adjoint, bosonic fields X and Y obey

i
dX

dt
= [X,Ω] (42)

and

i
dY

dt
= [Y,Ω] . (43)

We note from Eq. (41) that Ω separates into two functions, Ω(X, Y ) =
T (Y ) +V (X), plus some constant terms, where T (Y ) = ωY 2/2 and V (X) =
ωX2/2. By iterative application of the expansion rule of commutation brack-
ets, [A,BC] = B[A,C]+[A,B]C, one finds that Eq. (39) leads to [X, f(Y )] =
i ∂f
∂Y
and [Y, f(X)] = −i ∂f

∂X
, assuming the functions are analytical and can

be expressed as infinite Taylor series. Thus,

dX

dt
=
∂Ω

∂Y
(44)

and
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dY

dt
= − ∂Ω

∂X
, (45)

which are recognizable as the Hamilton equations of classical mechanics, with
X and Y playing the roles of the canonical coordinate and the canonical
momentum, respectively. Notice that, Eqs. (44) and (45), as well as the
commutation relation Eq. (39), remain true even when T (Y ) and especially
V (X) are generalized to non-harmonic systems. Then Eq. (45) becomes

dY

dt
= −∂V (X)

∂X
, (46)

which has the form of Newton’s second law of motion. This generalization
is the basis of classical Hamiltonian mechanics with an appropriate potential
function, V (X). Ω is then the classical Hamiltonian and the equations of
motion are obtained from Eqs. (44) and (45). It is important to point out
here that the derivation of equations of classical mechanics described here
rests entirely on the result that [Z,Z+] = I.
There is a clear distinction between the type of dynamics associated with

a free field that is characterized by a Hamiltonian of the form Eq. (41) and
the free particle of traditional classical (Newtonian or Lagrangian) mechanics
where V (X) = 0 and then the canonical momentum is constant in time. So,
for physical systems at least, the free field is associated with cyclic motion
and the free particle with uniform rectilinear motion.
Eqs. (44) and (45) apply equally well to classical or quantum mechan-

ical systems. Of course, the fundamental difference between classical and
quantum systems is that the former are represented by abelian (commuting)
scalar variables and the latter by non-abelian (non-commuting) variables.
This leads to a major difference in the way information about the system
in question is obtained. We need to bear in mind that information is itself
a scalar quantity. For classical systems the observables are scalars and can
be measured directly to yield quantitative information. By contrast, to ob-
tain information about the observables of a quantum system the non-abelian
variables are treated as operators. Then, if the operator representing the ob-
servable is Q, the quantitative information about such a system is given by
an expectation value that is equal to Tr (ρQ) [21],[26], where ρ is the density
operator for the state of the system; Q may or may not have eigenvalues, but
is self-adjoint.
Formally, it is a straightforward matter to distinguish, in a quantitative

way, between quantum and classical systems. In the former, the canonical
variables do not commute, while in the latter they do. If we define a degree of
non-commutivity, ∆ , for variablesX and Y as the ratio of size of expectation
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value of their commutation bracket to the product of the root-mean-square
values,

∆ =
|< [X, Y ] >|√
< X2 >< Y 2 >,

(47)

where < X >= (Ψn, XΨn) etc., then we expect classical behaviour when ∆
is small and so X and Y can be treated as ordinary commuting variables. ∆
in Eq. (47) is easily evaluated to be 1/(n+ 1/2). So, the system will behave
classically when n is very large. The meaning of this result depends of course
on specific interpretations of the number operator. It is usually interpreted
as representing the number of particles in a state. For example, if X and
Y represent a monochromatic electromagnetic field, then n is the number of
photons of a particular frequency. This field may be treated classically when
the number of photons is very large.

6 The Schrödinger picture

It is also a straightforward matter to recover the Schrödinger form of quantum
theory from the foregoing results. From Eq. (11), we choose ξ = t, where t
is time. Then with the scaled Hamiltonian operator, Ω, from the previous
section, we obtain the well-known Schrödinger equation

i
∂Ψ(t)

∂t
= ΩΨ(t) = (T (Y ) + V (X)) Ψ (t) . (48)

To complete the Schrödinger formalism, X can be retained from the pre-
vious section, but to obtain the momentum in Schrödinger formalism, we
need to convert Y to a differential form that still satisfies the commutation
bracket, Eq. (39). We do this by noting that Y in Eq. (39) is formally
isomorphic with −i∂

∂X
, so that Ω becomes

Ω = −
(ω

2

)( ∂2

∂X2

)
+ V (X). (49)

It is also worth commenting here that we have obtained the Schrödinger
equation without any real concern for space and time. Time is only included
at all as a parameterization of phase and only then to make a connection to
the conventional form of the Hamilton equations of mechanics. There has cer-
tainly been no need for considerations of relativistic versus non-relativistic
particle motion of any kind. This is quite different from conventional ap-
proaches in which the Schrödinger equation appears as the non-relativistic
limit of the Klein-Gordon equation.
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7 Conclusions

In this paper, we have obtained the properties, Eqs. (29), (45) and (46), of
the number amplitude operator, Z and its adjoint Z+, that are interpreted
as creation and annihilation operators in the second quantization formal-
ism, and that also serve as the primitive quantum fields of the theory. This
was done on the basis of an invariant Hilbert space representation, without
presuming any of the formalism of classical mechanics, particularly the La-
grangian and Hamiltonian formalisms that are the basis of most approaches
to second quantization. Thus, any notion of particles and particle trajecto-
ries in space and time are absent from our starting assumptions. So, contrary
to the conventional procedure, we obtained some key equations of quantum
physics without quantizing an already known classical physics theory. Indeed,
we would claim that the classical theory follows from our quantum one. In-
stead, the results have been obtained by restricting the eigenvalue spectrum
of the differential operator with respect to phase, Kθ, which, when applied to
a harmonic field consists of integers, to non-negative values, i.e. to the count-
ing numbers including zero. The non-negative assumption applies essentially
to the eigenvalue spectrum of the number operator N and this allows us to
define it as N = Z+Z. The operator Z can be taken as a function of phase,
θ, such that Z(θ) = exp(−iθ)Z(0) and can represent any cyclic system, not
necessarily a physical one. Furthermore, from the commutation relation that
results, between Z and Z+, we obtained the commutation rule between their
self-adjoint components, X and Y , that represent a pair of canonical vari-
ables. This commutation rule then led directly to the Hamilton equations
of classical and quantum mechanics. Thus we achieved a logical progression
from the more fundamental quantum field theory to classical mechanics and
the Schrödinger equation.
A further interesting result of our approach is that no distinction needs

to be drawn between first and second quantization. Conventionally, second
quantization involves promoting the complex wave functions that obey the
Schrödinger equation, together with their complex conjugates, to non-abelian
operators. According to Darrigol [31], this was first suggested by Jordan and
Klein [32], using somewhat ad hoc arguments. In our approach, having
established second quantization rules directly from operator algebra, we are
free to develop the Schrödinger formalism by introducing the representation
of the non-abelian canonical variables by non-commuting co-ordinate and
conventional differential operator pairs. The wave functions remain simply
as eigenfunctions in both forms of quantization. Thus, there is really only
one type of quantization.
As stated above, our results have been obtained without quantizing any
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classical physical rules. If anything was quantized in our approach, then it
was classical counting. By classical counting we mean that the counting num-
bers, n = 0, 1, 2, 3, ...., are simply scalars. The quantum equivalent involves
representing counting numbers using the number amplitude operators, Z and
Z+, and the number operator, N = Z+Z, that has a spectrum of eigenvalues
equal to the counting numbers, including zero. We could then describe this
formulation as quantum counting. This connection between our quantum
counting and classical counting is then analogous to the connection between
quantum and classical representations of probabilities. Classical probability
is regarded as a scalar, P, that obeys the classical Kolmogorov rules, whereas
quantum probability is formulated in terms of a probability density ampli-
tude that is represented by a quantum wavefunction, φ, which is subject to
the rules of quantum mechanics, such that the probability density equals
φ∗φ.
We believe our results have also gone some way to support the contention

of Khrennikov [25] and Haven and Khrennikov [21], that quantum theory is
not essentially a physical theory, although of course it does necessarily repro-
duce the equations that are applicable to physical systems too. Khrennikov
has coined the term quantum-like, for phenomena describable in terms of
quantum probability density amplitudes (wave functions). We have shown
above that the counting numbers, including zero, appear to play a special
role in the emergence of second quantization methods. Counting numbers
imply the notion of objects to be counted in the broadest sense. Phenomena
that can be represented by this quantum counting formalism involving Z
and Z+, could, by analogy with Khrennikov, be termed quantum-field-like.
Bagarello [20], [33] has recently treated population number dynamics and
finance using second quantization techniques and the number operator. This
work has recently been developed further to include information exchange
[34].
A detailed discussion of the applications of the present formalism to

quantum-like phenomena is beyond the scope of the present paper. A gener-
alization to multi-mode harmonic systems and the interaction and coupling
between these modes, among other things, is needed. This coupling is im-
portant in the interpretation of the potential function introduced in section
5. It turns out that this generalization of the formalism presented above is
actually quite straightforward, as is its extension from, what are here, essen-
tially bosonic systems, to fermionic ones. These issues will form the basis of
a future publication.
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