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Abstract Traditional approaches to cognitive psychology are founded on a
classical vision of logic and probability theory. According to this perspective,
the probabilistic aspects of human reasoning can be formalized in a Kol-
mogorovian probability framework and reveal underlying Boolean-type logical
structures. This vision has been seriously challenged by various discoveries
in experimental psychology in the last three decades. Meanwhile, growing re-
search indicates that quantum theory provides the conceptual and mathemat-
ical framework to deal with these classically problematical situations. In this
paper we apply a general quantum-based modeling scheme to represent two
types of cognitive situations where deviations from classical probability occur
in human decisions, namely, ‘conceptual categorization’ and ‘decision making’.
We show that our quantum-theoretic modeling faithfully describes different
sets of experimental data, explaining the observed deviations from classicality
in terms of genuine quantum effects. These results may contribute to the de-
velopment of applied disciplines where cognitive processes are involved, such
as natural language processing, semantic analysis, and information retrieval.

Keywords Quantum theory · Cognitive modeling · Concept combination ·
Decision theory

1 Introduction

Classical logic and probability theory have exercised a long influence on the
way in which scholars formalize and model cognitive processes. These struc-
tures are so deeply rooted in cognitive scientists that it is hard even to imag-
ine an alternative. This notwithstanding, empirical evidence has accumulated
in cognitive psychology in the last thirty years which indicates that classical
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structures do not probably provide the most general modeling framework when
human decisions are at stake.

There are two major domains of cognition where deviations from classical
logical and probabilistic structures have been observed.

The first of these two domains is ‘concept theory’. Since the work of Eleanor
Rosch, cognitive scientists know that concepts are ‘graded’, or ‘fuzzy’ notions,
that is, humans estimate an item such as Robin as more typical of Bird than
Stork. In other words, concepts exhibit ‘graded typicality’ [1]. A problem arises
when one tries to mathematically represent this typicality (or also the ‘mem-
bership weight’), of the combination of two concepts in terms of the typicality
(membership weight) of the component concepts. One is intuitively led to
think that the rules of classical (fuzzy set) logic and probability theory apply
in such combinations. However, Osherson and Smith discovered in 1981 the
‘Guppy effect’ in concept conjunction (also known as the ‘Pet-Fish problem’)
[2]. Humans score the typicality of an item such as Guppy with respect to the
conjunction Pet-Fish as higher than the typicality of Guppy with respect to
both Pet and Fish separately. One realizes at once that typicality violates rules
of classical (fuzzy set) logic. A second set of human experiments on concept
combinations were performed by James Hampton. He measured the mem-
bership weight, i.e. normalized membership estimation, of several items, e.g.,
Apple, Broccoli, Almond, etc., with respect to pairs of concepts, e.g., Fruits,
Vegetables, and their conjunction, e.g., Fruits and Vegetables, or disjunction,
e.g., Fruits or Vegetables. These membership weights again showed systematic
deviations from classical (fuzzy set) rules for conjunction and disjunction of
two concepts [3,4]. The conclusion is simple: if one accepts conceptual grade-
ness as an empirical fact, then one cannot express such gradeness in a classical
(fuzzy) set-theoretic model.

The second set of empirical findings showing unexpected deviations from
classicality pertains to ‘decision theory’ and can traced back to the work of
Kahneman and Tversky in the eighties. Their famous experiment on the ‘Linda
story’ revealed that situations exist where human subjects estimate the prob-
ability of the conjunction of two events as higher than the probability of one
of them, thus violating monotonicity of classical probability (more generally,
Bayes’ rule) [5]. This ‘conjunction fallacy’ is an example of a human probabil-
ity judgment. Another effect, the ‘disjunction effect’, was observed by Tversky
and Shafir in the nineties [6]. In the latter, subjects prefer action A over action
B if they know that an event X occurs, and also if they know that X does
not occur, but they prefer B over A if they do not know whether X occurs or
not. The disjunction effect violates a fundamental principle of rational decision
theory, Savage’s ‘Sure-Thing principle’ (more generally, the total probability
law of classical probability [7]).

These experimental results induced various scholars to look for alterna-
tives to traditional modeling approaches that could better cope with the ef-
fects, fallacies and paradoxes above. A major alternative is constituted by
the so called ‘quantum cognition approach’, which employs the conceptual
and mathematical framework of quantum theory to model cognitive processes
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(see, e.g., [8–12]). In this paper we explicitly apply the quantum-theoretic ap-
proach to cognitive psychology that was originated in Brussels [8,11,13–19].
This approach was inspired by a two decade research on the conceptual and
mathematical foundations of quantum theory, the origins of quantum prob-
ability and its connections with contextuality [20,21], and the detection of
genuine quantum aspects outside the microscopic world [22–24].

In our perspective a concept is not a container of instantiations, as in
classical (fuzzy set) approaches to concepts but, rather, an ‘entity in a specific
state that changes under the influence of a context’ [13,14]. There is a deep
analogy between quantum and conceptual entities: both are realms of genuine
potentialities, not of lack of knowledge of actualities. Indeed, in a quantum
measurement process, the measurement context actualizes one outcome among
the possible outcomes, thus provoking an indeterministic change of state of the
microscopic quantum particle that is measured. Similarly, whenever a subject
is asked to estimate the membership of an item with respect to one (or more
concepts) and, more generally, in any decision process, contextual influence
(of a cognitive type) and a transition from potential to actual occur in which
an outcome is actualized from a set of possible outcomes. At variance with
classical Kolmogorovian probability, quantum probability enables coping with
this kind of contextuality and pure potentiality [8,16].

The above considerations constituted the theoretic background for the de-
velopment of a general quantum-based perspective for cognitive processes,
which we apply in the present paper.

After briefly reviewing in Sect. 2 the technical aspects that we need to
attain our results, we apply in Sect. 3 our quantum modeling approach to the
conjunction ‘A and B’ and the disjunction ‘A or B’ of two concepts A and
B showing, at the same time, that it enables successful modeling of Hamp-
ton’s experimental data. In the same section we deal with the conjunction of
two concepts where the second concept is negated, i.e. ‘A and not B’, show-
ing that our modeling faithfully represents a large amount of data collected
by ourselves on this type of conceptual combinations [25,26]. Successively, we
come to the disjunction effect. We describe two variants of this effect, the ‘two-
stage gamble’ and the ‘Hawaii problem’, in Sect. 4, showing that in both cases
the disjunction effect can be explained in terms of quantum interference and
superposition. Finally, we analyse the conjunction fallacy and apply our quan-
tum conceptual scheme to model a recent experiment on the ‘Linda problem’
(Sect. 5) [27]. Conclusive remarks in Sect. 6 illustrate the potential of appli-
cation of our quantum cognition approach to computer science, in particular,
latent semantic analysis and information retrieval.

Let us conclude this introductory section with a remark. Our quantum-
theoretic approach contains a fundamentally novel element, which distinguishes
it from other quantum cognition approaches, namely, we explain the occur-
rence of deviations from classicality in concrete human decisions not as biases
of human mind but, rather, as genuine expressions of intrinsic quantum struc-
tures, such as contextuality, emergence, interference and superposition. Hence,
the aforementioned effects, fallacies, paradoxes and contradictions are natural
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manifestations of a fundamentally quantum dynamics, without however re-
quiring the existence of microscopic quantum processes in the human brain.1

2 Quantum mathematics for conceptual modeling

We illustrate here how the mathematical formalism of quantum theory can be
applied to model cognitive situations [29]. For the sake of simplicity, we will
limit technicalities to the essential that is needed for our purposes.

When the quantum mechanical formalism is applied for modeling purposes,
each considered entity – in our case a cognitive entity – is associated with a
complex Hilbert space H, that is, a vector space over the field C of complex
numbers, equipped with an inner product 〈·|·〉 that maps two vectors 〈A| and
|B〉 onto a complex number 〈A|B〉. We denote vectors by using the bra-ket
notation introduced by Paul Adrien Dirac, one of the pioneers of quantum
theory [29]. Vectors can be ‘kets’, denoted by |A〉, |B〉, or ‘bras’, denoted by
〈A|, 〈B|. The inner product between the ket vectors |A〉 and |B〉, or the bra-
vectors 〈A| and 〈B|, is realized by juxtaposing the bra vector 〈A| and the ket
vector |B〉, and 〈A|B〉 is also called a ‘bra-ket’, and it satisfies the following
properties:

(i) 〈A|A〉 ≥ 0;
(ii) 〈A|B〉 = 〈B|A〉∗, where 〈B|A〉∗ is the complex conjugate of 〈A|B〉;
(iii) 〈A|(z|B〉+t|C〉) = z〈A|B〉+t〈A|C〉, for z, t ∈ C, where the sum vector

z|B〉+ t|C〉 is called a ‘superposition’ of vectors |B〉 and |C〉 in the quantum
jargon.

From (ii) and (iii) follows that inner product 〈·|·〉 is linear in the ket and
anti-linear in the bra, i.e. (z〈A|+ t〈B|)|C〉 = z∗〈A|C〉+ t∗〈B|C〉.

We recall that the ‘absolute value’ of a complex number is defined as the
square root of the product of this complex number times its complex conjugate,
that is, |z| =

√
z∗z. Moreover, a complex number z can either be decomposed

into its cartesian form z = x+ iy, or into its polar form z = |z|eiθ = |z|(cos θ+
i sin θ). As a consequence, we have |〈A|B〉| =

√
〈A|B〉〈B|A〉. We define the

‘length’ of a ket (bra) vector |A〉 (〈A|) as |||A〉|| = ||〈A||| =
√
〈A|A〉. A vector

of unitary length is called a ‘unit vector’. We say that the ket vectors |A〉 and
|B〉 are ‘orthogonal’ and write |A〉 ⊥ |B〉 if 〈A|B〉 = 0.

We have now introduced the necessary mathematics to state the first mod-
eling rule of quantum theory, as follows.

First quantum modeling rule: A state A of an entity – in our case a cognitive
entity – modeled by quantum theory is represented by a ket vector |A〉 with
length 1, that is 〈A|A〉 = 1.

1 It is worth to mention that our quantum conceptual approach shares some common
aspects with the ‘epistemic quantum computational structures’ recently developed by some
authors (see, e.g., [28]), where emergent conceptual properties are formalized, and an holistic
meaning of the sentence is considered instead of a compositional one. Notwithstanding their
similarities, the technical developments of the two approaches are different.
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An orthogonal projection M is a linear operator on the Hilbert space, that is,
a mapping M : H → H, |A〉 7→M |A〉 which is Hermitian and idempotent. The
latter means that, for every |A〉, |B〉 ∈ H and z, t ∈ C, we have:

(i) M(z|A〉+ t|B〉) = zM |A〉+ tM |B〉 (linearity);
(ii) 〈A|M |B〉 = 〈B|M |A〉∗ (hermiticity);
(iii) M ·M = M (idempotency).
The identity operator 1 maps each vector onto itself and is a trivial or-

thogonal projection. We say that two orthogonal projections Mk and Ml are
orthogonal operators if each vector belonging to Mk(H) is orthogonal to each
vector contained in Ml(H), and we write Mk ⊥ Ml, in this case. The or-
thogonality of the projection operators Mk and Ml can also be expressed by
MkMl = 0, where 0 is the null operator. A set of orthogonal projection op-
erators {Mk |k = 1, . . . , n} is called a ‘spectral family’ if all projectors are
mutually orthogonal, that is, Mk ⊥Ml for k 6= l, and their sum is the identity,
that is,

∑n
k=1Mk = 1.

The above definitions give us the necessary mathematics to state the second
modeling rule of quantum theory, as follows.

Second quantum modeling rule: A measurable quantity Q of an entity – in our
case a cognitive entity – modeled by quantum theory, and having a set of pos-
sible real values {q1, . . . , qn} is represented by a spectral family {Mk |k =
1, . . . , n} in the following way. If the entity – in our case a cognitive en-
tity – is in a state represented by the vector |A〉, then the probability of
obtaining the value qk in a measurement of the measurable quantity Q is
〈A|Mk|A〉 = ||Mk|A〉||2. This formula is called the ‘Born rule’ in the quantum
jargon. Moreover, if the value qk is actually obtained in the measurement, then
the initial state is changed into a state represented by the vector

|Ak〉 =
Mk|A〉
||Mk|A〉||

(1)

This change of state is called ‘collapse’ in the quantum jargon.
This formalism can be extended to model more complex situations by al-

lowing states to be represented by ‘density operators’ and measurements to be
represented by ‘positive operator valued measures’. Density operators would
be used when the conceptual state is not completely defined, while positive op-
erators would be used to describe state transformations in non-ideal cognitive
measurements. This extension is however not necessary for our purposes.

3 Quantum modeling combinations of two concepts

We present our quantum modeling approach in Fock space for the combination
of two concepts using the notions and symbols defined in Sect. 2. In the case
of two combining entities, a Fock space F consists of two sectors: ‘sector 1’ is a
Hilbert space H, while ‘sector 2’ is a tensor product H⊗H of two isomorphic
versions of H.
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Hampton identified in his experiments systematic deviations from classical
(fuzzy) set conjunctions [3] and disjunctions [4]. More explicitly, if the mem-
bership weight of an item x with respect to the conjunction ‘A and B’ of
two concepts A and B is higher than the membership weight of x with re-
spect to one concept (both concepts), we say that the membership weight of x
is ‘overextended’ (‘double overextended’) with respect to the conjunction (we
briefly say that x is overextended with respect to the conjunction, in this case).
If the membership weight of an item x with respect to the disjunction ‘A or B’
of two concepts A and B is less than the membership weight of x with respect
to one concept, we say that the membership weight of x is ‘underextended’
with respect to the disjunction (we briefly say that x is underextended with
respect to the disjunction, in this case).

A large part of Hampton’s data on concept conjunctions cannot be modeled
in a classical probability space satisfying the axioms of Kolmogorov [8]. For
example, the membership weight of the item Razor with respect to the concepts
Weapons, Tools and their conjunction Weapons and Tools were estimated in [3]
as 0.63, 0.68 and 0.83, respectively. Thus, the item Razor is overextended with
respect to the conjunction Weapons and Tools of the concepts Weapons and
Tools. These data cannot be represented in a single classical probability space.
Indeed, the membership weights µ(A), µ(B) and µ(A and B) of the item x with
respect to concepts A and B and their conjunction ‘A and B’, respectively,
can be represented in a classical Kolmogorovian probability model if and only
if they satisfy the following inequalities [8,25]

µ(A and B)−min(µ(A), µ(B)) ≤ 0 (2)
µ(A) + µ(B)− µ(A and B) ≤ 1 (3)

A similar situation occurs in the case of concept disjunctions. A large part
of Hampton’s data cannot be modeled in a classical Kolmogorovian proba-
bility space [8]. For example, the membership weight of the item Curry with
respect to the concepts Spices, Herbs and their disjunction Spices or Herbs
were estimated in [4] as 0.9, 0.4 and 0.76, respectively. Thus, the item Curry
is underextended with respect to the disjunction Spices or Herbs of the con-
cepts Spices and Herbs. These data cannot be represented in a single classical
probability space. Indeed, the membership weights µ(A), µ(B) and µ(A or B)
of the item x with respect to concepts A and B and their disjunction ‘A or
B’, respectively, can be represented in a classical Kolmogorovian probability
model if and only if they satisfy the following inequalities [8]

max(µ(A), µ(B))− µ(A or B) ≤ 0 (4)
0 ≤ µ(A) + µ(B)− µ(A or B) (5)

Let us construct our quantum model in Fock space for the conjunction of
two concepts [8,16]. Let x denote an item and µ(A), µ(B) and µ(A and B)
denote the membership weights of x with respect to the concepts A, B and
‘A and B’, respectively. Let F = H⊕(H⊗H) be the Fock space where we rep-
resent conceptual entities. The states of the concepts A, B and ‘A and B′ are
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represented by the unit vectors |A〉, |B〉 ∈ H and |A and B〉 ∈ F , respectively,
where

|A and B〉 = meiλ|A〉 ⊗ |B〉+ neiν
1√
2

(|A〉+ |B〉) (6)

The superposition vector 1√
2
(|A〉+ |B〉) describes ‘A and B’ as a new emergent

concept, while the product vector |A〉 ⊗ |B〉 describes ‘A and B’ in terms of
concepts A and B. The weights m and n are such that m2 + n2 = 1. The
decision measurement of a subject who estimates the membership of the item
x with respect to the concept ‘A and B’ is represented by the orthogonal
projection operator M ⊕ (M ⊗M) on F , where M is an orthogonal projection
operator on H. Hence, the membership weight of x with respect to ‘A and B’
is given by

µ(A and B) = 〈A and B|M ⊕ (M ⊗M)|A and B〉

= m2µ(A)µ(B) + n2

(
µ(A) + µ(B)

2
+ <〈A|M |B〉

)
(7)

where µ(A) = 〈A|M |A〉 and µ(B) = 〈B|M |B〉. The term <〈A|M |B〉 is the
usual ‘interference term’ of quantum theory. A solution of Eq. (7) exists in the
Fock space F = C3 ⊕ (C3 ⊗C3), where M is the subspace of C3 generated by
the vectors (1, 0, 0) and (0, 1, 0) ({(1, 0, 0), (0, 1, 0), (0, 0, 1)} is the canonical
basis of C3), the interference term is given by

<〈A|M |B〉 =
√

1− a(A)
√

1− b(B) cos θ

=
{√

1− µ(A)
√

1− µ(B) cos θ if µ(A) + µ(B) > 1√
µ(A)

√
µ(B) cos θ if µ(A) + µ(B) ≤ 1

(8)

(θ is the ‘interference angle for the conjunction’), and the unit vectors |A〉, |B〉 ∈
C3 are given by

|A〉 =
(√

a(A), 0,
√

1− a(A)
)

(9)

|B〉 = eiθ
(√ (1− a(A))(1− b(B))

a(A)
,

√
a(A) + b(B)− 1

a(A)
,−
√

1− b(B)
)

(10)

if a(A) 6= 0, and
|B〉 = eiθ(0, 1, 0) (11)

if a(A) = 0. For example, the item Razor has a Fock space representation in
F = C3⊕(C3⊗C3) with θ = 35.77, m2 = 0.24, n2 = 0.76, |A〉 = (0.79, 0, 0.61)
and |B〉 = ei35.77

◦
(0.36, 0.81,−0.47).

Conceptual disjunctions can be modeled in a similar way. Let x denote
an item and let µ(A), µ(B) and µ(A or B) denote the membership weights
of x with respect to the concepts A, B and ‘A or B’, respectively. We again
represent conceptual entities in the Fock space F = H⊕(H⊗H). The concepts
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A, B and ‘A or B’ are represented by the unit vectors |A〉, |B〉 ∈ H and
|A or B〉 ∈ F , respectively, where

|A or B〉 = meiλ|A〉 ⊗ |B〉+ neiν
1√
2

(|A〉+ |B〉) (12)

The superposition vector 1√
2
(|A〉+ |B〉) describes ‘A or B’ as a new emergent

concept, while the product vector |A〉 ⊗ |B〉 describes ‘A or B’ in terms of
concepts A and B. The positive numbers m and n are such that m2 +n2 = 1,
and they estimate the ‘degree of participation’ of sectors 2 and 1, respectively,
in the disjunction case. The decision measurement of a subject who estimates
the membership of the item x with respect to the concept ‘A or B’ is repre-
sented by the orthogonal projection operator M ⊕ (M ⊗1+1⊗M −M ⊗M)
on F , where M has been introduced above. We observe that

M ⊗ 1 + 1⊗M −M ⊗M = 1− (1−M)⊗ (1−M) (13)

that is, in the transition from conjunction to disjunction we have applied de
Morgan’s laws of logic in sector 2 of Fock space. The membership weight of x
with respect to ‘A or B’ is given by

µ(A or B) = 〈A or B|M ⊕ (M ⊗ 1 + 1⊗M −M ⊗M)|A or B〉

= m2 (µ(A) + µ(B)− µ(A)µ(B)) + n2

(
µ(A) + µ(B)

2
+ <〈A|M |B〉

)
(14)

where µ(A) = 〈A|M |A〉, µ(B) = 〈B|M |B〉 and <〈A|M |B〉 is the interference
term. A solution of Eq. (14) exists in the Fock space F = C3 ⊕ (C3 ⊗ C3)
by choosing the projection operator M , the interference term <〈A|M |B〉 and
the unit vectors |A〉 and |B〉 ∈ C3 as in the case of conjunction (see Eqs.
(8)–(11)). For example, the item Curry has a Fock space representation in
F = C3⊕(C3⊗C3) with θ = 97.07, m2 = 0.44, n2 = 0.56, |A〉 = (0.95, 0, 0.32)
and |B〉 = ei97.07

◦
(0.26, 0.58,−0.77).

The quantum mathematics above admits the following interpretation. When-
ever a subject is asked to estimate whether a given item x belongs to the con-
cepts A, B, ‘A and B’ (‘A or B’), two mechanisms act simultaneously and in
superposition in the subject’s thought. A ‘quantum logical reasoning’, which
is a probabilistic version of classical logical reasoning, where the subject con-
siders two copies of item x and estimates whether the first copy belongs to
A and (or) the second copy of x belongs to B, and further the probabilistic
version of the conjunction (disjunction) is applied to both estimates. But also
a ‘quantum conceptual reasoning’ acts, where the subject estimates whether
the exemplar x belongs to the newly emergent concept ‘A and B’ (‘A or B’).
The place whether these superposed processes can be suitably structured is
Fock space. The conceptual reasoning process occurs in sector 1, and the logi-
cal reasoning process occurs in sector 2, while the weights m2 and n2 measure
the ‘degree of participation’ of sectors 2 and 1, respectively, in the case of con-
junction (disjunction). In both examples of Razor and Curry, the combination
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process mainly occurs in sector 1 of Fock space, i.e. n2 is higher, which means
that emergence aspects prevail over logical aspects in the reasoning process.

We have recently extended this analysis by performing a new cognitive
test to study how human subjects estimate the membership weights of spe-
cific items with respect to the conjunctions ‘A and B’ and ‘A and not B’ of
the concepts A and B, where ‘not B’ denotes the negation of B, e.g., Fruits
and not Vegetables, or Spices and not Herbs [25,26]. The data collected on ‘A
and B’ systematically showed overextension, thus confirming the patterns ob-
served in [3]. Our quantum modeling for the conjunction faithfully represents
almost all the collected data. For example, the item Olive was double overex-
tended with respect to Fruits and Vegetables, since its membership weight
with respect to Fruits and Vegetables was 0.53 and 0.63, respectively, while
its membership weight with respect to Fruits and Vegetables was 0.65 [25].
Olive can be modeled in the Fock space C3 ⊕ (C3 ⊗ C3) with an interference
angle θ = 60.48◦, a weight m2 = 0.30 in sector 2, and a weight n2 = 0.70
in sector 1. The concepts Fruits and Vegetables are respectively represented
by the unit vectors |A〉 = (0.73, 0, 0.68) and |B〉 = ei60.48

◦
(0.69, 0.55,−0.61)

in the canonical basis of C3. More, the item Goldfish showed a big overex-
tension with respect to Pets and Farmyard Animals, since it scored 0.93 with
respect to Pets, 0.17 with respect to Farmyard Animals, and 0.43 with respect
to Pets and Farmyard Animals. Goldfish can be modeled in C3 ⊕ (C3 ⊗ C3)
with θ = 99.22◦, m2 = 0.23 and n2 = 0.77. The concept Pets is represented
by |A〉 = (0.96, 0, 0.27), while the concept Farmyard Animals is represented
by |B〉 = ei99.22

◦
(0.38, 0.32,−0.91).

Analogously, the data on the conjunction ‘A and not B’ showed systematic
deviations from classicality, which were of two types:

(i) overextension in conceptual conjunction, i.e. items such that

µ(A and not B) > min(µ(A), µ(not B)) (15)

(ii) deviation from Kolmogorovness in conceptual negation, i.e. items such
that

µ(B) + µ(not B) 6= 1 (16)

Our Fock space modeling for the conjunction ‘A and B’ can be naturally
extended to the conjunction ‘A and not B’ by representing the latter concept
by the unit vector

|A and not B〉 = meiλ|A〉 ⊗ |not B〉+ neiν
1√
2

(|A〉+ |not B〉) (17)

A solution exists in C3 ⊕ (C3 ⊗C3) where the membership weight of the item
x with respect to ‘A and not B’ is given by [25,26]

µ(A and not B) = m2µ(A)µ(not B)

+n2
(
µ(A)+µ(not B)

2 +
√

1− a(A)
√

1− b(not B) cos θ
)

(18)
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Symbols in Eq. (18) are defined as in Eq. (8), and formulas analogous to Eqs.
(9)–(11) hold also in this case.

Let us consider a couple of examples. The item Prize Bull was double
overextended with respect to Pets and not Farmyard Animals, since it scored
0.13 with respect to Pets, 0.26 with respect to not Farmyard Animals and 0.28
with respect to Pets and not Farmyard Animals. The exemplar Prize Bull can
be modeled in Fock space with an interference angle θ = 45.11◦ and weights
m2 = 0.18 for sector 2 of Fock space and n2 = 0.82 for sector 1. The con-
cepts Pets and not Farmyard Animals are represented by |A〉 = (0.93, 0, 0.36)
and |not B〉 = ei45.11

◦
(0.2, 0.84,−0.51) with respect to the item Prize Bull.

The item Wall Mirror had membership weight 0.45 with respect to Furni-
ture, 0.76 with respect to not Furniture, hence negation showed deviation
from Kolmogorovness. Wall Mirror can be modeled in C3 ⊕ (C3 ⊗ C3) for
θ = 74.90◦, m2 = 0.23, n2 = 0.77, |A〉 = (0.96, 0, 0.30) and |not B〉 =
ei74.90

◦
(0.23, 0.63,−0.74).

The quantum mathematics above can again be interpreted in terms of
quantum logical and quantum conceptual reasoning. Two superposed mecha-
nisms act when a subject is asked to estimate whether a given item x belongs
to the concepts A, ‘not B’, ‘A and not B’: a quantum logical reasoning, where
the subject considers two copies of x and estimates whether the first copy
belongs to A and the second copy of x does not belong to B, and also a quan-
tum conceptual reasoning, where the subject estimates whether the exemplar
x belongs to the newly emergent concept ‘A and not B’. Both processes can
be simultaneously represented in Fock space.

As we can see, quantum structures can describe how the human mind com-
bines two concepts, and genuine quantum aspects, i.e. contextuality, emer-
gence, interference, superposition, can account for the observed divergences
from classical structures.

4 Nonclassicality in the disjunction effect

A whole set of findings in other domains of cognitive science point to a devi-
ation of classical logical reasoning in concrete human decisions, as mentioned
in Sect. 1. In behavioral economics, this deviation is manifest in the ‘Ellsberg
paradox’ [30] and ‘Machina paradox’ [31], which violate the so-called ‘Sav-
age’s Sure-Thing principle’ of expected utility theory [7]. We discussed these
paradoxical situations in a recent paper [18]. However, we do not deal with
them here, for the sake of brevity. We instead illustrate the violation of the
Sure-Thing principle that is observed in decision theory.

Savage stated this principle by means of the following story [7].
‘A businessman contemplates buying a certain piece of property. He con-

siders the outcome of the next presidential election relevant. So, to clarify the
matter to himself, he asks whether he would buy if he knew that the Demo-
cratic candidate were going to win, and decides that he would. Similarly, he
considers whether he would buy if he knew that the Republican candidate
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were going to win, and again finds that he would. Seeing that he would buy
in either event, he decides that he should buy, even though he does not know
which event obtains, or will obtain, as we would ordinarily say.’

Tversky and Shafir tested the Sure-Thing principle in an experiment where
they presented a group of students with a ‘two-stage gamble’, that is, a gam-
ble which can be played twice [6,10]. At each stage the decision consisted in
whether or not playing a gamble that has an equal chance of winning, say $200,
or losing, say $100. The key result is based on the decision for the second bet,
after finishing the first bet. The experiment included three situations: (i) the
students were informed that they had already won the first gamble; (ii) the
students were informed that they had lost the first gamble; (iii) the students
did not know the outcome of the first gamble. Tversky and Shafir found that
69%, i.e. the majority, of the students who knew they had won the first gamble
chose to play again, 59%, i.e. the majority, of the students who knew they had
lost the first gamble, chose to play again; but only 36% of the students who
did not know whether they had won or lost chose to play again (equivalently,
64%, i.e. the majority, decided not to play in the second gamble).

This two-stage gamble experiment violates Savage’s Sure-Thing Principle:
students generally prefer to play again if they know they won, and they also
prefer to play again if they know they lost, but they generally prefer not to
play again when they do not know whether they won or lost. More generally,
the experiment performed by Tversky and Shafir violates the total law of
classical probability. If we denote by p(P ) the total probability that a student
decides to play again without knowing whether he/she has won or lost in the
first gamble, by p(W ) and p(L) the probability that the student wins or loses,
respectively, by p(P |W ) the conditional probability that the student decides to
play again when he/she knows he/she has won, and by p(P |L) the conditional
probability that the student decides to play again when he/she knows he/she
has lost, then it is not possible to find any value of p(W ) and p(L) = 1−p(W )
such that p(P |W ) = 0.69 and p(P |L) = 0.59, p(P ) = 0.36 and the law of total
probability

p(P ) = p(W )p(P |W ) + p(L)p(P |L) (19)
is satisfied. This violation of the laws of classical probability is called the
‘disjunction effect’.

An equivalent formulation of the disjunction effect is known as the ‘Hawaii
problem’, and it is again due to Tversky and Shafir [6]. Consider the following
situations.

‘Disjunctive version’. Imagine that you have just taken a tough qualifying
examination. It is the end of the fall quarter, you feel tired and run-down, and
you are not sure that you passed the exam. In case you failed you have to take
the exam again in a couple of months after the Christmas holidays. You now
have an opportunity to buy a very attractive 5-day Christmas vacation package
to Hawaii at an exceptionally low price. The special offer expires tomorrow,
while the exam grade will not be available until the following day. Would you:
x buy the vacation package; y not buy the vacation package; z pay a $5 non-
refundable fee in order to retain the rights to buy the vacation package at the



12 Sandro Sozzo

same exceptional price the day after tomorrow after you find out whether or
not you passed the exam?

‘Pass/fail version’. Imagine that you have just taken a tough qualifying
examination. It is the end of the fall quarter, you feel tired and run-down, and
you find out that you passed the exam (failed the exam. You will have to take
it again in a couple of months after the Christmas holidays). You now have
an opportunity to buy a very attractive 5-day Christmas vacation package
to Hawaii at an exceptionally low price. The special offer expires tomorrow.
Would you: x buy the vacation package; y not buy the vacation package: z
pay a $5 non-refundable fee in order to retain the rights to buy the vacation
package at the same exceptional price the day after tomorrow.

In this experiment, Tversky and Shafir experienced the same pattern of
the two-stage gamble situation. Indeed, more than half of the subjects chose
option x (buy the vacation package) if they knew the outcome of the exam
(54% in the pass condition and 57% in the fail condition), whereas only 32%
chose option x (buy the vacation package) if they did not know the outcome
of the exam. The Hawaii problem clearly shows a violation of the Sure-Thing
principle: subjects generally prefer option x (buy the vacation package) when
they know that they passed the exam, and they also prefer x when they know
that they failed the exam, but they refuse x (or prefer z) when they don’t
know whether they passed or failed the exam. Moreover, as in the two-stage
gamble experiment, also the Hawaii problem violates the total law of classical
probability.

A seemingly plausible explanation, which is also given in the Ellsberg para-
dox, is that the origin of the violation of the Sure-Thing principle in the Hawaii
problem is ‘uncertainty aversion’, that is, subjects prefer to buy the vacation
package in both cases where they have certainty about the outcome of the
exam, while they refuse to buy the package when they do not yet know whether
they passed or failed the exam and hence lack this certainty.

We now work out a quantum-theoretic model for these two experiments,
where the above mentioned deviation is described in terms of genuine quantum
effects.

The disjunction effect in decision theory is an example of a situation that
can be described in the quantum modeling scheme that we have elaborated
in Sect. 3 [8]. Let us firstly consider the Hawaii problem and denote by A the
conceptual situation in which the subject has passed the exam, and by B the
conceptual situation in which the subject has failed the exam. The disjunction
of both conceptual situations, denoted by ‘A or B’, is the conceptual situation
in which the subject ‘has passed or failed the exam’. The subject needs to
make a decision whether to buy the vacation package – positive outcome, or
not to buy it – negative outcome.

We introduce the notion of state of a concept, as in Sect. 3 [8,13,14].
Thus, each conceptual situation above is described by a conceptual state and
represented by a unit vector in a complex Hilbert space. More explicitly, we
represent A by a unit vector |A〉 and B by a unit vector |B〉 in a complex
Hilbert space H, respectively. We assume that |A〉 and |B〉 are orthogonal,
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that is, 〈A|B〉 = 0, and represent the disjunction ‘A or B’ by means of the
normalized superposition state vector 1√

2
(|A〉+ |B〉). The decision to be made

is ‘to buy the vacation package’ or ‘not to buy the vacation package’. This
decision is represented by an orthogonal projection operator M of the Hilbert
space H in our modeling scheme. The probability of the outcome ‘yes’, i.e.
‘buy the package’, in the ‘pass’ situation, i.e. state vector |A〉, is 0.54, and we
denote it by µ(A) = 0.54. The probability of the outcome ‘yes’, i.e. buy the
package, in the ‘fail’ situation, i.e. state vector |B〉, is 0.57, and we denote it
by µ(B) = 0.57. The probability of the outcome ‘yes’, i.e. buy the package,
in the ‘pass or fail’ situation, i.e. state vector 1√

2
(|A〉 + |B〉), is 0.32, and we

denote it by µ(A or B) = 0.32.
In accordance with standard quantum rules (see Sect. 2), we have

µ(A) = 〈A|M |A〉 (20)
µ(B) = 〈B|M |B〉 (21)

µ(A or B) = 1
2 (〈A|+ 〈B|)M(|A〉+ |B〉) (22)

By applying the linearity of Hilbert space and the hermiticity of M , that is,
〈B|M |A〉∗ = 〈A|M |B〉, we then get

µ(A or B) =
1
2

(〈A|M |A〉+ 〈A|M |B〉+ 〈B|M |A〉+ 〈B|M |B〉)

=
µ(A) + µ(B)

2
+ <〈A|M |B〉 (23)

where <〈A|M |B〉 is the real part of the complex number 〈A|M |B〉, i.e. the
typical interference term of quantum theory. Its presence allows to produce a
deviation from the average value 1

2 (µ(A)+µ(B)), which would be the outcome
in absence of interference. Note that, also in this disjunction effect situation,
we have applied two key quantum features, namely, ‘superposition’, in taking
1√
2
(|A〉+ |B〉) to represent ‘A or B’, and ‘interference’, as the effect appearing

in Eq. (23).
Our quantum model can be realized in the three-dimensional complex

Hilbert space C3 [8], as follows. Let us distinguish two cases:
(i) if µ(A) + µ(B) ≤ 1, we put a(A) = 1 − µ(A), b(B) = 1 − µ(B) and

γ = π;
(ii) if µ(A) + µ(B) > 1, we put a(A) = µ(A), b(B) = µ(B) and γ = 0.
Moreover, we choose

|A〉 = (
√
a(A), 0,

√
1− a(A)) (24)

|B〉 =

{
ei(β+γ)

(√
(1−a(A))(1−b(B))

a(A) ,
√

a(A)+b(B)−1
a(A) ,−

√
1− b(B)

)
if a(A) 6= 0

eiβ(0, 1, 0) if a(A) = 0
(25)

β =

{
arccos

(
2µ(A or B)−µ(A)−µ(B)

2
√

(1−a(A))(1−b(B))

)
if a(A) 6= 1, b(B) 6= 1

arbitrary if a(A) = 1 or b(B) = 1
(26)
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If µ(A) + µ(B) ≤ 1, we take M(C3) as the ray spanned by the vector (0, 0, 1),
that is, M = |0, 0, 1〉〈0, 0, 1|. If µ(A) + µ(B) > 1, we take M(C3) as the
subspace of C3 spanned by the vectors (1, 0, 0) and (0, 1, 0), that is, M =
|1, 0, 0〉〈1, 0, 0|+ |0, 1, 0〉〈0, 1, 0|.

One can verify that this construction gives rise to a quantum mechanical
representation of the Hawaii problem situation with probabilities µ(A), µ(B)
and µ(A or B). In particular, the interference term in Eq. (23) is given by

<〈A|M |B〉 =
√

(1− a(A))(1− b(B)) cosβ (27)

where β is the ‘interference angle for the disjunction’. We refer to [8] for a
more detailed technical analysis of this quantum-theoretic model.

Equations (23) and (27) can be used to represent the Hawaii problem
situation. If we put µ(A) = 0.54, µ(B) = 0.57 and µ(A or B) = 0.32, and
observe that µ(A) + µ(B) = 1.11 > 1, then we have a(A) = 0.54, b(B) = 0.57
and γ = 0. After making the calculations of Eqs. (24), (25) and (26), we obtain
|A〉 = (0.73, 0, 0.68), |B〉 = ei121.90

◦
(0.61, 0.45,−0.66) and we take M(C3) the

subspace of C3 spanned by the vectors (1, 0, 0) and (0, 1, 0). One verifies at
once that this model indeed yields the correct numerical outcomes.

Let us now come to the two-stage gamble situation. Here, we have µ(A) =
0.69, µ(B) = 0.59 and µ(A or B) = 0.36, hence µ(A) + µ(B) = 1.28 > 1,
a(A) = 0.69, b(B) = 0.59 and γ = 0. Equations (23) and (27) can be solved
for β = 141.76◦. In addition, Eqs. (24), (25) and (26) can be solved for |A〉 =
(0.83, 0, 0.56), |B〉 = ei141.76

◦
(0.43, 0.64,−0.64) and M(C3) is the subspace of

C3 spanned by vectors (1, 0, 0) and (0, 1, 0). Also in this case, one easily verifies
that our quantum model yields the correct numerical outcomes.

We have thus provided a quantum-theoretic model which successfully rep-
resents the disjunction effect occurring in the experiments by Tversky and
Shafir [6]. It is important to observe that the observed deviations from classi-
cal Kolmogorovian probability are not interpreted as biases of human mind in
our approach but, rather, as the deepest expressions of pure quantum effects,
namely, contextuality, interference and superposition. It is also worth noticing
the fundamental role that complex numbers play in our construction, since
they make it possible to have a non-null interference term in Eq. (23).

5 Nonclassicality in the conjunction fallacy

An important deviation from classicality that occurs in decision theory and
is similar to over- and under- extensions occurring in concept combinations is
the ‘conjunction fallacy’. Tversky and Kahneman discovered this fallacy in an
experiment that is known in the literature as the ‘Linda problem’ [5,10].

In the experiment, subjects were presented with the following story about
a woman named ‘Linda’.

‘Linda is 31 years old, single, outspoken and very bright. She majored in
philosophy. As a student, she was deeply concerned with issues of discrimina-
tion and social justice, and also participated in anti-nuclear demonstrations.’
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Then, subjects were asked to check which of the two alternatives was more
probable:

(a) Linda is a bank teller;
(b) Linda is a bank teller and is active in the feminist movement.
Tversky and Kahneman found that overall 85% of the respondents indi-

cated that option (b) – Linda is a bank teller and is active in the feminist
movement – is more likely than option (a) – Linda is a bank teller. If one
denotes by p(B) the probability that the sentence “Linda is a bank teller” is
true, and by p(B and F ) the probability that the sentence “Linda is a bank
teller and is active in the feminist movement” is true, then one expects that
p(B and F ) ≤ p(B) in classical Kolmogorovian probability. This experimental
violation exactly expresses the conjunction fallacy.

There is now a large empirical literature in cognitive psychology confirm-
ing the results found by Tversky and Kahneman in the Linda problem. In
particular, an interesting experiment was performed by Morier and Borgida
[10,27]. They used the Linda story and asked subjects to rank the likelihood
of the following events:

(a) Linda is a feminist;
(b) Linda is a bank teller;
(c) Linda is a feminist and a bank teller;
(d) Linda is a feminist or a bank teller.
Morier and Borgida found that the mean probability judgements were or-

dered as p(feminist)=0.83 > p(feminist or bank teller)=0.60 > p(feminist and
bank teller)=0.36 > p(bank teller)=0.26. We have seen above that the con-
junction fallacy occurs when option (c) is estimated to be more likely than
option (b). A ‘disjunction fallacy’ instead occurs when option (a) is judged
to be more likely than option (d). One can immediately recognize similarities
between conjunction fallacy and conceptual overextension on one side, and
between disjunction fallacy and conceptual underextension on the other side.
Both types of fallacy are present in Morier and Borgida’s experiment [27].

Various approaches have been put forward to provide an alternative ex-
planation of the conjunction fallacy. In particular, a recurring explanation
suggests that these deviations from classical probabilistic rules in human deci-
sions should be considered as ‘biases’ of human thought, whence the locutions
‘fallacy’, ‘effect’ or ‘paradox’. We instead show that our quantum modeling
approach in Hilbert space also enables faithful representation of both the con-
junction and disjunction fallacies.2

The conjunction fallacy can be modeled in our quantum-theoretic frame-
work by following similar procedures to the ones adopted in Sects. 3 and 4.
To this end we denote by A the conceptual situation where Linda is a fem-
inist, and by B the conceptual situation where Linda is a bank teller. The

2 The disjunction fallacy introduced here must be distinguished from the disjunction
effect discussed in Sect. 4. The latter is classified as a ‘decision making error’, the former
as a ‘probability judgement error’. Notwithstanding their conceptual differences, however,
both effects can be described in terms of quantum interference effects (see also [10]).
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conjunction ‘A and B’ corresponds to the conceptual situation where ‘Linda
is a feminist and a bank teller’.

The conceptual situations A and B are represented by the unit vectors
|A〉 and |B〉, respectively, in a complex Hilbert space H. We assume that
|A〉 and |B〉 are orthogonal, i.e. 〈A|B〉 = 0, and represent the conjunction
‘A and B’ by the normalized superposition state vector 1√

2
(|A〉 + |B〉). The

decision measurement of a subject estimating whether ‘Linda is a feminist
and a bank teller’ is represented by the orthogonal projection operator M
of the Hilbert space H. Let us denote by µ(A), µ(B) and µ(A and B) the
probabilities that ‘Linda is a feminist’, ‘Linda is a bank teller’ and ‘Linda is a
feminist and a bank teller’, respectively. Note that these probabilities can also
be interpreted as membership weights of the item Linda with respect to the
concepts Feminist, Bank Teller and Feminist and Bank Teller, respectively,
in accordance with the analysis in Sect. 3. These probabilities are equal to
µ(A) = 0.83, µ(B) = 0.26 and µ(A and B) = 0.36 in [27].

To represent the experimental situation above we follow standard quantum
rules (see Sect. 2), as follows.

µ(A and B) =
1
2

(〈A|M |A〉+ 〈A|M |B〉+ 〈B|M |A〉+ 〈B|M |B〉)

=
µ(A) + µ(B)

2
+ <〈A|M |B〉 (28)

where <〈A|M |B〉 is the interference term. Our quantum model can be real-
ized in the three-dimensional complex Hilbert space C3 [8], as follows. We
distinguish two cases:

(i) if µ(A) + µ(B) ≤ 1, we put a(A) = 1 − µ(A), b(B) = 1 − µ(B) and
γ = π;

(ii) if µ(A) + µ(B) > 1, we put a(A) = µ(A), b(B) = µ(B) and γ = 0.
Moreover, we choose

|A〉 = (
√
a(A), 0,

√
1− a(A)) (29)

|B〉 =

{
ei(α+γ)

(√
(1−a(A))(1−b(B))

a(A) ,
√

a(A)+b(B)−1
a(A) ,−

√
1− b(B)

)
if a(A) 6= 0

eiα(0, 1, 0) if a(A) = 0
(30)

α =

{
arccos

(
2µ(A and B)−µ(A)−µ(B)

2
√

(1−a(A))(1−b(B))

)
if a(A) 6= 1, b(B) 6= 1

arbitrary if a(A) = 1 or b(B) = 1
(31)

As in Sect. 4, if µ(A)+µ(B) ≤ 1, we take M(C3) as the ray spanned by the vec-
tor (0, 0, 1), if µ(A)+µ(B) > 1, we take M(C3) as the subspace of C3 spanned
by the vectors (1, 0, 0) and (0, 1, 0). One can verify that this construction gives
rise to a quantum-mechanical representation of the conjunction fallacy situa-
tion with probabilities µ(A), µ(B) and µ(A and B) [8,25]. In particular, the
interference term in Eq. (23) is given by

<〈A|M |B〉 =
√

(1− a(A))(1− b(B)) cosα (32)



Effectiveness of the quantum-mechanical formalism in cognitive modeling 17

where α is the ‘interference angle for the conjunction’.
Equations (28) and (32) can be used to represent the conjunction fallacy

situation. If we put µ(A) = 0.83, µ(B) = 0.26 and µ(A and B) = 0.36, and
observe that µ(A) + µ(B) = 1.09 > 1, then we have a(A) = 0.83, b(B) = 0.26
and γ = 0. After making the calculations of Eqs. (29), (30) and (31), we obtain
|A〉 = (0.91, 0, 0.41), |B〉 = ei121.44

◦
(0.39, 0.33,−0.86) and we take M(C3) the

subspace of C3 spanned by the vectors (1, 0, 0) and (0, 1, 0). It is easy to verify
that this model indeed yields the correct numerical outcomes.

Interestingly enough, we can also provide a quantum representation for
the disjunction fallacy occurring in [27]. Indeed, by following the procedure in
Sect. 4 and solving Eq. (27) with respect to the interference angle β for the
disjunction, with µ(A) = 0.83, µ(B) = 0.26 and µ(A or B) = 0.60, we find
β = 81.08◦. Hence, the conceptual situation ‘Linda is a feminist’, ‘Linda is a
bank teller’ and ‘Linda is a feminist or a bank teller’ are represented by the
unit vectors |A〉, |B〉 and 1√

2
(|A〉+ |B〉), where |A〉 = (0.91, 0, 0.41) (Eq. (24)),

|B〉 = ei81.08
◦
(0.39, 0.33,−0.86) (Eq. (25)) in C3.

Conjunction and disjunction fallacies can be respectively interpreted as the
decision theory counterparts of overextension and underextension of concept
theory (see Sect. 3). The quantum aspects of contextuality, interference and
superposition can again naturally account for the observed deviations from
classical structures.

6 Possible applications to natural language processing

The application of techniques and procedures of the formalism of quantum
theory to domains such as information retrieval (IR) and natural language
processing (NLP) has produced various interesting results. These quantum-
based approaches mainly integrate standard methods in IR and NLP. Roughly
speaking, one considers ‘documents’ and ‘terms’ as basic ingredients, focusing
on the ‘document-term matrix’ which contains as entries the number of times
that a specific term appears in a specific document. Both terms and docu-
ments are represented by vectors in a suitable (Euclidean) semantic space,
and the scalar product between these vectors is a measure of the similarity
of the corresponding documents and terms. This approach has extended to
latent semantic analysis (LSA), hyperspace analogue to language (HAL), la-
tent Dirichlet allocation (LDA), etc. Search engines on the World Wide Web,
though introducing on top additional procedures, e.g., page ranking, mostly
rely on this linear space technique to determine a basic set of relevant docu-
ments. Notwithstanding its success, this procedure meets several difficulties,
including high computational costs and lack of incremental updates, which
limits its applicability.

Inspired by our general quantum modeling approach to cognition illus-
trated in this paper, we have recently put forward the first steps of a possible
conceptually new perspective for IR and NLP [32]. In this approach, we replace
terms by ‘entities of meaning’ as primary notions, which can be concepts or
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combinations of concepts. Such entities of meaning can be in different states
and change under the influence of the ‘meaning landscape’, or ‘conceptual
landscape’, or ‘conceptual context’. In addition, documents are not regarded
as collection of words, but as traces, i.e. more concrete states, of these enti-
ties of meaning, or concepts, or combinations of concepts. This means that a
document is considered to be a collapse of full states of different entities of
meaning, each entity leaving a trace in the document. Words are only spots of
these traces and they are not the main meaning carriers. The technical focus
of our approach consists in trying to reconstruct the full states of the different
entities of meaning from experiments that can only spot their traces, i.e. that
can only look at words in documents.

We believe that aspects of our quantum cognition perspective will help in
formulating and making technically operational this ‘inverse problem’, con-
sisting in ‘reconstructing the full states of the different entities of meaning,
starting from their collapsed states as traces of word spots in documents’. We
plan to develop these preliminary aspects in the next future, thus inquiring
more deeply into this fascinating problem.
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