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SUIH'IARY

In Part I, the problem of heating a thin plate or material 
travelling through a furnace, in which the system is described by 
first order linear partial differential equations, is introduced as 
an example of optimal control theory in distributed parameter systems. 
The variational technique in a fixed domain is used to obtain the 
necessary conditions for optimality. Many cases of the problem with 
the state equation described by first order linear partial differential 
equations are discussed, in which the control function enters into 
the state equation in different positions. The problems are analysed 
and solved by making use of characteristic curves.

In Part II, we have studied the variation of a functional 
defined on a variable domain, and we apply it to the problem of 
finding the optimum shape of the domain in which some performance 
criterion has an extremum. The problem in which the state equation 
is Laplace’s equation defined on the variable domain of an annular 
shape with given boundary conditions is discussed and completely 
solved for the case when the inner boundary of the domain is only 
a small departure from a circle. We also introduce the method of 
logarithmic potential of a single layer to solve the boundary value 
problem of Laplace’s equation with mixed boundary conditions and 
two simple examples are solved by using this method which leads to 
coupled integral equations.



PART 
1

OPTIMUM HEATING 
PROBLEM



INTRODUCTION

Optimal control problems for systems with lumped parameters, 

whose model structure is described by ordinary differential equations, 

were the first problems to be investigated. The theory has been 

extensively developed and the problems are solved by many methods, 

namely, Pontryagin’s maximum principle Bellman's method of dynamic

programming [2] or variational methods [3,4].
Quite a number of physical problems encountered in industry 

have systems governed by partial differential equations, integral 

equations, integro-differential equations or more generally functional 

equations. These systems are called distributed parameter systems.

It is not possible to reduce all systems with distributed parameters 

into systems with lumped parameters, therefore it is necessary to 

study separately the systems vrith distributed parameters. Vie may say 

that optimal control theory of distributed parameter systems was 

first considered by Butkovskii and Lerner in I96O, The later

papers by Butkovskii [6,7] developed a maximum principle for systems 
described by integral equations. It is analogous to the maximum 

principle of Pontryagin for lumped parameter systems, but expressed 

in the form of integral equations. Instead of changing the systems 

described by partial differential equations into integral equations 

and applying Butkovskii's maximum principle, the necessary optimality 

conditions can be obtained directly from the partial differential 

equations by using the methods of calculus of variations. These 

methods have been used by many authors, namely, Egorov ^8,9J , Kim and 

Gajwani [10], Sirazetdinov [11], and Degtyarev and Sirazetdinov [12].

In this thesis we discuss two problems:

(a). Optimum heating problem.



and (b). Optimum shape problem.

In each of these problems, a variational calculus approach 

has been used to derive the conditions for optimality.

The introduction for optimum shape problem will be mentioned 

separately on page 95 .

The motivation for the heating problem is the following: 

Consider a "thin" plate being heated by moving it through 

a continuous furnace of length L with velocity \T>o» as in Fig. 1. 
The state equation which represents this process is expressed in the 

form

2 ^  + M  = 4  , o^oc < L ; ±  1ST ,

with the initial condition and the boundary condition at the entrance 

defined as follows:

] (2)

where and are given functions and satisfy Ĉo) =  ̂  Co) ,

is the temperature of the heated plate,

CtT is the temperature of the furnace, and, 4 -- «C whereces
oC is the coefficient of heat transfer from the furnace to the plate,

c is the heat capacity of the plate, Ç is specific gravity and

S is the thickness of the plate.

If , 4  and 1̂  are given then the system of (1) and (2)
is uniquely determined for , by using the knovm method of

characteristics, in the region S  as in Fig. 2.

Obviously, the temperature of the plate at the exit depends 

on the temperature variation in the furnace. It may also depend on 

the velocity of the plate through the furnace and also on the



thickness S of the plate
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Here, however, we consider a different class of problems. 
In general we wish to determine a control function (X , 

which can be the temperature of the furnace or the velocity of the 
plate, in order that the exit temperature of the plate should be as 
close as possible to the prescribed temperature (jniJt') and at the 
same time the control function is minimised; i.e.,

find U  which minimises a functional of the form 
;t='T

(3)

where Trv (say) is a constant.
We generalise this problem in Chapter 1 by writing the 

state equation (1) and the performance criterion (3) in the vector 
form as follows:

1É. =  i f )  , Ciy'x) e S (4)

and

$  c
C5)

where <f> e E j ^  e E , ^  is a fixed domain bounded by a closed



curve C a r^U P y and the given functions ^ , p , ^ and ^  are

assumed to be continuous in X  and X and twice continuously

differentiable with respect to the remaining arguments. Furthermore 

it is assumed that (4) is a hyperbolic system.

The necessary conditions for optimality are formally derived

for the following cases, which depend on the constraints imposed on 

the control i t ,

(i). tc = and U- is continuous;

(ii). ^ and is continuous.

The Pontryagin Maximum Theorem is assumed in the piecewise continuous 

case when A ̂  A , where A and A are given constants.
In Chapter 2 we consider the optimal control problem when

the state equation (4) is in the form

f A  = - CL 4- (A ̂  o<7c<L ; (7)

with the same conditions as in (2) and the performance criterion X

as in (3). Here a. and 4- are constants and LL is of the different

types described in (6). The state equation (7) is similar to (1) in

which the velocity of the plate a. > o  ̂ 4 = -& and - ^ u r = u . Also in 

Chapter 2, in the case IX = u.ct> v/ith ucf) continuous, we discuss the 

problem of heating a "thin” plate in a furnace which is divided into 

n  parts.

In Chapter 3 we modify the state equation to the form

=  — CL +  LL S  ~  d  y 0 £ : O c ^ L *  / q  \

and using the same conditions as in (2), the functional X as in (3).

In Chapter 4 the velocity of the plate acts as the control

function and we modify the state equation to the form



2 ^  = _ uci) M .  _ c. , L ; O é ± ^ T  , (g)
9jt f?*

where a. , -& and c are constants and the other conditions are
unaltered.



CHAPTER 1

OPTIMUM CONTROL IN A GENERAL FIRST ORDER 

HEATING PROBLEM: cf> =  %").

We shall discuss here the derivation of the conditions of 
optimality for the controlled system described by a set of 'H partial 
differential equations in the form

2 ^  =  ^(-^3 ̂  9 ^ 6 (1.1)
9± - -

whe re 6 ^  is an vu -vector function of variables A  and x. which
characterises a state of the system, 6 5 is an Y'-vector

characterises the domain control and ^  is a given vector function
of the variables A  »  ̂ p , and (x . Unless otherwise stated the

^  'dx ^
functions and their partial derivatives up to the
second order will be assumed to be continuous.

Here iS* is a simple and fixed domain in plane bounded
by a closed curve C where C = • We shall assume that G is
divided into two parts and ^  at the points A and B in such a way 
that, for increasing /t, each family of characteristics associated 
with the set of -n partial differential equations (1.1) enter the 
domain S along the arc P and leave S  along the arc P , and all 
characteristics passing through A and B must not cut through the 
domain S  * Therefore, it is clear that for case 'n=ior when a set of 
Ti partial differential equations (1.1) have the same family of 
characteristics, the domain ^  is arbitrary but if (1.1) have many 
sets of families of characteristics the domain |S* must have corners 
at A and 6 , as shovm in Fig. 3 and Fig. 4 respectively.

We shall first consider the case U =  u . a  vector



function of variables ^ and 'X , and iLC.k '̂x^ is continuous. The cases 

of u = udt) , a continuous function of J : only, and of a piecewise 

continuous control function will he discussed later.

r
the arc /4MB and P is the

A.

arc Bn A . The characteristics 

are the dashed curves.

Fig;. 4 : The characteristics are 

the dashed curves. P can be 
AiMb or any curve ARB inside AMBNA 

and Ç can be any curve BTA 
inside AMÇ>NA or B<VA,

We shall assume that is knovm on the arc P and

defined as follov;s:

on. P , (1.2)
hence, if the control u is given then the solution of (1.1) is

uniquely determined.

The problem of optimum control can now be stated as follov/s : 

Find the control which minimises the functional

of the form

I = J * J ^  , u ) c U : d x  +  ^  ,

where (pcd.X) satisfies (1.1) and (1.2), the functions F , -p and ̂  

arc given and vre assume that they are continuous with respect to k  

and X and tvd.ce continuously differentiable v;ith respect to the

(1.3)



remaining variables. The direction of is in a positive sense.
To find the optimality conditions, we introduce a domain 

Lagrange multiplier vector E and denote as its^ TV /V /
transpose. Consider the modified performance criterion T defined 
in the form

T =  I + ^  (1.4)
2

Define the Hamiltonian H as follows:

H = H IX ) + ) .  (1,5)

Thus we can write (1,4) in the form 

J-= +< ^ C Â ,‘X , p À t ' j .  (i.g)

Let uci:,'5() be the optimum control vector which provides X  

the minimum value and be the corresponding optimum state vector.
Let + £ 'o and + s be the modified control and
modified state vector respectively, £ being a small numerical 
parameter, and are continuous vector functions.
Similarly, a C^,x) is the optimum value of Lagrange multiplier
corresponding to and (pcÂj'x-'^ , The modified value is + g ̂ ci,x)^ /V A*
where ÿci-,‘x') is also a continuous vector function.

The value of T  in (1,6) corresponding to the modified state, 
control and Lagrange multiplier variables will be as follows :

T(£>sT+A.j= f  f [  < p + e s , ^ +  + +

JiJr d x



It follows by using Taylor’s theorem and retaining only the 
first degree of £ that

■IJ[‘ {sf * (HI i  * 3 If - J S  - Î 1-}]

r
A (1.8)

where we use the notations S j for the principal linear part (in 6)

3H
3 ^

LilU. y
3W '

-3H _
' S>H '

9 M
" 9H '
3U-,

3WX.
>

3 H
L J

9 3 a
L '̂Irj

and similarly for a vector 5Ü •
Performing an integration by parts with respect to ” x on

the term and with respect to a variable " f " on the term
X  "̂ 1 in (1,8), we then have 

3jt

g
we have

Using Green’s theorem in two dimensions in the form

/ / ( H ■ if)'**''’' ' ^ ( r a +

where C  -  F  • I j
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Therefore, we can write St  in the form

[•!>-/-ifg)] - " f ? - i H '
Since in (1.2) we assume that

= 4 i ( k , x ' )  OKI r ,X/
§ ci:,x) = O CM- r ,

hence

! jm  I -sci) - i } * ‘Î n  * 'f(% - m  -

A
(1.9)

To establish the necessary conditions for a minimum value 
of X subject^ to the constraints (1.1), we set the first variation,
51 equal to zero, i.e.,

ffhT4 - S Gi) * S  h  "1% • "f( H -ÿ )] +

 ̂ (1.10)
Using the standard arguments of variational calculus, the 

following conditions must then be satisfied:

Ü1*. aflH) = o3^ 3x \ 3 ^  y 3jb € S , (1.11 )

■yi - 2i = o , (A.-x̂e S  , (1.12)
3±
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5>H
3 L l

-  O (1.13)

and

on r (1.14)( I f +  ( ? r - 2 ” ) i i  =  o  ,
\^<f> '^J ^ f̂ (p '3̂  ̂/

where |-| is defined in (1.5).
We note that the equation (1.12) is the state equation (1.1). 

The conditions (1.11) to (1.l4) are the necessary conditions for the 
functional I to have a minimum value. We have equations
in (1.11 )-(l .15) to solve for unknovm ^ and

. The boundary conditions on P and P are defined in (1.2) 
and (1.l4) respectively. The condition (1.l4) is knoivn as the natural 
boundary condition.

Let us discuss two special cases as follows:
Special case 1. u = control is a continuous function of jt only.

The modified control will be where is also
a function of i only. Thus (1.10) can be written in the form

Jd +

where , oCC.î ') and are
shovm as in Fig. 5i and then the 
condition (1.13) will be replaced 
by the condition

r ?Ji âoC =r O
J

Fig. 5
(1.13)
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Special case 2. The control is a piecewise continuous control.
Suppose that the control is bounded and satisfies 

A $ (x.C:6,x)< A • The condition (1.13) or (1.13) is no longer applied.A, I " ~
We shall state v/ithout proof that the optimum control must satisfy 
the maximum principle as follows:

For X to have a minimum (maximum) value, the control U 
must be chosen to minimise (maximise) the Hamiltonian H , where

H F + 2: • 3' •

These statements can be found in the books of Butkovskiy [13] 
or Sage [4] or in the paper of Sirazetdinov fllj .

Let us consider when r = l ,i.e., and i t are
the optimum state and optimum control respectively and is the
optimum Lagrange multiplier. The cost function will be

V 1
(1.16)

The conditions (1.11) - (1.13) are rewritten as follows:

^  (1.17)

When u =r is a continuous control, the optimality condition is

(1.19)

When a continuous function of only, the optimality
condition is

r  ^  Aot =z O , ( é .
Wei, (1.20)
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Wien A ^ , the control u. = Uci,x'> is chosen so that to

minimise the Hamiltonian H , where 

H = F 4- 'hil.'x̂ cy ,

and Aj , are given constants. (1,21)

The boundary conditions are

, on. P , (1.22)

and + =  O , r , 0 .23)

where H is the Hamiltonian defined as

H - , u.) -t ,<̂‘,56 , u.) , (1.24)

and f ^  y and F are knovm functions.

In the next three chapters we shall discuss the problems 

associated v/ith linear first order partial differential equation 

in the form

(1.25)
where ^  and is the rectangular region o<ir$T, L

and the functional to be minimised is defined as follows:

1 = , (1.26)
= g

in other v/ords, v/e find the control U. in order that the function 
<̂ Cî ,L) is as close as possible to some prescribed function 

and at the same time the control U is minimised, v:here 

satisfies (1.25J v/ith the given conditions on ;6=:o and on -% = o.
The problems that vre shall discuss are divided into 3 cases 

which depend on the position of the control U in the state equation.
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Case 1 * ^ J ̂  ^ » Lc) — — ̂  ̂  ^ F ̂  ?

Case 2 • z= w!) = — o . ^ F L t ^ — c- ^

Case 3. ^  -.U^--^<^-c ,

where O- , -t and c are constants, IF is a control and ^  is 
a state.
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CHAPTER 2

OPTII'HJM CONTROL IN A LINEAR FIRST ORDER

HEATING PROBLEM. CASE 1: J ^  , u . ) ^ + u  .

We now discuss a linear problem already posed in the 
introduction which we can restate as follows:

Find a control U which minimises a performance criterion
X

I »  J  «ii + J Ji , (2.1)
Jt*o 0

where 0  is a rectangular region 'yn. is a constant
and is a prescribed function. The function must satisfy
the linear partial differential equation in the form

=  o ÿ i - i T ; o s 7 c £ - L ,  (2.2)

with the initial and boundary conditions defined as follows:

(f>Co,'x) =7 , o $ ^ L , (2.3)

and = ^ C ^ ' ) , , (2.4)

where <^(>o) and -fe* are constants, and are given
functions satisfying (jno')^ .

Three special cases are discussed in this chapter, 
depending on the conditions which are imposed on the control function a.

Special case 1 : u=:UCir,X)j a continuous control.

The Hamiltonian H  is defined in (1.24) where in this 
problem F = and ^ +-U t hence

H — F — ' (2.5)A ^

The necessary conditions for %  to have a minimum value
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are given in (1.17) - (1.23).
The equations (1.1?) and (1.l8) give us the Lagrange 

equation and the state equation respectively, as follows:

(2.6)

and +  CL -  - J l r 4 + u  , o h -x < l ; (2.7)

Since n  ■=. uC^ -̂x) I s  continuous, the equation (1.19) is applied
here i.e., ^

l>u.

hence

o<, dh < T  ; o  < 'X < L  ̂

+ = O , <L. (2.8)

The boundary conditions on L , 0 < : ^ ^ T  and on i=T , 

0^x<-L are derived from (1.23), i.e..

? f  . tv) U f  =  o  ,
/ V'sf

o»t P

where is on the boundaries % = L , o $ ;t^T and ;t=T , 0^ x < L .

The direction of is in a positive sense as shovm in Fig. 6.

In this problem f .  = a
* ■)*

On i - T  , o L  ; A i = o  , d - x f o  ,

hence we have

i£_ x] = o , 
•sf J

i.e., 9vCT,'x) =  O  ̂ jt=^T,oéx<L.

On 9C«L , jb<T ; ot-x =o i d k f o  , hence we have

CT, L>

A =o

Fig. 6

(2.9)

X - I. (2.10)
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The characteristics of the linear first order equation (2,6) 
and (2.7) are the same and given by the integral curves of the 
differential equation

dJt _ d x  
1 a.

i.e., X = c ik  + constant .
To solve the problem, v/e introduce tv/o new independent or

characteristic variables g , defined as follows;

^  ^  d  , "*2̂ = ‘X -  a . ±  (2.11)

It is easy to verify that when we regard X  , U. and cji 

as functions of g and , we can write (2.6) and (2.7) in the form

^  =  -fe-A , (2.12)

and ^  + (A , (2 .13)

■= Ac>̂')-e. , (2.14)hence

(2.15)

where and are arbitrary continuous functions of .
In this case the optimality condition (2.8) and the 

equation (2.14) give us the optimum control as
^  ^  X  ̂  ,

and then (2.15) becomes
__ A(^) ^   ̂ J r ^ o .

V/hen we revert to the original independent variables, 
using (2.11) we have

*LLC jl, 9(3 =: - ±  A(x-CL±)jg. , (2.16)
m*’

=  - ACoc-ai^ Æ +  , (2.17)
4-^ w)
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where the arbitrary functions can be found by usin# the boundary 

conditions (2.3), (2.4), (2,9) and (2,10),
The solution of the problem depends on the magnitudes of 

constants o~ , t and L

Case (i), d T  <  L

In this case the characteristics and -x = L +

will divide the domain ^ : o ̂  < T ; o  ^ 'X < L into 3 subdomains

iS* , ^ and g" as shown in the diagram (Fig. 7).I 5 i
In subdomain ^  : O ̂  of < a : t ; o <  ^

or <l>+ckŷ ia.=
Uc and in (2.16) and

(2.1?) must satisfy the boundary 

conditions (p> - on -x = O ,
O ̂ < T and À = O on À  =T, O < oc < L,

but since 'nnl̂u, + ?v = o then ix=oon

Jb = T for all % in O < -x < L .

Using the condition u . - o  on :t = T , o < oc ̂  ar , we have

ACx-<xt') = O  1 i.e., A C ^ ) ^ o  , for all ^  ,
hence the control ucijx") in this subdomain is zero, i.e..

Fig, 7

lXC:t,x'> O 7 in $ : o ^ x < a . ^  ; O < < T .
The equation (2,17) becomes

and by using the condition <f> ^ on oc -  o , o<jt<T , we can find

that

(2.18)

— true— -K/a.
hence <j>U,’>0 ^  jl  ̂ O ^ x  < a j t  ; o ̂  i: < T (2,19)

In subdomain S! : cx± < x  < L + * O < :t< T .

the functions uc:̂ ,x> and in (2,16) and (2,17) must satisfy
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the boundary conditions u=o on L and <p= on = o i
0 < x ^  L-O .T, The first condition, as in subdomain ^ , gives us

ac:t,x) =r o , in ^  L-faci;~r) ; a < 5T. (2.20)

The second condition gives us

Bc-x'i = , for all X ,

hence <f>C^,x) =  ̂ 16 ^  (2.21)

In subdomain ^  : L+̂ -̂CA-t) ̂  x ̂
&

the boundary condition ^ on =0 ; L-or^x ̂  L. provides us, by
using (2.17), that

(f>Co(̂  = - M x ) ■ . . for all (2.22)

By using the condition on x = L , o ^ j t s T  , i.e., ^  4. ^  (i: ) ,
together with (2.l6) and (2.17), we obtain the relation

\  B ( L - a . ; 6 ) ( f c i )  ,

i.e., , . (2.23)

Solving for and from (2.22) and (2.23),
we have

Art) =  ^

B r t )  =  1 hr f  (

1 ̂  |4r(i^)} + / ( ^ )

Hence, in subdomain ^  , it follows from (2.16), (2.17) and the 
above definitions of and that



and
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(2.2%)

'$ ^  a i ) + 1

+ o-T»î (j>̂  ( K - a i )  jt
r^^T^zâ±iI) (2.25)

^  ( /L -o f+ a i)J  -I-

Case (ii). aT = L ,

The characteristic % = Q.ir will divide the domain ^ into 
2 subdomains and ^  as in the diagram (Fig. 8).

The solutions in 
subdomain : o $ % ̂  c\j: ;

Fig. 8

o $ ;t 6T are the same as in
(2 .18) and (2*19) and, in
subdomain ^  : o-i -6 ̂  ̂  L ;
O < i: $ T are also the same

as in (2*24) and (2.25).

Case (iii). Q-T > L .

As before, the characteristics ' X~ aj t and L+et(:4.-T) will

divide the domain S into 5 subdomains 3 i ^ and ^ . ThreeI 4 >3
diagrams are possible in this case, depending on the magnitude 
of o-T , If CLT for which ^  ^  , where jt = T-t and ^N M a, M A.
we then get the diagram as in Fig. 9 • VThen &L, where =:(: = L  ,M N A,
and when ^^T>a.Li where < jt , the diagrams are as shovm inM N
Fig. 10 and Fig. 11 respectively.
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Ct ,l)

= T-t
hi A.

Fig. 9 Fig. 10 Fig. 11

The solution corresponding to each diagram, for this 
problem, is the same and can be found as follows:

In subdomain S  • o < ' K < Lfact -T") ; J: , and in
I IV

subdomain ^  <= 'X < L ; o < , the boundary condition for
<j?C^ '̂x'> and are the same as in case (i) thus the solutions
are the same, i.e., in subdomain ^  we have UC;t,x> and as
in (2.18) and (2.19) and, in ^  we shall have u(.Â^‘X'y and as
in (2.24) and (2.25) respectively.

For subdomain gf , and in (2.16) and (2.17)
must satisfy the conditions <j> C:t'> on oc = o and ( j > - i - ( p c ^ ' y  on %= L .
We can easily find the arbitrary functions and by using
these two boundary conditions and defined as follows:

M v  .  ,

BCf
- H / *

(■%) +

Hence, we obtain from (2.16) and (2.1?) that 

lA C jt* ̂ 'X.') z=
0

) ~ j i  ^

(2.26)
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and

+ (A - s) X.
i xAtt, ̂  : ^ j  +  O.W* je, ^

(2.27)

We have seen that the control function UC-^>X) can be 
evaluated explicitly at any point “X of the furnace length L and 
at any time in the interval O ^ J b ^ T ,

Special case 2: u.= uci:) , a continuous control function of time only.

We assume in this case that ucfc> and UcJby are continuous 
functions of Jt ,

Since the control function depends only on time ir and is 
independent of X , the optimality condition will be derived from
(1.20), namely

f d'K =  o  , where H is defined in (2.5).
KmO

Hence, we obtain
“x-U

r n L U c h  — ~ J  , (2.28)

where X and ^ are defined in (2.14) and (2.15), in terms of the 
characteristic variables g , ^  in (2.11), as follows:

Since uc:fc> is assumed to be a continuous function it is 
always possible to express U-(A> in the form

(2.29)
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where and o( are continuous functions. The prime ^ means
differentiating with respect to the argument inside the bracket.
The inverse expression for oiCJt'i in terms of is

4^

There is no loss of generality in taking e<co)sro since in finding 
the control it is the first derivative of which is important.

Thus we can write in the form

-Jr%
SC^'iJL -h

Reverting to the original independent variables, by using 
the relations in (2.11), we have

and

pCJty'X') =, xci:-) ̂  + BCoc-ax'ije. ^

(2.30)

(2.31)

where A and B are arbitrary functions which can be found by using 
the boundary conditions.

As before, the magnitudes of the constants CL , t  aud L 
are important, gives us the different control function bccî ). So we 
shall consider the following cases.

Case (i ). <Xt < L .

The characteristics ' X ^ a t  and y = L + ̂ Ĉ -T') divide the 
domain S into 3 subdomains ^ and ^ as shown in Fig.12 .

We note here that from 
now on we shall find only the 
control function iLcJb') or the 
function The state function

will follow from (2.31 )
Fig. 12
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together with the boundary conditions e i t h e r  j> -  (f>c£'> on or=o or<j> = ĉ cx') 

on jb ^ O •
In subdomain g and ^ must satisfy the

boundary condition A = o on Jb-T • It follows from (2,30) that

A  ("X— = o  * i.e., » for all ^ ,
hence

= o  , I n  $  and ^  ̂ (2.32)
oAtz$̂

In subdomain gf , the boundary conditions have to be -------------  3

satisfied are ^ on Jb = o and (f> - clx -  on -x=L . Since we
assume o((o) = o and by using the condition on J t ^ o  , (2.31) gives us

6 ex') =  (j>C'X'> ’ ^ ’
hence

-A’Jt -JhJt
j>cé,'X'> =. 4- C'X-o.jb̂  je, , (2.33)

To satisfy the condition on -% =r L » i.e., (p -a . 'X  = <f>*cĴ '> , 
by using (2.30) and (2.33), we have

^  + (2.34)

thus (2.30) becomes

r/(L:2^)+^C'x-a.;k)]- ̂  < f(_ -

(2.55)
The optimum control is defined in (2.28) and, by using

(2 .30), (2.32) and (2 .34), we obtain
'X^L

rn’LUct) =  “  d'y
± ^  %= L+ <XX-aT 3
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- X =  L
[ AC'x-ai>] dlot , 06 * 6 T

% = L+a.j: -a-T ^
Substituting U,cJt'> ^  o i'it', have

L-a-t
WZ.o(ci)X =  - I [AC’J,')] • (2 .56)

L-.T &
Differentiating (2.36) with respect to variable , we obtain 

.jJrJt
yy?4 -e 3 ,S ^ 'cS ry j =  a .^ / \C L - a .± ^  ,

where Acv|̂  ̂ in ^  is defined in (2.3^)*
Hence, the function satisfies the differential

equation in the form

f^ C L -o .± :> ^ , (2.37)

with the condition /Co”) =0 and it follows from (2.36)^another 
condition <<*Ct)=o . The solution of (2.37) for is unique.

The general solution of the linear equation of second 
order (2.37) can be written in the form

oCcJ:') = B_&' -f cjg/* + -7—  I jg, ' g(i:) +
F (><,■> J

i: ,
, i  p ,

7h) J f c o c t î  ,  0 6 ± é T ,
A o

(2.38)
where 6 and c  are arbitrary constants,

FCT>3= t>'*-2irT>-§’ , t>H-^ ’ ’
JLt -  n

u
fci')s-^ [ CL-oj» - £. , (2.39)

Y and Y are the roots of = o and we assume
I Ji

that + g y o , hence
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FCV,)= , F(V)= •
After using the conditions <<co)=o and = O » the

arbitrary constants B and c are evaluated, (2*38) becomes

/v,i

(2.40)

Y
TP _Y,CC-T) Y p _x (-C-T)

F'CV,>
JL ^ C ' O d t  4- J1 ^

4"

(2.41)

From the assumption that lA.Cx') = o((.X)X , «<Co)= o and using (2.40),
we shall have the optimum control u(jt> in the form

bCC±') -  _

Î (r/ïW)
—" JZ/ ^ C C ) di^ 4-

(2.42)
where v *-l_ and ^ C ^ '> is defined in (2.39).v»TL

For simplicity, if we put -fr = o , we shall have 

T ^

U.ci:') =  - J ’ÿc'C) e«^^5 C'l̂ -r)j(it: 4- dti:

where Jc4;) = §^[ <̂5 C L-ajb> - . Moreover, if and <j> are

constants where ^  ^  <j, ^  (j>*) v we have

(2.43)
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i.e u.(i) -- S K  ^ g (j;-T)^ ; o ^ d t < T .
eeo^(^-0

It is easily shown in this case using (2.1) that the above solutions 
for u  and (j> provide the minimum of X  •

Case (ii). 0>t = L «

There are only 2 subdomains and ^  to be considered 
in this case (Fig. 13).

^ A
( r .  L)

7̂ = ®M
0 - 4>cty

Fig. 13

In subdomain S*̂ , we
shall have ?L(i:,9c') = o  since
% = o on ;t=T, In subdomain ^ ,

2
will be the same as 

in (2.35).
Hence the optimum 

control u,(jt) will be the same 
as in case (i). O.T< L , as defined in (2.42 ) for case - i r j^ o  and 
in (2.43) for case ^  =  o  •

Case (iii). < X T  > L .

As in Special case 1, when u. = we have 3 diagrams
to be considered depending on o.t < 2.L i o.t = 2L or cty> an , The 
solutions of and in subdomains ^ ^  and ^
for each diagram (Fig. 9 - Fig. 11 page 21 ) will be the same, 
since ^ ^ and ^  corresponding to each diagram have the same
boundary conditions upon X and ^ .

In subdomains p  and 0 , can be found as in
case (i) and defined in (2.32) and (2.35) respectively, i.e.,

in , (2.44)
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and

XCi,x) -  AC'X-a±)Ji
U

where

>• (2.45)

In subdomain ^  , (̂J-,5C) and Ĉ-̂ ,X) in (2.50) and (2.31)
have to satisfy the boundary conditions <j>-=t (jfcd:') on OT =0 and 

sr on 9( = L . Hence we shall have

where

+

cu
in ^  , (2.46)

Next we shall find the optimum control in each diagram. 
Firstly, let us consider case L < CLT L , for which ,
since .£ « T-i: and ^  = i; . The diagram for this case is shovm

N  4. h  A.

in Fig. 9 •
By using the optimality condition (2.28), we obtain: 

VJhen O ^ ^  , where = T- i= , we haveN

Ojfc
St

vnu u d - ) = - F  + r A 'k

% J
/. - Mbut u.c*') ^  oidt') JL , (<CO) = o , thus

■  J
L~<dt

" J ‘*’2’ ’ (2.47)
^  °  ^
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where in and ^  are defined in (2.46) and (2.43)
respectively.

Differentiating (2.4?) with respect to variable and 
using (2 .43) and (2.46) we obtain the result that must
satisfy the differential-difference equation,

if-// / —

=  JL <j>c^^ +  J l 9 o < d t - < ± ,

(2.48)

lAfhen t  ^  < t, where st = T-t and jr = JL , we have------ M------- a'l N M A.
L+A(i-T) ^  P r . 1

-2.M
or

o L.+C4(i-T>  ̂ ^  '3

L-odt

w \ x  / d ) =  - r - r , (2 .49)
^ ^ ^L-aT a. o s

where =0 in ^ , Ac-n'i in ÿ and ^ are defined in (2.46) and
I u 5 3

(2.43) respectively.
Differentiating (2.49) with respect to variable jfc , we 

shall get the differential equation in the form

— — o(ĉ ) =r ^ c c . — X  ^(j6)  ̂ j c #

(2.30)

Similarly, when ^ , we shall have

L+a.(A-T)

L+C.C1-T) ^
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or 2 I.m L (2.51)
L-OUT

Hence must satisfy the differential-difference equation in
the form

Jrjb

jb < T.M (2.52)

The conditions imposed on ^C^') in the system of equations
(2.48), (2 .50) and (2.52) are as follows:

ûC(o') O 1
c< ( j;) is continuous at and ,N ^
oC is continuous at Jh = Jt and Jb =N "
o( (t  ̂— O #

We note that the last three conditions follow from (2.4?), (2.49) 
and (2 .51).

We shall consider here how to solve the system of equations
(2.48), (2 .50) and (2.52) only in the simple case when o .

. I ̂ i YLet us denote T) = -jsL- and F = — %—  , then (2.48), (2.50) 
and (2 .52) can be written in the form

C î> - t ^ Ci) = d ^ ^ c h c k  ;
 ̂D - ̂ ^) <X(j;) =  f ^

- (2.53)

where

(2.54)
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In the case L<CûLT<T5L , there are three time ranges and we define

X , when ^ ̂  ; (2.33)

^ci) , when <:£-< T  .

When o < i: , then ±  ^  < T  , (Fig. l4)A)
and by using the definition in (2.33) 

we can VTrite

oCcJt) = and ^ ^
Similarly, when , then ^  ̂ jfĉ »t

, (Fig. 14) and we ^ -----------— ^

Fig. 14
can write

X(i) = ^C^-^)5 XC:(:-̂ ),

Hence, the system of equations (2.53) can be written in terms of 
f< , and p( , defined in (2.53), as follows:< A 3

Ci:>-5§ ) == (2.36)

; (2.57)

T. (2.58)

By putting + ̂  instead of in (2.58), we have

(2.59)

Solving the system of equations (2.5^) and (2.59) for and
, where
Since the determinant of the coefficients, i.e.,
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S' (■

is of degree 4 in T> , thus the general solution of the system (2.56) 
and (2.59) will contain exactly 4 arbitrary constants.

Take the operation: — CP^-g ) (2.56) 4- (2.59) gives the
equivalent system

(Tc>*-âs*̂  » (2.56)

[-iĵ Ct>*-s')(D-a5^)+g j ^ . (2.60)

The general solution of o( (2.60) can be v/ritten
in the form

X  ex') z= A  Jl +  B-6 ^ CJi + H x  — SL

ptv) c
y C - C - -

jb
— J fciT) o<dlr<sb

(2.61)
where A ? B , c , F are arbitrary constants,

FCt»= t"*- 3§ , F(b) = 4b- 6s b ,

§ c i - > s  S f &) - j:)] + § L-a. T-(̂ (jr)] ^

tL A 2 «fand "t , ± Y are roots of v n - S ^ w - f ^  = o  ,
i.e., y />-/ Cl.6l8)^ and (O.618 ) ̂  ,

oLc: '̂> , o  < :F<:fr , : 
it follows from (2 .56) that
Since o ic ^ ) , o < :F<d(r , is evaluated and defined in (2.61), then

which is equivalent to
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, j t ^ < i ^ T  orO<i-t4jt ,

(2.62)
where is knovm and derived from (2.61 )• The function j-)
is defined in (2.54).
VThen $ oCC:ê) = and it can be found from (2.57),and
can be written in the form

K (*) =  <5x + h X  - ± [  , ±  < i  ,
•̂ N

(2.63)

where G  and H are arbitrary constants and is defined in
(2.54).

Hence the solution of the system of equations (2.56)-(2.58), 
defined in (2.61) - (2.63), has totally 6 unknovm constants A  , B , 
<3 , E , (7 and H which can be evaluated by using the following
conditions :

ci(ù') = O , ^ çjbJ) ■= C:k ^ » (K ( j: 3 = A(C:6 ) ,I I 2V ^ N A M 3 M

)= and (T") =. O .I A  2 3

Therefore, the optimum control ucir-) in each time interval
will be knovm from u c t ')  = ( for case J r - o ) ^  where p(C:6) is
defined in (2.55) in terms of oĈ cJi) , cjt") and according to
time intervals and (< , X , (X are defined in (2.6l) - (2 .63),I A 3
Secondly, let us consider case L<^aT = ̂ L . (Fig. 10)

In this case, we have ;^ = 4  ̂ the result vrill be the
same as in case L <a T <A L where we omit equations (2.50) and (2.63)#
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Thirdly, let us consider case o>t > ^ L  i for which , since
:£ =t F and i = T- & . ( see Fig. 11 )
M CL N (L

In this case, when o <4: < and < :£ < t , we have the 
same results as in (2.48) and (2.52) respectively, i.e., the 
function X(j;') must satisfy the following differential-difference 
equations:

/ I

(2.48)
and

i-,<i-<T. (2.52)A/
Consider when c F  it,, the optimality condition (2.28) 

implies that
X"L

>ui
x=.o ^

or YV) =  - J  ' (2.64)

where in is defined in (2.46).
Differentiating (2.64) with respect to variable jt , 

then we shall obtain that must satisfy the differential-
difference equation in the form
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-l4t+J-i . i ±  + M  ^ _j.j.

=  - x  + X  ^(■=t-s3-x < j}c A ',+  -c “■

±  < ± < ±  . (2.65) Ai iV
This system of equations are solved subject to the

conditions o(('o') ^  o , eK and are continuous at and jr=
/and o( CT3 - O .

Let us discuss in more detail how to solve the above 
system of equations in a simple case when -6"= o . The system is in 
the form

C c ( ( i )  =  cA + ̂ ) , o < d <  ;

C D*- ) X(:t 1 = ifci) - jr < jk < T

>> (2.66)

N

wnere

^ (2.67)

and p = IF ’ ̂
Assuming that T = €J= 4 é , we shall consider here only

3L
case 6 <: E  . ( We note that the case 6=4. will follow from the a. ^
case 6 < k by taking 6 = i  = 4 and T- = jr = T- 4 . Likewise A. M a. N A,
the case 6 > 4  can be handled in the same way ). g



Let us define that
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dKCt) =

, when o<JL<e

, when
oUJt) , when
ô (i)4 , when <i<T-6

oCCf)s , when T-é Cjt <C T

(2.68)

T-6

Fig. 15

VJhen o  < Â  < Ç: , then db < <: J: (see Fig. 15)i and by using the^  (X.

definition in (2.68) we then can write
o((ir') = and ^

VThen 6 <ir < , then (see Fig. 15 ) and we can write

o C C Â ^ ^ and oiC^+!^) = •
VThen then r-6 <j&4É= < t  and 6 (Fig. 15),A.
hence

eCCJi')- ôcdb'i 1 tfCC:^+~)= o ^ / j t + i ) a n d  X  % )  ̂  -

When < d: ̂ t -6 , then 6 < jb and v/e can write

o ^ C ^ ) = and
Similarly, when T-^ ct < T  , then ±  4-4 < db and henceM A. N

oCci:) and ^  C i - s  ci-4 ) .

Using the above arguments, we then can write (2.66) in 
the form of 2 sets of system of equations as follows :

(2.69)
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and

> (2.70)

( e^C^) = > T-é c t  ̂  T J

J: <  J: '

C I> - g ) «yc j; ) =r ^  ^ c<̂ C - 4 ̂  ̂ <  j; < T- 6 ,

(2.71)

(2.72)

(2.73)

First of all, let us consider a set of equations 
(2 .69) - (2.71). The equations (2.70) and (2.71) also can be written 
in the following forms.

ci + x)^ ;:6 <;t4.k< or o < ± < é .

(2.74)
and

( f C^+%)-S , T - é < ; & 4 ^ < T  or O c k < e  a

(2.73)

hence we shall solve (2.69), (2.74) and (2.75) for o( cdb'> ,
I 3 a,

and o( , where o  < J : < 6 .5 «-
The system has the determinant of the operators as follows;

C x f - â { ^

CD*-5sS

O

C c?-s >

which is of degree 6 in P . Hence the general solution of the 
system will contain 6 arbitrary constants.

A ATaking the operation: - ±  (p - g )(2.74) + (2.75), we shall
r

have the equivalent system as
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+S*»( ( i +x'> = , (2.69)

|'*o<ci:> + CD*-aj,Se<ci+4') + S  ««jyCi + ÿ) =  |6^ + k') » (2.74)

~Ct>-ç) e t ) - ( !>-§) c t>~a j>- g J o^(A+1) = - J4 Cl>- f (Æ+4) +

(2.76)

4 A A 4.ition: JL f I - - ■ -

we obtain the system of equations
Next, take another operation: J_ (p-3gP 4 f )(2.69) 4" (2.76)

s'

+s*^3f.*+k.) - , (2.69)

(b-a^)X (:^+^)+^'^':Æ+%) =  #cJ;+^) , (2.74)

[i^(T.‘'-3s'D%shCD'-a|S- Cb^-sS] i  (î>'"-3sV+s') -

-  i  + >

(2.77)
where O <  db <  e .

Tlie solution oĈ cd:'̂  of (2.77) can be written in the form

1 . -I* n* -7Jt -Tj*
cicJt', = A|X + + C Æ* + E A ■* + 6jx + Ĥ-t. -

3

Ffn ̂  Jx=, o

where A » B , C i E » 6- and H are arbitrary constants,
I t I I I >

(2.78)

F(D) = Eg t)*̂+ é» § '** ^ 6D) — 6 P - ^0 gS> + 5 P ,

f ̂ . ( i= 1 , a , 3 ) are six roots of Eĝ yô .4. é> = o ̂

i.e., ± ^ ~ ± 0 . 4 5 g  , ± 1.25 and ^  ±1.8 g ,
• A 3
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f e d )  = ^  ( T)*- 3 g ^  C L- 0.:̂) - f * c L '^  - .

-S^t?CD*-a§‘)[<^Ci:>-^'(i;t^)]+ ci+4)-<^*(:t+^.

The solution c?(Cjt+fc) will then follow from (2.69) that
3  a,

which is equivalent to

o( Cjt") = —a I"3 S ’ I ^ J / ^ N

or o < 6 , (2.79)

where «Ĉ CJt-i)can be obtained from (2.78),
Since and / (J&) are knovm as in (2,78) and (2.79)

then can be found from (2.74) as

+ % )  = &  X ct)-ClAa^) + , o c t < e ,

which is equivalent to

e( Cd:") =r :f Ci ~ -') ̂  S ® T-6 < ̂ < T  ,

and by using (2.79), we have

z)] >

T - 6  < T  , (2.8o)

v/here can be obtained from (2.78) and are
defined in (2.67).

The other set of system of equations (2.72) and (2.73) is 
similar to (2.56) and (2.58) in case d T <  L • Hence the solution 
will be the same and can be rewritten as follov/s ;
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= A j i + B x  + Cje. -f

Jt

-Xdt pEx'* - — —̂  I (̂{̂ yWnAfx ((-j:)} -
FOf,> <1

— ^—  f Jct>/<K^{Y<t-X)}cl'C , é < jt <:£■ ,
f'cx-) J '

(2.81)
and

.̂ ct) = [ I^Ci-4) _ Cl?- A Cl-k)] , (2.82)

V/here can be obtained from (2.81), and ± , 4 y , F^b)
and Jcdb) are defined as in case ar <  L .

Hence the solution of the system (2.66) is defined
in (2.78) - (2 .82) v/ith altogether 10 unknown arbitrary constants

A| 1 B, , C , , G , » A » B » C and E . These constants
can be evaluated by using the following conditions:

oL(0) — Of ^C6')= o( (6) , ô( cd: ^  cd^V , ( 1" ) = t
I I  A  J M  3 N  4 ' '

CT- 6) = CT- 6) ,*f 5 ’  ̂ ^
(((e') =r x^C6) , \  K = o ( C J r \ o( (T-6) —  o( C r - ^ y
I A  ’ a w  3 ^ 3 '̂  4 W  ’ 4  3

and ^ Ct 3 ~ O .

Therefore, the optimum control ucd) for this case v/ill
then follov/ from the assumption ucir) = oi^cdr') jl , ( for case 4 r — o ^

acJb) %= U C d . y ) where is defined in (2.68).

Generalisation of the problem containing yL control

functions and Tt parts of the region.

We suppose that the region 2 : c? 6 "X" S L is
divided into 4i subregions defined as o < :t $ T ;X x+l
i ̂ 1 , a  .... . VI . where <( = o and 'K = L , (Fig. I6 )• yi+i
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Let u. (Jk) ,  jL= I , A  ...............   y t  be the control in subregion ^  •

Find the controls , jt=1   which minimise
Â-

the functional

I = T  u.)cU:dx^J^ j +

where cA,x' ) is the state function in subregion , jic 1, &   -vt
and satisfies the partial differential equations

=• ^  C ^ > ^  e 1, >1. (2 .83)

with the initial and boundary conditions defined as

<j> COy %) = ^  (%) , ^ = -1, . •vu
jC+I

4 > c i , o y  = j x . Â ' i  ,
' / M/

i  j b s r .
(2.84)

C T, L )

w

As before, we set a functional X as follows:

•vv ^  s+t

Jt={ ^  °
(2.85)

where is Lagrange multiplier corresponding to subregion
1 = i ^ ,»**«#**, yv )•

Introducing a Hamiltonian H. in subregion . ,-»v)^ X
defined as
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(2.86)

V/e th-en can write (2.85) in the form

'’x+l
x =  ̂  J -pCT.-x, ̂)c(-x +

J.-I ^
(2.87)

TaJcing variation of (2.87), we can either work it out 
in a direct method as in Chapter 1 or write it down immediately that

<î U, _ \  -1É. <f>.l +

4- E  r If't/V ;XW 'X. X (2.88)
But since S C ^ ^ ] = —  / and S é .\ in a fixed domain
we then can write (2.88) in the form

ĴiM
+ El If »t■'’< fffe{i

x»l 0.vL=l '̂x

Applying the Green’s theorem in [J2 ] , i.e..

=  | ( a c { A + W x )  .

to the last set of integrals in Sx , we have
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1=1 ^  -*

*Vi T
4I ( -E

i+i ± = r  ^+ / ] ’
0(.

(2.89)
Jt-T

where we note here that -^XCi^jr means XC t > — X (o) .
.±=0

Since (jiCJt^o) and .̂(o,5<'> are known, as defined in (2.84),
hence 6<j>C^^o') and S^ (o,<x> , J t  = i ,  *  ................. 4 x ,  are zero. Let us
assume the continuity of the functions <k, and S  at <y = ̂ .
where jl®i, 5 , ....,(^-0 • 5'<̂ = and then (2 .89) becomes

X U. + C

Î  //[»*>{ "4 - s (â))* «  Î "
% i

"I T

■"L J[{
3H.

jL+fJÎ,= 1

The necessary condition for X  to attain a minimum value 
is S t s O t which gives us the following conditions:

ÔH. - ^ 4- 32lÀ . —  O  , C-^,x> é s' , jt=i,.a,...,vv. (2.90)
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_  '^Kc I . e . ,  2ÉL =: g. , ^  S', , = C2.9 I)
3Jb 99̂ ; 94A

Since u., = u.(i:> and then S'a will be a function of only,-t u.
we shall haver

X.
^Üi ctx =z O y (2. 92)

we also note here that if u » U. ^ “X é 9 <  ,>C ^ *4»+!
= , the condition (2.92) is replaced by 3 ^  ^

9tL.X
Boundary conditions

The conditions on ;6= o and on o are given as in 
(2.84). Since 5 ^ ,(^ = i, ^ ,....,"M- ) are arbitrary on the boundary
•i= T and also on 'X.- ( 4% 1, t  ,....,>^), thus we shall have the
following boundary conditions:

_ 9. =  O  , T  ; a. éoc-é oc , ^ .4, — , (2.93)X -A< 1

Î3: + —.tjü— = 0, •x=Ljo<;tsT, (2.94)

and _ 2 1 k _  =  ^Hx+,. , x = % , X .  4,J.. (2.95)

where ck and é  are assumed to be continuous at K ,u  x+) ji+i
(i«1 ,A ,....,00^-0 ).

We shall consider in the following section an example 
of case 'ŸIS â  • We have already mentioned a physical problem of this 
kind in the introduction, but mathematically we can state the 
problem as follows:

Find control functions u C :t'i and u . , corresponding to 
subregions S and ^ respectively, which minimise the functional T  ,
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defined as

I  = P i  j  CÜ + JJ" j Jx + j y ’l  did-x ,

where |Sf : O ^ j r & T  and ^  j  ^ L ; o < T are
subregions o f  ^  : O -é l ; i < T ,  the function (p^ci:'i is
prescribed and 'wi , w  are constants.I A

The constraints are the state equations described by the 
following partial differential equations

-f (X =s UC^> , C*̂ ,'X') é >
(2.96)

where c l  ( >o) and -A are constants. The initial condition and the 
boundary condition on % =o are given as follows:

and

(2.97)
(/iCO,X̂  = , O S x s t  ,
<I>^C0,X1 = ^ 6 L ,

^ ^ (d ,o ') = . 0 $ ; t s T ,

where <j> cv'i , <j> and are given and î co) = ‘p c o ) , ( F ± g , 17)» lo a.0 n (0 ri
Introducing the Haniltonians,

H,= l>nV+7,^{u-fe<f^-<x|i} ,

^ V  - “'II'] •
It then follows from (2.90) that

« /'

6 = ̂  (X) It oo
OC =  LA

é s é mf 10
g

1̂ ,(1), 1

Ct ,l)

Fig. 17

'SJt -9X
4- CL =

^3E~

(2.98)
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The characteristics of (2.96) and (2,98) are the same 
and obtained from

^  = ëÊ , i.e., ajb +  constanta, 1

The optimality condition (2.92)'gives us that 

J Cl + TVj ) = O j l.c.p i Yn L =. — J ) d.A ^

%=L > (2.99)

Va
The boundary conditions on Jt==T » on x= L and on A = k

are obtained from (2.93) - (2.95) and can be written down as follows: 

Here -p s o , .A , hence

A (T̂ 'X) = o , o ^
A^Ct ,x ) = o>, A & L  ; ;^= T,

- (X.A = ( ^ ) , A=L ;  ̂(2.100)
X = k  ̂ 0< ir£T,

;\̂(Jb, k> s=r ACi;,t), X = h ;

Solving a set of equations (2.96) and (2.98) by introducing
new independent or characteristic variables ^ = ;t and — ajtr .

, / , -4:tWe also assume as earlier that u.C^^ =: Cx) x  , where Coi-c? ,
X X

(x s  i , A ) thus the solutions of (2.96) and (2.98) can be written 
in the form

- U -At<6 (t .X) =r c<ci^)x + B ( x ~ a t ) x  Ct,x> t = -̂.A.
‘X X ^

> (2 .101)
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We shall discuss here only case a,T>:^L» hut for other 
cases we can v/ork them out in the same method.

The characteristics and x -  L-f-<xcJt-T) will divide
the domain ^  into 3 subdomains X  , I  and 2T as shown in 
a diagram (Fig. 18).

In subdomain X  , by using
the boundary conditions on

jt = T >  and \  — ^  on
jb=T , » it then follows
from (2.101) that

A ('X-o-T')- O » for all •?( in and I ,JL
i.e., =  o » for all V  ,

Ji
hence

(f> (T,L)

— $

 ̂ 10

Fig. 18

(i:,x) =  O , ( , A = i , X and in subdomain X  •

(2.102)

In subdomain IE , by using (2.101) and the condition 
on -X=o i.e., =  <j> , we then can write in the form

•—̂Jb —

but from (2.100) we have ^ t h e n  can deduce that

AA.'
P

or B C-n') rsi n ’
thus

4- (2.103)
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To satisfy the condition on ,
o ^ J b ^ T  and by using (2.101), (2.103), we obtain

- K ^ )  .[m - - 4-^)] ' 1
(2.104)

From the condition in (2.100), we have (;6,k ) = L) ,
hence it will follow from (2.101) that

A C ^ ^ C 5 ~ , all jh ,I * 4 *
i.e., /4 ^  Act)  , all 'j ,I Jl
thus

=5 A and defined as in (2.104).

In subdomain jUjJ , to satisfy the conditions (2.97)
on o , the equation (2.101) implies that

B. A)  = C-K) , for all % in g and "TTT , X = i ,  4 .JtO
hence

JLO
JL= i,a. (2.103)

By using the condition (h on ^ = i=q *» U -* .4'1
we then can deduce that

+  all 2̂- (2 .106)
The state function must satisfy the boundary

condition = <f> CJb) on ^X=L , c> é r  , in which v;e can
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find in the form

=_  J2.
cX

- 4 ( ^ )
^  > all ^CL

and after using the relation in (2.106), we have

C L

for all . (2.107)

As before, if we use the condition Xci:, t ') =r L) , 
all ;t , we shall have /4 ("»]) s and defined as in (2.107).

Next, let us find the optimum controls uc:fc) sind ^dt") 

in each time intervals.

VJhen o < ^  ^  , by using the
optimality conditions in (2.99) 
and the assumption that

JÙ »(x*»-f , a. ),
^ j.

oC(o-) =  o we have 
Ji

X t

-— *— i ^  jh i = T-b JtaT-k *#w JtOk

Fig. 19
at VA

Jix

y. Tn CX'i JL S3. — 
A  i ^

r (2.108)

Substituting %= /\,(x-A:6)^,from (2.101), we then
can write (2.108) in the form 

_A4ir ®

-XÀJt

-xJb %  
C-xjt > (2.109)



Differentiating (2.109) with respect to variable jo and 
then using (2.104) and (2,107), we obtain that and must
satisfy the differential-difference equations in the form

50

r=X. - X  ^ (ir+^ + ̂  + i)^

o < ± <  &
a*. (2.110)

and

1 vn'Y[y(X')-a'kX̂ (X)j -[,2 -

-■̂ yo
” JL J  __

VJlien

0 < X< .
u /ÂÔ. ^  ̂  2Û , since we assume that LL(.t")=r̂ ,cX) jg, , ( jl= 1 , & )

(2.111)

it will follow from (2.99) that

A

air
and

(2.112)

4*Àwhere ^  A c x -a j t ) - ^  ,(i-i, & ), or we have
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^ x A t

-a-4±
-xjb

o L-cJ:

and ~  ~ J  { ‘*’1 " ‘̂’l

. (2.113)

X  a
where A in domain %  and 337 are defined in (2.104) and (2.107)

Differentiating (2.113) with respect to variable j t  and 
substituting from (2.104) and (2.107), we then have a set of 
dif ferential-dif ference equations satisfied by and
as follows:

and

±  e w A . e ( c i : + k . ) AI «A'

-tL’/xo-

(2.114)

(2.115)

a.where JL < J :  < 4 AA.
V/hen 4: ^ T- %  , the first condition in (2.99) will give the same
result as in (2.114). The second condition in (2.99) can be written
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in the form

-*4kir ‘■■‘̂
or X  =  -  f (2 .116)

4 - ® *  ^

where A ( y  in subdomain 3L is defined in (2.104),
After differentiating (2.116) with respect to variable X"

and using (2.104), we then have a differential-difference equation 
as follows:

X  vn'*LrcX) - f —A  a  L  ^  j ^ J L  \. A(Xj A A A<K

A  ^  A X  ^  A< X/ I aa -A I a.' I J

= A,

where 1 < X  t - — .0. <x

(2.117)

VJhen T -  4 X  <  T - ^ the second condition in (2,99) gives us the 
same result as in (2.117). Since in subdomain %  , the first
condition in (2.99) becomes

A / I — C 4 JoL (X) X  =  — I f A  (c( — )x V o.^ ,
L+aJk-aT jt

vmere we assumed iiĉ D = (X) or we havejL X

X  (X)X = " J ^"2 (2 ,118)
L - X T  X

Differentiating (2.118) with respect to variable ÿt and
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using (2.104), we obtain

±  r ^ A  <(i:)~ t<(i:-kN^-p^cX+k )-c<cir)']=2A  I L  I I J  L ' I A<k' a A.CK A J

-  -e M -  . J. , ._ X  < ^ a + i ) J ,  T - ^ ^ ; t < T - ^

(2.119)

Vfnen < A  T  ̂ since ?̂ = o and 7̂  = o in subdomain X  , as
in (2 . 102), then the optimality conditions in (2 .9 9 ) become

U. CJt ̂ = o or o( (X^ •=■ O  , (2*120)I I
and

j / -i4ki
1 w l <<cA > X  = - [  ’ (2.121)

L-XT %
/ , — . , •Art ,where we put LC.CX̂ '̂̂ /rt) x  , A, = <4 ("x-xxD _g, ; ( x= 1 , A )

X  Ji

and in (2.121) is defined in (2.104).
As before, after differentiating (2.121) with respect to 

variable X  and using (2.104), we have

±  rtf'L \ oL \ ^ )  - c< C:t-k)-\- c>C(jk-L)^o(CJ:-k) \ =Ji X L A A J L *  * I a- J

•AJtr , , , /< « “1=  X  J2. _ ^ (:&) j , T.-k. < T .

(2.122)
The conditions upon and g ( a r e  defined as follows:

Co) = O 1
o<̂ CĴ) and f^jt)are continuous at jk = ̂  ; X  =» and ^  »
/CT-) = 0 ,

0̂  Co) =: O f
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ĉ cA')and are continuous at k ; t = 4 .̂nd X  = T-JL ,A i  A o . ^

and •= O *
We note here that the above conditions upon cx̂ (̂d:'> and 

follow from (2 .109), (2.113), (2.116), (2 .118), (2.120) 
and (2.121).

Special case 3 : U. = (4(j:,%) , a piecewise continuous control.

Let the constraint imposed on ) be -1 < »Aci','X)̂  ±  .
The Hamiltonian (-) _ which can beA

rearranged and written in the form

H = -1 («m u. + - 7̂ ( o-<j> + )

The control UC:^,o() is chosen such as to minimise H and 
this leads to the follovring cases:

(1). + , if |7̂ l ^ , (2.123)
(2). UL = -1 , if A >  , (2.124)
(3). U = + l  , if 71 < , (2.125)

The solutions and of case | ^ in
(2.123) have already been solved as in Special case 1. Let us 
consider when lX=-i and u - + ±  , we can write the solutions of 
(2.6) and (2.7) in the form

%(X,X) =  CC-x-aX^x 

=. - X  + D(9(-a.:fr)x
(2.126)

and

(f>CÀ^o(^ = JL + FC'X-CLjt^x
■̂ r

u = +1 , (2.127)



55

where Cc^) , , Ec^) and Pc-̂ > are arbitrary functions of
We shall discuss how to solve the problem only for case

O.T >iL 9 but other cases can be worked out in a similar way.

In subdomain 0, , (Fig. 20) 
since = O on the boundary
jb =.T and "X is a continuous 
function, then there exists 
a region neighbouring to in
which 19̂1 <  yvf' • Hence (2.123) 
applies and the solutions of

and are defined
in (2.18) and (2 .19) respectively, i.e.,

^ ̂ %=L, Ĉ -CX.7i — Cpc^") ( T,

Fig. 20

and (2 .128)

In subdomain , (Fig. 21), since UC:̂ :,X>=-C) in ^
and from (2.123) it follows that

XCijjX) =  O   ̂ ci,x> ^ p

and since is continuous then on the characteristic
/X = L + a.C:t-T ) . Its neighbourhood 
ABC DA also satisfies |x ) 6 where 
on the boundary Aj) , 1>1 « .
The solutions U.C-̂ ,xi and 
of the region A B C b A  are defined 
in (2.26) and (2.2?) respectively, 
where U.= ---~, hence in
this region can be deduced from (2.26) that

,c Ct,u
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('̂ )]
Since we have = o  on the characteristic

and 4
are related as follows:
"X =  L-f^C;t-T) , it will follow from (2.129) that j^ C ^ ) and cj>C^y

u
hence <j>cM and j6C-̂ ) can not be arbitra^ prescribed.

Let us find a curve Al> on which =  wt̂  or
Acfc,x>îs — YvJ*". Suppose that the curve AT> meets at and
<< = L at j t  -  i f  ̂ it then follows from (2.129) that

 ̂ (2.130)

[ ^  (4r)l
and

+  _ (2.131)
u . ,

[_ a jL  ("%)]

Solving (2.130) and (2.131) for each case, i.e., when 
X = and . The possible results are stated as follows:

(i). If i is not in the interval (0,T-i=) and not 
in ( t , T  ) then in the whole subdomain ^  will satify the 
condition |9v| ^ 'm  and the control W.ci,x> is defined as in (2.129) 

where U  = — 2L- •
(ii). If is outside ( O , T-L ) and j t  is inside9|l ’ A.

( ^  , T  ), (Fig. 22) then we can find the solution uc£,x> as follows:
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We shall consider when 
Tvŝ .yvf'cn Ah  I for the case 
A = -Yvf we can solve the problem 
in the sane way.

In a region c^Bc^hAo, 
it will satisfy the condition 
IAI < and then the control 
U = w h e r e  Aci',A')is definedW\̂
in (2.129).

Fig. 22

Let the curve Ah be X = ̂ ct) , The region Al>EA will 
satisfy the condition A > 'wf , hence (2.124) applies to this case 
and the control will be U. = -1 , We then look for the solutions 

of'i and in (2 .126) which satisfy the conditions
A-A =: 4>\dt') on A= L and the continuity of and on

the curve A - •
To satisfy on -X L , it will follow

from (2.126) that in region A DE A , we have

,  -W-A X) —  C c x -a :k ^ jQ . .
(2.152)

From the condition of the continuity of and ACzf̂ x)
on X  = and by using (2.129), (2.2?) and (2.152), we obtain

[ O- -e- C'̂) ]
(2.133)
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and

- î  + [ / ( i  * C V * > - . « ]

X. ^ ( 4 ) ]
(2.134)

Solving (2.133) and (2.134) for and then the
function (2('̂') will be evaluated from one of these two equations.

(iii). If is inside ( O ,T-k ) and also inside 
( ^ , T  ), (Fig. 23) we can find the solution as follows:

The region /A B&bA- 
satisfies the condition |9v j < ,
hence and A(;6,is
defined in (2.129)*

Let a curve be
% - on which '7. = .
A region AI>ECA vnLll satisfy 

:A > vn and then Lc= -1 in that 
region. The solution A and will follow from (2.126) with
the boundary conditions ^ on 9(= o and <j>-a.7̂ z=, on A = L .I
Hence in region At>EOA we have

and

TiCi.-x-» =  + + - ‘f’

(2.135)

a.

The curve 'X-'̂ cdt) can be found from the condition of
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continuity of x) and on -x = "Kc-t ) $ as in (ii).
We note that in subdomain , the solution can be

found by a similar method. For case Jlr= O , the curve AT> will 
be one of the characteristics of the system.
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CHAPTER 3

OPTIMUM CONTROL IN A LINEAR FIRST ORDER 

HEATING PROBLEM. CASE 2:

We shall consider in this chapter the case in which the 
state equation is expressed in the form

—^  + u<^ -  ̂ o ̂ < T  ̂ L , (3,1)
aJC

where a. ( >o) and c are constants and i/> is a control function.
The initial and the boundary conditions are given as follows;

= ĉi:') , 9C:=o;

where ^Cx> and <}>c '̂> are prescribed and satisfy SCQ'> — Co)
>0 'i 'o f

The problem can be stated as follows :
Find the control ll which minimises the performance

criterion

y (3.2)

%  = J  1 ci-)j dir +

where ^  ±s  a domain O < irs T ; <3^<x£L , is a prescribed
function of Jt and is a constant.

The necessary conditions for I  in (3.3) to have a
minimum value have been derived in Chapter 1, as in (1.17) - (1.23);
in this case, v;e have

H =  1  + »

- f a ® .

P P i. rr̂ î  dir dec _ %A (3.3)



61

^  - i j

Thus it follows from (1.17) - (1.23) that

^  , a.02_ =  -•Aa , , (3.4)
2>± 9%

+ a . 2 É =  U À - C . ,  (3.5)

V/hen k 3 uci,x'> is a continuous control, the optimality condition 
is = o and this becomes3U.

ynV -f A ̂  = O , Ci-,X> 6 ^  . (3.6)

IVhen LL=u(,:fr) is a continuous control function of j t  only, the"K=L
optimality condition is | — d> , and this becomesJ 3LU

vnVuci:') =  - 6 ,5̂. (3.7)

IVhen AI ^ uci,9f> $ A , we choose the control uci-,x) so as
to minimise the Hamiltonian M , where in this problem

H =

The boundary condition on OC =L for all j: , and on ir=»T
for all A  , can be obtained from (1.23) and these can be expressed 
as follows:

L) - L') -, , x-L ; o 6 T
and )" (3.8)

As in Chapter 2, we solve the equations (3.4) and (3.5)
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by using the characteristics constant. By changing the
independent variables >t and -X into new characteristic variables 
g and defined as ^  and ^ , the equations (3.4)
and (3 .5 ) become

?2L cr -7^*^ , (3.9)

and =  tc^— <3, (3 .10)

Snecial case 1 r K = is a continuous control.

The optimality condition for this case is defined 
in (3 .6) as

YO Ix. — — A ̂

From (3.9) and (3.10), we have

(3.11)

e (3.12)

The difficulty in this case lies in solving the partial 
differential equations (3.9) and (3.10) with the condition (3.11) 
where U. = u c d t , .

In order to simplify the problem, let us consider the case 
when the constant e = o .It then follows from (3.12) that

X j> =  AC.J) , 

using (3.11), we have

W. =. — —  ,V)*

i*e., /AC'X-o.dr), (3*13)
m

where is an arbitrary function of *
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Substituting u.c:t,x) from (3.13) into (3.10) when C = o , 
we then have

=  - — ,

-i: ̂
hence = B Coc-aJr-^ji (3.14)
and

A(d,x) =z _ /4cx-a:t) ^  (3 .15)

where is an arbitrary function of 9̂  wViich assumed to be
not equal to zero.

We shall investigate the control UĈ -)X> in each diagram 
which has been constructed depending on the magnitudes of the 
constants T  , L and ( > 0 ).

Case (i). Q-T ^ L .
The characteristics and x = L divide

the domain ^  into 3 subdomains and ^  .(Fig. 12 page 23 )
In subdomains ^  and ^  has to satisfy the■* X

boundary condition A = O , for all A . Thus, from (3.15)* 
we shall have

=  O - f o r  all ^ ,

hence uc^,x> %=. O , é ? and ^  (3.16)
In subdomain ^  and must satisfy the

boundary conditions <̂  = on s t= -o and <5̂ -^7 = fc ^ '> on A  = 4 ,
It then follows from (3.14) that the first of these conditions 
leads to the result
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= cpC'x -  a x ^  j i  

and the second condition leads to the identity

-;t î A et- <̂ )}/„*
j,CL-aà-̂ Ji. _  S  ,

L-Oci) !

i.e* **

Therefore, it will follow from (3.13) and (3*17) that

(3.17)

the control uci->x> in subdomain will satisfy the transcendental 
equation

^  =r — 1- ̂  jg.

(3.18)
where CÂ-> and are prescribed functions.

Case (ii). = L. .
In this case, the domain ^  is divided into two 

subdomains and ^  ,(Fig. 13 page 27 ), by the characteristic
Of — . The optimal control in and ^  are the same as in
case CLTCL and defined in (3.1&) and (3.18) respectively.

Case (iii). Q.T > 4 .
There are 3 diagrams according as L<o.T<5L» CLT= &L 

or a r >  3.L , (Fig. 9 - Fig. 11 page 21 ), but each diagram leads
to the same solution for U,cd,x>.
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In subdomain C and ^  , the solution will be the same ---------
as in the csae <a.T< L and defined in (3*16) and (3.18) respectively.

In subdomain ^  and must satisfy the
boundary condition <j> = <jfcÀ) on 'X-o  and ^  A =. on Of = »  L- •

Using the first condition and (5*14), we shall have

( j> C h =

i,e«, B * for all , (3.19)

and the second condition with (3.14) and (3.15) lead to

BCL-aJt) “

i.e., BC-llJi =  < f ( l ^  , for all ̂

By using (3.19), we obtain

« - 3 -  ’ - 0 -  -

(3.20)
Hence, by substituting (3.13) into (3.20), we then have that the 
control ix(:̂ ,x'> will satisfy the transcendental equation

L«^

(3.21)
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where <j> cJt"i and are prescribed functions.

Snecial case 2: U = , a continuous control function of t only.

The optimality condition for a control U.=-udt> where U. 
is not bounded is defined in (3.7) as

lyftu-CA-) =  - r (3.22)

As earlier since is a continuous function it is
always possible to express ucir) in the form

u, = uci') = o(^Ck'> , ^(o) = O   ̂ (3.23)

where ĉJb) and are continuous functions of . We then can
write the solutions of (3*9) and (3*10) in the form

-d(S)A = jg-
f
P  -oLCC'>

and
*<C5> p -oLCC'>

f  -  - G  -c I -e. at ,
a

in which when we revert to the original independent variables 
and O’ , we shall have

T^Cky'X') •= A Cx -  ̂ ^ (3.24)

and

j  J2. j-c, c>,.oéë, (3.25)
O

where and are arbitrary functions of and is
a continuous function defined in (3.23).

Case (i). ^ 4  .
The domain ^ is divided into subdomains ^  ^  and ^
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as shoim in Fig. 12 page 2 3 •
In subdomains and ^ must satisfy the

condition on , i.e., a c t ,x > ~ o . It then follows from (3,24)
that

/̂  ( ̂ )  =  O  , for all ^  ,
hence

=  O  f (i-,x> 6 ^  and ^  . (3 .26)

In subdomain ^  and must satisfy the
conditions ^ ^ on >t = o and on X  =■ L ,
By using (3.24) and (3.23), the first condition leads to the result

jfr
, ,  , p -c<Ct:)

f  C k y X ) = - c ̂  I ^  , (3.27)
*

where <<Co) =. o , and the second condition leads to

j t

^  ^  _ aXCL-o.*)jZ. ,

i.e • f
vtçS) ,/t3\ ^

0

(3.28)

In order to simplify the problem, we assume that 

k
P ^occzy

j  JL d t  -  )C(Z) (3.29)
o

where y (j(r) is a continuous function and y  Co ) =  O  , hence

/ . /, / —p((k'y
X (^ ") z= * X ) =r — > X  ,
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As earlier since ucJt") is a continuous function it is always 
possible to express in the form

u c i i  =  = - l i É l  , (3 .50)

where yfjt) O , with the conditions

YCo) 3= o and %Co) = JL . (5.31)

Since _ o in and ^  , as in (3.26), the
optimality condition (3.22) can be written in the form

m L u d t ' )  ■= - r i- U  C X  ') ~  —

By using (3.24), (3.27), (3.29) and (3*30), we obtain 

=  J Ac-^1 - e Y c i - ) J  ,
L-O.T L-AT

(3.32)
where O ^  ^  T .

Differentiating (3.32) with respect to the variable jr ,
we obtain

u-aJ:

—  A .^ (^ L —CK '̂^ ^ C L- ) .
' o

(3.33)
Differentiating (3.33) with respect to the variable
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again, we have

// // 3  L - A j f

rr̂L C:k'i _ 3  ̂ Ci~)  ̂ _ — C X̂ ") f f\(.-y\') <̂’n

- oi/{cL-o-dr>Terci) -^CL-al)j + a./4CL-«:t)[a. jî l.-a.ii+ 5c i"W)] .

L^odt

Substituting ^  /4c-»̂') from the expression in (3.33),
L -A f

thus the function y (ir) will satisfy the following differential 
equation

w  ty'ci:) f.yci:)] ■" ( ^ Y  C.^)VCi') 4- =r

=• a i V ci)f ACL-A.Jh[̂ C(-_o_:6)_cy Cf)] + if Cf)]̂ A O- :> 4-

4- 4^cy C:̂ > 4- y À C L-a.dby — G.VC.̂ ')̂  1  ̂ O ^ Jh ^
y'cj&) " y(j6) J

T ,

(3.34)

where [L-cufr) and A^CL-^^’> can be obtained from (3.28) and 
can be expressed in terms of ^Cé'> , YCÂr) and y as follows:

A C L - C C & )  =  _ _ j  r ^  ( L - C L : ^ ) -  c y c j ' ) - ^ : 6 ) y c j g r ) 7  ,  ( 3 . 3 5 )

and

L-ai:) =  —  --- r ̂  ( L-CU&) 4- ̂  y ( j;) 4- CJr'iYC:t'> 4*

4- ±/ci)yci)l4- AlMlA(L-Ajr). (3.36)
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and

where

The conditions upon yC:fc> are defined as follows:

y Co) sz o ,
v'fo-) =  1  ,

Y^Cj) = o
$

y 'c T )  (L -C LT) [ e  yCTD -  ( L - A T ) ]  ,
m^L ^

/\C«-“aT') -   i   r  6  C L-OLT) - c  y  CT ) -  y  CT)1 .

(3.37)

We note here that the first two conditions were defined in (3.31) 
and the last two conditions are obtained from (3.32) and (3.33).

The optimal control u(dtr) can be found from the assumption 
LLci) = _ .

Case (ii). <XT — L (Fig* 13 page 2 7  )

We shall get the same result as in case ctT<̂  L since 
for this case, (3.32) becomes

rr
p
Ac-rj)

in which the lower limits are independent of jb as well, hence the
further procedure will be the same*

Case (iii). Q-T >L . (Fig* 9 - Fig. 11 page 21 )

We shall consider in this section only when > 5 l for
which ;6 < , where jr = and j t  = T- - . The solutions for

h N  h a .  N o ,

the cases cx.t  and (XT — 3.L can be found in the same way*

In subdomains g and g  , and vd.ll be
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the same as in (3 ,26), (3.2?) 
and (3 .28) and can be rewritten 
here as follows:

I , p<ci> p .J je c(r,
0

Ci‘>‘X> 6 &and

where

7l C.̂  =- yAC'X“ ) JZ,

o
AC’l) =-:|--

 ̂ (3.39)

In subdomain ^ , T̂ CÀy-̂ ') and Ĉ;6,x) must satisfy the
boundary conditions <j> ^ ^ on CK •== O and =: on L ,
It then follows from (3.23) and the first condition mentioned above, 
that

- M - i )  - y -

B(%) = f , ç i } - ^  +  <= J  , for all 2 , (3.40)

and the second condition with (3.24) and (3.23) lead to the result

(3.41)
where 8(^0 is defined in (3.40).

For the case <2. f  o , we shall assume a new function
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as in (3.29) and proceed in the same way as in case glt < L , for 
each time interval O ^  J: ^  J: , J: <  â  < and dt c  ^ T  .M M  N fJ

In this section,we shall discuss the case c = o  in which 
(3.38) - (3*41) can be rewritten in the form

<j>

= .  o

where

' ' V - i r  [ ( ( - H - »  -  A 9 ) ] .  * ■  4

<-l)

and

"(3.42)

. (3.43)

x((g2)

in i
(3.44)

When o <  d: <c , where dt =  ^  , it follows from the optimalityM
condition (3.22) that

9f=L
yn

By using (3.42) and the assumption U C Â ) %= K  Cd̂ ') ; <<Co) =  O , 
we obtain
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o L*-ajt

=s —  ^7 — J^f^^7^^^7^} ^ 7  ’ (3.43)
-air ^  o ^

Differentiating (3.43) with respect to the variable dt 

and using (3.43) and (3.44), we obtain that will satisfy
the following equation:

(3.46)

V/hen <  d: < where ^  = Js. , j" =r T - —  , the condition----------------  M A .  ^ *-
(3.22) implies that

L UCi::) =  _ >
9Ç-0 ^

.-a.db

or )^L = - /  (3.47)
-ai â

After differentiating (3.47) with respect to the variable dt 

and using (3.43), we then obtain the differential equation of 
the form

v«\ o<ci) + ^cJ:)X ^  _

* C ^ U '^ ^ )-o (C :h ] [c(U'>-’

where ^ ^ .
M ^
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Similarly, when < T , since 'X -  o in the optimality
condition (3.22) will be

L-aJt

= _ 1° Àr^ , (3.49)
L-ar &  ■

where we used (3*42) and the assumption C;̂ ) ; o iC o l — o ,
.Differentiating (3.49) with respect to the variable ^  

and using (3.43), we obtain

, X %)J teiC±)^o<C^~k.)]
yA. ^ ( j: - 2[)_c ^  (f> ^  ^  O ,

(3.50)
where < t  ,

follows :
The end-point conditions upon are defined as

oi.Coi = o ,
o(.CÂ) and are continuous at and ,

and =  o .

We note that the above conditions concerning o(̂ Cd:'> are 
derived from (3.43), (3.47) and (3.49).

The equations (3.46), (3.48) and (3.50) have to be solved 
subject to the above conditions upon . When o^cdh') in each
time interval has been found then the corresponding optimal control 
U  =r ucJh) will be calculated from uci') = ô Ĉdb'i .

Special case 3 : U =  ucAt^x'y , a piecewise continuous control
satisfying -i ^  uctjO c') <  ± .

To minimise the functional I  in (3.5) subject to the 
constraint (3.1) and - l £  ?() :< 1 , the control is
chosen so as to minimise the Hamiltonian H where



75

After rearranging, we can write H in the form

H =  X  ( w u . +  t È . - ) - . 
i  £ n *

Hence U must be chosen so that

(1). Y n u . ^ ' x j , = o , when |%^| ^<rrf'

(2), U. = — jL

(5). u = +1
when

when

(3.51)

(3.52)

(3.53)

We shall consider here the case when the constant <2. =■ o ,

When , W. is chosen as in (3.51), i.e., -f-Ps =  O
which is the same as in Special case 1. Hence we can write ‘XC.^>'x> 
and (jfc>ci,r<) in the following forms, as in (3.15) and (3.14) respectively
i.e

=r
6 C*5C -art )

and
=  - 1. A Cof-a.:fe)»V)

(3.54)

(3.55)

(3.56)

where ) and 6 are arbitrary functions.
Next, consider when (/-= -f± and u. = — 1 , the solutions of (3.9) 
and (3.10) can be written in the form

-3t?V(rê,'X> =r
 ̂ (A + i (3.57)
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and

- KC'y-aJr-)je,

w.»-l . (3.58)

where E(^), and Ko^) are arbitrary functions of
We shall discuss how to solve the problem only for the 

case CLt >AL (see Fig.20 page 55* ), since other cases can be done 
by the same method.

First let us consider the subdomain ^ ; since ^ = o
on the boundary it follows
that ivill be zero on ;t~T.
Hence in some neighbouring region 
of J : ~ T  , I ^ w* will be
satisfied. Therefore we can 
commence by looking for the 
solutions of the form (5.5^)“(3*56).

To satisfy the boundary condition ACT,x) « o  ,for all %  , 
we shall have =  o , for all ^ and then it follows from (3.5^)
that

and since w, = - or from (3.56), we have
yyr

(3.59)

The function will follow from (3.55) together with the
boundary condition on o , but we shall be interested only in
the control function.

In subdomain , since the Lagrange multiplier is
a continuous function and = o in the subdomain , then
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% = o  on the characteristic L 4 <xCdt-T> which divides the
subdomain ^ from ^  • Therefore, there exists a region in the 
neighbourhood of the line x — L+aC:^~T> which satisfies 
and thus we shall look for the solutions of the form (3*5^) - (3*56)# 

Since we have

-= ^ C ̂  ^

and if we introduce g and ^ defined as g =, 3̂  , then

=  o  ,

i.e., -Tv <jf> =  constant along the characteristics constant.
Hence the boundary of the region which satisfies ] | s will be
the characteristic line on which 'X<j> •= -f v»ô or — 4v>̂ .

By using (3.54), (3.55) and the boundary conditions on 
% = o and Of = L, , we then have the result similar to (3.20) that 
A C'g ) in ^  must satisfy

^ L /\C î)

A.

(3.60)

. for all y

In this case the characteristics ^  ^ and = L-a .t
are the boundaries of ^  and since > L the domain ^  isA , A
characterised by — (AT- L") ^ < <5 .On the characteristic >̂ s»- L-<^T
we have =  o and it implies that Ac*^^ = o  there, hence

) and are related so that

We now test whether there is any characteristic 
where -Aj >  <=» which satisfies either of the following equations:
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4, (3.61)

or

% -Vo. . ! [ < ; * ( jS‘ (:i±4)+,( 4 ) ]  . V »  <3-“ >

If there is no such value of -4, , then the whole 
subdomain ^  must satisfy the condition < rv^ and the optimal
control IX.x') for that domain will follow from (3.51) that u. = — ̂

>V|*

which leads to the same result as in (3.21).
If there exists one value of satisfying (3.61) when

- C a r - O  < " < -  o 1 then u,:r - l on that characteristic line
and then the region between L - clt and must have the
control IX. =r ~ and defined as in (3.21), The neighbouring 'hi*'
region on the left hand side of the line will satisfy
'Xj> . (Fig. 24)

There now exists a 
neighbourhood —  —k  + i.

in which >  y>^ and u.= -i.
V/Mithin this region, to satisfy 
the conditions on % ■= o and 
on 0( =. L and by using (3.58), 
we obtain

U. — "i

Fie. 24

and (3.63)
A,
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Hence

M  -  (3.64)

It is clear that 7̂  f  = constant along the characteristics 
=r constant where is defined as "̂  = x •

Next we test whether there is any characteristic = - A  , 
where y  > O , which satisfies (3*64) when 7\<j) = •  i.e.,

(5.65)

We note that (3*63) is the same as (3*61), thus if there exists 
one value of which satisfies (3*63) it means that there were 
two values of satisfying (3*61).

If there is no such value of , then the rest of the
subdomain ^  on the left of the line 'yj^zs-A^ will satisfy y<j> "P 

and the control UL = - 1 . If there exists where
satisfying (3*63), we shall consider the neighbouring region on 
the left hand side of to satisfy . |'X<̂  j S and so on.

Similarly, we can deal with the case when satisfies
(3 .62) by the same technique but instead of ; U  -1 we
replace it with 7 ij> < -y v ^  ; u»+j[ and commence by looking for 
the solutions for and of the form (3*57) v/ith the
boundary conditions on oc— o and « L ,

In subdomain ^  , we can handle it by the same method.
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CHAPTER 4

OPTIT'IÏÏM CONTROL IN A LIITEAR FIRST ORDER

HEATING PROBLEM. CASE 3: -C.

We now discuss a problem in which the system is governed 
by a linear partial differential equation of the form

^  ^  Jr<j> -  <z  ̂  ̂ o < o c < L  (4.1)
^db "3%

where A  and c ( < o )  are constants and tt is a control function. 
The initial and boundary conditions are given as follows:

(4,2)
ÿ Co, X') = ^Cx) , o $ % 6 L ,
(f> c J : ,o ) TT <p̂ Ĉ '> ,

where and are prescribed and satisfying =  <̂ Co) .
As in Chapter 2 and Chapter 3» we want to find a control u. 

which minimises the functional X defined by

where Yn is a constant, d ' ) is a prescribed function and S  is 
a domain o  ^ :& < T  ;

Referring to the general theory in Chapter 1 and by 
comparing (4,3) with the form of X  in (1,16), namely

dkA% + X [f + ‘̂CÀ,o<,̂')AJrJ

we have
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H ^ -cj ,

f  -  °  ’ *

t  - " à [fci,i.^- ̂ *ci)} •

The conditions for X  in (4.3) to have a minimum value will follow 
from (1.17) - (1.23) which can be written doim as follows:

—  + lA 22: a 4-a - A  ̂  , Ci-jx) e (4.4)

-f u 2É. — - e   ̂ ( X, A) 6 ÿ  as in (4.1).

VJhen u, = iACjt,x-> is a continuous control, the optimality condition 
is = o and this becomes3u_

7 cî , e ^  . (4,5)

IVhen (A - ucX> , a continuous control function of ::b only, the

optimality condition is | 22 nt'x' = ^  and this leads to
J 9k-

vn'- "L u , c ^ ' ) = ^  7^ cj> A ' x , c i y ' X ) (4.6)

v/hen Us u.C-£,x> where ^ , a control U- is chosen
so that the Hamiltonian H has a minimum value.

The boundary conditions on ; t - T  and on 9c = h follow 
from (1,23) that

AC T j X') =  o , O < L ; (4,7)

and

- ACi,L>tc =  ̂ o < j k ^ r .  (4.8)
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In this chapter we shall restrict attention to the case 
in which U. - is a continuous control, since the case
t(_ = is probably unrealisable in practice.

When w.==-K.cJt> , the equation (4,4) becomes

(4.9)UcJrV 2 ^  =  e 0 ,

and the state equation (4.1) xd.ll be

(4.10)

The characteristics of (4.9) and (4.10) are the same and 
defined as the integral curves of the differential equation

As earlier since u.ci:> is a continuous function it is possible to 
express UCÂ’> in the form

ixci") =  X (X) , ô coy =  o  ̂ (4.11)

where is a smooth continuous curve for all i: in ,

Hence the characteristics can be xvritten in the form

'PC =- + constant

We introduce txvo new variables and related to
and PC as follows: -

^ ts oc — . (4,12)

By using (4,12), it is easy to verify that the equations (4,9)
and (4,10) can be written in the following forms:
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The general solutions of (4.13) will be 

A. = .4,

(4.13)

r  =  4 Sc-q^Ji

which after reverting to the original independent variables Â: and 
X  » we shall have

Jè'i:
T^cdiy'K) =  A C 'X - c iM jz .

(4.14)

where and B a r e  arbitrary functions of .
We shall investigate the optimum control of this

problem in four cases, depending on the values of oCirr'^ and L .

Case 1 r when X.CT) ^ L .

The characteristics « = and oC= L 4 will
divide the domain ^  into 3 subdomains |Sf , 0  and ^  as

I SL 3

shovm in a diagram. (Fig. 25)
We shall find the 

solutions for <f> and X  
or and in each
subdomain.

In subdomains and ^  , 
on T  , must satisfy

(p -'M c  s= cf>cJi') CT,U>

Fig. 25

the condition TvCt.-x̂  ~ O hence it follows from (4.14) that
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A O x ^ c ((t i) H  o  , for all 'X , 
or /A ) = O , for all ,

?̂ Cir,x) = O 9 e  ^  and . (4.15)

The function in ^  and can be found by using the
conditions ^ cê) on = o and ^ on = o ,
respectively, to evaluate the arbitrary function .

In subdomain ^  must satisfy the condition
(j> s ^ (X) on d t -  O hence from (4.14) and since o(Co) =  <o we have

3C'X') = CX) 4 ^

thus

, for all -X

On X  = L we must satisfy the condition u. and by
using (4,l4) and (4.16), we obtain

, \ — ______ ^4 ^ "f
/A H j ± _  r^Ch-«<ci'>)jL - 4 ^  (-È' - i )j 1 all:t

(4.17)

The optimality condition for the case when u. = (/<- ct) is 
defined in (4.6), and by using (4.11), this becomes

'Trh^adC'^^ =. ^ ̂  ^  (4.18)
x=o

where o<('o') % o •
Since A = o in subdomains ^  and ^  , as in (4,15), 

and by using (4,l4) and (4.16) we can write (4,18) in the form

* i - ‘< ' C t ) = r  [ ,  o s ; t s T .  ( i f . 1 9 )vn  ____  _

3
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In the integral, we let x - = ]__c<C‘C'> /, ^  o (C c ') c i t .

when -x= L+oici)- oCCr'i we have C = T  and when = L we have 1:= jr, 
hence (4,19) becomes

T
=  P j^AC^-i<Ct)>)<I^CL~o<C-Ci)J oCCti  ̂ (4.20)

and using (4,17)» we can write (4.20) in the form 

Ty > ) ^ L (1- ̂ ) j]
(4.21)

By differentiating (4.21) with respect to ; t  , we obtain 
the second order non-linear differential equation of the form

Yn'Lo(^C^'> +  ^  (j? {̂ L -  cj> ( L >) - Ji cj>'

^  (L-Xc^r;) =  o  ̂ T .

(4.22)

The end-point conditions upon (XĈ ) follow from (4.11)and (4.19) 
that

oCCo') = o and ĉ Ĉt") =  o  . (4.23)

The optimum control u.cdtr'i will be knovm at once when 
cKCJt) is solved from (4.22) and (4.23), since

The existence and uniqueness of oi.CJi') arc difficult to 
establish since (4.22) is a non-linear differential equation. It is 
possible that no solution exists for c (C ^ ) and this is the case 
when no smooth control exists but this remains an unsolved nroblem.
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Case 2; when XCt ~) = L .

In this case, the characteristic 'X=z c<cÂ') will divide 
the domain ^ into subdomains and ^  as shown in Fig. 26 

As in the previous case, 
we can show that

A 4

and A = r A jl , in ^

where A(^) is defined in (4,17) 
for ->2 = L- <K (:t> .

in ^  is also 
the same as in (4,l6).

Hence, the optimality condition (4.18) for this case can 
be written in the form

Fig. 26

yn =  P <̂ 0C , o - i ± < T  (4.24)

In the integral, we put = X  ; d x  = À X  ,
when t<CÀ') we have X  = O and when A =  L vre have X =  L~o<cJty

hence (4.24) becomes

=  j° |ACX) ̂ /cx)| d x o  6  j r  S T . (4.25)

Differentiating (4.25) with respect to the variable jb  ,
we obtain

'To'L •= _  ̂A( \
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After substituting / j - f r o m  (4,17) we obtain the 
second order non-linear differential equation

-JrJb

,,
■=. O o < :6 5 T  .

(4.26)

which is the same as in (4,22) as we expected. The conditions 
upon UcJi'i are o(Co')=^a and =  o ,

Case 3 - when > L and -̂/v/ - where ^

and — L  .

The domain 6? is divided into 3 subdomains ^  and
^  by two characteristics «  = and -x = L-f o<c-r') , as

?irgL ,

shov/n in Fig. 27 .
The solutions for Tvc^-po 

and cj>cJt,'x') in subdomains ^ and ^  

are the same as in case 1 : when 
cx(Ct) c l  • These are defined in 
(4,14) - (4.17).

In subdomain 
and “Aci-jX) in (4,l4) have to 
satisfy the conditions ^  on O and ^ - 9̂ u. — ^  C-^'i

on = L • The first condition leads to

(.T,D

Fig, 27

B  ̂<^c*) + %  J (4.27)

and we obtain from the second condition that
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-  -i-i: ^

A C L - c ^ a '^ ) -  ^  B (4.28)
0<tir> ^ J/rJ

The optimality condition is defined in (4.18) as
XaL

trŵ L ô'ri:-) _ ? , c £ , f i - )  e  ^

X»0

W h e r e u,cir) ~ o( (";&) and XCo) = o ,

VJhen ( 3 ^ where o(C.:6f̂) =  ^Ct >-»L , the optimality condition
can be written in the form

f t i ^ L  ^  J  + J  f ̂îx} ’
x = 0 ^  X = X(jt) ^

and by using (4,l4) and (4.l6), we have

<5 L-/C.6)
= J  ^7 + J  . (4.29)

-XC*) &  9 ^

Differentiating (4.29) with respect to the variable it ,
we obtain

Yf^L ^ C ^ ') = /̂4 (/-(̂C;̂)) B "" ̂  C^) ̂ /4 .

(4.30)

But since B (-<<>) = — -—  ^  f 6 and by using (4,17) and
^ oUr *'

(4,27) we then obtain that oCCJb') , must satisfy the
following second order non-linear differential equation
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c 1 J r L ti ■)

- X  ^̂ Ci-<<cJi:>)\<j> * ( ^ ^ ' > ^  ) O ̂  ,

(4.31)

where A (L- «<Cj6)) j and ^ B are defined in (4.28) and
& ^

(4.27) as

/\ C L-o<cJ:')) s r B C L — ^"1 ^
ĉ 'Ci:) ^ 4- ^ ^

y" \ 1 0and z: Y  C^'i-jL +  ^  jB̂ in ^ .
f ^  -2

VTlien < .̂  where oCC^fJ) =  c^C'V)— L and — L  ̂ since

from (4.13) we have = o  in and by using (4,l4) and (4.l6)
the optimality condition (4.l8) can be written in the form

rn '

X=‘>(.Ĉ  ̂ L
i. = J { /4 ("X st-x jx + r  ̂A cf(X

-X“ .<Ct> a. ^

or
« i-XCt)

7»̂ i / c i - )  = J  +  f  ‘̂ 2 -  ( 4 . 3 2 )

l-X(T) ^  O ^

After differentiating (4.32) with respect to the variable jfc 
and using (4,17) we then obtain the non-linear differential equation

of second order satisfied by UCdb'  ̂ , J t <  Jt: <  Jb asM
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y / '‘i, u H ' l  +  - l ^ ' ^ < f / < i L . c i C i r , ) l i ’ * C S r - ) + ^ 0 - J i - ) j =  O

(4.33)

When ^ ̂  , where g<(L)~ 4 , since ACjt.x)=o in |S/

then the optimality condition (4,18) becomes

where Lcfjt') %= •
As before, by using (4,14) we can write the above equation 

in the form
c —

W*L = f  ^ 7  (4.34)
L-> iC T>  ^

Differentiating (4.34) with respect to jb and using (4,28),
we obtain

r^Lo(!b:k^-{^JL ^ =•

(4.35)
where

The differential equations (4.31), (4.33) and (4.35) which 
are satisfied by oiĈ > in each time interval, must be solved 
subject to the following conditions:

pCCû ') = O ,
eJ. C:̂') and are continuous at ^  and ,
^ C r ' )  = O .
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Vie note here that the above conditions upon f o l lo w  from
(4.29), (4.32) and (4.34).

The optimal control in each time interval will be
calculated from the assumption LiCjt) = , as soon as is
known.

Case 4: when and ^ "̂rs/ where oCCd'/̂ ')— L ^

and ~ - L ,

The diagram of this case is shovm as in Fig. 28 .
When O  ̂  jr < jt where 

= L and when ^  ̂  T
where L , the
solutions will be the same as 
in case 3t and defined in (4.31) 
and (4.35) respectively.

Let us consider when 
^  ̂  , the domain in this

time interval consists of only

^ TlU-'c (T,L)

Fig. 28

a part of the subdomain ^  , thus the optimality condition (4.l8) 
can be v/ritten in the form

or

'K-L

yrî L = J
0(st0

L —p((^ )
(4.36)

by using (4.l4) and changing the variable of integration.
After differentiating (4.36) v/ith respect to the variable ^  

and using (4.27) and (4,28) we then obtain the differential equation
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satisfied by o(CJi') , À  <  -Ji: <  :^ of the form

I I ^ *\ —k-ir:h ^
X  t;*-) + A (-«<(;&)) É. ^ !+-«• B(u— <c*OBCL-«<ci))

J

(4.27)
<%*e

where the arbitrary functions and Bc-̂ ")̂  defined in the
folloifing forms:

^  --6-Jt
A C L - o i C Â y )  = r B (L-XC^))^ - ^ 1 5

and

BC~'e(c^)') ^  JL ^  <̂ c;6 ) ^  J 

The conditions upon o L c d b .'y will be the same as in case 3,
i.e.y o((̂ ô  3 ,

X Cj") and o('bê'> are continuous at ~ ^  and ,
= <9 .

As soon as the equations (4.31), (4.37) and (4.35) are 
solved the corresponding optimum control will be knoivn from the 
assumption U C ^ - )  -=s o C ^ C :^ '^ ,

The solution of the various non-linear differential 
equations for o L ( . : t ^ which have arisen in (4.22), (4.31), (4.33),
(4.35) and (4,37) has not been attempted. It is not certain that 
solutions exist and further work is necessary in this area.
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CONCLUSION OF PART I

The methods of the classical calculus of variation have 
been applied to finding the conditions of optimality for the case of 
a continuous unrestricted control, and when the control is bounded 
or piecewise continuous the maximum principle has been applied, fl1,13]* 

The approach has been wholly analytical and in the 
hyperbolic first order partial differential equation which has been 
studied, the method of characteristics has been used extensively.
No elliptic partial differential equation has been studied and it is 
likely that the analytical attack in this case will be more difficult.

The result of the optimum control problem of minimising 
the functional

T S. I  ^
X =  c{± 4- Jj I m ^ u d i c l x

& 0 0

where the state and the control W, satisfy a state equation
of the form of a hyperbolic first order linear partial differential 
equation, is quite different depending on the position and the type 
of the control W. in the state equation. It also depends on the 
magnitudes of T  , L and also upon the coefficient of in
the state equation. The follov/ing table summarises the results 
attained and indicates a classification of the control problem for 
this limited system. V/hen the control u, = is bounded, the
optimum control can be determined with the aid of the maximum 
principle. Since only analytical methods have been used in this 
thesis much numerical work needs to be done in order to attain 
detailed solutions but more work is required to resolve the problems 
in this area.
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INTRODUCTION OF PART IT

All of the problems we have discussed up to this point in 
distributed parameter control theory have assumed that the process 
occurs in a domain which is fixed or known in advance, for example 
the re-heating process occurs in a rectangular region o $ x < L ;
O ' However there are problems in which the shape of the
domain is unknown and needs to be determined in order to minimise 
or maximise some performance criterion, for example the problem of 
designing the most efficient body for extracting the energy from 
incident sea waves has been recently discussed by Salter,
This problem may be interpreted as the problem of finding the 
optimum shape of a floating body which minimises the reflection and 
transmission of the incident wave. Some problems have the boundary 
of the domain depending on time. This kind of problem in which the 
system is governed by a parabolic equation of the heat conduction 
type has been considered by Degtyarev [15] and its necessary 
conditions for optimality were obtained. Another problem of a 
similar kind is that of finding the optimum movement of a piston 
bounding a compressible fluid in order to achieve a given density 
distribution in fluid, this is discussed by Davies^ .

Here we apply the variational technique to solve the 
problem of optimum shape. The theory of maximising or minimising 
a functional defined on a variable domain is more difficult than 
the one with the fixed domain since in addition to the type of 
problem already encountered we also have to consider a transversality 
condition. Forsyth and Gelfand/Fomin have discussed this theory in 
their text books Calculus of Variations [^17,18^ but they have 
produced no examples to illustrate the theory.
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In Part II of this thesis we shall rrive an example to 
illustrate the theory by considering a problem in which the state 
function satisfies a two dimensional Laplace’s equation with given 
boundary conditions and the unknovm boundary of the domain acts 
as a control.

In Chapter 5» we derive the variation of the functional 
which contains the second partial derivatives defined on the variable 
domain, by using the method which has been used by Gelfand/Fomin in 
their text book, [l8].

In Chapter 6, we apply the theory which has been derived 
in Chapter 3 to solve the problem of finding the optimum shape of 
the domain which gives an extremum of some performance criterion 
subject to some constraints. One of the constraints is Laplace’s 
equation which the state function must satisfy. The necessary 
conditions including the transversality condition are obtained. It 
is also shown in this chapter that the necessary conditions of the 
problem can be obtained by using the theory of variation of the 
functional containing more than one dependent variables with their 
first order partial derivatives.

In Chapter 7, we discuss a particular problem of finding 
the shape of the inner boundary of an annular region which gives 
an extremum of the functional

r =
? -

subject to the given area constraint, i.e.,

= Kff-
where ^  is a domain bounded by two closed curves C and c •

‘ A
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The unknovm curve <2̂ is the inner boundary and the fixed given
circle <2̂  is the outer boundary of the domain. The state function
<p is a harmonic function which has to satisfy the given boundary
conditions on C and <3 , and the shape of <2 is shown toI A I

depend on the boundary conditions.
In Chapter 8, we study the method of logarithmic potential 

of a single layer and use it to solve the boundary value problems
which have arisen in Chapter 7»
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CHAPTER 5

THE VARIATION OF A FUNCTIONAL CONTAINING 

SECOND ORDER PARTIAL DERIVATIVES DEFINED 

ON A VARIABLE D O M  IN.

In this chapter we shall extend the method which has been 
used in section 57 of Gelfand and Fomin *s ” Calculus of Variations ” 
text book [l8] , to derive the first variation of a functional of 
the form

( 5 . 1 )

p .

where K is a domain in -plane which is varied as well as the
dependent variable (j> and its derivatives -p , , y  , S and
j t  • Here we denote 2jL , 2É. , 2 A  , and 2 A  by -P ,

^ , r , S and d  respectively. The function F is assumed to
have continuous first and second derivatives with respect to all 
its variables.

Let us assume that the surface ^  , with the equation

^ 9 G R y

is transferred into another surface ^ , with the equation

f  G R ,
by the following family of transformations:

=  f . s,ir ; s) ,
f  =r y ,r, S,J: ; e.) ,

f  =  s ,  4  )  e )  ,

(5.2)
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depending on the small quantity parameter E . The functions X ,
'Y and J  are assumed to be differentiable with respect to ^ , 
and when S =. O the following identity transformations are obtained:

s,i ; o) a  ÿ , 
^  s,i:; o) =  j ,  .

(5.5)

The transformation (5*2) also carries the functional 
in (5*1) into ? defined as follows:

T f. f.f.A 4̂ ) ci/J/ , (5.4)

n** ,* * * X 96  ̂ ^ 36*where K  is a new domain, y - f f ) , *P= —~ ^  ,I u *' 9

*T :r

Our aim here is to find S J  which is the principal linear 
part relative to ^ of

T t f ’c A f ) ]  - , (5.5)

where TZ^C '^>^ '>~ \ are defined in (5,4) and (5,1)
respectively.

Before we calculate cTj* , let us first calculate the 
variations (5‘r , (9 ̂  , S'<̂ , , S'*' » Ss and ,

By applying the Taylor's theorem to (5.2), we obtain

and

^ =  y ;o')-t <£
3S

6=0

6-0

4- ocd)
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and by using (5*5) we have

2/4  O C £ )

g= o

% 1=

f = 
f =

ÿ + ty,(x,j,^,^,.j,,r,S,=(:) + oCg.-*j,

f  +  ̂ n s, 4) + oce’’).

(5.6)

where

£so

e=.o

2=0

r (5.7)

Since a given surface (S! has the equation ^=<^cx,yi 
then (5*6) gives us the increments

Aoc=î 9( — or t= s C'x,̂  'i ■+ <̂ 9

A y
A

=s y — = 'c  ̂̂  ) tj ̂ "t ^  ̂>

= = £ J  C'X,y'> -^ocsS,

(5.8)

where and ^  are defined in (5.7) with
(f> and its derivatives expressed in terms of % and ÿ  •

Let us denote the principal linear parts relative to S 
of the increments A x  , and A ÿ by (9% , and Scj>

respectively. Hence it follows from (5.8) that

(5.9)
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The increment Ac^ in (5.8) expresses the change in
<f> -coordinate as the point ( x , ^ ( x ) on the surface ^ is
moved to the point ( ' ?<* , ) on the new surface ^ by
the transformation (5.2). Let us also consider the increment

which expresses the change in <f> -coordinate as the point ( x , y , «ĵ Cx.y)) 
is moved to the point ( “X , ^ » y) ) on the new surface »? but
with the same coordinates 'X and ^  . We shall introduce a new 
function J  and the corresponding variation Sĉ  defined as
follows:

A(j> = -f
and (5.10)

.

The new function or the variation S<j> is related
to ÿcx,ÿ> or S jf which is defined in (5.9), and we can find that 
relation as follows :

A  ̂  y") - Cx, y )

=- { x'- X  ) 4- y ) 4  ^©•X 0^

Since it follows from (5.6) that

? i * =  +  € '!£ + oceS ,3% 3^

H " '  f

(5.11)
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thus

g " ' , ÊÉfy + oce*>
■>3 *

(5.12)

where 8 'X and <9̂  are of order 1 in £ and defined in (5•9). 
By substituting (5.12) into (5.11), we have

A <p = ^  S'y + ? £  fy +  +  O .

Hence

(5.13)

where Sÿ , as usual, is the principal linear part relative to £ 

of A(j> , By using (5.9) and (5.10) we also can write (5.13) in 
the form

- f  • (5.14)

Next we shall calculate the variations , S‘V' ,

S S and <9 Jb •
Since 'X and defined in (5.6) are functions of 

and , we can find their derivatives as follows:

^  ocsS3X 4 1 f € 2 ^  + oceS

(5.15)

Hence, it then follows from (5.13) that
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Similarly, we have

'M9o( 3 + 3
33 3%* 33

=  4 4 0 Ce*)]•- 4 ^ 3 A4 OC£ >9X ■J 3X

= ^  
3x'

4 S %  ® + \9x
3
5?) " occ^> ,

(5.16)

Now we write

-p s A S  a , y') _
^ 9x' 3x

y. ,y 1-
ax’* 3x

(5.18)

and analyse each term on the right hand side of (5*18) as follows : 
By using (5.6), (5.10), (5.16) and (5.17), it is easy 

to verify that

4 OCS' )
39( ^ “* L J) J

= 5 2  r $  (x, H>1 + oce1>9x t J
(5.19)

also

y S = £ 2  ["“̂i X Cx, cj> + ^  y  Cx, 4- oce^T>x L^x * 3 y I

. 1 43X
4 2f . ^ 4 0 eg*)  ̂ (5.20)
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and

=  -"c.r22(|. 2^ + aY,.'^ ] +  «c^>.
L 3X gx' 33 Sg" J

(5.21)
Substituting (5.19) - (5.21) back into (5.18) and using

(5*16) and (5.17) once more, we obtain

Af s Af = e 2-ff + £X c«,3) 3^ + +oce>.
I ‘x 3X ̂  4 ' 93* »

(5.22)
Since S-p or S<j> is the principal linear part relative to s 
of A-p or A S  , and by using (5.9) and (5.10) vre can write (5.22) 
in the form

, (5.23)

where ^ 4 and S
9cr

Similarly, by starting with

Ai, s  AS = A"»"' .

and using a similar method, we obtain

= S(j>̂ = ) s- s Sx + J: f (5.24)

where S H ^ f and :t = 2 i  •
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We now proceed to find Sr- , Ss and SJb which are the 
principal linear parts relative to E of A ̂  , A <f> and A ^  
respectively.

From (5 .16) and (5.17), we can write

~  221,— A ') + e/'Ai ,a_ +  2-Yi.3_) + ocfc>,0* 0X '' ■3«(‘ "3% 3^*3y«/ ÎX'* 3g*/

(5 .25)

Y  = ^  + 2 £ ( ' ^ .  +  ?!.. Y  ) . 4 , U ° C £ \
\ '3% ajr a/'*-/ I 9^^ 3x* 9^* 8y y

(5 .26)

and

Vex V 3y Dv ax^ay /3X3^ 3X  ̂ ax̂ â

+  ^ f ^ ̂ 1 . ̂  4  -■ ?_  \ 4. o c t )V*ax9^ 9x* 9x3j[. /

(5.27)

As before, we write

Ay' h  a s  =3̂X <3̂ *4

(5.28)

and analyse those terras on the right hand side of (5.28) as follows:
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By using (5.6), (5.10) and (5.25), we have

=  J  Cx, J -M o c ^ ^

(5.29)

+ 2 ^ . 0 :  + .21, + A _ . ^ % i
ay; L ax @x axa^ 9x jJ

(5.30)
and

_  e r sX,. ̂  ^ . 3^ 1 + Of A  .
 ̂ 9X* 9X*

(5.31)

By adding (5.29), (5.50) and (5.51) and using (5.16), (5.1?), (5.25) 
and (5.27) we obtain

A - 4 =  A < ^  =  5  2 ^  r  4 a  X  C x , ^ )  -f ? i . . , V  ( x , ' y ) ~ l  4 < ? ( ^ )XX ax L .s J L 3 %̂  I  ̂ 5

Hence

H .  - + H - * ï  • '5.32,
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where , S = Y ̂ <Tx- £-XCx,^’>
9x9^ A

and ^

Similarly, by starting with

A ±  =  A S  =  _ aVcx,^)
7

A s  S A  ̂  >/) _ ^
3̂ "* 9 x 9 ^

and using the same technique as finding &T , but making use of 

(5.26) and (5*2?) instead of (5.25) we find that

s  S f = -A. (?■/>) + %i Jx 4- I h f y  , (5.33)
's? a /  ̂  3% 3if

and

+  + (5.34)

where s = ■— ■ ̂ - and J t = - .
ax ax

Next we calculate the difference A3* defined in (5.5),
i.e.,

A T  -

(5.35)

R*

Changing the variables of integration 9C and ^ in (5.55) into 

X and by using the transformation (5.6), we obtain
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~ / /  ^'a")
R '̂ '‘

(5.36)
# W

where ^^ ’7.̂ is the Jacobian of the transformation from the
9Cx,%)

variables x , to the variables X , i^  and by using (5.6)

we find that

3(X,2)

1 + £ 3X,

—  1 4 - 6  %  4- 6 ^  4 0 c A .9x

Hence, Aj in (5.56) can be v.’-ritten in the form

A t = J/ y  i*) ̂ 1+ + J- FC’f. ^-^4- +
R

(5.3V)

Expanding the integrand of (5.57) by using Taylor’s theorem and 

neglecting the terms of higher order than 1 relative to € ,

we obtain

S t  =. [ f f  È E  +  3F_ +  9 F  +  2£. f  f  4 3 £  f  a +  i-y +

R 

4 ^  S s 4 â£ + £ F ̂ 5. + £ F  ̂  7 jx3S 9x J

(5.58)

But since it follows from (5.9) that —  6'%)= S and9%^ / 'Sx 9^ 9^
thus the last two terms of the integrand in (5.58) can be written
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in the following forms;

.F||, =  * | £ "  +

4 ^  4 ? £ . ' i l 4 ^ .  .9Y" '̂ •̂x as "3X a 4  J

and

g  +  g  + 1^ -  :(- +

4 "Êf. ^  4- ÊE . ̂  4 1 ^av 3x 9S 3i£ a± aw j

(5.39)

(5.40)

By adding (5.39) and (5.40), and using (5.23), (5.24), (5.32), (5.33), 
(5.34) and (5 .13) we have

(5.41)

By substituting (5.41) into (5.38), we obtain

6 T =  r r r  4 ~  • ^  4  4 ^ - ^  ^ ) ' h
J J L 9 ÿ  a p  a% 9^  ax as ax-ay
R

+ If. 2. (S'/) + ^ ( F S x )  
at ay S’f J

(5.42)
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It I s  easy to verify that

(5 .43)

% ÈM, . i fe{S |M) - if %(|E)1 * 
+  H  {  S '  & ( %  -  i f  4 ( | E ) )  .

Using (5.45), we then can write 8% in (5.42) in the form

+r, 1»="^+ S)4 ^ &( Ir))}]
(5.44)

Applying the Green's theorem in 2 dimensional -plane to (5.44) 
and then using (5.13), (5.23) and (5.24) in the line integrals, 
we finally obtain

- a 3
R

+  £  [ P  Jl^ -  G id - x ]  , (5.45)
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where c is a closed curve bounding region R , and the functions 
p and (Si are defined as follows;

f - ÎS |(D)+

(5.46)
and

- Î Î i * 5  "4} * f *4-1 fc( « )-| ( S)i -
“  [ f  i  | i ~  1  l ï  ( 1 ^  )  (  A ^  ^9%- j. 32/ 9̂

9F

(5.47)
This result is the same as in section 536 of Forsyth’s ” Calculus 
of Variations " text book, [17] .

If the functional contains the partial derivatives of 
order not higher than one, i.e.,

T  = F ('X  ̂ ) f , -p,
R

then we can deduce from (5.45) - (5.47) that 

R
+  f  f F %  - -p(|f ̂  - |f ̂x)} -

- F / x  + f t  J f )]] ,
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where -p s ^  and G is a closed curve bounding the
region R, .

By referring to the remark 3 in page 173 of Gelfand and 
Fomin’s text book [l8^ , we shall state without proof that if

R

then the first variation can be written in the form

+

'A,

VI

-fiyjpax + y  f _ l f _  cli - - ^ L -  dx'
L A. ■ay V ‘a/'Md'i /Jl = l 3y V

(5.49)

where C is a closed curve hounding the region R .
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CHAPTER 6

THE GEHERAL STATET̂ TEHT OF THE TWO DI^TENSIONAL

harjMONic control problem with the shape of

THE DOMAIN AS THE CONTROL ; COWARISON OF 

I-TETHODS of FORSYTH AND GELFAHP/FONIH.

The problem we discuss in this chapter can be stated 

as follows :

Let be a harmonic function in the two dimensional

-plane, i.e., satisfies Laplace’s equation

' É i  +  o ,
e S' (6.1)

where ^ is a domain in '̂ fjf.-plane bounded by a closed curve .

The part fj of the curve P is assumed to be fixed and the part 

can be varied (Fig. 29).

The boundary conditions are given in the form

(6.2)
(6.3)

V/hen we choose different curves P we obtain different
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functions <f> which satisfy (6.1) - (6.3). We wish to find the 
shape o f , in other words the equation of the curve , for
which the functional

% = Jf ( 6 . i f )

g ^
has an extremum subject to the constraint

j y  (S-Coc, - K  , (6.5)
0

where K is a constant. For example, when G-= 4. , (6.5) could 
be an area constraint.

Let Of = gcti ; ^ be the equations of the curve
in a parametric form with parameter Jb . Suppose that and

are continuous functions and have continuous derivatives gCJto 
and and do not vanish simultaneously, when varies from
which corresponds to the fixed point and corresponding
to the fixed point (s e e Fig. 29).

We shall investigate the problem by two methods depending 
on using the result in (5*^5) or (5.49) in Chapter 5 and we 
establish that the governing equations are the same by each method. 
Let us call the first method which uses (5*45) the Forsyth method 
and the second one which uses (5«^9) the Gelfand and Fomin method.

Method 1. Forsyth method

We introduce the Lagrange multipliers VC'X,^’) and V  

where V  is a constant and write a new functional T  in the form

■*o



115

T  = 1 , - 1 (6.6)

where (6,7)

and

0

? '
=  J V(§.'^,'^(^.^))g +W(s.'2.'^i:S''2))^] (6.9)

Since the curve !̂ which is a part of the boundary of 
the domain ^  varies then 5 is a variable domain, and since the 
functional in (6.8) contains the second order partial
derivatives of <p thus by using (5*^5) in Chapter 5 we can write 
Sx^ in the form

*5 - ff»[ I? -m ym )  ̂ t  * $  ] +
^  (ê [ - <̂ cf9(J ,

where P and are obtained by using (5.46) and (5.47) in 
Chapter 5, as follows:

(6.10)

P =

Q =  Ŝ<j> ~'̂ )-CS-x)f<i f3jL-2L)+X  ̂ 1 +
y  V. /  L '><\.‘0<j>̂  ^  ^  ^  ŜC

(6.11)

(6.12)
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Since Pj is assumed to be fixed, hence S 'X —o , «fy ao 
on and since on we have 0( ~ ^ » ;& < jr &
hence ; <5“ =■ ; d-x = olX and '»̂ cdr>cli: .
Therefore Sx^ in (6.10) can be written in the form

vJ

(6.13)

The functional in (6.9) depends on three functions
^cX) , and • The limits of integration and
are fixed, and the values of jci> and when and ,
i.e., at the fixed points AC'x^y^^') and are known. The
variation of this kind of functional can be found by standard 
methods and we can write 5X in the form

S i  =
X

+  { If s + I S  11 ( i‘*’• I * ) ] '•*
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|/aw_sv •_ §v. 5̂  .j 7 4-

7 

d i .

(6.14)

Substituting (6.13) and (6.l4) into the variation of (6.6), v;e obtain

S J ■= 4 A  1 +

+

\ 9fw X V 9^ aw / 9(6 / «̂ J

di:

(6.13)
A necessary condition for the functional X to have 

an extremum subject to (6.1) and (6.5) is that 6x = o for all 

non-zero arbitrary variations Sĉ  , and ,

be assume that, the variations for each separate part of the boundary
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are independent of the variations for every other part. Hence v;e 

shall have the following equations to be satisfied.

'H! _ \ + A ;  + A  - o  , € g  , (6.16)

(6.17)
and

t { t s * î [ { H - (» J - ! | ) i  +

OH r

(6.18)
on r where ~ ; y ^ c;6) .

The conditions (6.17) and (6.18) must be-consistent with 

the variation of the given conditions in (6.2) and (6.5) respectively. 

By taking the variation of (6.2) we have

It ^ =  c  , r ; (ë.i9)

since we assume oc= =rc:^) , $ cê < on ^ , from (6.5)

we have
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(6.20)
Hence, for consistency between (6.17) and (6.19), also (6.18) and 

(6.20) we obtain the transversality conditions as follows :

^  r < i %  ^  - Y J - ' x _ c^,ï)eP
3M 9Aj 9M
"5?

(6.21)
and

1  
3N
'"7

=  ( I I
»(V

_  _  - y &
Q/V 9fV

on

%)»
(6.22)

r where x=-gC;t') ;  ̂~ Î .

Method 2. Gelfand and Fomin method

Let us introduce two new functions and

defined as

fc-x,y-) - ^  = M .  , ̂ 3X ^ ^  " ( 6 . 2 3 )
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hence vre can w r i t e  ( 6 , 1 )  -  ( 6 , 3 )  i n  t h e  fo rm

M =  o , (7t,3)er;

and  ̂ ('-’f, , -x=̂ ĉ ); ^
r (6.25)

By using (6.4), (6.5) and (6.23) - (6.25) we write a new
*functional T of the form

g 3 J J- 'j,
A

” J [^q'T,b<^S>4s +
■̂o

(6,26)
where

(6.27)

H = ,<̂ )+V ^ ) as defined in (6.7),
 ̂ y t

the functions 'x',̂ ) , 3^Cx, ̂ ) , yi/L (xiD , and the

constant V are Lagrange multipliers. The functionals T* , 

and 1^ are defined as follows:

%'= Jf , 6̂.28)

=  f  /^CA) M , (6,29)
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and

3 0
ir,

(6.30)

The functional I  in (6,28) involves three dependent 
variables ^ , -A , ^  and their first order derivatives,

defined on the variable domain ^  • Applying the Gelfand/Fomin

theorem (3*49) from Chapter 5 to this problem and by using (6.27) 

and (6.28) vre can write the first variation of X* in the form

p
-f

-f[{( 4/ 5} [̂37] + h'. S ]

—

■r 3̂) f + P)- ̂  ̂ 3) 's) ot4;
X3>gci-:)
Ï'7'7(6,31)

where Sx = c> ; = c> on P , and S% = <Fgcir-i ; cĴ  = ■> ;
= £ d t  a n d  = -jdi on .

As already mentioned in method 1, the first variation of 
the functionals and X* , defined in (6.29) and (6.30), can

be i/ritten in the form

s z "  =,
Z

(.27 (6,32)
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and

S x *
3

A
f ^ d y ? H  } S g c ^ +  3ÿ 3 ̂2 ̂ ̂ 9̂  »g 9g J

+ j 5'7ci)+
1 \ a>%J ̂ 3  ̂ 9  ̂ ' ' 7̂ J ^

‘9A/

(6.33)

It then follows from (6.26), (6.31), (6.32) and (6.33) that

6J =

0

;6,
m - vjf)r +{%'«*#{ «*

* I? §)i}V'l •!* ■7 f   ̂ J
X= ̂ci-)

(6.34)

As before, the necessary condition for X  to have an 

extremum subject to (6.3 ) and (6.23) - (6.23) is ($ =  O for all
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arbitrary variations i , cS'f , 5̂-̂ , 5^ , <5'̂ , and
. Hence we have the following equations to be satisfied.

9H _ 9 /9N]_9 \ 
9ĉ  axl'̂ p̂ / 9y 1 9^/

- _ 92ij =  O ,9x 9^
C»,ï) 6 1̂  , (6.35)

_ A - ,' ax
C9t,y)6 C,

-(6 .3 6)

 ̂P
(i & S - -  “ > P, . (6,37)

--TK 4- f̂('«) l!L o , 
3 dt/» ' ' ■»?- C'X,i'>̂  p

and on P v;e have

[IVk(I?/^I? if}“i 1 ̂ ^ ÿ

[ b i  ®  »

(6.38)
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By using (6,23) and (6.56), we can write (6.35), (6,37) 
and (6,38) in the form

(6.39)

3M '
■ff 'T f

and
p (6.40)

C - x . ' f . ' j i  l |

a/v

QN

9/V 3 A/
J’

(6.41)
where % = on .

It will now he observed that the condition (6.39) with 

the natural boundary condition (6,40) and the transversality 

condition (6.41) of method 2 are the same as in (6.I6), (6.21) and 

(6.22) of method 1 where (x, ̂ ) = K 6x, ,
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Not all the equations in (6,22) or (6,4l) arc independent. 

In fact it can be verified as follows :

On P : X = ^ and from the boundary

condition as defined in (6.3), i.e.,

we have

where

i « +<* 7 ! A ’' = Z' i + 5* vj and ^  ^ 5 + /■ 7 (6.43)
'i I- A i  AJt y/ ^

It is clear that (6.41) can be written in the form

(6.44) 

(6.43) 

(6.46)

(5>/V o
9 S

> 9 / /  = 0  ,n
c> ^

'd f

'> ^  = o  ^

■') 9A/ _ o  .and — 9) «Z +  ^  = O , (6.48)

where

5ï"5y5? ^  J
r J , /3H 3%j\ -àV ^

( , , / 3H , 3W 2É i
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( ^hl 32j , 3W 1EC^,3)5 1 + ? ^ J

C 9H 9 ^  3V 1 6-Cx,y)= -j ~ «î J

Using (6,4-2) and (6,43) it may be verified that equations (6.44) -

(6.48) are connected by the identity

4 - ^ f i ^  | | ] s  -I- { p w , y ) 7  +  D c i t , y ) 5 + ^ c J : > | y ]  ^  +

+{£(x.j,Y+&C^,?7sV;iCi. ̂  + " t ^ ]  ̂

The sane is true in the case of equation (6,22).
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CTIIPTKF 7

A rAPTICULAP T'O PJMPTflOrAL HAX'ONTÇ

CONTROL PPOBLEM IN AN AIDTULAH REGION

WITH THZ SHAPE OF THF DOMAIN AC THE CONTROL.

In this chapter we consider a particular two dimensional 

problem using plane polar coordinates (-A , 0 ), The problem can be 

stated as follows :

Let <̂ C'f'ye'> be a harmonic function so that

or
srf(y,e')

O

=  O

Cr, O') € ^  y (7.1)

C't'yO') ^  ^  ^

where V is a Laplacian operator and ^  is a doubly connected 

domain bounded by two closed curves and C as shown in Fig. 30 .
We assume that the closed 

curve C is a given fixed 

circle t ~  R. o  < 9 < XîT 
and the closed curve 

is a smooth curve of the
form ■P - \ o < o < x i r

andO<^r@)<R (see Fig. 30).

The function is

also assumed to be continuous

on thG bouno,aries.

The boundary condition

on the boundaries C, and are' X

given and defined as follows :

F i g .  30
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Acs,pp'̂ A + BC9,3,,f)âL+ £C<>4,pf ̂  F O "  g '97* 0a
(7.2)

where T ~  < ^ C 0 ' )  ; c è  ^  x i r  o n  a  ; 4 = and /4 - B = A  o .
^   ̂ dô'

and ^ on C : f -  R • a  ^  9- <^ XTT  ̂ (7.3)

where^  is a constant.

If the curve : T ^ ; (2 < e<&ir is known then the

corresponding (^Ct'^9') can be calculated from the boundary value 
problem (7.1) - (7.3), and a different curve <2̂  gives a different 
value of e> .

Here vje wish to find the curve 6 : 'y- ~  ̂ (e) ; 0  2 a ̂

so that the functional X  , defined as

$

has an extremum subject to the given area constraint

T(^r'd& =  , (7.3)
0

where /< is a constant.

In this problem the optimum shape of (Ẑ is closely 

linked with the nature of the boundary condition (7.2) and, as an 

elementary example, we may note that when condition (7.2) is 

replaced by the simple Neumann condition

^  =  CL  , o n  C ( Cl is a constant),
9 Y -  °  I  o

and we disregard the constraint (7.5), the problem has the following 

simple solution. We can in this case look for a solution in which
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is a circle of radius  ̂ , where R is unknown, so that■̂ 1 o o

' l i  = a , 2-= i9Y

Then the solution for ^ in is a function of only and is

given by

f = + /

We can now find the value of X , as defined in (7.4), and if we 

now regard X  as a function of it follows that X  attains an

extremum when ctx „ c> , that is

D Qif o , thus %  —

and it is easily shown that X  attains a maximum in this case 

at ^ •
° f x

We can look upon the above problem as a steady flow 

problem in hydrodynamics in which the liquid supply to the annulus 

is (X per unit length across C . The total flow of liquid across

C,̂  is and the integral X  is a measure of the total

kinetic enerĝ  ̂of the liquid in the annulus. We see that as R ,

X  must tend to zero since the annulus area tends to zero ; 

furthermore as  ̂o the liquid supply ^ O and thus we have

X = when =- C? and when = R , hence X  being a continuous

function of it follows from the mean val.ue theorem that X  must

have a maximum at some point between = o and R .

Next let us turn attention to the problem stated earlier 

in the chapter. We shall use the Forsyth method which has been
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mentioned in Chapter 6 to solve this problem.

Lot us set the new functional X  as follows:

T  -
^  (7.6)

Wile re

=  - t - f ^ L ^ + V Y  (7.7)

the function XCr̂ ô) and a constant v are La.grange multipliers.

Here X  is a functional involving two independent

variables y  and <s , one dependent variable A its partial

derivatives up to second order, and since we also can show that

PtlMr]''"''» ”

where p is a curve bounding a domain ^ . Hence, by using
(3.43 ) - (3.47) in. which we write ^ and O instead of oc and ÿ ,

also X) , 7̂ , T , and i  denote ^  , 2 -É -

A
written in the form

6j - //('«[I?
.S'

9Y"
ind respectively, the first variation J of (7.6) can be

ca (7.8)

wdiere H is defined in (7.7) and the functions P and are

obtained from (3.46) and (3.4?) as follows:

On C : Y =» R ; O < ô s x T , a fixed given circle, we shall have
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= o , So Î dr-^ o

also have S'cjf =: o , hence

p = Y-y 5"̂ ^

and since from the condition (7.3), we

r on eA (7.9)

On ; J S <9- < , we shall have S r fe q , S(9 — 0

and d r  =r , hence

(7.10)

By substituting (7.9) and (7.10) into (7.8), we obtain

5’r =

J E T

lî? -iC4pl * j  M j '

-t H 4 ̂  d —ry y ‘■T&
( ■ i a _ t 5Ï'G T9®,

r  - t

(7.11)

A necessary condition for %  in (7.4) to have an extremum 

subject to the constraints (7.1) and (7.5) is that & X = o which 

leads to the follo'ving equations.

A  cr O ,  (r,6) g. s'

(7.12)



Since is arbitrary on C /, o and then its coefficient

IS zero, I.e.,

y C R,G) = O on e : y = R , 0 <  9 6 ATT. (7.13)

and
àT

+ W I ( S ' * S ! ) j ]  ■<' = o  .

(7.14)

On the boundary <3̂ , since we have y -^. g Ce) , thus

By using (7.15), we can v;rite (7.14) in the form

(7.15)

+

d &  =  O .
1r=‘5Co->

(7.16)
Taking the variation of the given boundary condition on <2 

v/hich is defined in (7.2), we have
I

A

on C

+ as-fp- Al ÿj(s> +

y = ̂  ■)
2>?‘
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and by using 17,15), we obtain

on (3 I

(7.17)

We are assuming that O , and then by

substituting from (7.1?) into (7.I6), we have

S.T

By performing an integration by parts of the first and the last 

integrals and using the assumption that these functions are single

valued, we obtain
XT ,'bfff I f  ?-V.C6 + ftfA‘)B  Sd +
J L U A  ^  +  cJ^r-CA-ftgO 4 J  ^

<r (j T=̂ ra)

vT Y- ^  T 9eV (A-&a^) ? 3^

-i 4  ̂ A ~ d  I S  A. 3g \U
je\ ( 7 4 7 )  Uj' ^ ^  j3 r-jfe) Y-j C&)

Since on , Scj> c> , 5g ̂  o , the following conditions must
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be satisfied on (3̂  .

=  o

41&)(< >-jC©)

(7.18)
and

r 1  f K f  + / ■3F̂  _ <i 3A . ̂  36 _ A 3C  Y
i ^ l Y A - é j o  ' ( 4  ^"’7  ^ Y

+<? i/f)xc_ i/g-(sf^4f)Y')| _ g-(i+?/?")yjss.i 4_, __
A-ef) ~ 'kl (A-6 3 O /J (»?• ®? ® ajY=.̂ c&)

9^)% , =r <5

'3»)

(7.19)
where H is defined in (7.7).

Therefore, we conclude that if the functional X in 

(7.4) has an extremum subject to the constraints (7.1) and (7.5) 

and the boundary conditions (7.2) and (7.5) then the conditions 

(7.12), (7.15)1 (7.13) and (7.19) must be satisfied. The optimum

curve (3̂ : y = , o < will be found from these n e c e s s a r y

conditions.

Let us consider when the boundary condition on in

(7.2) is replaced by

4
9n 9a

on e y = g re) ; o $ < att^

(7.20)
where cl , J r and -& are constants, is the partial

derivative operator, along the inward normal -vt to the curve <z
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(see Fig, 30), and is the partial derivative along the curve G .

The function FCv, is prescribed and assumed to have the continuous

derivatives up to the second order.

Let us find the relations between and

also between and , 2É .

Since v;e know that

3-n

9/A.

ë£ .  ^  ? i .  42L

4  , Si 4:
9 ^  o(a

y (7.21)

and in polar coordinates, it is e a s y  to find the following relations

On : 

thus

^  s) fa

> = J fe> ; o 4 e g âX , we can find that ct-A = 1 +

I 2 %  ^ ■ -— = I g- +  _â eac @1..—  ̂ -------
j ' / l + f / f d e  ^ { î f i W

(7.22)

2b  % - 4^ — — = rgm» + ^

5 4+3'/f

(7.23)

Substituting (7.22) and (7.23) into (7.21), we obtain

, on G

(7.24)
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and

f l ' à  + lil- - 4 = v  ' C, : , oseSAX,

(7.25)

By using (7.24) and (7.25), the boundary condition (7.20) can be 
written in the form

(7.26)
Comparing (7.26) with (7.2), we have

AH(a+>?') ; 6 s  ( ^ -  1^); c = ; Fs

f i , - & < } '=  and (B + ̂ )  s 4 ( 1 + 1 * )  .

Hence the transversality conditions on in (7.18) and (7.19) 
corresponding to the boundary condition (7.20) will be

f  ( w v + H " ] !  =  0 .9Y- ^ r ^  ^ I ay ^ seJJ ^

(7.27)
and

73^ 
■ 1

+1 i  (1̂  i ) +1 Î f  I  i -  i   ̂̂  -

- . /  ] 1 _  o  . (7.28)

= JC»T
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For the case when a.s= l , <^=0 i.e., when (7.20) is
replaced by the boundary condition

^  ^  4e.<f> =  F^C-r.e), on c : T=jr8) ;<5 S«£ftX,

the transversality conditions on for this case will follow

(7.29)

from (7.27) and (7.28) as follows:

-  o  , on C

y») (7.30)
and

%=. O  *

(7.31)
where H  is defined in (7.7).

We shall now discuss further the problem of finding the
curve Cj : y = g Ĉ ) ; a ^ e ^ S C iT which provides an extremum of the
functional X  defined in (7.4) subject to the constraints (7.5) 
and the function ©') satisfies the following boundary value
problem.

4> +  + A  <d =  O . CY,&i 6 ?  ,'Vr *r 'y y* /a*y 'y T*
gj> =• on C  :y-^r6)'
T»n

on cS.

k (7.32)

where ^  is a domain 0<^f©)£y£R ; <5£G£Xir as shovm in Fig. 30 .
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The necessary conditions for this problem have been 
derived and defined as in (7*12), (7*13), (7*30) and (7*31). After 
substituting H from (7*7) these conditions can be written in 
the form

O .

(7.33)

9 Y  f  ‘feV =  5 [Fj(y,e')-ft^],on g,fe); 0 s
9'n

where is defined in (7.24), The other transversality condition

follows from (7.31) that

Y'/i +Ĵ Z'F 1 = 0 ,
(7.34)

The boundary value problems (7.32) and (7.33) can be 
solved by using the single layer potential theory and will be 
discussed in the next chapter.

In order to simplify the problem, let us first consider 
the problem when the curve is a circle Y“-= and Fj C'Y,©’) .= c<
where o( (t^o) is a constant. Let the corresponding ^CY)©) be (jj , 
then the boundary value problem (7.32) becomes

—  O

d r

t  '
on : y =• R .

 ̂ (7.35)
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The solution <j> vd.ll be a function of T  only, hence
9the general solution of V ^  = O will be of the form
' o

-sz A  Y" 4" %

where A and B are arbitrary constants v/hich can be found by 
using the boundary conditions on T= T and R , that is

A  = and B  =  ^

hence

where

^  = y M ..Gog Z (7.36)

M = («(- ' (7.37)

Consider next the problem when the curve G is only a 
small departure from a circle y = Y and expressed in the form

v = X  + &a,f8> +OcT> , ^  f  o ; (7,;g)

and the function FCl g ) is prescribed in the form

Fj (y, 0) = ^ 4- oc^) ,

vfhere £ is a small quantity parameter. Let the corresponding 
solution of the boundary value problem (7.32) be

^ (7.39)
where <p is defined in (7*36). Since V  ̂  o and v"V =- O , 
it then follov/s from (7*39) that
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v V  =  O  . (7.40)'l

Let us fin<5l the boundary conditions on and for
the function . By using (7.24), (7.36) and (7.39) in (7.32)
we obtain

^ A t M ^ =  c><+e #cv;,©)+oce^)

or

Afs) + MajT^ +oce) ; (7.41)
L 9y 'I J ‘ y,

and on : y- R , we have

ĈR,o) = r= R; o < (7.42)

Next vre shall solve for S from the boundary value
I

problem (7.4o) - (7.42),
The general solution for a single-valued ^ Cy,») of 

Laplace’s equation =  o can be written in the form of series
as follows:

d>Cy,o'> =  A + B x+ (£ fe.eeavi6 4 ’p/w».'»-'®) r + S' ( c  ew ne +T>>ùi ■nôlv'4 c ° -M.r " n ^ 7 "  M / ’
(7.43)

v/hei*ô A  9 S f C  I C 9 P 9 P î (09 = 1 9 A 9 3 9...... )O • -K Y1 >1 71
are arbitrary constants vrhich can be found by using the boundary 
conditions (7.41) and (7.42).

Using the boundary condition (7.41), and (7.43), we have
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oO ^ ̂
"F ̂ 2 \ <2^ >1© fl) /y»e) -+ "MY 3 H"via, ^ >N « d

(CC6r3ne+'%)Aii^in6)(AT --MT )-f-Ofg.)̂
>1»l ^

in which by using the property of the periodic functions A<^
and <2«ra on© ; (->1̂ 1, A, 3 ,.•••• ), we obtain the follovd.ng relations

AT

At (7.44)

C-&77-nf)C+(fck-ri^’')C =  i-J ,®) + Alace)(l-ir^ <2^ ct©

^  =• 1 ,  A, 3 , (7.45)

and
XT

) D + (-&X-- " f  )k <̂ 9 ;

vi~ I , A, 3, ' (7.46)

Similarly, by using the condition (7.42), and (7.43), it will 
lead to the following relations

\  - - e . - H ' .  

A - - =. «“  .
/ ^ AnD %= —  ^ R . ^ ̂  I >*»

l,A>-- (7.47)

Solving the equations (7.44) - (7.47) for A > B « C ,o 0 n
t> , (Z and t> t we have

>\ 71 7\



TIf2“

srr

B. = - _ A _  = 1_______  f jv-/cve^+Ci--A>;)M«r6)U«> ,
aTr(i+Y;*^^) J I ' J

AT

T r | 4 r ( i - / T )  + v,r"CH + r ' T ) ]0
ATT

I) =r - t  R "z: I  {T̂ -#|C'f,>S') 4 - (-f-ATr.'jMo.iCe)] -Vl^ole ^

T \ r‘") + .1 v -Ct+ - ? " ]  ’ " ’ ’’ '
Hence A, Q-t̂ in  (7 *^3) can be w ritte n  in  the form 

I ^

. > *T
  f f>,/,C^„e)+C-t-^ii)M<a,Ce)j‘̂ 9 +

AT«6

(7.48)

Substituting (7-36) and (7.48) into (7.39), we obtain

ATT

<iCf,s) = /^ -t- ^  fi'^4̂ ,9) + (i-(cr)/̂ a.Ce')]f • % $  4.

oO -M -AV) A» , /r-\ fZ ') eers^r\. C & -& ) 1 j  / a

(7.49)

wnere M

We use the’ same method to solve the boundary value 
problem (7.33 ) for YCT̂ e") • VJhen Y-= ̂  C»”) = +€̂ ,̂C®'i-f and
PjCT,e') ~ oC -hOCZ^'i the system (7.33) can be written in
the form
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%=- 0  y ^ ^

f -  ^x+aef(^v,e)-^4^4- &>c6 on e : + +occ^,9-yi > '

y(R,G) =  0 ,  onc^:'<'-^^ < 6 ̂  air̂

where is defined in (7.24) and for this case will be'B'n

9 =  Q _ 2 g, CG) 9 <3Ĉ )
3Y" y..A 9g

a

Let us consider the boundary condition on , i.e.,

'^r\ '

(7.50)

By using (7.49), we have
*r

+ e M ‘̂ iCe-)+±

'T=v+gac») O

. j + f  . ->-:(iW/"r>e^.,c,U) 1 J[eVoc6.

(7.51)

Thus, by substituting (7.51) into (7.50), we obtain the boundary
condition on (3 of the form I

+ - & Y =  -m + £Ncr^si +o<r^ , e : v-̂ -r + £Y®:)+oc^).
^T)

(7.52)
where

vn =  - a-Av M ^  =r â M ,  (7.53)

and M  is defined in (7.37); and
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j i r y,
i A  ^(ry)+ (i-^yMay)jj +

' t t J ^
^  V) - A n  A n  /
^  ^  R ) C© 7

! ■”+'/. -»nâr> V,, -An J01̂1 - n r (i-T R ) -k Yiy Cl+r R )
0 Û 0

(7.54)

Now we have the following boundary value problem to be
solved.

V  y(v,<9) — ^  , Cv,o) 6 ^  ,

9-n 4- =  vn -f eISl6“,0) + on C : ,

X(R,9) -  O , on C  : Y-= R ;

where ^  and NCr^ô") are defined in (7*53) and (7.34) respectively, 

and -̂  = .2- — * —  ~h 0C$% .3Y- 3»0
It is clear that this problem is of the same pattern as 

the boundary value problem for ^ (v, e) » Hence the solution for
YC^y&'> will be similar to (7.49) ivith oZ , y6 and are
replaced by yn , zero and fVĉ ,©> respectively, that is

ST

Yen.) =  4  £ ^ )(

N/̂/ An. . I
+  T  -  R_______________ ______ Ide'+cci, ,

' r ' c  1 - " V ”) V ’b -I

+

(7.55)

where m  = ^ ^  as defined in (7.53).
O + r J k J ^ I )
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Let us set

p - ^ ^  -A/4 ) (7 .36)

and

~Ar>

By using (7*34), (7*36) and (7.37), we can write

y /VCt ,0̂ )4. Cl--̂ Y;̂ â,C»̂ ) _  '̂1̂'̂ "̂"
(-1+-^v 1a|^») '

-  J .(»")+(1  ̂ i,

Hence K(v,e) in (7.33) becomes
ATT

Yene) = "% PA ̂ ^ ?)• 'R I__-h  R. ,___+
TT J[1 I J ( 2 c-ii-^n

oO
+ 2  Ŝ C'*',r)G '̂yiCe-0^|-'̂ r |-?v- #̂ Ĉ̂ ,&)4-Cl-4r'>C1-f-̂ Y;î )̂.P.af&')].̂
*n»f

cO

h c i t i r ^ ' ^ p ^  6 :  I

(7.58)
where P and are defined in (7.56) and (7.37) respectively.

Now we have

T T= g.c») - T + s^r©) + ocg^>
4-£ ÿ ĉ ,G) + oce^  ̂

<̂ (T,6) =  -\- £ (j>C'fjO) f  o c i ) ^

Y(r,e) =r X,-f £V,C^O+oct"),

(7.59)



where and OjC®) are imknov/n; o( and Cv, e) are prescribed,

and, t^C^yO-') and have been evaluated and defined in (7.49)

and (7.58) respectively in which (p and T are functions
1(5 o

of V" only.

The transvereality condition on C in (7.34) can be 

rewritten hero as follows:

-  - 4 z p ] . ' l u P c f  .y. 1  I  —  o

f  ’ 7 ^  1 ^ , ,

(7.34)

Substituting (7.59) into (7.34) and neglecting the terms of degree 

higher than one relative to e » we obtain

 ̂ * K- • i + n - Ï t  &  ) - *’■• ft |4+r )̂]
ft#)'-». " '

where ch t ' i , and X can be obtained from (7.49) and
To a ' I I

(7.58).
We shall discuss the problem in more detail only for 

the case when - 4 = 0 .

(7.60)

Case -h  =  O .

The transversality condition (7.60) becomes



^l^7

r c£. - 4- ( îi + d -L ■». cia I 80 ' JY=Y-
A +

■,9^

Ŷ 'lr+eaC©)

The functions ĈY,sr) and XC'r,©') in (7.49) and (7.58) will be

<pCT,e-) —  i  4 o c é )

S T

=  +ftf;iojï 4 ^  J -^ 1 1  +

+  Z  — e--f.C.)|c(y +  o c ô  ,J

(7.61)

(7.62)

YCy,®') =  X 4  t'Kc^s) 4 DC A
*r

e<> V) —AY) à.Y>
<w Y- ( 1 - 4  R ) 

'^yCl44 eM-'^cZ-g)] ctat 0C£^
; R ) J

hence

where
Y  — - y

>1 - 1

 ̂ -in an
r C ^ - r  R )

Y, mW c i + v f V f

(7.63)

r (6~ô) d e .

Calculating the first, second and third bracket of (7.61)
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v;e o b t a i n  r e s p e c t i v e l y ,  as f o l l o w s  :

 ̂ ^ cAacQ)I dd I 'do '

r J I r©)- ê -Mr©̂ -©)] c(e + oc6;
-r

(7.64)

s f^ ,c ô ) iiy - i- f^ o f~ T ' ̂  ̂  5i + r y zi; - V ̂  )

= E[»Ce)(v+ftha/i^D)4 &°(4 +
Y=v;

+
iTT
p

I'Ci+yfYe

-Ay> An
- 1» a  - »; R ) X ] e«-a. nce-®)] c(ê  + oce4) •

(W ft-'V ") R -I J

(7.65)
and

)r=Y,+£-^^C^ )

=  Y, ( ^  -V JU^ _ 4 y 2 a c©) ^  -f oC£),

By substituting (7.64) - (7.66) into (7*61), we shall 

have the equation satisfied by the unknown ( ’= j-0 ) and

as follows :

(7.66)
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+ V -f Xoi ^4-E +  )  4- ^  f^  I '̂ 1̂ ~'^d(XC )̂
R * L v  ' -

0
AT -Avi A n

+ T  IZy +4^ +Z Z+4% +O »ar| b ’r )
e<ra r» (e-O') c|_© 4" OĈ ) ;s

t=: O  . (7.67)

Hence

or

where

and

=  0
R )

T =0

A =  1 4- 23
0̂^

(7.68)

(7.69)

«̂:̂ + V 4- Z ) 4- i o< ^ ĵ'*; . -
Y=Y-
_ C8) I 4-

JT -An 5.Y)
+ 6d f [y" ?CY,,64ft°-,C®4[ f t + ^  r  4-V   ̂i + ^  - + W-». R ) lewYife-eîl j-9 =  O, 

-n-JL'i ’ ' JLa R >0^1 Y R Y,(i+gyeJ J

(7.70)

By using T defined in (7.68) we then can write (7.70) 
in the form

AT 00
dL̂ Cei 4- ô(R (9) 4- _Ê—  f (% C©̂) +  ^  ^  ê eavi C&Z<S')'l c(ô = VVCo-) .I ' Ti-r J ' L ° 4, « J

O >\»l

where
A  =  IzA

t 7VY
-1- 4 .4- (1--̂  )

and

(7.71)

(7.72)

Wcsi =  i l l
00

•<>Tr -y\y|
( 7 . 7 3 )
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the constant A is defined in (7.69).

Hence the nnl:nov.Ti function must satisfy the

integro-differential equation (7.71). Since and f̂ C'c,o)

should be periodic functions \;ith period 51T and also continuous, 

thus we shall look for a solution of (7.71) of the form
oO

a
Yn=r| (7.74)

where rr
A. -— ±_ 1 A (0) d© .c57r J '9

aT

air
 ̂ (7.75)

Calculating of̂ ĈQ) from (7.74) and substituting it 

into (7.71) we then can write (7.71) in the form

oo ATT co
âaC6) =WC9)+'> n ( A  + Z

using (7.75), we have

oO «
Wce)+7 f (7.76)

'rr>» I

Hence, by using (7.75), (7.76) and the property of the periodic 

functions cea »» <9 , /uZ 9r>© ; (^ = i,  ̂, 3 ,.... ), we can find

A , A and B as follows :<5 1 » m

ar

A J WC«) de
aTT

^ =-   p_ I rnsIjcS,
Tr(A_YnV5Â J ̂ A V a-n-

B
t (£—

J* IV C©) a m a . yv) & de ̂ ^  = ....

( 7 . 7 7 )
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Substituting (7.77) into (7.74) and using (7.72), we

obtain

X T AT •o

(7.78)

where WCe) and A are defined in (7.73) and (7.69) respectively.

Alter substituting Wc&) , defined in (7.73) in which 

and -é' are in terms of A as in (7.72), we obtain the expression

of in terms of unknovm as follows :

a (8)I 4irD(

3TT— P m  CQ^-G)d,e^

r=

{1- 3 - ̂  T  } ce-©) _
o(Air

AT -T»
ci-^) r #, c ■*, Q ) ci©'^

T̂ToC 3

(7.79)

where 7̂ is defined in terms of the unknovm Lsgrange multiplier V  

as in (7.69).

This unknoum A can be found from the constraint (7.5)» 

as follows:

AT R
Sance

or

o r^-htare)

=  K

i l lr r*- -̂6 T (1, CG:)1 d © T=L k + C>CẐ)a t
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using (7.75), we have

- 5T£-r =  K + oce'’) (7.80)

The constant is defined in (7.77) and expressed in terms of X

as follows:

A = 2_r
içx rl

AT “Va

(7.81)
-VaBy using (7.68), i.e., T  = / l^  and (7.81), we can write ( 7.80 ) 

in the form

-C 4 E-& d o  =

s ir

d . ir

1 -_K_ + 0C£ > . 
TTR̂

(7.82)
To solve for X , we assume X is written in the form

(7.83)

Substituting (7.83) into (7.82), we obtain

-> r -Va1 - £?>,4 £CÂ-i> P I ( ,  e )
oZir '

AT

0

V  r i 4,1 de
9y

= 1- K -f oce5,
TR"

Hence
-V

TT-R

or (7.84)
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and

= g . - U  f + R?vZ°''‘' f
' kir J ' cKkir ^

?
rV»

(7.85)

where \  is defined in (7.84),

Therefore

A = X -f £  b +  oCeS
' i«-

= [c^-o]V«zV)^«+
(7.86)

where is defined in (7.84).

It then follows from (7.68) that

T  =r R. JZ
 ̂ Air _9y , */T

(7.87)
and from (7.79), we shall have

Tj H I  ct/ -f C^Q-V f# CR^ e ' ) J . d - i -471'oC J L 3f J c5Tro(

+

T:z R  ̂  7 a  <pC M w , 0

AT ^

P ( 9f, j  ̂ <iŷ cd-&) d&'' __

» ^ ^ L ’i v A . r  {i- - h  ~

f l a Z V i y  {l- ? - ̂ 2buJ. ̂  ]e»av̂ (6'-e) de'

(7.88)
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where Ag is defined in (7.84),

Hence the optimum curve : r'=Y4E©.|C&) 4 o C ;

o ̂  0 < air will be defined in the following form; by using (7.87) 

and (7.88),

Y = fish-j<_' + _i_ rftV’'” f ffli] . V ________ e»a.w(-e'-g) d e '
!  I T R l  x - R  L J t  ■ Î t J  ,  L s  Ç- . 5  3 /  -I J  II ?1T

o

''kf (fiZ'ts') 7  de,' 1 ^
\

-Vi fitI , s ) 7  _

(7.89)
where o 6 o < A.TT , and is defined in (7.84) as

k  =  - •

We note here that the unknown curve is depending on the

behaviour of the given function 7,Cr,&) on .
It is clear from (7.89) that when E — o , the optimum

curve <2, will be a circle of radius R Vl - Ji- . This result' / TTR̂
can be checked by using elementary calculus.

Let us give an example to illustrate the optimum curve :

Y =z Y 4- ECĈce') 4- o C6̂ ) in (7. 89 ).
Find a curve e, : - Y;, 4- EaiC©) 4-©C A  ; o ^ a £ a.x  which

gives an extremum of the functional
AX R.

V = J J 1 fv+ >
 ̂ r=V;4£^,0>

subject to the constraint 
A— R

Y" c(y ■==. K  ^
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where s') satisfies the boundary value problem

—  O, in S' : 0< C») < r < R ; c2> < 3  ^ ^

2È ~ 0< 4 ^ , on e : Y= Y +£ĉ ,c©) ; o ̂
3n  ̂ ‘

5̂ ~  / ^  y o n e ^ : Y = R * o < 0 ^ A T r ,

the constants R , K , y3 and <k ( o) are given and e is 

assumed to be so small that all powers greater than the first 
can be neglected.

In this example f is given to be

i ,  C y , S  ) _ Y e e r ^ ^ 9j Â

.•• 2 1 <9
9 4 X

5 r
f l - ^ 1 e © a  V n  c - 0 )  j » /

J  1  3 Y j

9
and

aT

[T e«-sL , vmen ^  ^  x
4-

_  (3 when vr, ■=!=. X

J I "j”̂<SrSe«rAYnCG7©)c!© =  Rx ç̂jy^  ̂ when _ 2l
o

_  o , when v>i

Hence, (7.89) becomes

or
A

where
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By substituting the expression of A , we obtain the

curve (Sj of the form

Y- = R - 1^») r( ̂ TV-RKTrR;klO%0-4>)  ̂ «^<0
4 L3(i4Rt- Î10T 0.̂ +K̂ ) Jü^(i - ^ )  + 4irV-é xrAiX*

- aw a® J .f oc6 5 o s © s air.
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CHAPTER 8

THE SOLÜTION OF LAPLACE»S EQUATION

IN AN ANNULAS USING SINGLE LAYER

POTENTIAL THEORY.

We shall investigate in this chapter the solution of the 
boundary value problems which have arisen in Chapter 7* Those 
problems can be rewritten here as follows:

—  O

on e : \

and

CY, S') 6

(8.1)

9T©

on c.̂  : V'=rR;o^0-$AT,

I (8.2)

where ^  is a doubly connected domain bounded by two closed
curves C and C , and ^  is a partial derivative along the ' A 3-n
inward normal to <3̂ , (see Fig. 30 page 42 7 )•

Both boundary value problems are of the same pattern
and we shall consider first the problem (8.1).

Two methods are discussed and based on the theory of
potential: in the first method we use the idea of image theory
since the curve is a circle, and in the second method we use
the general theory of logarithmic potential of a single layer.
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Method 1.
Urjing the notations as shovm in Fig. 31, we suppose that 

a line charge of density x  located on c at a point 

a distance Ç from the centre O of , and an inage line charge

of density J i! is at a point a distance Ç from the centre O
along op produced

Fig. 31

is any point in a domain ^ i:ith a distance T 
froin the centre O •

The potential at any point (̂ C-x,̂ b due to the line charge 

at and its image at can be verified to be

(8.3)

Let the point be (T ,e ) in plane polar coordinates,

we then have the relations

?( = T e w  &
^ =  Y" /Wv>

1 0 ^ 0 ^ ^  ;
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and the point ; correspond to in which ^ - g_re, 1) »
hence

g = <2^ 0 ,

similarly, for the image point PC^\  ̂distance f = B. from the 

centre o $ we have

§ = 9,
h c> < <9, < air.

Thus the distances ^  and r can be evaluated and defined 
as follows:

A . .A. . &

and
/A ga.

= T -h_B_ - ^

hence

§ ) =  Î

- Ŷ~g.Ĉ i)ggrO ce,-o-) -
C&i) <2«a CG,-0) -

(8.4)

Since ÿcd") in (8.3) is a potential at any point Ĝ C9c,y ) 

in a domain ? due to a line charge of density -jL placed at 

point on the curve <3̂ , we also can write the potential

at due to a distribution of sources around C with strength ̂ 04.)
in the form



(8.5)

On C : ; OS0|$Air , v;e can find J.A =  J (6|)yCï^î^^5P J.

a lid by using (8.4), in (8 .5 )be comes

/---7-^  ĉ , »> =  ̂  + i  J  Mfs, 1 jc-6,) yi t reo
r  p ^ _  d rgCG,)6A<i(G,-») -

g<y3(e,-e) _
(8.6)

It can be verified that or (j>Cr̂ Ĝ defined in

(8 .6 ) satisfies Laplace’s equation

and the boundary condition

on C ; R  ; 0 <  (9 ^  5 .TT.

Next we shall calculate on the boundary e where ri.I ^

is a unit normal vectoi’ to 0  and directed outward the domain ^ 

(see Fig. 32).

Let Ndg, be a point on C with plane polar -

' 4cooraanates a.e

% = QC^o"> <9̂ , (9Ç<9 <a.ir ;

through which the point passes when it moves to the

boundary C  along -n.I
By partial differentiating (8.5) with respect to n. ,

ŵe obtain
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ÛF y---   \

li - - 1 n i i  s, - & Ë  J'S"'7" &  •
JL O A. J . f

(8.7)

where as before we have
A .

=  'r 4gr6),b - (26^(0 ,-e)

C r')̂  = -f _&L - c
(8.8)

Fig. 32

Since ~Sr^ ^ S-o e 2̂  Ÿû , (see Fig. 32)

^  Ÿl,
S’n.-

Similarly, 9^
9V) .

— eera. Ÿ

where Ÿo sincl ^  are the angles between T and 'n. , and, 't̂

and *Â  respectively. Hence (8.7) becomes

- / /— ;â— \=  J  ^ . jf®,-) J  1 +  ‘
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d>The function is not continuous at the boundary C and it

can be shoim that [ 51] ,

J L ^
/  \

= T^(N) + J^t6,)j^e^o - e « i j  . g.c&^.yl + c i e  ,

(8.9)

where the integral has to be interpreted as a Cauchy principal 

value•

Consider Fig. 33 , we can express the tern
L

as follows :

c
/

Fis. 55

_ &W. (r„,, y,j)

__
To|

'*o|
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Since

(T)., I) ~ • — !----

/

Ce^ Cn ) —  à %t __ T-y^'' ̂  4- eea.(9,l • _____ _
L ° ^ 1

e^C'^ = 's-̂ o =  gZ6|) gĝ (», - ^  ̂ 0
^ r0| o|

-aCO'^-X =  -3.(8,

/here
'c! =

Hence, (8.10) becomes

l̂ ara-Ÿĉ  =  J<A^Ce,)esR£6,A) + '-®

J-i+i^îà' [ îV,) +fcO
/ ÿCe^ L J

Similarly, by using the same method, [~ 1 can be

expressed in the form ® ^

r e e ^ l  - =
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[e^.-l ^  iJ^e^Cr , y  ej»(M̂ ,,|̂ ) + eM.(:̂ ,̂>2̂ )e«(>i.,’̂ )̂j
■ " (8 .1 0 )

(8.11)

(8.12)



To satisfy tlie boundary condition on C ; i.e.,

= FjCT-,S>) where ^ is in the opposite direction to ,

it follows from' (8.6) and (8.9) that nust satisfy the

integral equation

' *-0

(8.13)
where ina ( E ^ Ÿ

Y ‘
are defined in (8.11)

and (8.12) respectively.

Therefore, the solution of the boundary value problem 

(8.1) is defined in (8,6) where the unlonown satisfies the

Fredhclm integral equation (8.13).

Some kernels in (8.13) can be changed into Fourier series 

which are degenerate. In fact we have

 ^  y- y>c&,
V1=| ^

Liid since ^ , then we can write

(8.14)

(8.13)
We note tho.t (8.13) is also valid v;hen Y-^ g .
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Also from (8.14), we have

_  , '-'hen )y|^ 1 ; all (9 ,

ind

^ y  , '-’isn lY|2 l ; all 5 .

By using these two relations and since %_5îfL2:̂  ̂< 1 ,
R'

we can write

a ^ /

Afs) +-§1 - _ â «V»-) e«^c®,-®  ̂
fr®,) g rap ' °

R*" £:, R'"

(8,16)
By using (8.15) and (8.16), the solution of the boundary 

value problem (8 ,1 ), i.e., defined in (8 .6 ) and (8 .1 3), can be 

written in the form

”̂ir   ̂ et>

<i>cr,e. = y  + _

—  i yVy®,') - 5 r|.ce|Te»a ol©| ,

(8,17)
where ĵ Ĉ \') satisfies the Fredholm integral equation of the form
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ATT
(8.18)

where the kernel K(̂ , is defined as follows :

K(e,s-J = y) + I ioj{a\«i„)+j%,)-^?c®,)jr®i)e<«(®i'®„)]-
06 r "rC©A eê 'nce.-o-c')

a.n +

7 , j'b.) ' I f (■«,> + f  f®I) -  a g  f«.) Jr®,) (9,-9.)
4-

, V, 71-1
f ̂ CBOJ. C80)

gin eaar>C(5
■n̂ i

(8.19)

In a similar way using (8.2) and (8-17) v/e can derive 

an integral formula for Xcr,o') , Finally we substitute for ^

and X in (7.34) which provides an integro-differential equation 

for ĉe') .

Method 2.

Let (R.C'x, ) be any point in domain ^ corresponding

to QCT,G) in polar coordinates, i.e.,

a = Y- (9 
1̂ _ Y-

FCg, be a point on where
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O s e ̂  air ;

fN/Ĉ ,̂-»̂) be another point on C  where vre have 

§ = ^C®0 eerc 6\,

and be a point on <3 where
•» ‘'i

^ = R eé^Q-^
'>2 =  K
J.

o < 6 air ;

y Ak

Fie. 34

Consider the logarithmic potential at of a single

layer of densities ^  c/i,) and distributed over the curves

and C  respectively, i.e.,

±  A i- o(/« ,
^ ' ’

(8.20)
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w’liere T and ^  are distances between and P , and,

and P respectively (see Fig. 3^).

= x'-j- Ĉ '̂) ~

^  o c -  9  C v —y  ^ ^  À  ^  C ^ —<A X

f ? '
On C| : T = g C»,̂  ; 0^a-<âir , we have =  ji -y

O n  <3 : y= ; a < G> < AT , we have cLa =
«3- JL “*

Hence (8,20) can be written in the form

âTT

(8.21)
where ^ and /̂ C®) are unknovm functions which have to be

determined. It can be verified that ŷ Cr,©) in (8.21) is a harmonic 

function, i.e., V^pr ©) z= O

The unknovm and can be found by using the

boundary conditions on C  and . Since the logarithmic potential

of a single layer is continuous on the boundary, it then follows 

from (8 .2 1 ) and the condition ^ = yg, on g that 

atT

ar
- &  J , 04 s £ 3jr- •

(8.22)



and since its normal derivative is discontinuous on the boundary, 

as in Method 1 , we have

i6q

cr TT̂ CA/̂  ^  ) T
r   ̂ ^  J  ̂ c Y: _

cLa

(8.23)

where the integral around c is interpreted as a Cauchy principal 

value•

eerJiThe expressions of and
CO

can be found in the same way as in Method 1 and given as follows:

and

% + n®,-) + ÎA i  - C»o) J-C®, ) C®,
3̂ ®.;

(8.24)

r câ Cn>̂ .x') 
L— T  .

‘iCOo’) - ̂  + 8 ? ^ » U . . ̂ 3-c«=)

It 4 '̂ 
fco.)

________________________

(8.25)

By using (8.21), (8.23) and the condition =-FjCA®̂3t>
on c : = ; 6b <Air, we obtain
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ew (F >’!£') 4-

A AC 
&T

f

d©, A

n
d& ,

4 ^

(8.26)

whore an are defined in
aiNtSo>-%:)

(8.24) (8.25).
Hence the solution of the boundary value problem (8.1) 

is defined in (8.21) in which the unknown functions and

can be found from a system of integral equations (8.22) and (8 .2 6).

As in Method 1 , some terms can be written in the form 

of Fourier series as follows :

i-__ r ^ ^  Y,  y )y \ Yir A _ \ * i all ^ ;

(8.27)
also

oD

r)̂ l

(8.28)

and
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Ç A k )  r
ycSç) L

"  -n-l oO / ir>-A
' 191 <1

(8.29)

By using (8.27) - (8.29), we can write the solution of 

the problem (8,1), defined in (8.21), (8.22) and (8.2 6), in the form

ATT ________
CY-,0  ̂^  - i clô  ~

Air

-  R f i i ^ v
o -y\3i

(8.3 0)

where yu- cop and ^  ) satisfy the Fredholra integral equations

Air r-- -7̂ \ rÎ C®i)
oO

J A . R ' 2  <1 »

AT

(8 .3 1)

ind

ATT A T  
p

(8.32)
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v ; n e r e

+

y 7 +  { 4®, ) + 3̂ 8, )- A) %  C», ) C@, ^

and

R’
oO - ViH , Y)-*

■i V  I ̂  _ 9(9,) J. C% ) 1 “I
1 ,1 ^  è,  ̂ R" ^fc®.)

It is not difficult to show that these two methods are 

equivalent. The second method is useful when the outer boundary C 

is not a circle, otherwise the first method is preferable since 

there is only one unlinov/n A) to be evaluated from the integral 

equation.

We now consider two boundary value problems which have 

already been discussed in Chapter 7 but here we apply Method 1 to 

find the solution. Referring to the problem (8.1),

Case 1: . FjOjQ) — , vdiere oÇ and '̂o  

are constants and O <^a < R .

Since ^(&) ; o<(9-̂ A'ir , we have t= o and it

then follows from (8 .1 7) - (8 .19) that

v>
^  - T ^  j ̂ ^(0,) ^ d Y j ^  ̂ j

where o < f c T c R ; o <& < Air » (8.33)
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satisfies the Fredholm integral equation

■/m  - »< = J
0

^  Ao-»
+ f X  A  - + a + y  2 L_ e^v,(8 -s)U©

r'” «»■. à  R'" J

We can easily show that

(8.34)

o6
^  1 2 =  - 2  ,

hence (8.34) becomes

ATT o O ^ y ^  aLY\+|r* —  fl D >

/  ̂ 7Ns( ^ R '

(8.35)
We set jr

i =  f ,
0
aTT

= J ̂ Ce,)ee<Ln^i  ̂ = i ... ..
0
A T

B^ =  J  r)9̂  ......
0

it then follows from (8.35) that

ân j «̂+1 0 r . a'
y(^X = 4:[f l > e +  +

(8.36),
By integrating (8 .3 8) froir. o to Sir , we have
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Multiply both sides of (8 ,3 6) by - n a n d  integrate from 

to <Ŝ = Air , we have

A ■=■ o , 10= 15^,.....

Similarly, multiply (8 .3 6) by y» 0̂ and integrate from o to aMT

we also have

3  = . 0  •)•O

Hence (8 .3 6) becomes

=  - j - r
‘ «21T

and then it follows from (8 .3 3) that

(hex 9) =  /6 A  It ( ^

which is the same as (7.36) in Chapter 7*

Case 2; O ; — T p A Q C ^ )  « Fjçga') o<d f c/jCy,0)-f ,

where o<C and are constants and O R .

V/hen Â — O and since =  OC^) , it follows

from (8 .17) - (8 .1 9) that

ATT ^ OO
j i r , „  .  ^  > , » , , [ % '<-2 rüîLîfSi'i:!' -

r\»i ^ R

(8.37)

where KC®,) satisfies the integral equation
4TT

- F;(̂ £®.i,®.) =  + J 1̂ »,) K(©|,sj A  (8 .3 8)
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where

' a -QfO,^ e^(6.-e\ ̂  ^
K(e,®„'i =  5-C®,) g(0j + ̂r»,) -

y  j W ' W  _  f Z l l È î ! 2 Î k ^ M 0 , - A
L j   ̂ jR

(8.39)

By using 4 C6̂  = t E + 0(A and neglecting the

terms of degree greater than one relative to 6 , we can easily

find the following expressions.

_1 n ^  >1-1 ̂Cà^Y)Çe-^) ^

-A'l h=r( r

and

5, CS.) - e<wi ( -s,) +  ̂ ^

8 { 1 -

thus we have
1

(̂(̂ |) Y+  ̂ CG,)

vx + 1 oO ^
=  {f,+««C9,'>] _ y  £q./g,W»Ĉ tQei»a>̂ c©,-9)

V' = l n-r” A ,

(8,40)

and
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]
—  -L A  R   -------'—  r I ̂1 (̂1 "' ̂,(̂ 1H c&i (̂ j-e ) A Y  A o(&) .

a r   ̂ 4 -  g(ra(e,-G,)] (-L J J

(8.41)

Substituting (8.40) and (8,4l) into (8.37) and (8.39) respectively, 

we obtain

ATT ^ v>+i -in 4n
4"+2ac®|)j-Ai + E  +

A  *n n An
4- 5 A ^ Y —  — - ea^P(0,-<5) j(p A o c A  ,

Y>-| J  '
(8.42)

where satisfies the Fredholm integral equation of the

second kind as follows :

ifr
- f < ,©„) =  7TYc<54 A r/̂r<5,) Ti-f-^ eô n(6)|-<9j A

A  £ i (^(%) — ‘̂i(̂i'̂')cerâ(&i-o)~i-(̂ îCi>o')AAAA.C&i-Gi,)

A  2 f—  I  ^M-\^ari9^)tCY,A3a(:G|^ec'A'nC»j-6^)-ajt%)/<)^
n,| ^

A  c)CeS .
(8.43).

vie suppose that

yk-Ct>') =  (̂<9) + g-^ca) 4- (3 Ẑ|.i|.)

it then follows from (8.43) two integral equations
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AT p An
ci - 4- j i '̂(G, -Pp) I

o r>7i R

(8.45)

and

4TT Ĵ yj

IjCjCGo^O ~  T^ce) A  J  cep j k t ̂  4L^ea^n(Gj-%)l cL̂  ̂-j-
' -  ̂ ^ r,yl R -*
JIT
I o 
o

o I
1 - e&i (

A

+z
cyD An-I

A
■n = l ^

Sb' o 1 1 ( ^ W  A C - n  + 1 )  a  c ; ,  ) I e & ^ Y ) ( 9 - , - i )  -

__ a.̂ C9) ̂ û-ua, Y) ŝ )̂ A&. . (8.46)

wnen
Th^ integral equation (8.45) is the same as (8.35) 

-jk - o , thus its solution ■̂ "ill be

^(GJ =— — o(
41T (8.47)

Vie set
4ir

0
xir

6  = o

^  = J 1̂1 r) (9j c{ 9̂ ,
o
XJT

r) = 1 yA,3y
^ (8.48)

«O - I , A, 3p

By using (8.47), (8.48) and since the Cauchy principal value of

AT

J O

o 4 - ê 3-(A-(5B

thus the integral equation (8.46) has the solution as follows:
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-6 in

+  f  £(9[A"'pa(e,)e»».(â-

(8.49)

By integrating (8.49) from 9 = 0  <to 9 — Rir" , we have

AT
%  =  " jx I (8 .5 0 )

The coefficients and ( v»3=i , a , 3  .....  ) can be found

by multiplying (8.49) by e<w and a Zvi respectively and

integrating from = o to 0 = air . Hence we can find that

- ' — â-Yï  ̂ -N
MA>  ̂1 Ar B.  ̂ A  j.

ATT ATT ATT
A  —   pp̂ ,r(9,)e6rtYi(0-6jjj -

- A
4-inr;

•ï|l_ Air 4T
f 4 /®.) j f d e l i c t ©  4. olr̂  c- +̂o f a c ® , ) e « r , ( e - 6̂ ) d8 ,
A  U  l-e«>(®,-S) J-* 4r' 0

(8 .5 1 )

It is not difficult to verify that

f df = pATYi A  f— ^--- 1 ?
o A-cjtA-(̂ rV 0 1 -  e ^ ( - ^ - & )
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honce, (8.51 ) becomes

A'

Air
J  e9^y)i&-9^)ci$ +

+ An-i

âlTR
Vl + O'F ft )

c i t ; t )

(8 .5 2 )

By substitutuing (8.50) and (8.52) into (8.4-9), we obtain

ATT
.1
IT w  i  '

ot> ‘ATT
-1 
' 7T Ilf ( oJ ^^1

riarl ( 1 + Y  R^")
A

ATT AIT

 ̂a C5|)<2̂ -o C5|H5̂ )o((9 —  ̂Q-̂C9j>) &̂ ) do-

j 1 - e^e,-e)

f  _ X  r a-,C&,)^(5,-9o)
4-̂' 0̂ 0 1 — -<9g)

(8.53)

By using (8.44), the solution ^or,@) in (8.42) can be 

rritten in terms of and ^c&) as follows:

r oo y) v,+(
(̂Y,e) =  ^  - J R )

r>-l R
_à.V) A y>

VI

A£^,C©i))^ C^+'t T Y ( 1 V R ) CAA. V) Ĉ i-<̂ )J ~
rv» I

ATT «>0
- s  + E

•n Yi + i aVI
I 3 _ ( i - y R ) e.ya-'nC©-©)! c(0|

(8.54)
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Substituting (8.47) and (8.53) into (8.54) we then get the result 

in the form

ĴTT

0 (3.

OÔ V) -An âr»
Y- (l-r R )

+  S, 5 ^ 7 7 %  X  .

which is the sarae as (7.62) in Chapter 7.

(8.55)
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CONCLUSION OF PART II

The particular problem of the annulus which vre discussed 

in Chapter 7 is an example which illustrates the application of 

the theory of the variation of the functional defined on a variable

domain. Since the boundary value problems for the state function ^

and the Lagrange multiplier ^ are of the same pattern both can be 

solved by using the method of separation of variables for the case 

when the unknown curve G is in the form T = 4- £.ay&) -f oce^

and the given boundary conditions are

A €, ^ CY, 6 ) -j-océ)  ̂ on e ;
' '

(j> ^  ^   ̂ on C ; Y-= R. ,

The problem of the annulus is completely solved for this 

case by substituting the expressions for and V , which are

in terms of unknown functions y and d^C^) , into the

transversalitj/ condition on the unknown boundary and solve for the 

unkno\m boundary shape. The Fredholm integral equations u'hich 

occur in this case have the kernels of degenerate type which are

not difficult to solve.

For the case when the unknovm curve G is in the general 

form Y' = and the given condition on e is

A "P ̂  = F (r , the boundary value problems for é and Y9r> ' ' '
may be solved by using the method of logarithmic potential of a 

single layer which has been discussed in Chapter 8. Numerical work 

is needed here in order to solve for the optimum curve .

The existence and uniqueness for the solution of the optimum shape 

problem have not been studied in this thesis and much work needs 

to be done in this area.
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SUMMADY

In Part I, the problem of heating a thin jolate or material 
travelling through a furnace, in which the system is described by 
first order linear partial differential equations, is introduced as 
an example of optimal control theory in distributed parameter systems. 
The variational technique in a fixed domain is used to obtain the 
necessary conditions for optimality. Many cases of the problem with 
the state equation described by first order linear partial differential 
equations are discussed, in which the control function enters into 
the state equation in different positions. The problems are analysed 
and solved by making use of characteristic curves.

In Part II, we have studied the variation of a functional 
defined on a variable domain, and we apply it to the problem of 
finding the optimum shape of the domain in which some performance 
criterion has an extremum. The problem in which the state equation 
is Laplace's equation defined on the variable domain of an annular 
shape with given boundary conditions is discussed and completely 
solved for the case when the inner boundary of the domain is only 
a small departure from a circle. We also introduce the method of 
logarithmic potential of a single layer to solve the boundary value 
problem of Laplace's equation with mixed boundary conditions and 
two simple examples are solved by using this method which leads to 
coupled integral equations.


