Ischaemia/reperfusion injury and preconditioning in the human myocardium: The role of alpha 1 adrenoceptors and disease states

Thesis submitted for the degree of

Doctor of Medicine

At the University of Leicester

By

Mahmoud Loubani

University of Leicester

June 2004

UMI Number: U196306

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U196306 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

ABSTRACT

The present studies have demonstrated that α_1 -adrenoceptors play an important role in the ischaemia/reoxygenation-induced injury of the human atrial myocardium. They have shown that stimulation of α_1 -adrenoceptors with phenylephrine protects against injury whereas their blockade with prazosin is detrimental, both effects obtained in a dose-dependent manner. They have also shown that the effect of the stimulation or blockade of α_1 -adrenoceptors depends on the time of administration so that α_1 adrenoceptors' stimulation is protective when given prior to ischaemia but detrimental when given during ischaemia. On the contrary, α_1 -adrenoceptors' blockade is beneficial during ischaemia, detrimental during reoxygenation but has no significant effect prior to ischaemia. It appears that similar maximal protection can be obtained with α_1 -stimulation prior to ischaemia and with α_1 -blockade during ischaemia although the combination of the two does not induce additional protection. Furthermore, the protective effect of α_1 -stimulation prior to ischaemia is as potent as ischaemic preconditioning. In this thesis, I have also demonstrated that protection with pharmacological preconditioning by activation of α_1 -adrenoreceptors or adenosine receptors is identical to that of ischaemic preconditioning (IP) in the human myocardium.

These studies have provided novel information to understand the underlying mechanism of protection by preconditioning of the human myocardium. They have shown that $mitoK_{ATP}$ channels, PKC and p38MAPK are an integral part of the cellular signal transduction involved in this cardioprotection in which $mitoK_{ATP}$ channels are placed upstream and p38MAPK is placed downstream of PKC.

The abolition of the ability of the human myocardium to be protected by ischaemic and pharmacological preconditioning without exacerbating the susceptibility to ischaemic injury when nicorandil, a mito K_{ATP} channel opener and nitric oxide donor, was administered clinically was unexpected. I demonstrated that the likely cause of the failure to precondition the myocardium of patients on nicorandil is the unresponsiveness of the mito K_{ATP} channels since protection cannot be obtained with diazoxide, a specific mito K_{ATP} channel opener, but can be elicited by activation of PKC and p38MAPK that are downstream of mito K_{ATP} channels in the signalling transduction cascade of preconditioning.

The sulfonylureas glibenclamide and gliclazide, that block K_{ATP} channels, have distinctive effects on IP. Thus, although glibenclamide abolished the protective effect of preconditioning even at 0.1 μ M, gliclazide did at a higher concentration 30 μ M. The cardioprotection induced by diazoxide, which open mito K_{ATP} channels was also abrogated by glibenclamide. However glibenclamide did not block the protective effect of activation of PKC and p38MAPK.

In the final studies I demonstrated that ischaemic and pharmacological preconditioning equally elicit a delayed or second window of protection in the human myocardium that lasts between 24 and 72 hours following the preconditioning stimulus. The occurrence of angina also mimicked the delayed protection conferred by ischaemic and pharmacological preconditioning. In addition, I showed that as in the first window of protection, mito K_{ATP} channels, PKC and p38MAPK are essential components of the signal transduction mechanism of the delayed protection.

3

PUBLICATIONS

Published articles arising from this thesis:

- 1. M Loubani, M Galiñanes. Alpha 1 adrenoceptors during simulated ischaemia and reoxygenation of the human myocardium: effect of the dose and time of administration. Journal of Thoracic and Cardiovascular Surgery 2001;122:103-112.
- 2. **M Loubani**, M Galiñanes. Pharmacological and ischaemic preconditioning of the human myocardium: mitoK_{ATP} channels are upstream and p38MAPK is downstream of PKC. **BMC Physiology 2002;2:10.**
- 3. **M Loubani**, M Galiñanes. Long-term administration of nicorandil abolishes ischaemic and pharmacological preconditioning of the human myocardium: role of MitoK_{ATP} channels. Journal of Thoracic and Cardiovascular Surgery 2002;124:750-757.
- 4. **M Loubani**, A Hassouna, M Galiñanes. Delayed preconditioning of the human myocardium: signal transduction and implications for the timing of surgery. **Cardiovascular Research 2004;61:600-609.**
- 5. **M Loubani**, A Fowler, NB Standen, M Galiñanes. The effect of gliclazide and glibenclamide on preconditioning of the human myocardium. **European Journal** of Pharmacology 2005; *In press*.

Published abstracts arising from thesis:

- 1. **M Loubani**, AG Fowler, NB Standen, M Galiñanes. Blockade of preconditioning by sulfonylureas can be overcome by activation of PKC and p38MAPK. Journal of American College of Cardiology 2003;41 Supplement 2:362.
- 2. A Hassouna, **M Loubani**, AG Fowler, NB Standen, M Galiñanes. Can the diabetic heart be Ppreconditioned? Role of $mitoK_{ATP}$ channels, PKC and p38MAPK. Circulation 2002;106:245.
- 3. **M Loubani**, M Galiñanes. Chronic treatment with the mitoK_{ATP} channel opener nicorandil prevents preconditioning of the human myocardium. **Circulation** 2001;104:II-226.
- 4. **M Loubani**, M Galiñanes. Pharmacological and ischaemic preconditioning of the human myocardium: MitoK_{ATP} channels are upstream and p38MAPK is downstream of PKC. **Circulation 2001;104:II-101.**
- 5. **M Loubani**, M Galiñanes. MitoK_{ATP} channels are upstream of PKC and p38MAPK activation in the preconditioning of the human myocardium by alpha 1 adrenoceptors. **European Heart Journal 2001;22:384.**
- 6. **M Loubani**, M Galiñanes. Pretreatment with nicorandil prevents ischaemic and alpha 1 preconditioning of the human myocardium due to defective mitoK_{ATP} channels. **European Heart Journal 2001;22:688.**
- 7. **M Loubani** and M Galiñanes. The activation of α_1 -adrenoceptors prior to ischaemia is as potent as ischaemic preconditioning in the human myocardium: Role of p38MAPK and MitoK_{ATP} channels. **Circulation 2000;102:II464.**
- 8. M Loubani and M Galiñanes. The influence of alpha 1 adrenoceptors in the ischaemic human myocardium: beneficial, detrimental or both? European Heart Journal 2000;21:510.
- 9. **M Loubani** and M Galiñanes. Alpha 1 adrenoceptors mediate the protection of ischaemic preconditioning of the human myocardium through PKC and mito K_{ATP} channels. **European Heart Journal 2000;21:512.**

PRESENTATIONS

International Meetings:

- M Loubani, AG Fowler, NB Standen, M Galiñanes. Blockade of preconditioning by sulfonylureas can be overcome by activation of PKC and p38MAPK. Annual Scientific Sessions of American College of Cardiology, Chicago, Illinois, 30th March-2nd April 2003.
- 2. A Hassouna, M Loubani, AG Fowler, NB Standen, M Galiñanes. Can the diabetic heart be preconditioned? Role of mitoK_{ATP} channels, PKC and p38MAPK. American Heart Association Scientific Sessions 2002, Chicago, Illinois, 17th-20th November.
- 3. M Loubani, M Galiñanes. Chronic treatment with the mitoK_{ATP} channel opener nicorandil prevents preconditioning of the human myocardium. Presented at the American Heart Association Scientific Sessions 2001, Anaheim, California, 11th-14th November.
- 4. M Loubani, M Galiñanes. Pharmacological and ischaemic preconditioning of the human myocardium: MitoK_{ATP} channels are upstream and p38MAPK is downstream of PKC. Presented at the American Heart Association Scientific Sessions 2001, Anaheim, California, 11th-14th November.
- 5. M Loubani, M Galiñanes. MitoK_{ATP} channels are upstream of PKC and p38MAPK activation in the preconditioning of the human myocardium by alpha 1 adrenoceptors. Presented at the XXIII Annual Congress of the European Society of Cardiology in Stockholm, 1st 5th of September 2001.
- 6. M Loubani, M Galiñanes. Pretreatment with nicorandil prevents ischaemic and alpha 1 preconditioning of the human myocardium due to defective mitoK_{ATP} channels. Presented at the XXIII Annual Congress of the European Society of Cardiology in Stockholm, 1st - 5th of September 2001.
- 7. M Loubani, M Galiñanes. The activation of α_1 -adrenoceptors prior to ischaemia is as potent as ischaemic preconditioning in the human myocardium: Role of p38MAPK and mitoK_{ATP} channels. Presented at 73rd Scientific Sessions of the American Heart Association, New Orleans, LA, 12th – 15th November 2000.
- M Loubani, M Galiñanes. The influence of alpha 1 adrenoceptors in the ischaemic human myocardium: beneficial, detrimental or both? Presented at the XXII Annual Congress of the European Society of Cardiology in Amsterdam, 26th -30th of August 2000.
- M Loubani, M Galiñanes. Alpha 1 adrenoceptors mediate the protection of ischaemic preconditioning of the human myocardium through PKC and mitoK_{ATP} channels. Presented at the XXII Annual Congress of the European Society of Cardiology in Amsterdam, 26th - 30th of August 2000.

National Meetings:

1. M Loubani, M Galiñanes. Alpha 1 adrenoceptors mediate ischaemic preconditioning in the human myocardium. Presentation at the Society of Cardiothoracic Surgeons in Great Britain and Ireland Annual Meeting in London, 12th - 15th March 2000.

Local Meetings:

- 1. **M Loubani**, M Galiñanes. Delayed preconditioning of the human myocardium by angina: implications for the timing of surgery. **Midlands Cardiothoracic Surgical Meeting in Birmingham, 7th March 2003.**
- 2. M Loubani, A Fowler, NB Standen, M Galiñanes. Differential effect of sulfonylureas on preconditioning of the human myocardium. Midlands Cardiothoracic Surgical Meeting in Birmingham, 1st March 2002.
- 3. **M Loubani**, M Galiñanes. MitoK_{ATP} channels are upstream of PKC and p38 MAPK activation in the preconditioning of the human myocardium by alpha 1 adrenoceptors. Presented at the **Midlands Cardiothoracic Surgical Meeting in Keele University, Staffordshire on 2nd March 2001.**
- 4. **M Loubani**, M Galiñanes. Chronic administration of nicorandil abolishes the protection of preconditioning of the human myocardium: role of mitoK_{ATP} channels. Presented at the **Midlands Cardiothoracic Surgical Meeting in Sheffield**, 15th September 2000.
- 5. **M Loubani**, M Galiñanes. Alpha 1 adrenoceptors mediate the protection of ischaemic preconditioning of the human myocardium through PKC and mitoK_{ATP} channels. Presented at **the Leicestershire Research Prize Day**, 12th June 2000.
- 6. **M Loubani**, M Galiñanes. The influence of alpha 1 receptors on the ischaemic human myocardium: Beneficial, detrimental or both? Presented at the **Midlands** Cardiothoracic Surgical Meeting in Birmingham, February 2000.

ACKNOWLEDGEMENTS

I wish to sincerely thank Professor Manuel Galiñanes for giving me the opportunity to carry out this research in his laboratory in Glenfield Hospital, University of Leicester. This work would have not been started, carried out or completed without his support, encouragement and supervision. He was extremely dedicated and totally committed in his advice at every stage of my research from its inception to its completion and I will always remain grateful for his faith in me.

I also wish to thank Professor Nicholas B Standen, Mr Ashraf Hassouna and Dr Alan Fowler for their collaboration and help.

DEDICATION

To my father and my mother who helped me to start on this road and to my dear wife for her support to stay on it

CONTENTS

List of	ist of abbreviations used in text		
Chapte	er 1: In	troduction	16
1.1	Ischae	emia	17
		Definition	17
		Pathophysiology	17
	1.1.3 (Clinical consequences	19
1.2	Reper	fusion	20
	1.2.1	Definition	20
	1.2.2	Causes of reperfusion injury	21
	a)	Calcium overload	21
	b)	Oxygen free radical generation	21
	c)	Neutrophils and inflammatory factors	23
	d)	Mitochondrial pore opening	34
	1.2.3	Clinical consequences of reperfusion injury	36
	a)	Arrhythmias	36
	b)	Myocardial stunning	39
	1.2.4	Methods of reperfusion	48
	a)	Thrombolysis	48
		Percutaneous coronary interventions	48
		Coronary artery bypass graft surgery	48
	d)	Intra-aortic balloon counterpulsation	49
1.3	Муос	ardial protection	49
	1.3.1 (Cardioplegia	51
		Mechanisms of cardioplegic protection	52
		Composition of cardioplegia	53
	1.3.2 F	Preconditioning	53
		Definition	53
		Preconditioning in the human heart	55
	c)		58
		Benefit to patients	62
	,	Signal transduction of preconditioning	67
1.4	Alpha	1 adrenoceptors	69
	1.4.1	•	69
	1.4.2	Role in ischaemia, reperfusion and ischaemic preconditioning	72
1.5	Aims	of thesis	74

Chapter 2: Methods	
2.1 Introduction	76
2.2 Methods	77
2.2.1 Preparation of atrial slices	77
2.2.2 Experimental time course	77
2.2.3 Assessment of myocardial injury	80
2.2.4 Randomisation of specimens into study protocols	82
82	

Chapter 3: Alpha 1 adrenoceptors and simulated ischaemia/reoxygenation injury

83

3.1 Introduction	84
 3.2 Methods 3.2.1 Experimental preparation 3.2.2 Solutions and drugs 3.2.3 Experimental protocols 3.2.4 Statistical analysis 	84 84 85 85 86
3.3 Results	89
3.4 Discussion	98
Chapter 4: Ischaemic and pharmacological preconditioning	103
4.1 Introduction	104
 4.2 Methods 4.2.1 Experimental preparation 4.2.2 Solutions and chemicals 4.2.3 Experimental time course 4.2.4 Study groups 4.2.5 Assessment of tissue injury and viability 4.2.6 Statistical analysis 	105 105 105 105 106 107 107
4.3 Results	111
4.4 Discussion	116

Chapter 5: Signal transduction mechanism of preconditioning	
5.1 Introduction	120
5.2 Methods	121
5.2.1 Experimental preparation	121
5.2.2 Solutions and chemicals	121
5.2.3 Experimental time course	121
5.2.4 Study groups	122
5.2.5 Assessment of tissue injury and viability	130
5.2.6 Statistical analysis	130
5.3 Results	130
5.4 Discussion	138
5.4.1 Mechanism of preconditioning	138
5.4.2 Clinical implications	143
Chapter 6: The influence of nicorandil on preconditioning	145
6.1 Introduction	146
6.2 Methods	147
6.2.1 Patient selection and experimental preparation	147
6.2.2 Assessment of tissue injury and viability	148
6.2.3 Solutions and drugs	148
6.2.4 Experimental protocols	148
6.2.5 Statistical analysis	151
6.3 Results	152
6.4 Discussion	156

Chapter 7: The influence of sulfonylureas on preconditioning	
7.1 Introduction	161
7.2 Methods	163
7.2.1 Experimental preparation	163
7.2.2 Solutions and chemicals	164
7.2.3 Experimental time course	164
7.2.4 Study groups	164
7.2.5 Assessment of tissue injury and viability	165
7.2.6 Data analysis	168
7.3 Results	168
7.4 Discussion	174
7.4.1 Sulfonylureas and preconditioning	174
7.4.2 Sequence of the signal transduction of preconditioning	175
7.4.3 Clinical implications	175
Chapter 8: Delayed preconditioning of the human myocardium	178
8.1 Introduction	179
8.2 Methods	180
8.2.1 Patient selection and experimental preparation	180
8.2.2 Assessment of tissue injury and viability	180
8.2.3 Solutions and chemicals	181
8.2.4 Study protocols	181
8.2.5 Statistical analysis	183
8.3 Results	187
8.4 Discussion	193
8.4.1 The delayed phase of preconditioning	193
8.4.2 Preconditioning with angina	195
8.4.3 Signal transduction mechanism	196
Chapter 9: Conclusions and future direction	
9.1 Conclusions	199
9.2 Future direction	201
Bibliography	203

ABBREVIATIONS USED IN TEXT

IP	Ischaemic preconditioning
PMA	Phorbol-12-myristate-13-acetate
p38MAPK	p38 Mitogen activated protein kinase
MitoK _{ATP}	Mitochondrial ATP dependent potassium channels
SI/R	Simulated ischaemia/reoxygenation
MTT	3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide
СК	Creatine kinase
8-SPT	8-p-sulphophenyltheophyline
ATP	Adenosine triphosphate
ADP	Adenosine diphosphate
AMP	Adenosine monophosphate
Pi	Phosphate
ECG	Electrocardiogram
MI	Myocardial infarction
UA	Unstable angina
MVO ₂	Myocardial ventilation oxygen consumption
LV	Left ventricle
ATPase	Adenosine triphosphatase
NO	Nitric oxide
TNF	Tumour necrosis factor
rTPA	Recombinant tissue plasminogen activator
CsA	Cyclosporin A
Ki	Concentration for half inhibition
СуР	Cyclophilins

PPIase	Peptidyl-prolyl cis-trans isomerase
cAMP	Cyclic adenosine monophosphate
SOD	Superoxide dismutase
PTCA	Percutaneous transluminal coronary angioplasty
ACS	Acute coronary syndrome
CABG	Coronary artery bypass grafts
PIP ₂	Phosphatidylinositol biphosphate
РКС	Protein kinase C
DAG	1,2 diacylglycerol
IP3	Inositol 1,4,5 triphosphate
DMSO	Dimethyl sulfoxide
SI	Simulated ischaemia
R	Reoxygenation

Chapter 1

Introduction

16

1.1 ISCHAEMIA

1.1.1 Definition

Both hypoxia and ischaemia are situations in which a tissue is subject to oxygen deprivation, but in ischaemia the blood flow is also disrupted which prevents the wash-out of lactic acid and other waste products from the cell.^{1,2} Oxygen deprivation causes inhibition of oxidative phosphorylation which results in the loss of ATP with a concomitant rise in ADP, AMP and Pi concentrations and activation of anaerobic glycolysis as an attempt to maintain tissue ATP. Anaerobic glycolysis is incapable of producing sufficient ATP to keep normal cardiac contraction and if this situation is maintained, then lactic acid accumulates, intracellular pH drops, glycolysis is inhibited and the tissue ATP levels drop precipitously leading ultimately to cell death.³ It is a combination of high lactic acid,⁴ low pH⁵ and elevated Pi and ADP⁶ that is responsible for the inhibition of contraction. Global ischaemia is an essential feature of cardiac surgery whereas regional ischaemia is a more usual clinical situation caused by coronary thrombosis and complete arterial occlusion or by severe reduction in coronary blood flow.

1.1.2 Pathophysiology

Myocardial ischaemia can occur as a result of increased myocardial oxygen demand, reduced myocardial oxygen supply, or both.^{7,8} Clinically ischaemia can manifest as angina and with ST-segment deviation on ECG,⁹ and it may be detected by reduced uptake of thallium 201 or technetium 99 in the myocardium,¹⁰ and by regional or global impairment of ventricular function.^{11,12}

In the presence of coronary obstruction, an increase of myocardial oxygen requirements caused by exercise, tachycardia, or emotion leads to a transitory imbalance.¹³ This condition is frequently termed "demand" ischaemia and is responsible for most episodes of chronic stable angina. In other situations, the imbalance is caused by acute reduction of oxygen supply secondary to increased coronary vascular tone (i.e., coronary vasospasm) or by marked reduction or cessation of coronary flow as a result of platelet aggregates or thrombi.^{14,15} This condition, termed "supply" ischaemia, is responsible for myocardial infarction (MI) and most episodes of unstable angina (UA). In many circumstances, ischaemia results from both an increase in oxygen demand and a reduction in supply.

The heart is an aerobic organ and therefore relies almost exclusively on the oxidation of substrates for the generation of energy. It can develop only a small oxygen debt and still have enough energy to function normally. Thus, in a steady state, determination of the rate of myocardial oxygen consumption (i.e., rate of myocardial ventilation oxygen consumption (MVO₂)) provides an accurate measure of its total metabolism.¹⁶ The major determinant of MVO₂ is cardiac contractility.^{7,8} It has been known for many years that the total metabolism of the arrested, quiescent heart is only a small fraction of that of the working organ.^{17,18} The small fraction of MVO₂ in the non-contracting heart is required for the physiologic processes not directly associated with contraction. Increases in the frequency of depolarisation of the non-contracting heart are accompanied by only small increases in MVO₂.

During ischaemia, the drop in pH that occurs due to the build up of lactic acid leads to activation of the Na^+/H^+ antiporter to try and restore intracellular pH (pHi). Since ATP concentrations are greatly reduced, the Na^+/K^+ ATPase is inhibited and the Na^+

that enters the cell cannot be pumped out again, which results in increased intracellular Na⁺. This in turn causes Ca^{2+} to rise because the Na⁺/Ca²⁺ antiporter that usually pumps Ca²⁺ out of the cell, is inhibited or reversed. The conversion of ATP to ADP and AMP is rapid and reversible. AMP is slowly converted into adenosine and then inosine and xanthine through a purine degradation pathway. These nucleosides leak out of the cell (and may have vasodilator effects through purinergic receptors) and lead to a gradual depletion of adenine nucleotide, which may contribute to the complications of ischaemia. If sufficient oxygen is available, xanthine may be further oxidised by xanthine oxidase, which produces oxygen free radicals that are very damaging to the tissue. The depletion of ATP and elevated Ca^{2+} that occurs in ischaemia leads to a gradual decline in cellular integrity as degradative enzymes are activated and ATP-dependent repair processes are unable to operate. If the tissue remains ischaemic for prolonged periods, this deterioration leads to necrotic cell death. However, shorter periods of ischaemia are accompanied by less damage and this can be reversed by ATP-dependent processes provided the mitochondria remain sufficiently intact to generate the ATP upon reoxygenation.

1.1.3 Clinical consequences

Coronary artery disease is the single most common cause of death in the USA, so that approximately 13 million people (6.9% of population) had ischaemic heart disease and its various complications in 2002.¹⁹ It accounted for 53% of all cardiovascular deaths in the period 1999-2002. Congestive heart failure, as a result of ischaemic cardiomyopathy, has become the most common discharge diagnosis in USA hospitals.²⁰ Approximately 865,000 Americans have acute new or recurrent MI annually, of whom 179,514 (20%) died.¹⁹ More than half of men and 64% of women

who die suddenly from coronary artery disease have no previous symptoms of the disease.¹⁹ Despite the fact that about 335,000 people died of coronary heart disease in an emergency department caused in the majority by cardiac arrest usually resulting from ventricular fibrillation,¹⁹ the in hospital mortality of anerior MI has been declining from 11.2% to 9.4%.²¹ In the United States in 2002, an estimated 1.5 million patients underwent diagnostic cardiac catheterisation with 1.2 million angioplasty procedures, and another 515,000 individuals underwent coronary artery bypass surgery.¹⁹ Survivors of MI exhibit a poorer prognosis as well. They have a 1.5-to 15-times higher risk of mortality and morbidity than the rest of the population without prior MI and are at higher risk for subsequent MI, as well as for fatal and near-fatal arrhythmias as a result of myocardial ischaemia. Within a year of MI, 25% of men and 38% of women die. Within 6 years, 18% of men and 34% of women have a second MI, 7% of men and 6% of women experience sudden death, 22% of men and 46% of women are disabled with congestive heart failure, and 8% of men and 11% of women have a stroke.¹⁹

1.2 REPERFUSION

1.2.1 Definition

Following a short ischaemic episode (<10-15 minutes), the performance of the heart is impaired as a result of some damage but given time it would fully recover. However if the period of ischaemia is prolonged, the tissue becomes irreversibly damaged exhibiting blebbing of the plasma membrane, loss of ionic homeostasis, swelling and de-energisation of mitochondria and release of intracellular enzymes reflecting breakdown of membrane integrity. Once the integrity of the plasma membrane is

20

destroyed the cell cannot recover. It should be noted that after a prolonged period of hypoxia/ ischaemia tissue damage could be exacerbated by reperfusion. This phenomenon known as reperfusion injury is of considerable clinical relevance and understanding its causes may have important consequences.

1.2.2 Causes of reperfusion injury

a) Calcium overload

The precise mechanisms leading to Ca^{2+} overload is still unclear.^{23,23} However, it has been proposed that during ischaemia H⁺ are produced in excess and accumulate.²³ These are then exchanged for extracellular Na⁺, slowly during ischaemia and rapidly during early reperfusion, by H⁺-Na⁺ exchange.²³ The increased intracellular Na⁺ is in turn exchanged for Ca²⁺ by the Na⁺-Ca²⁺ exchanger, which causes Ca²⁺ overload.²³

b) Oxygen free radical generation

It is now recognised that reperfusion is associated with a burst of oxygen free radicals production,²⁴ but the source of these radicals is still debatable. *In vivo*, oxygen free radicals are produced both enzymatically and non-enzymatically. Enzymatic sources include NADPH oxidases located on the cell membrane of polymorphonuclear cells, macrophages and endothelial cells^{25,26,27} and cytochrome P₄₅₀-dependent oxygenases.²⁸ The proteolytic conversion of xanthine dehydrogenase to xanthine oxidase provides another enzymatic source of oxygen free radicals that may mediate deleterious processes *in vivo*.²⁹ However, the formation of xanthine oxidase activity varies between species and yet reperfusion injury does not correlate with its activity.³⁰

A probably more important source of free radicals is the mitochondrial respiratory chain.³¹ In particular, when the respiratory chain is inhibited by lack of oxygen and

then re-exposed to oxygen,³² ubiquinone can become partially reduced to ubisemiquinone, which can then react with the oxygen to produce superoxide and consequently other oxygen free radicals.³³ Another site of oxygen free radical production within the mitochondrial electron transport chain *in vitro* have been localized to complexes I and III.³⁴ Complex I produces superoxide to the matrix side of the mitochondrial membrane exclusively, whereas complex III appears to produce superoxide to both the matrix and intermembrane space in roughly equal amounts.^{35,36,37}

Whilst small fluctuations in the steady-state concentration of these oxidants may actually play a role in intracellular signalling,³⁸ uncontrolled increases in the steadystate concentrations of these oxidants lead to free radical-mediated cell damage. These effects of oxygen free radicals are probably related to oxidation of protein thiol groups³⁹ that have been shown to be responsible for the impaired respiratory chain activity of mitochondria isolated from ischaemic hearts. Oxygen free radicals also cause oxidation of glutathione, which then forms mixed disulphides with proteins. Such protein modification is thought to have inhibitory effects on ion pumps and therefore exacerbate the effects of ATP deprivation on ionic homeostasis. Furthermore, oxygen free radicals can cause peroxidation of the unsaturated fatty acid components of the phospholipids⁴⁰ rendering them more susceptible to attack by phospholipase A2 whose activity may already be increased by elevated Ca^{2+} . The combination of oxygen free radicals and elevated Ca^{2+} leads to damage to mitochondria, which may represent a critical event in the transition from reversible to irreversible reperfusion injury. Oxygen free radicals may also cause direct damage to polysaccharides⁴¹ and DNA in the cells.^{42,43}

c) Neutrophil and inflammatory factors

Neutrophils, as a first-line defence of the organism against invading pathogens, have an integral part in the acute inflammatory response to tissue injury.⁴⁴ They accumulate in ischaemic and reperfused myocardium under the influence of chemoattractants, and there is overwhelming evidence demonstrating that they participate in myocardial injury after ischaemia and reperfusion.^{45,46,47,48,49,50}

i.Neutrophil adhesion and migration

Extravasation of neutrophils in postcapillary venules is mediated by at least three sequential steps: (1) initial rolling of neutrophils along the endothelium; (2) neutrophil activation, strengthening of neutrophil adhesion, and cessation of rolling; and (3) transendothelial migration.^{51,52,53} Neutrophil rolling is mediated by the selectin family of adhesion molecules: E-selectin, L-selectin, and P-selectin.⁵⁴ The selectins initiate rolling and tethering of circulating neutrophils to the endothelial surface and facilitate exposure to various neutrophil activators.^{55,56,57,58,59,60,61} At physiological flow rates, these events promote neutrophil recruitment by the local microenvironment and provide the basis of activation-induced adhesion strengthening through ß2 integrins.^{51,52,53,62,63,64}

Firm attachment of neutrophils to the endothelial cell and direction of neutrophil transendothelial migration are mediated by the neutrophil β_2 integrins. These glycoproteins possess a common β_2 chain (CD18) and one of three separate α chains (CD11a, CD11b, or CD11c).⁶⁵ Neutrophils express β_2 integrins, and chemotactic stimulation results in a rapid but transient upregulation of CD11b/CD18, which is a

prerequisite for firm neutrophil attachment to the endothelium and subsequent diapedesis.^{50,51,52,53} Integrins bind to endothelial cell immunoglobulin-like counterreceptors, namely, intercellular adhesion molecule 1 (ICAM-1), which constitutes the principal ligand for neutrophil CD11b/CD18 (Mac-1 or Mo1).⁶⁶ CD11b/CD18 is also the receptor for C3bi (CR3), one of the breakdown components of the third component of complement C3.⁶⁵ ICAM-1 is upregulated by cytokine stimulation,⁶⁷ and the increased neutrophil adherence to endothelial cells after endothelial exposure to oxygen free radicals⁶⁸ or anoxia-reoxygenation⁶⁹ is dependent on ICAM-1. In addition, interaction of CD11b/CD18 with biological surfaces mediates the massive and prolonged oxygen free radicals production by adherent neutrophils in response to physiological concentrations of chemotactic ligands, which are very weak agonists when tested with neutrophils in suspension.^{70,71,72,73} Interestingly, soluble isoforms of cell adhesion molecules (e.g., ICAM-1, L-selectin, and E-selectin) have been detected in blood and tissue fluids, and by retaining biological activity, these molecules may potentially modulate inflammatory reactions.74,75

Isolated adult cardiac myocytes express ICAM-1 after stimulation with cytokines⁷⁶ or postischaemic cardiac lymph,⁷⁷ and the adhesion of neutrophils to these cells is dependent on ICAM-1 and CD11b/CD18.^{72,76,77} Adherence of neutrophils to cytokine-stimulated cardiac myocytes activates the respiratory burst, resulting in highly compartmentalized oxidative myocyte injury,⁷⁸ and in anoxia-reoxygenated isolated myocytes, neutrophil-mediated augmentation of cellular damage also appears to be dependent on ICAM-1.⁷⁹ Therefore ICAM-1–dependent neutrophil adherence may be an important therapeutical target.^{71,72,73,78} Induction of ICAM-1 mRNA has recently

been found in the postischaemic heart during early reperfusion,⁸⁰ and rapid reperfusion-induced expression of ICAM-1 mRNA in the border zone of viable myocytes surrounding necrotic myocardial regions (in association with intense neutrophils infiltration) which strongly indicates that inflammatory tissue injury by these mechanisms plays an important role in myocardial reperfusion injury *in vivo*.⁸¹

Diminished basal NO release from coronary endothelial cells after myocardial ischaemia and reperfusion promotes adherence of neutrophils in vitro through a CD11b/CD18-dependent mechanism.⁸² In addition, in the feline mesenterial preparation, ischaemia-reperfusion and pharmacological NO synthesis inhibition increase neutrophil adherence and microvascular albumin leakage by mechanisms dependent on ICAM-1 and CD11b/CD18 respectively.^{83,84} NO may also attenuate thrombin-induced platelet activating factor synthesis in endothelial cells,⁸⁵ and recent data have suggested that inhibition of NO synthesis in cultured endothelial cells increases intracellular oxidative stress and is associated with ICAM-1–mediated neutrophils adherence.⁸⁶ It is therefore conceivable that NO from endothelial cells may act in an autocrine fashion to regulate various endothelial cell adhesive mechanisms. Constitutive⁸⁷ and cytokine-inducible⁸⁸ NO synthases are present in cardiac myocytes, and it is tempting to speculate that NO can also regulate expression of adhesion molecules in these cells.

ii. Cardiotoxic potential of neutrophils

1. Release of oxygen free radicals

Neutrophils contain an extensive cytotoxic armamentarium, and their potential to destroy tissue is mediated by concerted and synergistic effects of exocytosed granule constituents and generation of oxygen free radicals.^{89,90,91} Activation of the neutrophil membrane-associated NADPH oxidase system by various soluble and particulate stimuli initiates a respiratory burst characterized by a marked increase in cellular oxygen consumption and generation of superoxide anions.⁹⁰ The superoxide anions apparently dismutate quantitatively to hydrogen peroxide, although it is possible that hydrogen peroxide and superoxide anions may react in the metal-catalysed modified Haber-Weiss reaction to form highly reactive hydroxyl radicals. However, most stimuli that induce superoxide generation by neutrophils also cause the release of myeloperoxidase from the granules, and this enzyme efficiently removes hydrogen peroxide by catalysing the interaction of hydrogen peroxide with Cl⁻ to form hypochlorous acid. Hypochlorous acid is a powerful oxidant that may chlorinate or oxidize a variety of target molecules, and reactions of hypochlorous acid with primary amines or ammonia can give rise to chloramines, which are also energetic oxidants. By these mechanisms, hypochlorous acid is considered to be primarily responsible for the oxygen free radical-dependent cytotoxicity of neutrophils.^{89,90}

The experimental cardiotoxicity of chemically and photochemically generated oxygen free radicals is extensively documented,^{92,93,94,95} and the cytotoxicity of neutrophilderived oxygen free radicals has been amply demonstrated in cultured endothelial cells.^{96,97,98,99,100} Furthermore, neutrophils exacerbate cellular damage in anoxia-

26

reoxygenated cultured myocytes by mechanisms that depend, in part, on oxygen free radicals.^{79,101} In isolated arteries, neutrophil-derived oxygen free radicals can induce vascular contraction, and in isolated perfused hearts, they aggravate postischaemic coronary endothelial dysfunction¹⁰² and decrease left ventricular mechanical performance.^{103,104} One mechanism behind the vasoconstricting properties of activated neutrophil may be inactivation of endothelial nitric oxide (NO) by neutrophil-derived superoxide.^{105,106} However, neutrophil also can release NO,^{107,108} although evidence indicates that neutrophil stimulation results in progressive inactivation of neutrophilderived NO by concomitant release of oxygen free radicals.¹⁰⁸ NO may directly inhibit neutrophil NADPH oxidase activity,¹⁰⁹ and the mechanisms underlying modulation of vasomotor tone by neutrophil are therefore likely to be complex. Oxidants from activated neutrophil can also cause depression of calcium transport in isolated cardiac myocyte sarcoplasmic reticulum,¹¹⁰ and neutrophil-derived hydrogen peroxide may promote release of proinflammatory arachidonic acid metabolites (i.e., prostacyclin) from cultured endothelial cells.¹¹¹ Furthermore, chemically generated superoxide anions can generate potent chemotactic activity in plasma¹¹² or after incubation with arachidonic acid,¹¹³ and it is possible that neutrophil-derived superoxide anions can have similar effects. Interestingly, neutrophil-derived oxygen free radicals can oxidize LDL *in vitro*,¹¹⁴ and the multiple proatherogenic properties of oxidized LDL¹¹⁵ may therefore provide an additional link between neutrophils and human ischaemic heart disease, although neutrophils are usually not thought to play a role in atherogenesis.¹¹⁶

2. Neutrophil derived proteinases

Although interest has focused on the cytotoxic potential of neutrophil oxidants, neutrophil degranulation also releases several proteolytic enzymes into the extracellular space.^{89,91} The serine proteinase elastase has been implicated most consistently in neutrophil-mediated tissue damage.^{89,117} Several neutrophil-derived proteinases (including elastase) are highly positively charged, and their cationic nature may contribute to tissue damage by direct alterations in target cell surface charge or by enhancing binding to cell membranes and extracellular matrix components.⁹¹ Elastase can hydrolyse a host of proteins in the extracellular matrix (e.g., elastin, fibronectin, and collagen types III and IV) and plasma (e.g., complement proteins and clotting factors),^{117,118} and although they are generally resistant to proteinases, most tissue collagens are readily cleaved by neutrophil collagenase (albeit with different substrate specificity for individual collagen types).¹¹⁹ In addition, elastase may inhibit platelet function by proteolysis of platelet membrane glycoproteins.¹²⁰ A synergism is thought to exist between neutrophil elastase and neutrophil-generated oxygen free radicals in vivo, since neutrophil oxidants (i.e., hypochlorous acid) can inactivate the powerful antiproteinases present in plasma and extracellular fluid (e.g., m-proteinase inhibitor).^{89,91,121} Furthermore, neutrophil-generated oxygen free radicals can promote activation of latent metalloproteinases (e.g., collagenase and gelatinase) released by neutrophils.^{89,119}

In cultured endothelial cells, elastase can enhance cell detachment and destruction of monolayer integrity without evidence of cytolysis,^{122,123,124} and postischaemic migration of neutrophil through the vascular endothelium may be dependent on

elastase.¹²⁵ Evidence also indicates that neutrophil-mediated damage to cultured endothelium is dependent on a synergistic interaction of proteases and oxygen free radicals,^{100,126} and elastase plays a role in neutrophil-dependent increased anoxia-reoxygenation injury in cultured endothelial cells¹²³ and cardiac myocytes.^{79,101} Cleavage of interstitial matrix molecules by collagenase and elastase may generate peptide fragments that are chemotactic for monocytes,^{127,128} and it is possible that this mechanism can promote recruitment of monocytes to the postischaemic myocardial inflammatory zone.

3. Arachidonic acid metabolites and platelet activating factor

In addition to oxygen free radicals and proteinases, activated neutrophils release several other proinflammatory mediators with a wide range of biological activities. Stimulation of phospholipase A₂ after neutrophil activation mobilizes membrane lipids and results in generation of 5-lipoxygenase products (e.g., leukotriene B₄¹²⁹) and the phospholipid platelet activating factor.¹³⁰ Arachidonic acid metabolism may proceed through differing pathways in neutrophils from different species,¹³¹ and cyclooxygenase (present in small amounts in human neutrophils) may convert arachidonic acid to cyclic endoperoxides, for example, thromboxane A₂.¹³² Furthermore, activated neutrophil can release phospholipase A₂ into the external environment,¹³³ thereby enhancing production of eicosanoids and platelet activating factor by other cells, and neutrophil can transfer eicosanoids for processing in endothelial cells¹³⁴ and platelets.¹³⁵ Thromboxane-B₂ concentration in cardiac lymph is elevated after reperfusion subsequent to 1 hour of myocardial ischaemia,¹³⁶ and enhanced neutrophil-dependent myocardial generation of eicosanoid metabolites (e.g.,

leukotriene B₄ and thromboxane B₂) has been demonstrated *ex vivo* after experimental myocardial infarction.¹³⁷ In addition, leukotrienes¹³⁸ and platelet activating factor¹³⁹ can be generated in buffer-perfused hearts after ischaemia and reperfusion, and cultured human endothelial cells produce platelet activating factor upon stimulation with inflammatory cytokines (e.g., TNF),¹⁴⁰ hydrogen peroxide,⁵⁵ or thrombin.⁵⁶ Interestingly, endothelial platelet activating factor synthesis is also increased by plasmin, streptokinase, or recombinant tissue-plasminogen activator (rTPA).^{141,142}

Leukotriene B_4 and platelet activating factor are potent stimulants of neutrophil chemotaxis, adhesion to endothelial cells, and oxidative metabolism and degranulation^{143,144} and may serve to amplify neutrophil-mediated tissue injury and vascular permeability.¹⁴⁵ Leukotrienes C₄, D₄, and E₄ and thromboxane A₂ and platelet activating factor can cause coronary vasoconstriction and depression of left ventricular function.^{146,147} In addition to stimulation of neutrophil, platelet activating factor produces aggregation and degranulation of platelets, and the decrease in coronary flow and cardiac function by platelet activating factor is likely to be dependent on platelet products.¹³⁹

iii. Myocardial neutrophil accumulation

In experimental models, neutrophil accumulation is accelerated by reperfusion,^{148,149} and in dogs, the greatest rate of neutrophil localization after 1 hour of myocardial ischaemia is observed in the first hour of reperfusion.¹⁵⁰ During reperfusion after sustained myocardial ischaemia, neutrophil accumulation occurs preferentially in the

subendocardial region^{150,151} and may correlate with infarct size.¹⁵² Interestingly, reperfusion after brief (e.g., 12-minute) periods of myocardial ischaemia apparently is not associated with neutrophil accumulation.¹⁵¹

iv. Microvascular neutrophil plugging

Neutrophils are larger and much stiffer than erythrocytes, and the cytoskeletal assembly after neutrophil activation is associated with additional decreases in cellular deformability.¹⁵³ These haemorheological properties can promote physical trapping of neutrophils in myocardial capillaries after ischaemia and reperfusion, and thus neutrophils may contribute to the no-reflow phenomenon.^{149,154} In addition, regional plugging of the myocardial microvasculature by neutrophil is likely to be enhanced by various other postischaemic microvascular alterations, e.g., neutrophil aggregation, reduced myocardial perfusion pressure, and upregulation of neutrophil–endothelial cell adhesive activities (e.g., in association with reduced endothelial NO production).^{45,51,83,155}

v. Complement, chemokines, and other chemotactic factors

During myocardial ischaemia and reperfusion, the complement cascade may be activated after complement proteolysis by myocardial proteases^{117,156} or by interaction between complement component C1 and heart mitochondrial membranes released from disrupted myocytes.¹⁵⁷ In addition, neutrophils can directly activate complement by action of proteases¹⁵⁸ or oxygen free radicals.¹⁵⁹ Complement fixation has been demonstrated in ischaemic myocardium¹⁶⁰ and appears to correlate with the

localization of neutrophil accumulation.¹⁶¹ Evidence indicates that experimental myocardial ischaemia rapidly induces complement activation,^{157,162,163} and the ability of postischaemic cardiac lymph to stimulate isolated neutrophils is neutralized by anti-C5a antiserum.^{162,163}

The role of the complement system in myocardial ischaemia and reperfusion has been well described.¹⁶⁴ C5a is a strong neutrophil chemoattractant, and generation of C3bi on the endothelial cell surface in vitro elicits rapid CD11b/CD18-dependent neutrophil adhesion.¹⁶⁵ In pigs, intracoronary administration of C5a reduces coronary blood flow and myocardial contractile function by mechanisms dependent on myocardial neutrophil accumulation and production of thromboxane A₂ and leukotrienes.¹⁶⁶ The canine coronary vasculature may be less responsive to thromboxanes, and C5a appears to dilate canine coronary arteries in vivo and in vitro.¹⁶⁷ In addition to recruitment and activation of neutrophil within the ischaemiareperfused myocardium, complement-derived products can directly contribute to myocardial injury by neutrophil-independent mechanisms. C3a can decrease left ventricular contraction and coronary flow in isolated guinea pig hearts,¹⁶⁸ and similar alterations, myocardial oedema, and release of creatine kinase, have been observed in isolated rabbit hearts perfused with human plasma (a situation eliciting complement activation).¹⁶⁹ In a recent study, reperfusion with neutrophil and plasma or neutrophils and C5a reduced ventricular function and coronary flow after global ischaemia in an isolated rat heart model, whereas reperfusion with only plasma, neutrophil, complement-activated plasma, or C5a failed to induce significant alterations.¹⁷⁰ In addition, electron paramagnetic resonance spectroscopy measurements indicated that

reperfusion with neutrophil and plasma resulted in marked prolongation in the duration of oxygen free radical generation.¹⁷⁰

Although the complement system is believed to be one of the most important sources of inflammatory mediators after myocardial ischaemia and reperfusion, a novel superfamily of low-molecular-weight chemotactic cytokines known as chemokines has recently been defined; chemokines are secreted by several types of cells in response to inflammatory stimuli *in vitro*.^{171,172} Chemokines are subdivided into α and ß subfamilies on the basis of the presence or absence of an intervening amino acid between the first two of four conserved cysteines, and the two subfamilies differ in their target cell selectivity, i.e., α or C-X-C chemokines primarily stimulate neutrophil, whereas ß or C-C chemokines predominantly act on monocytes, basophils, eosinophils, and T cells.^{171,172,173} Specifically, IL-8 synthesized by endothelial cells after stimulation with TNF or IL-1 is a strong neutrophil chemoattractant.¹⁷⁴ Chemokines possess proteoglycan-binding sites, and IL-8 can induce transendothelial neutrophil migration, rapid shedding of L-selectin, and upregulation of neutrophil integrins, possibly by generation of a chemotactic gradient of immobilized matrixassociated IL-8.^{60.61} Various other neutrophil chemotactic agents are released from the postischaemic myocardium, e.g., leukotrienes^{137,138} and platelet activating factor,^{90,139} and neutrophil chemoattraction and activation after myocardial ischaemia and reperfusion are therefore likely to be the result of amplification by numerous interacting proinflammatory mechanisms, with several of the involved mediators playing the role of initiator and product.⁵⁰

d) Mitochondrial pore opening

Upon reoxygenation following a period of ischaemia the mitochondria become energised and accumulate the excess Ca²⁺ that has increased in the cytosol. This high matrix Ca²⁺ coupled with oxidative stress induce the opening of a non-specific pore in the mitochondrial inner membrane and this process is further sensitised by the depletion of mitochondrial adenine nucleotides and the elevated Pi, both of which are a consequence of prolonged ischaemia.^{175,176,177,178} Opening of a single pore immediately depolarises the mitochondria and this further activates pore opening that leads to mitochondrial swelling and releases all their nucleotides and other cofactors. ATP production is now no longer possible and if the pores remain open for any length of time, the cell is doomed to die.^{179,180,181}

The opening of the pore upon reperfusion has been observed in isolated heart cells using confocal microscopy;^{182,183} a mitochondrial impermeant fluorescent dye enters the mitochondria only upon reoxygenation whilst a fluorescent dye (Rhodamine 123), which is accumulated by energised mitochondria is lost from the mitochondria under the same conditions. In the perfused heart, 2-deoxyglucose uptake into the mitochondria, which is normally impermeant, only occurs during reperfusion and not during ischaemia alone.^{182,183}

The mechanism of pore opening has been extensively studied in isolated mitochondria and shown to allow passage of molecules up to about 1500Da.¹⁸⁰ The pore is triggered by high concentrations of matrix Ca²⁺ but the sensitivity to Ca²⁺ is greatly increased by the presence of Pi, oxidative stress, depolarisation, adenine nucleotide depletion and any factor that induces the adenine nucleotide translocase to take up the "c" conformation. In contrast any factor that induces the "m" conformation inhibits pore formation as does decreasing the matrix pH and the immunosuppressant drug cyclosporin A (CsA).¹⁸⁴ The pore can be closed by removing Ca^{2+} with a chelating agent such as EGTA. Many of the inducing factors come into play during ischaemia, but the acid pH will inhibit pore opening and the de-energised mitochondria will not accumulate the Ca^{2+} to trigger the pore. On reperfusion the energised mitochondria accumulate the Ca^{2+} and the lactic acid is lost from the cells, restoring the pH to a value that allows pore opening.^{176,179}

The action of CsA to inhibit pore formation requires only nM concentrations and the Ki values of CsA¹⁸⁴ and its analogues for inhibition of pore opening correspond to their Ki values for inhibition of mitochondrial peptidyl-prolyl cis-trans isomerase (PPIase). PPIase activity is a well-documented property of the cellular proteins binding CsA, known as cyclophilins (CyP), and involves the isomerisation of the peptide bond adjacent to a proline residue in a protein. The unique mitochondrial isoform of PPIase is thought to bind to a matrix facing proline of the adenine nucleotide translocase and this binding of matrix CyP has been shown to be increased under conditions of oxidative stress as a result of a disulphide cross-link between 2 matrix facing cysteine residues on the ANT. Adenine nucleotides decrease the sensitivity of the pore to Ca²⁺ probably through their internal binding site on the carrier, and oxidative stress reduces the affinity of the ADP binding site in addition to its effect on CyP binding.¹⁷⁶ Direct demonstration that the proposed components of the pure components.

1.2.3 Clinical consequences of reperfusion injury

a) Arrhythmias

Reperfusion arrhythmias were recognised by Tennant and Wiggers in 1935 to follow the reintroduction of blood flow to the ischaemic myocardium.¹⁸⁵ These arrhythmias, in addition to their importance as a marker of successful reperfusion of an occluded coronary artery,¹⁸⁶ require special attention because haemodynamics may rapidly deteriorate during ventricular tachycardia or ventricular fibrillation. It is therefore important clinically to establish the mechanism and treatment of such reperfusion arrhythmias. In animal experiments arrhythmias may occur within seconds of the onset of reperfusion.¹⁸⁷ In humans reperfusion arrhythmias are commonly associated with intracoronary thrombolytic treatment¹⁸⁶ and primary coronary angioplasty.^{188,189} They may be less common after intravenous thrombolytic treatment,¹⁹⁰ and in these circumstances it has been proposed that they pose no additional threat to life.¹⁹¹ The disparity may, however, be related to the rate of recanalisation. Yamazaki et al showed that in dogs sudden reperfusion was more likely to be associated with a high frequency of arrhythmias than was staged reperfusion.¹⁹² In a randomised clinical study comparing intravenous thrombolytic treatment with primary coronary angioplasty, ventricular fibrillation was significantly more common in the angioplasty group (6.7% v 2.0%).¹⁸⁸ These studies provided angiographic proof of reperfusion. which was not available in several of the multicentre trials of thrombolysis.^{190,193,194}

The duration of the preceding ischaemia is an important determinant of vulnerability to arrhythmias after reperfusion. Balke et al observed a peak of 67% in the frequency of ventricular fibrillation when reperfusion was achieved after 20-30 minutes of ischaemia, as opposed to 22% after 60 minutes.¹⁹⁵ Very early thrombolytic treatment may be expected to cause more prominent reperfusion arrhythmias. The European

Myocardial Infarction Project Group randomised 5469 patients to thrombolytic treatment before admission or to later treatment in hospital. Although mortality did not differ in the two groups, prehospital ventricular fibrillation occurred significantly more often in patients treated out of hospital.¹⁹⁶ The incidence of ventricular fibrillation in clinical settings has been reported to be low.^{197,198,199,200} In the study by Yoshida et al,²⁰¹ ventricular fibrillation occurred in only 5.3% in the control group following angioplasty for acute anterior wall myocardial infarction. In these patients, acceleration of ventricular rate occurred before ventricular fibrillation.

Electrophysiological mechanisms of reperfusion arrhythmias are still being disputed. Arrhythmias in experimental models of ischaemia and reperfusion were previously believed to be re-entrant arrhythmias that resulted from heterogeneous recovery of the refractory period and conductivity.^{202,203} However, Kaplinsky et al²⁰⁴ found that reperfusion arrhythmias after 30 minutes of ischaemia consist of 2 types: an instantaneous ventricular arrhythmia (onset at 0 to 1 minute) and a delayed ventricular arrhythmia (onset at 2 to 7 minutes). They demonstrated that the former was a reentrant arrhythmia caused by electrical heterogeneity and associated with a high frequency of ventricular fibrillation. In contrast, the latter was caused by increased ventricular automaticity and associated with a low frequency of ventricular fibrillation.²⁰⁴ This led them to speculate that reperfusion ventricular tachycardia and ventricular fibrillation are not associated with a single mechanism.²⁰⁴ Murdock et al²⁰⁵ demonstrated that the conduction delay resulting from myocardial ischaemia rapidly returned to control times with reperfusion providing evidence against reentry. Vera et al²⁰⁶ recorded early afterdepolarizations both during ischaemia and during reperfusion and postulated that afterdepolarizations participated in the genesis of reperfusion ventricular tachycardia and ventricular fibrillation. Using three-dimensional mapping, Pogwizd and Corr found that 75% of reperfusion ventricular complexes originated from endocardial foci without enough evidence of reentry.²⁰⁷ Other studies have clinically demonstrated that accelerated idioventricular rhythm and ventricular tachycardia that occur after reperfusion are probably cAMP-mediated arrhythmias and are therefore likely to be triggered arrhythmias.²⁰¹ More recently, the demonstration that increased extracellular and intracellular resistances contribute to slowing and failure of impulse propagation in ischaemic myocardium, has led to the investigation of cell-to-cell electrical uncoupling. This is measured by a sudden increase of tissue resistance after 10 to 20 minutes of ischaemia and is associated with the onset of ventricular fibrillation.²⁰⁸ Furthermore reduced expression of Cx43 accelerates the onset and increases the incidence, frequency, and duration of ventricular tachyarrhythmias after coronary artery occlusion. Thus diminished electrical coupling per se plays a critical role in arrhythmogenesis induced by acute ischaemia.²⁰⁹ This work has been further supported by more evidence from Cascio et al²¹⁰ examining the cell to cell uncoupling in reperfused papillary muscle.

A great deal has been detected from animal studies regarding the mechanism of accelerated idioventricular rhythm and ventricular tachycardia when occluded vessels were reperfused. However, among clinical studies, varied incidence of reperfusion arrhythmias has been demonstrated which may suggest that mechanisms responsible for accelerated idioventricular rhythm and ventricular tachycardia in clinical cases might be somewhat different from those observed in experimental models.

b) Myocardial stunning

i. Definition

This phenomenon was first described by Heyndrickx et al¹⁹⁸ in conscious dogs undergoing brief coronary occlusions followed by reperfusion. They reported that regional contraction remained depressed for more than 3 hours after a 5 minute coronary occlusion and for more than 6 hours after a 15 minute occlusion. Thus, it became clear that after a brief episode of severe ischaemia, prolonged myocardial dysfunction with gradual return of contractile activity occurs and the name myocardial stunning was coined in 1982.²¹¹ This has been defined as the mechanical dysfunction that persists after reperfusion despite the absence of irreversible damage and despite restoration of normal or near-normal coronary flow.²² The two essential points of this definition are that postischaemic dysfunction, no matter how severe or prolonged, is a fully reversible abnormality and that the dysfunction is not caused by a primary deficit of myocardial perfusion.²² Subsequently, it has become increasingly evident that postischaemic myocardial stunning is part of the natural history of coronary artery disease and may contribute significantly to the morbidity associated with this disorder.¹⁹⁹

Myocardial stunning, as defined above, is not a single entity but rather a syndrome that has been observed in a wide variety of experimental settings with major pathophysiological differences. The heterogeneity of myocardial stunning is confirmed by the fact that it has been observed under a variety of conditions, including after a single completely reversible ischaemic episode, multiple brief completely reversible episodes of ischaemia, single, partly irreversible ischaemic episode such as in subendocardial infarction resulting in an admixture of infarction and stunning of adjacent viable myocardium, global ischaemia in vitro, global myocardial ischaemia as observed after cardioplegia arrest in vivo, and after exerciseinduced ischaemia.²¹²

Clinically, global myocardial stunning has been observed most frequently in patients who have undergone ischaemic cardiac arrest during cardiopulmonary bypass,^{213,214} despite modern cardioplegia techniques. Such hearts may not recover for days, and many of these patients require inotropic support. In patients who have had MI, both with and without administration of thrombolytic therapy, stunned myocardium lies adjacent to infarcted myocardium. Improvement in ventricular function occurs gradually over the course of days to weeks.²¹⁵ Myocardial stunning is also a common feature of UA²¹⁶ and exercise induced angina.²¹⁷ Persistent wall-motion abnormalities can be observed by echocardiography at a time when chest pain, ST-segment deviation, and regional perfusion have recovered. It affects both systolic and diastolic function.^{200,211,216,217}

ii. Mechanisms of myocardial stunning

1. Insufficient energy production by mitochondria

It was observed in the early 1980s, that a coronary occlusion for 15 minutes caused ATP concentration to fall in the stunned myocardium and then to recover later together with cardiac function.²¹¹ It was shown, that after the creatine phosphate stores are exhausted, myocardial ATP concentration declines with the accumulation of its metabolites such as adenosine, inosine and hypoxanthine.^{211,218} These

accumulated metabolites capable of being used as precursors to resynthesise ATP through the salvage pathway, are washed away during reperfusion.^{211,218,219} Thus the "backbone" of ATP will now be resynthesised by the slow de novo pathway.^{218,219} This process may take several days to occur.^{218,219} Therefore, it was speculated that there is a causal relationship between depletion of adenine nucleotides and myocardial function.²¹¹

However, this hypothesis is now refuted since a correlation between myocardial ATP levels and recovery of myocardial contractility was not observed in certain models of myocardial stunning.²²⁰ Furthermore, it was also shown that by administering a nucleotide precursor (adenosine) during postischaemic reperfusion, causes an increase in ADP and ATP levels, but with no improvement in cardiac contractility.²²⁰ This finding also suggests that a decreased availability of nucleotide precursors is not the primary cause for stunned myocardium.²²⁰ An increased creatine phosphate content found in stunned myocardium further confirms that the phosphorylating capability of mitochondria is not lost in this phenomenon.²²¹

2. Impaired energy use by myofibrils

Greenfield and Swain²²² have shown that myofibrillar creatine kinase activity is decreased in stunned myocardium. A reduction of free ADP, that is used to produce ATP at the contractile site by the myofibrillar creatine kinase was also observed in the stunned myocardium.²²⁰ Thus, a disruption of the myofibrillar end of the creatine phosphate shuttle was proposed as a possible mechanism of stunning.²²² However, this hypothesis is unlikely since inotropic stimulation causes an immediate and sustained increase in performance in the stunned myocardium.²²⁰ This increase in

myocardial performance suggests that the residual activity of the enzymes are still able to run the myofibrillar ATPase reaction at increased rates.²²⁰

3. Reduced myofilament responsiveness to calcium

It has been found that both myofilament Ca^{2+} sensitivity and maximal Ca^{2+} - activated force is reduced in the stunned myocardium.^{223,224} Thus, it has been hypothesized that a reduced responsiveness of myofilaments to Ca^{2+} is a mechanism for myocardial stunning. Either a decreased intracellular free Ca^{2+} concentration ([Ca]i transient) or a decreased sensitivity of myofilaments to Ca^{2+} , could cause a reduced myofilament responsiveness to extracellular Ca^{2+} in the stunned heart.²²³ Since Marban²²³ and Kusuoka et al²²⁴ have observed an increase in Ca^{2+} transients in the stunned heart, it is proposed that a decreased sensitivity of myofilaments to Ca^{2+} as the mechanism for myocardial stunning. This decreased sensitivity could be a result of a shift in myofilament Ca^{2+} sensitivity and/or a reduction in the maximal Ca^{2+} -activated force.^{223,224,225}

Murphy et al²²⁶ found that intracellular magnesium $[Mg^{2^+}]i$ rises during ischaemia and remains elevated during early reflow. It has been observed that as $[Mg^{2^+}]i$ rises the Ca²⁺- activated force relation is shifted to the right.²²⁴ However, these changes in $[Mg^{2^+}]i$ transients do not explain the reduced maximal Ca²⁺ - activated force. Furthermore, a reduced sensitivity of myofilaments to calcium mediated by increased $[Mg^{2^+}]i$, does not explain the ability of the stunned myocardium to respond to inotropic stimuli with a normal contractile reserve.^{220,227} Studies by Gao et al²²⁸ have found that troponin I is partially degraded in the stunned heart. Usually, the troponin-tropomyosin complex inhibits the binding of myosin and actin. A structural alteration occurs within tropomyosin when Ca^{2+} binds to troponin C. ²²⁹ This exposes the myosin binding site to actin.²²⁵ The free energy needed to cause this structural change in the troponin-tropomyosin complex is obtained from the energy supplied by the Ca^{2+} binding to troponin C.²²⁵ This energy is then transduced by troponin T and troponin I.⁶⁴ Since troponin I is partially degraded in the stunned myocardium by Ca^{2+} -activated protease the energy obtain from Ca^{2+} binding to troponin C cannot be effectively transduced to cause the necessary structural change in the troponin-tropomyosin complex.^{225,228} Thus, a greater $[Ca^{2+}]i$ is required to bring about muscle contraction, or in other words myofilament responsiveness to Ca^{2+} is reduced. The same studies have also found a reduction of both myofilament Ca²⁺ sensitivity and maximal Ca²⁺-activated force.^{225,228} Since only limited proteolysis of troponin I occurs (by calpain I) this would not affect the upstream mechanisms controlling $[Ca^{2+}]i$.²²⁶ Thus, the ability of the stunned myocardium to respond to inotropic stimuli with a normal contractile reserve is explained.²²⁵ Turnover of troponin I takes several days and this could provide an explanation for time dependent recovery of the stunned myocardium.^{211,228}

4. Calcium Overload

Though intracellular Ca^{2+} is vital for excitation-contraction coupling, it has been suggested that an increase in transient $[Ca^{2+}]i$ during ischaemia and early reperfusion could be a mechanism for myocardial stunning.²²⁵ It has been observed that the intracellular Ca^{2+} concentration increases during the first 10 - 15 minutes of total ischaemia and remains elevated (for at least 5 minutes) during early reperfusion. A similar period of ischaemia is required for myocardial stunning to occur.²¹¹ Bolli²² and Opie²³⁰ found that reperfusion with solutions containing low Ca²⁺ concentrations after 15 minutes of ischaemia, would significantly attenuate postischaemic dysfunction. Furthermore, it has been shown that exposure of isolated ferret hearts to a transient Ca²⁺ overload mimics several features of stunning, even in the absence of prior ischaemia.²³¹ Features such as decreased maximal Ca²⁺-activated force and sensitivity to Ca²⁺, ATP depletion, and absence of histological evidence of irreversible injury were observed.²³²

Based on previous findings, Kusuoka et al²³³ proposed that an increase in $[Ca^{2+}]i$ during ischaemia and early reperfusion could activate Ca^{2+} -dependent protein kinases, which could then cause changes in myofilaments to decrease Ca^{2+} sensitivity and / or maximal Ca^{2+} -activated force through phosphorylation of contractile proteins. Recent studies by Gao et al²²⁸ have concluded that an increase in $[Ca^{2+}]i$ during ischaemia and early reperfusion causes Ca^{2+} -activated protease to partially degrade troponin I in the stunned myocardium. This in turn decreases the responsiveness of myofilaments to calcium. An increase in $[Ca^{2+}]i$ could generate oxygen radicals via xanthine oxidase, which could also contribute to stunning.²²⁹

5. Reduced contractile protein activation due to sarcoplasmic reticulum dysfunction The normal myocardial contraction - relaxation cycle depends on a proper functioning Ca^{2+} release - uptake cycle.^{234,235} Release of Ca^{2+} from the sarcoplasmic reticulum stores causes the intracellular free Ca^{2+} concentration to rise. As mentioned earlier Ca^{2+} binding to troponin C initiates contraction. Relaxation is then achieved by sequestration of Ca^{2+} by the sarcoplasmic reticulum through Ca^{2+} -ATPase activity.^{234,236} Krause et al²³⁴ found that the sarcoplasmic reticulum isolated from stunned myocardium had decreased Ca^{2+} uptake ability and Ca^{2+} , Mg^{2+} -ATPase activity. This decrease in calcium uptake ability would result in less sequestration of Ca^{2+} and in turn less subsequent release from the sarcoplasmic reticulum stores²³⁴ and reduced contractile protein activation.²³⁴ Thus, a dysfunction of the sarcoplasmic reticulum uptake ability could be a possible mechanism of myocardial stunning.

The changes in $[Ca^{2+}]i$ may explain the ability of the stunned myocardium to achieve contractile function comparable to preischaemic levels with the addition of the exogenous Ca^{2+} or other inotropic agents.^{22,221,227} The addition of inotropic agents would increase intracellular Ca^{2+} concentration and contractile protein activation. However, this hypothesis cannot explain the increase in $[Ca^{2+}]i$ transients observed in the stunned myocardium.²²⁵

6. Generation of oxygen free radicals

In the early 1980s, it was postulated that the generation of oxygen-derived free radicals could be a mechanism of myocardial stunning.^{22,237} These free radicals are unstable, cytotoxic and highly reactive variations of the oxygen molecule.²²⁹ It has been possible to attenuate myocardial stunning in open-chest dogs²²⁹ by administration of free radical scavengers such as superoxide dismutase (SOD) and

catalase before and during ischaemia, and throughout reperfusion. SOD acts by catalysing the dismutation of superoxide ions (O_2^-) to hydrogen peroxide (H_2O_2) and O_2 , while catalase acts by reducing H_2O_2 to O_2 and $H_2O_2^{22,229}$ It has been found that administering SOD or catalase alone does not significantly attenuate myocardial stunning.²³¹ This suggests that both O_2^- and H_2O_2 are important contributors to stunning. Through the administration of dimethylthiourea (effective OH scavenger) Bolli et al²³¹ were able to attenuate stunning in open-chest dogs and also implicate OH in the pathogenesis of myocardial stunning. Thus, it appears that O_2^- and OH are contributors to stunning by direct cytotoxicity and H_2O_2 as a precursor of OH.

In spite of the results discussed above, the evidence to implicate oxygen-derived free radicals in the pathogenesis of stunning is inconclusive,^{22,237} because these studies did not measure directly free radical generation in the presence and absence of myocardial stunning. However, using spin trap a-phenyl N-tert-butyl nitrone and electron paramagnetic resonance spectroscopy it has been possible to measure the free radical generated during coronary occlusion and dramatically increase during early reperfusion with a peak production within 2-4 minutes of reperfusion.^{22,237} A linear positive relationship between free radical generation and the severity of ischaemia has also been found.²²

Free radicals can be generated through xanthine oxidase and activated neutrophils,^{22,229} and the administration of allopurinol, a xanthine oxidase inhibitor has been shown to markedly improve contractile recovery.²³⁸ However, experiments by Eddy et al²³⁹ have shown that in the human and rabbit hearts there are undetectable

levels of xanthine oxidase and xanthine dehydrogenase activity which could question the role of this mechanism in myocardial stunning in these species. Whether neutrophils are a source of free radical generation causing myocardial stunning still remains uncertain.²⁴⁰ Studies which relied on neutrophil depletion through the use of leukocyte filters and neutrophil antisera have provided inconsistent results as to whether a beneficial effect on postischaemic function is achieved.^{237,240} It is also suggested that the ischaemic period required to cause myocardial stunning is not adequate to cause neutrophil activation. However, there are many other processes in which oxygen-derived free radicals could be formed. These include activation of the arachidonate cascade, autoxidation of catecholamines and damage to the electron transport chain in the mitochondria.²²

The mechanism by which oxygen-derived free radicals may cause stunning is poorly understood.²⁴¹ Oxygen-derived free radicals may bring about multiple changes to the cellular structure and function.^{22,237} They may cause structural injury in enzymes, proteins and nucleic acids.²³⁷ In addition, free radicals may alter the fluidity and permeability of the cell membrane through lipid peroxidation.²³⁷ However, this latter mechanism is considered unlikely by Hearse²³⁷ since lipid peroxidation is a relatively slow process and cannot occur in a short space of time (period in which free radicals impose their effect) after a brief period of ischaemia. It has also been suggested that oxygen-derived free radicals could cause an increase in permeability to Ca²⁺ in sarcolemma and rapidly release Ca²⁺ from the sarcoplasmic reticulum that would be the direct cause of damage.^{230,242} The Ca²⁺, Mg²⁺-ATPase activity could be impaired by free radicals as a decrease in Ca²⁺ uptake ability is observed in the isolated

sarcoplasmic reticulum exposed to oxygen radicals.²² Thus, oxygen-derived free radical may also cause stunning through Ca^{2+} overload.

1.2.4 Methods of reperfusion

The best method to combat ischaemia and its consequences is the reestablishment of perfusion to the myocardial tissue. This can be achieved in a number of ways.

a) Thrombolysis

This is the therapeutic use of thrombolytic agents to dissolve clots in coronary arteries in the acute stage of myocardial infarction. This however has a number of contraindications and side effects and the ideal thrombolytic agent has not yet been developed.^{243,244}

b) Percutaneous coronary interventions

This normally refers to percutaneous transluminal coronary angioplasty (PTCA), with or without stenting.^{245,246} However other modalities have been developed that include brachytherapy which is intracoronary radiation therapy with either gamma- or beta-ray devices, coronary atherectomy, ablative laser-assisted angioplasty, catheter-based thrombolysis and mechanical thrombectomy.

c) Coronary artery bypass graft surgery

Coronary artery bypass graft surgery (CABG) using cardiopulmonary bypass or on the beating heart without cardiopulmonary bypass and with or without minimal access are the main surgical options for the treatment of coronary artery disease.^{247,248,249,250,251,252} However other options include transmyocardial laser revascularization or percutaneous transmyocardial laser revascularization that have been used when bypass graft surgery is not feasible.^{253,254}

d) Intra-aortic balloon counterpulsation

Since the 1980s, intra-aortic balloon counterpulsation (IABCP) has been increasingly used in various clinical situations as a lifesaving intervention to attain haemodynamic stabilization prior to definite therapy.²⁵⁵ Diastolic augmentation enhances perfusion of the coronary circulation and carotid arteries. The reduction in end-diastolic pressure decreases aortic impedance (afterload) and augments systole. IABCP reduces aortic impedance and systolic pressure, leading to a 15-25% reduction in LV wall stress. The reduction in afterload improves LV volume, LV emptying, and myocardial oxygen consumption. Diastolic aortic pressure augmentation increases myocardial perfusion and coronary blood flow. The effects on coronary blood flow are variable, but the boost generally ranges from 10-20% in ischaemic territories. IABCP can decrease LV filling pressures by 20-25% and can improve cardiac output by 20% in patients with cardiogenic shock; therefore, IABCP reduces myocardial oxygen demand significantly.

1.3 MYOCARDIAL PROTECTION

Before describing the different modalities of myocardial protection it is necessary to understand the concept of myocardial oxygen consumption and its changes in the various clinical situations.

49

The heart represents less than 0.5 percent of body weight, yet it accounts for over 7 percent of resting oxygen consumption. Myocardial oxygen consumption (MVO₂) can be readily calculated using the Fick equation if coronary blood flow (CBF) and arterial (CaO₂) and coronary sinus (CcsO₂) oxygen contents are known [MVO₂ = CBF \times (CaO₂ -CcsO₂)]. Cardiac muscle extracts much more oxygen in the normal state than other organs, and thus increased myocardial oxygen consumption is achieved primarily by increases in coronary blood flow. The left ventricle consumes approximately 8 ml of O₂ per 100 g of myocardium per minute in a normal human subject at rest. During potassium-induced arrest, O₂ consumption falls to 1.5 ml per 100 g of myocardium per minute, a decrease of over 81 percent. The three major determinants of MVO₂ are heart rate, stroke work (the area within the pressure-volume loop, which incorporates afterload), and inotropic state. The relationship between MVO₂ and heart rate, stroke work, and inotropic state is almost linear.^{256,267} MVO₂ is greater when a low stroke volume is ejected against high pressures than when large stroke volumes are ejected against low aortic pressures.

During cardiac surgery, MVO₂ varies widely. The lowest MVO₂ occurs when the heart is arrested. Maximum MVO₂ occurs shortly after weaning from cardiopulmonary bypass when the heart is repaying the oxygen debt incurred during the aortic cross-clamp period. In a series of classic experiments, Buckberg et al²⁵⁸ examined MVO₂ during different conditions of myocardial activity: the empty beating heart, the fibrillating heart, and the arrested heart. MVO₂ was greatest during normothermic (37°C) fibrillation and least during hypothermic (22°C) arrest. Hyperkalemic arrest achieved a reduction in MVO₂ from 5.6 ± 1.95 ml/100 g per minute to 1.1 ± 0.4 ml/100 g per minute. Hypothermia reduced MVO₂ to 2.9 ± 0.9

mL/100 g per minute, while the combination of potassium-induced arrest and moderate hypothermia reduced MVO₂ to 0.3 ± 0.1 ml/100 g per minute.

The main methods of myocardial protection are described below:

1.3.1 Cardioplegia

In 1955, Melrose et al²⁵⁹ first described the use of hyperkalaemic blood cardioplegia to electively arrest the heart in diastole to reduce metabolic demand, improve visualization, and facilitate the execution of surgery. The "cardioplegic" solution was given via the aortic root shortly after a clamp was placed across the aorta. However, Melrose abandoned cardioplegia because of the cardiac injury caused by this hyperkalaemic solution. Other investigators questioned hyperkalaemic solutions because of focal inflammatory lesions in the myocardium.²⁶⁰ Subsequently, these lesions were thought to be due to abnormal calcium flux, but injury was eliminated by reducing the potassium concentration in the cardioplegic solution.²⁶¹

Following the important discovery of Melrose et al,²⁵⁹ several improvements were made in the composition and delivery of cardioplegia. The fundamental precept of any cardioplegic technique involves protection against ischaemic injury during the aortic cross-clamp period when normal antegrade coronary perfusion is absent. An optimal metabolic supply/demand ratio requires both a reduction in high-energy phosphate utilization and an increase in the delivery of oxygen and metabolic substrates. The previous practice of intermittent aortic cross-clamping was abandoned by most surgeons when it was realized that the ensuing ventricular fibrillation greatly increased cardiac energy requirements. Hypothermic hyperkalaemic cardioplegic solutions were introduced to induce asystolic arrest to minimize cardiac energy requirements. Intermittent doses of cardioplegia were administered every 15 to 20 minutes to provide oxygen and metabolic substrates for the basal requirements of the arrested hypothermic heart and also to washout of accumulated toxic products. These multidose cardioplegic infusions also were needed to prevent rises in myocardial temperatures and displacement of intracoronary cardioplegic solution by noncoronary collateral flow.

Newer technologies involving both the composition and delivery of cardioplegic solutions continue in an effort to improve the critical ratio between myocardial supply and demand.

a) Mechanisms of cardioplegic protection

Potassium-induced mechanical arrest will reduce oxygen consumption by 80%. This combined with hypothermia will reduce consumption by another 10-15%. Aerobic metabolism can be maintained with oxygenated cardioplegia. Hypothermic arrest is sustained with readministration every 15-30 minutes. During cardioplegic arrest myocardial rewarming is prevented with systemic hypothermia and the additional application of aortic and ventricular vents, and caval occlusion.

b) Composition of cardioplegia

St Thomas's crystalloid cardioplegic solution was the most commonly used for myocardial protection. However, blood cardioplegia is becoming increasingly used as blood has the advantage of oxygen carrying capacity, histidine and haemoglobin buffers, free radical scavengers in red blood cells and metabolic substrates. Blood also has improved rheologic and oncotic properties, which may lessen myocardial oedema. Buffers such as THAM, histidine, and NaHCO₃ form a slightly alkaline solution for reperfusion that can counteract intracellular acidosis. Small amounts of Ca²⁺ (0.1-0.5 mM/L) restore Ca²⁺ that has been chelated by citrate. Potassium concentrations range from 10-25 mM/L, with the first dose being the highest. Other substrates are being evaluated, including allopurinol, SOD, deferoxamine, adenosine, nucleoside transport inhibitors, and potassium-channel openers.

1.3.2 Preconditioning

a) Definition

The observation that serial brief episodes of ischaemia with intervening reperfusion did not lead to progressive depletion of high-energy phosphates in the canine myocardium²⁶² led the same group of investigators to examine the response of hearts "preconditioned" with short bursts of sublethal ischaemia prior to a sustained ischaemic insult.²⁶³ Their finding that the onset of infarction was delayed in pretreated hearts, with a significant reduction in ultimate myocardial infarct size, resulted in recognition of the concept of ischaemic preconditioning, with a proposal that the mechanism responsible involved a slowing of consumption of high-energy phosphates during the prolonged ischaemic insult. Since then, this marked limitation of infarction

induced by antecedent brief periods of ischaemia has been demonstrated in every animal species studied.²⁶⁴ Subsequent studies have suggested that protection against other end points of injury such as myocardial stunning and reperfusion arrhythmias may also be possible.^{265,266,267} Characterization of the time frame of protection has demonstrated a biphasic pattern with an initial ("classical" or "early") powerful phase that lasts 1 to 2 hours after the preconditioning stimulus and a subsequent "second window" 12 to 72 hours later.^{268,269} It is also important to note that in experimental studies ischaemic preconditioning has been found to limit infarction when the duration of the sustained ischaemic insult is ≈ 30 to 90 minutes, but is ineffective when this period is extended to 3 hours.²⁶⁴ This temporal limitation of ischaemic preconditioning implies that the protection is only observed when prolonged ischaemia is followed by timely reperfusion.

The potential for clinical application of such a powerful protective phenomenon has generated enormous interest in identification of the underlying intracellular signalling pathways, with the ultimate aim of pharmacologically exploiting these mechanisms to develop therapeutic strategies that can enhance myocardial tolerance to ischaemia-reperfusion injury in patients with coronary artery disease. Extensive research over the past 15 years has gone a long way in elucidating a number of membrane receptor–linked cellular triggers, intracellular signalling cascades, and potential cytoprotective end-effector proteins that may be involved in mediating the protective effects of ischaemic preconditioning.²⁶⁴ However, the application of these findings to the clinical setting depends primarily on proof of safety and efficacy when compared with other strategies of myocardial protection and secondarily on identification of well-

defined cohorts of patients who stand to benefit from pretreatment with such cardioprotective agents.

b) Preconditioning in the human heart

Ethical considerations restrict the nature of experimental work on the human heart and thereby render the evidence indirect. Numerous approaches have, to some extent, circumvented this problem. Studies in cells derived from isolated human ventricular myocytes^{270,271} and in isolated atrial trabeculae obtained at the time of cardiac surgery²⁷² suggest that protection can be induced in vitro using metabolic and functional end points. Moreover, using the same in vitro models, it has been demonstrated that the mechanisms of protection in human tissue closely resemble those observed in many animal species, namely, the involvement of adenosine as an important trigger, protein kinase C as an intermediate intracellular messenger, and the ATP-dependent K⁺ (K_{ATP}) channel as a potential end-effector protein.^{273,274,275,276}

In the clinical setting, there is some evidence to suggest that preconditioning may occur naturally in patients with coronary artery disease. Patients suffering angina before MI have a better in-hospital prognosis; a reduced incidence of cardiogenic shock, congestive cardiac failure, and life-threatening ventricular arrhythmias associated with reperfusion; and smaller infarcts as assessed by release of cardiac enzymes.^{277,278,279,280} Follow-up studies have suggested that in patients with preinfarction angina, long-term survival is also improved as compared with patients who are asymptomatic before infarction.^{281,282} Whether the protection conferred to

55

these patients as a result of their preceding ischaemic symptoms represents a form of myocardial adaptation similar to ischaemic preconditioning remains a subject of debate.²⁸³ On the one hand, the issue of enhanced collateral development in patients with preceding angina symptoms remains unresolved. Another equally attractive hypothesis, although not mutually exclusive from the mechanisms underlying ischaemic preconditioning, is facilitation of more rapid reperfusion of the infarct-related artery after thrombolysis in patients with preinfarction angina.^{281,284} This hypothesis is based on the known inhibitory effects of adenosine, released during the brief periods of preinfarction ischaemia, on platelet aggregation after activation of A₂ receptors on platelet membranes, which has been suggested to modify thrombus formation and thereby promote earlier reperfusion after thrombolysis.²⁸⁵ Indeed, in anaesthetised open-chest dogs, brief periods of ischaemia before a long ischaemic insult attenuates platelet-mediated thrombosis and improves vessel patency, and this effect is abolished by inhibition of adenosine receptors.²⁸⁶

The phenomenon of "warm-up angina," in which patients complain that their angina symptoms are worse in the morning but improve during the course of the day, has been the subject of research over the past few years.^{287,288} This work has provided evidence for increased efficiency of myocardial metabolism, in terms of reduced oxygen consumption at a given workload and a reduction in angina symptoms and ST-segment changes, during a second period of either exercise or angina resulting from pacing-induced tachycardia. These favourable changes were not accompanied by recruitment of collateral vessels, as evidenced by similar coronary and great cardiac vein blood flow measurements. Similarly, a reduction in electrocardiographic evidence of silent ischaemia during successive periods of exercise has been

demonstrated.²⁸⁹ A recent study suggests that the degree of myocardial stunning after exercise-induced myocardial ischaemia may also be attenuated if the patient had performed a preceding period of exercise 30 minutes earlier.²⁹⁰ Studies investigating the temporal profile of warm-up angina have demonstrated that the duration of this phenomenon is 1 to 2 hours after the first period of exercise, a time course that closely parallels that of classic ischaemic preconditioning.^{291,292} Moreover, we have recently shown that in addition to immediate protection, patients with stable angina have improved exercise tolerance 24 hours after a period of exercise-induced myocardial ischaemia, a finding that may represent delayed preconditioning.²⁹³ However, a recent study using a similar study protocol failed to show enhanced exercise tolerance 24 hours after a period of exercise, thereby arguing against delayed protection in this model.²⁹⁴ The reasons for the differences between these studies is not immediately obvious and requires further investigation.

These findings suggest that the warm-up phenomenon is at least partly due to metabolic adaptation of myocardium, which induces tolerance to subsequent ischaemia, a process that closely resembles ischaemic preconditioning. However, studies that have examined the cellular mechanisms mediating warm-up angina do not fully support this hypothesis. For instance, inhibition of adenosine receptors before exercise fails to abolish the warm-up phenomenon.^{295,296} Furthermore, investigation into the role of K_{ATP} channels in mediating this form of myocardial adaptation has provided conflicting results.^{297,298} It is therefore not clear at this point whether the adaptation observed during repeated exercise is a representation of the preconditioning phenomenon or whether other mechanisms are involved.

57

Furthermore, despite attempts by some investigators, a major role for recruitment of collateral vessels contributing to this phenomenon has not been ruled out.

c) Myocardial adaptation during revascularisation procedures

PTCA provides a unique opportunity to study the response of the human myocardium to brief periods of controlled ischaemia and reperfusion. The procedure usually involves repeated intracoronary balloon inflations with intervening periods of perfusion, and in theory the first period of ischaemia may enhance the myocardial tolerance to subsequent balloon inflations via classic ischaemic preconditioning. Several recent studies have addressed this issue using various indices of myocardial ischaemia including clinical, electrocardiographic, metabolic, and haemodynamic measurements. Most of these studies have shown that if the duration of the first balloon inflation is longer than a "threshold" of ≈ 60 to 90 seconds, all indicators of myocardial ischaemia, including chest pain severity, abnormalities of left ventricular regional wall motion, ST-segment elevation, QT dispersion, ventricular ectopic activity, lactate production, and release of myocardial markers such as CKMB, are attenuated during subsequent balloon inflations, which provides evidence for myocardial adaptation induced by the first period of ischaemia.^{299,300,301,302,303,304} As with many studies of ischaemic preconditioning in humans, a major confounding factor during successive balloon inflations in PTCA studies is the acute recruitment of collateral vessels. However, studies that have controlled for this effect by angiographic grading of the collateral vessels³⁰⁰ measurement of cardiac vein flow²⁹⁹; changes in blood flow velocity in the contralateral coronary artery³⁰⁵; and, more accurately, by assessment of intracoronary pressure-derived collateral flow index

during successive balloon inflations³⁰⁶ have shown that although collateral recruitment occurs in some patients, it cannot fully explain the myocardial adaptation observed during repeated balloon inflations.

Investigation into the mechanisms underlying this rapid protection of the myocardium during PTCA has provided further support for a preconditioning-like effect. Blockade of KATP channels with oral glibenclamide before angioplasty abolishes the reduction in ischaemic indices observed during subsequent balloon inflations, which implies a role for these channels in mediating this form of adaptation.³⁰⁷ This finding is supported by the observation that opening of these channels with nicorandil reduces the electrocardiographic indices of ischaemia during coronary angioplasty.³⁰⁸ Furthermore, an important role has been demonstrated for adenosine in mediating myocardial adaptation during coronary angioplasty. Inhibition of adenosine receptors by bamiphylline³⁰⁹ or aminophylline³¹⁰ abolishes myocardial adaptation during the second balloon inflation. Conversely, intracoronary infusion of adenosine before PTCA, independent of its vasodilatory effect, attenuates ischaemic indices during the first balloon inflation.³¹¹ Two other recent reports have suggested a role for both opioid³¹² and bradykinin³¹³ receptors in mediating myocardial adaptation during PTCA. These studies provide further evidence that myocardial tolerance to further ischaemic episodes can be induced by preceding brief periods of ischaemia and that this tolerance may be mediated by the same mechanisms as those involved in ischaemic preconditioning in animal models.

However, recent experimental evidence has provided grounds for caution when interpreting the results of these PTCA studies, which have mostly used ST-segment elevation on ECG as an end point reflecting the degree of myocardial ischaemia, and its attenuation during successive balloon inflations as an indicator of enhanced myocardial resistance to ischaemia. Although this assumption was supported by earlier experimental studies of repeated coronary artery occlusion in collateraldeficient pig and rabbit hearts,^{314,315} a recent study clearly indicates a dissociation between ST-segment changes on the ECG and myocardial protection in terms of infarct limitation.³¹⁶ The finding of these authors, that the changes in ST-segment voltage during coronary artery occlusion may merely represent an epiphenomenon distinct from the cardioprotective effect of ischaemic preconditioning, is particularly pertinent when evaluating or designing mechanistic studies using pharmacological agents to mimic or abolish the cellular signalling mechanisms of ischaemic preconditioning. It is imperative that the influence of these pharmacological tools on the sarcolemmal K_{ATP} channels, which are thought to modulate ECG voltages, is clearly distinguished from their effect on the mitochondrial KATP channels, which have been proposed as a mediator of cardioprotection.³¹⁷

Possibly the most direct evidence for preconditioning in humans comes from studies that have examined the effect of preconditioning protocols in patients undergoing cardiac surgery in which resistance to global ischaemia is assessed, a setting that is not confounded by changes in collateral recruitment. In this respect, it has been reported in a prospective study examining the effects of a preconditioning protocol of 2 cycles of 3 minutes of global ischaemia (induced by intermittently cross-clamping the aorta and pacing the heart at 90 bpm) followed by 2 minutes of reperfusion before a 10minute period of global ischaemia and ventricular fibrillation.³¹⁸ Patients subjected to this protocol had better preservation of ATP levels in myocardial biopsies during a subsequent 10-minute global ischaemic period. These metabolic changes were almost identical to those seen in dogs by Reimer et al²⁶² However, total myocardial ATP content may not reflect local turnover within subcellular compartments and certainly does not provide information about the efficiency of cellular metabolism in terms of ATP requirements. In a more recent study involving a larger group of patients, serum levels of troponin T were used as an indicator of myocardial cell necrosis. Using this end point, patients subjected to the same preconditioning protocol suffered less necrosis as determined by release of troponin T.³¹⁹ Of considerable interest, however, was the finding that the ATP levels did not differ between preconditioned and control groups. This emphasizes the need for multiple end points to be used, especially in studies in which small differences in myocardial viability without overt clinical effects are expected.

On the other hand, studies that have used other cardioprotective strategies during the prolonged period of ischaemia, such as hypothermia or cardioplegia, have not consistently demonstrated additional protection by ischaemic preconditioning. For instance, the use of similar preconditioning protocols of one 3-minute episode of aortic cross-clamping before the onset of cardioplegic arrest failed to show any beneficial effects compared with the control group; in fact, the preconditioned group of patients had more creatine kinase release compared with case-matched controls.³²⁰ Similarly negative results have been reported by another group.³²¹ These divergent results have led to the hypothesis that in the setting of coronary artery bypass surgery, the additional protection conferred by ischaemic preconditioning may only be

demonstrable in cases in which a potential for suboptimal myocardial protection increases the risk of perioperative infarction.³²² However, this hypothesis is not supported by recent studies that indicate improved myocardial preservation by ischaemic preconditioning during coronary bypass or valve surgery despite optimal protection with hypothermia and cardioplegia.^{323,324} Resolution of these discrepancies is obviously required before ischaemic preconditioning can be routinely used in clinical settings.

d) Benefit to patients

Although it would appear from the evidence outlined above that the human myocardium is amenable to preconditioning, this does not imply that clinical benefit will automatically follow. Prompt reperfusion will always remain the most effective method of infarct size limitation and is therefore the most important determinant of prognosis. Preconditioning, by virtue of delaying myocardial necrosis, prolongs the time window during which revascularization therapies can be effectively instituted. However, the use of brief antecedent ischaemia as a means of prophylactic induction of this protection is not desirable or feasible in most circumstances. On the other hand, the use of pharmacological agents capable of mimicking the protective effects of preconditioning, in lieu of brief ischaemia, may provide a more benign approach for eliciting cardioprotection. However, even with the development of pharmacological agents that may be capable of mimicking the protection, timing of administration remains a critical limiting factor.

First, deployment of pharmacological preconditioning strategies necessitates pretreatment; the pathophysiology of the preconditioning phenomenon dictates that the myocardium must be preconditioned before the onset of a potentially lethal ischaemic insult. This depends on identification of a relatively well-defined cohort of patients who are at high risk of acute coronary occlusion and stand to benefit from preconditioning or from pretreatment with agents that trigger or augment myocardial preconditioning.

The acute coronary syndromes (ACSs) comprise a spectrum of pathophysiological conditions spanning unstable angina, non–ST-elevation MI, and acute ST-elevation MI. In patients with acute MI with persistent ST elevation, early reperfusion to reestablish epicardial blood flow is well established as the standard of care, be it with early fibrinolytic therapy or, where the facilities and expertise are available, with primary angioplasty.³²⁵ As far as pharmacological preconditioning strategies are concerned, these patients are unlikely to benefit from such treatment, and their management should focus on early restoration of coronary artery patency and potential strategies to minimize reperfusion injury. On the other hand, non–ST-elevation ACSs, including unstable angina and non–Q-wave MI, mark the transition from stable coronary artery disease to an unstable state and constitute the leading cause of hospital admission in patients with coronary artery disease. This group of patients is at a high risk of progression to acute coronary occlusion, and >10% die or suffer a MI (or reinfarction) within 6 months, with about one half of these events occurring during the acute early phase.³²⁶ This cohort of patients with non–ST-elevation ACS forms a reasonably well-defined high-risk group that might benefit from pretreatment with agents that trigger or augment myocardial preconditioning over a period of several days or weeks and could therefore effectively maintain the myocardium in a protected or "preconditioned" state. A number of these patients who suffer a MI after unstable symptoms may be "naturally" preconditioned by their preceding ischaemic episodes. Recent evidence, however, suggests that this natural protection is limited to those patients in whom the episodes of preinfarction angina occur during a narrow time window in relation to the infarct.^{251,252}

It is worth noting that even when prior treatment with the pharmacological preconditioning agent is feasible, the duration of the protection afforded is limited. The temporal profile of the protective effects of preconditioning in humans is unknown but, according to experimental evidence in laboratory animals, it is unlikely to exceed 48 to 72 hours.^{327,328} Therefore, unless the onset of an ischaemic event can be predicted with accuracy, repeated dosing with the potential preconditioning drug will be necessary in these high-risk patients to maintain the preconditioned state. Early experimental evidence suggested that the protective effects of classic ischaemic preconditioning are lost after prolonged periods of repetitive ischaemia³²⁹ or chronic pharmacological preconditioning with selective adenosine A₁ agonists.³³⁰ However, recent encouraging evidence indicates that tachyphylaxis could be overcome by exploiting the prolonged time course of the second window of protection. Intermittent treatment of conscious rabbits with an optimal dosing regimen of pharmacological preconditioning with selective agenosine A₁ receptor agonists maintains the animals

in a preconditioned state over a period of several days and results in a significant reduction in infarct size.^{331,332}

Very few studies have evaluated a protective role for pharmacological preconditioning strategies in patients with non–ST-elevation ACS. In this regard, a recent report suggests that opening of K_{ATP} channels with nicorandil, in addition to standard aggressive medical therapy for unstable angina, results in a significant reduction in the incidence of myocardial ischaemic episodes and tachyarrhythmias.³³³ This may purely represent an anti-ischaemic effect due to the vasodilatory properties of nicorandil. However, because the patients in this study were already on maximal antianginal therapy, and in particular a significant proportion were treated with intravenous or oral nitrates, it is possible that the protection observed in the nicorandil group, be it only using soft end points of myocardial injury, may at least partially be due to a preconditioning-like effect.³³⁴ These encouraging findings, coupled with very recent experimental evidence indicating that nicorandil specifically activates the mitochondrial rather than the sarcolemmal K_{ATP} channels in rabbit ventricular myocytes,³³⁵ provide a promising new approach to myocardial protection in patients with unstable angina.

Although the conditions of the majority of patients with non–ST-elevation ACS will stabilize with effective anti-ischaemic medications, $\approx 50\%$ of such patients will require coronary angiography and revascularization because of failure of medical therapy assessed by recurrence of ischaemic symptoms at rest or demonstration of provokable ischaemia during stress testing.³²⁶ The optimal timing of revascularization

procedures in patients with ACS is under debate, although recent evidence points to the benefit of early intervention.³³⁶ However, the complication rate associated with revascularization procedures in unstable patients is appreciably higher than that in patients with stable coronary artery disease. For example, emergency PTCA in patients with refractory unstable angina is associated with a periprocedural mortality rate of 1% to 3% and nonfatal infarction occurs in a further 6% to 10%, with a need for emergency surgery in up to 12%.^{326,337} The potential for and the time course of any protection conferred by preceding angina episodes in this situation is not known, although some evidence suggests that unstable symptoms occurring in the 6 to 12 hours before PTCA may have a preconditioning-like effect.³³⁸ Conversely, the Thrombolysis in Myocardial Ischaemia (TIMI) IIIB study suggested that emergency PTCA performed within 24 hours of enrolment was the most powerful predictor of periprocedural death and MI.337 Although the risk associated with the procedure diminishes if a patient is allowed to "cool off" and the plaque is at least partly healed, this longer waiting period carries the risk of progression to MI and death. These patients may therefore have the most to benefit from pretreatment with agents that mimic preconditioning or augment the protection afforded by naturally occurring ischaemic preconditioning, thereby reducing the degree of myocardial injury in the event of periprocedural complications associated with PTCA. At the other end of the spectrum are patients with stable angina undergoing elective PTCA, who have a relatively low risk of complete coronary artery occlusion and MI (<5%). However, as more high-risk procedures are performed, and considering the potential benefits associated with this potent mode of cardioprotection, it is possible that application of pharmacological preconditioning agents may find a place routinely before elective angioplasty.

Similar complications may arise during cardiac surgery. In patients with unstable angina undergoing CABG, perioperative mortality rates of 3.7% and infarction rates of 9.9% have been reported,³³⁹ which are considerably higher than those associated with elective surgery. Even in patients with stable coronary artery disease, despite carefully controlled intraoperative ischaemic periods and hypothermia, sensitive markers of tissue injury such as troponin T indicate that discrete necrosis occurs.^{340,341} Moreover, as surgeons undertake more complex and higher-risk operations, the need for better preservation methods increases. In a situation such as CABG, the administration of an agent before surgery that could enhance myocardial defences would reduce susceptibility to focal necrosis during surgery and permit the extension of the intraoperative ischaemic period. High-risk patients with poor preoperative left ventricular function, extensive coronary artery disease, or severe left ventricular hypertrophy could certainly benefit if the degree of protection were improved by invoking endogenous cellular adaptive mechanisms. The possibility that organ preservation before transplantation might be amenable to the same improved protection, as suggested by some experimental evidence,^{342,343} is also of significant interest. This might allow an extension of the "cold ischaemic time" between harvesting and implantation, facilitating optimal matching of recipient to donor, as well as affording a potential improvement in early myocardial function.

e) Signal transduction of preconditioning

The understanding of the precise mechanism of preconditioning is vital to be able to harness all its beneficial effects. However, despite more than a decade of research trying to determine the mechanisms of preconditioning, they still remain unclear. Signalling pathways orchestrating cardioprotection are conceptually classified into triggers, mediators and end effectors of preconditioning with multiple distinct signalling pathways appearing to converge towards an end effector that initially was putatively identified as the mitochondrial ATP-sensitive potassium channel (mito K_{ATP}).

The initial phase of preconditioning may start by release of a trigger substance during the brief episodes of ischaemia and reperfusion that may bind to surface receptors coupled to G_i proteins.^{344,345,346,347} Among these substances are adenosine, bradykinin, cathecholamines, opioids, and acetylcholine.^{344,345,346,347} Other trigger substances have been identified as prostanoids, nitric oxide, and low doses of reactive oxygen intermediates.^{344,345,346,347} Recently a possible role for innate immunity in triggering preconditioning has been suggested where specially tumour necrosis factor alpha is indicated as a trigger of the preconditioning response.³⁴⁸ The trigger substances may cause activation of kinase cascades where translocation of protein kinase C, especially the ε isoform, from the cytosolic to the particulate fraction may be crucial to the response.^{349,350} Tyrosine kinases as well as mitogen activated protein kinases appear involved in the signalling cascade in several species, although which kinase cascade is upstream or downstream continues to be an issue of debate.^{351,352} Adenosine signalling has been linked to protein kinase C-dependent opening of mitochondrial ATP-sensitive potassium channels (K_{ATP}) .³⁵³ The K_{ATP} channels are suggested to be the end-effectors of myocardial protection in a number of models; however, their role remains controversial as most data in the field are discrepant.^{352,354} Recent data indicate that activation of the KATP channel causes release of reactive oxygen species³⁴⁷ and one may speculate that their role in preconditioning is linked to this. The next step in the signalling pathway is activation of transcription factors by protein

kinases, reactive oxygen species, and nitric oxide, of which nuclear factor κ -B (NF κ B) in particular has been investigated in both classic and delayed models.^{355,356} NF κ B is a redox sensitive transcription factor that regulates transcription of a battery of genes most of which are associated with proinflammatory effects such as cytokines, chemokines, and leukocyte adhesion molecules.³⁵⁷ Some candidate genes for organ protection in preconditioning are also regulated by NF κ B. Pharmacologic blocking of NF κ B translocation inhibits preconditioning in both classic and delayed models.^{355,356}

1.4 ALPHA 1 ADRENOCEPTORS

1.4.1 Structure and distribution

Adrenergic receptors (α_{1A} , α_{1B} , α_{1D} , α_{2A} , α_{2B} , α_{2C} , β_1 , β_2 , β_3) are members of the Gprotein-coupled receptor superfamily of membrane proteins that mediate the actions of the endogenous catecholamines, noradrenaline and adrenaline. They are involved in a wide spectrum of physiological functions and are the site of action of a considerable percentage of currently prescribed therapeutic agents. These proteins are proposed to traverse the membrane in seven transmembrane spanning α -helical domains linked by three intracellular and three extracellular loops.^{358,359} The original classification of adrenoceptors on functional basis has been superseded with radioligand, and biochemical studies accumulating evidence indicating that the adrenoceptors are a heterogeneous group of distinct but related proteins. This conclusion has been confirmed with molecular cloning.³⁶⁰ Initially the major adrenoceptor classes were further subdivided on functional and anatomical grounds: α -adrenoceptor mediated effects, such as vasoconstriction, were considered α_1 -adrenoceptor effects, in part based on actions of agonists and antagonists that could differentiate such responses from α_2 -adrenoceptor effects, which mediate feedback inhibition by noradrenaline on its release from presynaptic terminals.³⁶¹ Similarly, the β_1 -adrenoceptor mediated effects on the force and rate of contraction in the heart were differentiated from β_2 adrenoceptor mediated effects, such as promotion of smooth muscle relaxation in the bronchi and vessels. Subsequent research showed that this classification scheme based on anatomic distribution is overly simplistic: many, probably most, organs have β_1 and β_2 -adrenoceptor s as well as α_1 - and α_2 -adrenoceptors.^{358,359,360} The genomic structure of the α_1 -adrenoceptors has been reported, and all three subtypes have a large intron after the TM6 domain. With the exception of α_{1D} all the adrenoceptor subtypes are polymorphic with genetic variation in the coding and noncoding regions.^{359,362}

The α_1 -adrenoceptors are important mediators of sympathetic nervous system responses, particularly those involved in cardiovascular homeostasis, such as arteriolar smooth muscle constriction and cardiac contraction.³⁶³ α_1 -adrenoceptors regulate many physiological processes, including smooth muscle contraction and hence vascular tone, myocardial inotropy, and hepatic glucose metabolism.³⁵⁸ Each of the α_1 -adrenoceptor subtypes shows linkage to G_q and activate phospholipase C, but differences have been noted in signaling capacities.³⁶⁴ The α_{1A} -adrenoceptor subtype is the predominant α_1 -adrenoceptor in the heart and in certain parts of the vasculature such as arteries.³⁶¹ α_{1B} -adrenoceptors are implicated in blood pressure regulation since stimulation of the α_{1B} -adrenoceptor results in vasoconstriction and blood pressure elevation.³⁶⁵ Contraction of large caliber arteries have been found to be controlled by the α_{1D} -adrenoceptors.³⁶⁶ The α_2 -adrenoceptors are of predominant importance for the mediation of the regulatory effects of catecholamines on several renal functions, including renin release, glomerular filtration, and Na⁺ and water excretion.^{367,368,369}

The α_1 -adrenoceptors utilize a variety of second messenger pathways to modulate cellular function.³⁷⁰ Studies with many cell types demonstrate that all α_1 -adrenoceptors activate phospholipases C and A₂.³⁷¹ In addition to mobilizing intracellular calcium, the α_1 -adrenoceptors have also been shown to activate calcium influx via voltage-dependent and independent calcium channels.³⁶⁰ Additionally, these receptors signal through both pertussis toxin-sensitive G-proteins³⁷¹ and G proteins of the G_q family.³⁷² Minneman et al³⁶⁰ studied the coupling of the α_1 -adrenoceptor subtypes and noted that there were marked differences in the ability of α_1 -adrenoceptor to generate intracellular second messengers. In particular, they noted that the α_1 -adrenoceptor was the most efficiently coupled to calcium release and inositol phosphate production whereas the α_{1D} -adrenoceptor was poorly coupled to intracellular signaling cascades,³⁶⁴ suggesting potential differences in the functional outcomes of α_1 -adrenoceptor activation.

One of the principle adrenergic drugs in clinical use is phenylephrine and it is a selective α_1 -adrenoceptor agonist.³⁷³ This drug has been used extensively in the literature for the investigation of α_1 -adrenoceptor effects. Prazosin on the other hand is a selective α_1 -adrenoceptor³⁷⁴ and these two drugs will be used in the experiments in this thesis as the pharmacological tools in the investigation of α_1 -adrenoceptors involvement in ischaemia, reperfusion and preconditioning.

1.4.2 Role of alpha 1adrenoceptors in ischaemia, reperfusion and preconditioning

Generally, during sustained myocardial ischaemia, noradrenaline accumulation within ischaemic myocardium is mainly caused by a locally induced nonexocytotic release of noradrenaline.^{375,376} Kurz et al³⁷⁷ findings indicated that nonexocytotic release is also the underlying mechanism of ischaemia-evoked noradrenaline release in human myocardium. Nonexocytotic release of noradrenaline during ischaemia, which is a consequence of energy starvation of the sympathetic nerve terminal, contributes to the genesis of malignant arrhythmias^{378,379} and accelerates the development of myocardial injury³⁸⁰ in experimental ischaemia.

Studies using acute and chronic sympathetic denervation and antiadrenergic agents demonstrate that this local metabolic, rather than being centrally induced, noradrenaline release is critically involved in the progression of ischaemic cell damage and the occurrence of ventricullar fibrillation in early ischaemia. As a consequence of local metabolic catecholamine release, extracellular noradrenaline reaches 1,000 times the normal plasma concentration within 20 minutes of ischaemia. Myocardial ischaemia results in a temporary supersensitivity to catecholamines of the myocytes. This is due to a twofold increase in α_1 -adrenoceptor and a 30% increase in β -adrenoceptor number at the cell surface. The sensitization of adenylate cyclase during the first 20 minutes of total ischaemia is followed by a rapid inactivation of the enzyme that also includes the coupling protein Gs. The deleterious combination of extremely high noradrenaline concentrations with an at least temporarily enhanced responsiveness of the tissue to catecholamines is thought to accelerate the propagation of the wavefront of irreversible cell damage in the ischaemic myocardium. Moreover,

the inhomogenous distribution of catecholamine excess within the heart is considered to promote malignant arrhythmias by unmasking and enhancing electrophysiological disturbances in early ischaemia.³⁸¹

This is confirmed by further research by Seyfarth et al³⁸² confirming that sustained ischaemia for 20 minutes induced an endogenous release of noradrenaline, which amounted to 239 \pm 26 pmol/g. However, one cycle of 5 minutes transient ischaemia followed by 5 minutes of reperfusion reduced ischaemia induced noradrenaline release to 107 \pm 17 pmol/g (55% reduction); two cycles resulted in a release of 71 \pm 6 pmol/g (70% reduction). Three and four cycles did not further reduce ischaemia-induced noradrenaline release (79 \pm 8 pmol/g (67% reduction) and 102 \pm 21 pmol/g (57% reduction), respectively). Noradrenaline release in all groups with transient ischaemia was statistically different from the release in the group without transient ischaemia.³⁸²

This and other research has raised the possibility of involvement of α_1 -adrenoceptors in the phenomenon of ischaemic preconditioning. Short administration of catecholamines prior to the onset of prolonged ischaemia has been found to precondition the rat heart against post ischaemic myocardial stunning,^{383,384} to reduce infarct size in rabbits³⁸⁵ and to reduce ischaemia induced arrhythmias in dogs³⁸⁶ and rats.³⁸⁷ This further supported by work from Ravingerova et al³⁸⁸ demonstrating that the sensitivity of the rat heart to ischaemic arrhythmias can be modulated by ischaemic preconditioning and that the protection is mediated via stimulation of α_1 adrenoceptors coupled with Gi-proteins. Furthermore reduction in ST-segment changes and cardiac pain severity during ischaemia observed in humans after two sequential coronary balloon inflations have been shown to be abolished by pretreatment with phentolamine, an α -antagonist, suggesting that ischaemic preconditioning is mediated by α -adrenoceptors in human cardiomyocytes.³⁰⁵ Moreover, human atrial trabeculae obtained during coronary bypass surgery and subjected to ischaemia *in vitro* demonstrate the development of ischaemic preconditioning, which is specifically mediated by α_1 -adrenoceptors.³⁸⁹ Despite this compelling evidence there remains a number of questions unanswered regarding the role of α_1 -adrenoceptors³⁹⁰ in preconditioning and this is further compounded by the fact that the underlying mechanism by which α_1 -adrenoceptors mediate ischaemic preconditioning remains unknown.³⁹¹

1.5 AIMS OF THESIS

In this thesis I will investigate: (i) the role of alpha 1 adrenoceptors in ischaemia and reperfusion injury in the human myocardial tissue, (ii) the role of alpha 1 adrenoceptors in ischaemic preconditioning and compare their efficacy to adenosine receptors, (iii) the role and order of the mediators involved in the signal transduction mechanism of preconditioning namely the mitochondrial potassium dependent adenosine triphosphate channels (MitoK_{ATP}), protein kinase C and p38mitogen activated protein kinase (p38MAPK), (iv) the clinical implications of the use of K_{ATP} channels openers such as nicorandil and the use of blockers such as sulfonylureas in relation to the ability to precondition human myocardium and (v) finally, the characterization of the delayed window of pharmacological and ischaemic preconditioning both occurring in vitro and in vivo in the human myocardium and also the investigation of the signal transduction mechanism involved.

Chapter 2

Methods

2.1 INTRODUCTION

Ischaemic heart disease is the single most common cause of mortality in the western world. Over the last two decades, a great deal has been learned about the pathophysiology of myocardial ischaemia, the consequences of reperfusion and how the adverse effects may be combated. Most of our knowledge has been gained by using *in vivo* and *in vitro* experimental animal models, and the extrapolation of this information to the human heart has resulted in the implementation of novel therapeutic approaches and in a progressive decrease in the death rate attributed to cardiac ischaemic events.

Studies on cardiac ischaemia and reperfusion in man are difficult because of the presence and potential influence of a whole host of clinical factors. The utilization of myocytes,^{270,392} muscle^{393,394} human isolated papillary and atrial myocardium^{275,395,396,397} has provided a means to investigate directly the effects and mechanisms of ischaemia and reperfusion in man, without the need to resort to assumptions made from animal studies, and to safely test interventions intended to be used clinically. Thus the use of human cultured myocytes^{270,398} and right atrial tissue,^{273,275} for example, has served to identify some of the mechanisms involved in ischaemic preconditioning in the human myocardium, which, compared with those found in other animal species, 399,400,401,402,403 has opened the door for its clinical application.⁴⁰⁴

The right atrial preparation is of particular interest, because the tissue is easily obtainable from patients undergoing open-heart surgery, it is simple to prepare and the procedure is inexpensive. The preparation has been fully characterised and the

76

stability of the human right atrium when incubated in a buffered medium, its response to various degrees of ischaemic insult and the short and prolonged effects of reperfusion described.⁴⁰⁵

2.2 METHODS

2.2.1 Preparation of atrial slices

Specimens of human right atrium appendage were obtained from patients undergoing elective heart surgery. Local ethical committee approval was obtained for the harvesting technique. During surgery, the right atrial tissue is routinely removed for venous cannulation and establishment of cardiopulmonary bypass. Samples were quickly immersed in cold (4°C) Krebs/Henseleit/Hepes medium (in mM): NaCl (118), KCl (4.8), NaHCO₃ (27.2), KH₂PO₄ (1), MgCl₂ (1.2), CaCl₂ (1.25), glucose (10), Hepes (20). The medium had been pre-bubbled with 95% O₂/5% CO₂ to attain *PO*₂ of 25–30 kPa and pH 7.4. The atrial appendage was immediately sliced manually with skin-graft blades (Swann-Morton Ltd, Sheffield, UK), each slice to a thickness of 300-500 μ m and a weight of 30-50 mg, as originally described for the preparation of rat renal slices.⁴⁰⁶ Briefly, the tissue was placed with the epicardial surface face down on filter paper fixed to a rectangular glass base (5×25 cm). A ground-glass slide (2.5×7.5 cm) was then pressed against the tissue and the blade was drawn between the slide and the tissue. The slicing apparatus and the tissue was kept wet at all times with ice-cold medium (4–10°C).

2.2.2 Experimental time course

After preparation, the slices (2–9 slices per specimen) were blotted with wet filter paper, loaded into glass 25 ml Erlenmeyer flasks containing 10 ml of preoxygenated

medium at 37°C. The flasks were then placed in a shaking water bath (100 cycles/min) at 37°C for 30 min to allow equilibration. The slices were then rinsed with the medium, blotted and placed in clean flasks containing 10 ml of medium according to the various study protocols. The water bath used for the experiments is shown in the Figure 2-I.

For the induction of simulated ischaemia, the slices were washed with one rinse of medium bubbled with 95% N₂/5% CO₂ at pH 6.8. The glucose in the medium was replaced with 10 mM 2-deoxy-glucose to maintain constant osmolarity of the medium. The removal of the substrate glucose and altering the pH of the incubation medium are designed to simulate ischaemic conditions. The atrial tissue is unable to use 2-deoxy-glucose as a substrate. The slices were transferred to clean flasks containing 10 ml of the same medium, which was continuously bubbled with 95% N₂/5% CO₂ and maintained at 37°C during the entire ischaemic period. Monitoring of *PO*₂ with an oxygen detector electrode (OxyliteTM; Optronix Ltd, Oxford, UK) revealed that the *PO*₂ in the medium was 0 kPa. At the end of each ischaemic period, the non-oxygenated medium was removed; the slices were rinsed with oxygenated medium 95% O₂/5% CO₂ and incubated in 10 ml of oxygenated medium containing 10 mM glucose at 37°C for a further 120 min. For the experiments on the second window of ischaemic preconditioning foetal calf serum was added to the Krebs Hensleit solution as well as gentamicin.

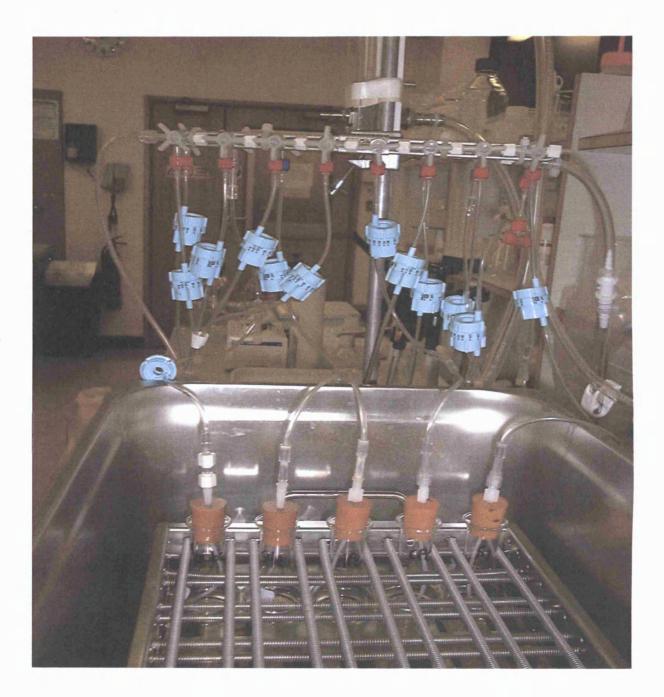


Figure 2-I: This photograph shows the water bath used for all the experiments. The various gases are bubbled into the incubation fluid via tubes. The bath temperature is maintained at 37°C.

2.2.3 Assessment of myocardial injury

Tissue injury was determined by measuring the leakage of creatine kinase (CK) into the incubation medium during the 120min reoxygenation period. This was assayed by a kinetic ultraviolet method based on the formation of NADPH (Sigma Diagnostics Catalogue No. DG147-K) and the results were expressed as U/g wet weight. The CK reagents measure CK activity based on the methods recommended by the German Society for Clinical Chemistry.⁴⁰⁷ The enzymatic reactions involved in the assay are as follows:

Creatine Phosphate + ADP \leftarrow CK Creatine + ATP ATP + Glucose \leftarrow HK ADP + G-6-P Glusose-6-Phosphate + NADP \leftarrow G-6-PDH \leftarrow 6-PG + NADPH

CK catalyses the reaction between creatine phosphate and adenosine diphosphate (ADP) forming creatine and adenosine triphosphate (ATP). The ATP formed is utilized to phosphorylate glucose producing glucose-6-phosphate (G-6-P) in the reaction catalysed by hexokinaze (HK). Subsequently G-6-P is oxidised to 6-phosphogluconate (6-PG) in the presence of nicotinamide adenine dinucleotide (NADP). This reaction is catalysed by glucose-6-phosphate dehydrogenase (G-6PDH). During this oxidatio an equimolar amount of NADP is reduced to NADPH resulting in an increase in absorbance at 340 nm. The rate of change in absorbance is directly proportional to CK activity.

The two reagents for this assay are reconstituted with distilled water, mixed together and dispensed into a 98-well flat-bottom microtiter plate (Nunc Brand Products, Denmark). The incubation medium is then added to the wells, allowed to icubate for 1 minute at 37°C. The initial absorbance is measured at 340 nm using a spectrophotometer (Benchmark, Bio-Rad laboratories, California, USA) and then at exactly 1, 2 and 3 minutes following the initial absorbance reading. The mean absorbance change per minute (ΔA /min) is determined. CK activity in units per litre is calculated using the formula:

CK activity (U/L) =
$$\frac{\Delta A/\min x \text{ TV } x \text{ 1000}}{6.22 \text{ x LP } x \text{ SV}}$$

TV: Total volume (ml)

SV: Sample volume (ml)

6.22: Millimolar absorptivity of NADPH at 340 nm

LP: Lightpath 1 cm

1000: Conversion of units per mlto units per litre

Finally the number of units of CK calculated is divided by the weight of the original specimen used in the study protocol and the results expressed as Uof CK/g of wet weight.

Tissue viability was assessed by the reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) to a blue formazan product at the end of the experimental time. The tissue was loaded into a Falcon conical tube (15 ml, Becton Dickinson Labware, New Jersey, USA) into which 2 ml of phosphate buffer solution (0.05 M), containing MTT (1.25mg/ml, 3Mm at final concentration), was added and then incubated for 30min at 37°C. Following this, the tissue was homogenized in 2 ml

of dimethylsulfoxide (Homogenizer Ultra-Turrax T25, dispersing tool G8, IKA-Labortechnic, Staufen, Germany) at 9500 rpm for 1min. The homogenate was then centrifuged at 1000g for 10min and 0.2ml of the supernatant was dispensed into a 98well flat-bottom microtiter plate (Nunc Brand Products, Denmark). After this, the absorbance of the blue formazan formed was measured on a plate reader (Benchmark, Bio-Rad laboratories, California, USA) at 550nm and the results expressed as mmol /g wet wt.

2.2.4 Randomisation of specimens into study protocols

Following the preparation of atrial appendages obtained from patients undergoing either coronary artery bypass surgery or aortic valve surgery as described above, the resulting specimens were weighed and randomised into various study protocols. The specimens required to complete a study protocol were allocated numbers prior to starting a study. Numbers were drawn out randomly to determine the order of entry of specimens into a study protocol. The specimens from an atrial appendage were then entered into the study protocol according to that order. The number of atrial slices obtained from each appendage varied between 2-9 and therefore specimens from one appendage may be entered into different studies to avoid duplication within a particular study group.

82

Chapter 3

Alpha 1 adrenoceptors and simulated ischaemia/reoxygenation injury

3.1 INTRODUCTION

Activation of α_1 -adrenoceptors induces positive inotropic, chronotropic and dromotropic actions in the heart and vascular effects^{408,409,410,411} that are clinically exploited to optimize haemodynamic conditions. However, it is generally believed that activation of α_1 -adrenoceptors is detrimental to the ischaemic heart, a thesis that would be supported by the increased release of cardiac and plasma catecholamines⁴¹² and the enhanced density of cardiac α_1 -adrenoceptors during ischaemia.^{413,414,415} However, it has recently been shown that α_1 -adrenoceptors mediate the protection induced by ischaemic preconditioning in animals and in the human myocardium^{383,389,393,416,417,418} via phospholipase C and protein kinase C activation,³⁸⁹ and this has given rise to the possibility that the effect of α_1 -adrenoceptors in ischaemic injury may depend on the dose and the time of their activation (i.e., before, during or after ischaemia). To investigate this, right atrial appendages were obtained from patients undergoing elective coronary bypass surgery and the muscles subjected to various protocols in an *in vitro* model of simulated ischaemia and reoxygenation characterized in our laboratory⁴⁰⁵ and described in Chapter 2.

3.2 METHODS

3.2.1 Experimental preparation

Experiments were performed on myocardium obtained from the right atrial appendage of patients undergoing elective coronary artery surgery or aortic valve replacement. Patients were excluded if they had enlarged atriums, atrial arrhythmias, poor left ventricular function (ejection fractions <30%), and right ventricular failure or were taking oral hypoglycaemic agents, opioid analgesia, K_{ATP} channel openers or

catecholamines. The right atrial specimens were prepared for study as described in Chapter 2.

3.2.2 Solutions and Drugs

The incubation medium was prepared daily with de-ionized distilled water as described in Chapter 2. The α_1 -adrenoceptor agonist, phenylephrine and α_1 -adrenoceptor antagonist, prazosin were used dissolved in de-ionized distilled water immediately before their use. All reagents were obtained from Sigma.

3.2.3 Experimental protocols

After sectioning the atrium, the preparations were allowed to stabilise for 30min and then randomly allocated to various protocols. In all the studies simulated ischaemia was induced for a period of 90min followed by 120min of reoxygenation. Some of the preparations were not made ischaemic and instead were aerobically perfused for 240min to serve as aerobic matched controls.

Study 1: Dose-response to phenylephrine and prazosin:

In this study, various concentrations of the α_1 -adrenoceptor agonist phenylephrine (0.01, 0.1, 1, 10 and 100µM) and the α_1 -adrenoceptor antagonist prazosin (0.1, 1, 10, and 100µM) were added to the incubation media for 10min prior to ischaemia, during ischaemia and during reoxygenation (n=6 preparations/group) as shown in Figure 3-I.

Study 2: Influence of the time of administration of phenylephrine and prazosin:

This was investigated by the exposure of the myocardial tissue to the optimal concentrations of phenylephrine $(0.1\mu M)$ and prazosin $(10\mu M)$ shown in study 1 for

10min prior to ischaemia, during ischaemia and during reoxygenation alone and in combination (n=6 preparations/group) as shown in Figure 3-II.

Study 3: Protective potency of phenylephrine and prazosin alone and in combination: To study this, the most beneficial dose and time of administration for phenylephrine and prazosin seen in the two previous studies were used alone and in combination (n=6 preparations/group) as shown in Figure 3-III.

Study 4: Phenylephrine and ischaemic preconditioning:

To investigate the potency of protection of the α_1 -agonist phenylephrine as compared to that of ischaemic preconditioning, right atrial specimens (n=6/group) were subjected to a protocol of ischaemia/reoxygenation identical to the one used in the previous studies. Phenylephrine at a concentration of 0.1µM was used prior to ischaemia for 10min or for 5min followed by 5min washout. Ischaemic preconditioning was induced by 5min ischaemia/5min reoxygenation immediately before the 90min ischaemia, a protocol shown to afford maximal protection in this preparation.⁴¹⁹ The protocol for this study is demonstrated in Figure3-IV.

3.2.4 Statistical analysis

All data are presented as mean \pm SEM. ANOVA was used for multiple comparisons with application of a post hoc Tukey's test. Statistical significance was taken as p<0.05.

Aerobic Control				
Equilibration	Simulated ischaemia	Reoxygenation		
Equilibration PHE PZN	Simulated ischaemia	Reoxygenation		

Figure 3-I: Schematic representation of the protocol for study 1. Phenylephrine (PHE) or Prazosin (PZN) were added for 10 minutes prior to simulated ischaemia/reoxygenation, during simulated ischaemia and reoxygenation at doses 0.01, 0.1, 1, 10 and 100µM.

240 min aerobic perfusion				
Equilibration		90 min SI	120 min R	
Equilibration	Phenylephrine	90 min SI	120 min R	
Equilibration		Phenylephrine during 90 min SI	120 min R	
Equilibration		90 min SI	Phenylephrine during 120 min R	
Equilibration	Phenylephrine	Phenylephrine during 90 min SI	Phenylephrine during 120 min R	
30 min	10 min	90 min	120 min	
240 min aerobic perfusion				
Equilibration		90 min SI	120 min R	
Equilibration	Prazosin	90 min SI	120 min R	
Equilibration		Prazosin during 90 min SI	120 min R	
Equilibration		90 min SI	Prazosin during 120 min R	
Equilibration	Prazosin	Prazosin during 90 min SI	Prazosin during 120 min R	
30 min	10 min	90 min	120 min	

Figure 3-II: Schematic representation of protocol for Study 2 to study the influence of time of administration of phenylephrine and prazosin. SI: simulated ischaemia, R: reoxygenation.

240 min aerobic perfusion				
Equilibration	90 min SI	120 min R		
Equilibration Phenylephrine	90 min SI	120 min R		
Equilibration	Prazosin during 90 min	120 min R		
Equilibration Phenylephrine	Prazosin during 90 min	120 min R		
30 10	90	120		

Figure 3-III: Schematic representation of protocol for Study 2 to study the influence of time of administration of phenylephrine and prazosin. SI: simulated ischaemia, R: reoxygenation.

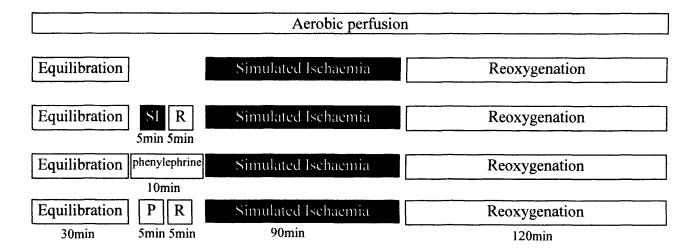


Figure 4-IV: Schematic representation of the protocol for Study 4 to investigate the potency of α_1 sdrenoceptor activation versus preconditioning. SI; simulated ischaemia, P: phenylephrine, R: reoxygenation..

3.3 RESULTS

Study 1: Dose-response to phenylephrine and prazosin:

The results shown in Figures 3-VA and 3-VB on CK leakage and MTT reduction demonstrate that phenylephrine induces a dose-response curve with maximal protection at 0.1 and 1 μ M and loss of protection at doses of 10 μ M and above. It is important to note that although protection was lost at the highest concentrations of phenylephrine they did not exert a detrimental effect, so that CK leakage and MTT mean values were similar to those seen in the phenylephrine-free group.

As seen in Figures 3-VIA and 3-VIB, CK leakage and MTT reduction were not significantly affected by prazosin when present in the incubation media throughout the experiment at the lowest concentrations of 0.1 and 1 μ M; however, in contrast with the results of phenylephrine, prazosin was detrimental at the highest concentrations (10 and 100 μ M) as shown by significant increase in CK leakage and the decrease in MTT reduction.

Study 2: Influence of the time of administration of phenylephrine and prazosin:

Figure 3-VIIA and 3-VIIB show the results of phenylephrine when given at different times at a chosen concentration of 0.1μ M, shown to be the most effective dose in study 1. They demonstrate, by both CK leakage and MTT reduction, that maximal protection was obtained when phenylephrine was administered prior to ischaemia alone, an effect that was equivalent to the one obtained with phenylephrine throughout the entire experimental time. Phenylephrine when given during the reoxygenation period alone was less protective than when given prior to ischaemia and this was reflected by a modest but significant decrease in CK leakage without affecting MTT reduction. Interestingly, the administration of phenylephrine during ischaemia alone was detrimental as seen by the significant decrease in MTT reduction. It is worth noting that the adverse effect of phenylephrine during ischaemia was completely counteracted when the drug was also present prior to ischaemia and during reoxygenation.

Figures 3-VIIIA and 3-VIIIB show the results on CK leakage and MTT reduction for prazosin, given at various times, at a chosen concentration of 10μ M. These results show that prazosin did not have a significant effect when given prior to ischaemia alone, that it was detrimental when given during reoxygenation alone, to a degree similar to the administration of prazosin during the entire experimental time, and that it was protective when given during ischaemia alone. Importantly, the beneficial action of prazosin during ischaemia was abolished when the drug was present prior to ischaemia.

Study 3: Protective potency of phenylephrine and prazosin alone and in combination: As indicated by the results on CK leakage and MTT reduction shown in Figures 3-IXA and 3-IXB, phenylephrine given prior to ischaemia alone and prazosin given during ischaemia alone afforded similar protection and the combination of the two did not result in greater protection than that obtained with each of them.

Study 4: Phenylephrine and ischaemic preconditioning:

Figures 3-XA and 3-XB show that ischaemic preconditioning induces a significant decrease in CK leakage and better preserves MTT reduction when compared to the muscles subjected to ischaemia/reoxygenation alone. The results confirm previous

90

findings from our laboratory using an identical preparation and protocol.⁴¹⁹ They also show that the α_1 -agonist phenylephrine given for 10min prior to ischaemia or for 5min with 5min washout prior to ischaemia, thus mimicking the ischaemic preconditioning protocol, results in similar protection to that seen with ischaemic preconditioning.

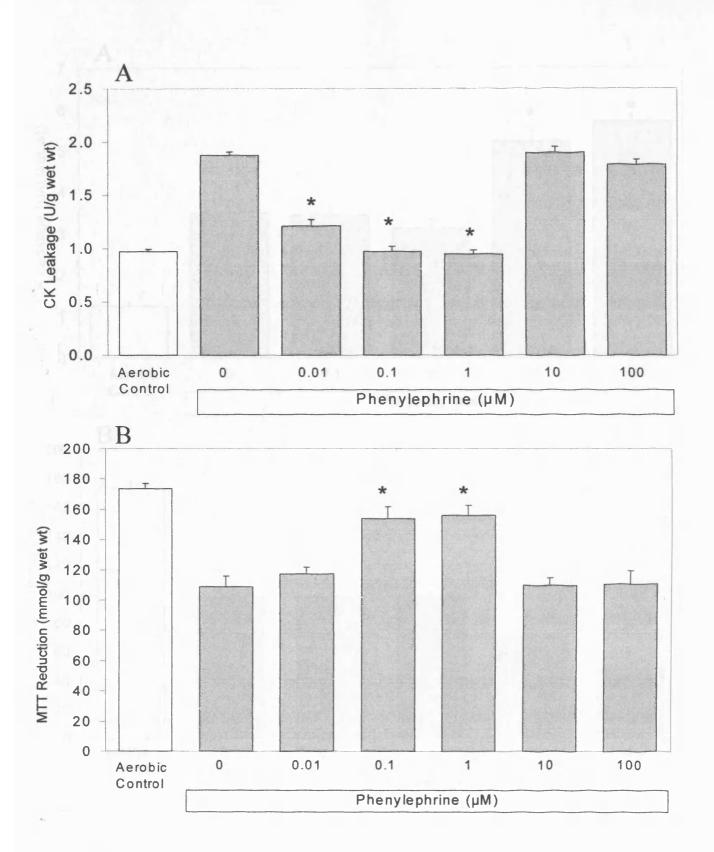


Figure 3-V: CK leakage (A) and MTT reduction (B) of human right atrial myocardium subjected to 90min ischaemia/120min reoxygenation and incubated with various concentrations of phenylephrine. The drug was present in the incubation media for 10min before the induction of ischaemia, during ischaemia and during reoxygenation. Columns represent the mean of 6 experiments and the bars represent the SEM. *P<0.05 vs. phenylephrine-free group.

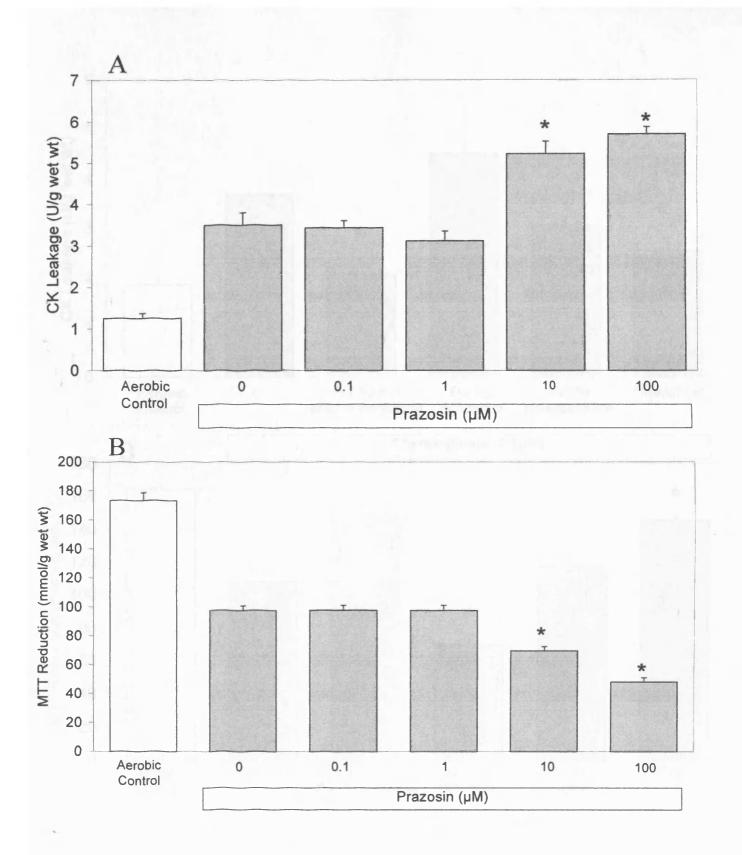


Figure 3-VI: CK leakage (A) and MTT reduction (B) of human right atrial myocardium subjected to 90min ischaemia/120min reoxygenation and incubated with various concentrations of prazosin. The drug was present in the incubation media for 10min before the induction of ischaemia, during ischaemia and during reoxygenation. Columns represent the mean of 6 experiments and the bars represent the SEM. *p<0.05 vs. prazosin-free group.

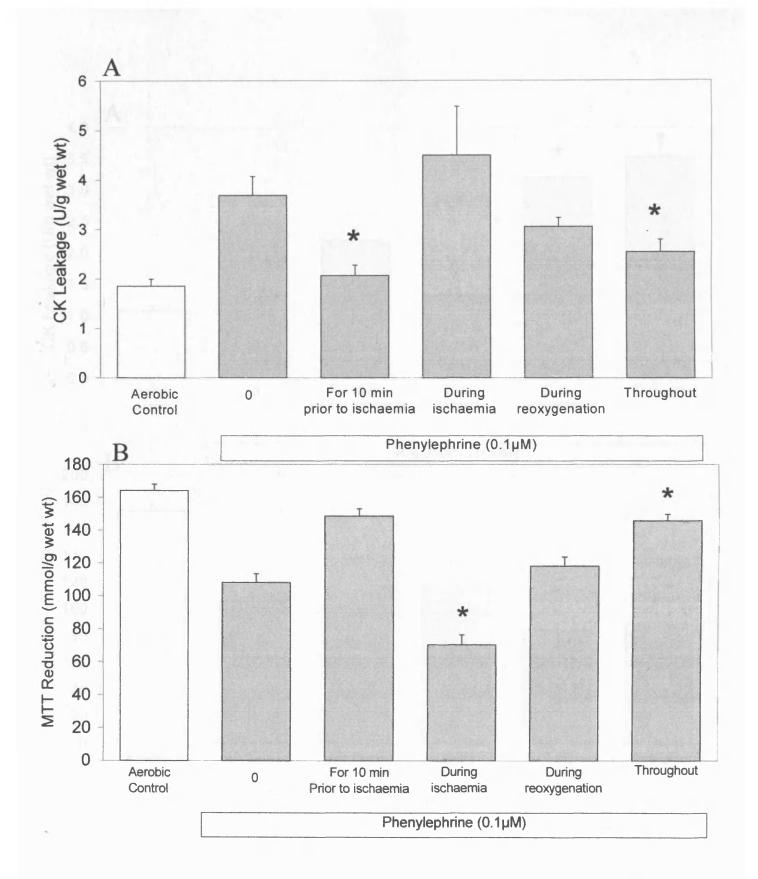


Figure 3-VII: CK leakage (A) and MTT reduction (B) of human right atrial myocardium subjected to 90min ischaemia/120min reoxygenation and incubated with 0.1μ M phenylephrine for different times. Columns represent the mean of 6 experiments and the bars represent the SEM. *p<0.05 vs. phenylephrine-free group.

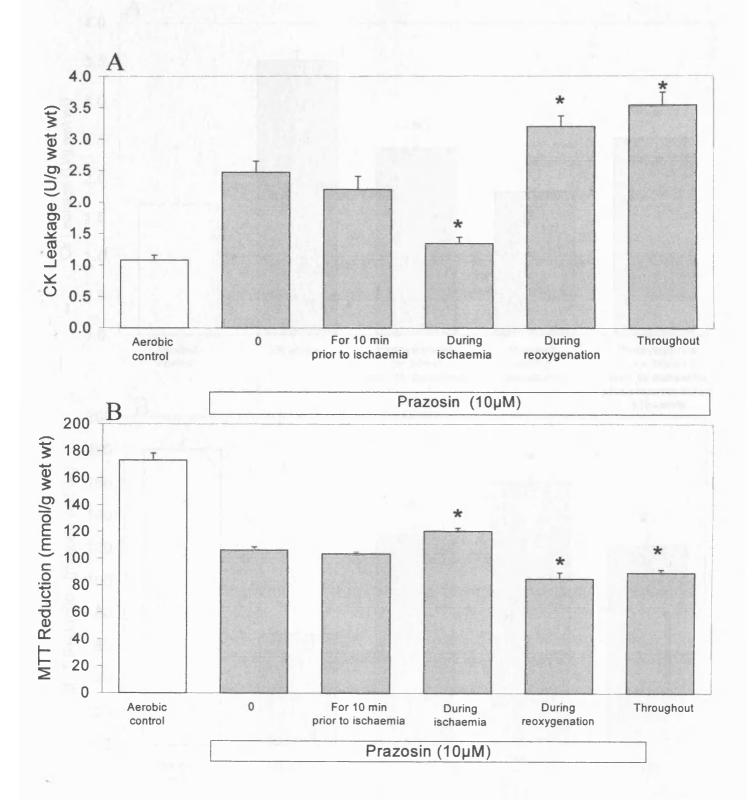


Figure 3-VIII: CK leakage (A) and MTT reduction (B) of human right atrial myocardium subjected to 90min ischaemia/120min reoxygenation and incubated with 10 μ M prazosin for different times. Columns represent the mean of 6 experiments and the bars represent the SEM. *p<0.05 vs. prazosin-free group.

prior to ischaemia plus prazosin during ischaemia

Figure 3-IX: CK leakage (A) and MTT reduction (B) of human right atrial myocardium subjected to 90min ischaemia/120min reoxygenation and incubated with phenylephrine (0.1 μ M) for 10min prior to ischaemia and with prazosin (10 μ M) during ischaemia alone and in combination. Columns represent the mean of 6 experiments and the bars represent the SEM. *p<0.05 vs. ischaemia/reoxygenation (I/R) alone group.

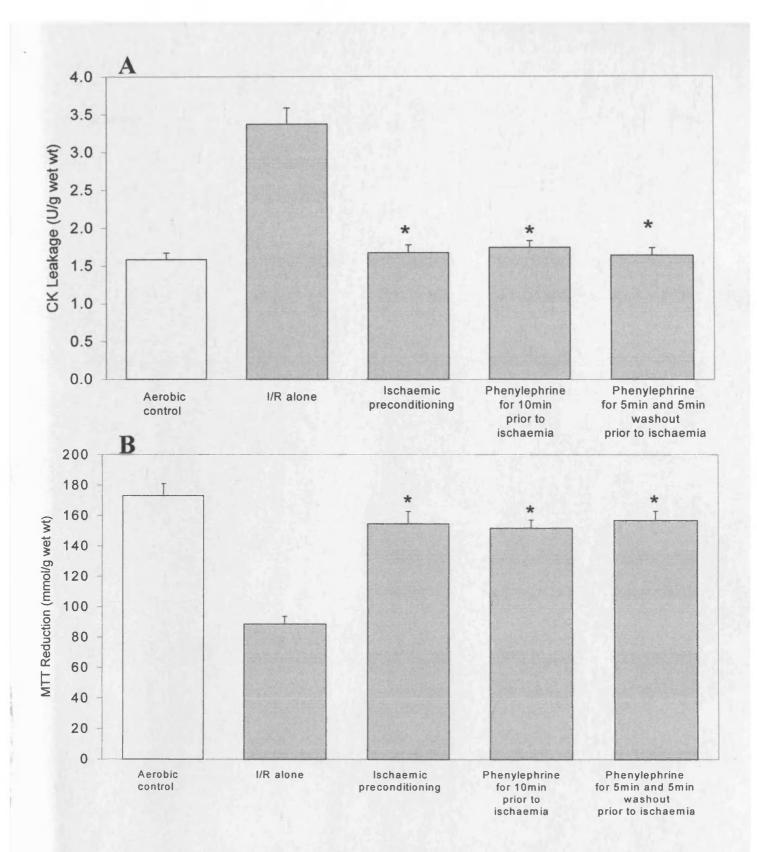


Figure 3-X: CK leakage (A) and MTT reduction (B) of human right atrial myocardium subjected to 90min ischaemia/120min reoxygenation following ischaemic preconditioning (5min ischaemia/5min reoxygenation) or incubation with phenylephrine (0.1 μ M) for 10min or for 5min then 5min washout. Columns represent the mean of 6 experiments and the bars represent the SEM. *p<0.05 vs. ischaemia/reoxygenation (I/R) alone group.

3.4 DISCUSSION

The present studies have demonstrated that α_1 -adrenoceptors play an important role in the ischaemia/reoxygenation-induced injury of the human atrial myocardium. Thus, they show that stimulation of α_1 -adrenoceptors with phenylephrine protects against injury whereas their blockade with prazosin is detrimental, both effects obtained in a dose-dependent manner. They have also shown that the effect of the stimulation or blockade of α_1 -adrenoceptors depends on the time of administration so that α_1 adrenoceptors' stimulation is protective when given prior to ischaemia but detrimental when given during ischaemia, and on the contrary, α_1 -adrenoceptors' blockade is beneficial during ischaemia, detrimental during reoxygenation and has no significant effect prior to ischaemia. It appears that similar maximal protection can be obtained with α_1 -stimulation prior to ischaemia and with α_1 -blockade during ischaemia although the combination of the two does not induce additional protection. Furthermore, the protective effect of α_1 -stimulation prior to ischaemia is as potent as ischaemic preconditioning. These studies are the first in dissecting the role of α_1 adrenoceptors during ischaemia and reoxygenation of the human myocardium and the results have important mechanistic and clinical implications that warrant further discussion.

The results that α_1 -adrenoceptor activation prior to ischaemia is cardioprotective is in agreement with the observation of other investigators that α_1 -adrenoceptors participate in the protection induced by ischaemic preconditioning in the rat heart^{383,420} and in the human myocardium.³⁸⁹ However, it is worth noting that while α_1 -adrenoceptor stimulation mimicked the protection of ischaemic preconditioning in our studies, protection was less and did not replicate the one obtained with ischaemic

preconditioning in the study of Cleveland et al³⁸⁹ also using the human myocardium. Certainly, there are differences in the experimental model and the doses of the α_1 adrenoceptor agonist phenylephrine used in the two studies that may explain the differing results. Thus, our studies were carried out in a model of necrosis in which muscles were not electrically stimulated and subjected to 90min of simulated ischaemia whereas in the study of Cleveland et al³⁸⁹ the muscles were stimulated and functional recovery, as opposed to necrosis, was assessed after only 45min of ischaemia. Furthermore, our dose-response study with phenylephrine showed that there is a bell-shaped response with maximal protection at concentrations of 0.1 and 1 μ M and loss of protection at concentrations $\geq 10\mu$ M, doses that were used in their study.³⁸⁹ It is of interest that similar protection was obtained with phenylephrine administered for 10min immediately prior to ischaemia or for only 5min with 5min washout before ischaemia, thus suggesting that a short period of stimulation of α_1 adrenoceptors is sufficient to attain maximal benefit.

The harmful effect seen when α_1 -adrenoceptors were activated only during ischaemia and the protection obtained with their blockade were not unexpected and are supported by the reported literature.^{421,422} However, an important contribution of the present studies is that the activation of α_1 -adrenoceptors during ischaemia does not diminish the protection induced by the activation of these receptors prior to ischaemia. It was also important that the protection seen with α_1 -adrenoceptor blockade during ischaemia is lost when the blockade is continued during reoxygenation. These results contradict the never confirmed assumption that activation of α_1 -adrenoceptors during reoxygenation may extend reperfusion injury.⁴²³ In fact, they show that activation of α_1 -adrenoceptors during reoxygenation does not influence significantly myocardial injury and that, on the contrary, α_1 -adrenoceptor blockade augments injury.

Although the signal transduction pathways that follow the activation of α_1 adrenoceptors are well described,^{273,424,425,426,427,428,429,430,431,432,433,434,435} the precise mechanisms responsible for their opposing actions in ischaemia/reoxygenation remain unclear. It is possible that the increase in cytosolic calcium induced by α_1 adrenoceptor agonists via Camp⁴²² may mediate the effects discussed above. Indeed, calcium overload can be harmful when happening during ischaemia⁴³⁶ and it may precondition the heart and be protective^{437,438} when it occurs prior to ischaemia. The demonstration by Miyawaki and Ashraf⁴³⁹ that a transient increase in cytosolic calcium during ischaemic preconditioning is an important trigger for the activation and translocation of the protein kinase C isoforms α and δ further support this hypothesis.

The binding of agonists to α_1 -adrenoceptors also causes the activation of phospholipase C and this hydrolyzes phosphatidylinositol 4,5 biphosphate (PIP₂) resulting in the production of inositol~1,4,5-triphosphate (IP3) and 1,2 diacylyglycerol (DAG).^{424,425} IP3 acts on the sarcoplasmic reticulum increasing intracellular Ca^{2+ 426,427} while DAG activates protein kinase C,⁴²⁸ which in turn activates the trans-sarcolemmal voltage dependent Ca²⁺ channels,^{429,430,431,432} the Na⁺/H⁺ channels⁴³³ and the opening of mitochondrial K_{ATP} channels.²⁷³ There is evidence that stimulation of α_1 -adrenoceptors via activation of protein kinase C also enhances 5'-nucleotidase activity and hence adenosine formation⁴³⁴ that has been shown to influence the outcome of myocardial ischaemia/reperfusion in a number of

experimental models and species.^{435,440,441} To which extent each of these mechanisms are participating in the action of α_1 -adrenoceptors during ischaemia and reoxygenation is unclear; however from our studies it is evident that the result of the use of agents that activate or blockade these receptors may vary widely depending on time of initiation and termination of their administration and it is possible that more than one mechanism may be involved. Clearly, more studies are needed to elucidate the underlying mechanism of these actions.

A possible limitation of the present studies is the use of atrial tissue as opposed to ventricular tissue so that any extrapolation should be made with caution and this is valid for all the experiments performed in this thesis. Another possible limitation might be that right atrial appendages were obtained from patients with antianginal medication and this potentially may have had some influence on the ischaemia/reoxygenation injury. Furthermore, my studies were performed in an *in vitro* preparation and therefore the results should be validated in *in vivo* studies before these interventions are considered for clinical application.

In spite of the above potential shortcomings, the findings of my studies may have important therapeutic implications for myocardial protection during cardiac surgery, cardiac transplantation, and angioplasty and in acute myocardial infarction where agents acting on α_1 -adrenoceptors are frequently used. Particular attention must be paid during cardiac surgery where phenylephrine is used routinely to elevate the mean arterial blood pressure during cardiopulmonary bypass, and in doing so one may be unwittingly exacerbating myocardial injury during cardiac ischaemia when collateral blood flow enters the ischaemic myocardium. However, these studies have shown that such undesirable effects can be fully counteracted by the administration of phenylephrine prior to the induction of cardiac ischaemia.

Having established the involvement of α_1 -adrenoceptors in ischaemia/reperfusion injury and their involvement in preconditioning of the human myocardium, I turned my attention to unravel their precise role in preconditioning and their interaction with other triggers of preconditioning.

Chapter 4

Ischaemic and pharmacological preconditioning

4.1 INTRODUCTION

IP is a powerful protective endogenous adaptive response of the heart and other organs that has been described as the most potent intervention against a prolonged ischaemic insult.^{263,419,442,443,444,445} However, the application of IP requires a physical cut of the blood supply and its use can be difficult or impractical in many clinical situations. In addition, the benefit of IP may be limited to the area of the heart supplied by the temporarily occluded artery, although some investigators have reported protection of the whole heart by preconditioning a selected myocardial area⁴⁴⁶ and by distal preconditioning of other organs such as the kidneys.^{447,448} A way to circumvent the above potential problems associated with the clinical application of IP may be preconditioning by pharmacological means or the manipulation of the signalling pathway involved in the protection. A number of membrane receptors have been advocated to be involved in the phenomenon of IP which includes $\alpha_1^{353,356,391}$ and β -adrenoceptors,⁴⁵⁰ opioid⁴⁵¹ and adenosine A1 and A3 receptors.^{440,452} Other factors such as heat shock proteins,^{453,454} bradykinin,⁴⁵⁵ calcium⁴³⁷ and nitric oxide synthase activity^{456,457} have also been shown to participate in the protection of ischaemic preconditioning, however, whether the various forms of pharmacological preconditioning share the same molecular mechanism with IP is not fully elucidated.

Following the results of the previous chapter, the aims of the series of studies in this chapter were to investigate the efficacy of pharmacological preconditioning of the human myocardium with α_1 -adrenoceptor and adenosine receptor agonists as compared to IP.

4.2 METHODS

4.2.1 Experimental Preparation

Experiments were performed on muscle obtained from the right atrial appendage of patients undergoing elective coronary artery bypass graft surgery or aortic valve replacement in the cell necrosis model described in Chapter 2.⁴⁰⁵ Identical exclusion criteria to those discussed in Chapter 3 were adopted.

4.2.2 Solutions and Chemicals

The incubation medium was prepared daily with de-ionized distilled water as described in Chapter 2. The drugs used in the experiments in this chapter included the α_1 -adrenoceptor agonist phenylephrine, α_1 -adrenoceptor antagonist prazosin, adenosine to activate the adenosine receptors and the adenosine receptor antagonist 8p-sulphophenyltheophyline. All the drugs used were dissolved in de-ionized distilled water immediately before their use. All the chemicals were purchased from Sigma Chemicals.

4.2.3 Experimental Time Course

All the muscles (between three and five per specimen) were equilibrated at 37°C for a 30min period. Then some of the preparations were added to new flasks, which also contained 10ml of oxygenated medium, for another 210min (240min total), to serve as time-matched aerobic controls. The rest of the preparations were subjected to a 90min period of simulated ischaemia (SI) at 37°C. Following this the muscles were reoxygenated for another 120min by incubation in 10ml of oxygenated medium at 37°C with added glucose. At the end of the experimental protocols, samples from the incubation media used during the reoxygenation period were collected for the

assessment of CK leakage and the tissue was taken for the assessment of viability by reduction of MTT. All agents tested were added for 5 or 10min at the end of the equilibration period and before the induction of SI. The doses of the agent used in the present studies were selected following preliminary dose-response studies for each of the drugs.

4.2.4 Study groups

The studies were performed in different phases to investigate the efficacy of pharmacological preconditioning with α_1 -adrenoceptors and adenosine receptors activation as compared to IP. In all the studies 6 preparations, each from the right atrium of equal numbers of patients, were used per group.

In Study 1, the efficacy of preconditioning via α_1 -adrenoceptors was investigated using the following protocol as represented in Figure 4-I: (i) time-matched aerobic control, (ii) SI/R alone, (iii) IP induced with 5min SI/ 5min R before SI, (iv) phenylephrine (0.1µM) for 10min before SI, (v) phenylephrine (0.1µM) for 5min and 5min washout before SI and (vi) prazosin (10µM) for 10min prior to IP.

In Study 2, the efficacy of preconditioning via α_1 -adrenoceptors versus adenosine receptors was investigated using the following protocol: (i) time-matched aerobic control, (ii) SI/R alone, (iii) IP induced with 5min SI/ 5min SI before SI, (iv) phenylephrine (0.1µM) for 5min and 5min washout before SI, (v) adenosine (100µM) for 5min and 5min washout before SI, (vi) 8-p-sulphophenyltheophyline (8-SPT, 100µM) for 10min before SI/R, (vii) prazosin (10µM) for 10min before adenosine (100µM) for 5min and 5min washout and (viii) 8-SPT (100µM) for 10min before phenylephrine $(0.1\mu M)$ for 5min and 5min washout. The protocol of this study is demonstrated in Figure 4-II.

In Study 3, the efficacy of preconditioning via α_1 -adrenoceptors or adenosine receptors alone and in combination with IP was investigated using the following protocol as shown in Figure 4-III: (i) time-matched aerobic control, (ii) SI/R alone, (iii) IP induced with 5min of SI/ 5min R before SI, (iv) phenylephrine (0.1µM) for 5min and 5min washout before SI, (v) adenosine (100µM) for 5min and 5min washout before SI, (v) adenosine (100µM) for 5min and 5min washout before IP, (vii) adenosine (100µM) for 5min and 5min washout before IP and (viii) adenosine (100µM) for 5min and 5min washout followed by phenylephrine (0.1µM) for 5min and 5min washout prior to SI.

4.2.5 Assessment of tissue injury and viability

Tissue injury was determined by measuring the leakage of CK into the incubation medium during the 120min reoxygenation period and tissue viability was assessed by the reduction of MTT to a blue formazan product at the end of the experimental time as described in Chapter 2.

4.2.6 Statistical analysis

All data are presented as mean \pm SEM. All values were compared by ANOVA with application of a post hoc Tukey's test. Statistical significance was taken as p<0.05.

Figure 4-I: Schematic representation of the protocol for Study 1 to investigate the efficacy of preconditioning via α_1 sdrenoceptor activation. SI; simulated ischaemia, P: phenylephrine, R: reoxygenation..

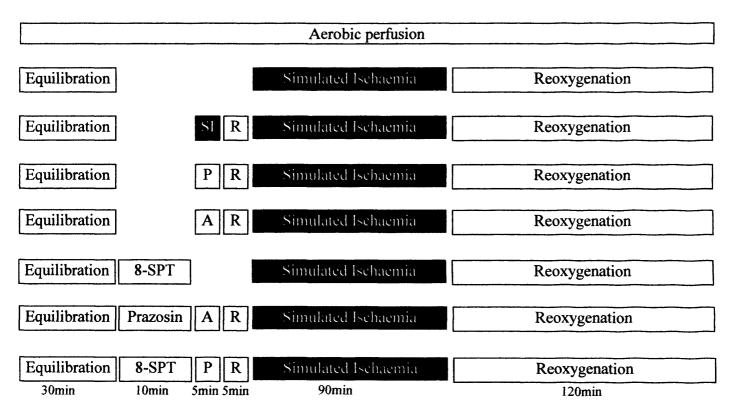


Figure 4-II: Schematic representation of the protocol for Study 2 to investigate the efficacy of α_1 adrenoceptors versus adenosine receptors for preconditioning. activation. SI: simulated ischaemia, R: reoxygenation, P: phenylephrine, A: Adenosine, 8-SPT: 8-p-sulphophenyltheophyline.

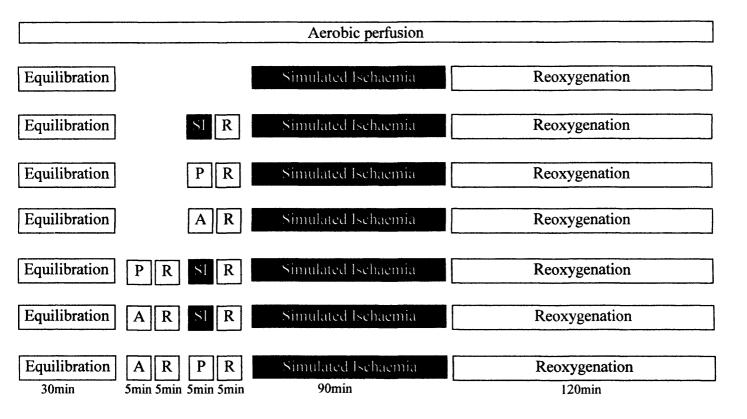


Figure 4-III: Schematic representation of the protocol for Study 3 to investigate the efficacy of preconditioning via α_1 adrenoceptors and adenosine receptors alone and in combination with ischaemic preconditioning. SI: simulated ischaemia, R: reoxygenation, P: phenylephrine, A: Adenosine.

4.3 RESULTS

All samples entering the studies completed the applied protocol and were included in the analysis.

Preconditioning via α_l -adrenoceptors (Study 1):

As shown in figures 4-IVA and 4-IVB, SI/R alone resulted in a significant increase in CK leakage and decrease in MTT reduction when compared to the aerobic controls. As expected, IP caused a significant protection with CK leakage and MTT reduction mean values similar to those seen in the aerobic controls. Almost identical CK leakage and MTT values to those seen with IP were obtained when the α_1 -adrenoreceptor agonist phenylephrine was administered before ischaemia, which confirms the results in the previous chapter. It is worth noting that phenylephrine was equally effective when given for 10min or for only 5min followed by 5min washout prior to ischaemia (i.e., resembling the protocol of IP). Importantly, this study also demonstrates that the favourable effect of IP on CK leakage and MTT reduction can be completely abolished by the α_1 -adrenoceptors antagonist prazosin. Overall, this study suggests that the cardioprotective effect of α_1 -adrenoceptors activation is as potent as IP in the human myocardium and that in fact IP is mainly mediated via activation of α_1 -adrenoceptors.

α_{l} -adrenoceptors versus adenosine receptors for preconditioning (Study 2):

The results shown in Figures 4-VA and 4-VB demonstrate that the administration of phenylephrine prior to ischaemia conferred a similar protection to that of adenosine and of IP. They also show that the protection of phenylephrine cannot be reversed by

the adenosine receptor antagonist 8-SPT and that the protective effect of adenosine cannot be reversed either by prior blockade of α_1 -adrenoceptors with prazosin.

Preconditioning via α_1 -adrenoceptors and adenosine receptors alone and in combination with IP (Study 3):

Figures 4-VIA and 4-VIB confirm the results of studies 1 and 2 in that phenylephrine or adenosine are as protective as IP. They also demonstrate that their use in combination does not result in additive protection.

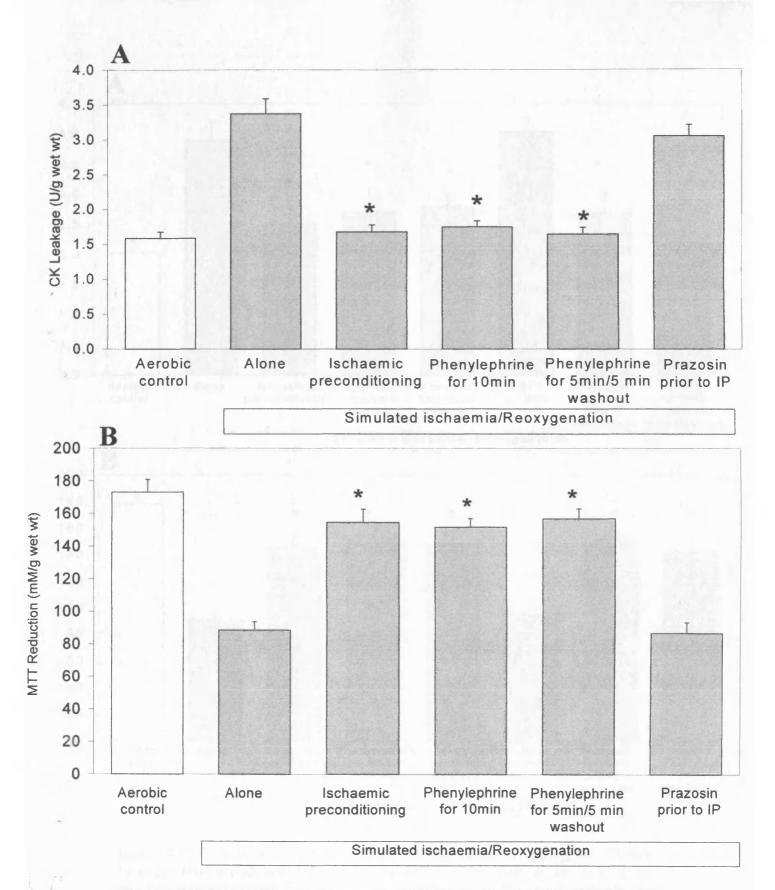


Figure 4-IV: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the efficacy of α_1 -adrenoreceptors for preconditioning (Study 1). Data are expressed as mean ±SEM of six experiments. *p<0.05 vs SI/R alone group.

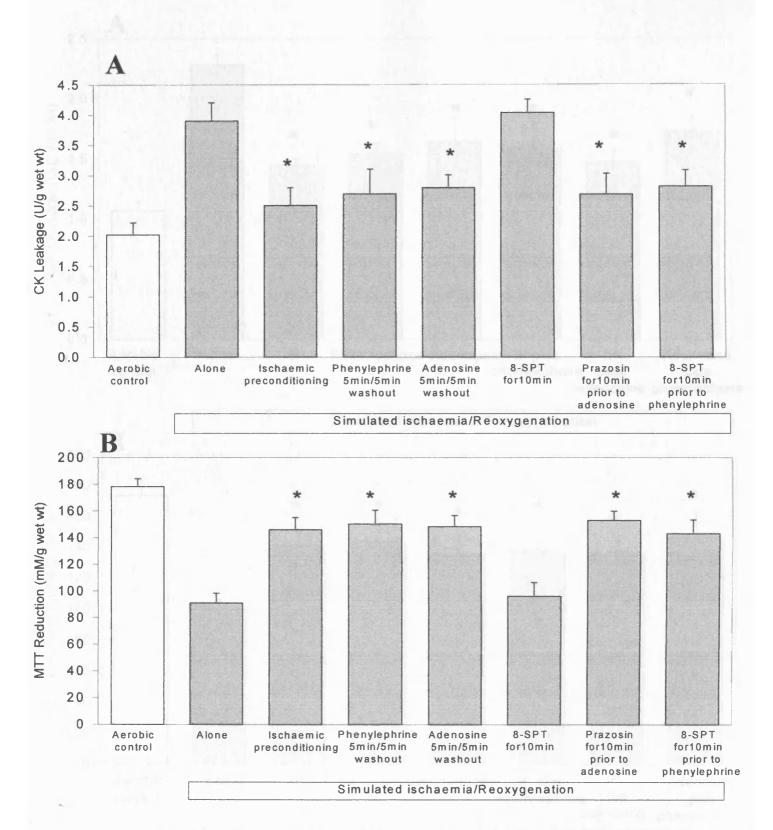


Figure 4-V: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the efficacy of α_1 -adrenoreceptors versus adenosine receptors for preconditioning (Study 2). Data are expressed as mean ±SEM of six experiments. *p<0.05 vs SI/R alone group. (8-SPT: 8-p-sulphophenyltheophyline).

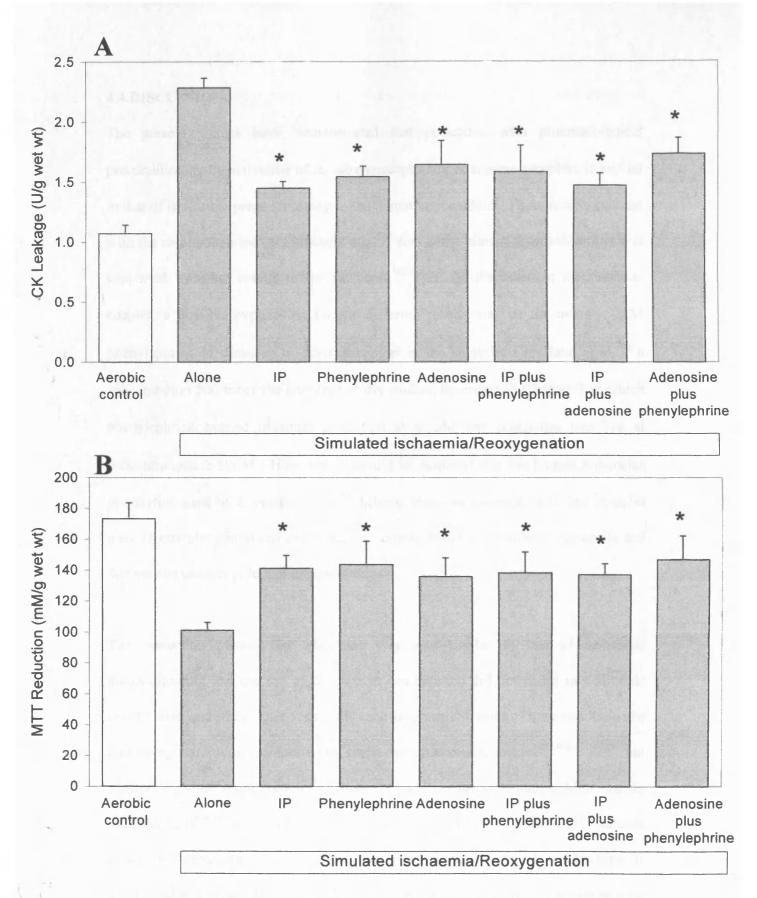


Figure 4-VI: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the efficacy of preconditioning via α_1 -adrenoreceptors and adenosine receptors alone and in combination with IP (Study 3). Data are expressed as mean ±SEM of six experiments. *p<0.05 vs SI/R alone group.

4.4 DISCUSSION

The present studies have demonstrated that protection with pharmacological preconditioning by activation of α_1 -adrenoreceptors or adenosine receptors is similar to that of ischaemic preconditioning in the human myocardium. These results contrast with the results reported by Cleveland et al³⁸⁹ also in the human myocardium but it is supported by other results in the rat heart.^{383,420,458} As discussed in the previous chapter, a possible explanation for the differing results may be the use of 50µM phenylephrine to stimulate α_1 -adrenoreceptors in the study by Cleveland et al,³⁸⁹ a concentration 500 times the one used in my studies, described in Chapter 3 in which phenylephrine exerted maximal protection at 0.1µM and protection was lost at concentrations $\geq 10\mu$ M. However, it should be admitted that the human trabeculae preparation used by Cleveland et al³⁸⁹ differed from our preparation in that muscles were electrically stimulated and subjected to only 45min of simulated ischaemia and this may be another potential explanation.

The protection induced by adenosine was also similar to that of ischaemic preconditioning and the use of the two in combination did not result in additional benefit over and above that seen with each intervention alone. These results in the human myocardium are supported by studies in other animal species^{459,460,461,462,463} but contrast with the results reports by Leesar et al³¹¹ in the vivo human heart and by McCully et al^{464,465} in the isolated rabbit heart. In the study by Leesar et al³¹¹ patients undergoing percutaneous transluminal coronary angioplasty were subjected to three 2-minute balloon inflations 5 minutes apart. Under these conditions the administration of adenosine was more effective in limiting ST-segment shift than the balloon inflation protocol. Although we have previously shown⁴¹⁹ that 4 to 5 minutes of

ischaemia are sufficient to precondition the human myocardium, independent of whether this time is attained with one or two cycles of ischaemia, it is conceivable that in their study³¹¹ the balloon inflation protocol may not have been sufficient to induce enough ischaemia to trigger preconditioning. This is a strong possibility under clinical conditions where collateral flow may lessen the severity of ischaemia. Furthermore, in that study³¹¹ changes in ST-segment, that are modulated by sarcolemmal KATP channels,466 were used as the main end-point and is now well recognized, as described below, that the protection of preconditioning may be mediated mitochondrial sarcolemmal by rather than by KATP channels.^{467,468,469,470,471,472} The results reported by McCully et al^{464,465} that adenosine is more potent than and extends the cardioprotection of ischaemic preconditioning in the rabbit heart are difficult to explain because they used a protocol of 5 minutes ischaemia/5 minutes reperfusion for preconditioning which is identical to the one used in our studies and shown to afford optimal protection in other preparations.^{440,449} However, since adenosine and ischaemic preconditioning use an identical cellular signal transduction mechanism to induce protection, the most likely explanation may be the presence of some unknown factor that may have influenced the severity of the ischaemic preconditioning insult and therefore its protective efficacy.

It is worth noting that in our studies blockade of α_1 -adrenoreceptors did not mitigate the protection induced by adenosine and that blockade of adenosine receptors did not prevent the protection induced by stimulation of α_1 -adrenoreceptors. These results suggest that in the human myocardium the sarcolemmal receptors participating in preconditioning are independently connected to the downstream molecular transduction cascade. This concept is also supported by Tsuchida et al⁴⁷³ that showed that protection can be restored when adenosine receptor-blocking agents are coinfused with the α_1 -adrenergic agonist phenylephrine. The finding that the α_1 adrenoreceptor antagonist prazosin blocked the protection of ischaemic preconditioning in the present studies and that adenosine receptor blockades can also block this protection in other models of the human myocardium^{272,276} does not contradict the above thesis and it is compatible with the suggestion that a threshold must be reached before ischaemic preconditioning can protect the heart.⁴⁷⁴

On completion of these studies that defined the role of α_1 -adrenoreceptors in preconditioning I wanted to investigate the underlying intracellular signal transduction mechanism of preconditioning and this is explored in the next chapter.

Chapter 5

Signal transduction mechanism of preconditioning

5.1 INTRODUCTION

Having investigated the efficacy of ischaemic and pharmacological preconditioning in the human myocardium, I planned in this chapter to elucidate the intracellular signalling pathways underlying the cardioprotection. The intracellular sequence of events that translate the binding of the various agonists to their membrane receptors into the protection of preconditioning remains under intense investigation as the knowledge of the signal transduction mechanism offers the best opportunity for manipulation and exploitation of this phenomenon. It has been reported that α_1 adrenoceptors are coupled with protein kinase C (PKC) through phospholipase activity, 475,476 that in turn activates p38 Mitogen Activated Protein Kinase (p38MAPK) in some cardiac preparations.^{373,477,478,479} ATP sensitive potassium channels have also been implicated in the signal transduction mechanism of IP,^{373,400,480} and recent evidence from several investigators^{468,469,470} including ourselves⁴⁷¹ has shown that the mitochondrial and not the sarcolemmal K_{ATP} channels are involved. The order of involvement of the above mediators remains controversial although recently it has been suggested that mitochondrial KATP channels are the triggers in the signal transduction mechanism rather than the end effectors. ⁴⁶⁷

The aim of these studies was to elucidate the contribution and sequence of activation of PKC, p38MAPK and mito K_{ATP} channels.

5.2 METHODS

5.2.1 Experimental Preparation

Experiments were performed on muscle obtained from the right atrial appendage of patients undergoing elective coronary artery bypass graft surgery or aortic valve replacement in the cell necrosis model described in chapter 2.⁴⁰⁵ An identical exclusion criteria to those discussed in Chapter 3 were applied in this chapter.

5.2.2 Solutions and Chemicals

The incubation medium was prepared daily with de-ionised distilled water as described in Chapter 2. The α_1 -adrenoceptor agonist phenylephrine, mitoK_{ATP} channel blocker 5-hydroxydecanoate, PKC inhibitor chelerythrine and p38MAPK activator anisomycin were used dissolved in de-ionised distilled water, while mitoK_{ATP} opener diazoxide, PKC activator phorbol 12-myristate 13-acetate (PMA) and p38MAPK specific inhibitor SB203580 were dissolved in DMSO. All the chemicals were purchased from Sigma Chemicals.

5.2.3 Experimental Time Course

All the muscles were equilibrated at 37°C for a 30min period. Then some of the preparations were added to new flasks, which also contained 10ml of oxygenated medium, for another 210min (240min total), to serve as time-matched aerobic controls. The rest of the preparations were subjected to a 90min period of simulated ischaemia (SI) at 37°C as described in Chapter 2. Following this the muscles were reoxygenated (R) for another 120min by incubation in 10ml of oxygenated medium at 37°C with added glucose. At the end of the experimental protocols, samples from the incubation media used during the reoxygenation period were collected for the

assessment of CK leakage and the tissue was taken for the assessment of viability (reduction of MTT). All agents tested were added for 5 or 10min at the end of the equilibration period and before the induction of SI. The doses of the agent used in the present studies were selected following preliminary dose-response studies for each of the drugs.

5.2.4 Study groups

The studies were performed in different phases to investigate the signal transduction cascade underlying the protection of preconditioning. In all the studies 6 preparations, each from the right atrium of equal numbers of patients, were used per group.

In Study 1, the role of PKC on the cardioprotection of α_1 adrenoceptors activation was investigated using the following groups as shown in Figure 5-I: (i) time-matched aerobic control, (ii) SI/R alone, (iii) preconditioning with phenylephrine (0.1µM) before SI, (iv) phorbol 12 myristate 13-acetate (PMA, 1µM) alone for 10min prior to SI, (v) PMA (1µm) for 10min prior to phenylephrine, (vi) chelerythrine (10µM) alone for 10min prior to SI and (vii) chelerythrine (10µm) for 10min before phenylephrine.

In Study 2, the role of the p38MAPK pathway on the cardioprotection of α_1 adrenoceptors activation was examined using the following groups as shown in Figure 5-II: (i) time-matched aerobic control, (ii) SI/R alone, (iii) preconditioning with phenylephrine (0.1µM) before SI, (iv) anisomycin (1nM) for 10min prior to SI, (v) anisomycin (1nM) for 10min prior to phenylephrine, (vi) SB203580 (10µM) for 10min prior to SI and (vii) SB203580 (10µm) prior to phenylephrine preconditioning.

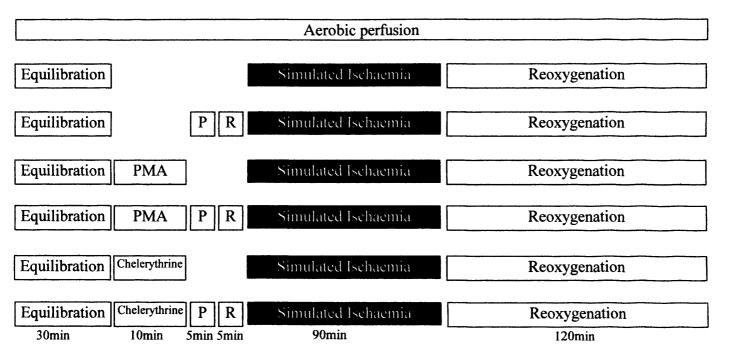


Figure 5-I: Schematic representation of the protocol for Study 1 to investigate the role of protein kinase C on the cardioprotection of α_1 receptor activation. P: phenylephrine, R: reoxygenation, PMA: phorbol 12-myristate 13-acetate.

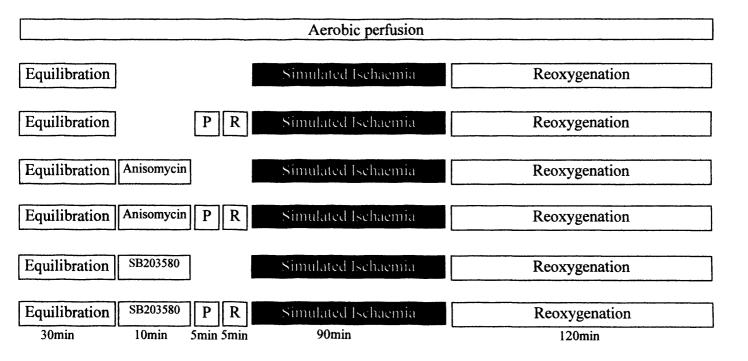


Figure 5-II: Schematic representation of the protocol for Study 2 to investigate the role of p38MAPK on the cardioprotection of α_1 receptor activation. P: phenylephrine, R: reoxygenation.

In Study 3, the role of mito K_{ATP} channels on the cardioprotection of α_1 adrenoreceptors activation was investigated. For this, the following groups were studied as shown in Figure 5-III: (i) time-matched aerobic control, (ii) SI/R alone, (iii) preconditioning with phenylephrine (0.1µM) before SI, (iv) diazoxide (100µM) alone for 10min prior to SI, (v) diazoxide (100µm) for 10min before phenylephrine, (vi) 5hydroxydecanoate (1mM) alone for 10min prior to SI, and (vii) 5-hydroxydecanoate (1mM) for 10min prior to phenylephrine.

In Study 4, the role of PKC, p38MAPK and mitoK_{ATP} channels in the cardioprotective effect of IP and pharmacological preconditioning with α_1 -adrenoceptor and adenosine receptor activation was investigated using the following groups as described in Figure 5-IV: (i) time-matched aerobic control, (ii) SI/R alone, (iii) IP alone prior to SI, (iv) chelerythrine (10µM) for 10min prior to IP, (v) SB203580 (10µM) for 10min prior to IP, (vi) 5-hydroxydecanoate (1mM) for 10min prior to IP, (vii) phenylephrine (0.1µM) for 5min and 5min washout before SI, (viii) chelerythrine (10µM) for 10min prior to phenylephrine (0.1µM) for 5min and 5min washout, (ix) SB203580 (10µM) for 10min prior to phenylephrine (0.1µM) for 5min and 5min washout, (x) 5-hydroxydecanoate (1mM) for 10min prior to phenylephrine (0.1µM) for 5min and 5min washout, (x) 5-hydroxydecanoate (1mM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout, (xiii) SB203580 (10µM) for 10min prior to adenosine (100µM) for 5min and 5min washout and (xiv) 5-hydroxydecanoate (1mM) for 10min prior to adenosine (100µM) for 5min and 5min washout.

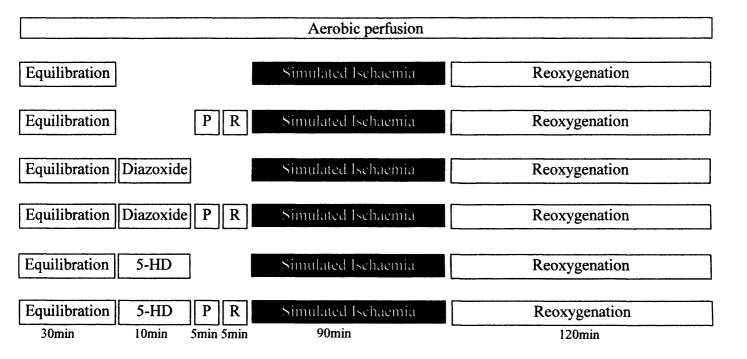


Figure 5-III: Schematic representation of the protocol for Study 3 to investigate the role of mitoK_{ATP} channels on the cardioprotection of α_1 receptor activation. P: phenylephrine, R: reoxygenation, 5-HD: 5-Hydroxydecanoate.

		240m in	
Aerobic Perfusion			
30m in		90m in	120m in
Equilibration		SI	Reoxygenation
30m in	<u>5' 5'</u>	90m in	120m in
Equilibration	SI R	SI	Reoxygenation
<u>30min 10'</u>	<u>5' 5'</u>	90m in	120m in
Equilibration CHE	SI R	S I	Reoxygenation
<u>30 m in</u> 10'	<u>5' 5'</u>	90m in	120m in
Equilibration SB	SI R	SI	Reoxygenation
<u>30 m in</u> 10'	<u>5' 5'</u>	90m in	120m in
Equilibration 5-HD	SI R	SI	Reoxygenation
30m in	5' 5'	90m in	120m in
Equilibration	PW	SI	Reoxygenation
30m in 10'	5' 5'	90m in	120m in
Equilibration CHE	PW	SI	Reoxygenation
<u>30 m in 10'</u>	<u>5' 5'</u>	90m in	120m in
Equilibration SB	PW	SI	Reoxygenation
<u>30 m in 10'</u>	<u>5' 5'</u>	90m in	120m in
Equilibration 5-HD	P W	S	Reoxygenation
<u>30m in</u>	<u>5' 5'</u>	<u>90m in</u>	120m in
Equilibration	AW	SI	Reoxygenation
<u>30min 10'</u>	<u>5' 5'</u>	90m in	120m in
Equilibration CHE	AW	SI	Reoxygenation
<u>30min 10'</u>	<u>5' 5'</u>	90m in	120m in
Equilibration SB	AW	S I	Reoxygenation
<u> </u>	5' 5'	90m in	120m in
Equilibration 5-HD		SI	Reoxygenation

Figure 5-IV: Protocol for Study 4 to investigate the role of PKC, p38MAPK and mitoK_{ATP} channels in the cardioprotective effect of IP and PP with phenylephrine (P) or adenosine (A) (n=6 specimens/group): (i) time-matched aerobic control, (ii) SI/R alone, (iii) IP alone prior to SI, (iv) chelerythrine (CHE) for 10min prior to IP, (v) SB203580 (SB) for 10min prior to IP, (vi) 5hydroxydecanoate (5-HD) for 10min prior to IP, (vii) phenylephrine (P) for 5min and 5min washout (W) before SI, (viii) chelerythrine (CHE) for 10min prior to phenylephrine (P) for 5min and 5min washout (W), (ix) SB203580 (SB) for 10min prior to phenylephrine (P) for 5min and 5min washout (W), (x) 5-hydroxydecanoate (5-HD) for 10min prior to phenylephrine (P) for 5min and 5min washout (W), (xi) adenosine (A) for 5min and 5min washout (W) before SI, (xii) chelerythrine (CHE) for 10min prior to adenosine (A) for 5min and 5min washout (W), (xiii) SB203580 (SB) for 10min prior to adenosine (A) for 5min and 5min washout (W), for 10min prior to adenosine (A) for 5min and 5min washout (W), for 10min prior to adenosine (A) for 5min and 5min washout (W) and (xiv) 5-hydroxydecanoate (5-HD) for 10min prior to adenosine (A) for 5min and 5min washout (W) and (xiv) 5-hydroxydecanoate (5-HD) for 10min prior to adenosine (A) for 5min and 5min washout (W). Study 5 was designed to elucidate the sequence of the participation of involvement of mitoK_{ATP} channels, PKC and p38MAPK in the signal transduction cascade of cardioprotection. For this purpose, in addition to the aerobic time-matched control and SI/R alone the following groups were studied as described in Figure 5-II: (i) diazoxide (100 μ M) alone for 10min prior to SI, (ii) chelerythrine (10 μ M) for 20min with diazoxide (100 μ M) added for the last 10min prior to SI, (iii) SB203580 (10 μ M) for 20min with diazoxide (100 μ M) added for the last 10min prior to SI, (iii) SB203580 (10 μ M) for 20min with diazoxide (100 μ M) added for the last 10min prior to SI, (iv) PMA (1 μ M) alone for 10min prior to SI, (v) SB203580 (10 μ M) for 20min with PMA (1 μ M) added for the last 10min before SI, (vi) 5-hydroxydecanoate (1mM) for 20min with PMA (1 μ M) added for the last 10min before SI, (vii) anisomycin (1nM) alone for 10min prior to SI, (vii) chelerythrine (10 μ M) for 20min with anisomycin (1nM) added for the last 10min prior to SI, (vii) 5-hydroxydecanoate (1mM) for 20min with anisomycin (1nM) added for the last 10min prior to SI, (vii) 6-hydroxydecanoate (1mM) for 20min with anisomycin (1nM) added for the last 10min prior to SI, (vii) 6-hydroxydecanoate (1mM) for 20min with anisomycin (1nM) added for the last 10min prior to SI and (viii) 5-hydroxydecanoate (1mM) for 20min with anisomycin (1nM) added for the last 10min prior to SI and (viii) 5-hydroxydecanoate (1mM) for 20min with anisomycin (1nM) added for the last 10min prior to SI.

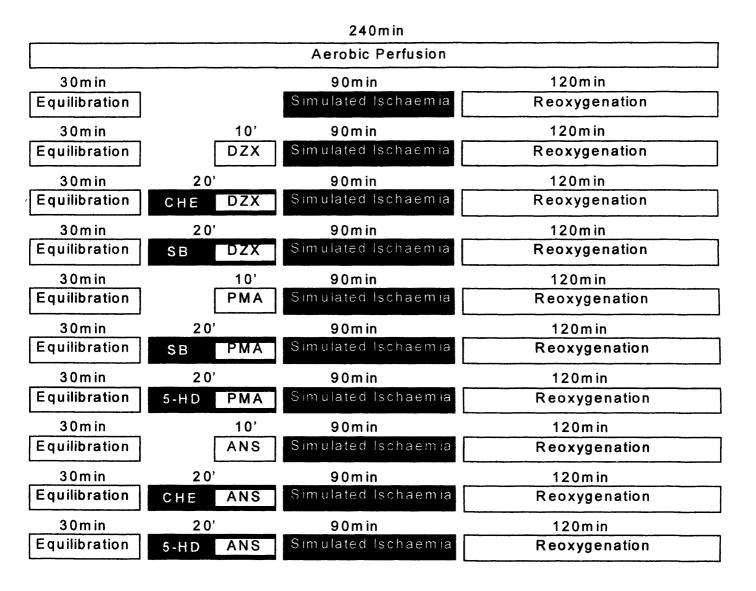


Figure 5-V: Study 5 protocol designed to elucidate the sequence of the participation of involvement of mitoK_{ATP} channels, PKC and p38MAPK in the signal transduction cascade of cardioprotection. For this purpose, in addition to the (i) aerobic time-matched control and (ii) SI/R alone the following groups were studied (n=6 specimens/group): (iii) diazoxide alone for 10min prior to SI, (iv) chelerythrine (CHE) for 20min with diazoxide added for the last 10min prior to SI, (v) SB203580 (SB) for 20min with diazoxide added for the last 10min prior to SI, (vi) PMA alone for 10min prior to SI, (vii) SB203580 (SB) for 20min with PMA added for the last 10min before SI, (viii) 5-hydroxydecanoate (5-HD) for 20min with PMA added in the last 10min before SI, (ix) anisomycin (ANS) alone for 10min prior to SI, (x) chelerythrine (CHE) for 20min with anisomycin (ANS) added for the last 10min prior to SI and (xi) 5-hydroxydecanoate (5-HD) for 20min with anisomycin (ANS) added for the last 10min prior to SI and (xi) 5-hydroxydecanoate (5-HD) for 20min with anisomycin (ANS) added for the last 10min prior to SI and (xi) 5-hydroxydecanoate (5-HD) for 20min with anisomycin (ANS) added for the last 10min prior to SI and (xi) 5-hydroxydecanoate (5-HD) for 20min with anisomycin (ANS) added for the last 10min prior to SI.

5.2.5 Assessment of tissue injury and viability

Tissue injury was determined by measuring the leakage of CK into the incubation medium during the 120min reoxygenation period and tissue viability was assessed by the reduction of MTT to a blue formazan product at the end of the experimental time as described in Chapter 2.

5.2.6 Statistical analysis

All data are presented as mean±SEM. All values were compared by ANOVA with application of a post hoc Tukey's test. Statistical significance was taken as p<0.05.

5.3 RESULTS

All samples entering the studies completed the applied protocol and were included in the analysis.

Role of PKC on preconditioning via α_{l} *-adrenoreceptor activation (Study 1):*

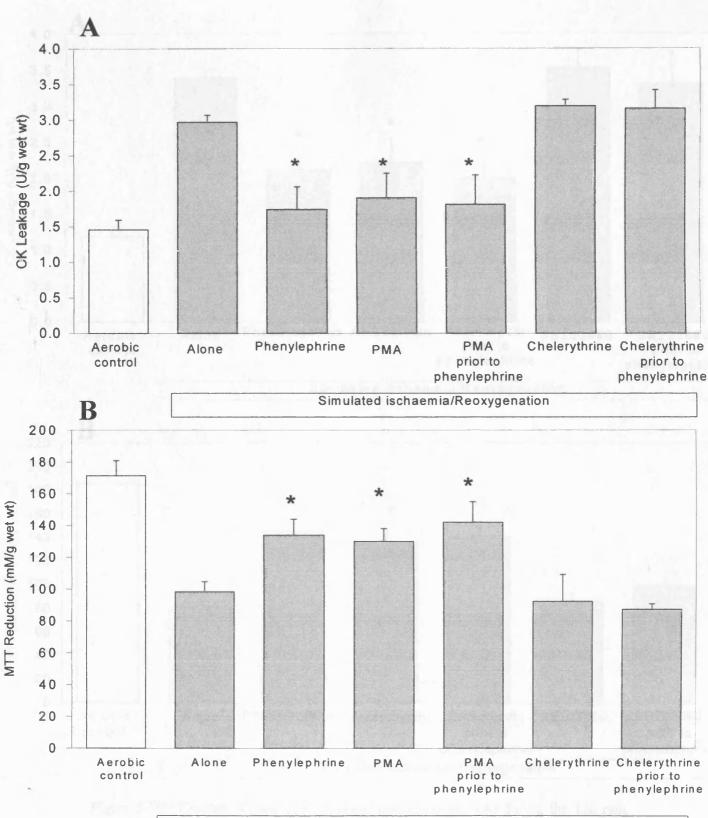
Figures 5-VIA and 5-VIB show that the PKC activator PMA mimics the protective effect of phenylephrine and that the use of PMA and phenylephrine in combination does not afford additional protection to the one seen with each of these agents alone. In addition, the PKC inhibitor chelerythrine, which did not have a significant effect on CK leakage and MTT reduction as compared to the SI/R group when given alone, completely abolished the protection obtained with phenylephrine.

Role of p38MAPK on preconditioning via α_{I} *-adrenoreceptor activation (Study 2):*

The results of this study shown in Figures 5-VIIA and 5-VIIB reveal that the p38MAPK activator anisomycin when given alone reduces CK leakage and improves

MTT reduction to a degree similar to phenylephrine and that the use of anisomycin and phenylephrine in combination does not result in greater protection to that seen with each of these agents alone. They also show that the p38MAPK inhibitor SB203580 does not modify the extent of injury sustained during SI/R when given alone but that it abolishes the protection of phenylephrine.

Role of mito K_{ATP} channels on preconditioning via α_1 -adrenoreceptor activation (Study 3):


The results of this study are shown in Figures 5-VIIIA and 5-VIIIB. They demonstrate that the protection of diazoxide on CK leakage and MTT reduction when given alone was almost identical to phenylephrine and that no additional protection was observed when diazoxide and phenylephrine were used in combination. The lack of a significant effect when 5-hydroxydecanoate was given alone and the abolition of the protection induced by phenylephrine when this and 5-hydroxydecanoate were given in combination further support the participation of mitoK_{ATP} channels in the protection induced by α_1 -adrenoceptor agonists.

Role of PKC, p38MAPK and mito K_{ATP} channels on IP and preconditioning via adenosine receptor activation (Study 4):

Figures 5-IXA and 5-IXB show that, as expected, IP was abolished by chelerythrine, SB203580 or 5-hydroxydecaonate. They also show that adenosine elicited similar protection to that of IP and that both are equally abolished by inhibition of PKC and p38MAPK and the blockade of the mito K_{ATP} channels.

Sequence of activation of the mediators of pharmacological and ischaemic preconditioning (Study 5):

The results on CK leakage and MTT reduction shown in Figures 5-XA and 5-XB demonstrate that, as expected, identical protection is obtained with diazoxide (mito K_{ATP} channel opener), PMA (PKC activator) and anisomycin (p38 MAPK activator). Importantly, they also show that whilst the protection of diazoxide is abolished by the PKC antagonist chelerythrine and the p38MAPK antagonist SB203580, the protective effect of PMA is abolished by SB203580 but not by the mito K_{ATP} channel blocker 5-hydroxydecanoate, and the protective action of anisomycin is unaffected by chelerythrine and 5-hydroxydecanoate.

Simulated ischaemia/Reoxygenation

Figure 5-VI: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the role of PKC on preconditioning via α_1 -adrenoreceptor activation (Study 1). Data are expressed as mean ±SEM of six experiments. *p<0.05 vs SI/R alone group. (PMA: phorbol 12 myristate 13-acetate).

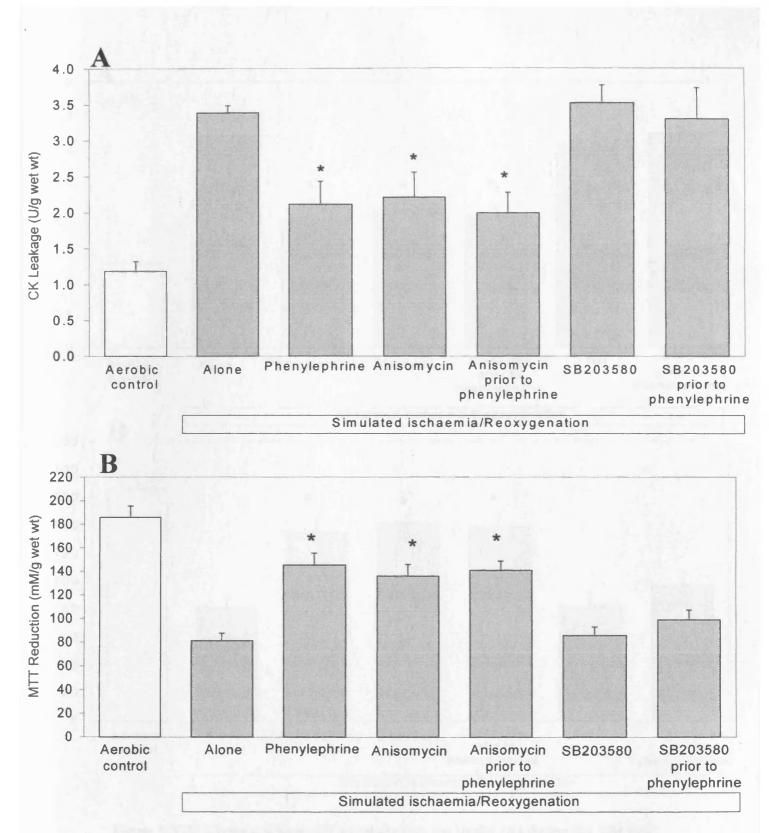


Figure 5-VII: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the role of p38MAPK on preconditioning via α_1 -adrenoreceptor activation (Study 2). Data are expressed as mean ±SEM of six experiments. *p<0.05 vs SI/R alone group.

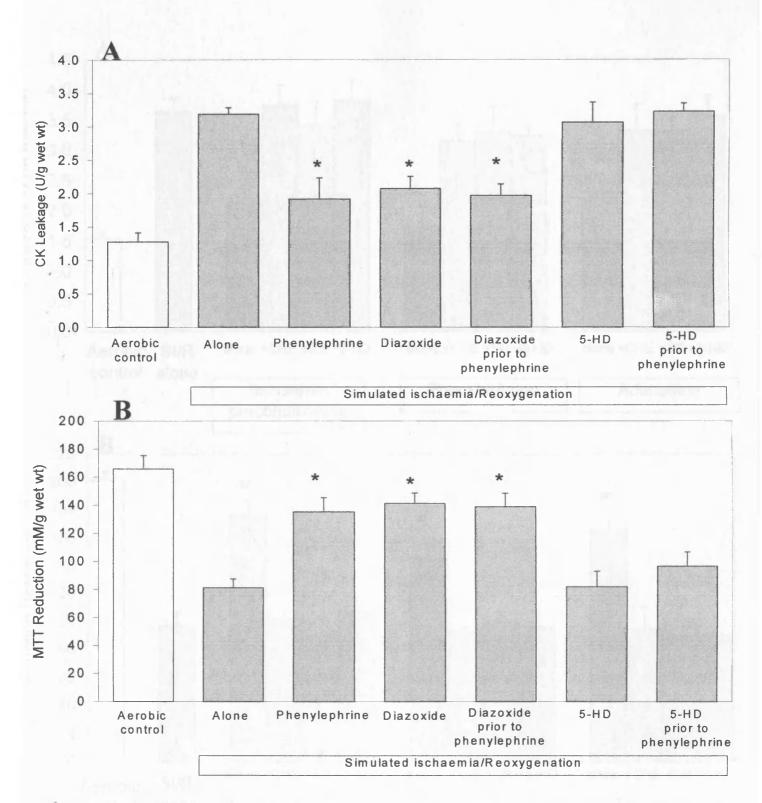


Figure 5-VIII: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the role of mitoK_{ATP} channels on preconditioning via α_1 -adrenoreceptor activation (Study 3). Data are expressed as mean ±SEM of six experiments. *p<0.05 vs SI/R alone group. (5-HD: 5-hydroxydecanoate).

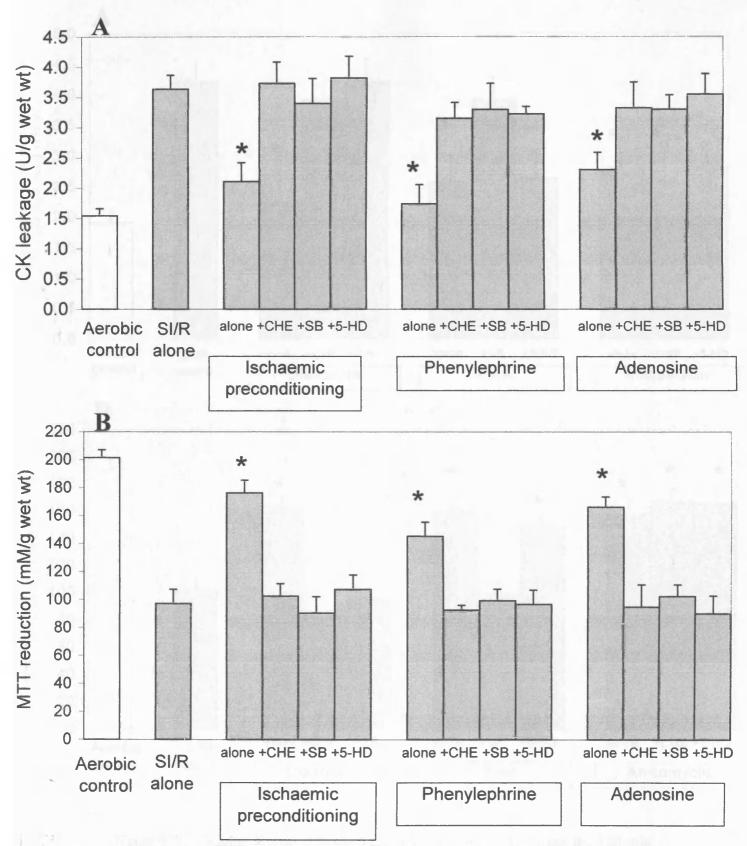


Figure 5-IX: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the role of PKC, p38MAPK and mitoK_{ATP} channels on ischaemic and phramcological preconditioning via alpha 1adrenoceptor and adenosine receptor activation (Study 4). Data are expressed as mean \pm SEM of six experiments. *p<0.05 vs SI/R alone group. (5-HD: 5-hydroxydecanoate, SB: SB203580).

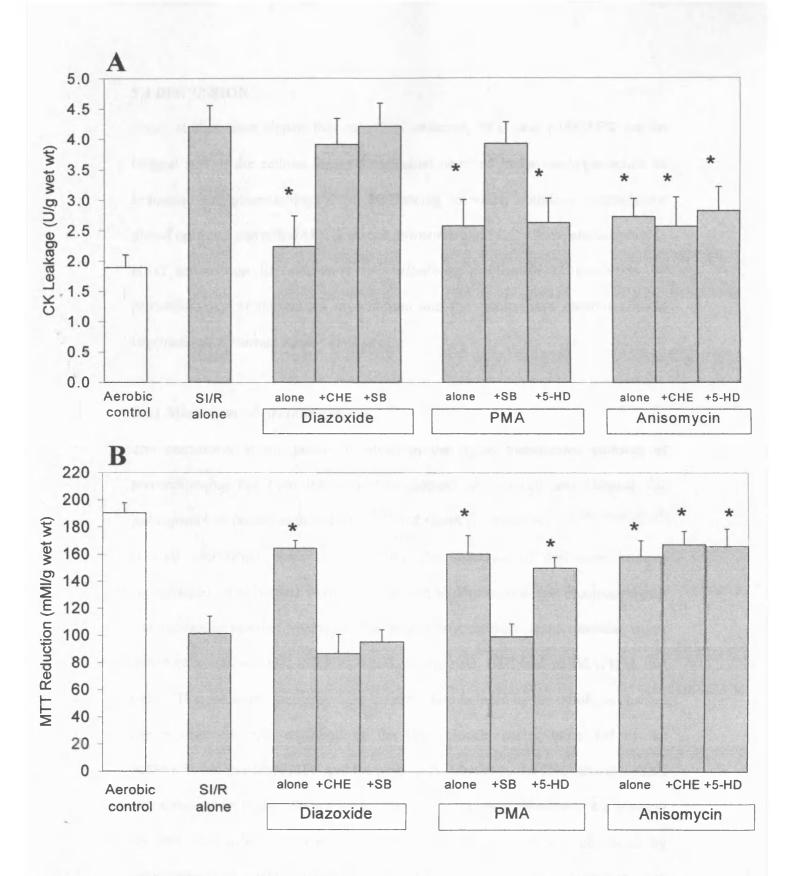


Figure 5-X: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the sequence of activation of the mediators of pharmacological and ischaemic preconditioning (Study 5). Data are expressed as mean \pm SEM of six experiments. *p<0.05 vs SI/R alone group. (CHE: chelerythrine, 5-HD: 5-hydroxydecanoate, SB: SB203580, PMA: phorbol-12-myristate-13-acetate).

5.4 DISCUSSION

These studies have shown that $mitoK_{ATP}$ channels, PKC and p38MAPK are an integral part of the cellular signal transduction involved in the cardioprotection of ischaemic and pharmacological preconditioning in which $mitoK_{ATP}$ channels are placed upstream and p38MAPK is placed downstream of PKC. These studies provide novel information to understand the underlying mechanism of protection by preconditioning of the human myocardium and the results have obvious clinical importance that warrant further discussion.

5.4.1 Mechanism of preconditioning

The elucidation of the factors involved in the signal transduction pathway of preconditioning has been the subject of intense investigation and although the participation of factors such as PKC^{481,482} and mitoK_{ATP} channels^{273,400,461,462,463,471,480} is well established, their relevance and the sequence of activation remains controversial. The present studies are the first to demonstrate that pharmacological and ischaemic preconditioning of the human myocardium share identical signal transduction cascade that involves mitoK_{ATP} channels, PKC and p38MAPK in that order. Thus, as shown in Figure 5-X, the protection induced by the mitoK_{ATP} channel opener diazoxide was abolished by the PKC blocker chelerythrine and by the p38MAPK blocker SB203580, and the protection induced by the PKC activator PMA was abolished by the p38MAPK activator anisomycin was unaffected by chelerythrine or 5-HD. Wang et al⁴⁸³ also showed that PKC inhibition with chelerythrine or calphostin C completely abolished the beneficial effects of diazoxide in the isolated rat heart, thus providing further support that mitoK_{ATP} channels are

upstream of PKC. However, Pain et al^{467} and Miura et al^{484} using chelerythrine and calphostin C to block PKC were unable to confirm this observation in the rabbit, suggesting that these differences could arise as a result of different animal species. In spite of this, it is interesting to note that Pain et al^{467} reported that genistein, a tyrosine kinase antagonist, blocked the protection induced by diazoxide which indicates that activation of kinases also lies downstream of mitoK_{ATP} channels in the rabbit heart.

My demonstration that activation of any one of the components of the transduction cascade investigated in our studies (mitoK_{ATP} channels, PKC, p38MAPK) can provide identical protection and that blockade of any of them individually completely abolishes protection indicates that in the human myocardium there is only one pathway of protection by preconditioning. The failure to obtain additional protection when more than one agent was used to induce pharmacological preconditioning or when these agents were used in combination with ischaemic preconditioning further support this thesis. But again, the mechanism of preconditioning the human myocardium may not be applicable to all species as suggested by the need to combine the inhibition of PKC and tyrosine kinase to abort the protection of preconditioning in pigs.⁴⁸⁵

The molecular interactions between the various components of the preconditioning pathway are not well understood. There is evidence that $mitoK_{ATP}$ channel opening increases radical oxygen species production which in turn may activate PKC,⁴⁶⁷ but it is well known that $mitoK_{ATP}$ channels are also modulated by PKC.⁴⁶⁹ The above and the realization of selective translocation of PKC with preconditioning,^{481,483,486} suggest that PKC through different isoforms may play a dual role upstream and

downstream of mito K_{ATP} channels. Our observation that blockade of PKC abolishes the protection by diazoxide does not eliminate that possibility.

My results have shown that activation of p38MAPK is a crucial step in the transduction pathway of preconditioning in the human myocardium. The activation of p38MAPK requires phosphorylation of Thr180 and Tyr182 within a TGY motif⁴⁸⁷ by the MAP kinases MKK3 and MKK6.⁴⁸⁸ It has been reported that the PKC activator PMA activates p38MAPK⁴⁷⁷ but the exact mechanism remains unclear. Although activation of p38MAPK has been connected to preconditioning in the rabbit heart,^{489,490} the relationship could not be established in rat⁴⁹¹ and pig⁴⁹² hearts. Therefore, it seems that once more the components of the signal transduction pathway of preconditioning are species-dependent.

It is still unknown whether the activation of p38MAPK is the last step of the transduction cascade that phosphorylates the end-effector and whether there is a simple or multiple effectors and their location. p38MAPK can phosphorylate a wide range of proteins some of which may be potential candidates for end-effectors of preconditioning. Thus, for example, the low molecular weight heat shock protein HSP27 may be phosphorylated by p38MAPK via the intermediate MAPKAPK2⁴⁹³ and this may lead to polymerisation of actin filaments⁴⁹⁴ and to increase tolerance of the cytoskeleton to stress.⁴⁹⁵ Translocation of PKC isoforms to mitochondrial sites, intercalated discs and nucleus may suggest that p38MAPK activation in these places may activate enzymes involved with energy production, intercellular communication through cell junctions or gene transcriptions.

140

My results suggest that mitoKATP channels are not the end-effectors of cardioprotection by preconditioning of the human myocardium. The concept that mitoKATP channels may be the end-effectors of preconditioning has been based on the efficacy of diazoxide, a highly selective mitoKATP channel opener, to mimic cardioprotection by preconditioning^{470,471} and the blockade of this protection by 5hydroxydecanoate,^{470,471} a specific mitoK_{ATP} channel blocker.⁴⁹⁶ However, it was never clear whether the actions of these channels were limited to the mitochondria or were part of a more complex signal transduction cascade with effects on other cellular The effect of opening the mitoKATP channels is still a matter of structures. controversy and whereas some investigators have reported large decreases in mitochondrial membrane potential affecting respiration and resulting in a reduction in Ca²⁺ uptake into mitochondria,^{497,498} others have observed little effect on membrane potential, bioenergetics or Ca²⁺ uptake but important changes on matrix and intermembrane space volumes.⁴⁹⁹ The reason given for these discrepancies has been the use of different doses of $mitoK_{ATP}$ channel openers in the former studies⁴⁹⁹ but this does not clarify how changes in mitochondrial volume are connected to PKC activation, that is downstream in the signal transduction cascade.

The diagram in Figure 5-XI describes my proposal of the signal transduction cascade of preconditioning in the human myocardium. It is suggested that upon activation of sarcolemmal receptors (e.g. adenosine receptors, α_1 -adrenoreceptors) mitoK_{ATP} channels are opened via Gi proteins and PKC, possibly PKC- δ .⁴⁸³ The opening of mitoK_{ATP} channels will activate possibly a different PKC isoform probably via the production of radical oxygen species.⁴⁶⁷ PKC may then translocate to various cellular sites including the mitochondria, sarcolemma and intercalated discs, and nucleus, a

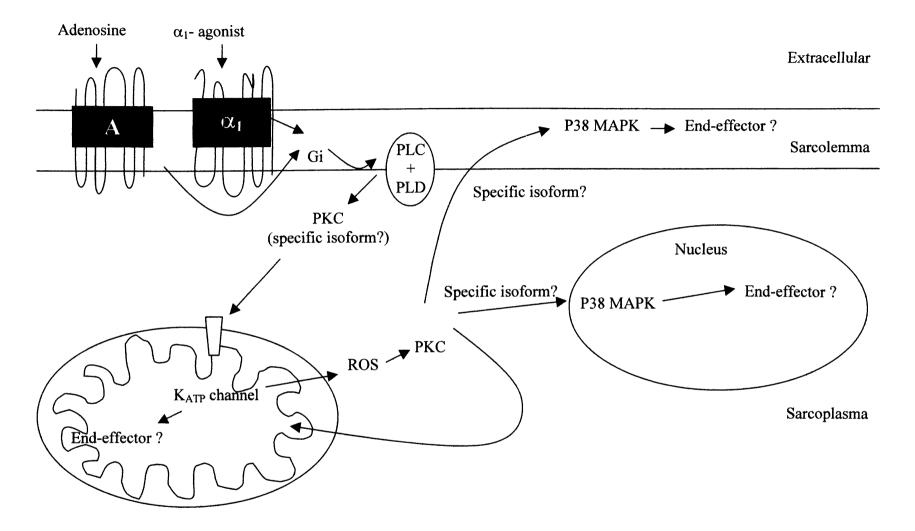


Figure 5-XI: Proposed schematic representation of the signal transduction mechanism leading to cardioprotection by pharmacological and ischaemic preconditioning of the human myocardium. Upon activation of sarcolemmal receptors mito K_{ATP} channels are opened via G proteins and PKC, possibly PKC- δ or ε . The opening of mito K_{ATP} channels will activate PKC possibly via the production of radical oxygen species (ROS). PKC may then translocate to various cellular sites including the mitochondria, sarcolemma and intercalated discs, and nucleus, a phenomenon that may involve specific PKC isoforms, where p38MAPK will be activated. In turn, p38MAPK may activate a single or multiple end-effectors directly or via MAPK intermediates.

phenomena that may involve specific PKC isoforms, where p38MAPK will be activated. In turn, p38MAPK may activate a single or multiple end-effectors directly or via MAPK intermediates. It is clear that more studies are required to fully elucidate the signal transduction pathway of preconditioning and the coupling between its components.

5.4.2 Clinical implications

The finding that the cardioprotection achieved by activation of α_1 -adrenoreceptors and adenosine receptors is as potent as the one obtained with ischaemic preconditioning and that their use in combination does not result in additional benefit has obvious major clinical implications because maximal protection can be attained without the need to occlude the coronary arteries to induce ischaemia. The procurement of cardioprotection with stimuli of receptors as diverse as α_1 adrenoreceptors and adenosine receptors can be clinically advantageous because some of these agents may be contraindicated in certain conditions (e.g. α_1 -adrenoreceptor agonists in hypertension, adenosine in the presence of alterations of the cardiac conduction system). Furthermore, blockade of one of these sarcolemmal receptors does not preclude cardioprotection by activation of the other receptors. These interventions can be useful to combat ischaemic injury in different clinical conditions such as coronary angioplasty, cardiac surgery and heart transplantation; however, it is necessary to mention that our studies were performed in an *in-vitro* preparation and therefore any extrapolation to the clinical setting should be made with caution.

The realization that cardioprotection by pharmacological and ischaemic preconditioning of the human myocardium is mediated by one obligatory signal

transduction pathway also opens the therapeutical window for direct manipulation of its components. Recently, we have demonstrated that although the myocardium from patients with poor left ventricular function (ejection fraction <30%) or with diabetes cannot be protected with ischaemic preconditioning, the mitoK_{ATP} channel opener diazoxide elicited protection in the former but not in the latter.⁵⁰⁰ This suggests that if part of the signal transduction cascade is affected by disease states, cardioprotection can still be obtained by bypassing the defective components. It is also of clinical relevance that blockade at any stage of the signal transduction involved in preconditioning does not seem to exacerbate injury suggesting that this pathway is solely used for cardioprotection and not in tissue injury.

The studies in this chapter have established the signal transduction mechanism and the order of the various components involved in preconditioning of the human myocardium. In the next two chapters I will investigate the impact of nicorandil and sulfonylureas, which are drugs commonly used in cardiac patients, on preconditioning and the signal transduction mechanism.

Chapter 6

The influence of nicorandil on preconditioning

6.1 INTRODUCTION

Nicorandil was first introduced in clinical practice in 1984 as the first in a new class of anti-angina drugs and since then it has become widely used for the control of angina as part of combination therapy and more recently it is being increasingly used as the first line and the sole treatment in both stable^{501,502} and unstable angina.⁵⁰³ Nicorandil is a nicotinamide nitrate ester that has been shown to have a comparable anti-angina effect to beta-blockers and calcium antagonists. It has a bimodal mechanism of action combining two vasodilator mechanisms, it increases potassium conductance in the cell membrane resulting in potassium outflow from the cell causing membrane hyperpolarization⁵⁰⁴ and also increases cellular levels of cGMP,⁵⁰⁵ both actions causing vasorelaxation. The nitrate like action of nicorandil dilates epicardial coronary arteries⁵⁰⁶ that results in an increase in the blood supply to the ischaemic region of the myocardium. In addition, nicorandil has been shown to open K_{ATP} channels in ischaemic cardiomyocytes⁵⁰⁷ and there is strong evidence that the mitoKATP rather than the sarcolemmal KATP channels are involved in the protection of ischaemic preconditioning,^{273,419,467,471} probably by decreasing the mitochondrial membrane potential.^{495,508} Yellon's laboratory has reported that nicorandil can mimic the protection of ischaemic preconditioning,⁵⁰⁹ which has led to the suggestion that patients receiving nicorandil for the control of angina may be permanently protected.510

The aims of this study were to investigate the effect of long-term administration of nicorandil: (i) on the tolerance of the human myocardium to ischaemia and (ii) on the protection of ischaemic and pharmacological preconditioning and (iii) on its signal transduction mechanism.

146

6.2 METHODS

6.2.1 Patient Selection and Experimental Preparation

Experiments were performed on muscle obtained from the right atrial appendage of patients undergoing elective coronary artery surgery in the cell necrosis model described in Chapter 2.⁴⁰⁵ As before patients were excluded if they had large atriums, atrial arrhythmias, poor left ventricular function (ejection fractions <30%), diabetes and right ventricular failure or were taking oral hypoglycaemic agents, opioid analgesia, or catecholamines. Patients on nicorandil had their last dose on the morning of surgery 2.5±0.4 hours prior to harvesting of the atrial appendage. These patients were on nicorandil for a mean of 18.6 ± 2.5 months and a mean dose of 20mg/day. Table 6-I contains the demographic and clinical data of all the patients included in these studies. The specimens were collected in oxygenated HEPES buffered solution at 4-5°C and immediately sectioned and prepared for study as described in Chapter 2.

Table 6-1: Demographic and clinical data of patients included in the studies.	
---	--

Study	Treatment	Number	Number	Age	Male:Female	Period of
		of	of	(Years)		exposure to
		patients	specimens			Nicorandil
						(Months)
1	No Nicorandil	7	24	67.1±6.3	5:2	0
	On Nicorandil	6	24	65.3±6.6	5:1	20.1±2.1
2	No Nicorandil	9	30	66.3±4.8	5:4	0
	On Nicorandil	8	30	66.8±7.2	6:2	16.7±2.1
3	No Nicorandil	8	30	67.6±3.6	7:1	0
	On Nicorandil	9	30	65.3±5.8	6:3	19.5±2.7

6.2.2 Assessment of tissue injury and viability

Tissue injury was determined by measuring the leakage of CK into the incubation medium during the 120min reoxygenation period and tissue viability was assessed by the reduction of MTT to a blue formazan product at the end of the experimental time as described in Chapter 2

6.2.3 Solutions and Drugs

The incubation medium was prepared daily with de-ionised distilled water as described in Chapter 2. Phenylephrine, prazosin, 5-hydroxydecanoate and anisomycin were used dissolved in de-ionised distilled water, while diazoxide and phorbol 12-myristate 13-acetate (PMA) were dissolved in DMSO. Anisomycin is an antibiotic that inhibits protein synthesis and has been demonstrated to activate p38MAPK while PMA is a phorbol ester that is widely used to activate PKC. All the drugs doses were chosen following extensive preliminary dose response experiments. All reagents were obtained from Sigma.

6.2.4 Experimental Protocols

All atrial muscles were allowed to equilibrate under aerobic conditions for 30 minutes prior to 90 minutes of simulated ischaemia and 120 minutes of reoxygenation. There were 6 specimens in each group from 6 different patients with a total of 6 to 9 patients being enrolled in each study.

Study 1: To investigate the effect of the long-term administration of nicorandil on the myocardial tolerance to ischaemia and on the protection of ischaemic and pharmacological preconditioning with phenylephrine as shown in Figure 6-I:

Atrial muscles obtained from appendages of patients treated or not treated with nicorandil were randomly assigned to one of the following groups: (i) aerobic control, (ii) simulated ischaemia/reoxygenation (SI/R) alone, (iii) ischaemic preconditioning (IP) with 5 minutes of SI and 5 minutes R and (iv) phenylephrine (0.1μ M) for 5 minutes and 5 minutes washout prior to SI/R.

Study 2: To investigate the effect of the long-term administration of nicorandil on the responsiveness of mito K_{ATP} channels during preconditioning as shown in Figure 6-I: Atrial slices obtained from appendages of patients treated or not treated with nicorandil were randomly assigned to one of the following groups: (i) aerobic control, (ii) SI/R alone, (iii) IP with 5 minutes of SI and 5 minutes R, (iv) diazoxide (100µM), a Mito K_{ATP} channel opener, for 10 minutes prior to SI/R and (V) 5-hydroxydecanoate (1mM), a Mito K_{ATP} channel blocker, for 10 minutes prior to SI/R.

Study 3: To investigate the effect of the long-term administration of nicorandil on the kinases pathway involved in preconditioning as shown in Figure 6-III:

Atrial slices obtained from appendages of patients treated with or not treated with nicorandil were randomly assigned to one of the following groups: (i) aerobic control, (ii) SI/R alone, (iii) IP with 5 minutes of SI and 5 minutes R, (iv) phorbol 12myristate 13-acetate (PMA) (1 μ M), a PKC activator, for 10min prior to SI/R and (v) anisomycin (1nM), a p38MAPK activator, for 10min prior to SI/R.

149

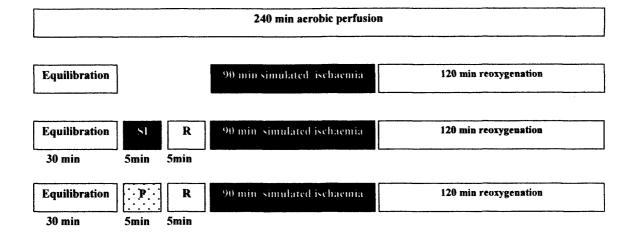


Figure 6-I: Schematic representation of the protocol for study 1. The same protocol was applied on atrial tissue obtained from patients treated and not treated with nicorandil. SI: simulated iscahemia, R: reoxygenation, P: phenylephrine.

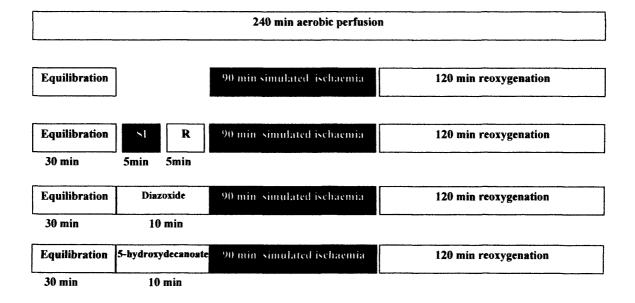


Figure 6-II: Schematic representation of the protocol for study 2. The same protocol was applied on atrial tissue obtained from patients treated and not treated with nicorandil. SI: simulated iscahemia, R: reoxygenation.

240 min aerobic perfusion						
Equilibration		90 min simulated ischaemia	120 min reoxygenation			
Equilibration 30 min	SI R 5min 5min	90 min-simulated ischaemia	120 min reoxygenation			
Equilibration	PMA 10 min	90 min simulated ischaemia	120 min reoxygenation			
Equilibration	Anisomycin	90 min simulated ischaemia	120 min reoxygenation			
30 min	10 min					

Figure 6-III: Schematic representation of the protocol for study 2. The same protocol was applied on atrial tissue obtained from patients treated and not treated with nicorandil. SI: simulated iscahemia, R: reoxygenation, PMA: phorbol 12-myristate 13-acetate.

6.2.5 Statistical analysis

All data are presented as mean \pm standard error of the mean (SEM). Mean values were compared by ANOVA with application of a post hoc Tukey's test. Statistical significance was taken as p<0.05.

6.3 RESULTS

The effect of the long-term administration of nicorandil on the myocardial tolerance to ischaemia and on the protection of ischaemic and pharmacological preconditioning with phenylephrine (Study 1): As shown in Figures 6-IVA and 6-IVB, the increased CK leakage and decrease in MTT reduction induced by ischaemia/reoxygenation were similar in the muscles from patients with and without long-term nicorandil treatment. They also show that ischaemic and pharmacological preconditioning with phenylephrine resulted in identical protection in the nicorandil-free group but they failed to protect the myocardium in the nicorandil-treated group.

The effect of the long-term administration of nicorandil on the responsiveness of mitoK_{ATP} channels during preconditioning (Study 2): As expected, Figures 6-VA and 6-VB show that the selective opening of mitoK_{ATP} channels with diazoxide resulted in a protection (i.e. reduced CK leakage and increased MTT reduction) similar to that of ischaemic preconditioning with no detrimental effect beyond that of ischaemia/reoxygenation alone when the channels were blocked with 5-hydroxydecanoate. In contrast with these results, diazoxide did not protect the myocardium in the nicorandil-treated group.

The effect of the long-term administration of nicorandil on the kinases pathway involved in preconditioning (Study 3): The results shown in Figures 6-VIA and 6-VIB demonstrate that activation of PKC and p38MAP kinase resulted in a similar protection to that of IP as shown by the CK leakage and MTT reduction values in both nicorandil-free and nicorandil-treated groups.

152

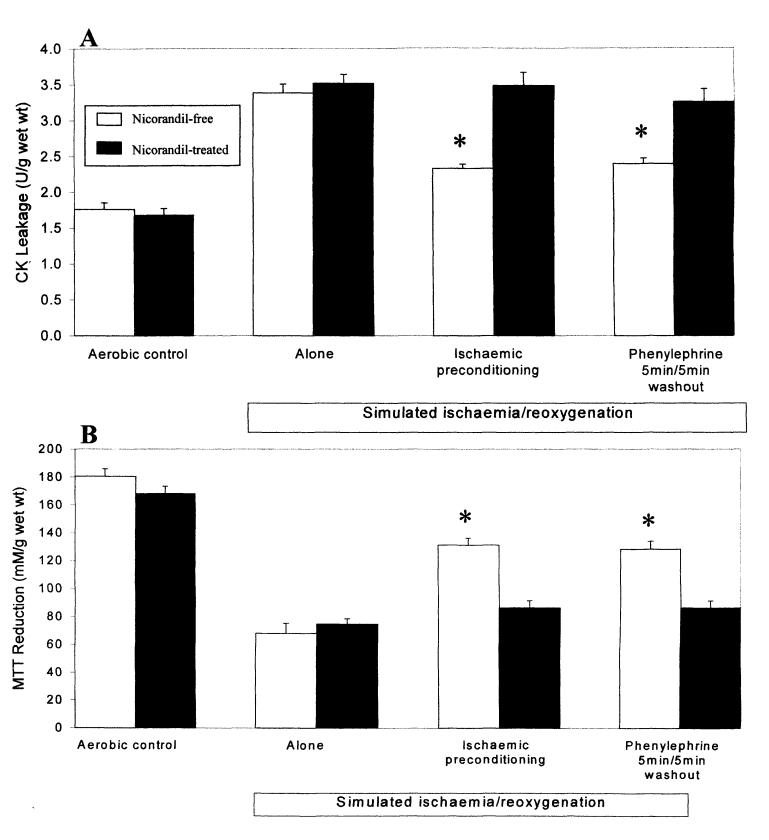


Figure 6-IV: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the effect of the long-term administration of nicorandil on the myocardial tolerance to ischaemia and on the protection of ischaemic and pharmacological preconditioning with phenylephrine (Study 1). Data are expressed as mean \pm SEM of six experiments. *p<0.05 vs. simulated ischaemia/reoxygenation alone group.

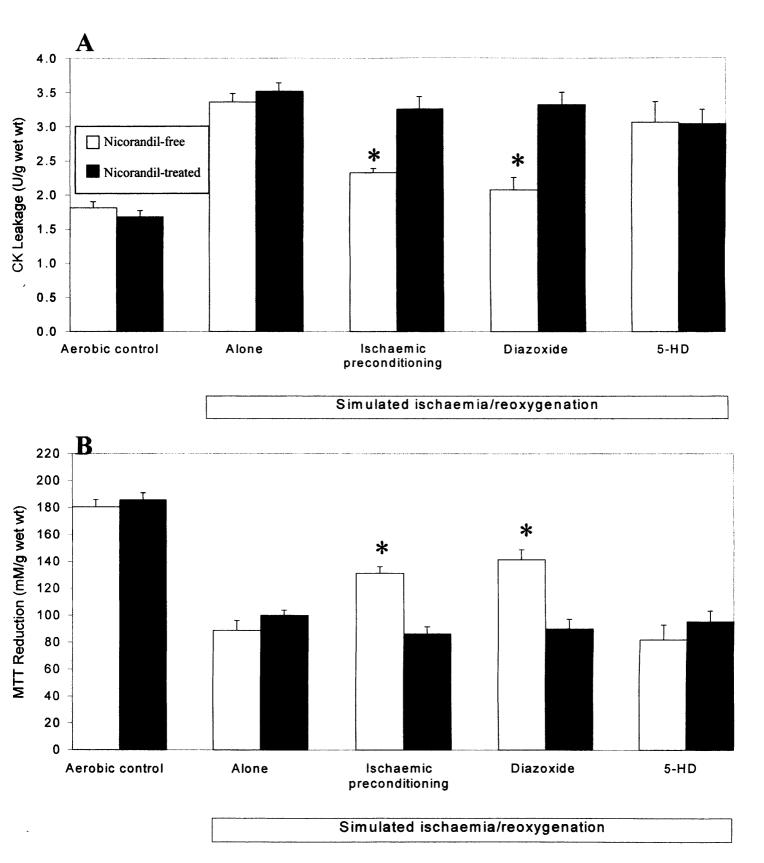


Figure 6-V: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the effect of the long-term administration of nicorandil on the responsiveness of mitoK_{ATP} channels during preconditioning (Study 2). Data are expressed as mean \pm SEM of six experiments. *p<0.05 vs. simulated ischaemia/reoxygenation alone group. (5-HD: 5-hydroxydecanoate).

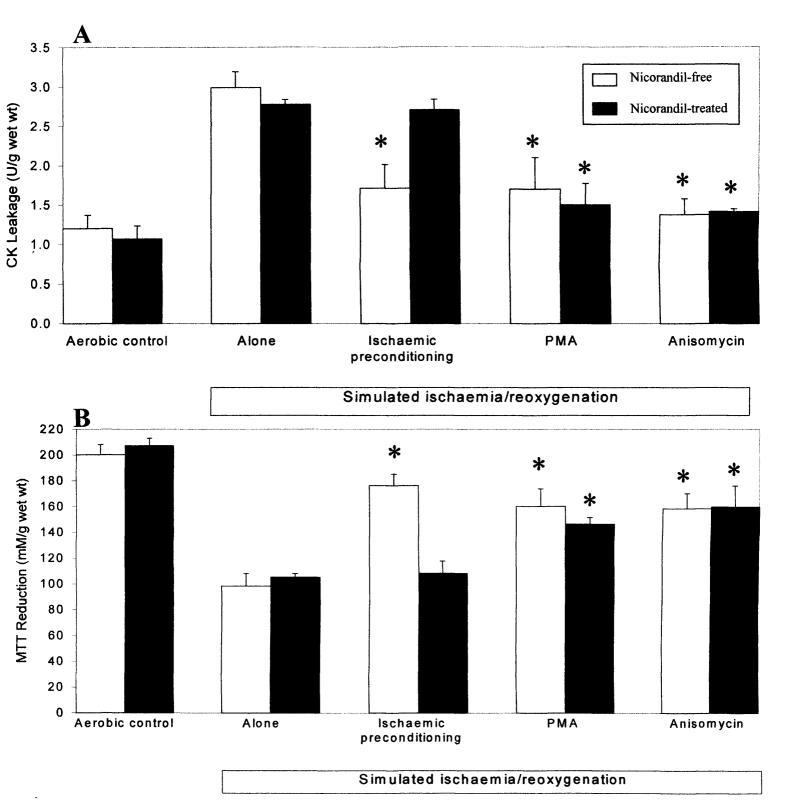


Figure 6-VI: Creatine Kinase (CK) leakage into the media (A) during the 120 min reoxygenation period and MTT reduction by the slices (B) at the end of the reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to investigate the effect of the long-term administration of nicorandil on the kinases pathway involved in preconditioning (Study 3). Data are expressed as mean \pm SEM of six experiments. *p<0.05 vs. simulated ischaemia/reoxygenation alone group. (PMA: phorbol 12 myristate 13-acetate).

6.4 DISCUSSION

The present studies have demonstrated that the long-term administration of nicorandil, a mito K_{ATP} channel opener⁵⁰⁹ and nitric oxide donor,⁵¹¹ abolishes the ability of the human myocardium to be protected by ischaemic and pharmacological preconditioning without exacerbating the susceptibility to ischaemic injury. In addition, they have shown that the likely cause of the failure to precondition the myocardium of patients on nicorandil is the unresponsiveness of the mito K_{ATP} channels since protection cannot be obtained with diazoxide, a specific mito K_{ATP} channel opener, but can be elicited by activation of PKC and p38MAPK that are downstream of mito K_{ATP} channels in the signalling transduction cascade of preconditioning.⁵¹² These results have important clinical implications and shed light into the mechanism of protection by preconditioning which are discussed below.

Opening of the mito K_{ATP} channels has been demonstrated to be an obligatory step in the signal transduction mechanism of preconditioning.^{273,467,471} Thus, nicorandil and other mito K_{ATP} channel openers have been shown to mimic the cardioprotection of ischaemic preconditioning when given acutely (i.e. immediately before the ischaemic insult) in both animal^{467,507,510} and human studies.^{273,471} As a result, and as suggested by Carr and Yellon,⁵¹⁰ one might be tempted to hypothesize that the long-term administration of mito K_{ATP} channel openers induces a permanent state of protection against ischaemic injury. However, the present studies are the first to report that when mito K_{ATP} channel openers are given on a long-term basis, as it occurs clinically, these channels become unresponsive with loss of the cardioprotection of preconditioning. My findings contrast with those reported by Carr and Yellon⁵¹⁰ showing that the longterm administration of nicorandil is actually protective. Their and our studies used human atrial myocardium and the only difference between the two studies is that they assessed recovery of contractile function in their study as opposed to tissue viability in ours, which makes it difficult to find an obvious explanation. Further fuel is added to the controversy when the same authors observed that the protection of the myocardium of patients receiving long-term nicorandil is in fact abolished by the application of ischaemic preconditioning.⁵¹⁰ These results require clarification because it is difficult to understand how two protective interventions using identical signal transduction mechanism can annul each other.

The mechanism by which the long-term administration of nicorandil renders the mito K_{ATP} channels unresponsive to precondition with ischaemia and with diazoxide is not completely elucidated by the present studies but they have shown that the activation of kinases, that I have previously shown to be downstream of mito K_{ATP} channels in Chapter 5, is unaffected because their activation can still elicit protection. It has been suggested that the generation of free radical species is the link between mito K_{ATP} channels and activation of PKC.⁴⁶⁷ If this is the case, then it may be speculated that a permanent opening state of mito K_{ATP} channels results in a reduction in the formation of free radicals, a thesis that gains support by the demonstration that nicorandil posses antioxidant properties.⁵¹²

The present studies raise fundamental questions on the clinical utility and safety of nicorandil and other $mitoK_{ATP}$ channel openers for the control of angina symptoms. The permanent opening of the $mitoK_{ATP}$ channels appears to deprive the heart from the intrinsic protective mechanism of preconditioning that may be a risk factor in the presence of ischaemic heart disease. Therefore if the beneficial action of nicorandil is solely due to its nitrate effect, then the use of this compound may not be fully justified. However if, as discussed earlier, the maintenance of mitoKATP channels in an open state may reduce the generation of free radicals and oxidative stress then these beneficial effects of nicorandil may counterbalance the loss of preconditioning. Indeed oxidative stress has been suggested as an important mechanism of many disease states including the inflammatory response in diabetes,⁵¹³ atherosclerosis,⁵¹⁴ cardiac hypertrophy⁵¹⁵ and heart failure.⁵¹⁶ It is clear that further experimental and clinical studies are required to fully elucidate the mechanism and the clinical repercussions of nicorandil and similar agents on ischaemic heart disease and ischaemic syndromes. This question in fact has partly been answered by the IONA study group.⁵¹⁷ This study compared nicorandil (20mg twice daily) with placebo in 5,126 high-risk patients with stable angina. All patients required further antianginal treatment at recruitment and took the study drug in addition to optimised standard antianginal therapy. The IONA study revealed that fewer patients in the nicorandil group experienced the combined primary end-point of coronary heart disease death, non-fatal MI or unplanned admission to hospital with cardiac chest pain (13.1% vs.15.5%; relative risk 0.83, 95% CI 0.72-0.97; mean follow-up 1.6 years). However, the main apparent benefit for the group treated with nicorandil was a reduction in unplanned admission, as there was no difference between nicorandil and placebo in the combined secondary endpoint of coronary heart disease death or nonfatal MI. Furthermore, the IONA study only assessed the role of nicorandil as an 'add-on' therapy. However, data from the IONA study would suggest that nicorandil may be a worthwhile add-on therapy for high risk patients of a cardiovascular event as 66% of patients in IONA had a previous MI. Although, as nicorandil was used with various combinations of antianginals including beta-blockers, calcium channel blockers and long-acting nitrates, this study does not provide information as to when to add in nicorandil.

It is necessary to mention that I performed these studies in an *in vitro* preparation that was not electrically stimulated (i.e. non-beating) and it was not possible to obtain functional data and therefore any extrapolation to the clinical setting should be made with caution. Another potential limitation of my studies was the use of atrial as opposed to ventricular myocardial tissue and again any extrapolation of the conclusions from these studies to the ventricular myocardium should also be made with caution.

Although these studies have demonstrated the unresponsiveness of the mitoK_{ATP} channels as the cause of failure to precondition the myocardium of nicorandil- treated patients, they show that protection can still be obtained by direct activation of PKC or p38MAPK that are downstream of mitoK_{ATP} channels in the signal transduction pathway of ischaemic preconditioning. Therefore protection can be elicited by bypassing the steps of the transduction cascade that may be affected by disease states such as diabetes or heart failure⁵⁰⁰ or by medication such as sulfonylureas and antiangina treatment such as nicorandil as shown from the current studies. Undoubtedly greater understanding of the various elements participating in the signal transduction pathway and identification of agents with selective activity on those factors to avoid unwanted side effects will be required before its exploitation may be considered in the clinical setting.

Chapter 7

The influence of sulfonylureas on preconditioning

,

.

7.1 INTRODUCTION

Sulfonylureas are widely used in the treatment of type 2 diabetes. They stimulate insulin secretion from pancreatic β -cells by closing their principal target in the cell membrane, the ATP-sensitive potassium (K_{ATP}) channel. Blocking of K_{ATP} channels results in the depolarisation of the cell membrane, thereby triggering the opening of voltage-gated Ca²⁺ channels, leading to the elevation of intracellular Ca²⁺ and the stimulation of insulin secretion.⁵¹⁸ However, K_{ATP} channels of differing subtypes are also expressed in both cardiac and vascular smooth muscle cells, and inhibition of these channels by sulfonylureas may be related to certain cardiovascular side effects of the drugs.^{519,520}In the heart, there is extensive evidence that K_{ATP} channels are involved in the cardioprotection induced by IP,⁴¹⁹ and the sulfonylurea glibenclamide is known to inhibit such protection.^{298,307,500}

The exact identity of the channels involved in cardioprotection and the mechanism by which this occurs has been the subject of much recent controversy. A considerable body of pharmacological evidence, based on the selectivity of the K_{ATP} channel opener diazoxide and the blocker 5-hydroxydecanoate (5-HD), led to suggestions that a mitochondrial K_{ATP} channel is involved in IP.^{470,471,521} However the molecular composition of any such mitochondrial K_{ATP} channel remains unconfirmed, while the selectivity of these compounds has also been questioned.⁵²² In particular, diazoxide and 5-HD have recently been shown to exert effects on mitochondrial metabolism that appear unrelated to K_{ATP} channels, but which might account for their effects on cardioprotection.⁵²³ Furthermore, in mice, knockout experiments suggest that the Kir6.2 subunit of cardiac sarcolemmal K_{ATP} is required for protection by IP.

Despite these considerations, the known specificity of sulfonylureas for their respective receptors⁵²⁴ may explain their differential effects on IP. This view is consistent with recent evidence demonstrating that, unlike glibenclamide, the sulfonylurea glimepiride does not abolish the protection of ischaemic preconditioning.^{525,526} Another sulfonylurea in wide clinical use, gliclazide, shows high selectivity for pancreatic over cardiac K_{ATP} channels.⁵²⁷ In the present study, I have therefore compared the dose-dependent effects of gliclazide with those of glibenclamide on IP in a human tissue model.

Diabetes mellitus is a common disease in the general population and particularly in patients with ischaemic heart disease. It has been associated with increased morbidity and mortality in cardiac surgery.⁵²⁸ This may be due to the effects of diabetes on the various organs and vasculature. However, K_{ATP} channel blockade by sulfonylureas may also contribute to the poor outcome of diabetic patients subjected to myocardial ischaemia.^{518,529} We hypothesized that these clinical observations might correlate with the loss of cardioprotection in diabetic tissue *per se*, since recent findings in the human atrial appendage model are consistent with the protective mechanism activated by diazoxide or IP, possibly the mito K_{ATP} channel or another mitochondrial mechanism, lying upstream of PKC and p38MAPK in the IP signal transduction pathway. Accordingly, the negative effect of sulfonylureas on protection by preconditioning might be offset by stimulation of factors downstream of mitochondria and K_{ATP} channels. Here we have therefore investigated whether the block by glibenclamide of cardioprotection by IP can be bypassed following stimulation of downstream signal transduction cascades.

7.2 METHODS

7.2.1 Experimental Preparation

Experiments were performed on trabeculae muscle sections obtained from the right atrial appendage of patients undergoing elective coronary artery bypass graft surgery or aortic valve replacement. We employed the cell necrosis model described in Chapter 2.⁴⁰⁵ Donor patients were excluded if they had enlarged atria, diabetes mellitus, atrial arrhythmias, poor left ventricular function (ejection fraction <30%), right ventricular failure or were receiving oral hypoglycaemic agents, opioid analgesia, K_{ATP} channel openers or catecholamines. The demographic data of all the patients included in these studies is included in Table 7-I. The specimens were collected in oxygenated Krebs Henseleit HEPES buffer (KHH) and sliced immediately at 4-5°C as described in Chapter 2.

Study	Number of patients	Number of specimens	Male:Female	Age
Study 1	17	88	11:6	62.4±6.8
Study 2	14	72	10:4	63.3±7.1

Table 7-I: Demographic data of all the patients included in the studies.

7.2.2 Solutions and Chemicals

The incubation medium was prepared daily with de-ionised distilled water as described in Chapter 2. All the chemicals were purchased from Sigma Chemicals. Gliclazide was provided by Technologie Servier (Orleans, France).

7.2.3 Experimental Time Course

All the muscle sections (between three and five per specimen) were equilibrated at 37°C for a 30min period. Some of the preparations were added to new flasks, which also contained 10ml of oxygenated medium, for another 210min (240min total), to serve as time-matched aerobic controls. The remaining preparations were subjected to a 90min period of SI at 37°C as described above. Following this the muscle sections were R for a further 120min by incubation in 10ml of oxygenated medium at 37°C with added glucose. At the end of the experimental protocols, aliquots of the incubation media used during the 120min reoxygenation period were collected for the assessment of CK leakage while the tissue was taken for the assessment of cell viability by reduction of MTT. The drugs under test were added for 10min at the end of the equilibration period and before the induction of SI.

7.2.4 Study groups

There were 8 specimens, each from a different patient group, for each protocol.

Study 1: To investigate whether the effect of glibenclamide and gliclazide on ischaemic preconditioning is dose dependent. The following groups were studied as shown in Figure 7-I: (i) time matched aerobic control, (ii) 90min simulated ischaemia/120min reoxygenation (SI/R) alone, (iii) IP with 5min simulated ischaemia

and 5min reoxygenation prior to SI/R, (iv to vii) glibenclamide at various concentrations (0.1, 1, 3 or 10μ M) for 10min prior to IP and (viii to xi) gliclazide at various concentrations (1, 10, 30 or 100μ M) for 10min prior to IP.

Study 2: To investigate whether the abolition of preconditioning-induced protection by glibenclamide can be offset by stimulation of the signal transduction cascade downstream to mito K_{ATP} channels the following groups were studied as shown in Figure 7-II: (i) time matched aerobic control, (ii) 90min SI/120min R alone, (iii) IP with 5min simulated ischaemia and 5min reoxygenation prior to SI/R, (iv) diazoxide (100µM) for 10min prior to SI/R, (v) phorbol 12-myristate-13-acetate (PMA) (1µM) for 10min prior to SI/R, (vi) anisomycin (1nM) for 10min prior to SI/R, (vii) glibenclamide (1µM) for 10 min prior to diazoxide (100µM) administered for another 10min and then followed by SI/R, (viii) glibenclamide (1µM) for 10 min prior to PMA (1µM) administered for another 10min and then followed by SI/R, (ix) glibenclamide (1µM) for 10 min prior to anisomycin (1nM) administered for another 10min and then followed by SI/R. The concentration of each of the agents used was chosen from previous studies from our laboratory.

7.2.5 Assessment of tissue injury and viability

Tissue injury was determined by measuring the leakage of CK into the incubation medium during the 120min reoxygenation period and tissue viability was assessed by the reduction of MTT to an insoluble blue formazan product at the end of the experimental period as described in Chapter 2.

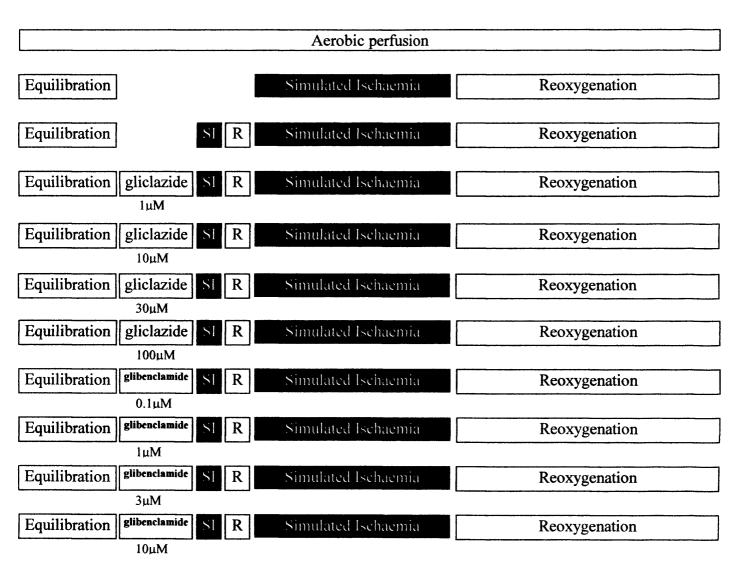


Figure 7-I: Schematic representation of the protocol for Study 1. SI: simulated ischaemia, R: reoxygenation.

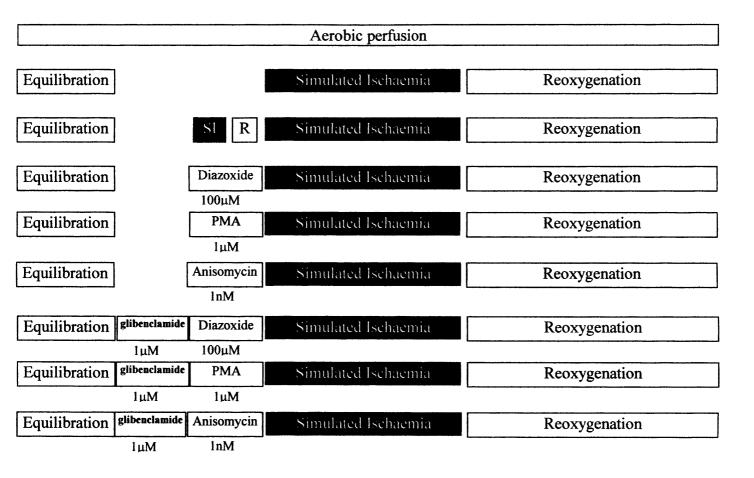


Figure 7-II: Schematic representation of the protocol for Study 2. SI: simulated ischaemia, R: reoxygenation, PMA: phorbol 12-myristate-13-acetate.

7.2.6 Data Analysis

Results were expressed as mean values \pm SEM. Statistical significance was tested using analysis of variance (ANOVA) followed by the the application of post-hoc Tukey's test, and p < 0.05 was considered statistically significant. Dose-response relations were fitted to the following equation using the least squares algorithm in Sigmaplot (Jandel Scientific).

$$y = 1 - \left[1 + (x / K_i)^H\right]^{-1}$$
 Equation (1)

Where y is the fractional block of IPC protection, x is the sulfonylurea concentration, K_i is the concentration for half inhibition, and H is the Hill coefficient.

Dose-response curves for gliclazide inhibition of protection as manifest by the increase in CK release following IP were constructed by calculating y, the fractional inhibition of IP in the presence of gliclazide as:

$$y = \{ (CK_{Glic} - CK_{IPC}) / (CK_{SIR} - CK_{IPC}) \}$$
 Equation (2)

Where CK_{SIR} , CK_{IP} , and CK_{Glic} are the levels of MTT reduction with SI/R alone, in the presence of IP, and with ischaemic preconditioning plus gliclazide at the given concentration, respectively. Similar curves were constructed for MTT reduction.

7.3 RESULTS

All the specimens entering into the studies were included in the analysis.

Effects of glibenclamide and gliclazide on ischaemic preconditioning

Figures 7-IIIA and 7-IIIB show the effects of the sulfonylureas glibenclamide and gliclazide on IP as assessed by CK release and MTT reduction, respectively. SI/R increased CK release substantially (4.4-fold) over that observed in aerobic control

slices, indicative of increased tissue damage (Figure 7-IIIA). Preconditioning with 5 minutes simulated ischaemia followed by five minutes reoxygenation had a protective effect, so that SI/R increased CK release by only 2.2-fold over the aerobic control under these conditions (p<0.05 compared to SI/R alone). Glibenclamide abolished protection by IP at all concentrations used (0.1, 1, 3, and 10 μ M).

In contrast, gliclazide at 1 μ M did not significantly reduce protection by IP. At 10 μ M protection was reduced, but not abolished (p<0.05 compared to SI/R alone). However, the protective effect of IP was lost at the higher concentrations of gliclazide tested (30 and 100 μ M). Figure 7-IIIC shows the dose-response curve for the inhibition of IP protection by gliclazide calculated according to equation (2). The fitted line gives a gliclazide concentration for half-inhibition of 4.5 μ M.

Figure 7-IIIB shows that the results obtained from measurements of MTT reduction were essentially similar to those described above for CK release. SI/R reduced MTT reduction from that observed in aerobic controls, consistent with reduced tissue viability, and IP had a protective effect, increasing MTT reduction above the level seen with SI/R alone. As seen for CK release, glibenclamide abolished protection by IP at all concentrations tested, while gliclazide at 1 μ M did not significantly reduce protection. At 10 μ M protection was reduced, but not abolished, and the protective effect of IP was lost at 30 and 100 μ M gliclazide (Figure 7-IIIC). Fitting the dose-response curve (not shown) gave a gliclazide concentration for half-inhibition of 4.8 μ M, very close to the value obtained for CK release.

Effect of stimulation of the downstream transduction cascade of preconditioning in the presence of glibenclamide

Figure 7-IVA and 7-IVB show the effect of glibenclamide on protection induced by stimulation of the preconditioning pathway at various stages. As previously reported in Chapter 5, diazoxide (100 μ M), PMA (1 μ M) or anisomycin (1nM) resulted in an equivalent reduction in CK leakage and preservation of MTT to that induced by IP itself. Interestingly, however, whilst the protection induced by diazoxide was abolished in the presence of glibenclamide, the protection obtained by PKC activation with PMA or by p38MAPK activation with anisomycin remained unaffected.

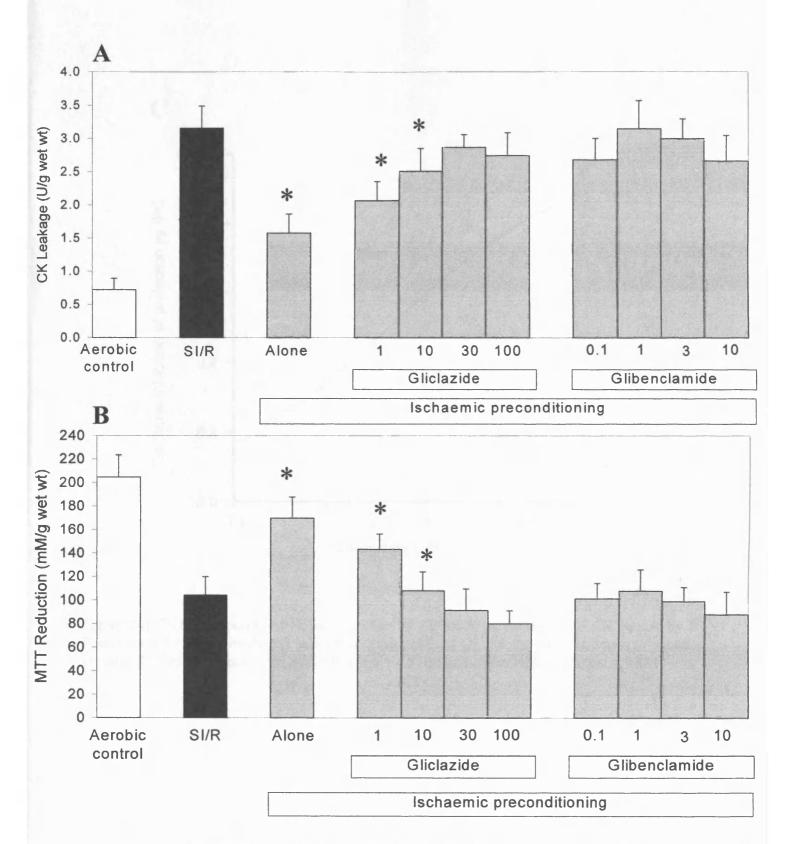


Figure 7-III: (A) Creatine Kinase (CK) leakage into the media during the 120 min reoxygenation period, (B) MTT reduction by the slices at the end of the reoxygenation period. Human atrial myocardium was subjected to the protocols in Study 1 to investigate the dose-response of glibenclamide and gliclazide in μ M on ischaemic preconditioning. Data are expressed as mean (±SEM) for n=8 (*p<0.05 vs SI/R alone).

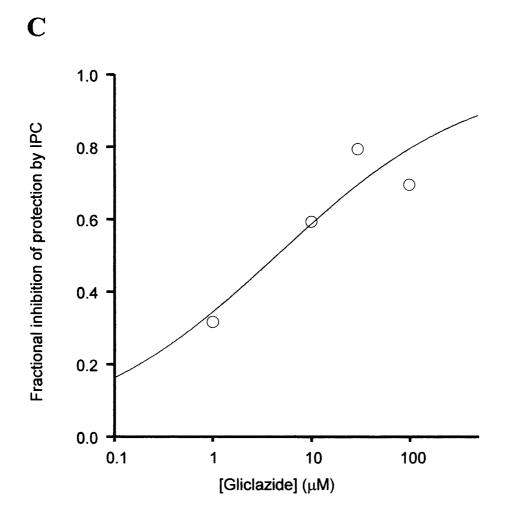


Figure 7-IIIC Dose-response curve for the effect of gliclazide on protection of CK release by IP. Points show fractional inhibition calculated using equation (2) and the curve is drawn to equation (1) with K_i , the concentration for half-inhibition = 4.5 μ M and H, the Hill coefficient = 0.431.

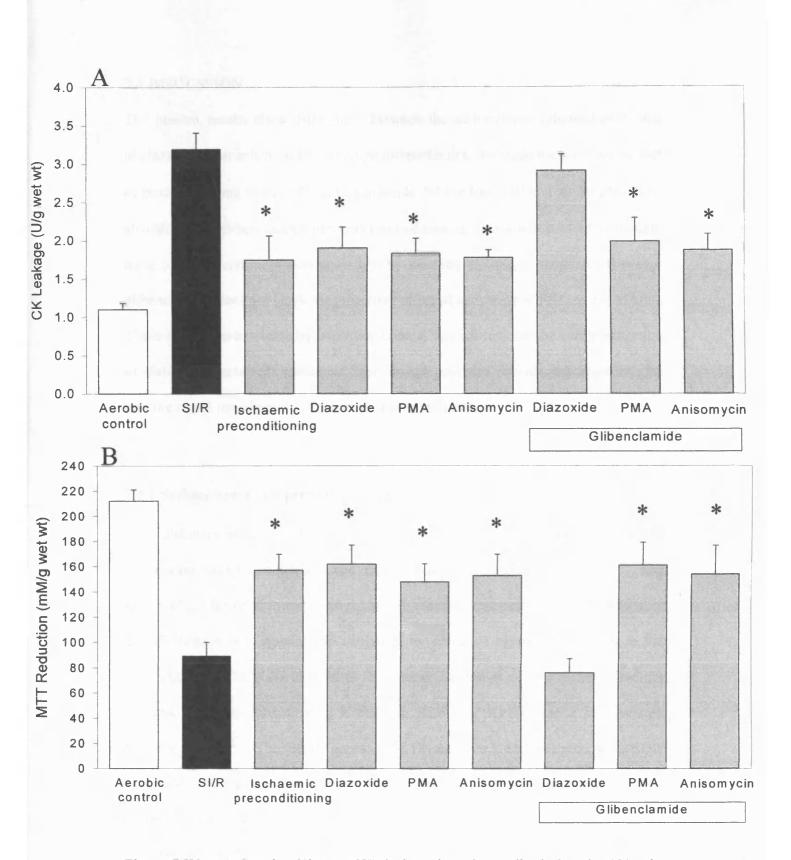


Figure 7-IV: (A) Creatine Kinase (CK) leakage into the media during the 120 min reoxygenation period, (B) MTT reduction by the slices at the end of the reoxygenation period in human atrial myocardium subjected to various protocols in Study 2 to investigate the effect of glibenclamide on the signal transduction mechanism of preconditioning. Data are expressed as mean (\pm SEM) for n=8. (*p<0.05 vs SI/R alone).

7.4 DISCUSSION

The present results show differences between the sulfonylureas glibenclamide and gliclazide in their effect on IP. Although glibenclamide abolished the protective effect of preconditioning even at 0.1 μ M, gliclazide did not block IP at 1 or 10 μ M. They also show that glibenclamide prevents preconditioning by diazoxide which is thought have a mitochondrial action, possibly by opening mitoK_{ATP} channels. However glibenclamide does not block the protective effect of activation of PKC or p38MAPK. These results have potentially important clinical implications for the cardioprotection of diabetic patients with ischaemic heart disease and also provide important insights into the signal transduction mechanism of preconditioning.

7.4.1 Sulfonylureas and preconditioning

 K_{ATP} channels have been demonstrated to be involved in the signal transduction mechanism of both ischaemic and pharmacological preconditioning.^{352,471,521} The failure of gliclazide at lower doses to abolish the cardioprotective effect of ischaemic preconditioning may possibly be explained by sequence specific differences in the K_{ATP} channels. The K_{ATP} channel is an octameric complex of two different protein subunits: an inwardly-rectifying K-channel, Kir6.2 or Kir6.1, and a sulfonylurea receptor, SUR.^{530,531} The former acts as an ATP-sensitive K-channel pore while SUR is a channel regulator that endows Kir6.2 with sensitivity to drugs such as the inhibitory sulfonylureas and to K-channel openers. K_{ATP} channels in different tissues are composed of different Kir and SUR subunits. The different types of SUR subunit endow the K_{ATP} channels with different sensitivities to various drugs.⁵²⁴ Thus cloned K_{ATP} channels containing SUR1, the isoform expressed in the pancreas, are blocked by gliclazide with high affinity, whereas channels with the cardiac isoform SUR2A are not.⁵³² Similarly, in native tissues gliclazide shows >100-fold selectivity for K_{ATP} channels of native β -cells over sarcolemmal K_{ATP} channels of rat cardiac ventricular myocytes, while in contrast glibenclamide shows similar potency in both tissues.⁵²⁷ The present results suggest a similar difference between pancreatic and cardiac effects for these two sulfonylureas in human tissue. The doses of glibenclamide and gliclazide were selected to be equipotent in stimulation of insulin secretion, but only supratherapeutic doses of gliclazide blocked preconditioning while all doses of glibenclamide abolished the cardioprotection.

7.4.2 Sequence of the signal transduction of preconditioning

The elucidation of the factors involved in the signal transduction pathway of preconditioning has been the subject of intense investigation and although the participation of factors such as $PKC^{273,352,481}$ and K_{ATP} channels^{400,521,522} is well established, their relevant sequence of activation remains controversial. Evidence from our laboratory using human tissue shown in Chapter 5 as well as in the rabbit⁴⁶⁷ and rat⁴⁸³ suggests that PKC is in fact downstream of K_{ATP} channels, or at any rate of the stage in the protective pathway which is triggered by diazoxide, while PKC also appears to be upstream of p38MAPK in human and rabbit.⁴⁶⁷ The present findings are consistent with this sequence, since the K_{ATP} channel blocker glibenclamide did not prevent cardioprotection by direct pharmacological activation of PKC or p38MAPK.

7.4.3 Clinical implications

The findings from my studies obviously have implications for diabetic patients on sulfonylureas since the results imply that their myocardium can still benefit from the cardioprotective effect of preconditioning provided that a sulfonylurea that does not block IP at therapeutic doses is used. In terms of gliclazide, plasma levels have been reported to vary between 2.6 and 8 μ g/ml. or (8 to 23 μ M).^{533,534,535} Not all the drug is free in solution however and an estimated 95% of the drug will bind to proteins.⁵³⁶ From these data we estimate peak free gliclazide to be no higher than 0.4 to 1.15 μ M. If the isolated atrial tissue model we have used corresponds to events that occur in the intact heart in vivo, such concentrations should have minimal effects on preconditioning, and of course the average concentration will in any case be considerably lower than the peak values. Overall, this suggests that gliclazide can be used in patients with ischaemic heart disease without abolishing cardioprotection. It should be emphasized, however, that diabetes *per se* may be an additional cause for the failure to precondition the myocardium, as previously shown by our laboratory,⁵⁰⁰ and therefore under some circumstances both diabetes and sulfonylureas could contribute to the abolition of cardioprotection.

Another important implication of the current studies is that it may still be possible to induce the cardioprotective effect of ischaemic preconditioning in the presence of drug-induced mitochondrion-based dysfunction, such as blockade of K_{ATP} channels, by manipulation of the signal transduction pathway further downstream. PMA and anisomycin cannot be used *in vivo*, but it is possible that further research in this area could lead to improved agents that target downstream pathways for cardioprotection.

Having investigated the mechanism of cardioprotection by the first window of preconditioning in the human myocardium and whether this may be affected by agents on clinical use, I turned my attention in the next chapter to the characterization of the delayed or second window of protection of ischaemic and pharmacological preconditioning and to the investigation of the signal transduction mechanism involved.

Chapter 8

Delayed preconditioning of the human myocardium

8.1 INTRODUCTION

As explained before in this thesis, IP is an inherent protective mechanism that, induced by brief periods of ischaemia and reperfusion, protects the heart against prolonged ischaemic damage.²⁶³ This protection manifests itself in increased resistance to infarction,^{263,537,538} decreased reperfusion induced arrythmias^{187,539} and contractile dysfunction^{540,541} and slowing of adenosine triphosphate decline²⁶² during ischaemia. This endogenous protective mechanism has been shown to exist in all animal species studied including man.

The cardioprotective effect of ischaemic preconditioning occurs in two phases, the first is immediate and lasts for two to four hours⁴⁷⁹ while the delayed or second window of protection occurs at least 24 hours following the initial sub-lethal ischaemic insult and has been shown to last up to 72 hours in certain species.⁵⁴² The early or first window of protection has been extensively investigated and there is evidence that the beneficial effect is mediated by Protein Kinase C (PKC),⁵⁴³ p38 mitogen activated protein kinase (p38MAPK) and ATP-sensitive potassium (K_{ATP}) channels.^{544,545} The existence of delayed cardioprotection in the human myocardium has been previously demonstrated in this laboratory,⁴¹⁹ however the second window has not been fully characterised in man and the underlying signal transduction mechanism remains unclear.

The aims of these studies were: (i) to characterise the second window of ischaemic and pharmacological preconditioning using the *in vitro* model of simulated ischaemia and reoxygenation of human atrial myocardium described in Chapter 2, (ii) to examine whether the delayed cardioprotection is elicited in vivo by angina, and (iii) to investigate the role of $mitoK_{ATP}$ channels, PKC and P38MAPK in the signal transduction mechanism of protection.

8.2 METHODS

8.2.1 Patient Selection and Experimental Preparation

Experiments were performed on muscle obtained from the right atrial appendage of patients undergoing elective coronary artery surgery in the cell necrosis model of simulated ischaemia and reoxygenation described in Chapter 2. Identical exclusion criteria to those used in the previous chapters were used here and the demographic data of the patients included in these studies is shown in Table 8-I

Study	Number of patients	Number of specimens	Male:Female	Age(years)
1	17	64	11:6	65±2.3
2	51	240	38:13	63±5.1
3	15	75	13:2	61±3.8
4	23	104	17:6	64±4.4

Table 8-I: Demographic data of all the patients included in the studies.

8.2.2 Assessment of tissue injury and viability

Tissue viability was assessed by the reduction of MTT to a blue formazan product at the end of the experimental time and tissue injury was determined by measuring the leakage of CK into the incubation medium during the 120min reoxygenation period as described in Chapter 2.

8.2.3 Solutions and Chemicals

The incubation medium was prepared daily with de-ionised distilled water and contained (in mmol/l): NaCl₂ (118), KCl (4.8), NaHCO₃ (27.2), MgCl₂ (1.2), KH₂PO₄ (1.0) CaCl₂ (1.25), D-glucose (10), HEPES (20), 10% foetal calf serum and 100µl of gentamicin per 10 mls of solution. Phenylephrine, 5-hydroxydecanoate and anisomycin were used dissolved in de-ionised distilled water, while adenosine, diazoxide and phorbol 12-myristate 13-acetate (PMA) were dissolved in DMSO. Anisomycin is an antibiotic that inhibits protein synthesis and has been demonstrated to activate p38MAPK while PMA is a phorbol ester that is widely used to activate PKC. All the drugs doses were chosen following extensive preliminary dose response experiments. All reagents were obtained from Sigma Chemicals.

8.2.4 Study Protocols

All atrial muscles were allowed to equilibrate under aerobic conditions for 30 minutes prior to being included in a study protocol.

Study 1: To assess the durability and viability of the preparation

Atrial muscles (n=8/group) were aerobically perfused for various periods ranging from 0 to 480 hours.

Study 2: To define the second window of ischaemic and pharmacological preconditioning

The muscles were randomised into one of the following groups (n=8/group) as shown in Figure8-I: (i) aerobic time-matched control, (ii) 90 minutes of simulated ischaemic /120 minutes reoxygenation (SI/R), (iii) IP with 5 minutes of ischaemia and 5 minutes reoxygenation prior to SI/R, (iv) phenylephrine $(0.1\mu m)$ for 5 minutes/5 minute washout prior to SI/R and (v) adenosine (100 μ m) for 5 minutes/ 5 minutes washout prior to SI/R. Samples were aerobically perfused for varying periods of time (0, 12, 24, 48, 72, or 96 hours) following the preconditioning protocol and prior to the 90 minutes of SI/120 minutes R.

Study 3: To study the in vivo effect of angina on delayed preconditioning

In this study atrial appendages were taken from 15 patients undergoing coronary artery bypass surgery who have had a single episode of angina of between 5 and 10 minutes duration prior to surgery. All the patients were in hospital and accurate time of the episode of angina and duration were documented by medical and nursing staff. ECG and cardiac enzymes were taken at the time of angina and patients with evidence of myocardial infarction were excluded. These were taken from patients who had their angina at varying times from 5 hours to 81 hours prior surgery. The atrial appendages from each patient were then sliced and randomly assigned to one of the following groups as shown in Figure 8-II: (i) aerobic perfusion, (ii) 90 minutes SI followed by 120 minutes R, (iii) ischaemic preconditioning with 5 minutes ischaemia/5 minutes reoxygenation prior to SI/R (iv) phenylephrine (0.1µm) for 5 minutes and 5 minutes washout prior to SI/R.

Study 4: To investigate the role of mito K_{ATP} channels, PKC and p38MAPK in the signal transduction pathway of cardioprotection by delayed preconditioning

To achieve this, the following groups, also shown in Figure 8-III, were studied (n=8/group): (i) 24 hours aerobic perfusion, (ii) 90 minutes SI/120 minutes R, (iii) ischaemic preconditioning with 5 minutes ischaemia/5 minutes reoxygenation, (iv) phenylephrine (0.1 μ m) for 5 minutes/washout for 5 minutes, (v) diazoxide (100 μ m) for 10 minutes, (vi) PMA (1 μ m) for 10 minutes, (vii) anisomycin (1nm) for 10 minutes (viii) 5-hydroxydecanoate (100 μ m) for 10 minutes prior to ischaemic preconditioning, (ix) chelerythrine (10 μ m) for 10 minutes prior to ischaemic preconditioning, (x) SB 203508 (10 μ m) for 10 minutes prior to ischaemic preconditioning, (xi) 5-hydroxydecanoate (100 μ m) for 10 minutes prior to preconditioning with phenylephrine,(xii) chelerytherine (10 μ m) for 10 minutes prior to preconditioning with phenylephrine,(xii) chelerytherine (10 μ m) for 10 minutes prior to 10 minutes prior to preconditioning with phenylephrine,(xii) SB 203508 (10 μ m) for 10 minutes prior 10 minutes prior to preconditioning with phenylephrine, (xiii) SB 203508 (10 μ m) for 10 minutes prior 10 minutes prior to preconditioning with phenylephrine, (xiii) SB 203508 (10 μ m) for 10 minutes prior to preconditioning with phenylephrine, (xiii) SB 203508 (10 μ m) for 10 minutes prior to preconditioning with phenylephrine, (xiii) SB 203508 (10 μ m) for 10 minutes prior to preconditioning with phenylephrine. In groups (ii) to (xiii) each intervention was followed by 24 hours of aerobic perfusion prior to 90 minutes SI/120 minutes R.

8.2.5 Statistical analysis

All data are presented as mean \pm SEM. Mean values were compared by ANOVA with application of a post hoc Tukey's test. Statistical significance was taken as p<0.05.

	240 minutes aerobic perfusion					
Eq		90min SI	120min R			
Eq SI R			120min R			
EqPR		90min SI	120min R			
Eq A R		90min SI	120min R			
	240min + 12 hours aerobi	ic perfusion				
Eq	12 hours aerobic perfusion	90min SI	120min R			
Eq SI R	12 hours aerobic perfusion	90min SI	120min R			
Eq P R	12 hours aerobic perfusion	90min SI	120min R			
Eq A R	12 hours aerobic perfusion	90min SI	120min R			
240min + 24 hours aerobic perfusion						
Eq	24 hours aerobic perfusion	90min SI	120min R			
Eq SI R	24 hours aerobic perfusion	90min SI	120min R			
EqPR	24 hours aerobic perfusion	90min SI	120min R			
Eq A R	24 hours aerobic perfusion	90min SI	120min R			
240min + 48 hours aerobic perfusion						
Eq	48 hours aerobic perfusion	90min Sl	120min R			
Eq SI R	48 hours aerobic perfusion	90min SI	120min R			
Eq P R	48 hours aerobic perfusion	90min SI	120min R			
EqAR	48 hours aerobic perfusion	90min SI	120min R			
	240min + 72hours aerob	ic perfusion				
Eq	72 hours aerobic perfusion	90min SI	120min R			
Eq SI R	72 hours aerobic perfusion	90min SI	120min R			
Eq PR	72 hours aerobic perfusion	90min SI	120min R			
EqAR	72 hours aerobic perfusion	90min SI	120min R			
240min + 96 hours aerobic perfusion						
Eq	96 hours aerobic perfusion	90min SI	120min R			
Eq SI R	96 hours aerobic perfusion	90minSI	120min R			
EqPR	96 hours aerobic perfusion	90min SI	120min R			
EqAR	96 hours aerobic perfusion	90min SI	120min R			

Figure 8-I: Schematic representation of the protocol for study 2. Eq: 30 minutes equilibration, SI: simulated ischaemia, R: reoxygenation, P: phenylephrine, A: adenosine.

240min aerobic control				
Eq]		90 min SI	120min R
Eq	SI	R	90 min SI	120min R
Eq	Р	R	90 min SI	120min R
Eq	A	R	90 min Sl	120min R

Figure 8-II Schematic representation of the protocol for study 3. Eq: 30 minutes equilibration, SI: simulated ishaemia, R: reoxygenation, P: phenyephrine, A: adenosine.

24 hours aerobic perfusion						
Eq				24 hours aerobic perfusion	90min SI	120min R
Eq		SI	R	24 hours aerobic perfusion	90min SI	120min R
Eq		Р	R	24 hours aerobic perfusion	90min SI	120min R
Eq	DZX]		24 hours aerobic perfusion	90min SI	120min R
Eq	PMA]		24 hours aerobic perfusion	90min SI	120min R
Eq	ANS]		24 hours aerobic perfusion	90min SI	120min R
Eq	5HD	SI	R	24 hours aerobic perfusion	90min SI	120min R
Eq	CHE	81	R	24 hours aerobic perfusion	90min SI	120min R
Eq	SB	SI	R	24 hours aerobic perfusion	90min SI	120min R
Eq	5HD	P	R	24 hours aerobic perfusion	90min SI	120min R
Eq	CHE	Р	R	24 hours aerobic perfusion	90min SI	120min R
Eq	SB	P	R	24 hours aerobic perfusion	90min SI	120min R

10min 5min 5min

Figure 8-III: Schematic representation of the protocol for study 4. Eq: 30 minutes equilibration, SI: simulated ischaemia, R: reoxygenation, P: phenylephrine, DZX: diazoxide, PMA: phorbol 12 myristate 13-acetate, ANS: anisomycin, 5HD: 5-hydroxydecanoate, CHE: chelerythrine, SB: SB203580.

8.3 RESULTS

All specimens that were randomised and entered the study were included in the analysis.

Study 1; Durability and viability of the preparation:

As shown in Figure 8-IV, the mean MTT values for the first 12 days were similar to those observed in fresh muscle and in the muscle aerobically incubated for only 30 min; however, MTT was significantly reduced by more than half of the fresh muscles by 21 days of aerobic incubation. These results suggest that in this preparation the myocardial tissue remains viable for at least 12 days

Study 2; Characterization of the second window of protection:

Figure 8-VA shows that SI/R resulted in a significant decrease in MTT mean values and that both ischaemic and pharmacological preconditioning with phenylephrine or adenosine resulted in significant early protection (0 hours between preconditioning and SI/R – first window). Protection was lost 12 hours after the preconditioning intervention but this was regained by 24 hours, it was maintained up to 72 hours and then it was lost beyond this period. A mirror image of the MTT results were observed with the CK leakage values that are shown in Figure 8-VB, for the first 24 hours; however beyond this period CK release fell sharply in all study groups including the aerobically incubated group. Our laboratory has previously demonstrated⁴⁰⁵ that in this in vitro atrial muscle preparation CK is continuously released during aerobic incubation of the tissue and that therefore measurements of CK leakage into the tissue may not be an appropriate index of tissue injury beyond 24 hours of incubation.

Study 3; Delayed preconditioning by angina in vivo:

Figures 8-VIA and 8-VIB show the individual MTT and CK leakage values of atrial muscles from patients having angina prior to surgery and subjected to various protocols of ischaemic and pharmacological preconditioning. The results demonstrate that the muscles from patients presenting with angina \leq 20 hours of surgery were not preconditioned and that preconditioning with ischaemia and with phenylephrine and adenosine elicited similar cardioprotection. They also show that between 29 and 70 hours of the episode of angina the muscles are preconditioned and that preconditioning either with ischaemia or pharmacologically with phenylephrine or adenosine does not confer additional protection as reflected by the MTT and CK values. However, protection was lost beyond 70 hours of the angina episode and the tissue could be preconditioned again with ischaemia or pharmacologically.

Study 4; The role of mito K_{ATP} channels, PKC and P38MAPK in delayed preconditioning:

Figures 8-VIIA and 8-VIIB show the results for the MTT reduction and the CK leakage and demonstrate that preconditioning with ischaemia and pharmacologically with phenylephrine have a similar protection of the myocardial tissue at 24 hours. This protective effect was matched by opening of $mitoK_{ATP}$ channels with diazoxide and by activation of PKC with PMA or P38MAPK with anisomycin and blockade of each of these three factors resulted in the loss of the cardioprotective effect.

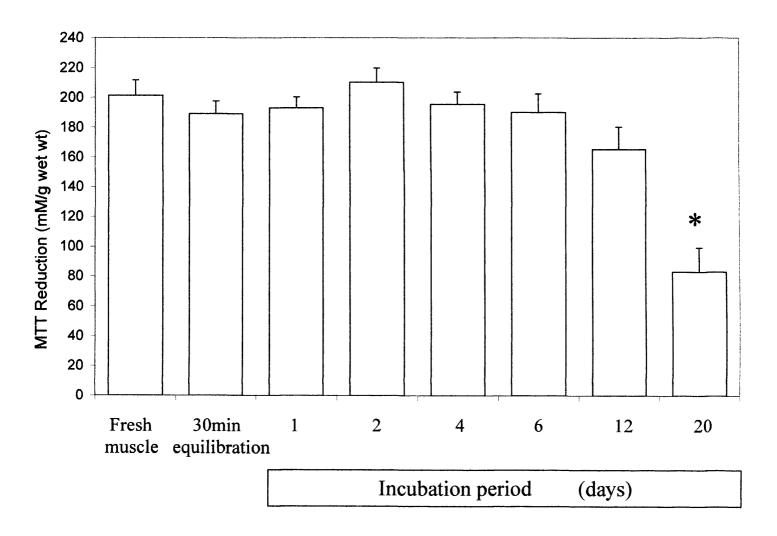
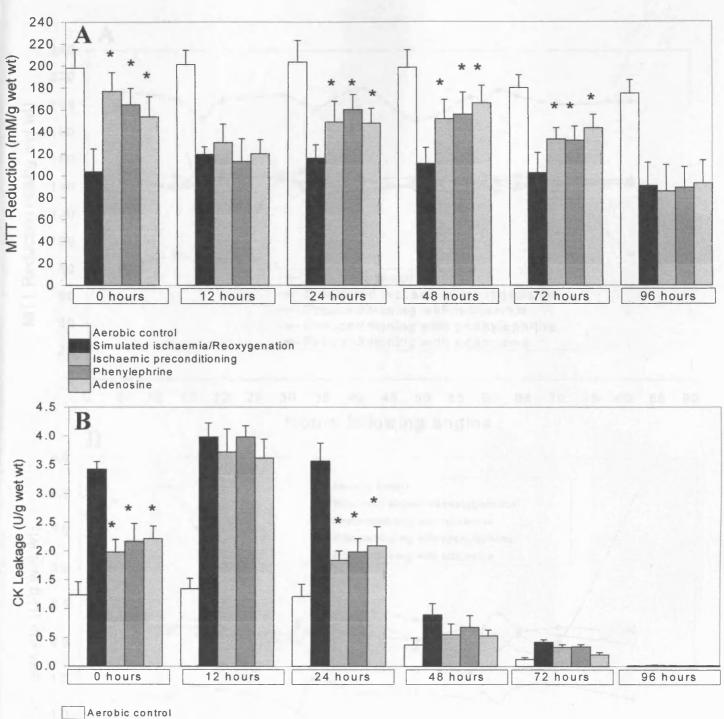



Figure 8-IV: MTT reduction in atrial myocardium at the end of increasing periods of aerobic incubation.

Simulated ischaemia/Reoxygenation Ischaemic preconditioning Phenylephrine Adenosine

Figure 8-V: MTT reduction at the end of the reoxygenation period (A) and creatine kinase (CK) leakage into the media (B) during the 120 min reoxygenation period in human atrial myocardium subjected to various protocols (see text for details) to define the second window of ischaemic and pharmacological preconditioning. Data are expressed as mean \pm SEM of eight experiments. *p<0.05 vs. corresponding simulated ischaemia/reoxygenation alone group.

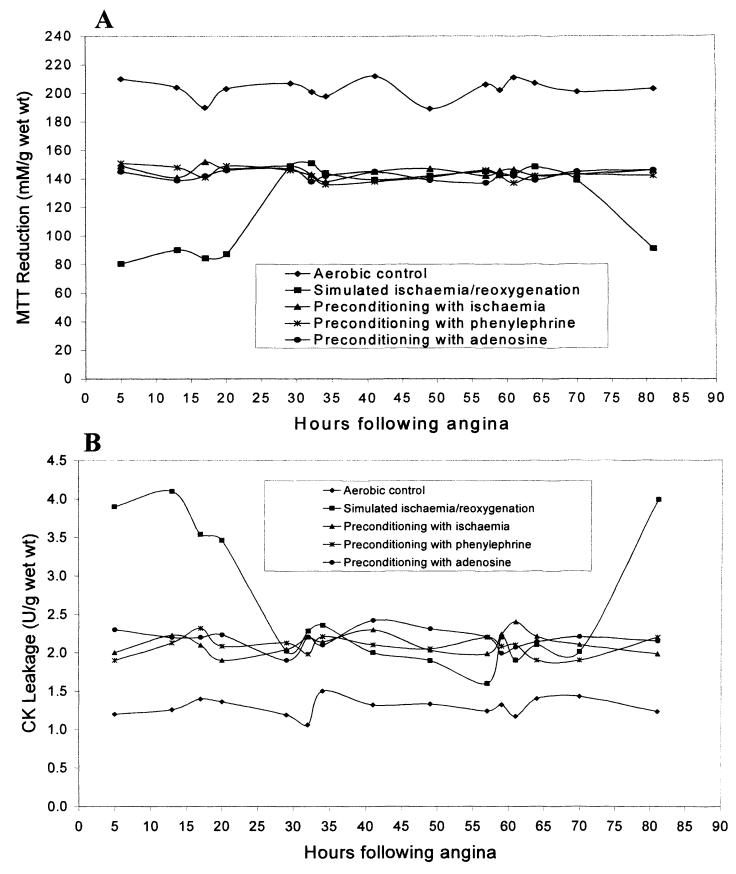


Figure 8-VI: MTT reduction by the slices at the end of the reoxygenation period (A) and creatine kinase (CK) leakage into the media (B) during the 120 min reoxygenation period by human atrial myocardium subjected to various protocols (see text for details) to study the effect of angina on preconditioning). Every time point represents the muscle from one patient subjected to the various protocols.

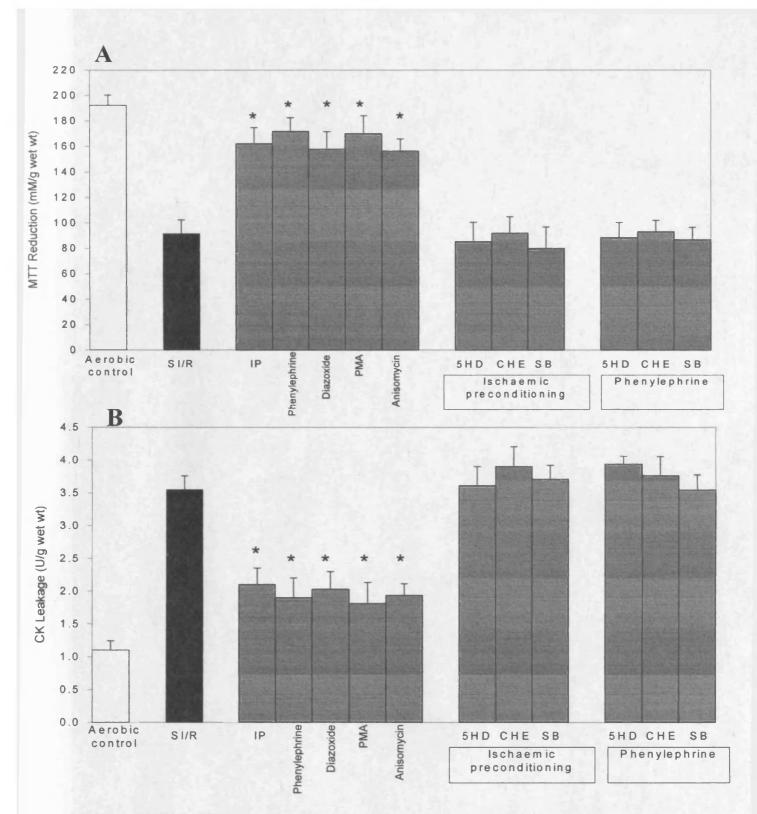


Figure 8-VII: MTT reduction at the end of the reoxygenation period (A) and creatine kinase (CK) leakage into the media (B) during the 120 min reoxygenation period by human atrial myocardium subjected to various protocols (see text for details) to investigate the signal transduction of preconditioning. Data are expressed as mean \pm SEM of eight experiments. *p<0.05 vs. simulated ischaemia/reoxygenation alone group. SI/R: simulated ischaemia/reoxygenation, IP: ischaemic preconditioning, 5HD: 5-hydroxydecanoate, CHE: chelerythrine, SB: SB203580.

8.4 DISCUSSION

The present studies have demonstrated that ischaemic and pharmacological preconditioning equally elicit a delayed or second window of protection in the human myocardium that lasts between 24 and 72 hours following the preconditioning stimulus. They have also shown that the occurrence of angina mimics the delayed protection conferred by ischaemic and pharmacological preconditioning and that mito K_{ATP} channels, PKC and p38MAPK are essential components of the signal transduction mechanism of this delayed protection. The clinical importance and the contribution of these results to the understanding of the mechanism underlying the delayed protection of preconditioning warrant further discussion.

8.4.1 The delayed phase of preconditioning

A previous report from our laboratory⁴¹⁹ using a similar but not identical *in vitro* preparation to the one used in the present studies and another study from Arstall et al²⁷¹ using foetal cardiomyocytes have shown evidence of delayed cardioprotection in the human myocardium. Here I have now fully characterized for the first time the phenomenon of delayed protection in man and shown that this is confined to a period between 24 and 72 hours following the preconditioning stimulus. The previous findings in this laboratory⁴¹⁹ showed that the beneficial effect of the second window of preconditioning was not as potent as the protection of the first window and this contrast with the present studies demonstrating that the early and delayed protections of preconditioning are equipotent as suggested by the results on MTT and CK leakage. A possible explanation for the difference between the two studies may be that in the current investigations the incubation medium was changed every twelve hours and it was supplemented with foetal calf serum, which may have made the

preparation more stable. Furthermore the addition of antibiotics to the medium may have prevented the growth of bacteria and this also may have contributed to a more stable preparation. However, the controversy is further fuelled by the observation that in the infarct size model the delayed protection is less effective than the early window in the rabbit³²⁷ and in the dog.⁵⁴⁶ Indeed additional studies may be required to elucidate this issue.

It is worth noting that the delayed cardioprotection elicited in the human myocardium by pharmacological preconditioning with adenosine and phenylephrine exhibited a similar potency and identical window of protection to that of preconditioning with ischaemia. Experimental evidence for a role of adenosine and phenylephrine in delayed cardioprotection has been found in the rabbit⁵⁴⁶ and in the mouse.⁵⁴⁷ In the present studies we only investigated the role of adenosine and phenylephrine, however it is likely that other triggers such as reactive oxygen species,⁵⁴⁸ nitric oxide,⁵⁴⁹ bradykinin,⁵⁵⁰ opioids⁵⁵¹ and prostanoids,⁵⁵² which have been shown to play a role in the delayed protection in animal studies, would also be operative in the human myocardium.

It should be clarified that although the benefit on the MTT results for the entire second window were similar to those seen in the first window, the CK leakage values declined when muscles were incubated for periods longer than 24 hours. This pattern of CK release is probably a consequence of the constant enzyme leakage into the incubation media⁴⁰⁵ and the resultant gradual lower tissue content. Therefore, CK values beyond the 24 hours incubation period may not represent the degree of the ischaemic insult to which the muscle is subjected in this preparation.

8.4.2 Preconditioning with angina

My finding that an episode of angina results in delayed preconditioning of the atrial myocardium against an ischaemic insult as denoted by the assessment of CK leakage and MTT reduction is supported by the demonstration that angina preceding myocardial infarction by 24 hours results in limitation of the infarct size.⁵⁵³ Cardioprotection was absent when the ischaemic insult was induced between 5 and 20 hours of the episode of angina, it was present between 29 and 70 hours after the angina and it was again lost beyond this period. In spite of the failure of angina to precondition outside this well-defined time period, the muscles maintained the potential to become protected by the acute application of ischaemic preconditioning and by the administration of adenosine and phenylephrine. The results also show that once the protection is obtained by one of the preconditioning stimuli the application of additional preconditioning triggers does not lead to an increased level of protection. It has been reported, however, that the protection conferred by ischaemic preconditioning may be enhanced when combined with adenosine in sheep hearts.⁵⁵⁴ If ischaemic and pharmacological preconditioning are using identical transduction pathway, it is difficult to accept that combination of the two treatments results in additional cardioprotection. Therefore the most probable explanation for the results of the latter study is that the IP protocol was insufficient to elicit maximal protection and that this was only obtained when the two interventions, IP and adenosine, were applied in combination. The results of this study are however, limited by the small number of patients included in the study and that only one patient was used for each time point. Furthermore only one patient was included beyond the 74 hours.

8.4.3 Signal transduction mechanism

My demonstration that similar cardioprotection to the one obtained with ischaemic and pharmacological preconditioning can be achieved by opening the mito K_{ATP} channels and by activating PKC and p38MAPK and that blockade of any of these three factors abrogates protection suggests that all three are essential components of the signal transduction pathway of the delayed or second window preconditioning in the human myocardium. A role for the mitoK_{ATP} channels in the delayed protection of preconditioning has also been shown in rabbits^{555,556} and a participation of PKC and p38MAPK has also been suggested in the rabbit^{557,558} and in the dog.^{559,560} I have previously shown in this thesis that the three factors are also essential components of the early or first window of preconditioning thus suggesting that the signal transduction pathways of the first and second window of preconditioning may be identical in man. What remains to be explained is the mechanism by which protection is lost between the first and second windows of preconditioning while still maintaining the potential for preconditioning with a new ischaemic or pharmacological stimulus. The fact that delayed preconditioning can be abolished by blockade of the signal transduction pathway before the start of the prolonged ischaemic insult suggests that the end effector(s) of cardioprotection is(are) activated at some stage after the initiation of ischaemia which challenges the view that production of new proteins is the cause for the delayed protection.^{561,562} A possible explanation for the loss of cardioprotection between the two windows of preconditioning may be the production of some factor(s), also triggered by the preconditioning stimulus, that would counteract transiently the action of some of the components of the signal transduction pathway and this could include the endeffector(s). However, any potential mechanism for this loss of cardioprotection can be

overcome by the application of a new preconditioning stimulus. The elucidation of the cause of this temporal loss of cardioprotection has important clinical implications and would require further investigation.

Chapter 9

Conclusions and future direction

9.1 Conclusions

The present studies have demonstrated that α_1 -adrenoceptors play an important role in the ischaemia/reoxygenation-induced injury of the human atrial myocardium. Thus, they show that stimulation of α_1 -adrenoceptors with phenylephrine protects against injury whereas their blockade with prazosin is detrimental, both effects obtained in a dose-dependent manner. They have also shown that the effect of the stimulation or blockade of α_1 -adrenoceptors depends on the time of administration so that α_1 adrenoceptors' stimulation is protective when given prior to ischaemia but detrimental when given during ischaemia, and on the contrary, α_1 -adrenoceptors' blockade is beneficial during ischaemia, detrimental during reoxygenation and has no significant effect prior to ischaemia. It appears that similar maximal protection can be obtained with α_1 -stimulation prior to ischaemia and with α_1 -blockade during ischaemia although the combination of the two does not induce additional protection. Furthermore, the protective effect of α_1 -stimulation prior to ischaemia is as potent as ischaemic preconditioning. These studies are the first in dissecting the role of α_1 adrenoceptors during ischaemia and reoxygenation of the human myocardium.

The present studies have also shown that protection with pharmacological preconditioning by activation of α_1 -adrenoreceptors or adenosine receptors is identical to that of ischaemic preconditioning in the human myocardium. These studies demonstrated that mitoK_{ATP} channels, PKC and p38MAPK are an integral part of the cellular signal transduction involved in this cardioprotection in which mitoK_{ATP} channels are placed upstream and p38MAPK is placed downstream of PKC. This

provides novel information to understand the underlying mechanism of protection by preconditioning of the human myocardium.

The long-term administration of nicorandil, a mito K_{ATP} channel opener and nitric oxide donor, abolishes the ability of the human myocardium to be protected by ischaemic and pharmacological preconditioning without exacerbating the susceptibility to ischaemic injury. In addition, I have shown in this thesis that the likely cause of the failure to precondition the myocardium of patients on nicorandil is the unresponsiveness of the mito K_{ATP} channels since protection cannot be obtained with diazoxide, a specific mito K_{ATP} channel opener, but can be elicited by activation of PKC and p38MAPK that are downstream of mito K_{ATP} channels in the signalling transduction cascade of preconditioning.

My results show differences between the sulfonylureas glibenclamide and gliclazide in their effect on IP. Although glibenclamide abolished the protective effect of preconditioning even at 0.1 μ M, gliclazide did not block ischaemic preconditioning at 1 μ M. I have also shown that glibenclamide prevents preconditioning by diazoxide which is thought have a mitochondrial action, possibly by opening mitoK_{ATP} channels. However glibenclamide does not block the protective effect of activation of PKC or p38MAPK. These results have potentially important clinical implications for the cardioprotection of diabetic patients with ischaemic heart disease and also provide important insights into the signal transduction mechanism of preconditioning. The present studies have demonstrated that ischaemic and pharmacological preconditioning equally elicit a delayed or second window of protection in the human myocardium that lasts between 24 and 72 hours following the preconditioning stimulus. They have also shown that the occurrence of angina mimics the delayed protection conferred by ischaemic and pharmacological preconditioning and that mito K_{ATP} channels, PKC and p38MAPK are essential components of the signal transduction mechanism of this delayed protection.

9.2 Future direction

Fifteen years of extensive research and publication of in excess of 1500 papers in the field of ischaemic preconditioning have vastly extended our understanding of the mechanisms underlying the pathogenesis of ischaemia-reperfusion injury. There can be little doubt that the elucidation of the pathophysiology and the cellular mechanisms of the phenomenon of ischaemic preconditioning have taught us the means of protecting the myocardium in the experimental setting. Clinical studies in this field, while fraught with limitations, have pointed to the fact that the human myocardium may respond in a way similar to that seen in the experimental laboratory and may be amenable to protection by ischaemic preconditioning. It is expected that this evidence will translate into clinical reality to benefit patients with coronary artery disease.

A number of studies in routine (low-risk) patients have been performed with the aim of proving the concept of pharmacological preconditioning in humans and to establish the safety and tolerability of these agents using indirect end points to detect myocardial ischaemia, small differences in myocardial viability, and extent of micronecrosis. These findings provide some basis for optimism that a beneficial and

clinically detectable improvement in myocardial protection may be possible. However, this goal can only be achieved when carefully designed clinical studies using hard end points of clinical outcome have been undertaken in appropriate subsets of patients at short-term risk of coronary artery occlusion. These studies have as yet not been undertaken. In my opinion, whereas further research in the basic laboratory continues to identify the next steps in the signalling cascade mediating myocardial preconditioning, it is timely that large-scale trials of high-risk patients at multiple centres were performed with the currently available preconditioning-mimetic agents, with comparisons against pre-existing myocardial protective strategies. Such studies need to focus on the high-risk groups of patients with particular emphasis on those subsets with features predictive of a worse outcome, who stand to gain the most benefit from additional cardioprotective strategies. The cohorts randomised in these studies may include patients with non-ST-elevation ACS presenting with persistent ST-segment depression on ECG, elevated serum troponin levels, or impaired left ventricular function, whether treated medically or with early revascularization. These patients must be randomised to preconditioning-mimetic agents versus placebo, in addition to standard therapy, and evaluated in terms of robust end points of clinical outcome. Similarly, high-risk patients undergoing elective revascularization procedures need to be included in studies evaluating the clinical efficacy of preconditioning-mimetic treatments in terms of reduction in periprocedural infarct size, heart failure, and mortality. It is only with demonstration of improved outcome in such large-scale studies that the past 15 years of research may translate into a clinical reality. To this end, it is also important that the role of the kinases shown to participate in cardioprotection by preconditioning are fully elucidated and that the end-effector(s) or protection identified.

Bibliography

1. Hearse DJ. Myocardial ischaemia: can we agree on a definition for the 21st century? Cardiovasc Res 1994;28:1737-1744.

2. Sperelakis N. Defining ischaemia. BMJ 1995;311:890-891.

3. Opie LH. The mechanism of myocytes death in ischaemia. Eur Heart J 1993;14:31-33.

4. Halestrap AP, Wang X, Poole RC, Jackson VN, Price NT. Lactate transport in heart in relation to myocardial ischaemia. Am J Cardiol 1997;80:17A-25A.

5. Poole-Wilson PA. Regulation of intracellular pH in the myocardium; relevance to pathology. Mol Cell Biochem 1989;89:151-155.

6. Taegtmeyer H, King LM, Jones BE. Energy substrate metabolism, myocardial ischaemia, and targets for pharmacotherapy. Am J Cardiol 1998;82:54K-60K.

7. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971;27:416-432.

8. Braunwald E. Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. J Am Coll Cardiol 2000;35:45B-48B.

9. Miranda CP, Lehmann KG, Froelicher VF. Correlation between resting ST segment depression, exercise testing, coronary angiography, and long-term prognosis. Am Heart J 1991;122:1617-1628.

10. Bonow RO. Identification of viable myocardium. Circulation 1996;94:2674-2680.

11. De Bruyne B, Bronzwaer JG, Heyndrickx GR, Paulus WJ. Comparative effects of ischaemia and hypoxemia on left ventricular systolic and diastolic function in humans. Circulation 1993;88:461-471.

12. Follath F. Ischaemic versus non-ischaemic heart failure: should the etiology be determined? Heart Fail Monit 2001;1:122-125.

13. Yeung AC, Vekshtein VI, Krantz DS, Vita JA, Ryan TJ Jr, Ganz P, Selwyn AP. The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. N Engl J Med 1991;325:1551-1556.

14. Ganz P, Creager MA, Fang JC, McConnell MV, Lee RT, Libby P, Selwyn AP. Pathogenic mechanisms of atherosclerosis: effect of lipid lowering on the biology of atherosclerosis. Am J Med 1996;101:10S-16S.

Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999;340:115 126.

16. Schipke JD. Cardiac efficiency. Basic Res Cardiol 1994;89:207-240.

17. Takaoka H, Takeuchi M, Odake M, Hayashi Y, Hata K, Mori M, Yokoyama M. Comparison of hemodynamic determinants for myocardial oxygen consumption under different contractile states in human ventricle. Circulation 1993;87:59-69.

18. Modersohn D, Walde T, Bruch L. Diastolic heart function pathophysiology, characterization, and therapeutic approaches. Clin Cardiol 1993;16:850-858.

19. Heart disease and stroke statistics-2005 update. American Heart Association. americanheart.org/publications and resources/statistics/statistical fact sheets.

20. Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 1998; 97:282-289.

21. Rogers WJ, Canto JG, Lambrew CT, Tiefenbrunn AJ, Kinkaid B, Shoultz DA, Frederick PD, Every N. Temporal trends in the treatment of over 1.5 million patients with myocardial infarction in the US from 1990 through 1999: the National Registry of Myocardial Infarction 1, 2 and 3. J Am Coll Cardiol 2000;36:2056-2063.

22. Bolli R. Mechanism of myocardial stunning. Circulation 1990; 82:723-738.

23. Tani M, Neely JR. Role of intracellular Na⁺ in Ca²⁺ overload and depressed recovery of ventricular function of reperfused ischaemic rat hearts. Possible involvement of H⁺- Na⁺ and Na⁺- Ca²⁺ exchange. Circ Res 1989;65:1045-1056.

24. Bolli R, Jeroudi MO, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion. Evidence that myocardial "stunning" is a manifestation of reperfusion injury. Circ Res 1989;65:607-622.

25. Babior BM. The NADPH oxidase of endothelial cells. IUBMB Life 2000;50:267-269.

26. Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 2002;59:1428-1459.

27. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys 2002;397:342-344.

28. Coon MJ, Ding X, Pernecky SJ, Vaz AND. Cytochrome P450: Progress and predictions. FASEB J 1992;6:669-673.

29. Yokoyama Y, Beckman JS, Beckman TK, Wheat JK, Cash TG, Freeman BA, Parks DA. Circulating xanthine oxidase: potential mediator of ischemic injury. Am J Physiol 1990;258:564-570.

30. Bianciardi P, Scorza R, Ghilardi G, Samaja M. Xanthine oxido-reductase activity in ischemic human and rat intestine. Free Radic Res 2004;38:919-925.

Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide.Biochem J 1972;128:617-630.

32. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973;134:707-716.

33. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997;17:3-8.

34. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 2000;25:502-508.

35. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain. J Biol Chem 2002;277:44784-44790.

36. Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space Biochem J 2001;353:411-416.

37. Miwa S, St-Pierre J, Partridge L, Brand MD. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med 2003;35:938-948.

38. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47-95.

Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci 2000;899:191 208.

40. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 1994;269:26066-26075.

41. Kaur H, Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation: nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 1994;350:9-12.

42. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci U S A 1988;85:6465-6467.

43. Ledoux SP, Driggers WJ, Hollensworth BS, Wilson GL. Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res 1999;434:149-159.

44. Baumann H, Gauldie J. The acute phase response. Immunol Today 1994;15:74-80.

45. Lucchesi BR, Werns SW, Fantone JC. The role of the neutrophil and free radicals in ischaemic myocardial injury. J Mol Cell Cardiol 1989;21:1241-1251.

46. Reimer KA, Murry CE, Richard VJ. The role of neutrophils and free radicals in the ischaemic-reperfused heart: why the confusion and controversy? J Mol Cell Cardiol 1989;21:1225-1239.

47. Engler RE. Free radical and granulocyte-mediated injury during myocardial ischaemia and reperfusion. Am J Cardiol 1989; 63:19E-23E.

48. Mehta JL, Nichols WW, Mehta P. Neutrophils as potential participants in acute myocardial ischaemia: relevance to reperfusion. J Am Coll Cardiol 1988;11:1309-1316.

49. Ito BR, Schmid-Schönbein GW, Engler RL. Effects of leukocyte activation on myocardial vascular resistance. Blood Cells 1990; 16:145-166.

50. Entman ML, Michael L, Rossen RD, Dreyer WJ, Anderson DC, Taylor AA, Smith CW. Inflammation in the course of early myocardial ischaemia. FASEB J 1991;5:2529-2537.

51. McEver RP. Leukocyte-endothelial cell interactions. Curr Opin Cell Biol 1992;4:840-849.

52. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301-314.

53. Adams DH, Shaw S. Leukocyte-endothelial interactions and regulation of leukocyte migration. Lancet. 1994;343:831-836.

54. Bevilacqua MP, Nelson RM. Selectins. J Clin Invest 1993;91:379-387.

55. Lewis MS, Whatley RE, Cain P, McIntyre TM, Prescott SM, Zimmerman GA. Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. J Clin Invest 1988; 82:2045-2055.

56. Prescott SM, Zimmerman GA, McIntyre TM. Human endothelial cells in culture produce platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin. Proc Natl Acad Sci U S A 1984;81:3534-3538.

57. Lorant DE, Patel KD, McIntyre TM, McEver RP, Prescott SM, Zimmerman GA. Coexpression of GMP-140 and platelet activating factor by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 1991;115:223-234.

58. Kuijpers TW, Hakkert BC, Hoogerwerf M, Leeuwenberg JFM, Roos D. Role of endothelial leukocyte adhesion molecule-1 and platelet-activating factor in neutrophil adherence to IL-1-prestimulated endothelial cells: endothelial leukocyte adhesion molecule-1-mediated CD18 activation. J Immunol 1991; 147:1369-1376.

59. Zimmerman GA, McIntyre TM, Mehra M, Prescott SM. Endothelial cellassociated platelet-activating factor: a novel mechanism for signaling intercellular adhesion. J Cell Biol 1994; 110:529-540.

60. Huber AR, Kunkel SL, Todd RF III, Weiss SJ. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 1991;250:99-102.

61. Rot A. Endothelial cell binding of NAP-1/IL-8: role in neutrophil emigration. Immunol Today 1992;13:291-294.

62. Smith CW, Kishimoto TK, Abbass O, Hughes B, Rothlein R, McIntire LV, Butcher E, Anderson DC. Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J Clin Invest 1991;87:609-618.

63. Lawrence MB, Springer TA. Leukocytes roll on selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 1991;65:859-873.

64. Von Adrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors K-E, Butcher EC. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc Natl Acad Sci U S A 1991;88:7538-7542.

65. Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 1990;75:1037-1050.

66. Diamond MS, Staunton DE, De Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 1990;111:3129-3139.

67. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA Jr. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest 1985;76:2003-2011.

68. Gasic AC, McGuire G, Krater S, Farhood AI, Goldstein MA, Smith CW, Entman ML, Taylor AA. Hydrogen peroxide pretreatment of perfused canine vessels induces ICAM-1 and CD18-dependent neutrophil adherence. Circulation 1991;84:2154-2166.

69. Yoshida N, Granger DN, Anderson DC, Rothlein R, Lane C, Kvietys PR. Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Am J Physiol 1992;262:H1891-H1898.

70. Nathan CF. Neutrophil activation on biological surfaces: massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J Clin Invest 1987;80:1550-1560.

71. Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright SD. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol 1989;109:1341-1349.

72. Entman ML, Youker K, Shappell SB, Siegel C, Rothlein R, Dreyer WJ, Schmalstieg FC, Smith CW. Neutrophil adherence to isolated adult canine myocytes: evidence for a CD18-dependent mechanism. J Clin Invest 1990;85:1497-1506.

73. Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW. Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol 1990;144:2702-2711.

74. Gearing AJH, Newman W. Circulating adhesion molecules in disease. Immunol Today 1993;14:506-512.

75. Rothlein R. A form of circulating ICAM-1 in human serum. J Immunol 1991;147:3788-3793.

76. Smith CW, Entman ML, Lane CL, Beaudet AL, Ty TI, Yourker K, Hawkins HK, Anderson DC. Adherence of neutrophils to canine cardiac myocytes in vitro is dependent on intercellular adhesion molecule-1. J Clin Invest 1991;88:1216-1223.

77. Youker K, Smith CW, Anderson DC, Miller D, Michael LH, Rossen RD, Entman ML. Neutrophil adherence to isolated adult cardiac myocytes: induction by cardiac lymph collected during ischaemia and reperfusion. J Clin Invest 1992;89:602-609.

78. Entman ML, Youker K, Shoji T, Kukielka G, Shappell SB, Taylor AA, Smith CW. Neutrophil induced oxidative injury of cardiac myocytes: a compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Invest 1992;90:1335-1345.

79. Hansen PR, Stawski G. Neutrophil mediated damage to isolated myocytes after anoxia and reoxygenation. Cardiovasc Res 1994;28:565-569.

80. Kukielka GL, Hawkins HK, Michael LH, Manning AM, Lane CL, Entman ML, Smith CW, Anderson DC. Regulation of intercellular adhesion molecule-1 (ICAM-1) in ischaemic and reperfused canine myocardium. J Clin Invest 1993;92:1504-1516.

81. Youker KA, Hawkins HK, Kukielka GL, Perrard JL, Michael LH, Ballantyne CM, Smith CW, Entman ML. Molecular evidence for induction of intracellular adhesion molecule-1 in the viable border zone associated with ischaemia-reperfusion injury of the dog heart. Circulation 1994;89:2736-2746.

82. Ma X-L, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischaemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res 1993;72:403-412.

83. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991;88:4651-4655.

84. Kurose I, Kubes P, Wolf RE, Anderson DC, Paulson J, Miyasaka M, Granger DN. Inhibition of nitric oxide production: mechanisms of vascular albumin leakage. Circ Res 1993;73:164-171.

85. Heller R, Bussolino F, Ghigo D, Garbarino G, Pescarmona G, Till U, Bosia A. Nitrovasodilators inhibit thrombin-induced platelet-activating factor synthesis in human endothelial cells. Biochem Pharmacol 1992;44:223-229.

86. Niu X-F, Smith CW, Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res 1994;74:1133-1140.

87. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A 1993;90:347-351.

88. Balligand JL, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993;91:2314-2319.

89. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989;320:365-376.

90. Badwey JA, Karnovsky ML. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 1980; 49:695-726.

91. Henson PM, Johnston RB. Tissue injury in inflammation. J Clin Invest 1987;79:669-674.

92. Vandeplassche G, Bernier M, Thone F, Borgers M, Kusama Y, Hearse D. Singlet oxygen and myocardial injury: ultrastructural, cytochemical and electrocardiographic consequences of photoactivation of rose bengal. J Mol Cell Cardiol 1990;22:287-301.

93. Ytrehus K, Myklebust R, Mjøs OD. Influence of oxygen radicals generated by xanthine oxidase in the isolated perfused rat heart. Cardiovasc Res. 1986;20:597-603.

94. Schrier GM, Hess ML. Quantitative identification of superoxide as a negative inotropic agent. Am J Physiol 1988;255:H138-H143.

95. Byler RM, Sherman NA, Wallner JS, Horwitz LD. Hydrogen peroxide cytotoxicity in cultured cardiac myocytes is iron dependent. Am J Physiol 1994;266:H121-H127.

96. Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. J Clin Invest 1978;63:1161-1167.

97. Weiss SJ, Young J, LoBuglio AF, Slivka A, Nimeh NF. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest 1981;68:714-721.

98. Shasby DM, Shasby SS, Peach MJ. Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs. Am Rev Respir Dis 1983;127:72-76.

99. Varani J, Fligiel SEG, Till GO, Kunkel RG, Ryan US, Ward PA. Pulmonary endothelial cell killing by human neutrophils: possible involvement of hydroxyl radical. Lab Invest 1985;53:656-663.

100. Varani J, Ginsburg I, Schuger L, Gibbs DF, Bromberg J, Johnson KJ, Ryan US, Ward PA. Endothelial cell killing by neutrophils: synergistic interaction of oxygen radical products and proteases. Am J Pathol 1989;135:435-438.

101. Buerke M, Weyrich AS, Lefer AM. Isolated cardiac myocytes are sensitized by hypoxia-reoxygenation to neutrophil-released mediators. Am J Physiol 1994;266:H128-H136.

102. Tsao PS, Ma X-L, Lefer AM. Activated neutrophils aggravate endothelial dysfunction after reperfusion of the ischaemic feline myocardium. Am Heart J 1992;123:1464-1471.

103. Gillespie MN, Kojima S, Kunitomo M, Jay M. Coronary and myocardial effects of activated neutrophils in perfused rabbit hearts. J Pharmacol Exp Ther 1986;239:836-840.

104. Semb AG, Ytrehus K, Vaage J, Myklebust R, Mjos OD. Functional impairment in isolated rat hearts induced by activated leukocytes: protective effect of oxygen free radical scavengers. J Mol Cell Cardiol 1989;21:877-887. 105. Gryglewski RJ, Palmer RMJ, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986;320:454-456.

106. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 1986;250:H822-H827.

107. Rimele TJ, Sturm RJ, Adams LM, Henry DE, Heaslip RJ, Weichman BM, Grimes D. Interaction of neutrophils with vascular smooth muscle: identification of a neutrophil-derived relaxing factor. J Pharmacol Exp Ther 1988;245:102-111.

108. McCall TB, Boughton-Smith NK, Palmer RMJ, Whittler BJR, Moncada S. Synthesis of nitric oxide from L-arginine by neutrophils: release and interaction with superoxide anion. Biochem J 1989;261:293-296.

109. Clancy RM, Leszczynska-Piziak J, Abramson SB. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 1992;90:1116-1121.

110. Rowe GT, Manson NH, Caplan M, Hess ML. Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum: participation of the cyclooxygenase pathway. Circ Res 1983;53:584-591.

111. Harlan JM, Callahan KS. Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells. J Clin Invest 1984;74:442-448.

112. Petrone WF, English DK, Wong K, McCord JM. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc Natl Acad Sci U S A 1980;77:1159-1163.

113. Perez HD, Weksler BB, Goldstein IM. Generation of a chemotactic lipid from arachidonic acid by exposure to a superoxide-generating system. Inflammation 1980;4:313-328.

114. Cathcart MK, Morel DW, Chisolm GM III. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol 1985;38:341-350.

115. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991;88:1785-1792.

116. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801-809.

117. Janoff A. Elastase in tissue injury. Annu Rev Med 1985;36:207-216.

118. Mainardi CL, Hasty DL, Seyer JM, Kang AH. Specific cleavage of human type III collagen by human polymorphonuclear leukocyte elastase. J Biol Chem 1980;255:12006-12010.

119. Weiss SJ, Peppin GJ. Collagenolytic metalloenzymes of the human neutrophil: characteristics, regulation and potential function in vivo. Biochem Pharmacol 1986;35:3189-3197.

120. Brower MS, Levin RL, Garry K. Human neutrophil elastase modulates platelet function by limited proteolysis of membrane glycoproteins. J Clin Invest 1985;75:657-666.

121. Weiss SJ, Regiani S. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor: cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest 1984;73:1297-1303.

122. Harlan JM, Killen PD, Harker LA, Striker GE, Wright DG. Neutrophil-mediated endothelial injury in vitro: mechanisms of cell detachment. J Clin Invest 1981;68:1394-1403.

123. Inauen W, Granger DN, Meininger CJ, Schelling ME, Granger HJ, Kvietys PR. Anoxia-reoxygenation-induced, neutrophil-mediated endothelial cell injury: role of elastase. Am J Physiol 1990;259:H925-H931.

124. Westlin WF, Gimbrone MA Jr. Neutrophil-mediated damage to human vascular endothelium: role of cytokines. Am J Pathol 1993;142:117-128.

125. Zimmerman BJ, Granger DN. Reperfusion-induced leukocyte infiltration: role of elastase. Am J Physiol 1990;259:H390-H394.

126. Stroncek DF, Vercellotti GM, Huh PW, Jacob HS. Neutrophil oxidants inactivate alpha-1-protease inhibitor and promote neutrophils-mediated detachment of cultured endothelium: protection by free methionine. Arteriosclerosis 1986;6:332-340.

127. Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest 1980;66:859-862.

128. Norris DA, Clark RAF, Swigart LM, Huff JC, Weston WL, Howell SE. Fibronectin fragment(s) are chemotactic for human peripheral blood monocytes. J Immunol 1982;129:1612-1618.

129. Borgeat P, Samuelsson B. Metabolism of arachidonic acid in polymorphonuclear leukocytes: structure analysis of novel hydroxylated products. J Biol Chem 1979;254:7865-7869.

130. Lotner GZ, Lynch JM, Betz SJ, Henson PM. Human neutrophil-derived platelet activating factor. J Immunol 1980;124:676-684.

131. Bednar MM, Kraemer R, Abraham NG, Mullane KM. Arachidonic acid monooxygenase and lipoxygenase in polymorphonuclear leukocytes. Biochem Pharmacol 1987;36:1741-1747.

132. Goldstein IM, Malmsten CL, Kindahl CL, Kaplan HB, Radmark O, SamuelssonB, Weissman G. Thromboxane generation by human peripheral bloodpolymorphonuclear leukocytes. J Exp Med 1978;148:787-792.

133. Lanni C, Becker EL. Release of phospholipase A2 activity from rabbit peritoneal neutrophils by F-Met-Leu-Phe. Am J Pathol 1983;113:90-94.

134. Feinmark SJ, Cannon PJ. Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes.J Biol Chem 1986;261:16466-16472.

135. Maclouf JA, Murphy RC. Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. J Biol Chem 1988;263:174-181.

136. Michael LH, Zhang Z, Hartley CJ, Bolli R, Taylor AA, Entman ML. Thromboxane B_2 in cardiac lymph: effect of superoxide dismutase and catalase during myocardial ischaemia and reperfusion. Circ Res 1990;66:1040-1044.

137. Freed MS, Needelman P, Dunkel CG, Saffitz JE, Evers AS. Role of invading leukocytes in enhanced atrial eicosanoid production following rabbit left ventricular myocardial infarction. J Clin Invest 1989;83:205-212.

138. Lee CC, Appleyard RF, Byrne JG, Cohn LH. Leukotrienes D4 and E4 produced in myocardium impair coronary flow and ventricular function after two hours of global ischaemia in rat heart. Cardiovasc Res 1993;27:770-773.

139. Montrucchio G, Alloatti G, Tetta C, De Luca R, Saunders RN, Emanuelli G, Camussi G. Release of platelet-activating factor from ischaemic-reperfused rabbit heart. Am J Physiol 1989;256:H1236-H1246.

140. Camussi G, Bussolino F, Salvidio G, Baglioni C. Tumor necrosis factor/cachectin stimulates peritoneal macrophages, polymorphonuclear neutrophils, and vascular endothelial cells to synthesize and release platelet-activating factor. J Exp Med 1987; 166:1390-1404.

141. Montrucchio G, Bergerone S, Bussolino F, Alloatti G, Silvestro L, Lupia E, Cravetto A, Di Leo M, Emanuelli G, Camussi G. Streptokinase induces intravascular release of platelet-activating factor in patients with acute myocardial infarction and stimulates its synthesis by cultured human endothelial cells. Circulation 1993;88:1476-1483.

142. Montrucchio G, Alloati G, Mariano F, Lupia E, Lucchina PG, Musso E, Emanuelli G, Camussi G. Role of platelet-activating factor in hypotension and platelet activation induced by infusion of thrombolytic agents in rabbits. Circ Res 1993;72:658-670.

143. Serhan CN, Radin A, Smolen E. Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis. Biochem Biophys Res Commun 1982;107:1006-1012.

144. Hanahan DJ. Platelet-activating factor: a biologically active phosphoglyceride. Annu Rev Biochem 1986;55:483-509.

145. Wedmore CV, Williams TJ. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature 1981; 289:646-650.

146. Ezra D, Boyd LM, Feuerstein G, Goldstein RE. Coronary constriction by leukotrienes C4, D4, and E4 in the intact pig heart. Am J Cardiol 1983;51:1451-1454.

147. Benveniste J, Boullet C, Brink C, Labat C. The actions of Platelet activating factor-acether (platelet-activating factor) on guinea-pig isolated heart preparations. Br J Pharmacol 1983;80:81-83.

148. Chatelain P, Latour J-G, Tran D, De Lorgeril M, Dupras G, Bourassa M. Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion. Circulation 1987;75:1083-1090.

149. Engler RL, Dahlgren MD, Peterson MA, Dobbs A, Schmid-Schönbein GW. Accumulation of polymorphonuclear leukocytes during 3-h experimental myocardial ischaemia. Am J Physiol.1986;251:H93-H100.

150. Dreyer WJ, Michael LH, West MS, Smith CW, Rothlein R, Rossen RD, Anderson DC, Entman ML. Neutrophil accumulation in ischaemic canine myocardium: insights into time course, distribution, and mechanism of localization during early reperfusion. Circulation 1991;84:400-411.

151. Go LO, Murry CE, Richard VJ, Weischedel GR, Jennings RB, Reimer KA. Myocardial neutrophil accumulation during reperfusion after reversible or irreversible ischaemic injury. Am J Physiol 1988;255:H1188-H1196. 152. Smith EF III, Egan JW, Bugelski PJ, Hillegass LM, Hill DE, Griswold DE. Temporal relation between neutrophil accumulation and myocardial reperfusion injury. Am J Physiol 1988;255:H1060-H1068.

153. Worthen GS, Schwab B III, Elson EL, Downey GP. Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 1989;245:183-186.

154. Engler RL, Schmid-Schönbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischaemia and reperfusion in the dog. Am J Pathol 1983;111:98-111.

155. Kloner RA. No reflow revisited. J Am Coll Cardiol 1989;14:1814-1815.

156. Hill JH, Ward PA. The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med 1971;133:885-900.

157. Rossen RD, Michael LH, Kagiyama A, Savage HE, Hanson G, Reisberg MA, Moake JN, Kim SH, Self D, Weakley S, Giannini E, Entman ML. Mechanism of complement activation after coronary artery occlusion: evidence that myocardial ischaemia in dogs causes release of constituents of myocardial subcellular origin that complex with human C1q in vivo. Circ Res 1988;62:572-584.

158. Perez HD, Ohtani O, Banda D, Ong R, Fukuyama K, Goldstein IM. Generation of biologically active, complement-(C5) derived peptides by cathepsin H1. J Immunol 1983;131:397-402.

159. Shingu M, Nobunaga M. Chemotactic activity generated in human serum from the fifth component on hydrogen peroxide. Am J Pathol 1984;117:201-206.

160. Pinckard RN, O'Rourke RA, Crawford MH, Grover FS, McManus LM, Ghidoni JJ, Storrs SB, Olson MS. Complement localization and mediation of ischaemic injury in baboon myocardium. J Clin Invest 1980;66:1050-1056.

161. Rossen RD, Swain JL, Michael LH, Weakley S, Giannini E, Entman ML. Selective accumulation of the first component of complement and leukocytes in ischaemic canine heart muscle: a possible initiator of an extra myocardial mechanism of ischaemic injury. Circ Res 1985;57:119-130.

162. Dreyer WJ, Smith CW, Michael LH, Rossen RD, Hughes BJ, Entman ML, Anderson DC. Canine neutrophil activation by cardiac lymph obtained during reperfusion of ischaemic myocardium. Circ Res 1989;65:1751-1762.

163. Dreyer WJ, Michael LH, Nguyen T, Smith CD, Anderson DC, Entman ML, Rossen RD. Kinetics of C5a release in cardiac lymph of dogs experiencing coronary artery ischaemia-reperfusion injury. Circ Res 1992;71:1518-1524.

164. Kilgore KS, Friedrichs GS, Homeister JW, Lucchesi BR. The complement system in myocardial ischaemia/reperfusion injury. Cardiovasc Res 1994;28:437-444.

165. Marks RM, Todd RF III, Ward PA. Rapid induction of neutrophil-endothelial adhesion by complement fixation. Nature 1989;339:314-317.

166. Ito BR, Roth DM, Engler RL. Thromboxane A_2 and peptidoleukotrienes contribute to the myocardial ischaemia and contractile dysfunction in response to intracoronary infusion of complement C5a in pigs. Circ Res 1990;66:596-607.

167. Schumacher WA, Fantone JC, Kunkel SE, Webb RC, Lucchesi BR. The anaphylatoxins C3a and C5a are vasodilators in the canine coronary vasculature in vitro and in vivo. Agents Actions 1991;34:345-349.

168. Del Balzo UH, Levi R, Polley MJ. Cardiac dysfunction caused by purified human C3a anaphylatoxin. Proc Natl Acad Sci U S A 1985;82:886-890.

169. Homeister JW, Satoh P, Lucchesi BR. Effects of complement activation in the isolated heart: role of the terminal complement components. Circ Res 1992;71:303-309.

170. Shandelya SML, Kuppusamy P, Weisfeldt ML, Zweier JL. Evaluation of the role of polymorphonuclear leukocytes on contractile function in myocardial reperfusion injury: evidence for plasma-mediated leukocyte activation. Circulation 1993;87:536-546.

171. Matsushima K, Oppenheim J. Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL1 and TNF. Cytokine 1989;1:2-13.

172. Baggiolini M. Novel aspects of inflammation: interleukin-8 and related chemotactic cytokines. Clin Investig 1993;71:812-814.

173. Kelvin DJ, Michiel DF, Johnston JA, Lloyd AR, Sprenger H, Oppenheim JJ, Wang J-M. Chemokines and serpentines: the molecular biology of chemokine receptors. J Leukoc Biol 1993;54:604-612.

174. Strieter RM, Kunkel SL, Showell HJ, Remick DG, Phan SH, Ward PA, Marks RM. Endothelial cell gene expression of a neutrophil chemotactic factor by TNF, LPS, and IL-1. Science 1989;243:1467-1469.

175. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341:233-249.

176. Halestrap AP, Kerr PM, Javadov S, Woodfield KY. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1998;1366:79-94.

177. Bernardi P. Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev 1999;79:1127-1155.

178. Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000;6:513-519.

179. Halestrap AP. The mitochondrial permeability transition a pore way for the heart to die. J Cli Ba Cardiol 2002;5:29-41.

180. Suleiman MS. Halestrap AP, Griffiths EJ. Mitochondria and myocardial protection. Pharmacol Ther 2001;89:29-46.

181. Halestrap AP, Doran E, Gillespie JP, O'Toole A. Mitochondria and cell death.Biochem 2000; 28:170-177.

182. Halestrap AP, Connern CP, Griffiths EJ, Kerr PM. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 1997;174:167-172.

183. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995;307:93-98.

184. Weinbrenner C, Liu GS, Downey JM, Cohen MV (). Cyclosporine A limits myocardial infarct size even when administered after onset of ischemia. Cardiovasc Res 1998;38:676-684.

185. Tennant R, Wiggers CJ. The effect of coronary occlusion on myocardial interaction. Am J Physiol 1935;12:351-261.

186. Goldberg S, Greenspon AJ, Urban PL, Muza B, Berger B, Walinsky P, Maroko PR. Reperfusion arrhythmia: a marker of restoration of antegrade flow during

intracoronary thrombolysis for acute myocardial infarction. Am Heart J 1983;105:26– 32.

187. Manning AS, Hearse DJ. Reperfusion-induced arrhythmia: mechanisms and prevention. J Mol Cell Cardiol 1984;16:497-518.

188. Grines CL, Browne KF, Marco J, Rothbaum D, Stone GW, O'Keefe J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. N Engl J Med 1993;328:673-679.

189. Grech ED, Ramsdale DR. Termination of reperfusion arrhythmias by coronary artery occlusion. Br Heart J 1994;72:94-95.

190. ISIS-2 Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both or neither among 17 187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 13;2:349-360.

191. Lie JT. Cardiovascular controversies. The reasons why clinical cardiologists disregard reperfusion arrhythmias. Cardiovasc Res 1993;27:1906.

192. Yamazaki S, Fujibayashi Y, Rajagopalan RE, Meerbaum S, Corday E. Effects of staged versus sudden reperfusion after acute coronary occlusion in the dog. J Am Coll Cardiol 1986;7:564-572.

193. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986;1:397-402.

194. ISIS-3 (Third International Study of Infarct Survival) Collaboratiave Group. ISIS-3: a randomised comparison of streptokinase vs tissue plasminogen activator vs anistreplase and of aspirin plus heparin vs aspirin alone among 41299 cases of suspected acute myocardial infarction. Lancet 1992;339:753-770.

195. Balke CW, Kaplinski E, Michelson EL, Naito M, Dreifus LS. Reperfusion ventricular tachyarrhythmias: correlation with antecedent coronary artery occlusion tachyarrhythmias and duration of myocardial ischemia. Am Heart J 1981;101:449-456.

196. European Myocardial Infarction Project Group. Prehospital thrombolytic therapy in patients with suspected acute myocardial infarction. N Engl J Med 1993;329:383-389.

197. Strauer BE, Heidland UE, Heintzen MP, Schwartzkopff B. Pharmacologic myocardial protection during percutaneous transluminal coronary angioplasty by intracoronary application of dipyridamole: impact on hemodynamic function and left ventricular performance. J Am Coll Cardiol 1996;28:1119–1126.

198. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978-985.

199. Bolli R. Myocardial "stunning" in man. Circulation 1992;86:1671-1691.

200. Jeroudi MO, Cheirif J, Habib G, Bolli R. Prolonged wall motion abnormalities after chest pain at rest in patients with unstable angina: a possible manifestation of myocardial stunning. Am Heart J 1994;127:1241-1250.

201. Yoshida Y, Hirai M, Yamada T, Tsuji Y, Kondo T, Inden Y, Akahoshi M, Murakami Y, Tsuda M, Tsuboi N, Hirayama H, Okamoto M, Ito T, Saito H, Toyama J. Antiarrhythmic efficacy of dipyridamole in treatment of reperfusion arrhythmias: evidence for cAMP-mediated triggered activity as a mechanism responsible for reperfusion arrhythmias. Circulation 2000;101:624-630.

202. Conti JB, Belardinelli L, Utterback DB, Curtis AB. Endogenous adenosine is an antiarrhythmic agent. Circulation 1995;91:1761-1767.

203. Levites R, Banka VS, Helfant RH. Electrophysiologic effects of coronary occlusion and reperfusion: observation of dispersion of refractoriness and ventricular automaticity. Circulation 1975;52:760–765.

204. Kaplinsky E, Ogawa SS, Michelson EL, Dreifus LS. Instantaneous and delayed ventricular arrhythmias after reperfusion of acutely ischemic myocardium: evidence for multiple mechanisms. Circulation 1981;63:333-340.

205. Mudorck DK, Loeb JM, Euler DE, Randall WC. Electrophysiology of coronary reperfusion—a mechanism for reperfusion arrhythmias. Circulation 61:175-182, 1980.

206. Vera Z, Pride HP, Zipes DP. Reperfusion arrhythmias: role of early afterdepolarizations studied by monophasic action potential recording in the intact canine heart during autonomically denervated and stimulated states. J Cardiovasc Electrophysiol 1995;6:532-543.

207. Pogwizd, SM, Corr PB. Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res 1987;61:352-371.

208. Smith WTIV, Fleet WF, Johnson TA, Engle CL, Cascio WE. The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling. Circulation 1995; 92:3051-3060.

209. Lerner DL, Yamada KA, Schuessler RB, Saffitz JE. Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice. Circulation 2000;101:547-552.

210. Cascio WE, Yang H, Johnson TA, Muller-Borer BJ, Lemasters JJ. Electrical properties and conduction in reperfused papillary muscle. Circ Res 2001;89:807-814.

211. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. *Circulation* 1982;66:1146-1149.

212. Bolli R, Marbán E. Molecular and Cellular Mechanisms of Myocardial Stunning Physiol Rev 1999;79:609-634.

213. Weisel RD, Mickle DAG, Finkle CD, Tumiati LC, Madonik MM, Ivanov J, Burton GW, Ingold KU. Myocardial free-radical injury after cardioplegia. Circulation 1989;80:III-14-III-18.

214. Ballantyne CM, Verani MS, Short HD, Hyatt C, Noon GP. Delayed recovery of severely "stunned" myocardium with the support of a left ventricular assist device after coronary artery bypass graft surgery. J Am Coll Cardiol 1987;10:710-712.

215. Ito H, Tomooka T, Sakai N, Higashino Y, Fujii K, Katoh O, Masuyama T, Kitabatake A, Minamino T. Time course of functional improvement in stunned myocardium in risk area in patients with reperfused anterior infarction. Circulation 1993;87:355-362.

216. Renkin J, Wijns W, Ladha Z, Col J. Reversal of segmental hypokinesis by coronary angioplasty in patients with unstable angina, persistent T wave inversion, and left anterior descending coronary artery stenosis. Additional evidence for myocardial stunning in humans. Circulation. 1990;82:913-921.

217. Ambrosio G, Betocchi S, Pace L, Losi MA, Perrone-Filardi P, Soricelli A, Piscione F, Taube J, Squame F, Salvatore M, Weiss JL, Chiariello M. Prolonged impairment of regional contractile function after resolution of exercise-induced angina: Evidence of myocardial stunning in patients with coronary artery disease. Circulation 1996;94:2455-2464.

218. Flameng W, Andres J, Ferdinande P, Mattheussen M, Belle HV. Mitochondrial function in myocardial stunning. J Mol Cell Cardiol 1991;23:1-11.

219. Abd-Elfattah ASA, Maddox RP, Jessen ME, Rebeyka IK, Wechsler AS. Selective nucleoside transport blocker NBMPR attenuates myocardial stunning in a rabbit model deficient of xanthine oxidase, in Purines and Myocardial Protection, eds A.S.A. Abd-Elfattah & A.S. Wechsler, Norwell, MA, USA;1995:219-231.

220. Ambrosio G, Jacobus WE, Mitchell MC, Litt MR, Becker LC. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischaemic hearts. Am J Physiol 1989;256:H560-H566.

221. Ambrosio G, Jacobus WE, Bergman CA, Weisman HF, Becker LC. Preserved high energy phosphate metabolic reserve in globally "stunned" hearts despite reduction of basal ATP content and contractility. J Mol Cell Cardiol 1987;19:953-964.

222. Greenfield RA, Swain JL. Disruption of myofibrillar energy use: dual mechanisms that may contribute to postischaemic dysfunction in stunned myocardium. Circ Res 1987;60:283-289.

223. Marban E. Myocardial stunning and Hibernation. The physiology bind the colloquialisms. Circulation 1991; 83: 681-688.

224. Kusuoka H, Marban E. Cellular mechanisms of myocardial stunning. Ann Rev in Physiol 1992;54;243-256.

225. Gao WD, Atar D, Backx PH, Marban E. Relationship between intracellular calcium and contractile force in stunned myocardium: direct evidence for decreased

myofilament Ca²⁺ responsiveness and altered diastolic function in intact ventricular muscle. Circ Res 1995;76:1036-1048.

226. Murphy E, Steenbergen C, Levy LA, Raju B, London RE. Cytosolic free magnesium levels in ischaemic rat heart. J Bio Chem 1989;264:5622-5627.

227. Ito BR, Tate H, Kobayshi M, Schaper W. Reversibly injured, postischaemic canine myocardium retains normal contractile reserve. Circ Res 1987; 61:834-846.

228. Gao WD, Atar D, Liu Y, Pere NG, Murphy AN, Marban E. Role troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 1997; 80:393-399.

229. Przyklenk K, Kloner RA. Superoxide dismutase plus catalase improve contractile function in the canine model of the "stunned myocardium". Circ Res 1986;58:148-156.

230. Opie LH. Postischaemic stunning - The case for calcium as the ultimate culprit. Cardiovas Drugs and Ther 1991;5:895-900.

231. Bolli R, Zhu W, Hartley CJ, Michael LH, Repine JE, Hess ML, Kukreja RC, Roberts R. Attenuation of dysfunction in postischaemic `stunned' myocardium by dimethylthiourea. Circulation 1987;76:458-468.

232. Kitakaze M, Weisman HF, Marban E. Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 1988;77:685-695.

233. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E. Excitationcontraction coupling in postischaemic myocardium. Does failure of activator Ca^{2+} transients underlie stunning? Circ Res 1989;66:1268-1276.

234. Krause SM, Jacobus WE, Becker LC. Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischaemic "stunned" myocardium'. Circ Res 1989;65:526-530.

235. Limbruno U, Zucchi R, Ronca-Testoni S, Galbani P, Ronca G, Marini M. Sarcoplasmic reticulum function in the "stunned" myocardium. J Mol Cell Cardiol 1989; 21: 1063-1072.

236. Chemnitius JM, Sasaki Y, Burger W, Bing RJ. The effect of ischaemia and reperfusion on sarcolemmal function in perfused canine hearts. J Mol Cell Cardiol 1985;17:1139-1150.

237. Hearse DJ. Stunning: A radical re-view. Cardiovasc Drugs Ther 1991;5: 853-876.

238. Headrick JP, Armiger LC, Willis RJ. Behaviour of energy metabolites and effect of allopurinol in the "stunned" isovolumic rat heart. J Mol Cell Cardiol 1990;22:1107-1116.

239. Eddy LJ, Stewart JR, Jones HP, Engerson TD, McCord JM, Downey JM. Free radical-producing enzyme xanthine oxidase is undetectable in human hearts. Am J Physiol 1987;253:H709-H711.

240. Mullane K, Engler R. Proclivitiy of activated neutrophils to cause postischaemic cardiac dysfunction: Participation in stunning? Cardiovasc Drugs Ther 1991;5:915-924.

241. Gao WD, Liu Y, Marban E. Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. Circulation 1996; 94:2597-2604.

242. Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL. Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Bio Chem 1991;266:2354-2361.

243. Dibra A, Mehilli J, Dirschinger J, Pache J, Neverve J, Schwaiger M, Schomig A, Kastrati A. Thrombolysis in myocardial infarction myocardial perfusion grade in angiography correlates with myocardial salvage in patients with acute myocardial infarction treated with stenting or thrombolysis. J Am Coll Cardiol 2003;41:925-929.

244. Baker WF Jr. Thrombolytic therapy: clinical applications. Hematol Oncol Clin North Am 2003;17:283-311.

245. Nordmann AJ, Hengstler P, Leimenstoll BM, Harr T, Young J, Bucher HC.Clinical outcomes of stents versus balloon angioplasty in non-acute coronary artery disease. A meta-analysis of randomized controlled trials. Eur Heart J 2004; 25:69-80.

246. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O'Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE; SIRIUS Investigators. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003;349:1315-1323.

247. Murphy ML, Hultgren HN, Detre K, Thomsen J, Takaro T. Treatment of chronic stable angina. A preliminary report of survival data of the randomized Veterans Administration cooperative study. N Engl J Med 1977;297:621-627.

248. Read RC, Murphy ML, Hultgren HN, Takaro T. Survival of men treated for chronic stable angina pectoris. A cooperative randomized study. J Thorac Cardiovasc Surg 1978;75:1-16.

249. Ray JF 3rd, Myers WO, Ulmer RH, Emanuel DA, Voss DM, Browell JN, Beathard JN, Lolley DM, Sautter RD. What is the probability that coronary artery surgery prolongs life? Surgery 1979;86:599-610.

250. Wahrborg P. Quality of life after coronary angioplasty or bypass surgery. 1-year follow-up in the Coronary Angioplasty versus Bypass Revascularization investigation (CABRI) trial. Eur Heart J 1999; 20:653-658.

251. Coronary-artery bypass surgery in stable angina pectoris: Survival at two years. European Coronary Surgery Study Group. Lancet 1979;1:889-893.

252. Coronary artery surgery study (CASS): a randomized trial of coronary artery bypass surgery. Quality of life in patients randomly assigned to treatment groups. Circulation. 1983;68:951-960.

253. Loubani M, Chin D, Leverment JN, Galinanes M. Mid-term results of combined transmyocardial laser revascularization and coronary artery bypass. Ann Thorac Surg 2003;76:1163-1166.

254. Allen KB, Dowling RD, Heimansohn DA, Reitsma E, Didelot L, Shaar CJ. Transmyocardial revascularization utilizing a holmium:YAG laser. Eur J Cardiothorac Surg 1998;14 Suppl 1:S100-104.

255. Davidson J, Baumgariner F, Omari B, Milliken J. Intra-aortic balloon pump: indications and complications. J Natl Med Assoc 1998;90:137-140.

256. Silverman NA. Myocardial oxygen consumption after reversible ischaemia. J Cardiac Surg 1994;9:465-468.

257. Krukenkamp IB, Silverman NA, Sorlie D, Pridjian A, Feinberg H, Levitsky S. Characterization of postischaemic myocardial oxygen utilization. Circulation 1986; 74:III125-III129.

258. Buckberg GD, Brazier JR, Nelson RL, Goldstein SM, McConnell DH, Cooper N. Studies of the effects of hypothermia on regional myocardial flow and metabolism during cardiopulmonary bypass. I.The adequately perfused beating, fibrillating and arrested heart. J Thorac Cardiovasc Surg 1977;73:87-94.

259. Melrose DG, Dreyer B, Bentall HH, Baker JB. Elective cardiac arrest. Lancet 1955;269:21-22.

260. Helmsworth JA, Kaplan S, Clark LC Jr, Mcadams AJ, Matthews EC, Edwards FK. Myocardial injury associated with asystole induced with potassium citrate. Ann Surg 1959;149:200-206.

261. Gay WA. Potassium induced cardioplegia. Ann Thorac Surg_1975; 20: 95.

262. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB. Four brief periods of ischaemia cause no cumulative ATP loss or necrosis. Am J Physiol 1986;251:H1306–H1315.

263. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischaemia: a delay of lethal cell injury in ischaemic myocardium. Circulation 1986;74:1124–1136.

264. Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS. Ischaemic preconditioning: present position and future directions. Cardiovasc Res 1998;37:21–
33.

265. Sun JZ, Tang XL, Knowlton AA, Park SW, Bolli R. Late preconditioning against myocardial stunning: an endogenous protective mechanism that confers resistance to postischaemic dysfunction 24 h after brief ischaemia in conscious pigs. J Clin Invest 1995;95:388–403.

266. Bolli R. The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview. Basic Res Cardiol 1996;91:57–63.

267. Shiki K, Hearse DJ. Preconditioning of ischaemic myocardium: reperfusioninduced arrhythmias. Am J Physiol 1987;253:H1470-H1476.

268. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischaemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993;88:1264–1272.

269. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. Delayed effects of sublethal ischaemia on the acquisition of tolerance to ischaemia. Circ Res 1993;72:1293–1299.

270. Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DA, Li RK. Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovasc Res 1994;28:1285–1291.

271. Arstall MA, Zhao YZ, Hornberger L, Kennedy SP, Buchholz RA, Osathanondth R, Kelly RA. Human ventricular myocytes in vitro exhibit both early and delayed preconditioning responses to simulated ischaemia. J Mol Cell Cardiol 1998;30:1019–1025.

272. Walker DM, Walker JM, Pugsley WB, Pattison CW, Yellon DM. Preconditioning in isolated superfused human muscle. J Mol Cell Cardiol 1995;27:1349–1357.

273. Speechly-Dick ME, Grover GJ, Yellon DM. Does ischaemic preconditioning in the human involve protein kinase C and the ATP-dependent K^+ channel? Studies of contractile function after simulated ischaemia in an atrial in vitro model. Circ Res 1995;77:1030–1035.

274. Liang BT. Direct preconditioning of cardiac ventricular myocytes via adenosine A₁ receptor and K_{ATP} channel. Am J Physiol. 1996;40:H1769–H1777.

275. Cleveland JC, Meldrum DR, Cain BS, Banerjee A, Harken AH. Oral sulfonylurea hypoglycemic agents prevent ischaemic preconditioning in human myocardium. Circulation 1997;96:29–32.

276. Ikonomidis JS, Shirai, Weisel RD, Derylo B, Rao V, Whiteside CI, Mickle DA, Li RK. Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C. Am J Physiol 1997;272:H1220–H1230.

277. Anzai T, Yoshikawa T, Asakura Y, Abe S, Akaishi M, Mitamura H, Handa S, Ogawa S. Preinfarction angina as a major predictor of left ventricular function and long-term prognosis after a first Q wave myocardial infarction. J Am Coll Cardiol 1995;26:319–327.

278. Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV, Burstein S, Gibson M, Poole WK, Cannon CP, McCabe CH, Braunwald E. Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning? Circulation 1995;91:37–45.

279. Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F. Prodromal angina limits infarct size: a role for ischaemic preconditioning. Circulation 1995;91:291–297.

280. Tamura K, Tsuji H, Nishiue T, Tokunaga S, Iwasaka T. Association of preceding angina with in-hospital life-threatening ventricular tachyarrhythmias and late potentials in patients with a first acute myocardial infarction. Am Heart J 1997;133:297–301.

281. Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Kurisu S, Sakai K, Ueda K. Implications of prodromal angina pectoris in anterior wall acute myocardial infarction: acute angiographic findings and long-term prognosis. J Am Coll Cardiol 1997;30:970–975.

282. Kloner RA, Shook T, Antman EM, Cannon CP, Przyklenk K, Yoo K, McCabe CH, Braunwald E. Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B. Circulation 1998;97:1042–1045.

283. Dana A, Yellon DM. Cardioprotection by preinfarct angina: is it ischaemic preconditioning? Eur Heart J 1998;19:367–369.

284. Andreotti F, Pasceri V, Hackett DR, Davies GJ, Haider AW, Maseri A. Preinfarction angina as a predictor of more rapid coronary thrombolysis in patients with acute myocardial infarction. N Engl J Med 1996;334:7–12.

285. Andreotti F, Pasceri V. Ischaemic preconditioning. Lancet 1996;348:204.

286. Hata K, Whittaker P, Kloner RA, Przyklenk K. Brief antecedent ischaemia attenuates platelet-mediated thrombosis in damaged and stenotic canine coronary arteries: role of adenosine. Circulation 1998;97:692–702.

287. Okazaki Y, Kodama K, Sato H, Kitakaze M, Hirayama A, Mishima M, Hori M, Inoue M. Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon. J Am Coll Cardiol 1993;21:1597–1604.

288. Williams DO, Bass TA, Gewirtz H, Most AS. Adaptation to the stress of tachycardia in patients with coronary artery disease: insight into the mechanism of the warm-up phenomenon. Circulation 1985;71:687–692.

289. Tzivoni D, Maybaum S. Attenuation of severity of myocardial ischaemia during repeated daily ischaemic episodes. J Am Coll Cardiol 1997;30:119–124.

290. Rinaldi CA, Masani ND, Linka AZ, Hall RJ. Effect of repetitive episodes of exercise induced myocardial ischaemia on left ventricular function in patients with chronic stable angina: evidence for cumulative stunning or ischaemic preconditioning? Heart 1999;81:404–411.

291. Stewart RA, Simmonds MB, Williams MJ. Time course of "warm-up" in stable angina. Am J Cardiol 1995;76:70–73.

292. Tomai F, Crea F, Danesi A, Perino M, Gaspardone A, Ghini AS, Cascarano MT, Chiariello L, Gioffre PA. Mechanisms of the warm-up phenomenon. Eur Heart J. 1996;17:1022–1027.

293. Dana A, Carroll R, Walker JM, Yellon DM. Exercise induced ischaemia causes both early and delayed myocardial adaptation during repeated exercise: a role for adenosine? Eur Heart J 2000;21(suppl):366. Abstract.

294. Tomai F. Exercise-induced myocardial ischaemia triggers the early phase of preconditioning but not the late phase. Am J Cardiol 1999;83:586–588.

295. Tomai F, Crea F, Danesi A, Perino M, Gaspardone A, Ghini AS, Ruggeri G, Chiariello L, Gioffre PA. Effects of A₁ adenosine receptor blockade on the warm-up phenomenon. Cardiologia 1997;42:385–392.

296. Kerensky RA, Franco E, Schlaifer JD, Pepine CJ, Belardinelli L. Effect of theophylline on the warm-up phenomenon. Am J Cardiol 1999;84:1077–1080.

297. Correa SD, Schaefer S. Blockade of K_{ATP} channels with glibenclamide does not abolish preconditioning during demand ischaemia. Am J Cardiol 1997;79:75–78.

298. Tomai F, Danesi A, Ghini AS, Crea F, Perino M, Gaspardone A, Ruggeri G, Chiariello L, Gioffre PA. Effects of K(ATP) channel blockade by glibenclamide on the warm-up phenomenon. Eur Heart J 1999;20:196–202.

299. Deutsch E, Berger M, Kussmaul WG, Hirshfeld JW, Herrmann HC, Laskey WK. Adaptation to ischaemia during percutaneous transluminal coronary angioplasty: clinical, hemodynamic, and metabolic features. Circulation 1990;82:2044–2051.

300. Cribier A, Korsatz L, Koning R, Rath P, Gamra H, Stix G, Merchant S, Chan C,

Letac B. Improved myocardial ischaemic response and enhanced collateral circulation

with long repetitive coronary occlusion during angioplasty: a prospective study. J Am Coll Cardiol 1992;20:578–586.

301. Eltchaninoff H, Cribier A, Tron C, Derumeaux G, Koning R, Hecketsweiller B, Letac B. Adaptation to myocardial ischaemia during coronary angioplasty demonstrated by clinical, electrocardiographic, echocardiographic, and metabolic parameters. Am Heart J 1997;133:490–496.

302. Okishige K, Yamashita K, Yoshinaga H, Azegami K, Satoh T, Goseki Y, Fujii S, Ohira H, Satake S. Electrophysiologic effects of ischaemic preconditioning on QT dispersion during coronary angioplasty. J Am Coll Cardiol 1996;28:70–73.

303. Airaksinen KE, Huikuri HV. Antiarrhythmic effect of repeated coronary occlusion during balloon angioplasty. J Am Coll Cardiol 1997;29:1035–1038.

304. Laskey WK. Beneficial impact of preconditioning during PTCA on creatine kinase release. Circulation 1999;99:2985–2089.

305. Tomai F, Crea F, Gaspardone A, Versaci F, Ghini AS, De Paulis R, Chiariello L, Goiffre PA. Phentolamine prevents adaptation to ischaemia during coronary angioplasty: role of α -adrenergic receptors in ischaemic preconditioning. Circulation 1997;96:2171–2177.

306. Billinger M, Fleisch M, Eberli FR, Garachemani A, Meier B, Seiler C. Is the development of myocardial tolerance to repeated ischaemia in humans due to preconditioning or to collateral recruitment? J Am Coll Cardiol 1999;33:1027–1035.

307. Tomai F, Crea F, Gaspardone A, Versaci F, De Paulis R, Penta de Peppo A, Goiffre PA. Ischaemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K^+ channel blocker. Circulation 1994;90:700–705.

308. Saito S, Mizumura T, Takayama T, Honye J, Fukui T, Kamato T, Moriuchi M, Hibya K, Tamura Y, Ozawa Y, Kanmatsuse K, Osawa K, Ishihata F, Nakakimura H, Sakai K. Anti-ischaemic effects of nicorandil during coronary angioplasty in humans. Cardiovasc Drugs Ther 1995;9:257–263.

309. Tomai F, Crea F, Gaspardone F, Versaci F, De Paulis R, Polisca P, Chiariello L, Goiffre PA. Effects of A_1 adenosine receptor blockade by bamiphylline on ischaemic preconditioning during coronary angioplasty. Eur Heart J 1996;17:846–853.

310. Claeys MJ, Vrints CJ, Bosmans JM, Conraads VM, Snoeck JP. Aminophylline inhibits adaptation to ischaemia during coronary angioplasty. Eur Heart J. 1996;17:539–544.

311. Leesar MA, Stoddard M, Ahmed M, Broadbent J, Bolli R. Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation 1997;95:2500–2507.

312. Tomai F, Crea F, Gaspardone A, Versaci F, Ghini AS, Ferri C, Desideri G, Chiariello L, Gioffre PA. Effects of naloxone on myocardial ischaemic preconditioning in humans. J Am Coll Cardiol 1999;33:1863–1869.

313. Leesar MA, Stoddard MF, Manchikalapudi S, Bolli R. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J Am Coll Cardiol 1999;34:639–650.

314. Shattock MJ, Lawson CS, Hearse DJ, Downey JM. Electrophysiologic characteristics of repetitive ischaemic preconditioning in the pig heart. J Mol Cell Cardiol 1996;28:1339–1347.

315. Cohen MV, Yang X-M, Downey JM. Attenuation of S-T segment elevation during repetitive coronary occlusions truly reflects the protection of ischaemic preconditioning and is not an epiphenomenon. Basic Res Cardiol 1997;92:426–434.

316. Birinvcioglu M, Yang X-M, Critz SD, Cohen MV, Downey JM. S-T segment voltage during sequential coronary occlusions is an unreliable marker of preconditioning. Am J Physiol 1999;277:H2435–H2441.

317. Sato T, Sasaki N, Seharaseyon J, O'Rourke B, Marbán E. Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischaemic cardioprotection. Circulation 2000;101:2418–2423.

318. Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet 1993;342:276–277.

319. Jenkins DP, Pugsley WB, Alkhulaifi AM, Kemp M, Hooper J, Yellon DM. Ischaemic preconditioning reduces troponin-T release in patients undergoing cardiac surgery. Heart 1997;77:314–318.

320. Perrault LP, Menasche P, Bel A, Dechaumaray T, Peynet J, Mondry A, Olivero P, Emanoilravier R, Moalic JM. Ischaemic preconditioning in acute cardiac surgery: a word of caution. J Thorac Cardiovasc Surg 1996;112:1378–1386.

321. Kaukoranta P, Lepojarvi MPK, Ylitalo KV, Kiviluoma KT, Peuhkurinen KJ. Normothermic retrograde blood cardioplegia with or without preceding ischaemic preconditioning. Ann Thorac Surg 1997;63:1268–1274.

322. Perrault LP, Menasche P. Preconditioning: can nature's shield be raised against surgical ischaemic-reperfusion injury? Ann Thorac Surg 1999;68:1988–1994.

323. Illes RW, Swoyer KD. Prospective, randomized clinical study of ischaemic preconditioning as an adjunct to intermittent cold blood cardioplegia. Ann Thorac Surg 1998;65:748–753.

324. Li G, Chen S, Lu E, Li Y. Ischaemic preconditioning improves preservation with cold blood cardioplegia in valve replacement patients. Eur J Cardiothorac Surg 1999;15:653–657.

325. Topol EJ. Acute myocardial infarction: thrombolysis. Heart. 2000;83:122-126.

326. Yeghiazarians Y, Braunstein JB, Askari A, Stone PH. Unstable angina pectoris. N Engl J Med 2000;342:101–114.

327. Baxter G, Goma F, Yellon D. Characterisation of the infarct-limiting effect of delayed preconditioning: time course and dose-dependency studies in rabbit myocardium. Basic Res Cardiol 1997;92:159–167.

328. Tang X-L, Qiu Y, Sun J-Z, Park S-W, Kalya A, Bolli R. Time-course of late preconditioning against myocardial stunning in conscious pigs. Circ Res 1996;79:424–434.

329. Cohen MV, Yang XM, Downey JM. Conscious rabbits become tolerant to multiple episodes of ischaemic preconditioning. Circ Res 1994;74:998–1004.

330. Tsuchida A, Thompson R, Olsson RA, Downey JM. The anti-infarct effect of an adenosine A_1 -selective agonist is diminished after prolonged infusion as is the cardioprotective effect of ischaemic preconditioning in rabbit heart. J Mol Cell Cardiol 1994;26:303–311.

331. Dana A, Baxter GF, Walker JM, Yellon DM. Prolonging the delayed phase of myocardial protection: repetitive adenosine A₁ receptor activation maintains rabbit myocardium in a preconditioned state. J Am Coll Cardiol 1998;31:1142–1149.

332. Tavers A, Middlemiss D, Louttit JB. Cardioprotection after repeated dosing with GR79236, an adenosine A1 agonist. Br J Pharmacol 1998;124(suppl):102P. Abstract.

333. Patel DJ, Purcell HJ, Fox KM. Cardioprotection by opening of the K(ATP) channel in unstable angina: is this a clinical manifestation of myocardial preconditioning? Results of a randomized study with nicorandil: CESAR 2 investigation. Clinical European studies in angina and revascularization. Eur Heart J 1999;20:51–57.

334. Dana A, Yellon DM. ATP dependent K⁺ channel: a novel therapeutic target in unstable angina? Eur Heart J 1999;20:2–5.

335. Sato T, Sasaki N, O'Rourke B, Marbán E. Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels. J Am Coll Cardiol 2000;35:514–518.

336. FRISC II investigators. Invasive compared with non-invasive treatment in unstable coronary artery disease: FRISC II prospective randomised multicentre study. Lancet 1999;354:708–715.

337. Williams DO, Brauwald E, Thompson B, Sharaf BL, Buller C, Knatterud GL. Results of percutaneous transluminal coronary angioplasty in unstable angina and non Q-wave myocardial infarction: observations from the TIMI IIIB Trial. Circulation 1996;94:2749–2755.

338. Lim R, Laskey WK. Ischaemic preconditioning in unstable coronary symptoms: evidence for time dependence. J Am Coll Cardiol 1997;30:1461–1465.

339. Kaiser GC, Schaff HV, Killip T. Myocardial revascularization for unstable angina pectoris. Circulation 1989;79:160–167.

340. Mair J, Wieser C, Seibt I, Artner-Dworazak E, Furtwangler W, Waldenberger F, Balogh D, Puschendorf B. Troponin-T to diagnose myocardial infarction in bypass surgery. Lancet 1991;337:434–435.

341. Hake U, Schmid F, Iversen S, Dahm M, Mayer E, Hafner G, Oelert H. Troponin-T: a reliable marker of perioperative myocardial infarction? Eur J Cardiothorac Surg 1993;7:628–633.

342. Karck M, Rahmanian P, Haverick A. Ischaemic preconditioning enhances donor heart preservation. Transplantation 1996;62:17–22.

343. Kirsch M, Baufreton C, Fernandez C, Brunet S, Pasteau F, Astier A, Loisance DY. Preconditioning with cromokalim improves long-term myocardial preservation for heart transplantation. Ann Thorac Surg 1998;66:417–424.

344. Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q, Jadoon AK. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Circ Res 1997;81:1094-1107.

345. Takano H, Tang XL, Qiu Y, French BA, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant sensitive mechanism. Circ Res 1998;83:73-84.

346. Parrat JR., Vegh A. Coronary vascular endothelium-myocyte interactions in protection of the heart by ischemic preconditioning. J Physiol Pharmacol 1999;50:509-524.

347. Oldenburg O, Qin Q, Sharma AR, Cohen MV, Downey JM, Benoit JN. Acetylcholine leads to free radical production dependent on K_{ATP} channels, G_i proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovasc Res 2002;55:544-552.

348. Smith RM, Lecour S, Sack MN. Innate immunity and cardiac preconditioning: a putative intrinsic cardioprotective program. Cardiovasc Res 2002;55:474-482.

349. Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. Ischemic preconditioning induces selective translocation protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 1997;81:404-414.

350. Liu GS, Cohen MV, Mochly-Rosen D, Downey JM. Protein kinase C-*z* is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 1999;31:1937-1948.

351. Das DK, Engelman RM, Maulik N. Oxygen free radical signalling in ischemic preconditioning. In: Das D.K., ed. Heart in stress. New York: Ann NY Acad Sci, 1999:49-65.

352. Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine to K_{ATP} channel. Annu Rev Physiol 2000;62:79-109.

353. Sato T, Sasaki N, O'Rourke B, Marban E. Adenosine primes the opening of mitochindrial ATP-sensitive potassium channals: a key step in ischemic preconditioning? Circulation 2000;102:800-805.

354. de Jong JW, de Jonge R, Keijzer E, Bradamante S. The role of adenosine in preconditioning. Pharmacol Ther 2000;87:141-149.

355. Maulik N, Sato M, Price BD, Das DK. An essential role of NFkB in tyrosine kinase signalling of p38 MAP kinase regulation of myocardial adaption to ischemia. FEBS Lett 1998;429:365-369.

356. Xuan YT, Tang XL, Banerjee S, Takano H, Li RC, Han H, Qiu Y, Li JJ, Bolli R. Nuclear factor-kB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 1999;84:1095-1109.

357. Valen G, Zhong-qun Y, Hansson G. Nuclear factor kappa B and the heart. J Am Coll Cardiol 2001;38:307-314.

358. Piascik MT, Perez DM. Alpha1-adrenergic receptors: new insights and directions. J Pharmacol Exp Ther 2001;298:403-410.

359. Flordellis C, Paris H, Karabinis A, Lymperopoulos A. Pharmacogenomics of adrenoceptors. Pharmacogenomics 2004;5:803-817.

360. Minneman KP. α_1 -Adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca²⁺. Pharmacol Rev 1988;40:87-119.

361. Docherty JR. Subtypes of functional α_1 - and α_2 -adrenoceptors. Eur J Pharmacol 1998;361:1-15.

362. Graham RM, Perez DM, Hwa J, Piascik MT. alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 1996;78:737-749.

363. Hwa J, De Young MB, Perez DM, Graham RM. Autonomic control of myocardium: alpha-adrenoceptor mechanisms. In: Burnstock G, ed; Shepherd J, Vatner SF, volume eds. The Autonomic Nervous System, Volume VIII, The Nervous Control of the Heart. Cambridge, Mass: Harvard University Press.

364. Theroux TL, Esbenshade TA, Peavy RD, Minneman KP. Coupling efficiencies of human α_1 -adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. Mol Pharmacol 1996;50:1376-1387.

365. Leech CJ, Faber JE. Different alpha-adrenoceptor subtypes mediate constriction of arterioles and venules. Am J Physiol 1996;270:H710-722.

366. Piascik MT, Guarino RD, Smith MS, Soltis EE, Perez DM. The specific contribution of the novel x_{1D} -adrenoceptor to the contraction of vascular smooth muscle. J Pharmacol Exp Ther 1995;275:1583-1589.

367. de Leeuw, PW, Birkenhager WH. Alpha-adrenoceptors and the kidney. J Hypertens 1988;6:S21-S24. 368. Michel, MC, Rump LC. Alpha-adrenergic regulation of human renal function. Fundam Clin Pharmacol 1996;10:493-503.

369. Strandhoy, JW. Role of α_2 -receptors in the regulation of renal function. J Cardiovasc Pharmacol 1985;7: S28-S33.

370. Garcia-Sainz JA, Vazques-Prado J, del Carmen Medina L. Alpha 1adrenoceptors function and phosphorylation. Eur J Pharmacol 2000;389:1-12.

371. Perez DM, DeYoung MB, Graham RM. Coupling of expressed α_{1B} - and α_{1D} adrenergic receptors to multiple signaling pathways is both G protein and cell type specific. Mol Pharmacol 1993;44:784-795.

372. Wu D, Katz A, Lee C, Simon MI. Activation of phospholipase C by α_1 -adrenergic receptors is mediated by the α subunits of G_q Family. J Biol Chem 1992;267: 25798-25802.

373. Lazou A, Sugden PH, Clerk A. Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J 1998;332:459-465.

374. Honner V, Docherty, JR. Investigation of the subtypes of α_1 -adrenoceptor mediating contractions of rat vas deferens Br J Pharmacol 1999;128:1323-1331.

375. Seyfarth M, Feng Y, Hagl S, Sebening F, Richardt G, Schömig A. Effect of myocardial ischemia on stimulation-evoked noradrenaline release: modulated neurotransmission in rat, guinea pig, and human cardiac tissue. Circ Res 1993;73:496-502.

376. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W. Release of endogenous catecholamines in the ischemic myocardium of the rat, A: locally mediated release. Circ Res 1984;55:689-701.

377. Kurz T, Richardt G, Hagl S, Seyfarth M, Schömig A. Two different mechanisms of noradrenaline release during normoxia and simulated ischemia in human cardiac tissue. J Mol Cell Cardiol 1995;27:1161-1172.

378. Kurz T, Offner B, Schreieck J, Richardt G, Tölg R, Schömig A. Nonexocytotic noradrenaline release and ventricular fibrillation in ischemic rat hearts. Naunyn Schmiedebergs Arch Pharmacol 1995;352:491-496.

379. Corr PB, Gillis RA. Autonomic neural influences on the dysrhythmias resulting from myocardial infarction. Circ Res 1978;43:1-9.

380. Rona G. Catecholamine cardiotoxicity. J Mol Cell Cardiol 1985;17:291-306.

381. Schomig A, Richardt G. The role of catecholamines in ischemia. J Cardiovasc Pharmacol. 1990;16:S105-112.

382. Seyfarth M, Richardt G, Mizsnyak A, Kurz T, Schomig A. Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart. Circ Res 1996;78:573-580.

383. Banerjee A, Locke-Winter C, Rogers KB, Mitchell MB, Brew EC, Cairns CB, Bensard DD, Harken AH. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism. Circ Res 1993;73:656-670.

384. Asimakis GK, Inners-McBride K, Conti VR, Yang CJ. Transient beta adrenergic stimulation can precondition the rat heart against postischaemic contractile dysfunction. Cardiovasc Res 1994;28:1726-1734.

385. Bankwala Z, Hale SL, Kloner RA. Alpha-adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation 1994;90:1023-1028.

386. Vegh A, Parratt JR. Noradrenaline, infused locally, reduces arrhythmia severity during coronary artery occlusion in anaesthetised dogs. Cardiovasc Res 2002;55:53-63.

387. Ravingerova T, WU S, Pancza D, Dzurba A, Ziegelhoffer A, Parratt J. Pretreatment with catecholamines can suppress severe ventricular arrhythmia in rats: Relevance to ischaemic preconditioning. Exp Clin Cardiol 1997;2:19-25.

388. Ravingerova T, Pancza D, Ziegelhoffer A, Styk J. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: the role of alpha-adrenergic stimulation and K(ATP) channels. Physiol Res 2002;51:109-119.

389. Cleveland JC Jr, Meldrum DR, Rowland RT, Cain BS, Meng X, Gamboni-Robertson F, Banerjee A, Harken AH. Ischaemic preconditioning of human myocardium: protein kinase C mediates a permissive role for α_1 -adrenoceptors. Am J Physiol 1997;273:H902-H908.

390. Vasara E, Seraskeris S, Lazou A. Activation of alpha 1 adrenoceptors is not essential for the mediation of ischaemic preconditioning in rat heart. Clin Exp Pharmacol Physiol 2002;29:11-17.

391. Salvi S. Protecting the myocardium from ischemic injury: a critical role for alpha(1)-adrenoreceptors? Chest 2001;119:1242-1249.

392. Piper HM, Probst I, Hutter JF, Spieckermann PG. Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol 1982;14, 397–412.

393. Cleveland Jr JC, Wollmering MM, Meldrum, DR, Rowland RT, Rehring TF, Sheridan BC, Harken AH, Banerjee A. Ischaemic preconditioning in human and rat ventricle. Am J Physiol 1996;271:H1786–H1794.

394. Paradise NF, Schmitter JL, Surmitis JM. Criteria for adequate oxygenation of isometric kitten papillary muscle. Am J Physiol 1981;241:H348–H353.

395. Rump LC, Schwertfeger E, Schaible U, Fraedrich G, Schollmeyer P. Beta 2adrenergic receptor and angiotensin II receptor modulation of sympathetic neurotransmission in human atria. Circ Res 1994;74:434–440.

396. Rump LC, Berlit T, Schwertfeger E, Beyersdorg F, Schollmeyer P, Bohmann, C. Angiotensin converting enzyme inhibition unmasks the sympathofacilitatory effect of bradykinin in human right atrium. J Hypertens 1997;15:1263–1270.

397.Walker DM, Walker JM, Pugsley WB, Pattison CW, Yellon DM. Preconditioning in isolated superfused human muscle. J Mol Cell Cardiol 1995;27:1349–1357.

398. Cohen G, Shirai T, Weisel RD, Rao V, Merante F, Tumiati LC, Mohabeer MK, Borger MA, Li RK, Mickle DA. Optimal myocardial preconditioning in a human model of ischaemia and reperfusion. Circulation 1998;98:II184–II194.

399. Auchampach JA, Grover GJ, Gross GJ. Blockade of ischaemic preconditioning in dogs by novel ATP-dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 1992;26:1054–1062.

400. Gross GJ, Auchampach JA. Blockade of ATP-dependent potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223–233.

401. Li Y, Kloner RA. Does protein kinase C play a role in ischaemic preconditioning in rat hearts? Am J Physiol 1995;268:H426–H431.

402. Schulz R, Rose J, Heusch G. Involvement of activation of ATP-dependent potassium channels in ischaemic preconditioning in swine. Am J Physiol 1994;267:H1341–H1352.

403. Walker DM, Marber MS, Walker JM, Yellon DM. Preconditioning in isolated superfused rabbit papillary muscles. Am J Physiol 1994;266:H1534–H1540.

404. Yellon D M, Alkhulaifi A M, Pugsley WB. Preconditioning the human myocardium. Lancet 1993;342:276–277.

405. Zhang JG, Ghosh S, Ockelford C, Galiñanes M. Characterization of an in vitro model for the study of the short and prolonged effects of myocardial ischaemia and reperfusion in man. Clin Sci 2000;99:443-453.

406. Zhang JG, Lindup WE. Role of mitochondria in cisplatin-induced oxidative damage exhibited by rat renal cortical slices. Biochem Pharmacol 1993;47:1127–1135.

407. Recommendations of the German Society for Clinical Chemistry: Standard method for the determination of creatine kinase activity. J Clin Chem Clin Biochem 1977;15:255.

408. Brückner R, Meyer W, Mügge A, Schmitz W, Scholz H. α-Adrenoreceptors mediated positive instropic effect of phenylephrine in isolated human ventricular myocardium. Eur J Pharmcol 1984;99:345-347.

409. Bristow MR, Minobe W, Ramussen R, Hershberger RE, Hoffman BB: Alpha 1adrenegic receptors in non failing and failing human heart. J Pharmacol Exp Ther 1988; 247:1039-1045.

410. Schümann HJ, Wagner J, Knorr A, Reidemeister JC, Sadony V, Schramm G. Demonstration in human atrial preparations of α -adrenoceptors mediating positive inotropic effects. Naunyn-Schmiedeberg's Arch Pharmacol 1978:302:333-336.

411. Skomedal T, Aass H, Osnes JB, Fjeld NB, Klingen G, Langslet A, Semb G. Demonstration of an alpha adrenoceptor-mediated inotropic effect of norepinephrine in human atria. J Pharmacol Exp Ther 1985;233:441-446.

412. Schömig A. Catecholamines in myocardial ischaemia systemic and cardiac release. Circulation 1990;82:II-13-II-22.

413. Butterfield MC, Chess-Williams R. Enhanced alpha-adrenoceptor responiveness and receptor number during global ischaemia in the Langendorff perfused rat heart. Br J Pharmacol 1990;100:641-645.

414. Heathers GP, Evers AS, Corr PB. Enhanced inositol triphosphate response to alpha-1-adrenergic stimulation in cardiac myocytes exposed to hypoxia. J Clin Invest 1988;83:1409-1413.

415. Corr PB, Shayman JA, Kramer JB, Kipins RJ. Increased α -adrenergic receptors in ischaemic cat myocardium. J Clin Invest 1981;67:1232-1236.

416. Meng X, Cleveland JC Jr, Rowland RT, Mitchell MB, Brown JM, Banerjee A, Harken AH. Norepinephrine-induced adaptation to ischaemia is dependent on α_1 adrenoceptors and protein synthesis. J Mol Cell cardiol 1996;28:2017-2025.

417. Sharma A, Singh M. the possible role of adrenergic component in ischaemic preconditioning. Methods Find Exp Clin Pharmacol 1997;19:493-499.

418. Cain BS, Meldrum DR, Meng X, Pulido EJ, Banerjee A, Harken AH. Therapeutic antidysrhythmic and functional protection in human atria. J Surg Res 1998;76:143-148.

419. Ghosh S, Standen NB, Galiñanes M. Preconditioning the human myocardium by simulated ischaemia: studies on the early and delayed protection. Cardiovasc Res 2000;45:339-350.

420. M Kitakaze, M Hori, T Morioka, T Minamino, S Takashima, H Sato, Y Shinozaki, M Chujo, H Mori, M Inoue, *et al.* Alpha 1-adrenoceptor activation mediates the infarct size-limiting effect of ischaemic preconditioning through augmentation of 5'-nucleotidase activity. J Clin Invest 1994;93:2197-2205.

421. Kurz T, Yamada A, DaTorre SD, Corr PB. Alpha1-adrenergic system and arrhythmias in ischaemic heart disease. Eur Heart J 1991;12:88-98.

422. Mann DL, Kent RL, Parsons B, Cooper G. Adrenergic effects on biology of the adult mammalian cardiocyte. Circulation 1992;85:790-804.

423. Corr PB, Crafford WA. Enhanced alpha-adrenergic responsiveness in ischaemic myocardium: role of alpha-adrenergic blockade. Am Heart J 1981;102:605-612.

424. Fedida D, Braun AP, Giles WR. Alpha 1 adrenoceptors in myocardium: functional aspects and transmembrane signalling mechanisms. Pharmacol Rev 1993;73:469-487.

425. Terzic A, Puceat M, Vassort G, Vogel S. Cardiac alpha 1-adrenoceptors: an overview. Pharmacol Rev 1993;45:147-175.

426. Berridge MJ. Inositol triphosphate and diacylglycerol: two interacting second messengers. Ann Rev Biochem 1987;56:159-193.

427. Ross CA, Meldolesi J, Milner TA, Satoh T, Supattapone S, Snyder SH. Inositol 1,4,5-triphosphate receptor localized to endoplasmic reticlum in cerebellar Purkinje neurons. Nature 1989;339;468-470.

428. Nishizuka Y. Intracellular signalling by hydrolysis of phospholipids and actvation of protein kinase C. Science 1992;258:607-614.

429. Dosemeci A, Dhallan RS, Cohen NM, Lederer WJ, Rogers TB. Phorbol ester increases calcium current and simulates the effects of angiotensin II on cultured neonatal rat heart myocytes. Circ Res 1988;62:347-357.

430. Otani H, Otani H, Das DK. α_1 -Adrenoreceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 1988;62:8-17.

431. Lindemann JP. α -Adrenergic stimulation of sarcolemmal protein phosphorylation and slow responses in intact myocardium. J Biol Chem 1986;261:4860-4867.

432. Presti CF, Scott BJ, Jones LR. Identification of an endogenous protein kinase C activity and its intrinsic 15-kilodalton substrate in purified canine cardiac sarcolemmal vesicles. J Biol Chem 1985;260:13879-13889.

433. Murray KT, Hu NN, Daw JR, Shin HG, Watson MT, Mashburn AB, George AL Jr. Functional effects of protein kinase C activation on the human Cardiac Na+ channel. Circ Res 1997;80:370-376.

434. Kitakaze M, Hori M, Kamada T. Role of adenosine and its interaction with α adrenoreceptor activity in ischaemia and reperfusion injury of the myocardium. Cardiovasc Res 1993;27:18-27. 435. Galiñanes M, Hearse DJ. Exogenous adenosine accelerates recovery of cardiac function and improves coronary flow after long-term hypothermic storage and transplantation. J Thorac Cardiovasc Surg 1992;104:151-158.

436. Dekker LR, Fiolet JW, VanBavel E, Coronel R, Opthof T, Spaan JA, Janse MJ. Intracellular Ca²⁺, Intercellular electrical coupling and mechanical activity in ischaemic rabbit papillary muscle: effect of preconditioning and metabolic blockade. Circ Res 1996;79:237-246.

437. Meldrum DR, Cleveland JC Jr, Sheridan BC, Rowland RT, Banerjee A, Harken AH. Cardiac preconditioning with calcium: clinically accessible myocardial protection. J Thorac Cardiovasc Surg 1996;112:778-786.

438. Cain BS, Meldrum DR, Meng X, Shames BD, Banerjee A, Harken AH. Calcium preconditioning in the human myocardium. Ann Thorac Surg 1998;65:1065-1070.

439. Miyawaki H, Ashraf M. Ca²⁺ as a mediator of ischaemic preconditioning. Circ Res 1997;80:790-799.

440. Carr CS, Hill RJ, Masamune H, Kennedy SP, Knight DR, Tracey WR, Yellon DM. Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia. Cardiovasc Res 1997;36:52-59.

441. Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A, Harken AH. Adenosine preconditioning of human myocardium is dependent upon the ATPsensitive K+ channels. J Mol Cell Cardiol 1997;29:175-182.

442. Cochrane J, Williams BT, Banerjee A, Harken AH, Burke TJ, Cairns CB, Shapiro JI. Ischaemic preconditioning attenuates functional, metabolic, and morphologic injury from ischaemic renal failure in the rat. Ren Fail 1999;21:135-145.

443. Mounsey RA, Pang CY, Forrest C. Preconditioning: a new technique for improved muscle flap survival. Otolaryngol Head Neck Surg 1992;107:549-552.

444. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, Kamada T. 'Ischaemic tolerance' phenomenon found in the brain. Brain Res 1990;528:21-24.

445. Lloris-Carsi JM, Cejalvo D, Toledo-Pereyra LH, Calvo MA, Suzuki S. Preconditioning: effect upon lesion modulation in warm liver ischaemia. Transplant Proc 1993;25:3303-3304.

446. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischaemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993;87:893-899.

447. Pell TJ, Baxter GF, Yellon DM, Drew GM. Renal ischaemia preconditions myocardium: role of adenosine receptors and ATP-sensitive channels. Am J Physiol 1998;275:H1542-H1547.

448. Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, Inubushi T, Kinoshita M. Renal ischaemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischaemia via adenosine receptors in rabbits: effects of "remote preconditioning". J Am Coll Cardiol 1999;33:556-564.

449. Meng X, Shamer BD, Pulido EJ, Meldrum DR, Ao L, Joo KS, Harken AH, Banerjee A. Adrenergic induction of bimodal myocardial protection: signal transduction and cardiac gene reprogramming. Am J Physiol 1999;276:R1525-R1533. 450. Lochner A, Genade S, Tromp e, Podzuweit T, Moolman JA. Ischaemic preconditioning and the β -adrenergic signal transduction pathway. Circulation 1999;100:958-966. 451. Schultz JJ, Hsu AK, Gross GJ. Ischaemic preconditioning is mediated by a peripheral opioid receptor mechanism in the intact rat heart. J Mol Cell Cardiol 1997;29:1355-1362.

452. Downey JM, Liu GS, Thornton JD. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res 1993;27:3-8.

453. Joyeux M, Godin-Ribuot D, Ribuot C. Resistance to myocardial infarction induced by heat stress and the effect of ATP-sensitive potassium channel blockade in the rat isolated heart. Br J Pharmacol 1998;123:1085-1088.

454. Hoag JB, Yong-Zhen Q, Nayeem MA, D'Angelo M Kukerja RC. ATP-sensitive potassium channel mediates delayed ischaemic protection by heat stress in rabbit heart. Am J Physiol 1997;173:H2458-H2464.

455. Brew EB, Mitchell MB, Rehring TF, Gamboni-Robertson F, McIntyre RC, Harken AH, Banerjee A. The role of bradykinin in cardiac functional protection after global ischaemia-reperfusion in the rat heart. Am J Physiol 1995;269:H1370-H1378.

456. Jones WK, Flaherty MP, Tang XL, Takano H, Banerjee S, Smith T, Bolli R. Ischaemic preconditioning increases iNOS transcript levels in conscious rabbits via a nitric oxide-dependent mechanism. J Mol Cell Cardiol 1999;31:1469-1481.

457. Imagawa J, Yellon DM, Baxter GF. Pharmacologicalal evidence that inducible nitric oxide synthase is a mediator of delayed preconditioning. Br J Pharmacol 1999;126:701-708.

458. Hu K, Nattel S. Mechanism of ischaemic preconditioning in rat hearts: involvement of α_{1B} -adrenoceptors, pertussis toxin-sensitive G proteins and protein kinase C. Circulation 1995;92:2259-2265.

459. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 1991;84:350-356.

460. Thornton JD, Liu GS, Olsson RA, Downey JM. Intravenous pre-treatment with A1-selective adenosine analogues protects the hearts against infarction. Circulation 1992;85:659-665.

461. Yao Z, Gross GJ. Acomparison of adenosine-induced cardioprotection and ischaemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 1994;89:1229-1236.

462. Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation 1992;86:1310-1316.

463. Van Winkle DM, Chien GL, Wolff RA, Soifer BE, Kuzume K, Davis RF. Cardioprotection provided by adenosine receptor activation is abolished by blockade of the KATP channel. Am J Physiol 1994;266:H829-H839.

464. McCully JD, Uematsu M, Parker RA, Levitsky S. Adenosine-enhanced ischaemic preconditioning provides enhanced postischaemic recovery and limitation of infarct size in the rabbit heart. J Thorac Cardiovasc Surg 1998;116:154-162.

465. McCully JD, Toyoda Y, Uematsu M, Stewart RD, Levitsky S. Adenosineenhanced ischaemic preconditioning: adenosine receptor involvement during ischaemia and reperfusion. Am J Physiol 2001;280:H591-H602.

466. Li RA, Leppo M, Miki T, Seino S, Marban E. Molecular basis of electrocardiographic ST-segment elevation. Circ Res 2000;87:837-839.

467. Pain T, Yang X, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM. Opening of mitochondrial K_{ATP} channels triggers the preconditioned state by generating free radicals. Circ Res 2000;87:460-466.

468. Sato T, Marban E. The role of mitochondrial K(ATP) channels in cardioprotection. Basic Res Cardiol 2000;95:285-289.

469. Sato T, O'Rourke B, Marban E. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 1998;83:110-114.

470. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. Cardioprotective effect of diazoxide and its interaction with mitochnodrial ATP-sensitive K+ channels: Possible mechanism of cardioprotection. Circ Res 1997;81:1072-1082.

471. Ghosh S, Standen NB, Galiñanes M. Evidence for mitochondrial KATP channels as effectors of human myocardial preconditioning. Cardiovasc Res 2000;45:934-940.

472. Liu Y, Sato T, O'Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels: novel effectors of cardioprotection? Circulation 1998;97:2463-2469.

473. Tsuchida A, Liu Y, Liu GS, Cohen MV, Downey JM. Alpha 1-adrenergic agonists precondition rabbit ischaemic myocardium independent of adenosine by direct activation of protein kinase C. Circ Res 1994;75:576-585.

474. Goto M, Liu Y, Yang XM, Ardell JL, Cohen MV, Downey JM. Role of Bradykinin in protection of ischaemic preconditioning in rabbit hearts. Cir Res 1995;77:611-621.

475. Strasser RH, Braun-Dullaeus RB, Walendzik H, Marquetant R. α_1 -receptordependent activation of protein kinase C in acute myocardial ischaemia: mechanisms of sensitization of the adenylyl cyclase system. Circ Res 1992;70:1304-1312.

476. Talosi L, Kranias EG. Effect of alpha-adrenergic stimulation on activation of protein kinase C and phosphrylation of proteins in intact rabbit hearts. Circ Res 1992;70:670-678.

477. Clerk A, Michael A, Sugden PH. Stimulation of the p38 mitogen-activated protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy. J Cell Biol 1998;142:523-535.

478. Bogoyevitch MA, Glennon PE, Anderson MB, Clerk A, Lazou A, Marshall CJ, Parker PJ, Sugden PH. Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signalling cascade in cardiac myocytes. J Biol Chem 1994;269:1110-1119.

479. Carrol R, Yellon DM. Myocardial adaptation to ischaemia-the preconditioning phenomenon. Int J Cardiol 1999;68:S93-S101.

480. Grover G. Pharmacology of ATP-sensitive potassium channel (K-ATP) openers in models of myocardial ischaemia and reperfusion. Can J physiol Pharmacol 1997;75:309-315.

481. Mitchell MB, meng X, Ao L, Brown JM, Harken AH, Banerjee A. Preconditioning of isolated rat heart is mediated by protein kinase C. Circ Res 1995;76:73-81.

482. Cohen MV, Downey JM. Myocardial preconditioning promises to be a novel approach to the treatment of ischaemic heart disease. Annu Rev Med 1996;47:21-29.

483. Wang Y, Hirai K, Ashraf M. Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischaemic injury is dependent on protein kinase C activity. Circ Res 1999;85:731-741.

484. Miura T, Liu Y, Kita H, Ogawa T, Shimamoto K. Roles of mitochondrial ATPsensitive K channels and PKC in anti-infarct tolerance afforded by adenosine A1 receptor activation. J Am Coll Cardiol 2000;35:238-245.

485. Vahlhaus C Schulz R, Post H, Rose J, Heusch G. Prevention of ischaemic preconditioning only by combination of protein kinase C and protein tyrosine kinase in pigs. J Mol Cell Cardiol 1998;38:197-209.

486. Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. Ischaemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 1997;81:404-414.

487. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995;270:7420-7426.

488. Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ. MKK3- and MKK6-regulated gene expression is mediated by the p38 Mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 1996;16:1247-1255.

489. Weinbrenner C, Liu GS, Cohen MV, Downey JM. Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in the rabbit heart. J Mol Cell Cardiol 1997;29:2383-1391.

490. Nakano A, Baines CP, Kim SO, Pelech SL, Downey JM, Cohen MV, Critz SD. Ischaemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK. Cir Res 2000;84:144-151.

491. Schneider S, Chen W, Hou J, Steenbergen C, Murphy E. Inhibition of p38 MAPK α/β reduces ischaemic injury and does not block protective effects of preconditioning. Am J Physiol;280:H449-H508.

492. Behrends M, Schulz R, Post H, Alexandrov A, Belosjorow S, Michel MC, Heusch G. Inconsistent relation of MAPK activation to infarct size reduction by ischaemic preconditioning in pigs. Am J Physiol 2000;279:H1111-H1119.

493. Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 1992;313:307-313.

494. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997;110:357-368.

495. Huot J, Houle F, Spitz DR, Landry J. HSP 27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 1996;56:273-279.

496. Jaburek M, Yarov-Yarovoy V, Paucek P, Garlid KD. State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. J Biol Chem 1998;273:13578-13582.

497. Liu y, Sato, Seharaseyon J, Szewczky A, O'Rourke B, Marban E. Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischaemic preconditioning. Ann N Y Acad Sci 1999;874:27-37.

498. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 1998;275:H1567-H1576.

499. Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol 2001;280:H649-H657.

500. Ghosh S, Standen NB, Galiñanes M. Failure to precondition pathological human myocardium. J Am Coll Cardiol 2001;37:711-718.

501. Krumenacker M, Roland EO. Clinical profile of nicorandil: An overview of its haemodynamic properties and therapeutic efficacy. J Cardiovasc Pharmacol 1992;20:S93-S102.

502. Frampton J, Buckley M, Fitton A. Nicorandil: A review of its pharmacology and therapeutic efficacy in angina pectoris. Drugs 1992; 44: 625-655.

503. Patel DJ, Purcell HJ, Fox KM. Cardioprotection by opening of the K_{ATP} channel in unstable angina. Eur Heart J 1999;20: 51-57.

504. Cook NS. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci 1988;9:21-28.

505. Flaherty JT. Nitrate tolerance: A review of the evidence. Drugs. 1989;37;523-550.

506. Suryapranata H, MacLeod D. Nicorandil and cardiovascular performance in patients with coronary artery disease J Cardiovasc Pharmacol 1992;20:S45-S51.

507. Hiraoka M, Fan Z. Activation of ATP-sensitive outward potassium current by nicorandil (2-nicotinamidoethyl-nitrate) in isolated ventricular myocytes. J Pharmacol Exp Ther 1989;250:278-285.

508. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol Heart Cir Physiol 1998;275:H1567-H1576.

509. Imagawa J, Baxter GF, Yellon DM. Myocardial protection afforded by nicorandil and ischaemic preconditioning in a rabbit infarct model in vivo. J Cardiovasc Pharmacol 1998;31:74-79.

510. Carr CS, Yellon DM. Ischaemic preconditioning may abolish the protection afforded by ATP-sensitive potassium channel openers in isolated human atrial muscle. Basic Res Cardiol 1997;92:25-260.

511. Nishikawa Y, Kanki H, Ogawa S. Differential effects of N-acetylcysteine on nitroglycerin- and nicorandil-induced vasodilatation in human coronary circulation. J Cardiovasc Pharmacol 1998;32:21-28.

512. Naito A, Aniya Y, Sakanashi M. Antioxidative action of nitrovasodilator nicorandil: inhibition of oxidative activation of liver microsomal glutathione S-transferase and lipid peroxidation. Jpn J Pharmacol 1994;65:209-213.

513. Matata BM, Galiñanes M. Cardiopulmonary bypass exacerbates oxidative stress but does not increase proinflammatory cytokine release in patients with diabetes compared with patients without diabetes: regulatory effects of exogenous nitric oxide. J Thorac Cardiovasc Surg 2000;120:1-11.

514. Langlois M, Duprez D, Delanghe J, De Buyzere M, Clement DL. Serum vitamin C concentration is low in peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation 2001;103:1863-1868.

515. Nagueh SF, Stetson SJ, Lakkis NM, Killip D, Perez-Verdia A, Entman ML, Spencer WH 3rd, Torre-Amione G. Decreased expression of tumor necrosis factoralpha and regression of hypertrophy after nonsurgical septal reduction therapy for patients with hypertrophic obstructive cardiomyopathy. Circulation 2001;103:1844-1850.

516. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 2000;87:241-247.

517. IONA Study group. Effect of nicorandil on coronary events in patients with stable angina: the Impact Of Nicorandil in Angina (IONA) randomised trial. Lancet 2002;359:1269-1275.

518. Ashcroft FM, Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 1989; 54:87-143.

519. Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol 1998; 31:950-956.

520. Klamann A, Sarfert P, Launhardt V, Schulte G, Schmiegel WH, Nauck MA. Myocardial infarction in diabetic vs non-diabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide). Eur Heart J 2000; 21:220-229.

521. Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K⁺ channels and myocardial preconditioning. Circ Res 1999; 84:973-979.

522. D'hahan N, Moreau C, Prost AL, Jacquet H, Alekseev AE, Terzic A, Vivaudou M. Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP. Proc Natl Acad Sci U S A 1999; 96:12162-12167.

523. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J. K_{ATP} channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 2002; 542:735-741.

524. Gribble FM, Tucker SJ, Seino S, Ashcroft FM. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta- cell K_{ATP} channels. Diabetes 1998; 47:1412-1418.

525. Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischaemic preconditioning or diazoxide. Circulation 2001; 103:3111-3116.

526. Klepzig H, Kober G, Matter C, Luus H, Schneider H, Boedeker KH, Kiowski W, Amann FW, Gruber D, Harris S, Burger W. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo- controlled evaluation of glimepiride and glibenclamide. Eur Heart J 1999; 20:439-446.

527. Lawrence CL, Proks P, Rodrigo GC, Jones P, Hayabuchi Y, Standen NB, Ashcroft FM. Gliclazide produces high-affinity block of K_{ATP} channels in mouse isolated pancreatic beta cells but not rat heart or arterial smooth muscle cells. Diabetologia 2001;44:1019-1025.

528. Fietsam R, Jr., Bassett J, Glover JL. Complications of coronary artery surgery in diabetic patients. Am Surg 1991; 57:551-557.

529. University Group Diabetes Program. A study of the effects of hypoglycemia agents on vascular complications in patients with adult-onset diabetes. VI. Supplementary report on nonfatal events in patients treated with tolbutamide. Diabetes 1976; 25:1129-1153.

530. Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of K_{ATP} channels. Physiol Rev 1998; 78:227-245.

531. Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L, Bryan J, Seino S. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K⁺ channels. Neuron 1996;16:1011-1017.

532. Gribble FM, Ashcroft FM. Differential sensitivity of beta-cell and extrapancreatic K_{ATP} channels to gliclazide. Diabetologia 1999; 42:845-848.

533. Maeda T, Yamaguchi T, Hashimoto M. Gas chromatographic determination of the hypoglycaemic agent gliclazide in plasma. J Chromatogr 1981; 223:357-363.

534. Oida T, Yoshida K, Kagemoto A, Sekine Y, Higashijima T. The metabolism of gliclazide in man. Xenobiotica 1985; 15:87-96.

535. Palmer KJ, Brogden RN. Gliclazide: An update of its pharmacological properties and therapeutic efficiency in non-insulin-dependent diabetes mellitus. Drugs 1993; 46:92-125.

536. Campbell DB, Lavielle R, Nathan C. The mode of action and clinical pharmacology of gliclazide: a review. Diabetes Res Clin Pract 1991; 14 Suppl 2:S21-S36.

537. Jenkins DP, Pugsley WB, Yellon DM. Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction of stunning. J Mol Cell Cardiol. 1995;27:1623-1632.

538. Yellon DM, Alkhulaifi AM, Browne EE, Pugsley WB. Ischaemic preconditioning limits infarct size in the rat heart. Cardiovasc Res. 1992;26:983-987.

539. Hagar JM, Hale SL, Kloner RA. Effect of preconditioning ischaemia on reperfusion arrhythmias after coronary artery occlusion and reperfusion in the rat. Circ Res. 1991;68:61-68.

540. Steenbergen C, Murphy E, Watts JA, London RE. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischaemic injury in perfused rat heart. Circ Res. 1990;66:135-146.

541. Ito BR, Tate H, Kobayashi M, Schaper W. Reversibly injured, postischaemic canine myocardium retains normal contractile reserve. Circ Res. 1987;61:834-846.

542. Baxter GF. Ischaemic preconditioning of myocardium. Ann Med. 1997;29:345-352.

543. Bugge E, Ytrehus K. Ischaemic preconditioning is protein kinase C dependent but not through stimulation of alpha adrenergic or adenosine receptors in the isolated rat heart. Cardiovasc Res. 1995;29:401-406.

544. Armstrong SC, Liu GS, Downey JM, Ganote CE. Potassium channels and preconditioning of isolated rabbit cardiomyocytes: effects of glyburide and pinacidil. J Mol Cell Cardiol. 1995;27:1765-1774.

545. Wang Y, Ashraf M. Role of protein kinase C in mitochondrial KATP channelmediated protection against Ca2+ overload injury in rat myocardium. Circ Res. 1999;84:1156-1165. 546. Liu Y, Ren G, O'Rourke B, Marban E, Seharaseyon. Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Mol Pharmacol. 2001;59:225-230.

547. Tejero-Taldo MI, Gursoy E, Zhao TC, Kukreja RC. Alpha-adrenergic receptor stimulation produces late preconditioning through inducible nitric oxide synthase in mouse heart. J Mol Cell Cardiol 2002;34:185-195.

548. Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M. A "second window of protection" occurs 24h after ischaemic preconditioning in the rat heart. J Mol Cell Cardiol 1998;30:1181-1189.

549. Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 1998;83:73-84.

550. Ebrahim Z, Yellon DM, Baxter GF. Bradykinin elicits "second window" myocardial protection in rat heart through an NO-dependent mechanism. Am J Physiol Heart Circ Physiol 2001;281:H1458-1464.

551. Fryer RM, Hsu AK, Eells JT, Nagase H, Gross GJ. Opioid-induced second window of cardioprotection: potential role of mitochondrial KATP channels. Circ Res 1999;84:846-851.

552. Zacharowski K, Olbrich A, Piper J, Hafner G, Kondo K, Thiemermann C. Selective activation of the prostanoid EP(3) receptor reduces myocardial infarct size in rodents. Arterioscler Thromb Vasc Biol 1999;19:2141-2147.

553. Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F. Prodromal angina limits infarct size. A role for ischaemic preconditioning. Circulation 1995;91:291-297.

554. McCully JD, Uematsu M, Levitsky S. Adenosine-enhanced ischaemic preconditioning provides myocardial protection equal to that of cold blood cardioplegia. Ann Thorac Surg 1999;67:699-704.

555. Bernardo NL, D'Angelo M, Okubo S, Joy A, Kukreja RC. Delayed ischaemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol 1999;276:H1323-330.

556. Tanaka M, Fujiwara H, Yamasaki K, Miyamae M, Yokota R, Hasegawa K, Fujiwara T, Sasayama S. Ischaemic preconditioning elevates cardiac stress protein but does not limit infarct size 24 or 48 h later in rabbits. Am J Physiol 1994;267:H1476-482.

557. Baxter GF, Goma FM, Yellon DM. Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium. Br J Pharmacol 1995;115:222-224.

558. Nakano A, Baines CP, Kim SO, Pelech SL, Downey JM, Cohen MV, Critz SD. Ischaemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK. Circ Res 2000;86:144-151.

559. Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, Takano H, Balafanova Z, Bolli R. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischaemic preconditioning in conscious rabbits. Circ Res 1999;85:542-550.

560. Sanada S, Kitakaze M, Papst PJ, Hatanaka K, Asanuma H, Aki T, Shinozaki Y, Ogita H, Node K, Takashima S, Asakura M, Yamada J, Fukushima T, Ogai A, Kuzuya T, Mori H, Terada N, Yoshida K, Hori M. Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischaemic preconditioning of the canine heart. Circ Res 2001;88:175-180.

561. Issandou M, Darbon JM. Activation of protein kinase C by phorbol esters induces DNA synthesis and protein phosphorylations in glomerular mesangial cells. FEBS Lett 1991;281:196-200.

562. Rizvi A, Tang XL, Qiu Y, Xuan YT, Takano H, Jadoon AK, Bolli R. Increased protein synthesis is necessary for the development of late preconditioning against myocardial stunning. Am J Physiol 277:H874-H884.