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The Robustness and Design of Constrained
Cross-directional Control via Integral Quadratic

Constraints
R. M. Morales, Member, IEEE, and W. P. Heath, Member, IEEE,

Abstract—A robust stability test for a class of constrained
cross-directional controllers is found. Under special circum-
stances, the stability test is executed on a mode-by-mode basis
and greatly simplified to a frequency-domain criterion. The test
is also exploited to develop tuning algorithms. The control system
involves a quadratic program embedded within an internal model
control anti-windup structure and achieves optimal steady-state
performance when the plant is known. Both the nonlinearity in
the controller and the plant uncertainty satisfy certain integral
quadratic inequalities. This allows us to obtain conditions for
robust stability that can be expressed as linear matrix inequalities
via the Kalman-Yakubovich-Popov lemma.

Index Terms—cross-directional control, robustness, con-
straints, integral quadratic constraints (IQCs).

I. INTRODUCTION

CROSS-DIRECTIONAL (CD) control is required for
many industrial web forming processes (also called sheet

and film processes) such as paper making, plastic film ex-
trusion, coating processes and metal rolling. These processes
are of great economic importance and hence CD control
receives substantial interest from the industrial and academic
communities [9]. Improvements in the control of film and
sheet processes could mean significant reductions in material
equipment, improved product quality, elimination of produc-
tion waste and reduced energy consumption [34].

The major design challenge for CD controllers does not
arise from the dynamic response, but rather comes from the
high dimensionality of the multivariable process. This has led
to two main design considerations of the controllers: ensuring
the control is robust [5], [20] to errors in the model, and ensur-
ing the actuators are optimally configured in the presence of
constraints on the range of their values [21], [2], [29]. Efforts
to address the former have led to the decomposition of the
process into modes, where the controller is designed to operate
only on the reduced (low) modes. If a sufficiently low number
of modes is chosen, the actuators will not encounter the con-
straint boundaries [19] and classical robustness measures can
be used [9], [31]. But if the model is well known, increasing
the number of modes and dealing explicitly with constraints
can improve performance [21], [35]. Although techniques such
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as Model Predictive Control (MPC) are well suited to this case
[28], [12], there are few robustness results that can be usefully
applied to such controllers. Interestingly, most of the literature
on CD control addresses either robustness or explicit constraint
handling but not both simultaneously [6] —e.g. [9].

In [14], the authors propose a novel control design for a
particular class of CD processes. In the design, the authors in-
corporate a nonlinear control law embedded within an Internal
Model Control (IMC) structure to achieve optimal constrained
steady-state behaviour. Steady-state performance may be im-
proved significantly in some circumstances. Different types of
norms may be used for the constrained optimisation performed
by the controller. If a 2-norm is used, then the nonlinearity
within the control law becomes a Quadratic Program (QP).
Such a quadratic program is a continuous sector-bounded
nonlinearity (after linear transformation) [15]. In [1], the
authors make use of this property to carry out a robust analysis
and design for CD control which is limited to a graphical
technique: the multivariable circle criterion [18] decomposed
according to modes.

Apart from [1], the robustness of cross-directional con-
trollers that handle constraints explicitly is not considered in
the literature. This paper proposes a rather more complete
robust stability test for the cross-directional design proposed in
[14], using the theory of integral quadratic constraints (IQCs)
[17], [23]. For the case of diagonal uncertainty, it is shown
that the test can be decomposed and hence easily executed on
a mode-by-mode form.

The robustness results obtained via IQCs are exploited in
the tuning procedure of the controller and combined with a
set of heuristic rules. The design methodology extends the
performance as much as possible while ensuring closed-loop
robustness to plant uncertainties and input static constraints.
The proposed design is illustrated in various examples in-
cluding a simulation case study based on real data from the
paperboard industry.
Notation. The treatment in the paper will be developed for
discrete-time systems. The symbol l2 stands for the space of
square summable sequences with support on Z+. The inner
product of x, y ∈ l2 is provided by

〈x, y〉 =
1

2π

∫ π

−π
x(ejω)∗y(ejω) dω

where x(ejω) and y(ejω) denote the Fourier transforms of x
and y, respectively.

The norm of a member x of l2 is induced by its inner
product, i.e., ||x|| =

√
〈x, x〉. The standard Euclidian norm of
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Fig. 1: Simplified schematic of the first stage of a typical paper
making process.

a vector x will be denoted by ||x||2. The H∞-norm of a Linear
Time-Invariant discrete stable operator ∆(z) is represented by
||∆||∞.

We will also say that an operator ∆ : x 7→ ∆(x), acting on
the extended space of l2, is said to satisfy the IQC defined by
a measurable and Hermitian-valued function Π(jω) if〈[

x
∆(x)

]
,Π

[
x

∆(x)

]〉
≥ 0,∀x ∈ l2

The short-hand notation ∆ ∈ IQC(Π) will also be used to
indicate the above.

Finally, let matrices Πa and Πb be structured as

Πa =

[
Πa

11 Πa
12

Πa
21 Πa

22

]
,Πb =

[
Πb

11 Πb
12

Πb
21 Πb

22

]
The diagonal augmentation (daug) operation on Πa and Πb is
defined as

daug(Πa,Πb) =


Πa

11 Πa
12

Πb
11 Πb

12

Πa
21 Πa

22

Πb
21 Πb

22


II. CHARACTERISTICS OF CROSS-DIRECTIONAL

PROCESSES

A. Sheet and Film Processes
Generally, web processes are characterised by the continu-

ous production of a thin web or film in which raw material
is continuously (or semi-continuously) fed at the beginning of
the production line. A simplified schematic of the initial stage
of a typical paper making process is illustrated in Figure 1.
The direction in which raw material flows is known as the
machine direction (MD). In general, the cross-directional
control problem consists in controlling variations in the profile
across the strip through actuators and sensor reading positions
evenly distributed along the cross-direction (i.e. orthogonal
to the MD). For example, in the paper industry, the CD
control aims to reduce variations of properties such as basis
weight (weight per unit area), moisture content or calliper
(thickness) [24]. CD control principles from the paper and
plastic industries have also been successfully used in metal
strip rolling processes in order to improve the control of the
flatness [7]. Overall, there exist different disturbances affecting

the process such as variations in the composition of the raw
material, uneven distribution of the material in the cross-
direction and deviations in the cross-directional profile. In this
sense, the CD control system can be thought of as a regulator.

Control actions are effected at a distribution device known
as the headbox in paper making, and the die in coating and
polymer extrusion processes [34]. Actuators are almost always
evenly spaced across the controlled strip. Sensors operate at a
downstream position with respect to the MD and the number
of measurements taken by a single scan can be up to 1000.
Actuators, which usually vary in number between 30 and 300,
are subject to hard physical and bending constraints. Thus, the
open-loop process is a large-scale multivariable process.

For more information on the physical description of web
forming processes see [9] and the references therein.

B. The Open-loop Model

Generally, each element within the bank of actuators is
considered to have the same dynamic response. The open-
loop model is used in the control system to represent the
effects the actuator actions have on the profile, which are
measured by a scanning sensor at n locations evenly spaced
across the width of the moving strip. The model used in this
work considers only a single measured variable, e.g. basis
weight. The nominal open-loop behaviour of the output profile
y(t) ∈ Rn is usually described by

y(t) = ho(z)Bu(t) + do(t) (1)

where we define
ho(z) = z−kh(z) (2)

The dynamics ho(z) are represented by a delay of integer k
samples z−k and a stable, low order, bi-proper, SISO linear
time invariant (LTI) discrete transfer function h(z), with z as
the forward shift operator. The delay term z−k is mainly due
to the physical separation between the actuators and sensors.
In the literature, this model is said to have separable spatial
and temporal characteristics and is found in nearly all reported
sheet and film processes [9].

Without loss of generality, we assume that h(1) = 1 (i.e.
h(z) has unit steady state gain). u(t) ∈ Rm represents the
input or control actions applied to the array of actuators
and B ∈ Rn×m is called the interaction matrix. The signal
do(t) ∈ Rn is introduced in this model to account for
disturbances. Typically n > m with n and m both large
positive integers (the number of sensor locations is typically
significantly greater then the number of actuators). The sin-
gular value decomposition (SVD) of B allows the following
factorisation

B = ΦΣΨT (3)

where the upper left block of Σ ∈ Rn×m is a diagonal
matrix and Φ ∈ Rn×n and Ψ ∈ Rm×m. Typically, the
interaction matrix B is ill-conditioned, i.e., the ratio between
the maximum and minimum singular values is large. This
translates in the process having a strong directionality. This
is a major consideration in cross-directional processes.
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C. Robustness and Modal Decomposition
In reality, it is extremely hard to develop a highly accurate

model that describes the open-loop interaction between actu-
ators and sensors across the strip. The plant-model mismatch
can be included in the model by uncertainty elements. Sources
of uncertainty include the lack of understanding of the underly-
ing phenomena, unmodelled dynamics, unknown disturbances,
equipment ageing and the mapping from actuators to sensors.

The open-loop response of web forming processes can be
separated into controllable (low) and uncontrollable (high)
components via Fourier transforms [3], [30], Gram polyno-
mials [19], [12] or the SVD [9]. This is known as modal
decomposition. Usually, the model matches better the real
plant at low order modes than at higher ones. Attempts to
control ultra high modes may result in closed-loop instability
[9], [31]. It is common then that the controller should not act
on high-order modes. Following the decision that the controller
should only act on r modes, let the SVD of B be further
partitioned as

B =
[
Φr Φ⊥ Φ0

] Σr 0 0
0 Σ⊥ 0
0 0 0

ΨT
r

ΨT
⊥

ΨT
0

 (4)

where Φr ∈ Rn×r and Ψr ∈ Rm×r are respectively the first
r columns of Φ and Ψ. Note that r ≤ l := rank(B) ≤
min(m,n). Similarly, Φ⊥ ∈ Rn×(l−r), Ψ⊥ ∈ Rm×(l−r)

and the diagonal matrix Σr = diag(σ1, ..., σr).The matrix
factorisation given by (4) can be applied to any B ∈ Rn×m.

Finally, if the numbers of modes r is sufficiently low, it
is possible to design robust controllers which do not violate
actuator constraints [8], [9], [19], [20], [31], [5], [16], [33].
Under this strategy, basic IMC-based controllers have also
been discussed [3], [9], [19], [32], [29].

D. Actuator Constraints
Constraints on the actuators are usually found in cross-

directional control of sheet and film processes because of
physical limitations. A class of constraints is known as min-
max. This type of constraints restricts actuator movements to
a limited range between a maximum and a minimum value.
Mathematically, they are expressed as

umin ≤ ui(t) ≤ umax (5)

where 1 ≤ i ≤ m. In the case where actuators are steam
sprays or heaters used in the paper making industry at the
dryer section, excessive actuator set-points may weaken or tear
the sheet or film [34].

Some applications of CD control might also require second-
order spatial bending constraints

ūmin ≤ ui−1(t)− 2ui(t) + ui+1(t) ≤ ūmax (6)

Constraints of type (6) avoid the amount of “zigzag” among
the positions of adjacent actuator. Zigzag constraints might
be required in coating processes where adjacent actuators are
physically connected to prevent mechanical stresses. Equality
constraints are also used sometimes in applications of CD
control. For instance, it is helpful to restrict the dimension
of the input space [19] by forcing the actuator signals to sum

Fig. 2: Cross-directional controller proposed by Heath and
Wills.

to zero [14]. All mentioned constraints are time-independent
and hence static. Generally, static constraints of any order will
be represented by u(t) ∈ U. Specific static constraints can be
highly important for particular sheet and film processes.

Constraints can be explicitly considered in the design of
CD controllers. The control law becomes typically a convex
optimisation problem such as a quadratic program. Static con-
straints are usually cast as linear inequalities. The optimisation
problem will be computed at each time instance. Modified
anti-windup and Model Predictive Control [22] are common
approaches for this scenario.

III. THE CD CONTROLLER OF HEATH AND WILLS

Model mismatch at intermediate modes might be relatively
small. In such cases heavy restrictions on r (as mentioned in
subsection II-C) would result in economic disadvantage [21],
[35] at steady state. The final performance can be improved
further by increasing r cautiously together with constrained
optimisation laws that permit explicit constraint handling [14].
Otherwise if only the number of modes is increased, then the
overall control performance might degenerate seriously. Some
MPC strategies have been considered for this situation [12],
[28]. This work is based on the control structure proposed by
[14] for such a possible performance improvement.

This control architecture of [14] is illustrated in Figure 2.
It can be understood as a natural generalisation of IMC anti-
windup systems for CD processes. It preserves the intuitive-
to-tune properties of unconstrained methods whilst ensuring,
where possible, optimal steady-state performance. Generally,
it allows explicit constraint handling through a constrained
optimisation law ϕ. This CD controller is straightforward for
implementation and design where Qf (z), Qb(z) and Σr are
all diagonal.

This controller operates on a limited number of low modes
of the process. The decomposition is represented by q1(t) ∈
Rr and η(t) ∈ Rr, which are expressed respectively as

q1(t) = ΨT
r u(t) (7)

η(t) = ΦTr y(t) (8)

One may interpret (7) as the orthogonal projection of the
input signal u(t) on the column space of Ψr (col(Ψr)). This
constitutes an onto transformation because every vector q1(t)
is the image of at least one vector u(t). A similar interpretation
can be applied to (8).
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Fig. 3: Control system for unconstrained CD processes.

The equations of the controller are:

u(t) = Ψrq1(t)

q1(t) = ϕ (p1(t)) where ϕ is given below
p1(t) = Qf (z) (η̃(t)− η(t))−Qb(z)Σrq1(t)

η̃(t) = z−kh(z)Σrq1(t)

η(t) = ΦTr y(t) (9)

The control law ϕ(·) is generally given by

q1(t) = arg min
q̂1(t)
‖Σr q̂1(t)− p1(t)‖2

such that Ψr q̂1(t) ∈ U
(10)

which may also be computed at each time instant as

q1(t) = arg min
q̂1(t)

1

2
q̂T1 (t)Σ2

r q̂1(t)− q̂T1 (t)Σrp1(t)

such that Ψr q̂1(t) ∈ U
(11)

In the nominal case this control law achieves optimal steady-
state performance with respect to a static disturbance do
subject to u(t) ∈ U and ΦT⊥u(t) = 0, [14].

The solution to the optimisation problem (10) when no
constraints are imposed is ϕ = Σ−1

r . This follows because

‖Σrq1(t)− p1(t)‖2 = ‖ΣrΣ−1
r p1(t)− p1(t)‖2 = 0

The control scheme is then represented in this case by Fig-
ure 3. The closed-loop response with no model mismatch is

y(t) =
(
I − z−kh(z)ΦrQ(z)ΦTr

)
do(t) (12)

The control system is embedded with the IMC anti-windup
structure by means of Qf (z) and Qb(z) to compensate against
input saturations. To preserve standard IMC characteristics
when the system operates in the linear (unconstrained) region,
the following expression should hold

Q(z) = (I +Qb(z))
−1Qf (z)

The diagonal transfer function Qf (z) is chosen by

Qf (z) = ΛQ(z) + (I − Λ)Q(∞) (13)

with Λ as a r × r diagonal matrix whose diagonal elements
are scalars denoted by λi to trade-off between stability and
performance. See [14] and [1] for other choices. It follows
then that Qb(z) should be chosen as

Qb(z) = Qf (z)Q−1(z)− I (14)

Note that Qb(z) is guaranteed to be strictly proper if λi ∈
[0, 1]. Also, if Λ = 0 then Qf = Q(∞) becomes constant

and this choice has shown to offer good compensation against
input saturations [36].

IMC anti-windup has been proved to have good stability
properties. If Λ = I , the system reduces to the conventional
IMC structure. Such a choice can preserve the robustness of
the unconstrained scenario but the performance be badly de-
teriorated in the face of input saturations. A rigorous stability
analysis of the IMC anti-windup is found in [26].

A. Min-max and second-order bending constraints
The feasibility region is described by a number of one-

dimensional linear inequalities. These form a convex region
and can also be grouped in a single vector-matrix form
[10]. For example, consider actuator min-max and zig-zag
constraints, which are given by (5) and (6) respectively. They
can be collected by a large linear inequality constraint as
follows

Au(t) � b

where

A =



Im×m
−Im×m

1 −2 1
1 −2 1

. . .
1 −2 1


m×m

−


1 −2 1

1 −2 1
. . .

1 −2 1


m×m


and

b =



 umax
...

umax


m×1

−

 umin
...

umin


m×1 ūmax

...
ūmax


m×1

−

 ūmin
...

ūmin


m×1


The symbol ’�’ denotes term-by-term inequality. Hence the
control law ϕ(·) becomes the following quadratic program

q1(t) = arg min
q̂1(t)

1

2
‖Σr q̂1(t)− p1(t)‖22

subject to AΨr q̂1(t) � b
(15)

B. Performance at the Steady-state
In order to gain insight about the role of the IMC con-

troller Q(z) in the steady-state performance, we investigate
the rejection to a time-invariant output disturbance do under
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Fig. 4: Closed-loop system for CD processes with modelled
uncertainty.

the conditions of perfect modelling and no constraints, i.e.,
ϕ = Σ−1

r . The output profile at steady-state is given by
(see (12))

yss = (I − ΦrF (1)ΦTr )do (16)

where F (z) = h(z)Q(z) is a diagonal filter. An indication of
the level of disturbance rejection is

‖ΦTr yss‖2 = ‖(I − F (1))ΦTr do‖2
It is clear then that the above measure becomes optimal when
there is integral action on all modes F (1) = I , otherwise
the system will attenuate the disturbance up to some extent.
The level of rejection is indicated by how close is F (1) to
I . Also, yss can be a useful measure since the steady-state
performance of a system driven by the CD controller of [14]
can be compared to this output to indicate the achieved level
of steady-state performance.

IV. ROBUST ANALYSIS USING IQCS

In order to account for discrepancies between the plant and
the model, an uncertainty term ∆P (z) ∈ Cn×m is introduced
in the representation of the process

P (z) = z−kh(z)B + ∆P (z)

y(t) = P (z)u(t) + do(t)
(17)

See Figure 4. Assume that the modal decomposition of the
plant given by (17) yields

ΦTr P (z)Ψr = z−kh(z)Σr +WL(z)∆r(z)WR(z) (18)

the above follows from

P (z) = Φ(ho(z)Σ + ŴL(z)∆̂r(z)ŴR(z))ΨT (19)

where ŴL(z), ∆̂r(z) and ŴR(z) are n×m transfer functions
with the upper left block corner as WL(z) ∈ Cr×r,∆r(z) ∈
Cr×r and WR(z) ∈ Cr×r, respectively, and zeros elsewhere.
The weights WL(z) and WR(z) are known matrices that
characterise the uncertainty in the modal space.

For stability analysis, it is advantageous to express the
closed-loop in the feedback configuration depicted in Figure 5.
With this aim, define q2(t) = ∆r(z)q1(t) and p2(t) =
WR(z)q1(t). The closed-loop system is completely charac-
terised by

p(t) = M(z)q(t)

q(t) = ∆(p(t))
(20)

Fig. 5: Standard feedback loop

where p(t) = [p1(t)T p2(t)T ]T , q(t) = [q1(t)T q2(t)T ]T and
M(z) and ∆ are defined as

M(z) =

[
−Qb(z)Σr −Qf (z)WL(z)
WR(z) 0

]
(21)

∆ =

[
ϕ 0
0 ∆r(z)

]
(22)

A. Uncertainty in the modal space

In principle, the decomposition in the uncertainty represen-
tation in (18) is quite general since it can account for both
uncertainty in the dynamics of the process and uncertainty
in the modal space of the interaction matrix. Consider for
instance the following scenarios:
• Assume P (z) = (ho(z) + w(z)δ(z))B with w(z) and
δ(z) being one dimensional elements. The modal decom-
position will account for the additive uncertainty in the
dynamics of the open-loop process in the modal space, or
in other words, the same uncertainty in the first r singular
values of the interaction matrix. This case is equivalent
to assign

WL(z) = Σrw(z) (23)
WR(z) = I (24)
∆r(z) = δ(z)I (25)

The discussed uncertainty representation is appropriate
for modelling inaccuracies when the sensor is of the
tracking-type. All measurements are taken by a single
sensor element [9].

• The case where ∆r(z) is diagonal accounts for indepen-
dent variations associated to each controlled mode pro-
vided the weights WL(z) and WR(z) are also diagonal.
In this case one of the weights can be set to the identity
matrix without loss of generality. A typical assignment
for this scenario is

WR(z) = I

WL(z) =

w1(z)
. . .

wr(z)


This representation is more appropriate for representing
inaccuracies in the actuator models [4] since each ac-
tuator is expected to have somewhat different dynamic
response [9].
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• If an unstructured ∆r(z) is instead considered, then a
broader class of uncertainties is taken into account such
as changes in the first r subspaces of the column and
row spaces of the interaction matrix B and the process
dynamics.

• A block-diagonally structured matrix ∆r(z) can be used
to account for an specific structure in the uncertainty in
the modal space.

B. IQCs for the uncertainty ∆r

In general, we consider ∆r to be a norm-bounded uncer-
tainty operator. In the IQC framework, such an uncertainty is
addressed by saying that ∆r ∈ IQC(Π∆r

) with

Π∆r
=

[
Γ(jω) 0

0 −Γ(jω)

]
(26)

where Γ(jω) = Γ(jω)∗ > 0 ∀ω. This representation corre-
sponds to the description of a whole set of operators from
which representative uncertainty sets can be chosen by means
of Γ(jω). We have in particular:
• Let ∆r(z) represent a block-diagonally structured LTI

uncertainty. An appropriate choice of Γ(jω) will com-
mute with the uncertainty ∆r(z), i.e, (Γ∆ = ∆Γ for all
ω). Such a choice is the basis for standard upper bounds
of the µ-value [23], [37]. Take for instance

∆r(z) =

δ1(z)
. . .

δr(z)


with ‖δi‖∞ ≤ 1 for all i = 1...r. Then

Γ =

γ1(jω)
. . .

γr(jω)

 (27)

where γi(jω) is a positive bounded measurable function,
see [23].

• If Γ = γ(jω)I , with γ(jω) > 0 ∀ω and a bounded
measurable function, then ∆r(z) corresponds to a LTI un-
structured norm-bounded operator with ||∆||∞ ≤ 1 [23].

• If Γ = γI , where γ > 0 and constant, then ∆r

corresponds to a broader class of uncertainty operators
with bounded gain [23]. Note that ∆r is not longer
restricted to be a LTI operator for such a choice of Γ.

For other types of operators to express uncertainty under the
IQC terminology refer to [23].

C. QP as a Sector-bounded Nonlinearity
The QP in (15) satisfy an important integral quadratic

constraint which is used in the stability analysis. Using IQC
notation, it can be stated that solutions of the QP in (15) satisfy
the following condition〈[

p1

q1

]
,Πϕ

[
p1

q1

]〉
≥ 0 (28)

with
Πϕ =

[
0 Σr

Σr −2Σ2
r

]
For more information refer to [15], [13].

D. IQCs for Combined Uncertainty and Nonlinearity ∆

The operator ∆, defined in (22), satisfy the IQC condition
defined by

Π∆ = daug(Πϕ,Π∆r ) =

[
Π∆(11) Π∆(12)

Π∆(21) Π∆(22)

]
where

Π∆(11) =

[
0

Γ

]
Π∆(22) =

[
−2Σ2

r

−Γ

]
Π∆(12) = Π∆(21) =

[
Σr

0

]
Since Π∆(11) ≥ 0 and Π∆(22) ≤ 0 then the following
statement holds [17]

∆ ∈ IQC(Π∆)⇒ τ∆ ∈ IQC(Π∆) ∀ τ ∈ [0, 1] (29)

E. Stability Criterion
The following result is a direct application of the main IQC

theorem [23].

Result 1. The system (20) with controller (11) is stable
provided [

M(ejω)
I

]∗
Π∆

[
M(ejω)

I

]
≤ −εI (30)

for some ε > 0, for all ω ∈ [−π, π] and where M is given by
(21). �

Stability is claimed in the input-output sense of [23]
and [17]. Statement (29), which has been shown to hold here,
is a necessary condition of the main IQC theorem. In addition,
if M(z) has the following state-space representation[

AM BM
CM DM

]
∼M(z) = CM (zI −AM )−1BM +DM

where the pair (AM , BM ) is controllable and AM has no
eigenvalues on the imaginary axis (det(ejωI − AM ) 6= 0),
then the stability condition (30) may be rewritten as[

(ejωI −AM )−1BM
I

]∗
Π

[
(ejωI −AM )−1BM

I

]
≤ −εI

(31)
where Π is structured as

Π =

[
Π11 Π12

Π21 Π22

]
with

Π11 = CTMΠ∆(11)CM

Π12 = Π∗21 = CTMΠ∆(12) + CTMΠ∆(11)DM

Π22 = Π∆(22) + Π∆(21)DM +DT
MΠ∆(12)

+DT
MΠ∆(11)DM (32)

Via the discrete-time Kalman-Yakubovich-Popov (KYP)
lemma [27], inequality (31) is satisfied if and only if there
exists some matrix PT = P such that[

ATMPAM − P ATMPBM
BTMPAM BTMPBM

]
+ Π ≤ 0
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V. DECOMPOSITION

In the previous section a sufficient condition for robust
stability has been derived in terms of a large scale Lin-
ear Matrix Inequality (LMI). In certain cases it is possible
to decompose the result and test each mode in turn. The
decomposition of the frequency-domain test facilitates the
computational task because the dimensions of the treated
matrices can be significantly lower. Computations with large
dimensional matrices could lead to numerical problems and/or
larger computational times.

A. Diagonal Uncertainty
Assume that uncertainty ∆r(z) is diagonal so Γ is given

by equation (27). Assume further that the weights WL(z) and
WR(z) are diagonal: WR(z) = diag(wR1(z), ..., wRr(z)) and
WL(z) = diag(wL1(z), ..., wLr(z)). It follows from (30) that
if there exists a Γ > 0 and ε > 0 such that[
−Σ2

r(Q
∗
b +Qb + 2I) + ΓW ∗RWR −ΣrQfWL

−W ∗LQ∗fΣr −Γ

]
≤ −εI

(33)
∀ω ∈ [−π, π], then the system (20) is guaranteed stable. This
stability condition might also be expressed as follows.

Result 2. The inequality (33) is true if and only if[
−σ2

i (q∗bi + qbi + 2) + γi|wRi|2 −σiqfiwLi
−σiw∗Liq∗fi −γi

]
≤ −εI (34)

for i = 1, . . . , r, where qfi and qbi are the ith diagonal entries
of Qf and Qb respectively. The arguments (ejω) have been
omitted for conciseness.
Proof. Suppose e = [e1, e2] is an eigenvector of the matrix on
the left hand side of (34) with eigenvalue λ for some i and
at some frequency ω. Define the vector ē ∈ R2r×1 to have
all zero entries except ēi = e1 and ēr+i = e2. Then ē is an
eigenvector of the matrix on the left hand side of (33) with
eigenvalue λ. �

Note that the condition in Result 2 at each frequency can
be reduced to a LMI feasibility problem in the variable γi.
The condition however can be further simplified such that the
term γi does not appear in the condition.
Result 3. Condition (34) holds if and only if

|qfiwLiwRi|
σi

≤ Re{qbi + 1},∀ω (35)

Proof. Define

b := 2
Re{qbi + 1}σ2

i

|wRi|2

c :=
|σiqfiwLi|
|wRi|

Condition (34) is satisfied if and only if

f(γi) := (γi − γ̂1)(γi − γ̂2) < 0 (36)

for any 0 < γi < b where

γ̂2 =
b

2
+

√
b2 − 4c2

2
(37)

γ̂1 =
b

2
−
√
b2 − 4c2

2
(38)

We will show that b ≥ 2c is a necessary and sufficient
condition of (36). For sufficiency, note that if b ≥ 2c then
condition (36) is satisfied for any γi ∈ (γ̂1, γ̂2). For necessity,
assume that 0 < b < 2c then

f(γi) =

(
γi −

b

2

)2

+

(
c2 − b2

4

)
> 0 (39)

for any γi. �
In this scenario the stability test has been fully decomposed

and the computational task eased. Should the robustness be
tested against a wider class of norm-bounded uncertainty δi,
i.e, a fixed γi, then in addition to the condition in Result 3, it
is required that

max
ω

γ̂1(ω) < min
ω
γ̂2(ω), ∀ω (40)

A similar discussion is developed for the robustness of the
anti-windup IMC structure in [25].

B. Partially decoupled stability test
Result 1 does not apply solely to diagonally-structured

uncertainty, it can also apply to unstructured uncertainty
‖∆r‖∞ ≤ 1 since Γ = γ(jω)I with γ(jω) > 0, ∀ω. Provided
both uncertainty weights WL(z) and WR(z) are diagonal, the
stability test is then partially decomposed[
−σ2

i (q∗bi + qbi + 2) + γ|wRi|2 −σiqfiwLi
−σiw∗Liq∗fi −γ

]
≤ −εI (41)

This frequency-domain criterion differs from (34) in the form
it is executed. Stability (41) has to be satisfied with a unique
γ(jω) for all modes whereas (34) allows a different γi for
every mode.

VI. CONTROLLER TUNING

In the cross-directional control field it is usually assumed
the open-loop dynamics are described by a first-order transfer
function plus some time delay.

ho(z) = z−k
(

1− a
1− az−1

)
ch (42)

Under this scenario, algorithms for tuning the controllers
Qf (z) and Qb(z) are developed. The strategy exploits the
robustness criteria given in section V and follow the tuning
rules proposed in [1]. The above model with unity dc gain
(ch = 1) is similar to that used in the simulations performed
by [14] and [1].

Standard IMC procedures for the plant model in (42) gives
a Q(z) with diagonal elements as

qi(z) =

(
1− bi

1− biz−1

)(
1− az−1

1− a

)
µi/ch (43)

The parameters bi and µi < 1 are adjusted to modify the
closed-loop bandwidth and the integral action on the corre-
sponding mode.

The elements Qf (z) and Qb(z) are obtained by means
of (13) and (14) and they are included to compensate against
the input constraints. Further trade-off between robustness and
performance is provided through Λ which account for the
level of anti-windup. Overall, the tuning problem for the CD
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controller of [14] consists in developing tuning rules for the
parameters bi, µi and λi.

The controller parameters bi, µi and λi are proposed to be
chosen as follows:
• bi should take as small as possible a value in the range

[bmin, bmax], where 0 ≤ bmin < bmax < 1. The
lower bi the faster this mode acts (better time-domain
performance).

• bi+1 ≥ bi. This is enforced since the level of uncertainty
for mode i is less than mode i+ 1.

• µi should be chosen as near to 1 as possible. This was
discussed in section III-B. Low values of µi will dete-
riorate the steady-state performance. No integral action
is expected to happen at the last few modes where the
relative model mismatch is greater and hence integral
action becomes undesirable [31].

• At low modes λi = 0 so that qfi(z) = qi(∞), i.e,
the strongest form of anti-windup is imposed at the low
modes where integral action is expected to happen.

Controllers with parameters designed in this manner are
straightforward to implement [14], [1]. Their benefits over
unconstrained design depend on the relative plant uncertainty
and the relative size of the actuator constraints [21], [35].

The afore-mentioned heuristics are combined with the ro-
bustness criteria previously obtained in order to provide the
best possible performance while ensuring stability against
the given plant uncertainty and static actuator constraints.
The algorithms begin with the most aggressive controller
(fastest response, optimal steady-state performance and full
anti-windup) and then test if the resulting closed-loop is
guaranteed stable. If it is not successful, then the controller
is gradually detuned until the stability criteria is satisfied.

The first algorithm displayed in Figure 6 handles the general
stability criteria expressed in Result 1. Under ideal conditions,
the best performance would be obtained with a fast controller
(bi = bmin), integral action (µi = 1) and full anti-windup
(λi = 0) on all modes (i = 1...r with r = m). This controller
is not expected to guarantee robustness mainly because large
control actions would be required to drive the last modes
and this could lead to instability. Hence the search for a
robust controller may be narrowed down by reducing the
initial dimension of the controller r < m. The algorithm
then proceeds to detune the controller and stops the search
once the robustness condition is met. The stability test might
be performed in the frequency domain or as an LMI via the
KYP lemma (31). Should a robust controller be found once the
algorithm is executed, its dimension is indicated by the final
value of r and should be independent from the initialisation
of r.

The second algorithm, illustrated in Figure 7, exploits the
decomposed stability criteria given in section V and simplifies
greatly the synthesis task from a computational point of view.
This algorithm is performed on a mode-by-mode basis. Unlike
the first algorithm, the search in this case is not stopped as
soon the stability criterion is satisfied. Instead, it stops after the
most robust controller (no anti-windup λi = 1, slow response
bi = bmax and no integral action µ = µmin) is tried at mode i.
Of course, if this controller does not guarantee robustness even
for the first mode, then a robust controller is not obtained under

this strategy. The dimension of the obtained robust controller
is given by i− 1 after the algorithm is executed.

The above algorithms assume that bi, µi and λi are incre-
mented or reduced accordingly until they hit exactly their limit
values. In other words, it is assumed that (bmax − bmin)/∆b,
(1−µmin)/∆µ and 1/∆λ are positive integers. The operation
enclosed by a dashed-lined box resets the value of µi to 1
because µi should be as close as possible to 1. Both algorithms
guarantee that bi ≤ bi+1 and this condition reduces the number
of computations.

Fig. 6: Tuning algorithm for non-diagonal uncertainties

VII. A CASE STUDY FROM THE PAPERBOARD MACHINE
INDUSTRY

Delay (sec) Gain Time constant (sec)
205 -0.107 50

193.6 -0.082 45
200 -0.11 41.9
190 -0.12 35

TABLE I: Real variations in the dynamics of a open-loop
process in the paper machine industry. Courtesy of Iggesund
Paperboard Ltd.

This section presents a design procedure of a robust CD
controller in the paperboard industry. The variations in the
dynamics of a real open-loop process have been supplied by
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Fig. 7: Tuning algorithm for diagonal uncertainties.

Iggesund Paperboard Ltd. Initial data provides time-domain
specifications of the mapping between the CD actuators and
the scanned profiles from a series of bump tests, see Table I.
The measurements were carried out for the production of a
paperboard strip with basis weight 100 g/m2 and calliper of
540 microns. The weight process is controlled by means of
dilution actuators at the headbox. Actuator units are fibre to
water ratio, normally about 2% fibre and 98% water.

The data was obtained by the identification tool Intel-
liMap [11] developed to provide an industrial-quality auto-
mated identification of CD processes including time response,
alignment, shrinkage and CD response shapes.

The open loop behaviour is represented by a single (uncer-
tain) transfer function and a typical interaction matrix B which
is shown in Figure 8. The discrete nominal model might then
be represented by equation (42). The interaction matrix B has
dimension 50× 30, that is, the process has 30 actuators and
50 sensor scanning positions in the CD. We now proceed to
develop a suitable uncertainty model.

A. Uncertainty Modelling and Controller tuning

The continuous transfer function that describes first-order
dynamics plus a time delay is described by

ho(s) = e−skch(s)

h(s) =
1/τ

s+ 1/τ
ch

(44)

5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Measurement location

Fig. 8: The steady-state response of a step change in actuators
ui = 1 (i = 1, 5, 10, ..., 30) on downstream profile measure-
ment.

where kc, ch and τ denote the delay, gain and time constant re-
spectively. The information on the variation of the parameters
is summarised as follows

190 ≤ kc ≤ 205

35 ≤ τ ≤ 50

−0.12 ≤ ch ≤ −0.082

The discretisation of the continuous model ho(s), done with
a sampling time T using the step invariance method, provides

ho(z) = z−(kc/T )

(
1− e−T/τ

1− e−T/τz−1

)
ch (45)

where the ratio kc/T must be an integer. The model (45) is
described as (42) provided

a = e−T/τ

k =
kc
T

Also, Q(∞) is given with its diagonal elements as

qi(∞) =
µi(1− bi)
ch(1− a)

(46)

Throughout the simulations, the sampling period is T = 30
seconds.

The uncertainty in the dynamics of the process are encap-
sulated by an additive form

h̃(z) = ho(z) + w(z)δ(z) (47)

with ‖δ‖∞ < 1. From a practical point of view, the controller
is designed to ensure robustness against the wider set of uncer-
tainty given by a constant and positive γ, that is, when ∆r is a
norm-bounded operator (not only unstructured and LTI). This
uncertainty assumption accounts for both dynamic uncertainty
and some variations in the modal space of the interaction
matrix. The stability test become partially decoupled bringing
benefits by reducing the computational load of the tuning
algorithms. The weights of the uncertainty description WL(z)
and WR(z) are taken as (23) and (24), respectively.

For the studied case, the parameters of the nominal model
– a first order discrete transfer function plus time delay – are
chosen as the average of their values

ho(z) = z−7

(
0.5025

1− 0.4975z−1

)
(−0.1047) (48)
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Since

|h̃(ejω)− ho(ejω)| = |w(ejω)δ(ejω)|
≤ |w(ejω)|

(49)

∀ω ∈ [−π, π], the dynamics weight w(z)

w(z) =
0.075629(z − 0.8411)(z − 0.7092)

z2 − 1.259z + 0.4052
(50)

is found by fitting the upper-bound of the magnitude error of
every variation of the real process and the nominal transfer
function, see Figure 9.
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Fig. 9: Second-order uncertainty weight w(z) (solid line) and
magnitude of the error between variations of the real process
and the nominal transfer function (dashed line).

The tuning of the controller was done by means of the
algorithm proposed for scenarios in which the stability cri-
terion is either partially or fully decomposed. In particular,
the algorithm executes the test (41) for a fixed value of γ. If
possible, the algorithm returns controllers Qf (z) and Qb(z)
which follow rules (13) and (14), respectively. In addition,
an iteration over the γ is carried out until a satisfactory
performance is achieved. In the end, it was obtained that
with a value of γ = 1, control can be performed until mode
r = 7. Parameter values of the designed controller are shown
in Figure 10. The obtained controller offers a rather small
bandwidth (0.909 ≤ bi ≤ 0.999 ). Integral action is taken on
most of the controlled modes and they are accompanied by
strong levels of anti-windup which will improve performance
in the face of input saturations. The controller is further
detuned for the benefit of robustness in the last mode in terms
of the parameter λi.

1 2 3 4 5 6 7
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0.4

0.6

0.8
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Mode

 

 

b
i

µ
i

λ
i

Fig. 10: Tuning parameters bi, µi and λi. Control is effected
up to mode 16.

B. Simulation Results
The dynamics of the real plant are assumed to be the

following discrete model

h̃(z) = (−0.12)
0.5756

1− 0.4244z−1
z−7

The step response of the plant provides first order dynamics
with a steady-state value of −0.12, a delay of 210 seconds
and a time constant of 35 seconds.

The speed of the disturbance rejection can be observed
from the output y(t) depicted in Figure 11(a). The steady-
state output value is displayed in Figure 11(b) and compared
against the static disturbance do. Also, observe that the level of
rejection to the disturbance is similar to the ideal scenario of no
constraints and perfect modelling. Overall, it can be said that
the designed controller yields an acceptable output disturbance
rejection (in terms of both speed and final attenuation) and
also ensures robustness against plant uncertainty and input
constraints. The control signals shown in Figure 12 do not
violate min-max constraints (umax = −umin = 0.018) and
zigzag constraints (ūmax = −ūmin = 0.01). The simulation
runs up to discrete time t = 100, i.e., 3000 seconds.
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Fig. 11: Output profile y(t) and steady-state performance

VIII. CONCLUSIONS

A new robust stability test for constrained cross-directional
control has been obtained by means of the theory of IQCs.
The test can be expressed in terms of an LMI, and allows
analytic expressions for uncertainty sets. Under the assumption
that the uncertainty is diagonal in the mode space, the test
may be fully decomposed. With an unstructured uncertainty
model, the test become partially decomposed—suboptimal
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Fig. 12: Control signals u(t)

tests may be performed on a mode by mode basis, with a
single (scalar) multiplier linking the separate modes. Such
decompositions bring benefits in the computer implementation
of the robustness criteria.

In addition, the paper exploits the stability test for the tuning
of a class of CD controllers to ensure robustness against plant
uncertainty and input constraints. One of the developed tuning
algorithms was applied to a case study from the paperboard
industry. The controller was designed and tuned to achieve
acceptable levels of performance while ensuring robustness
for large plant variations and static input constraints. The
tuning techniques are easy to implement and are based on
the appealing features of the IMC methodology.
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