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SUMMARY

This paper proposes an LMI-based approach for studying the stability of feedback interconnections of a
finite dimensional LTI system and a nonlinear element that consists of several identical scalar nonlinearities
that have restrictions on their sector and slope. The results are based on the integral quadratic constraint sta-
bility analysis framework and other recent results that give a sharp characterisation of stability multipliers for
monotone, repeated scalar nonlinearities. Several examples show the effectiveness of the proposed approach;
the lack of conservatism in the results is noteworthy. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper re-visits the much-studied stability problem depicted in Figure 1 in which P.s/ is a
finite dimensional LTI system and ˆ../ W Lm2e 7! Lm

2e is a static time-invariant nonlinear element.
Depending on the information available about ˆ../, different criteria may be used to study the sta-
bility of the interconnection. Commonly, the Circle and Popov criteria are used to assess the stability
of such systems, but when further information about the nonlinearity is known, and depending on
the computational resources available, various other criteria may be used instead. In order to keep
the paper reasonably succinct, we do not review all available approaches, but the interested reader
is encouraged to consult [1–6] and references therein.

Of all the various stability criteria available for the study of the system in Figure 1, one of the
most promising was proposed in the late 1960s by Zames and Falb [7]. Zames and Falb proved that

Figure 1. System under consideration.
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if ˆ../ was a scalar valued nonlinearity, which was either (i) monotone non-decreasing and within
some finite sector or (ii) its slope was restricted to lie in a given interval, then stability could be
examined using a particular type of multiplier. In essence, reference [7] showed that a certain class
of multipliers – the so-called Zames–Falb multipliers M.s/ 2MZF – were positivity preserving:
that is, the inner product hM ,ˆi> 0 when M.s/ 2MZF . In the causal case, this meant that if one
could establish passivity of M.s/P.s/, then the system in Figure 1 would be stable. This result is
an obvious improvement over standard passivity results, which do not incorporate multipliers, and
allows one to prove stability of a much larger class of systems (see [6] for more information on the
use of multipliers in stability analysis). In particular, stability analysis carried out using Zames–Falb
multipliers, when appropriate, is often significantly less conservative than that carried out using the
Popov or Circle criteria, making the Zames–Falb multipliers an appealing analysis tool.

The main drawback of the work of reference [7] was that to obtain the least conservative results,
in the sense that stability held for the largest class of ˆ../, one had to search over the whole class
of MZF , which constitutes an infinite-dimensional optimisation problem. A further drawback was
that the original results in [7] were only derived for scalar nonlinearities, ˆ../ W L2e 7! L2e and
although multivariable extensions were envisaged, it was not until Safonov’s more recent work [8]
that these were correctly proved.

For the aforementioned reasons, although the Zames–Falb multipliers were a breakthrough in
stability analysis, their use in mainstream control engineering has been fairly limited since their
introduction. Recently, however, researchers have found renewed interest in stability analysis using
Zames–Falb multipliers. Research pioneered by Safonov and co-authors has considerably improved
the understanding of such multipliers in the multivariable case, extending the results of [7] to the
general MIMO case [8], then to repeated scalar nonlinearities [9] and finally to repeated MIMO non-
linearities [10]. In each case, Safonov and colleagues derived the largest class of Zames–Falb-type
multipliers that preserved positivity of hM ,ˆi. Recently, the work of [8, 9] has also been extended
to allow the nonlinearity to be static and time periodic [11].

In tandem with these theoretical results, the late 1990s saw the introduction of integral quadratic
constraint (IQC)-based analysis [12, 13], which gave a common framework for stability analy-
sis problems involving different nonlinearities and in which the Zames–Falb multipliers played
a significant role. Moreover, the work presented in [13] was able to provide an IQC framework
for Zames–Falb multipliers for repeated scalar nonlinearities, and although, as proved in [9], such
a class was actually more limited than necessary, this represented a major step forward in the
computation of such multipliers. However, even in [13] (and [12]), the Zames–Falb multipliers
were still chosen in a relatively ad hoc manner: in essence, a simple multiplier structure satisfying
the appropriate Zames–Falb conditions M.s/ 2MZF was selected, parameters were then chosen
in an ad hoc manner, and finally, stability was checked via IQC tools. Although such an approach
can be effective for simple systems and offers improvement over many other techniques, such ad
hoc choices of multiplier parameters is not satisfactory in general.

This lack of guidance in multiplier construction was addressed to some extent in [14] where it was
shown, for SISO systems, that when the Zames–Falb multipliers were restricted to have a special
structure – that is, to be causal and to have order equal to the LTI part of the interconnection – the
stability of such systems could be cast as an LMI feasibility problem together with a line search.
The rationale behind this work was to obtain tractability by restricting the class of multipliers over
which one searched. Thus, while in principle the price paid for tractability was conservatism, it was
shown in [14–16] that, despite this restriction in the class of multipliers, the results were encouraging
and, for slope-restricted nonlinearities, were able, in some cases, to outperform the Lyapunov-based
methods of [4]. Related results [17] in which the multiplier was restricted to be anti-causal were
shown, in some cases, to lessen conservatism further. Further results, using a different approach,
have recently been contributed in [18].

The obvious weakness of the results in [14] is their limited applicability, because only SISO
systems were considered. The goal of this paper is to extend the results of [14] to a class of MIMO
systems, namely systems in which ˆ../ takes the form of a repeated scalar nonlinearity. As argued
in [13] and [9], although such a condition onˆ../ seems restrictive, simple ‘loop shifting’ (see [19])
can often be employed to manipulate the system nonlinearities into such a form. In this paper, it
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will be assumed that the repeated nonlinearities are both slope restricted and sector bounded, in a
similar way to [16]. While it is easy to see that slope restriction implies a sector bound of the same
size, it may be the case that the nonlinearity in question satisfies a ‘tighter’ sector bound and thus
information about this sector bound can be used to reduce conservatism in the results. While the
development of the MIMO results takes inspiration from the scalar case, the precise details change
in order to cope with the multivariable nature of the problem, and in particular, the results appeal to
the recent work of [9] in order to obtain appropriate conditions on the Zames–Falb multiplier. The
paper also uses the IQC machinery to develop the results and, from one perspective, may be viewed
as an improvement on the work of [13] in which the multiplier is chosen more efficiently and from
the larger set proposed by [9]. A preliminary version of this paper appeared in [20].

Notation: Notation is standard throughout. Hij denotes the ij ’th element of the matrix H ; Hi
denotes the i’th row/column of the matrix H (meaning discernible from context). The L2 norm

of a vector-valued function x.t/ is defined as kxk2 WD
qR1

0 kx.t/k
2dt where kxk denotes a

vector’s Euclidean norm. The space of m-dimensional vector-valued functions with finite L2 norm
is denoted by Lm2 and the extended space Lm2e . In instances when the dimension of the space is not
important, we simply write x 2 L2 and x 2 L2e , respectively. Similarly, the L1 norm of a scalar-
valued function ı.t/ is defined as kık1 WD

R1
0
kı.t/kdt , and the space where this norm is finite is

denoted by L1. With some abuse of notation, we say that a transfer function matrix H.s/ 2 L1 if
the impulse responses of its elements Hij .t/ are all in L1. The space of real rational m� n transfer
function matrices, bounded on the imaginary axis, is denoted by RLm�n1 ; the subspace of RLm�n1 ,
which is analytically continuous in the right half complex plane, is denoted by RHm�n

1 . An operator
H is said to be bounded if kH.u/k6 �kuk for all u 2 L2e and some � > 0.

2. NONLINEARITIES AND INTEGRAL QUADRATIC CONSTRAINTS

Consider Figure 1 in which P.s/ is the finite dimensional LTI part of the system with state-space
realisation

P.s/�

�
Ap Bp
Cp Dp

�
(1)

where Ap 2 Rn�n, Bp 2 Rn�m, Cp 2 Rm�n and Dp 2 Rm�m. In this paper, we assume that ˆ../
belongs to the class of so-called repeated static scalar nonlinearities, NRS , defined below.

Definition 1 (Repeated scalar nonlinearity)
ˆ../ W Lm2e 7! Lm2e 2NRS if

(i) It is memoryless and has the form

ˆ../D

2
6664
�../
�../

...
�../

3
7775 �../ WR 7!R

(ii) k�.u/k< �kuk for all u 2 L2e
(iii) �.0/D 0
(iv) �.u/D��.�u/

The oddness assumption (meaning the nonlinearity is symmetric) in item (iv) is actually not
necessary but will be assumed here for brevity of presentation. This paper will consider several
nonlinearities belonging to this class. Of particular interest are the so-called sector bounded nonlin-
earities, where a static nonlinearity �../ is said to belong to the sector Œ0,ˇ� (�../ 2 SectorŒ0,ˇ�) if,
for some ˇ > 0, the following inequality holds.

06 �.x/x 6 ˇx2 8x 2R, ˇ > 0

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2013)
DOI: 10.1002/rnc



M. C. TURNER, M. L. KERR AND J. SOFRONY

Similarly, �../ is said to have slope restriction Œ0,˛� (�../ 2 @Œ0,˛�) if, for some ˛ > 0, the following
inequality holds.

06 �.x/� �.y/
x � y

6 ˛ 8x,y 2R, ˛ > 0

It is straightforward to see that �../ 2 @Œ0,˛� ) �../ 2 SectorŒ0,˛�, but the converse is not true.
It may be that a nonlinearity satisfying a certain slope restriction, @Œ0,˛�, may satisfy tighter sector
bounds, that is, �../ 2 SectorŒ0,ˇ�, with ˇ < ˛. It is emphasised that many nonlinearities that are
encountered in practice are both sector and slope bounded; the saturation and deadzone nonlinear-
ities are two common examples. For such nonlinearities, the sector and slope bounds are the same,
but this is not always the case.

Finally, a nonlinearity �../ is said to be monotonically non-decreasing if the following
inequality holds:

.�.x/� �.y//.x � y/> 0 8x,y 2R

The classes of nonlinearity considered in the remainder of the paper are now formally introduced.

Definition 2 (Sector-bounded/slope-restricted nonlinearities)

1. Sector-bounded nonlinearity: ˆ../ 2NRS
�=ˇ

if ˆ../ 2NRS , and �../ 2 SectorŒ0,ˇ�, ˇ > 0.

2. Slope-restricted nonlinearity: ˆ../ 2NRS
˛=�

if ˆ../ 2NRS , and �../ 2 @Œ0,˛�, ˛ > 0.

3. Sector-bounded/slope-restricted: ˆ../ 2NRS
˛=ˇ

if ˆ../ 2NRS
˛=�
\NRS

�=ˇ
.

4. Monotone non-decreasing nonlinearity: ˆ../ 2 NRS
M if ˆ../ 2 NRS , ˆ../ 2 NRS

�=ˇ
for some

ˇ 2 .0,1/ and �../ is monotonically non-decreasing.

Remark 1
NRS
�=ˇ

is simply the class of repeated scalar nonlinearities in which each scalar nonlinearity is sector
bounded with the same bound. It is easy to see that typical nonlinearities such as multivariable
saturations/deadzones can be ‘loop shifted’ into this form. Likewise, NRS

˛=�
is the set of repeated

scalar nonlinearities in which each entry is slope restricted by the same bound. Again, many com-
mon nonlinearities can be ‘loop shifted’ to be in this form. A sub-class of NRS

˛=�
was studied in [21].

NRS
˛=ˇ

is simply the intersection of the two previous classes of nonlinearities. Note that, trivially,

NRS
˛=�
D NRS

˛=˛
; that is, the slope restriction implies the same sector bound. However, it is possi-

ble for the sector bound to be smaller than the slope restriction; that is, NRS
˛=ˇ
� NRS

˛=�
D NRS

˛=˛
in

general; that is, using ˇ may reduce conservatism.

Remark 2
NRS
M is basically the class of monotone non-decreasing nonlinearities considered in [7] but

generalised to the repeated scalar case ([9]). The significance of this class of nonlinearities is that it
can be proved, under mild conditions, that if a nonlinearity ˆ../ 2 NRS

˛=�
, then loop shifting can be

used to transform it into an equivalent nonlinearity of the form Q̂ ../ 2 NRS
M , effectively meaning

that stability results available for the class NRS
M can be used for the class NRS

˛=�
. In our work, this

means that the new Zames–Falb multipliers derived by [9] can be applied to the class of nonlin-
earities considered in this paper. This is important because it allows us to obtain results of reduced
conservatism compared with [13] and in fact is easier to use in obtaining convex conditions. See [6]
for a more comprehensive discussion of loop shifting.

The main objective of this paper is to obtain tractable results that can be used to assess the stability
of the feedback interconnection described by Figure 1. In order to do this, extensive use is made of
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the IQC analysis framework introduced in [5, 12] and extended in [13, 22]. In general, it is said that
a nonlinearity ˆ../ satisfies the IQC defined by ….j!/ if ˆ is such that

Z 1
�1

�
Oy.j!/

Ou.j!/

��
….j!/

�
Oy.j!/

Ou.j!/

�
d! > 0 (2)

where Oy.j!/ and Ou.j!/ are the Fourier Transforms of y.t/ and u.t/D ˆ.y.t//, respectively. The
structure of ….j!/ depends on the properties of the nonlinearity ˆ../. There are several different
IQCs that will be used in this paper.

1. The Zames–Falb IQC. The ‘Zames–Falb’ IQC used here is a combination of the one presented
in [13] with the relaxation suggested by [9]. More precisely, if ˆ../ 2 NRS

˛=�
, it satisfies the

IQC defined by …D…ZF
˛ .j!/ where

…ZF
˛ .j!/D

�
0 ˛M �.j!/

˛M.j!/ �M �.j!/�M.j!/

�
(3)

and M.s/ is a multiplier such that

M.s/DH0 �H.s/ 2RLm�m1 (4)

where

H0,i i >
mX

jD1,j¤i

jH0,ij j C kHij k1 8i 2 ¹1, : : : ,mº (5)

H0,i i >
mX

jD1,j¤i

jH0,j i j C kHj ik1 8i 2 ¹1, : : : ,mº (6)

This class of multiplier,M.s/, is somewhat broader than that in [13] because the improvement
suggested by [9] does not require the multiplier M.s/ to be symmetric: only the row and col-
umn dominance conditions in (5) and (6) are stipulated. This improvement is both important
in lessening conservatism of the results and also in allowing our new results to be cast as a
quasi-convex optimisation problem.

2. The Circle IQC. It is well known (see, e.g. [5]) that if ˆ../ 2 NRS
�=ˇ

, it satisfies the IQC given

by …D…C
ˇ

, where

…C
ˇ .j!/D

�
0 ˇV

ˇV �2V

�
(7)

and V is any positive definite diagonal matrix. Note that because ˆ 2 NRS
˛=�
H) ˆ 2 NRS

�=˛�
actually ˆ 2NRS

˛=˛

�
, this multiplier can be used with any slope restricted nonlinearity.

3. The Popov IQC. Following [22], if ˆ../ 2NRS
�=ˇ

, it satisfies the IQC given by …D…P where

…P .j!/D

�
0 .j!ƒ/�

j!ƒ 0

�
(8)

where ƒ is an (indefinite) diagonal matrix. As with the Circle IQC, the Popov IQC can also
be used in the analysis of slope-restricted nonlinearities.

One of the attractive features of IQC analysis [5, 12, 13] is that if a nonlinearity satisfies more
than one IQC, these IQCs can be combined. Hence, when ˆ 2NRS

˛=ˇ
, it satisfies the IQC defined by

…RS
˛=ˇ
WD…ZF

˛ C…P C…C
ˇ

, which is given later.

…RS
˛=ˇ .j!/ WD

�
0 .ˇV C j!ƒC ˛M.j!//�

ˇV C j!ƒC ˛M.j!/ �2V �M �.j!/�M.j!/

�
(9)
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where M.s/ D H0 �H.s/ such that inequalities (5) and (6) are satisfied, ƒ is a diagonal matrix
and V is a positive definite diagonal matrix. Theorem 1 of [22] then allows the following theorem to
be stated.

Theorem 1
Consider the interconnection in Figure 1 where P.s/ 2 RH1 and ˆ../ W Lm2e 7! Lm2e 2 NRS

˛=ˇ
for

some ˛ > 0 and ˇ > 0. Assume that the closed-loop system is well posed. Then, the system is stable
if the following inequality is satisfied.

�
P.j!/

I

��
…RS
˛=ˇ .j!/

�
P.j!/

I

�
< 0 8! 2R (10)

Remark 3
Strictly speaking, ‘stable’ here means that L2 boundedness of the exogenous signals, w and v,
implies L2 boundedness of all loop signals; that is, ‘stability’ of Figure 1 means ‘L2 stability’ of
Figure 1. However, as P.s/ 2 RHm�m

1 and ˆ../ is static, L2 stability of Figure 1 actually implies
global asymptotic stability of the origin of the unforced system.

Remark 4
In this form, Theorem 1 is quite difficult to verify efficiently; one needs to ensure inequality (10)
holds for M.s/ of a very general structure. In [12, 13, 23], the approach advocated has been to fix a
structure of M.s/ such that inequalities (5) and (6) hold and then to check inequality (10); no real
guidance on how to choose M.s/ was given, and the results in [13] basically reduce to the checking
of ad hoc structures for M.s/, which, although possible and useful for some systems, is rather time
consuming in general. In [14, 16], it was shown how, by restricting the structure of M.s/ to be
causal and of order equal to that of P.s/, it was possible to choose M.s/ much more systematically
using LMIs and a line search. Those results were confined to the case of SISO systems; here, we
generalise those results to MIMO systems with repeated scalar nonlinearities.

3. MAIN RESULTS

The aim of this section is to provide a tractable way of determining whether the system in Figure 1
is stable when ˆ 2NRS

˛=ˇ
. If the sector information is discarded, that is, if ˆ 2NRS

˛=�
and the Popov

and Circle IQC’s are ignored, the results will reduce to a multivariable generalisation of those in
[14]. Related results will be discussed after the main result has been presented

3.1. Preliminary results

There are a number of preliminary results required for proving the main results.

Fact 1
…˛=ˇ .j!/ can be factorised as …˛=ˇ .j!/D U

�.j!/W U.j!/ where

U.j!/ WD

2
64

�˛I I

0 I

�˛H.j!/C ˇV C j!ƒ H.j!/� V
0 �I

3
75 (11)

W WD

2
664

0 �H 00 0 0

�H0 0 0 0

0 0 0 �I
0 0 �I 0

3
775 (12)
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Proof
Follows by direct calculation. �

Lemma 1
Consider a transfer function matrix H.s/ 2 RHm�m

1 . Then, kHij k1 6 �ij for some i , j if there
exist positive definite matrices Yj > 0 and scalars �j > 0 and �j > 0 such that the following matrix
inequalities hold for all i , j 2 ¹1, : : : ,mº:�

A0HYj C YjAH C �jYj YjBH ,j

? ��j

�
< 0 (13)

2
4 �jYj 0 C 0H ,i

? .�ij ��j / D0H ,ij

? ? �ij

3
5> 0 (14)

Proof
This result is a slight generalisation of that proved in [24] – see appendix for proof. �

Lemma 2
Consider the real matrixH0 2Rm�m and positive scalars �i > 0 8i 2 ¹1, : : : ,mº. The inequalities

H0,i i >
mX

jD1,j¤i

jH0,ij j C �i 8i 2 ¹1, : : : ,mº (15)

hold if and only if there exists a real matrix R 2Rm�m such that

1. Rij > 0 8i ¤ j

2. H0,ij CRij > 0 8i ¤ j

3. H0,i i >
Pm
jD1,j¤i H0,ij C 2Rij C �i 8i 2 ¹1, : : : ,mº

Proof
This lemma is a non-symmetric generalisation of a result of [21]. Symmetry is not required, and the
proof follows easily from that in [21]. Note that this result allows an inequality involving a nonlinear
function of a matrix variable H0 to be verified by a set of linear conditions given in items 1–3. �

3.2. Main result

The following is the main result of the paper.

Theorem 2
Assume P.s/ 2RHm�m

1 with Dp � 0 and that ˆ../ 2NRS
˛=ˇ

. Then, the system in Figure 1 is stable
if there exist positive definite matrices S11, P11, a positive definite diagonal matrix V, a diagonal
matrix ƒ, positive scalars �j , �j , �ij , and unstructured matrices AH, BH, CH and DH, H0 and R
such that the following inequalities hold:
2
4

S11Ap CA
0

pS11 S11Ap CA
0

pP11 � ˛C
0

pB0HCA0H S11Bp C ˛C
0

p.H0 �DH/
0CC0HC ˇC

0

pVCA0pC
0

pƒ

? A0pP11C P11Ap �BH˛Cp � ˛C
0

pB0H P11Bp CBHC ˛C
0

p.H0 �DH/
0C ˇC 0pVCA0pC

0

pƒ

? ? .DH �H0/0C .DH �H0/� 2VCƒCpBp CB 0pC
0

pƒ

3
5< 0

(16)�
�AH �A0HC �j .P11 � S11/ BH,j

? ��j

�
< 0 8j 2 1, : : : ,m (17)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (2013)
DOI: 10.1002/rnc



M. C. TURNER, M. L. KERR AND J. SOFRONY

2
4 ��j .S11 � P11/ 0 CH,i

0

? �ij ��j DH,ij

? ? �ij

3
5> 0 8i , j 2 1, : : : ,m (18)

H0,i i >
mX

jD1,j¤i

H0,ij C 2Rij C
mX
jD1

�ij 8i 2 1, : : : ,m (19)

H0,i i >
mX

jD1,j¤i

H0,j i C 2Rj i C
mX
jD1

�j i 8i 2 1, : : : ,m (20)

Rij > 0 8i , j 2 1, : : : ,m (21)

H0,ij CRij > 0 8i , j 2 1, : : : ,m (22)

Remark 5
For fixed ˛ > 0,ˇ > 0 and �j > 0 for all j 2 ¹1, : : : ,mº, conditions (16)–(22) form a system
of linear matrix inequalities, which can be solved efficiently using modern software. Thus, if the
sector/slope bounds are known a priori, it is relatively easy to verify stability. If, instead, it is nec-
essary to compute the maximum sector/slope size for which the system remains stable, this can be
performed by combining the LMIs in (16)–(22) with a bisection over ˛ (fixing ˇ D �˛ for some
constant � 2 Œ0, 1�) and a further search over �j . The key point is that Theorem 2 gives a relatively
efficient, if potentially conservative, way of determining the stability of Figure 1.

3.3. Proof of Theorem 2

The proof of Theorem 2 basically requires us to translate the frequency domain inequality in
Theorem 1 and the L1 constraints in inequalities (5) and (6) into matrix inequalities. There are three
distinct parts of the proof, which, as will be shown, are coupled through some matrix variables.

Part 1: Frequency domain condition
It is necessary to convert the frequency domain inequality in Theorem 1 into a set of matrix

inequalities. This part of the proof is shared with that reported in [14, 15], and so it will only be
sketched. First note that inequality (10) can be written�

P.j!/

I

��
U.j!/�WU.j!/

�
P.j!/

I

�
< 0 8! 2R (23)

where U.j!/ and W are given in Fact 1. Assuming that H.s/ is causal, of order equal to P.s/ and
has state-space realisation H.s/ � .AH ,BH ,CH ,DH /, it follows that a state-space realisation of
U.s/ŒP.s/0 I �0 � . NA, NB , NC , ND/ is given by

�
NA NB
NC ND

�
WD

2
66666664

Ap 0 Bp

�˛BHCp AH BH

�˛Cp 0 I

0 0 I

�˛DHCp C ˇVCp CƒCpAp CH DH CƒCpBp � V

0 0 �I

3
77777775

Using this state-space realisation and the KYP Lemma [25], it then follows that inequality (23) is
satisfied (and hence, inequality (10) is satisfied) if there exists a symmetric matrix P such that�

NA0P CP NA P NB
NB 0P 0

�
C

�
NC 0

ND0

�
W
�
NC ND

�
< 0 (24)
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Under the additional assumption that P > 0, and noting that because AH 2 Rn�n, it follows that
P 2 R2n�2n and that P is nonsingular. Hence, partitioning P and Q WD P�1 into sub-matrices of
dimension n� n �

Q11 Q12

Q012 Q22

� �
P11 P12

P 012 P22

�
D

�
I 0

0 I

�
(25)

and introducing the matrices

…1 WD

�
Q11 I

Q012 0

�
…2 WD

�
I 0

P11 P12

�
(26)

it follows that using the congruence transformation diag.…1, I / on inequality (24) and carrying out
some algebra similar to [14] yield matrix inequality
2
6666664

ApQ11CQ11A
0

p

Ap CQ11A
0P11 � ˛Q11C

0

pB
0

HP
0

12

CQ12A
0

HP
0

12

Bp C ˛Q11C
0

p.H0 �DH /0CQ12C
0

H

CQ11

�
ˇC 0pVCA0pC

0

pƒ
	

?
P11Ap CA0pP11 � ˛P12BHCp

� ˛C 0pB
0

HP
0

12

P11Bp CP12BH C ˛C 0p.H0 �DH /0

C
�
ˇC 0pVCA0pC

0

pƒ
	

? ?
� .H0 �DH /� .H0 �DH /0 � 2V
CƒCpBp CB

0

pC
0

pƒ

3
7777775
<0

(27)
Applying the congruence transformation diag.Q�111 , I , I / D diag.S11, I , I / to inequality (27) and
defining

AH WD P12AHQ
0
12S11 (28)

BH WD P12BH (29)

CH WD CHQ
0
12S11 (30)

DH WDDH (31)

yield inequality (16).
Part 2: The L1 conditions
The previous part of the proof was similar to that given in [14, 16] and was included for

completeness. However, in the multivariable case, the multiplier M.s/ needs to satisfy the rather
more complex ‘L1 ’ conditions in inequalities (5) and (6). These need more careful consideration
than the scalar case presented in [14]. First note that if

kHij k1 6 �ij , �ij > 0 8i , j 2 ¹1, : : : ,mº (32)

sufficient conditions for inequalities (5) and (6) to hold are given by

H0,i i >
mX

jD1,j¤i

jH0,ij j C

mX
jD1

�ij 8i 2 ¹1, : : : ,mº (33)

H0,i i >
mX

jD1,j¤i

jH0,j i j C

mX
jD1

�j i 8i 2 ¹1, : : : ,mº (34)

Defining

�r ,i WD

mX
jD1

�ij > 0 (35)
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�c,i WD

mX
jD1

�j i > 0 (36)

inequalities (33) and (34) become

H0,i i >
mX

jD1,j¤i

jH0,ij j C �r ,i 8i 2 ¹1, : : : ,mº (37)

H0,i i >
mX

jD1,j¤i

jH0,j i j C �c,i 8i 2 ¹1, : : : ,mº (38)

Thus, sufficient conditions for inequalities (5) and (6) to hold are given by inequalities (32), (37)
and (38).

Direct application of Lemma 2 implies that inequalities (37) and (38) hold if and only if
inequalities (19)–(22) in the Theorem statement hold.

Furthermore, a sufficient condition for inequalities (32) to hold is given by direct application of
Lemma 1; that is, inequalities (13) and (14) must hold. Note that there are problematic products of
matrix variables Yj and the multiplier state-space matrices AH and BH . To remove these products,
and again, at the price of some conservatism, let Yj WD P22 8j 2 ¹1, : : : ,mº. This then gives the
inequalities: �

A0HP22CP22AH C �jP22 P22BH ,j

? ��j

�
< 0 (39)

2
4 �jP22 0 C 0H ,i

? .�ij ��j / D0H ,ij
? ? �ij

3
5> 0 (40)

Furthermore, applying the congruence transformation diag.Q12, I / to each of the j inequalities
(39) gives the j inequalities�

Q12A
0
HP22Q

0
12CQ12P22AHQ

0
12C �jQ12P22Q

0
12 Q12P22BH ,j

? ��j

�
< 0 (41)

Next, from (25), it follows that Q12P22 D �Q11P12. Using the inequalities in (41) and noting
further from (25) that Q11P12Q

0
12 DQ11.I �P11Q11/ the j inequalities are obtained

�
�Q12A

0
HP

0
12Q11 �Q11P12AHQ

0
12 � �j .Q11 �Q11P11Q11/ �Q11P12BH ,j

? ��j

�
< 0 (42)

Then, using the congruence transformation diag.Q�111 ,�I /D diag.S11,�I / yields
�
�S11Q12A

0
HP

0
12 �P12AHQ

0
12S11 � �j .S11 � P11/ P12BH ,j

? ��j

�
< 0 (43)

Using (28)–(29) then yields the inequalities (17) in the theorem. In a similar way, applying the
congruence transformation diag

�
Q�111Q12, I , I

	
to each of the inequalities (40) gives after similar

working to the above
2
4 �j .S11 � P11/ 0 S11Q12C

0
H ,i

? �ij ��j D0H ,ij
? ? �ij

3
5> 0 (44)

Making these inequalities strict and recalling (28)–(31) then yield inequality (18).
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Part 3: Positive definiteness of P
In Part 1 of the proof, it was assumed that P > 0. Here, we show that satisfaction of the LMIs
indeed guarantees that this is indeed the case. Note that P > 0 is equivalent to …01P…1 > 0, which
can be written as

…01P…1 D

�
Q11 I

I P11

�
> 0 (45)

This is equivalent, by the Schur complement, to P11 � S11 > 0, which is guaranteed by
inequality (18).

Remark 6

� Conservatism: Compared with the SISO case described in [14], there are more potential sources
of conservatism in the multivariable results derived here. As with the SISO case, conservatism
is introduced by the restriction thatM.s/ be stable, causal and of order equal to P.s/. However,
additional conservatism is introduced by bounding each kHij k1 6 �ij : only one such bound
is introduced in the SISO case. Additionally, to obtain conditions that are convex, it was nec-
essary to stipulate Yj D P22 8j , which introduces yet more conservatism into the results. As
with the SISO case, the goal here is to trade conservatism with tractability: again, we note that
in its original form (Theorem 1), the search over M.s/ is an infinite-dimensional optimisation
problem and thus very difficult to solve. Noting the remarks in [26], however, the conservatism
in the ‘L1 ’ conditions can sometimes detrimentally influence conservatism.
� Convexity: As with the SISO case, a remark about convexity is warranted. Note that the

inequalities in Theorem 1 are linear for fixed �j and for given sector/slope bounds. Although
it was initially thought that �j was not too influential on the results ([14]), recent work has
shown that this is not to be the case ([26]) and thus some search over �j appears to be benefi-
cial. When the slope/sector bounds are unknown, it appears reasonable to fix ˇ D �˛, and then
Theorem 1 reduces to an LMI plus a bisection over ˛ and a search over �j .

3.4. Related results

Theorem 2 applies to nonlinearities of the class NRS
˛=ˇ

; that is, the sector and slope bounds are not
necessarily the same. As observed earlier, in certain nonlinearities of interest, the sector and slope
bounds are identical. In this case, it is natural to ponder the existence of improved results. In fact,
if ˆ 2 NRS

˛=˛
(sector bound given by slope restriction), the Circle IQC used in the derivation of

Theorem 2 can be relaxed.

Lemma 3
Let ˆ../ 2NRS

˛=˛
, and let uDˆ.y/; then, the following inequalities hold:

(i)

ˆ.y/0V.˛y �ˆ.y//> 0 8y 2Rm

(ii)
Z 1
�1

�
y.j!/

u.j!/

�� �
0 ˛V

˛V �2V

� �
y.j!/

u.j!/

�
> 0 8u 2 Lm2e

where V D V 0 is such that Vi i >
Pm
jD1,j¤i jVij j 8i .

Proof
Item (i) has its origins in the work of [21] who stated it for the case where NRS

1=?
. A more

general proof is given here. First, let ….y/ WD ˛y � ˆ.y/, with each element of …../ given by
	.yi /D ˛yi � �.yi /; then, inequality (i) is equivalent to
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ˆ.y/0V….y/D

mX
iD1

mX
jD1

�.yi /Vij	.yj / (46)

D

mX
iD1

�iVi i	i C

mX
iD1

mX
jD1,j¤i

�iVij	j (47)

D

mX
iD1

0
@�i	iVi i C

mX
jD1,j¤i

�iVij	j

1
A (48)

D

mX
iD1

0
@�i	iVi i C

mX
jD1,j¤i

�i	j jVij jsign.Vij /

1
A (49)

where the shorthand �i WD �.yi / and 	i WD 	.yi / has been used. Now, as �i	i > 0 and as
Vi i >

Pm
jD1,j¤i jVij j, it follows that

ˆ.y/0V….y/>
mX
iD1

0
@�i	i

mX
jD1,j¤i

jVij j C

mX
jD1,j¤i

�i	j jVij jsign.Vij /

1
A (50)

D

mX
iD1

mX
jD1,j¤i

jVij j.�i	i C sign.Vij /�i	j / (51)

D

mX
iD1

mX
jD1,j¤i

jVij j�i .	i C sign.Vij /	j / (52)

By symmetry of V , this becomes

D
1

2

mX
iD1

mX
jD1,j¤i

jVij j
�
�i .	i C sign.Vij /	j /C �j .	j C sign.Vj i /	i /

	
(53)

D
1

2

mX
iD1

mX
jD1,j¤i

jVij j.�i C sign.Vij /�j /.	i C sign.Vij /	j / (54)

This expression will be non-negative if �../ and 	../ are monotonically non-decreasing functions.
Note that as �../ is slope restricted in Œ0,˛�, it is monotonically non-decreasing. Furthermore,
because 	i D ˛.yi / � �.yi /, monotonicity of 	 holds if the following expression is non-negative
for all y1,y2 2R:


.y1,y2/ WD .	.y1/� 	.y2// .y1 � y2/ (55)

D .˛.y1 � y2/� .�.y1/� �.y2/// .y1 � y2/ (56)

D



˛ �

�.y1/� �.y2/

y1 � y2

�
.y1 � y2/

2 (57)

However, as � 2 @Œ0,˛� by assumption, then 
.y1,y2/> 0, and hence 	../ is monotonically non-
decreasing. In turn, this implies that ˆ.y/0V….y/ is non-negative and hence inequality (i) holds. It
is easy to see that inequality (i) implies inequality (ii) and hence the proof is complete. �

Therefore if ˆ../ 2 NRS
˛=˛

, that is, if the slope restriction and sector bound are identical, ˆ../

satisfies the IQC (2) defined by ….j!/D…C�DD
˛ .j!/ with

…C�DD
˛ .j!/D

�
0 ˛V

˛V �2V

�
(58)

where V D V 0 is such that Vi i >
Pm
jD1,j¤i jVij j 8i . This condition on V is weaker than the

requirement for V to be diagonal, and lower conservatism in the results may be expected.
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Thus, in the case that ˆ../ 2 NRS
˛=˛

, it satisfies the IQC defined by … D Q…RS
˛=˛
D …ZF

˛ C…P C

…C�DD
˛ . In a similar way to that described in the previous subsection, the following theorem can

then be proved.

Theorem 3
Assume that P.s/ 2 RHm�m

1 with Dp � 0 and that ˆ../ 2 NRS
˛=˛

. Then, the system in Figure 1
is stable if there exist positive definite matrices S11, P11,V, a diagonal matrix ƒ, positive scalars
�j , �j , �ij , unstructured matrices AH, BH, CH DH, H0 and R such that inequalities (16)–(22) are
satisfied, and in addition,

Vi i >
mX

jD1,j¤i

jVij j 8i (59)

Remark 7
Theorems 2 and 3 make use of the Popov multiplier …P in their derivations. From a state-space
perspective, this requires the linear subsystem P.s/ to be strictly proper (i.e. Dp � 0). If the
linear subsystem is not strictly proper, then results based on just the Zames–Falb multiplier may
be derived. In this case, the ‘passivity’ inequality in Proposition 2 of [14] can be combined with
inequalities (17)–(22) from Theorem 2 to obtain a direct multivariable extension of [14]. However,
it has been noted ([16,17]) that the inclusion of a Popov term appears to offer some useful numerical
flexibility – this will be demonstrated in the next section.

4. EXAMPLES

This section compares the results derived here to what appears to be the state-of-the-art in the
literature, namely those of [4]. Note that the results of [4] incorporate, as special cases, the Popov
criterion and several other stability criteria. It has already been demonstrated that the results of [4]
are less conservative than those of Haddad and Kapila [1], Suykens et al. [3] and Chen and Wen [2].
As noted in [4,14], Park’s method is also convex, making it relatively easy to compute a solution. In
order to apply both the results here and the results of Park, it is necessary to stipulate a relationship
between the sector bounds and the slope restrictions.‡ For simplicity, we letˆ../ 2NRS

˛=˛
and attempt

to maximise the value of ˛ for which the relevant criteria guarantee stability. It is important to note
that the linear constant gain ˛I 2 NRS

˛=˛
, so an upper bound on the maximum achievable ˛ can be

determined by simply searching for the maximum ˛ such that the eigenvalues of ApC˛BpCp have
strictly negative real part. This is important because this gives one an idea of how conservative the
results derived here are.

Table I shows a comparison of the maximum sector/slope sizes obtained using the results of
Theorem 3, Park’s results [4] and the upper bound, for a number of examples. Some of these exam-
ples have been taken from the literature, but most have been randomly generated. Rather than giving
a long list of state-space matrices in this paper, the reader is directed to [27] for Matlab code for
the generation of the examples and results. The values of � D �j8i 2 ¹1, : : : ,mº are also given:
some limited search of � was performed, but these values should not be considered optimal in any
way. The results calculated using Theorem 3 all use a proper (rather than strictly proper) Zames–
Falb multiplier, which seems to be useful in numerical routines, despite the assertion that it should
not [26]. Two cases of Theorem 3 are given: the first without the Circle and Popov terms, that is,
…D…ZF ; and the second with the Circle and Popov terms, that is, …D…ZF C…C�DD C…P .

The largest slope/sector sizes for which stability holds for a given example are highlighted in
yellow in Table I. The results of [4] give the largest sector sizes for two of the SISO examples used
in that paper (examples 1 and 3 in this paper); they also provide the largest sector sizes in the case
of examples 28, which is a carefully constructed MIMO version of Example 1. For examples 2, 5,

‡This is because it is only realistic to maximise either the sector bound or the slope restriction and not both.
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Table I. Maximum slope/sector sizes for stability when ˛ D ˇ.

Maximum ˛

Theorem 3 Linear
Example Notes …ZF …ZF C…P C…C�DD Park [4] upper bound

1 [4] nD 3,mD 1; �D 0.32=831.2 2.4283 3.5071 4.5894 4.5894
2 [4] nD 3,mD 1; �D 3.6 1.0894 1.0894 1.0894 1.0894
3 [4] nD 4,mD 1; �D 0.09=482.7 0.7063 0.77903 0.78826 1
4 [14] nD 4,mD 1; �D 0.54=1.553 0.85328 1.0864 0.70832 3.5
5 [4] nD 3,mD 2; �D 0.14 0.23235 0.23255 0.23255 0.23255
6 [27] nD 3,mD 2; �D 1.2 5.708 5.9483 5.9483 5.9483
7 [13] nD 8,nD 2; �D 10�5 1.1248 1.1257 1.1257 1.1257
8 [4] nD 9,mD 3; �D 10�5 0.92371 0.92371 0.92371 0.92371
9 [27] nD 9,mD 3; �D 10�8 0.76442 0.76442 0.76442 0.76442
10 [27] nD 4,mD 3 ; �D 10�5 1.1017 3.3299 2.6361 4.158
11 [27] nD 4,mD 3 ; �D 0.09 0.0636 0.09075 0.09075 0.09075
12 [27] nD 4,mD 3 ; �D 0.5 3.1965 7.7274 6.5424 8.3093
13 [27] nD 4,mD 3 ; �D 10�5 0.1943 0.21081 0.19612 0.21081
14 [27] nD 4,mD 3 ; �D 10�5 0.67767 0.77276 0.54276 0.93424
15 [27] nD 6,mD 3 ; �D 0.05 0.0392 0.04029 0.03835 0.04029
16 [27] nD 6,mD 3 ; �D 10�5 0.07674 0.08273 0.06204 0.08273
17 [27] nD 6,mD 4 ; �D 10�5 0.08692 0.08692 0.08447 0.08692
18 [27] nD 6,mD 4 ; �D 0.5 0.22309 0.33081 0.18121 0.91517
19 [27] nD 6,mD 4 ; �D 0.15 0.43229 0.48048 0.22658 0.82015
20 [27] nD 6,mD 4 ; �D 0.5 0.25462 0.31783 0.23540 0.35339
21 [27] nD 6,mD 4 ; �D 1 0.68574 0.80657 0.65797 0.83174
22 [27] nD 8,mD 4 ; �D 0.1 0.00169 0.00191 0.00103 0.002
23 [27] nD 8,mD 2 ; �D 10 0.02497 0.02497 0.02322 0.02497
24 [27] nD 8,mD 2 ; �D 0.4 0.12092 0.12411 0.11855 0.12531
25 [27] nD 8,mD 2 ; �D 10�3 0.00427 0.00428 0.00428 0.00428
26 [27] nD 8,mD 2 ; �D 0.1 0.02709 0.02709 0.02668 0.02709
27 [27] nD 8,mD 2 ; �D 0.05 0.00407 0.00415 0.00364 0.00496
28 [27]: MIMO Ex 1; �D 0.32=831.2 1.7035 1.9757 3.7508 3.7508

Numerical values accurate to five significant figures.

7, 8 and 9, both the method of [4] and Theorem 3 (with and without the Popov multiplier) are able
to guarantee stability for the slope/sector size predicted by linear analysis. For examples 6, 11 and
25, the method of [4] and Theorem 3 are also able to guarantee stability for the same slope/sector
size predicted by linear analysis, but now the Popov multiplier must be included in Theorem 3
in order to obtain these slope/sector sizes. For the remainder of the examples, it appears that the
largest sector/slope sizes for which stability holds are guaranteed by Theorem 3 (sometimes with
and without the Popov multiplier). These results clearly show that, in many examples, application of
Theorem 3 leads to a less conservative estimate of the sector/slope size the system is able to tolerate
before instability results.

Note that, apart from example 28, it appears that the results given here are typically equal or
superior to [4] in the MIMO cases. It is interesting to understand why this might be the case, and it
is probably because, in the SISO case, it is the conservatism of the L1 inequalities that ‘limits’ the
effectiveness of Theorem 2, whereas in the MIMO case, the ‘passivity’ condition (inequality (27))
can often be difficult to satisfy: With the results of Theorem 2, there is more freedom in satisfying
this condition than that in the equivalent condition in [4].

5. CONCLUSION

This paper has proposed a new, reasonably tractable approach for assessing the stability of
multivariable feedback interconnections consisting of a linear part and a nonlinearity in which
all elements have identical sector bounded, slope-restricted characteristics. Various examples, both
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from the literature and randomly generated, have shown the effectiveness of the results. The SISO
versions of these results ([14]) found application in anti-windup compensator design [28]; it is
envisaged that the results here will be useful in this and other applications.

APPENDIX A: PROOF OF LEMMA 1

The proof follows in a very similar way to [24]; the difference is that here the desire is to ensure
bounds on the component-wise L1 gains. First of all, note that a state-space realisation for each
Hij .s/ is given by

Hij .s/�

�
AH BH ,j

CH ,i DH ,ij

�
(60)

Define ´i WDHij .s/wj , and note that if k´ik6 �ij for all kwj k D 1, then kHij k1 6 �ij .
Next, define the Lyapunov function candidate Vj .x/ WD x0Yjx. Then, pre-multiplying and

post-multiplying inequality (13) in Lemma 1 by Œx0 wj �
0 and its transpose, respectively, imply

that

d

dt

�
Vj .x/

	
C �jVj .x/��jw

0
jwj < 0

Noting that kwj k D 1, this implies that PVj .x/ < 0 when Vj .x/ > �j =�j . This means that with
Vj .x.0//D 0, an upper bound on Vj .x/ is given by

Vj .x/6
�j

�j
, �jVj .x/��j 6 0

Next, note that inequality (14) implies, via the Schur complement, that�
�jYj 0

0 �ij ��j

�
> 1

�ij

�
C 0H ,i
D0H ,i

� �
C 0H ,i D0H ,i

�

Pre-multiplying and post-multiplying by Œx wj �
0 and its transpose then imply that

�jVj .x/Cwj .�ij ��j /wj >
1

�ij
´2i

Noting �jVj .x/��j 6 0 then implies that ´2i 6 �2ij , which proves the result.
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