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Reliability Analysis of Static Sealed Joints 

(PhD Thesis)

HONG YUE

Leaking, fhction and wear of seals are concerns for machine designers
and users everywhere. Although perfect sealing may be the general aim, in 
practice, considering apparently identical seals in the same application, some 
may seal while some may not. This is due, at least in part, to surface-related 
random phenomena Therefore, the importance of considering the reliability 
of sealed joints cannot be overemphasized. Up to now, there is no paper in 
the published literature about the reliability analysis of static sealed joints.

All of these facts provide the motivation for the current research work. 
A computer simulation model for the leakage analysis of static sealed joints 
has been developed based on the percolation theory. The features of the 
leakage simulation model can be concluded as follows:
(1) It reveals the effect of random properties of rough surfaces on the 

sealing performance and makes it possible to apply the statistical 
concepts in discussing the sealing reliability of static sealed joints;

(2) It provides much simpler and more economic tool for the statistical
analysis of leakage by computer simulation than by experiments;

(3) It makes it possible to describe the leakage phenomenon more
accurately using the leakage path model instead of the clearance 
between surface centre-lines;

(4) It eliminates the need for individual asperity model of rough surfaces, 
because the actual digitized surface is used directly.

The relationship between the leakage probability and the applied load, 
which is of great general interest to the designers of static sealed joints, has 
been predicted by the leakage simulation model. The simulated results show 
that for a given leakage probability, the required load will increase as the 
value of RMS height a  increases or the value of correlation length X* 
decreases. It is confirmed that a certain value of contact ratio can be used as 
the criterion for identifying the reliability of static sealed joints with a certain 
confidence level. The contact ratio criterion provides a simple, inexpensive 
and useful tool to evaluate the effects of rough surfaces, material properties 
and applied load on the sealing reliability of static sealed joints. However, in 
order to be of practical use, experimental work is required to evaluate its 
validity.
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CHAPTER 1.
Introduction

1.1 Research Objectives

Leaking, friction and wear of seals are concerns for machine designers 

and users everywhere. Although perfect sealing may be the general aim, in 

practice there is usually infiltration of fluid through imperfections in the 

sealing surfaces. Therefore, the importance of the reliability of sealed joints

cannot be overemphasized.

Societies are undergoing rapid changes. The population growth is 

coupled to the high growth of information and communication systems, 

leading to an explosion of knowledge. The consequence of this is the 

speeding up of the rate of technological breakthroughs but also more 

sophisticated and demanding customers and end users. When the above is 

coupled to the intense competition in today's markets, it follows that products 

(and, by implication, their components such as seals) are required to have 

higher reliability in order that they fulfil the "trouble-free operation" demands 

of the end user. Moreover, the protection of our fragile environment is today

1
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of global concern. In many cases, it is therefore necessary to provide the 

reverse protection, that is, protect the environment from fluid used in 

machinery and various installations. This is another reason for increasing 

demands for effective sealing.

The static sealed joints are widely used in practices. Static sealing 

performance is of obvious interest in cases of long stationary periods. In this 

thesis, it is concerned only with static seals involving solid materials. It does 

not concern itself with the seals used between moving parts, e.g. faces seals 

and lip seals, where the greatest concerns are usually wear and the esczqpe of 

lubricating oil. The sort o f situation envisaged is that of seals in flanged joints, 

but static seal and gaskets used in a wide range of situation will be influenced 

by very similar concerns. The main concern in such joints is the creation of 

a barrier to the flow of fluid from one side of the sealed area to the other; the 

barrier being formed by contact between the two materials due to the 

application of external force. The creation and integrity of this barrier can be 

discussed at two very different scales, termed for convenience macroscopic 

and microscopic views of the problem.

The macroscopic view is concerned with the overall distribution of 

stresses throughout the joint and whether this creates compressive stresses over 

the area of the seal. Thus, for example, the shape of the flanges and the 

location of bolts in a flanged joint are primary interests for design, and as far 

as integrity and reliability are concerned, major concerns would be the quality 

of the jointing material and the cleanliness of the joint where debris might 

prevent proper contact being made.
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The microscopic view looks at the surface roughness of the contacting 

materials which is apparent if their surfaces are magnified sufficiently, and 

considers whether the compressive stresses do in fact bring sufficient area into 

contact to form a barrier. There may be situations in which failure to form a 

seal at the microscopic level is unimportant. However, ever increasing 

concerns over environmental pollution mean that for toxic or radioactive 

materials, for example, the demands made on the design of seals can only get 

more severe as time goes on.

The work in this thesis is limited to considering the microscopic view; 

it is considered appropriate to investigate the nature of the sealing process at 

this scale before progressing to the macroscopic view, since the microscopic 

view will determine the criterion that should be adopted in a macroscopic 

analysis.

This thesis is concerned with the situation of two "rough" surfaces 

which are compressed together. Flitney, Nau and Reddy (1984) have shown 

that the characteristics of rough surfaces determine the nature of leakage paths 

at interface. When two surfaces are in contact the roughness provides a path 

through which fluid flow may take place. The leakage route is inevitably 

affected by the way in which the surface roughness asperities are deformed 

when the two surfaces are loaded together. Rough surfaces produce a 

multitude of relatively large leakage paths and will require higher applied load 

to seal effectively. Smooth surfaces on the other hand produce smaller 

leakage paths which offer high resistance to leakage flow and require less 

contact pressure at the interface. Therefore, the more important factors on the



sealing performance of static sealed joins are surface characteristics and the 

face loading or face contact pressure. Assuming ideally flat faces, leakage can 

be reduced by improving surface finish and by increasing the contact pressure.

A number of works have considered the effect of surface roughness on 

the sealing performance of static sealed joints (Rathbun 1963; Tsukizoe and 

Hisakado 1965; Mitchell and Rowe, 1967/1969; Thomas 1973; Shimomura,

Kiryu, Hirabayshi and Nakajima 1989; Etsion and Front 1994), and several 

surface criteria have been proposed for the effectiveness of such seals. All of 

these researches have achieved certain successes but also with some limitations 

on each of the solution methods. A survey will be given in the next section.

An important fact observed in practice is that for apparently identical 

seals in the same application, some may seal while some not. This is partly 

due to surface-related random phenomena. It therefore is the most reasonable 

to apply statistical concepts in discussing sealing reliability. Since the existing 

work deals only with average properties, it cannot therefore model the possible 

variations of surface-related random phenomena. Up to now, there is not a 

paper in the published literature about the reliability analysis of static sealed 

joints. The lack of a reliable model that predicts the effects of influential 

parameters on the sealing reliability of static sealed joints necessitates the use 

of test. This may be a tedious procedure and can not satisfy the need that the 

market competition requires faster product development.

All of these facts have provided the motivation for the current research 

work. This research aims at present a new simulation model of leakage that



can reveal the effect of random properties of rough surfaces on the sealing 

performance so that it is possible to apply the statistical concepts, i.e. leakage 

probability or sealing probability, in discussing the sealing reliability of static 

sealed joints. Computer simulation is not only the most reasonable approach 

in light of the complexity of the problem, but also is much simpler and more 

economic for the statistical analysis of leakage than experiments. The 

computer simulation of random rough surfaces and the numerical contact 

model of rough surfaces make it is possible to develop such a simulation 

model of leakage.

Considering the variables controlling the leakage, if one were to write 

a mathematical formula for leakage probability it would look like this:

= F{Sj & S; surface roughness, Sj &  m aterial properties,

Sj S 2  face loading}

where Sj & S2  are the sealing surfaces.

1.2 Research Background

A number of equations have been put forward for the calculation of 

leakage rate through seals operating in the full fluid lubrication regime. These 

are all based on the Poiseuille equation for laminar flow through a simple 

annular gap. The Poiseuille flow formula applied to parallel sealing faces is 

written in the form (Summers-Smith 1988):



for incompressible fluid

6nln (ro /r,)
(1.1)

or for compressible fluid:

IZufglnCrg/r,)
(1.2)

where:

Q\ flow rate [ mVs ] 

h: uniform clearance [ m ] 

fluid viscosity [ Pa.s ]

rg and r,: outer and inner radii of the seal ring surface [ m ]

P, and P 2 '. system pressure and environmental pressure for testing machine 

[ P a ]

Pj: atmospheric pressure [ P a ] .

Equation (1.1) and (1.2) also assumes perfectly smooth surfaces, but 

gives very good results when the clearance h is large enough compared to 

the surface roughness. From Equation (1.1) and (1.2), the clearance A is an 

important parameter controlling the fluid flow and the effect of this parameter 

on the sealing performance is very strong, since leakage is proportional to ĥ .

Rathbun et al. (1963) and Tsukizoe and Hisakado (1965) had analyzed 

profilometer traces and derived expressions for fluid leakage when surface are
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loaded against a perfectly flat surface. The analysis of Rathbun et al, who 

used an effective mean gap weighted according to the point-to-point variation 

of flow rate, would predict an even larger range of variation in leak rate. 

Both these solutions were based on plastic deformation and assumed a 

constant pressure for individual asperity deformation.

Mitchell and Rowe (1967) studied face seal performance based on the 

parameters of a statistical representation of surface roughness. They derived 

the load-compression and load-leakage relationships for wedge-shaped 

asperities of constant apex semi-angle when the distributions of peak and 

valley levels were defined as Gaussian in form. The results suggested that a 

convenient quantity for specifying the form of a surface profile is the ratio of 

the distance between the mean peak and mean valley levels to the standard 

deviation of the distributions (d/a). For the best sealing performance d /a  

should be as large as possible, whilst the centre-line average, which provided 

a measure of the scale of the roughness should be as small as possible. 

Mitchell and Rowe (1969) extended further their analysis by taking account 

of the influence of asperity deformation mode on gas leakage between 

contacting surfaces. In their analysis, full account was taken of the effect of 

displaced material on the deformation pressure and on the rate of fluid leakage 

between the contacting surfaces. The expressions for fluid leakage between 

two contacting surfaces was derived based on the plastic deformation of 

wedge-shaped model.

Thomas (1973) studied the influence of roughness on the deformation 

of metal surfaces in static contact. The effect of correlation length on the



separation of the contacting surfaces was taken into account. The theory of 

statistical geometry was applied to predict the mode of surface elastic 

deformation, and clearance and mean gap at a given load were calculated for 

steel surfaces as function of nominal stress. The clearance at a given load was 

shown to decrease with increasing correlation length of the surface profile, the 

best and worst finishing being cylindrical lapping and horizontal grinding 

respectively: the ratio of their resistances to viscous leakage under the same 

nominal load is calculated as 8:1.

Shimomura, Hirabayshi and Nakajima (1989) studied the relationship 

between sealing performance and surface characteristics of end face seals by 

experiments. The Poiseuille formula was applied to calculate the leakage rates 

past the sealing surfaces under static conditions, where the average clearance 

h was replaced by the RMS roughness of the cover plate. In order to 

compensate for the large deviation from a uniform parallel clearance between 

the sealing surface, a modification to the Poiseuille formula was introduced in 

the form of a multiplying coefficient where denotes the actual leakage 

rate between the sealing surfaces and it took the form:

The coefficient q>̂ was experimentally determined for each fluid with results 

that indicate reasonable correlation of the varying surface topographies. Their 

analysis first combined the problems of topographies and flow between two 

surfaces by experiments. The experimental results for the modification
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coefficient ç„ are limited to the material combination and test conditions of 

the experiments. This limits the prediction model within a certain range.

Etsion and Front (1994) developed a model for static sealing 

performance of end face seals considering the effect of face loading, surface

roughness and material properties. Although the Poiseuille formula was still 

applied as the basic formula to calculate the leakage rates past the sealing 

surfaces under static conditions, the average clearance h was, however, 

dependent on the nature of the contact between the seal surfaces, and was 

determined by using the contact model of rough surfaces (McCool, 1987). 

The analysis first combined the problems of elastic-plastic contact and flow 

between two rough surfaces. The effect of the pressure-induced flow between 

rough surfaces was taken into account in the model by introducing the 

pressure flow factor derived by Patir and Cheng (1978). For isotropic 

roughness the pressure flow factor is given by:

<Py 1 -  (1.4)

and a  is the composite standard deviation of the surface heights: a = (of + 

^ ) i /2 Therefore, the actual leakage rate between the sealing surfaces took the 

form:

. " ( f ,  (1.5)
' 6nln(r„/r,)

where the dimensionless leakage Q„ is:



Qn ~ ^/(~) (1'̂ )

The dimensionless leakage depends on h/a. According to the numerical results 

of the contact model, an empirical expression was found that relates the 

dimensionless leakage to the dimensionless load P /A J I  based on the 

assumption that the plasticity index defined by Greenwood and Williamson 

(1966) is greater than 3, which means that the surface asperities will deform 

plastically. Thus, a model, which can predict the sealing performance of static 

sealed joints as a function of roughness a, material hardness H, and face 

contact pressure , has been obtained.

As can be seen from the survey above, all of these researches have 

certain successes. Since the existing work deals only with average properties, 

it is not suitable to discuss the reliability of static sealed joints, which is a

surface-related random problem.

1.3 Thesis Overview

This section gives a presentation overview of the thesis. This thesis is 

organized in such a way as to produce a coherent and unifying theme 

representing the main features of the reliability analysis of static sealed joints, 

which may be divided into the following three topics:

(1) Characterisation and numerical simulation of random rough surfaces

1 0



(Chapter 2. and Chapter 3 );

(2) Contact of rough surfaces (Chapter 4., Chuter 5. and Chapter 6 );

(3) Simulation model of leakage and reliability analysis of static sealed

joints (Chuter 7 ).

Chapter 1 (the current chapter) introduces the nature, scope and 

objectives of the research topic undertaken and makes a survey of the existing 

works on the subject on the effect of the contact of rough surfaces on the 

performance of static sealed joints. It also gives an overview of the thesis.

Chapter 2 introduces the analytical methods of surface

characterisation and topography of engineering surfaces. A measured surface 

may be comprehensively described by two statistical functions; the probability 

density function and the autocorrelation function. The probability density 

function describes the distribution of surface heights, and the RMS height is 

a measure of the deviation of the surface from the mean plane; the 

autocorrelation function gives the information on the shapes or spacings of the 

surface irregularities, and the correlation length measures the rate of the 

change of the roughness along the surface. Different manufacturing processes 

produce various directional patterns of the surfaces. It is proposed that two 

types of rough surfaces should classified; isotropic surface and anisotropic 

surface.

Chapter 3 presents a numerical simulation algorithm for generating

11
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random rough surfaces with Gaussian statistical properties. Based on the 

algorithm, the computer program has been written in FORTRAN. The desired 

probability density of the roughness heights is obtained by controlling the 

probability density of the random numbers in the input matrix. Because linear 

transformations of independent Gaussian random variables result in Gaussian 

variables, the roughness heights having the desired autocorrelation function are 

then obtained through a linear transformation on the input matrix. These 

coefficients are determined by solving a system of non-linear equations 

constructed by autocorrelation matrix. For each set of values (i.e. RMS height 

and correlation length) there are an infinite number of possible surface forms, 

which facilitates the simulation of surface-related random phenomena. The 

numerical simulation programm has been verified through a series of 

comparisons. The close agreement between the theory and simulation validates 

the use of this procedure to numerically simulate a random surface.

C hapter 4 makes a survey of the existing models for the contact of 

rough surfaces. The numerical contact model of rough surfaces can provide 

important information about the real contact situation at the interface of sealed 

joints, therefore it is suitable for the analysis of leakage by simulation. The 

geometric relationship and the boundary condition of contact have been 

derived. The values of plasticity index for typical sealed joints has been 

calculated based on the conventional plasticity index. The results show that 

making the assumption of elastic deformation for the contact of static sealed 

joints is reasonable although it is not strictly true for all static sealed joints. 

The contact model developed based on the assumption of purely elastic 

deformation to be used in the reliability analysis of static sealed joints is on

1 2
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the safe side for design.

Chapter 5 derives the numerical relationship between contact pressure and 

surface displacement for two-dimensional elastic frictionless contact based on 

the corrected Timoshenko's solution for vertical surface displacements due to 

an arbitrary pressure distribution. The numerical solution technique based on 

variational principles has been applied successfully to the numerical contact 

of rough surfaces so that the problems involved in Matrix Inversion Method, 

such as the iteration of solution procedure and the distortion of solution caused 

by the difficult of convergence, have been eliminated. Using the variational 

method, the contact problem becomes a quadratic programming problem. The 

computer algorithm and program in FORTRAN for two-dimensional numerical 

elastic contact problems have been completed. The program has been 

compared with the Hertzian solution for the contact of two smooth cylinders. 

The results show that it gives excellent agreement with the Hertzian solution 

for both the contact length and the pressure distribution. Comparison with an 

existing stochastic contact model for highly anisotropic rough surfaces has 

been attempted. The results obtained from the stochastic and numerical 

models show an encouraging agreement.

Chapter 6 derived the numerical relationship between contact pressure 

and surface displacement for three-dimensional elastic frictionless contact 

based on the Boussinesq solution for a normal point load. Three-dimensional 

elastic contact model of rough surfaces is presented based on the numerical 

solution technique of variational principles. The computer algorithm and 

computer program in FORTRAN for three-dimensional elastic frictionless

13
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contact problems has been completed. To verify the accuracy of the program, 

the contact of two elastic smooth spheres has been studied. The results show 

that it would yield accuracy pressure distribution and would give reasonable 

results in calculating the real contact area. Comparison with an existing 

stochastic contact model for isotropic rough surfaces has been attempted. The 

results obtained from the stochastic and numerical models show an 

encouraging agreement.

Chapter 7 develops a computer simulation model for the leakage 

analysis of static sealed joints based on the percolation theory. Introducing the 

concept of contact map and the assumption of zero-leakage makes it possible 

to describe more accurately the leakage phenomenon by means of leakage 

paths instead of an average clearance. The computer algorithm and program 

in FORTRAN for determining if any leakage paths exist or not for a typical 

pattern of contact have been completed. The program along with the 

numerical simulation of random rough surfaces and the numerical contact 

model of rough surfaces make it is possible to develop the leakage simulation 

model, by which we can apply the statistical concepts in discussing sealing 

reliability. The relationship between the leakage probability and the applied 

load, which is of great general interest to the designers of static sealed joints, 

has been predicted by the leakage simulation model. The simulated results 

also makes good conditions for further studying the sealing reliability of static 

sealed joints. By statistics and comparison of simulated results, it is confirmed 

that a certain value of contact ratio can be used as the criteria for identifying 

the reliability of static sealed joints with a certain confidence level. The effect 

of surface anisotropy on the sealing reliability has been investigated.

14
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Comparing the isotropic rough surfaces with the anisotropic ones, the value 

of contact ratio criteria would increase apparently. The results suggest that to

insure a good performance of a static sealed joint, it may be more important 

to control and inspect the surface-finish profile across the direction of fluid 

flow than in the direction of fluid flow The contact ratio criteria would 

provide a simple, inexpensive and useful tool to evaluate the effects of rough 

surfaces, material properties and applied load on the sealing reliability of static 

sealed joints. However, in order to practical use, experimental work is 

required to evaluate its validity.

C hapter 8 gives a summary and overall conclusions of this research 

project. It also gives a summary of the main contributions resulting from this 

research, and a suggestion for further work.
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CHAPTER 2.
Characterisation and Topography of 
Engineering Surfaces

2.1 Introduction

"When studied on a sufficiently fine scale, all solid surfaces are found 

to be uneven. In the limit, the surfeice irregularities will be on the scale of 

individual atoms or molecules; it is possible, for example, to prepare carefully 

cleaved specimens of the mineral mica which are truly smooth on a molecular 

scale over areas of several square centimetres. However, the surface of even 

the most highly polished engineering components show irregularities 

appreciably larger than atomic dimensions, and many different methods have 

been employed to study their topography. Some involve examination of the 

surface by electron or light microscopy, or by other optical methods, while 

others employ the contact of a fine stylus, electrical or thermal measurements, 

or rely on the leakage of a fluid between the surface and a precision-machined 

surface. Perhaps the highest resolution can be achieved by the techniques of 

scanning tunnelling microscopy or atomic force microscopy, which can resolve
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individual atoms; but for most engineering surfaces less sensitive methods are 

adequate to study their topography (Hutchings 1992)."

A very general typology of solid surfaces (Nayak 1971) is shown in

Figure 1.1. Surfaces that are deterministic may be studied by relatively simple 

analytical and empirical methods; their detailed characterization is 

straightforward. However, many engineering surfaces are random; and it is 

these that have been subjected to a great deal of study in the past decade. In 

the thesis, attention is concentrated on random rough surfaces.

Isotropic

Gaussian

Random

Solid Surface

Figure 2.1 A general typology of surfaces
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2.2 Measurement o f Surface Topography

A number of instruments for measuring surface characteristics have 

been devised. The majority of instruments in use for measuring surface 

roughness depend on electrical processing of the signal produced by the 

motion of a stylus perpendicular to the surface over which the stylus is 

traversed. The principle of operation of a simple stylus profilometer is 

illustrated in Figure 2.2 (from Thomas T R (Ed), Rough Surfaces, Longman, 

1982). A fine stylus profilometer is dragged smoothly and steadily across the 

surface under examination. As the stylus travels over the surfaces it rises and 

falls. Its vertical displacement is converted by a transducer into an electrical 

signal which is amplified and in the simplest form of the instrument, moves 

the pen of a chart recorder. The graph drawn by the pen represents the 

vertical displacement of the stylus as a function of the distance travelled along 

the surface.

A profile graph represents a section through the surface in only one 

direction. It is possible, however, by making a large number of profilometer 

traverses across a specimen and displacing the specimen slightly between each 

traverse, to generate a three-dimensional picture of the surface. Some stylus 

profilometers will do this automatically.

18
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Pickup

Datum
Stylus

Measured surface Transducer

Amplifier

Data logger Chart recorder

Gear-box

Figure 2.2 The principle of operation of a simple stylus profilometer

2.3 Analytical Methods o f Surface Characterisation

We will now discuss briefly the topographical characteristics of random 

rough surfaces which are relevant to their behaviour when pressed into 

contact, which refer mainly to Hutchings (1992).

A measured surface profile generated by a stylus or optical 

profilometer, which is a graph of surface height z plotted against distance 

shown as in Figure 2.3, contains most of the information needed to describe 

the topography of the surface along a single direction. Note that the graph is 

a much distorted image of the actual profile through using a larger

1 9



magnification in the normal than in the tangential direction. The profile graph 

itself, however, does not provide a sufficiently simple and readily interpreted 

means of describing surface roughness; several quantities derived from the 

profile, which are often automatically computed by the profilometer 

instrument, are used for this purpose. Actually, most manufactures need a 

combination of no more than two to four parameters to define the surface 

characteristics.

X  (Mean Une)

Figure 2.3 A measured surface profile
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2.3.1 Average Roughness Parameters

Two measures widely used in industry, mainly for quality control 

purposes, are the centre-line average or the arithmetic average and the root- 

mean square (RMS). As a mathematical technique, each can be used to define 

the mean line or mean plane, and in fact they are equivedent. The 

technique which involves minimizing the sum of the squares defines the same 

mean as the condition of equal areas or volumes of surface and void, 

above and below the mean.

2.3 .1.1 Centre Line Average

The /(g , c./.a. for "centre line average" orÆ4 for "arithmetic average" 

is the most universally used roughness parameter because of its ease of

measurement; this is defined by

L

where is the height of the surface above the mean line at a distance x 

from the origin and Z, is the overall length of the profile under examination..

Alternatively, the centre-line average mean line is defined as the line such that 

the area of the solid above is equal to the area of void below.
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2.3.1.2 Root Mean Square (RMS)

The root-mean-square roughness (symbol or a) is defined as the

root mean square deviation of the profile from the mean line:

1 (2.2)

For many surfaces, the values of and are interchangeable; for

a Gaussian distribution of surface heights,  ̂1.25 R̂  .

In a modem profilometer, the integrals above are often carried out 

numerically by sampling the trace at intervals and using the ^proximations

(2.3)

or

(2.4)

If this method is used care must be taken to ensure that the sampling 

interval is sufficiently small to give a good ^proximation to the integrals.
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2.3.2 Statistical Analysis - Probability Density Function 
(PDF)

It is inevitable that in attempting to describe a profile by a single 

number, some important information about the surface topography will be lost.

and R^ for example, convey no indication of the probability of finding 

surface heights within certain limits, and given no information on the shapes 

or spacings of the surface irregularities. For a fuller description of the 

topography of the surface, information is needed about the probability 

distribution of surface heights and the spatial distribution of peaks and valleys 

across the surface.

If the surface or profile heights are considered as random variables, 

then their statistical representation in terms of the probability density function 

f(z) is known as the height distribution. The height distribution is a means of 

representing all surface heights, which in some cases and applications is 

necessary.

The height density function, ffz) , is the value of which, for any height 

z, is proportional to the probability of finding a point on the surface at height 

z above the mean line. The quantity f(z) Az is the fraction of the surface 

profile which lies at heights between z  and z + Az above the mean line, as 

shown in Figure 2.4. A symmetrical profile, such as sine curve, leads to an 

height density curve which is symmetrical about the position of the mean line. 

Asymmetry of the surface profile leads to skewing of the height density 

function, which therefore contains some information about the shapes of
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surface irregularities as well as their vertical extent. In terms of the height 

density function f(z), the RMS roughness, , is the standard deviation 

a, i.e. it is the square root of the variance or second moment of f(z).

Figure 2.4 Height density function f(z)

There is considerable evidence (Greenwood and Williamson 1966, 

Williamson 1967/1968, Williamson, Pullen and Hunt 1970) that the height 

distribution of many common engineering surfaces are Gaussian or normal. 

Therefore, making the general assumption that surfaces have Gaussian height 

distribution is reasonable, although it is not strictly true for all possible 

applications.

When the height distribution is Gaussian the height probability density 

function is

2 4



CHAPTER!,

2.33 Random Process Methods

2.3.3.1 Autocorrelation Function

The necessity for a spatial representation of topography is obvious from 

Figure 2.5 which shows two surfaces with the same roughness parameters, but 

clearly the spatial arrangement of surface heights is very different. This might 

represent an important function difference in many practical engineering cases. 

The outstanding problem in surface analysis is the representation of spatial 

variation, i.e. how height, slopes, etc. vary with distance in the plane of the 

surface. Two methods may be used to extract this information from a surface: 

autocorrelation and spectral analysis.

Autocorrelation function (ACF) has been the most popular way of 

representing spatial variation. It contains useful spatial information. With 

reference Figure 2.6, the autocorrelation function of a profile is defined as the 

following form by Peklenik (1967-1968):

L

R (X J  = h m ^ J z { x ) z ( x  + X^)dx (2-6)
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Figure 2.5 Profiles with (a) 'closed' and (b) open' textures and their 

corresponding autocorrelation functions.

In a more statistical form:

(2.7)

where  ̂ denotes an expectation, i.e. an average value of and

is the delay length or the displacement along the x direction.

The value of the autocorrelation function for some displacement X  ̂

along the surface is therefore derived by shifting the profile a distance X  ̂

along the surface, multiplying the shifted profile function by the corresponding 

unshifted value, and calculating the area beneath the resultant product curve.

2 6



When the displacement is zero, the value of the autocorrelation function is a 

maximum and represents the variance d  of the surface profiles z(x).

Figure 2.6 Construction of the autocorrelation function

The autocorrelation function provides a measure of the correlation 

between the heights of the surface at positions separated by a distance 

along the surface. The sh ^ e of the curve summarizes statistical information

on the characteristic spacings, if any, of the surface features. Any regular 

undulation of the surface will show up as an oscillation of the same 

wavelength in the value of the autocorrelation function.

The surface texture represents a three-dimensional system. The height 

z(x,y) of a rough surface may be considered as a two dimensional random 

variable. The height z(x,y) is measured from the mean plane of the surface.

2 7



Assuming the surface to be homogenous (statistical properties are invariant 

with respect to a translation along the surface), the formalism introduced 

above is applied to the surface analysis. Thus, by the analogy with Equations

[2.6] and [2.7] the autocorrelation function of a surface is defined as

= lim lim ——  f  f  + + XJdkdy

or

(2.9)

where  ̂ denotes an average value of and

are the delay lengths in the x and y  direction.

The autocorrelation function of a profile along a direction 9 is related 

to the one of the surface by

(2.10)

where

= A,qCOs0 

Ay = AqCos0

Hence the autocorrelation functions of the x and y  profiles are

(2.11)
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= a(A „0 )
(2.12)

For many real surfaces, the autocorrelation function decays steadily to 

zero as the delay lengthens, and may be approximated by an exponential

function (Peklenik 1967/1968, Whitehouse and Archard 1970).

2.3.3 2 Power Spectral Density Function (PSDF)

The power spectral density function (PSD) of a surface is defined as the 

Fourier transform of the autocorrelation function. M h moment of PSD is 

defined as:

= J  /(fe)fc" dk  (2.13)

nig , /M; and are known as the zeroth, second and fourth spectral

moments of a surface. They are equivalent to the mean square roughness, 

slope and second derivative of a surface in an arbitrary direction.

When the surface is anisotropic the roughness characteristics m ^, 

and generalize to nine values as bispectral moments. These values are 

designated with double subscripts which sum to 0, 2, and 4, i.e. m^ , my, ,
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^ 0 3  , m̂ o , m,j , m;; , and , which can be obtained through the

formula

=
X.-0
A,-o (2.14)

where i =

2.4 Topography of Engineering Surfaces

2.4.1 Typical Average Roughness

Engineering surfaces may range from a rough casting to that produced 

by machine lapping. Figure 2.7 lists typical ranges of values for 

engineering surfaces finished by various processes (SAE Seal Committee ed.

1984). The actual values achieved depend on material and tooling details. 

The roughness of engineering surface are frequently specified only by average

roughness ( R^) values.
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ROUGHNESS AVERAGE - MICROMETER \ im
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Figure 2.7 Surface roughness produced by common production methods
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2.4.2 Isotropic and Anisotropic Surfaces

Surface characterization is not usually complete without considering the 

third dimension of the surface since many engineering surfaces have 

directional patterns. Directional surfaces might be generated for example by 

turning, milling or grinding etc.. In general, the finer grades of surface 

texture, those produced by abrasive processed such as lapping or honing, tend 

to be irregular and non-directional in character; surfaces produced by straight 

and cylindrical grinding tend to have irregularly spaced but directional texture; 

while the texture on surfaces produced by single point cutting tends to be both 

uniformly spaced and directional. These directional patterns are mostly in the 

longitudinal or transverse directions. Directional patterns of surfaces generated 

in various manufacturing processes are shown in Figure 2.8. Figure 2.8 a, b, 

and c exhibits surfaces with pronounced patterns. Figure 2.8 d shows less 

pronounced patterns, and Figure 2.8 e shows no directional patterns. These 

patterns may be observed on surfaces generated in shaping, milling, turning, 

grinding, spark erosion, electrochemical milling, etc. The directional 

properties of the surface roughness are most important in lubrication and seal 

practices because they would effect directly on the resistance to the fluid flow.

It is proposed that the roughness surface should be classified into two

types:

(1) isotropic surface;

(2) anisotropic surface.
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a

c

à

a, b Shaping. 
d  Grinding.

c Milling. 
e Spark erosion.

Figure 2.8 Directional pattern of surfaces generated in various 

manufacturing processes

For an isotropic surface roughness, there are no preferred orientations, 

i.e., statistical properties are constant along any direction; while an anisotropic 

surface roughness, there are directional patterns, i.e. statistical properties are 

not constant along any direction. The parameter 7 of surface anisotropy, 

which shows the degree of anisotropy of a rough surface, will be introduced 

in Chapter 3.
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2.4 Summary

In practice, all surfaces are rough to some degree and it is important to 

appreciate the nature of this roughness and its effect on contact problems in 

order to be able to analyze practical situations. Many surfaces have roughness 

of a random nature which must be analyzed by statistical methods. Most of 

the statistical parameters of a rough surface can be derived from two statistical 

functions: the probability density function and the autocorrelation function. 

The probability density function describes the distribution of surface heights, 

and the root-mean-square ox a  is a measure of the deviation of the surface 

from the mean plane; the autocorrelation function gives information on the 

shapes or spacings of the surface irregularities, and the correlation length 

measures the rate of the change of the roughness along the surface.

The finish of engineering surfaces can be obtained by various processes. 

Many engineering surfaces have directional patterns resulting from different 

manufacturing processes. Theses directional patterns are mostly in the 

longitudinal or transverse directions. It is proposed that the roughness of 

surfaces should be classified into two types:

(1) isotropic surface;

(2) anisotropic surface.

Therefore, surface characterization is not usually complete without 

considering the third dimension of the surface. The parameter y  of surface 

anisotropy, which shows the degree of anisotropy of a rough surface, will be
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introduced in Chapter 3.
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Random Rough Surfaces Numerical 
Simulation

3.1 Introduction

The geometric structure of rough surfaces influences a multitude of 

physical phenomena which are relevant to many engineering problems such 

as friction, wear, lubrication, sealing and contact resistance etc.. It is 

considered that numerical simulation has been an important tool for analysing 

the effects of surface roughness on these problems. Such a study would 

require quantitative information in three dimensions, which can either be 

measured h-om a rough surface or generated numerically, to be in digital form.

Archard, Hunt and Onions (1975) used the digital form of the 

profilometer readings of a profile for simulation of the contact of rough 

surfaces. Although accurate measurement of a profile is relatively simple 

using a stylus profilometer, the disadvantage of profile analysis is that only a 

section of the surface is examined. It is possible to integrate a large number
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of closely spaced parallel profiles into a three-dimensional map of the surface, 

but this again is much more complex. Surface measurements are done by 

taking a number of parallel profile measurements which requires an accurate 

relocation technique and an additional software requirement to align the 

profiles numerically. The availability of powerful micro computers has led to 

the development of surface measurement. One such fully automated three- 

dimensional mapping system, which uses a Talysurf stylus instrument to 

record a matrix of surface heights from flat to curved surfaces, has been 

devised by Webster, West and Sayles (1986). The technique can provide not 

only a good visual image of topographical detail but also quantitative 

information that can be used directly for assessment and analysis.

However, randomly generating a rough surface by numerical simulation 

is much simpler than measuring and offers certain advantages. Such 

simulations can substitute surface measurement by artificially creating surfaces 

so that all the hardware requirements for surface measurement is eliminated. 

It also eliminates the need to filter out the unwanted wavelengths from a 

measured surface. Furthermore any parametric study involving roughness 

requires a surface with known statistical properties, and it is more convenient 

to generate them numerically rather than to measure a mechanically produced 

rough surface. Therefore, they also facilitate the simulation of surface-related 

random phenomena which may be difficult to control experimentally.

Although the numerical simulation of random rough surfaces is so 

important, the subject has received very little attention compared with the 

measurement of rough surfaces in the published literature so far. The only
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exception is Lai and Cheng's work (1985), which describes the computer 

simulation of rough surfaces having Gaussian height distribution and bilinear 

autocorrelation function. The bilinear autocorrelation is only an approximation 

to the exponential autocorrelation which is typical in many applications. By 

introducing an autocorrelation function matrix, the simulation algorithm can, 

in principle, be extended to deal with the general form autocorrelation 

function. The derivation of the numerical simulation model of random rough 

surfaces having Gaussian height distribution and general form autocorrelation 

function is therefore the subject of the following sections of this chapter.

3.2 Numerical Simulation Algorithm

An essential requirement for the numerical simulation of rough surfaces 

is the ability numerically to generate rough surfaces which have statistical 

properties similar to a real surface. From the analytical methods of surface 

characterisation in Chapter 2., we can know that most of the statistical 

properties of a rough surface can be derived from a knowledge of two 

statistical functions: the probability density function and the autocorrelation 

function. Therefore, a good simulation algorithm should be able to generate 

surfaces having predetermined probability density functions and 

autocorrelation functions.

Since a digital form of surface roughness is sought, it is more 

convenient to use an index notation. Let denote the roughness amplitude 

at X, = i Ax, yj = j  Ay, where Ax and Ay are the sampling intervals in the

3 8



X  and y  direction, i.e. two perpendicular directions along the surface mean 

plane. Thus a rough surface can be described by a set of correlated random 

number , representing the height of the surface at the position ( Jt,, )

along the surface. The set of correlated random numbers may be expressed

in matrix form thus:

K ,]

1̂1 '('12

2̂1 Z22 "

%

(3.1)

where and ^  are the total number of sampling points in x and

direction.

3.2.1 Input Matrix of Random Numbers

Using random number generators, it is possible to generate an matrix 

[ whose components are a set of uncorrelated random numbers. The matrix 

[t/ÿ] is defined as the input matrix in this chapter. The desired probability

density of the roughness heights is obtained by controlling the probability 

density of the uncorrelated random numbers in the input matrix. For a 

Gaussian distribution of roughness heights it suffices to generate the input 

matrix with a Gaussian density function. The components in the input matrix 

are independent identically distribution Gaussian random numbers with zero

3 9



mean and unit standard deviation.

3.2.2 Linear Transformation on Input Matrix

To generate surfaces with a given autocorrelation function, linear 

transformations on the input matrices of random numbers are utilized.

Based on the characteristic that linear transformations on independent 

Gaussian random variables results in Gaussian variables (Davenport 1970), a 

set of correlated random numbers, representing the roughness height, can be 

obtained by performing the linear transformation on these numbers in the input 

matrix:

", "y
 ̂ Ê  1,2,...,^  (3.2)

where %  are the linear transformation coefficients to be determined so as to 

give the desired autocorrelation function. Thus the autocorrelation function 

of the generated surface depends on the set of linear transformation 

coefficients. In the following section, we will discuss how these coefficients 

are determined so as to give the desired autocorrelation function.
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3 2.2.1 Autocorrelation Matrix

Similarly, the autocorrelation function may be expressed by using an 

index notation. Thus is defined as

Aj(, g Ay) = (3.3)

As the arguments of the autocorrelation function increases, decreases

to a small value, which is assumed here to be zero, so that a finite order

autocorrelation matrix is obtained. Let % and be two integers such that

/(p, is zero if ^  ̂ or g z . This yields an x autocorrelation 

matrix.

m o )  m A y )  «(o,?Ay) 'I

f((Ax,0) R(Ax,Ay) R (A x^A y)

R (pàx,0) R (p à x ,à y)  • R (pàx ,qày)

(3.4)

3.2.2.2 Linear Transformation Coefficients

Since the components in input matrix [ rjy\ are independent and have 

unit variance, the following relation can be obtained:

r 1 if ( = j  = /
= j

lo  if f  ̂ /
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Using this relation along with the definition of in Equation (3 .3),

then the following relation can be obtained.

t-1 f-1
kl^k+p,l+q (3.6)

Equations (3.6) represent x nty simultaneous non-linear equations for the 

determination of the coefficients %  . They can be solved by an iterative 

technique. Here the Newton method is adopted (Rektorys 1969), the set of 

non-linear equations (3.6) is solved iteratively using the following relation.

V = 0,1,... (3.7)

where:

f  ifoo’ foV"'>

f p q ~ ^  ^  k̂l̂ k+p,l+q
k=l 1=1

(3.8)

and J  is the Jacobian matrix having the components
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(3.9)

where:

r = + g  + 1

g = (f-l)M^ + ;

(3.10)

An initial approximation to the coefficient vector may be obtained by

the formulae:

(3.11)

where:

S-w-i
(«%-* + !) (MylZ + l)

E  E
(-1

(3.12)
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3.3 Numerical Simulation Parameters

3.3.1 Correlation Length

When the autocorrelation function is close to unity, two points on the 

surface profile at or Ay distance apart are strongly interdependent. 

However, when the autocorrelation function attains values close to zero, two 

points on the surface profile at or distance apart are weakly correlated 

and therefore essentially independent.

The decay parameters A* and A* , for which the autocorrelation 

function becomes zero, are called the correlation lengths. One can define the 

correlation length of a profile. Hence the correlation lengths of the x  and y  

profiles are

X* = n Ax
(3.13)

X* = Ay

The correlation lengths A* and A* , at which the autocorrelation 

functions of the x  and y  profiles reduce to 10% of their values at origin, have 

been defined as the correlation lengths of the x and y  profiles by Peklenik 

(1967/1968) as being sufficiently small that two points on the surface may be 

regarded as being independent. The definition of the correlation length is 

somewhat arbitrary, therefore this definition will be referred to as the 0.10 

correlation length shown as in Figure 3 .1.
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Figure 3.1 Correlation length Criteria

The 0.10 correlation length of a profile along the 0  direction is given

by

=

j  (A*sm8)̂  + (A.*cos6)̂
(3.14)

3.3.2 Sampling Interval

A large sampling interval will miss out many small peaks; on the other
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hand a sampling interval which is too small will include the measurements of 

many peaks which are far too small to affect the deformation of the surface. 

It has been shown by Whitehouse and Archard (1970) that many statistical 

parameters of measured profile depend on the sampling interval. The 

dependence of the statistical properties on the sampling interval could also be 

seen from the following example. The square of the principal mean slopes a„ 

which is equal to , can be calculated from Equation (2.14) by numerical 

differentiation ( noting the symmetry of R about the origin):

j?io + R_10

(3.15)

^ («00 -  « » )
à.x

In the numerical simulation procedure, the sampling interval is 

determined by choosing the % and values. Choosing large and 

reveals the fine structure of the roughness since this means that the sampling 

interval is chosen as a small fraction of the correlation length. Choosing the 

sampling interval to be equal to one-tenth of the correlation length reveals 

short wavelength fine structure of the roughness and indicates the separation 

at which points on the profile are statistically dependent on each other; while 

choosing it to be equal to the correlation length reveals the main structure of 

the roughness and it is the length most appropriate for the measurement of 

those geometrical properties of a profile which will determine the surface 

deformation (Whitehouse and Archard 1970). Therefore, Ax and Ay

should be chosen carefully so as to generate the desired roughness structure
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The number of calculations required for generating a rough surface increases 

significantly with increasing % and .

3.3.3 Surface Anisotropy

To study surface roughness with directional properties, we will use a 

surface anisotropy parameter y  defined by Peklenik (1976/1968). The 

anisotropic properties of the rough surface can be seen from the polar 

coordinate representation of Ag as suggested by Peklenik. For the assumed 

autocorrelation function this representation forms an ellipse with an ellipticity 

ratio:

X*
Y = - ^  (3.16)

a;

This ellipse can also be considered as the locus of all points whose 

heights have the same correlation with the height of a point located at the 

centre of the ellipse. Therefore asperities should have roughly elliptical shapes 

with the given ellipticity ratio. The parameter y , which is the ratio of the 

X and y  correlation lengths, shows the degree of anisotropy of a rough 

surface. A value of y = 1 corresponds to an isotropic surface, while y # 1 

corresponds to an anisotropic surface and the limiting cases y = «> and y 

= 0 correspond to one-dimensional transverse or longitudinal ridges.

The surface anisotropy is most important in lubrication and seal

4 7



practices because it would affect directly the resistance to fluid flow. The 

sensitivity of the fluid flow on y  in the partial lubrication or seal regime can 

be explained by a simple visual experiment, where the direction of the fluid 

flow is defined as the y direction. For a general three dimensional surface, 

contact areas can be modeled as ellipses with the mean ellipticity ratio being 

equal to y Figure 3.2 shows typical contact area configuration for three 

different ranges of the elipticity parameter y.
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\

m

Y < 1

Y = 1

Y > 1

y (Direction of fluid flow)

Figure 3.2 Typical contact areas for longitudinally oriented (y < 1), 

isotropic (y = 1 ) and transversely oriented ( y > 1 )
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3.4 Computer Program Structure

A computer program called NSRRS in FORTRAN has been completed 

by the author for generating numerically random rough surfaces.

A rough surface having predetermined probability density function 

(Gaussian distribution) and autocorrelation function can be simulated 

numerically as follows:

Step 1: Set up initial values

Values ^  ^ , Ax WM/ Ay should be chosen carefully so as

to generate an area of reasonable size and the desired roughness structure. 

These values along with a are input. Note that the number of calculations 

required for roughness generation increases significantly with increasing 

and My.

Step 2. G enerate input m atrix

Using a random number generator, the input matrix with Gaussian

distribution is generated. In NSRRS, the random number is generated by 

random number generator called RAN3 (William 1992). For a given RMS 

height, there are an infinite number of input matrices that can be generated 

by varying the seed values of the random number generator.

Step 3. G enerate autocorrelation m atrix

5 0
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Based on a given autocorrelation function along with the chosen and 

My values, the autocorrelation matrix [ /(p, ] is generated by using Equation 

(3.3).

Step 4. Calculate linear transform ation coefficients

By solving a system of non-linear equation (3.6) using Newton's 

iterative method, the linear transformation coefficients %  are determined.

Step 5. L inear transform ation

The roughness heights are then obtained by performing a linear 

transformation on the input matrix by using Equation (3.2).

Figure 3.3 is a flow chart representing the main features of the 

numerical simulation program for generating random rough surfaces with the 

predetermined statistical properties.
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Statistical description of 
a rough surface

Calculate the transformation 
coefficients aki

k  ^  If tff f%x • / if •••> fty •

Calculate the heights [ ]
through a linear tranformation

Generate an input matrix [ r j . . ] 
; = 7, 2, f  
y = 7, 2, ________

Generate an autocorrelation 
matrix

f  -  Q J , m _  -J.  g -  J,  2, n .  -J

Figure 3.3 Flow chart for numerical simulation of a random rough surface
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3.5 Numerical Examples

3.5.1 Generated Rough Surfaces

To illustrate the numerical simulation procedure, rough surfaces having 

a Gaussian height distribution and an exponential autocorrelation function are 

generated, which are considered in this thesis. The exponential function is 

found to fit the autocorrelation function of many random surfaces (Thomas 

1982). The exponential function has been used by many authors such as 

Peklenik (1967/1968) and Whitehouse and Archard (1970) in the modelling 

the autocorrelation function of a profile. This model can extended to the 

autocorrelation function of anisotropic rough surfaces by assuming that all the 

profiles on the surface have an exponential autocorrelation function with a 

decay constant depending on the orientation of the profile. A possible 

autocorrelation function for such a surface is

= a ^ e x p j-2 .3 |- ^ j  ( ^ )  (317)

The autocorrelation function of a profile along the d  direction is then: 

■^(^e) = expj-2.3|— |  (3.18)

In order to obtain a finite order autocorrelation function matrix, the
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exponential autocorrelation function is assumed to drop to zero after the 0.10 

correlation length. Hence the digital form of the autocorrelation function is;

\2

= 0 if or q ^ n

Two examples of surfaces generated using this simulation technique are 

given in Figure 3.4. In simulation, the sampling interval in x and y  

direction is chosen as the same, i.e. Ax = Ay.

As can been seen form Figure 3.5 and 3.6, where profiles, i.e. 2D 

slices, through the surfaces are shown, the roles of RMS height and 

correlation length in determining the surface forms are apparent. The RMS 

height controls the deviation of the surface from the mean plane and the 

correlation length controls the rate of the change of roughness along the 

surface. For each set of these two parameters there are an infinite number of 

possible surface forms in theory. Using the numerical simulation technique, 

many surface forms can be generated by varying the seed value in random 

number generator. Three examples of which are given in Figure 3.7; here, 

choosing o = 1 because this will produce normalized roughness amplitudes. 

To obtain roughness with a given RMS value, it suffices to multiply the 

roughness amplitudes by the desired RMS value.

A set of isotropic rough surfaces having Gaussian statistics and the 

same statistical parameters ( a  = 1 pm and = 20 pm), but different
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values of simulation parameters % and are generated, which means that

different sampling intervals are chosen in numerical simulation. Figure 3.8 

shows typical profiles taken from the set of the generated rough surfaces. 

Because the generated rough surfaces are a set of isotropic surfaces, the 

parameter y of surface anisotropy is equal to 1, i.e. To reveal the

different structure of the roughness, the sampling intervals are chosen to be 

equal to the correlation length, i.e. = \ in Figure 3.8 (a); to be equal

to the half of the correlation length, i.e. = 2 in Figure 3.8 (b); to be

equal to the one-tenth of the correlation length, i.e = 10 in Figure 3 .8

(c). As can been seen from Figure 3.8, a large sampling interval can reveals 

the main structure of the roughness and will miss out many small peaks, while 

a small one will reveal more fine structure of the roughness.

Figure 3.4 (b) represents a generated anisotropic rough surface with 

Gaussian statistics. The anisotropic parameter y is chosen to be 2 and the 

statistical parameters are ff = 1 pm and = 40 pm. A* = 20 pm. Figure

3.9 shows typical x  and y  profiles taken form the generated surface in 

Figure 3.4 (b). The x  profiles are smooth and have longer asperity 

dimensions than the y  profiles, owing to the higher correlation length of the 

y  profiles. The anisotropy of the roughness can be seen from longer 

dimension of the asperities in x  direction.
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Figure 3.4 Generated rough surfaces with Gaussian statistics

56



C H A P T E R S ,

0.0 -,

0 .3-

0.2  -

0.1 -

- 0.1 -

- 0.2  -

W -0.3- 

§ -0 .4-

K -0.6 -
4 0 0  6 0 0  ©Î5Ô TOO

X (p.m>
lO O 200 3 0 0 9 0 0 1000

C a  )  cr — 0.05 % — 2 0

0.6 -,

0.3 -

0.2  -

0.1 -

(0
I -0.1 -

C -0.2 -

% -0.3-

5 -0.4-

»  - 0.0  - -lOO 200 4 6 0  o O o

Jt ( n m )
3 0 0 e O o 3 0 0700 eOo 1000

(  t ,  )  o  — 0 .1  CM.m) X — 2 0

0.0 -,

0.3-

0.1 -

-0.1 -

-0.3 -

3 0 01 0 0 200 6 OO TOO eOo 1000

Figure

statistics, but different RMS height a

57



C H A P T E R S .

I
1w

0.0  -

0.3 -

0.2  -

0.1 -

- 0.1 -

C -0.2 -

i  I -0-3 -

5 -0.4 -

K -0.0 ;
1ÔO 4 0 0  eOo eOo

X (i^m )
aOo 300 700 eOo

< a  )  «3 — 0 . 1  Cm-xh!) ^  — l O

0.0 -,

0.3 -

0.2  -

I

I .c -0.2 - 

i  I -0-3 - 

§ -0-4 -

K -0.0;

0.1 -

- 0.1 -

T 5 Ô  2 5 0 300 TOO 800 2 5 0eOo 1000

(  b  )  <3 — 0 . 1 (  |a .n i)  X  — 2 0  (  |x m )

0.0 1

0.3 -

I2 0.1 -

- 0.1 -

^  -0.3 -

Q

A -0.0-
1ÛO 200  300 TOO 300eOo 1000

C c  )  «3 — 0 . 1  Cm-xh) X  — 4 0  ( n m )

F igu re  3.6 Profile o f generated isotropic rough surfaces with Gaussian

statistics, but different correlation length À *

58



C H A P T E R S .

a
1 4 -

3 -

-1  -

-a  -
- 3  -

100 a 5 o 3Ô O eoo TOO eo o e o o

< a  )  0  — 1  ( | 4 m )  A.* — 2 0

!

i

s  -,

3 -

a  -

-3 -

-lOo aOo 3 0 0 sOo e o o  TOO
3t ( n m )

eo oe o o

Ç t >  )  0 — 1  ( | 4 m )  A.* — 2 0

I

1
CI

6 -,

3 -

2 -

1Û O 200 3Ô O TOO e o o e o o

C c  )  0  — 1 X  — 2 0

F ig u re  3.7 Profiles o f generated rough surfaces with Gaussian statistics anc

same statistical parameters but different surface forms

59



C H A P T E R S .

1w

II
6 -,

3 -

2  -

-3 -

T6Ô 200 3ÔO 900eoo 1000

(  a  )  0  — 1 (p .m ) A.*— 20 (|A m ) «“  Z&y" 1

a
1

f
a -

2  -

-1

-a -

-lOo 200 ado sdo eOo 700 eOo sSSo

X .  (n m )

400 1000

(  t» ) (7 —1 (n ,m ) X* — 20 (n m ) Oy — 2

Î
1w

i
I,

s -,

a -

2  -

-a -

T6Ô 2S0 400 eOo

X  CM-xa)
eooaoo eoo 7O0 eoo

( c  ) 0 — 1 (|A m ) X *— 2 0  (n m ) IX»— IX,— lO

F igu re  3.8 Profiles o f generated surfaces with Gaussian statistics and same

statistical parameters but different values o f simulation parameter

60



C H A P T E R S .

3 -

I 2 -

I
- 3  -

ie o *130 s5o^(0 12030

c a ) o  -• 1 (M.xa> ^  — 4-0

?
1w 3 -

I
I
II

V

20 30 30

(  b  ) <y — 1 (^Lxn) — 2 0  (M.xa>

Figure 3.9 Typical x and y  directional profiles o f the generated surface 

in Figure 3.4(b)
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3 .5.2 Comparison of Numerical Simulation and Theoretical Results

Since generated rough surfaces are random and are known to have 

given Gaussian probability distribution and exponential autocorrelation 

function, it is necessary to check statistically the numerical simulation. A 

series of such statistical checks for generated rough surfaces have been done. 

Figure 3.10 shows comparisons of the probability density function of the 

generated rough surfaces in Figure 3.4 (a) and (b) by numerical simulation 

with that of a Gaussian distribution. The results show that they produce the 

close agreement between the theory and simulation.
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0.6

— Gaussian 
□ Simulation

0.36

0.3

0.2
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( a  ) Isotropic rough surface
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( b )  Anisotropic rough surface

Figure 3.10 Comparison o f probability density functions with respect to 

nondimensional height (z/d)
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To compare the ACF of the generated surface with the expected ACF, 

the X  and y  profile ACFs of the generated surface are calculated (Feklenik 

1967/1968), it is:

(3.20)

The theoretical value of the autocorrelation function which has the form 

given in Equation 3.17 can be calculated by Equation (3.19). For the 

generated rough surfaces shown as in Figure 3.4 (a) and (b), the ACF values 

of the expected and the generated surface are given in Table 3.1 and Table 

3.2.

Figure 3.11 and Figure 3.12 show the x and y  profile ACFs of the 

generated rough surfaces in Figure 3.4 (a) and (b) which agree well with the 

desired ACFs. Since the ACF is fundamentally a random function, we cannot 

expect the ACF of every generated surface to be identical. Good agreement 

between the expected and observed ACFs, however, depends critically on how 

well the random number generator generates a set of mutually independent 

identically distribution Gaussian random numbers [tyj.

The close agreement between the theory and simulation validates the 

use of this procedure to numerically simulate a random rough surface having 

predetermined probability density functions and autocorrelation functions
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Legend 

^  Expected ACF 

A SImualted ACF

0.9-

0 .8 -

0.7-

0 .6 -

0.5-

0.4-

0.3-

0 .2 -

0. 1 -

( a  ) ACFs of X profile

0.9-
Legend 

^  Expected ACF 

A Simulated ACF

0.8

0.7-

0 .6 -

0.5-

0.4-

0.3-

( b ) ACFs of y profile

Figure 3.11 x and y  profile ACFs o f the generated surface in Figure 3.4 

(a)
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3.6 Conclusion

With complex problems involving random inputs, numerical simulation 

is a promising tool for analysing roughness-related phenomena in tribology, 

fluid sealing etc. An essential requirement for such simulation studies is the 

ability numerically to generate rough surfaces which have statistical properties 

similar to real surfaces. Most of the statistical properties of a rough surface 

can be derived from a knowledge of two statistical functions, the probability 

density and the autocorrelation function (ACF). Hence a good algorithm 

should be able to generate surfaces having prescribed probability density 

functions and ACFs

An algorithm which can satisfy such demand has been devised and the 

computer program corresponding to the algorithm has developed in Fortran. 

In simulation, first, an input matrix, whose components are independent 

identically distributed random numbers, is generated using random number 

generators. The desired probability density of the roughness heights is 

obtained by controlling the probability density of the random numbers in the 

input matrix. For a Gaussian distribution of roughness heights it suffices to 

generate the input matrix with a Gaussian density function. To generate 

surfaces with a given ACF, linear transformations on random matrices are 

utilized on the input matrix, where these coefficients of the transformation 

matrix have to be determined by solving a system of non-linear equations 

formulated based on the autocorrelation matrix. Thus a set of correlated 

random numbers representing the height of the rough surface is obtained.
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The numerical simulation technique has been verified through a series 

of comparisons. The close agreement between the theory and simulation 

validates the use of this procedure to numerically simulation a random 

surfaces.

Numerical simulations of rough surfaces not only substitute surface 

measurements by artificially creating surfaces, but they also facilitate the 

simulation of surface-related random phenomena.

7 0



CHAPTER 4.
Contact of Rough Siafaces

4.1 Introduction

The study of the contact of deformable bodies has historically been 

divided between two approaches, reflecting the interests of the general 

engineer or designer and the tribologist. The first assumed that the bodies are 

smooth and can be adequately described by their nominal geometry. This 

approach yields information on the overall level of stress and deformation. 

The second admits that engineering surfaces are comprised of a multitude of 

peaks and valleys which determine the true nature of the contact.

The first significant elastic contact analysis was produced by Hertz

(1896), who solved the problem of three-dimensional non-conformal contact 

of elastic solids. This classic work has stood the test of time and over the past 

100 years (Johnson, 1982) has provided the basic of much of our 

understanding of contact mechanics.

The contact between rough surfaces has strong influence on the
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phenomena of friction, wear, lubrication and sealing, as well as conduction of 

heat and electricity. It has led to the development of various contact models 

of rough surfaces so that these studies have been independent of one another. 

According to the approach used in this study, the contact model of rough 

surfaces may be divided into two different types: the stochastic contact model 

and the numerical contact model (Webster and Say les 1986).

4.2 Contact Models o f Rough Surfaces

4.2.1 Stochastic Contact Model

Several stochastic models for the mechanical behaviour of contacting 

rough surfaces, i.e. the relation between load and mean separation and real 

contact area, have been developed. Some of these models are better suited for 

lightly loaded contacts with large separations where the surface asperities 

deform elastically, while other models are more suitable for high loads and 

small separations corresponding to plastic deformation of the surface 

asperities.

Greenwood and Williamson (hereafter referred to as GW) (1966) 

developed the earliest analysis model accounting for the random nature of 

surface roughness. In their model, the rough surface is presumed to be 

covered with local high spots or asperities whose summits are all spherical in 

shape. All the summits are presumed to have the same radius, but the summit 

heights are randomly variable Based on the experimental observation, they
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found that the height distributions of many manufactured surface profiles are 

close to Gaussian or normal probability law. Moreover, the peak height 

distribution is also Gaussian. Based on the assumption that the contacting 

asperities deform elastically according to Hertz theory, they studied the contact 

of an elastic rough surface having the Gaussian height distribution and a rigid 

smooth plane. The model was defined by three parameters; the standard 

deviation of the summit height distribution; the radius of the curvature of the 

summits; and the density of summits per unit area. The relationship between 

real contact area and load is found to be approximately linear.

The basic GW model has been extended further to include such as 

aspects as curved surfaces by Greenwood and Tripp (1967) and two rough 

surfaces with misalinged asperities (Greenwood and Tripp 1971). The GW 

model is called as the asperity-based model. This asperity-based model 

provided information on modes of deformation with the restriction of using 

idealised asperity shapes. In a more general paper Greenwood (1967) 

discussed the relative merits of contact theories based on asperity models and 

profile measurements. Each approach has advantages over the other. 

Profilometric theories, using the bearing area curve to define the contact area 

as a function of separation, provide information on load-compliance laws and 

can deal with both surfaces being rough, but this is achieved at the cost of 

using simple contact stress laws.

To some extent a marriage between profilometric and asperity based 

theories was achieved by Whitehouse and Archard (hereafter referred to as 

WA) (1970). They presented a more rigorous analysis of a random surfaces.
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The simplification in the GW model of using a constant radius of curvature 

was removed in WA model. They regarded the surface profiles as random 

signals represented by a height distribution and an autocorrelation function. 

They assumed that the surface height distribution is Gaussian and that surface 

profiles have an exponential autocorrelation function, and derived the peak 

height distribution and asperity curvature distribution. The model could be 

completely represented by parameters; the standard deviation of height 

distribution, and the exponent of the exponential autocorrelation function. 

Based on their model, they obtained an approximately linear real contact area­

load relationship, and mean contact pressure higher than that obtained by 

Greenwood and Williamson. Following Whitehouse and Archard, Onions and 

Archard (1973) discussed the contact of random surfaces, and their derived 

results were compared with the earlier work of Greenwood and Williamson.

Bush, Gibson and Thomas (hereafter referred to as BGT) (1975) used 

the Nayak microgeometry assumptions in the random process model to 

develop an elastic contact model for isotropic surface that treated asperities as 

elliptical paraboloids with random principle axis orientation and aspect ration, 

i.e., the microcontacts appear. Random process theory, following the work of 

Longuet-Higgins (1957a, 1957b) and Nayak (1971), was used to the deduce 

the density of extremes by jointing the distribution of summit heights and the 

distribution of the mean curvatures. At large separations, their model achieved 

an exact proportionality between load and area. The analysis was extended 

in Bush, Gibson and Thomas (1979) to cover strongly anisotropic rough 

surfaces. Except for the constant of proportionality involving extra terms 

requiring elliptical integrals, the results were similar to the isotropic surface.
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However more comprehensive comparisons of stochastic models mentioned 

above for the contact of rough surfaces are contained in McCool (1986).

Both experimental and theoretical studies of plastic rough surface 

contact have been reported by Williamson and Hunt (1972), Pullen and 

Williamson ( 1973), Uppal, Probert, and Thomas (1973), Childs (1973, 1977). 

These have centred around investigating the resistance of asperities to crushing 

under high loads.

The first contact model including the condition of elastic-plastic 

deformation was presented by Chang, Etsion and Bogy (hereafter referred to 

as CEB model) (1986). The CEB model is based on volume conservation of 

an asperity control volume during plastic deformation with the basic 

assumptions of the GW asperity-based model. The CEB elastic-plastic model 

not only produced a close agreement with GW elastic model in their 

prediction of contact area for the condition of elastic deformation but also 

used in cases where the separation of contacting surfaces is critical, such as 

in sealing or magnetic recording.

Stochastic contact models for the analysis of the contact of rough 

surfaces, such as the models mentioned above, are numerous. They have been 

refined from the simple asperity to the complex random process models and 

from the condition of elastic or plastic deformation to that of elastic-plastic 

deformation, over many years.

These stochastic contact models have a number of shortcomings:
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(1) They require a number of assumption regarding the probability 

distribution of asperity heights, slope, curvatures etc.;

(2) They require the use of the simple asperity shapes;

(3) They are limited to discrete contact "spots" which are often assumed to 

deform independently of one another;

(4) They do not predict the deformed shape of the surfaces, particular for 

the areas not in contact.

(5) Knowledge is required about the size of asperities that are important to 

the problem.

These models are of great importance to the understanding of the 

average properties of the contact of rough surfaces; However the nature of the 

statistical contact model limits their ability to calculate the real pressure 

distribution and the deformed shape. This information might be very 

important in simulation analysis of leakage.

4.2.2 Numerical Contact Model

Analytical methods for elastic contact analysis have continued to be the 

subject of attention during the past decade. Analytical solutions to elastic 

contact problems require a simple assumption for the undeformed shape of the
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surfaces. For instance, in the case of Hertz (1986) it was assumed that the 

surfaces could be approximated by second degree polynomials near the contact 

region. The advent of computers, and in particular the subsequent 

development of the numerical methods in stress analysis, has to some extent 

relaxed this restriction on the class of contact problems that can be solved. 

Therefore, researchers have attempted to analyze a more sophisticated range 

of body shapes by employing numerical techniques.

The general approach to solving contact problems numerically is to 

divide the contacting surfaces into a number of discrete elements. Over each 

element an assumption is made about the local distribution of pressure, often 

a constant or a linear variation being used. From the shape of the element, 

and the assumed elemental pressure distribution, it is possible to use half space 

theory to derive expressions for the displacements anywhere on the surface. 

The total displacement at a given point is merely the sum of the displacements 

due to all the elemental pressures. This leads to a set of linear simultaneous 

equations that relate displacements to pressures. The numerical solution can 

be obtained by different methods.

Many advances have been made in the development of numerical 

methods for the analysis of contact problems over many years. The numerical 

methods for the analysis of general elastic bodies in contact, in principle, can 

be extended further to deal with the analysis of rough surfaces in contact. The 

contact behaviour of deformable bodies considering the effect of roughness is 

usually studied in two different ways. The first assumed that the bodies are 

smooth, the numerical elastic contact model is produced by the general
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numerical approach to solving contact problems; the second considers the 

contact effects of surface roughness and topography.

First, it is necessary to define two-dimensional numerical contact model 

and three-dimensional numerical contact models. Normally two-dimensional 

contact models are developed based on the assumption of plane strain and 

used directly data representing a surface profile; while three-dimensional 

contact models are developed based on a full three-dimensional stress analysis 

and used directly data representing a topographical surface.

Webster and Sayles (1986) developed a two-dimensional numerical 

contact model based on the Boussinesq force-displacement relationship for an 

elastic half-space to solve the elastic contact of two-dimensional real rough 

surfaces. The significant numerical model presented by Webster and Sayles 

showed a link between the numerical analysis in which smooth boundaries are 

assumed and the statistical treatments adopted for the contact of analysis of 

rough surfaces. The model was constructed in the following way: first, a 

basic model of numerical elastic contact was produced by assuming that the 

bodies are smooth; then the basic model was modified by taking account of 

the effects of roughness on the contact. The model used data directly recorded 

from a stylus measuring instrument and could yield important results about the 

real pressure distribution and the deformed shape of surface profiles.

Lee and Cheng (1992) developed the first two-dimensional elastic- 

perfectly-plastic contact model of rough surfaces based on the Flamant 

solution (Flamant 1892). This model is principally based on elastic contact

7 8



CHAPTER 4.

but a simple model of plasticity has been incorporated so that the contact 

condition of elastic deformations can be made realistic. The plastic 

deformation on the high asperity peaks were taken into account by setting a 

ceiling on their pressures at the material hardness value. Once an element 

pressure determined by the elastic contact model has reached this ceiling 

value, the element would be allowed to deform without any further increase 

in pressure so that the element pressure is set to equal to the ceiling value. 

The extra load would automatically be redistributed to neighbouring elements. 

Although the proposed method is not accurate for plastic contact it reproduced 

the main features of a mixed elastic-perfectly -plastic contact. The real area of 

contact predicted by the present model increases linearly with contact pressure 

when the load is very low, but as the pressure becomes greater it deviates 

from linearity. The relationship of load-areas predicted by the model was 

compared with that of Onions and Archard'swork. The result showed that the 

model should give much larger real contact area for all loads as compared to 

Onions and Archard's model.

The disadvantage of two-dimensional profile analysis is that only a 

section of the surface is examined. However, many engineering problems 

such as friction, wear, lubrication, sealing and contact resistance etc. would 

require quantitative information in three dimensions. It has led to the 

development of three-dimensional numerical contact models of rough surfaces.

Xian and Zheng (1991) provided a numerical model for the elastic 

contact of three-dimensional rough surfaces on the basis of the Boussinesq 

solution for a normal point load. The concept of "intersection asperities" was
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introduced to be the numerical calculation element, and hence the contact 

problems of real rough surfaces could be simplified into a non-Hertzian 

contact problem of an intersection asperity. This leads to the explicit 

calculation of all the contact area for individual rough surfaces. The mutual 

of neighbouring intersection asperities was ignored, so that the three- 

dimensional contact model is only useful in cases where the real contact area 

is relatively small. The present model was applied to predict the relationship 

of load-v-area. It had been shown that the real contact area was proportional 

to the load for relatively smooth surfaces { R„ ^ 0.7 pm), which coincides 

with the conclusions of the GW and WA models; however, the relationship 

between the real contact area and the load is nonlinear for relatively rough 

surfaces ^ 1 . 9  pm).

The choice of numerical solution technique to solve elastic contact 

problems is important, as it will determine the accuracy of solutions and the 

time required for solution. The method adopted by Webster and Sayles 

(1986), Lee and Cheng (1992) and Xian and Zheng (1991) is called the 

Matrix Inversion Method (Johnson 1985), in which boundary conditions are 

satisfied exactly at specified "matching points". The method is straightforward 

and simple for numerical solution. However, for many contacts problems 

requiring numerical analysis it is not easy to determine to the contact area at 

the outset. Therefore, an initial estimate must be made. If this estimate is too 

large some values of /?, obtained will be tensile, whereas if too small an area 

was postulated there will be interpenetration of the surfaces exterior to the 

contact. It will therefore be necessary to check the solution for both of these 

violations. If tensile traction occurs then non-contact should be assumed at
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those pressure elements and if interpenetration occurs exterior to the assumed 

contact then additional pressure elements and contact points will be required 

in these areas. If the formulation is altered in this way it is possible to re­

solve the equations and repeat the test for consistency. In most cases 

iteration in this manner will yield a fully consistent solution after several 

cycles.

One of the observations made by Webster and Salyes (1986) had been 

the increase in run time with small values of surface roughness. This is 

probably due to the increased contact area and a "decoupling" effect as 

contacting points become more close to one another thus more iterations are 

required to achieve a solution. And for some cases, there is difficulty in the 

convergence of solutions. Another conclusion made by Hartnett (1980) had 

been that the resulting system of linear equations would be extremely ill- 

conditioned as the number of elements increases, thus computer rounding off 

greatly distorts the results and limits this approach to unacceptably coarse 

discretizations of the contact region. Clearly it might be advantages to use an 

alternative method of solution.

A powerful alternative method of numerical solution is called the 

variational method based on variational principles (Johnson 1985), in which 

the values of the traction elements are chosen to minimise an appropriate 

energy function. The variational method will be adopted for the cases of 

frictionless contact of rough surfaces with the advantage that no iteration is 

involved for cases of frictionless contact where only the normal pressure needs 

to be determined, thus the distortion of solution may be eliminated. The full
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explanation to this approach is given in Sections 5.4.1 and 6.3.3. In Chapter 

5 and Chapter 6, two-dimensional and three-dimensional numerical model for 

the elastic contact of rough surfaces will be developed based on the numerical 

solution technique of variational method.

4.3 Contact Geometry

In the frictionless contact of elastic solids, the contact stresses depend 

only upon the relative profile of their two surfaces, i.e upon the shape of the 

gap between them before loading; the contact system may then be replaced, 

without loss of generality, by a flat, rigid surface in contact with a body 

having an effective modulus E ’ and an equivalent roughness (or composite 

roughness) defined by Zi(x,y)+Z2 (x,y) which results in same undeformed gap 

between the surfaces (Lee and Cheng 1992). The equivalent Young's modulus 

E ' is given by:

J _ .  LiA  + L A  (4.1)
E' £ ,

where E j , is Young's modulus and v , , is Poisson's ratio for bodies 1 

and 2 respectively.

In the following analysis, we will consider the contact of a rigid flat 

plane with a deformed surface of equivalent roughness as shown in Figure 4.1, 

which has been used in the contact analysis of rough surfaces by Greenwood
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and Tripp (1971) amongst others. The original undeformed mean plane of the 

rough surface is assumed to be the reference plane from which other points 

are measured. z(x,y) is the surface roughness (positive upward) and d  is the 

distance between the reference plane and the rigid plane, called the normal 

mean separation. The threshold normal separation is defined by

(4.2)

When a current separation d  is great than d ,̂ there is no contact for two 

surfaces. For a given value Ô defined as the approach between the reference 

plane and the rigid plane, the current normal separation d  is numerically 

equal to d^ - Ô .

Undeformed 
sui&ce profileDeformed

surfsce profile

6

d

Rigid plane

GecmKtric 
overlap region

Figure 4.1 Configuration of elastic rough surface contact
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4.3.1 Modified Original Surface Profile

The contact of rough surfaces are classified into two cases by Lai and 

Cheng (1985). They are:

(1) Contact between an elastic rough punch and a rigid plane;

(2) Contact between an elastic rough half-space and a rigid, smooth

infinitely wide plane.

Since two rough surfaces in contact has been combined to form an 

equivalent or composite rough surface against a rigid plane, for Cases 1, this 

presents physically the contact between two rough punches. For Cases 2, this 

presents physically a mathematical equivalent of two infinitely wide half-space 

in contact. Because the digitized surface roughness is finite, the roughness is 

assumed to exist only within a square of the same finite area as rough punch 

as Cases 1. and smooth everywhere else. The numerical contact models 

developed by Webster and Sayles (1982), Liang and Linqing (1992) only can 

been used to the Case 1.

It may be more reasonable to consider the contact of static sealed joints 

as Case 2. When a "bowing" technique has been adopted (Lee and Cheng 

1992), the contact analysis for Case 1 can be extended to deal with the Case 

2 and the formulation for Case 2 is very similar to the formulation for Case 

1. The only difference is that a uniform pressure is applied everywhere on the 

half-space except for the finite width rough punch in contact with the rigid
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plane; the magnitude of this uniform pressure is set equal to the average 

contact pressure. In this way the average pressure over the entire half-space 

is constant. The application of this uniform pressure simulates the contact 

between two infinitely wide bodies. Figure 4.2 illustrates the physics of this 

approach. The top illustration of Figure 4.2 shows the uniform pressure being 

applied on a smooth half space over its entire area. The shape of its deformed 

surface is perfectly flat since this pressure, like the hydrostatic pressure, causes 

no relative deformation. If the pressure within the strip region is removed, the 

surface deforms as shown at the bottom of Figure 4.2. If a rigid plane strip 

is now pushed up against this deformed surface until it becomes perfectly flat, 

the contact pressure is again uniform everywhere. When the smooth half 

space with a rough strip is considered, the rough surface profile is 

superimposed on the same deformation 0o(x,y). If the rigid plane is pushed 

up against this composite profile until it is at about the same height level as 

the smooth surface, the average asperity contact pressure should be very close 

to the surrounding uniform pressure. This is the physical basis for the 

approach used in Case 2 by Lee and Cheng (1992).

Thus for Case 2, the surface profile z'(x,y) is defined as the original 

rough surface profile z(x,y) superimposed on [ -ô /x.y)], i.e.

-  8o(%,y)

where ô/x .y)  is the displacement due to a uniform pressure

In the following sections, the general formulations for the contact 

problems will be derived from the contact case 1, while for contact case 2
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Figure 4.2 Deformation due to removal of the pressure in the rigid plane 

region

where a uniform pressure is applied everywhere on the half-space except for 

the contact simulation segment length L, the formulations derived from the 

Case 1 are still valid, providing the original surface profile is replaced by the 

modified surface profile defined by Equation (4.3).

(j0%)t)etvw5eaTrwD SkiMBaoes

The normal distance between two surfaces is called the gap. Before 

contact, i.e. the undeformed state, the gap geometry denoted b(x,y) is known
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and is defined by their surface geometries;

y) = d + (4.4)

When the undeformed asperity of the surface z(x,y) intersects the rigid plane, 

i.e. z(x,y) > , we call the intersecting part the "intersection asperity". This

gap b(x,y) is negative where the bodies intersect. For an intersection asperity 

of real rough surfaces, there may be one or more enclosed boundaries, where 

the projection of the outside boundary on the x - y  plane is called the 

'interpenetration curve', which was earlier defined by Singh and Paul (1974). 

The region inside the interpenetration curve is called the interpenetration 

region or geometric overlap region.

Due to a applied load, material points in a body undergo rigid-body

translation and elastic deformation. The gap geometry in deformed states,

denoted g(x,y) can be given by:

+ «(.%,)') (4-^)

where u(x,y) is elastic displacements of rough surface.

For points on the surface of the body, it can be shown from geometric 

consideration that:

g(%,:y) > 0 whrae two bodies have no contact
(4.6)

8(x,y)  = 0 where two bodies have contact

The gap geometry in a deformed state is an important result for fluid
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sealing problems. When two rough surfaces are in contact the gap between 

surfaces provides a path through which fluid flow may take place so that the 

leakage occurs.

4.3.3 Deformed Surface Shape

If the displacement of any point on the surface can be calculated, the 

deformed surface function z*(x,y) is known and equals numerically z/x,y) - 

Uf(x,y) (  i = 1,2 ). For frictionless contact ignoring the relative horizontal 

displacements for the case # Eg , the vertical displacement on the surface 

of each body can then related by (Webster and Sayles 1986):

E, EL
 r  =  r  (4.7)
( l - v ? )  (1 -v ^)

The total displacement of any point on two surfaces, say w = Uy +

can be found and it will be discussed later. Substituting u into Equation

(4.7), for the general case where Ey ^E; and Vy # Wg , the displacement on

the surface of each body is related to the total displacement by:
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^  ( l - v { )

and (4.8)

^  (1 -v b
1 +

( l - V j )

For the special case where E, = Eg and w, = Wg , gives:

1
w (z ,y )  = M 2(^,}) = -  w (^ ,] ')  (4 .9)

4.4 Boundary Condition o f Contact

4.4.1 Displacement Boundary (Condition

From the Equation (4.6), we can get the rules governing displacement 

of these points on the surfaces, the expression is:
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d + %(%,)') + «(%,)') > 0 outside
(4.10)

d + z(%,y) + w(z,y) = 0 inside Q,

where is the region of contact. Equation (4.10) gives the boundary

condition of the surface displacement.

4.4.2 Pressure Boundary Condition

First, we impose two restrictions on forces:

(1) Pressure values must remain positive within the region of contact and 

diminish to zero outside this zone;

(2) The integrated pressure distribution over the contact area is equal to the 

applied load.

Stated mathematically, these restrictions become: 

p(4:,y) > 0 inside Û
(4.11)

P{x^y)=  0 outside Û.

fg  = dxdy (4.12)
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where is the applied load and p(x,y) is the pressure of surface contact.

This first requirement precludes the possibility of tensile stresses 

occurring normal to the bodies because the two bodies cannot exert tension 

upon one another as a result of contact. For most engineering rough surfaces, 

the slope of asperities is sufficiently small such that we can make the 

assumption: the tangential planes are approximately parallel to the average 

plane of the surface, so all forces act in the vertical direction (Singh and Paul 

1974). Then according to the equilibrium requirement, we get the second 

restriction.

Equation (4.11) gives the boundary condition of contact pressure. 

Combining Equation (4.10) and (4.11) gives the boundary condition of rough 

surfaces contact. It is:

d  + + «(%,)') > 0 > 0

d + = 0 = 0
(4.13)

4.5 Deformation o f Rough Surface Contact

Conventionally, rough surface contact is divided into the elastic, plastic 

or mixed regime by the plasticity index originally introduced by Greenwood 

and Williamson (1966). The plasticity index is defined as
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*  = (4.14)
\ P /

where H  is the indentation hardness of the rough surface (a measure of the 

plastic flow stress of the asperities); o; is the standard deviation of the 

distribution of asperity heights and is the curvature radius of summits. 

The quantity is approximately equal to the average slope of the

asperities.

They related this plasticity index ÿr to the load at which 2% of all 

asperities will have passed the elastic limit and be yielding plastically. It is 

found that this load is very sensitive to the numerical value of the plasticity 

index; for ^  < 0.6 no practical load would be large enough to cause plastic 

flow, while for ijf > I plastic flow will occur at the lightest load. In the 

intermediated region the transition is load-dependent.

Ogilvy (1992) derived a conventional plasticity index ^  based on the 

plasticity index ÿr This plasticity index defined in Equation (4.14) was 

rewritten as:

$  = — ( o k ) ^  (4.15)

where K  is the curvature of the isotropic asperities, assumed the same for all 

asperities. In practice, k  varies from asperity to asperity, so that it is 

necessary to define ^  in an average sense, and then to interpret ÿr as 

measure of the average likelihood that any asperity is plastically yielding. For
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surfaces with Gaussian statistics, Ogilvy (1991) showed that the mean 

curvature (k) is equal to i T 3 a/Xl for all points on the surface, where Xq is 

the correlation length defined by Ogilvy (1991) and X„ is related to X* by 

Xq = X*/ 2.3. However, the value of k  that should appear in Equation (4.15) 

is the value appropriate to the contacting asperities, this generally being larger 

than the value of K  for all points on the surface. Making use of the results 

obtained by Greenwood (1984), which shows that k  varies from around 1.25 

to 1.8 times the mean surface curvature, for peaks height from around a  to 

4 a, gives the conventional plasticity index by Ogilvy, it is:

= (1.6-*2.2) — j (4.16)

dependent on the range of heights of the peaks which are in contact. This 

conventional plasticity index ^  may be calculated for the surfaces used in 

this thesis, to determine the nature of rough surface in contact. In this thesis, 

the plasticity index is calculated according to Equation (4.16) with the 

constant set to 2, to represent the approximate mean value of

As can be seen from the Equation (4.16), the plasticity index ^  

contains two dimensionless groups. The first group is related to the 

mechanical properties of the contacting surfaces and the second group to the 

surface roughness. It is clear from Equation (4.16) that hard and/or smooth 

surfaces yield low values of the plasticity index, while soft and/or rough 

surfaces result in high values of The first case, where ifr̂  is small, 

corresponds to a mostly elastic contact and the second case, where is 

large, correlates to a mostly plastic contact of the mating rough surfaces.
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In order to determine the deformation assumption for the static sealed 

joints, the values of plasticity index for typical seals should be evaluated. 

Thomas (1973) had calculated the values of plasticity index for typical static 

sealed joints by assuming the contact to be between two surfaces of mild steel, 

which is for a range of ÿr = 0.18 ~ 0.88 where the surfaces used were Rubert 

roughness gauges of a nominal surface roughness of 0.2 pm. These values 

used for the material constants corresponding to the contact between two 

surfaces of mild steel by Thomas are tabulated in Table 4.1.

Table 4.1 Material properties of typical static sealed joints

Material Young's modula 

E' 

( G P a )

Poisson's ratio

V

Yield stress 

Y

( G P a )

mild steel 100 0.3 ~ 1

In static sealed joints practice, more wide range of surface roughness 

used is ff = 0.1 pm ~ 0.5 pm (Flitney, Nau and Hisakado 1984). The 

correlation lengths of rough surfaces produced by a variety of lapping and 

grinding processes are for a range of X* = 20 pm ~ 50 pm (Thomas 1973). 

According the assumptions of surface roughness and the contact to be 

between two surface of mild steel, the plasticity index for typical sealed 

joints has been evaluated and are listed in Table 4.2.

9 4



Table 4.2 Values of the plasticity index for typical sealed joints

Plasticity index

Correlation length X* 

( pm )

RMS height o = 0.1 

( pm )

RMS height a = 0.5 

( pm )

;i' = 20 0.2365 1.182

^ ' = 3 0 0.1576 0.7883

/!' = 40 0.1183 0.5913

/ =  50 0.0946 0.4730

For the values of plasticity index listed in Table 4.2, the deformation 

mode of rough surface contact is neither purely elastic or fully plastic, but 

mixed elastic-plastic. However, in view of the overall range for plasticity 

index, making the general assumption that static sealed joints will deform 

elastically is reasonable, although it is not strictly true for all cases.

The elastic-plastic contact model will predict larger real contact area 

than the purely elastic contact model (Lee and Cheng 1992 and Ogilvy 

1992). Furthermore, the purely elastic contact model to be used in the 

leakage analysis of sealed joints is on the safe side for design, since it

predicts less intimate surface contact and hence greater leakage, than for 

plastic deformations.
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CHAPTERS.
Two-dimensional Nianerical Model for 
the Elastic Contact of Rough Surfaces

5.1 Introduction

The numerical contact model of rough surfaces is an important tool for 

simulation analysis of leakage because it can provide information about the 

real contact situation at the interface of sealed joints. In this chapter, the 

numerical relationship between contact pressure and surface displacement for 

two-dimensional elastic frictionless contact will be derived based on the 

corrected Timoshenko's solution for vertical surface displacements due to an 

arbitrary pressure distribution. The numerical solution technique based on 

variational principles will be adopted to develop two-dimensional numerical 

contact of rough surfaces with the advantage that no iteration is involved for 

cases of frictionless contact. Using the variational method, the contact 

problem become a quadratic programming problem. To make sure that there 

is no difficulty in the convergence of solution, the quadratic programming 

routine will selected carefully. A computer program will be completed for
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two-dimensional elastic frictionless contact of rough surfaces.

5.2 Statement o f Contact Problem

5.2.1 Constrains and Assunq̂ tions

In this section, the constrains and assumptions used to develop a two- 

dimensional numerical contact model are presented.

(1) The contact between two bodies is linear elastic;

(2) The contact conditions allow the use of half space solutions;

(3) The bodies are in a state of plane strain;

(4) The elastic contact area is completely contained within the geometric

overlzq) region, as shown in Figure 4 .1 ;

(5) Relative horizontal strains and displacements are ignored, i.e. 

frictionless contact;

(6) The contact between two bodies satisfies the boundary condition

defined by Equation (4.13).
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5.2.2 Distributed normal tractions

In general, a contact surface transmits normal pressure and tangential

traction due to friction. To solve the contact problem, we need to relate a 

boundary displacement u(x) to a normal pressure p(x) and a tangential 

traction q(x). For cases of frictionless contact where only normal pressure 

needs to be determined (i.e. q(x) = 0), the relationship is given by Johnson 

(1985):

u(x) = ^  ̂ f  p { x ‘)\rL\x-x'\dx* (5.1)
TiE "'0.

where is the contact region.

If a general form for the pressure distribution p(x') is assumed, the 

solution of Equation (5.1) would yield the contact pressures and 

displacements. If we now consider surface topography we know that the 

smooth contact region is in fact made up of any number of arbitrarily shaped 

contact spots. For this more general case Equation (5.1) is still valid, 

providing we can define p(x'). However we cannot make any simple 

assumption about the variation of p(x') with x \  except that over much of the 

apparent smooth contact region p(x') will be zero.

The problem can be approached in the following way: since the non­

contacting regions make no contribution to the vertical displacements at any 

point, we divide the integral expressions in Equation (5.1) into the sum of a
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number of integrals within the contact region , thus:

u(x) =  ̂  ̂ 52 f  p{x')\rL\x-x'\dx' ( -̂2)
M

where M ' is the number of contact spots.

An analytical solution requires the form of for each

contact-spot, thus a numerical solution was adopted with the advantage that 

the contact pressures and the displacements could be solved simultaneously, 

without the need for simplifying assumptions.

5.3 Numerical Solution

The first step in the numerical solution is to divide the contact

boundary into an appropriate number M  of elements. A form of pressure 

distribution is assumed for each element which in the simplest example might 

be uniform pressure or even a concentrated force at the element centre. 

Usually the distribution is chosen so that its magnitude can be described by 

a single parameter for each element although higher order discretization are 

possible. There are thus M  unknowns Pj to be determined in the solution 

of the problem. An equal number of contact points j  are then chosen at 

which the normal displacement is to be matched. Usually these are taken to 

be the centre of each pressure element. Influence coefficients C. are then 

calculated which give the difference in normal displacement of the two
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contacting surfaces at point i arising from a pressure element of unit 

magnitude at element j  . The difference in displacement at i due to the M  

pressure elements, can then be expressed as

(*-3)
j=l

where M  is the total number of elements.

The full explanation to this numerical method is given in the following 

sections.

5.3.1 Types of Pressure Elements

A number of possibilities can be suggested and several different choice 

were considered by Mostofi and Gohar (1984). The same basic information 

is required for any element, namely the influence coefficient in Equation

(5.3) which gives the normal displacements due to application of a normal 

pressure.

The simplest approach which might be adopted is to use a concentrated 

force at the centre of each element as shown in Figure 5.1 (a). This method 

produces an immediate difficulty in that the displacements are singular at the 

point of application of each load This prohibits the use of these points for 

displacement matching. A better approach would be to employ traction which
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are uniform over each element as shown in Figure 5.1 (b). This method of 

dividing the contact area into elements of uniform pressure has been used in 

the analysis of rough contact by Webster and Sayles (1986) amongst others 

and is equally applicable to smooth contacts. The infinite displacements 

inherent in the point force method are now avoided but there are, of course, 

discontinuities in stress at the boundaries of the elements where a step change 

in traction occurs.

A more sophisticated solution would be one that was continuous in 

traction between adjacent elements. Such a solution may be constructed with 

little complexity by using overlapping triangular traction elements as first 

suggested by Bentall and Johnson (1967). Figure 5.1 (c) shows an array of 

overlapping triangular traction elements. It will be immediately seen that the 

use of elements results in a piecewise linear approximation to the surface 

traction and is thus free from the discontinuities associated with the piecewise 

step methods. This method, which a distribution of traction in two- 

dimensional contact may be built up by the superposition of overlapping 

triangular traction elements, has been successfully used to solve frictional 

contact problems by Bentall and Johnson (1967) and Azarkhin (1988) amongst 

others. The same traction elements are used by Kalker (1971) in a variational 

solution technique.

Although the accuracy achieved by using overlapping triangular traction 

elements instead of the uniform traction elements would increase, this does not 

justify the added complications to the calculation of the contact problems of 

rough surfaces (Webster and Sayles 1986). Therefore, the element of uniform
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Pj

(a) Concentrated forces

(b) Uniform
(piecewiœ constant)

(c) Overlapping triangles 
(piecewise linon)

Figure 5.1 Possible traction elements for use in two-dimensional contact 

problems

pressure is chosen to use in the following analysis.

5.3.2 Contact Pressure Element Equations

Using Equation (5.1) the expressions for the vertical displacements of 

a surface due to an applied uniform pressure over an elemental length of the 

surface profile shown as in Figure 5.2 can be derived;
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K(x) = i-î— -  (x-a)ln|^— j + const (S.4)

for not within the element, i.e. for a point outside the loaded region (|x| 

> a) and

u(x) = — p I (a +%)ln|^^j + (a-x)ln|-^^j |+ const (5-5)

for within the element, i.e. for a point within the loaded region (|x| ^ a).

DWm%d boundary

Figure 5.2 Vertical displacement on the surface due to uniform normal 

pressure element

The constant in Equation (5.4) and (5.4) is fixed by the datums chosen
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for normal displacements. The distance , at which zero vertical 

displacement is assumed, was taken by Lee and Cheng (1992) as lOL, where 

L is the contact simulation segment length. Essentially all displacement are 

measured with respect to this point in space.

For numerical solution, expressing all distances in terms of the elemental 

Substituting for x = and a = JL/2 in equation (5.4) and (5.5), we

may derive the following expressions:

.2)
u (m )  = —Ü   ^ XÈ& p  km + 1 )  ln(m + — )

^  2 2

-  ( m - —) l n (m -—) j + const

(5.6)

for the displacement u(x) at values of x  that correspond to the centres of the 

remaining surface profile pressure elements and

u ( Q )  =  2 ( 1  V  )AJL r 1 + const (5.7)
n f  L 2 J

for the mid point of the element over which the uniform pressure is applied.

5.3.3 Formulation of Numerical Solution

For the case of the contact of two elastic bodies, the elasticity of
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another body can be taken into account by replacing ( l- t/) /E  by 1/É, where 

E  is the equivalent Young's modulus. From Equation (5.6) the displacement 

at point i due to a uniform applied pressure over element J  is:

-  ( m - i ) l n ( m - i )  j + const

where f ^ ( i.e. outside the loaded region); Similarly for case f ( i.e.

within the loaded region) we use Equation (5.7):

where:

m = | f - j  I (5.10)

We can now find the total vertical displacement due to all the element 

pressure Pj by the following expression:

= E  «V (511)

where M  is the total number of elements in contact simulation.

Since we are using linear elastic theory, each term , is proportional

1 0 5



CHAPTERS.

to the elemental pressures Pj , hence we can express as the displacement 

due to a unit uniform elemental pressure times the real elemental pressure, 

giving us the following expression for the total displacement at point i :

“i - (5.12)

where the terms Cy are normally referred to as the influence coefficients and 

can be calculated by:

7 [ (M -^) l n ( w - i  ) -  (m + ̂ )  In(OT + ̂ )  ] + ccost

C  = 2AA r i n l  I + const 
^ L 2

(5.13)

Considering displacements for all points. Equation (5.12) represents a 

set of M  simultaneous equation which may be expressed in matrix form thus:

/

«2 =

\

'11 '"12 ' I M

^ 21  ^ 22  ■■■ ^2M

^M1 ^M2 -  ^MM

\

(5.14)

The matrix of influence coefficients is square and symmetric ( as m = \i - j \ ,

1 0 6



OMPTER5.

therefore Q  = C), ), the terms can be calculated by Equation (5.13).

5.4 Numerical Solution Techniques

In order to solve elastic contact problem by the numerical method 

described above it is also important to choose an effective numerical solution 

technique, which will determine the accuracy of solutions and the time 

consumption of solution procedure.

5.4.1 Variational Methods

A powerful method of numerical solution for the contact problems is 

the variational method based on variational principles, in which the values of 

the traction elements are chosen to minimise an appropriate energy function 

(Johnson 1985). Variational methods have been applied to non-Hertzian 

contact problems by Kalker (1990) amongst others for two reasons:

(1) to establish conditions which determine the shape and size of the 

contact area and the contact stresses uniquely;

(2) to enable well-developed techniques of optimisation such as quadratic 

programming to be used in numerical solutions.

When the variational methods are applied for the cases of frictionless 

contact where only the normal pressure needs to be determined, no iteration 

is involved (Kalker 1990).

1 0 7



CHAPTERS.

Fichera (1964) and Dnvaut & Lions (1972) have investigated general 

principles which govern the existence and uniqueness of solution to contact

problems. For two bodies having continuous profiles, pressed into contact by 

an overall displacement Ô , Duvaut & Lions show that the true contact area 

and surface displacements are those which minimise the total strain energy 

7/g (with d kept constant ), provided that there is no interpenetration, i.e. 

provided:

+ *(;:,)') - 8 ^ 0  (518)

everywhere. Where h(x, y) is the distance between the two surfaces before 

deformation, Ô is the approach of two bodies.

For numerical solution of contact problems it is more convenient to 

work in terms of unknown tractions rather than displacements. Kalker (1977, 

1978) has therefore proposed an alternative principle in which the true contact 

area and distribution of surface traction are those which minimise the total 

complementary energy V*, subject to the constraint that the contact pressure 

p  is everywhere positive. Now the total complementary energy can be 

written:

= (/g + /  y ) -  (5.19)

where D, is the surface on which acts and is the internal

complementary energy of the two stressed bodies. For linear elastic materials 

the complementary energy is numerically equal to the elastic strain

energy Ug , which can be expressed in terms of the surface tractions and
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displacements by

Le. (5.20)

 ̂ o.

Substituting Equation (5,20) into Equation (5.19) gives 

K* = /  |f(x ,j? )[A (% ,y ) -  5]

+ ^  f  (.%,)') « (^ ,y)}  dS

(5.21)

The solution can be found by minimizing V* , subject to p(x,y) > 0,

that is:

Mtn\ r  = /  [pix,y)[h(.x,y) -  8]

(5.22)
Dfjc.vl ttfjc.vl dS

Subject to: p (x ,y )  > 0
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5.4.2 Quadratic Programming Formulation

To obtain a numerical solution the prospective contact area Q„ in 

Equation (5.22) is subdivided into a mesh on which elements of pressure act. 

The [h(x, y) - 6] is numerically equal to the gap b(x, y) defined in Equation

(4.4). b(x, y) is taken as constant over each element.

Using Equation (5.17), in which displacement u and pressure p  

is related, we can get the numerical expression as follows:

jf M W

Subject to: Pj > 0

where is constant depending upon the form and size of the pressure 

element. For a uniform pressure element, the value of is equal to the 

surface area of the element, i.e yf,, = AL x AL.

Using the complementary energy, the contact problem is formulated as 

minimizing this energy under the inequality constraint that the pressure must 

everywhere be greater than zero. It then follows that the penetration is just 

zero inside the contact, while outside the contact the pressure is zero and no 

penetration occurs. This leads to a quadratic programming problem with 

pressure on the rectangle as unknowns, which can be found by using a 

standard quadratic programming routine.
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E04NAF routine is designed by Gill, Murray and Wright (1983) to 

solve the quadratic programming (QP) program - the minimization of a 

quadratic function subject to a set of linear constrains on the variables. 

E04NAF allows the user to provide the indices of the constraints that are 

believed to be exactly satisfied at the solution. This facility, known as a warm 

start, can lead to significant saving in computational effort when solving a 

sequence of related problems. Therefore, the routine is chosen to develop the 

numerical contact model.

5.4.3 Reduction of Equation Order

In order to numerically model the contact of the rough surfaces, a large 

number of elements are required. If a surface profile is discretised into 2000 

elements, for example, this requires a set of 2000 simultaneous equations and 

an array space for 2000 x 2000 components of the influence coefficient matrix 

in Equation (5.17). Because the computer memory is limited, this would 

restrict the total number of elements, which may produce unacceptably coarse 

discretizations of the contact region for some cases.

However, some treatment must been adopted to reduce the problem. 

The fact that the contact of rough surfaces occurs only at the tip of the 

asperities can be used to advantage. Thus we may divided the total elements 

M  into two parts: the contact elements, say M ', and non-contact elements 

M ” = M  - M'. Since for random rough surfaces the contact region can occur 

in a random manner it is necessary to use an extra storage array, say I(i) (
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i = 1, 2, M ' )  and J(j) ( j  = I, 2, M "  ), to record the position of 

contacting and non-contacting elements separately. According to the matrix 

properties, the Equation (5.17) can be rewritten as follows:

"j(l)
/

“j(D

V

( CAiW)

(5.24)

Here pjf^ ( i  = J, 2, ..., M ’) are the element pressures at contact points. 

Since the element pressures in non-contact regions are zero, i.e. = 0 ( 

/ = 1, 2, ..., M" ), they make no contribution to the vertical displacements at 

any points. Thus the Equation (517) can be split into two set of simultaneous 

equations as follows:

/

\

/̂(2)/(l) ^W(2)

Pl{\)

fj(2) (5.25)

For the points within the contact region, and
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“j(l)

/

=

\

c JdW )

E#(2) (5.26)

For the points outside the contact region.

In this manner two sets of relatively lower order system equations can 

be formed that are easily solved. Thus the surface displacements can be 

divided into two parts to be determined; first for the contact region using the 

Equation (5.25), then for the non-contact region using Equation (5.26). The 

matrix of influence coefficients in Equation (5.25) and Equation (5.26) is still 

calculated by using Equation (5.16), where the integer m representing the 

distance between two points becomes;

m = I 7 (0  -  / ( / )  I (5.27)

for the contacting points and

m = I J(0 -  /(/) (5.28)

for the non-contacting points.

After the treatment described above, the total number of elements M  

in Equation (5.23) will be reduced to M', where M ' is the total number of 

elements having geometry overlap, i.e 6, < 0.
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5.5 Algorithm and Computer Programm

For the contact case 1, i.e the contact between an elastic rough punch 

and a rigid plane, the complete solution for a given load and surface geometry 

is obtained as follows:

Step 1. Set up initial values

The first stage is setting up some constants. Values such as Ey , ,

Vy, V;, AL, M , the total applied normal load and the approach step A Ô 

are input into the computer. The next is setting up surface geometry. Either 

read data from files of previously recorded surface profiles or generate the 

appropriate surface shapes.

Step 2. Calculate threshold separation

It is necessary to calculate the threshold separation . When the

current normal separation is great than or equal to , the contact will 

not occur.

Step 3. Decrease the normal separation

The upper body is given a rigid body vertical displacement A Ô toward 

the lower body, the normal separation d  is decreased. The current normal 

separation d̂  is calculated by d̂  ^  d  ̂- iAÔ ( i = 1, 2, 3, ...J. The contact has 

been detected for current normal separation d,.
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Step 4. Set up the index array

The gap values 6, is calculated by using Equation (4.4) to find the 

initial contact elements. The geometric overlap is detected at the points for 

the value of 6, < 0 = 7, 2, An index array f = 7, 2, Af )

is used to store the positions corresponding to the geometric overlap points 

and another index array J(i) ( i = 1, 2, .., Af - M' ) is used to store the 

positions corresponding to non-contacting points, i.e. the points for the value 

of A,  ̂ 0 ('f = 7, 2, A^.

Step 5. Calculate the linear terms of QP

The first section in Equation (5.23 ) is calculated and is stored as the 

linear terms of the Quadratic Programming problem (i.e QP), see Appendix

A.

Step 6. Set up matrix of influence coefficient

The index array I(i) (  i = 1, 2, M  ) is then used to calculate the 

values of m in Equation (5.27) and to calculate the corresponding 

components Cy for the matrix of influence coefficients at contacting points.

Step 7. Calculate quadratic terms of QP

The second section in Equation (5.23) is calculated and is stored as the 

quadratic terms of the Quadratic Programming problem (i.e QP), see Appendix
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Step 8. Solve quadratic programming problem

The quadratic programming problem defined in Equation (5.23) is 

solved by using E04NAF - NAG Fortran Library Routine Document. 

E04NAF is a comprehensive routine for solving quadratic programming (QP) 

problem - the minimization of a quadratic function subject to a set of linear 

constrains on the variables.

Step 9. Check for force equilibrium

Using Equation (4.13), the total pressure carried by the contact is

calculated by adding all the nonzero elemental pressures. The total load per

unit width between the two bodies is calculated by multiplying by the 

elemental size AL. If the calculated load is less than the required load P^, 

the process is repeated from step 3.

Step 10. Output some results

For an applied load and surface geometries, the contact pressure 

distribution, the real contact region and the real contact area, the gap 

geometries in deformed state etc. can be output as the calculated results.

The steps described above represent the algorithm of the present 

numerical contact model for the contact Case 1. As can be seen from the
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algorithm, for a given normal separation, no iteration is involved to yield a 

fully consistent solution The computer program based on the algorithm has 

been completed in FORTRAN and is named 2DNECM by the author. 

Figure 5.3 is a flow chart representing the main features of the contact 

program 2DNECM for two-dimensional numerical elastic contact.

With a few minor modifications to the original program above, the 

2DNECM has been extended to include the contact case 2, where an 

equivalent rough half-space is loaded against a rigid, infinitely wide plane. 

For contact case 2, first the average pressure p„ over the entire half-space is 

calculated according to the contact case 1, thus the modified surface profiles 

are determined by the using Equation (4.3), then the final solutions are 

obtained based on the modified surface profiles. For two-dimensional contact 

problems, the displacement 0g(x) is given by Lee and Cheng (1992);

(5.29)

where p„ is the average contact pressure.
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Set initial values

No Calculated load  ̂
_^^#i«l load^

Yea

Set tq> index atndes 
I{i) and J{i)

Calculate quadratic terms of QP

Sdve quadratic programing 
Subject to: p, > 0

Calculate inftuerme coefficients

Calculate linear terms of QP

Cmlculmte thWrold sqmration

Calculate total pressure

Decramae normal separmtkm 
d, -  4  - fdd ( i -  j, ^

Chitput to ^ u lts:
Separatkm, Real contact area, 
Praæure distribittion. Deframed 
surface fnofil^ and Gap eto.

Figure 5.3 Computer program flow chart for two-dimensional numerical 

contact model
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5.6 Numerical Examples

5.6.1 Contact of Two Elastic Smooth Cylindrical Bodies

A number of test load cases were used to build up confidence in the 

analysis techniques and assess the magnitude of any errors in the solution. 

The most convenient comparison is the contact between two elastic smooth 

cylindrical bodies. For this case there exists analytical expressions for the 

contact length 2r , maximum contact pressure and the distribution of 

surface contact pressure p(x) (Johnson 1985);

4P  R
rZ = Z l l f  (5.30)

/P .
Ttr \ n R

(5L31)

P W  = -  ( f f  (5-32)

where P , is the load/unit length of the cylinder and 1/R is the equivalent 

curvature, calculating by ( J/R = J/Ry + J/R^ .̂

Thus the theoretical Hertzian results are calculated so that a direct 

comparison with the numerical results could be made. Figure 5.4 shows the 

pressure distribution p(x) plotted for one of the test runs. The plot showing
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the pressure distribution p(x) is normalised by the theoretical maximum 

pressure given by Equation (5.31). The theoretical pressure distribution given 

by Equation (5.32) has been plotted on the same axis. The values used in 

Figure 5.4 are:

0.3

= JO m/M , f  = JOO

and the element size used for numerical calculations is AL = 1 0  pm.

— Heitztan scMion 
a Numerical s(Mlon

He
x(m)

Figure 5.4 Comparison of pressure distribution for the contact of smooth

cylinders

The influence of varying the pressure element size AL was also 

investigated. When the element sizes of AL = 2 pm is used for numerical 

calculations above, the two curves of the pressure distribution representing 

Hertzian solution and numerical solution are indistinguishable. The result of
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this test, and many others, confirms that the numerical solution reproduces the 

analytical results to a high degree of accuracy. The numerical simulation 

solutions for the contact length 2r, the calculated load and the maximum 

pressure were compared with Hertzian analytical solutions for the two 

different element sizes, given in Table 5.1.

Table 5.1 Comparisons between Hertzian and numerical solution

Contact half length r

( inn )

Maximum pressure 

( N/mm  ̂ )

Calculated Load 

( N/mm )

Hertzian analytical 

solution

137.215 2319 78 500.000

Numerical solution 

AL = 2 (pm)

138.000 231159 501 357

Numerical solution 

4L = 10 (pm)

140.000 2276 43 520 501

The results show that with varying pressure element size the 

numerical solution did not change the overall result of the pressure 

distribution, however the solution for the contact length increases with 

increasing element size because of the edge errors of the contact boundary. 

The accuracy of the numerical solution may be improved by using a finer 

element size.
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5.6.2 Contact of Rough Surfaces

A further test was attempted to check the ability of the analysis to deal 

with the contact of rough surfaces. A series of test cases were studied. Figure 

5.5 and Figure 5.6 show the results for one of the test runs for the contact 

case 2. Longitudinal rigid rough surfaces having Gaussian statistics are 

generated by numerical simulation programm NSRRS. For the cases, where 

two rough surfaces in contact have RMS roughness oT; and respectively 

but same correlation length and same surface anisotropy, the equivalent rough 

surface can be generated simulated by using the equivalent roughness a  = (â j 

+ The equivalent rough surface used in contact analysis is generated

numerically with the following conditions:

o = 0.2 pm, À* = 20 pm , Â* = °°

= 200 , Ax = 20 pm.

These values used for the material constants correspond to the contact 

between two surfaces of mild steel, i.e 

£■'=100 G P a , v=  0.3.

Figure 5.5 (a) and (b) show the undeformed surface profile and the 

deformed surface profile. As can be seen in Figure 5.5 (b), the gap geometry 

in the deformed state is determined by the deformed surface profile, which 

provides important information for the leakage analysis of static sealed joints. 

When the zero-leakage is required, all values of gap should be zero, which 

means that all flow paths should be blocked effectively, hence leakage cannot 

take place.
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The distribution of the contact pressure has been plotted in Figure 5.5

(c). As can be seen from Figure 5.5 (c), local pressure can vary from asperity 

to asperity and the highest local pressure can be many times greater than the 

lowest. O f course, the possibility of plastic flow has been ignored and some 

of the asperities would reach a certain maximum pressure and collapse 

plastically as the applied load increases.

The relationship between the real contact area and the applied load is 

of great interest to the leakage analysis of static sealed joints. The program 

2DNECM can be used to yield the information. Two simulated results 

presenting the predicted variation of the true area of contact with applied load 

are presented in Figure 5.6, where the length is measured in the x direction 

and the contact length is the total length of the surface profile that is in 

contact. Thus if (load/unit length) / (contact length) is plotted, the result is 

equivalent to load/area. The simulated results show that the variation of real 

contact with load dependents very much upon the characteristics of rough 

surfaces. The variation of contact length is found to be approximately linear, 

the variations away from this being attributed to the random nature in which 

new contacts can be formed.
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a Umdcformetd surface profile
1

I
5u5 ole

P o s itio n  (  /  L  )
o.e

( a ) Oap before loading

I
Pefomned surface profile

Î
0.8  -

0.8 -I
0.8 0.8 

P o s itio n  < jc /  X- )
0.8

( b ) Oap after loading

6:8 o^
s itio n  < /  I-, )

( c ) Contact pressure distribution

Figure  5.5 Simulated results for an equivalent rough surface loaded against

a rigid plane
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Figure 5.6 Predicted variation o f contact length with applied load for two-

dimensional contact o f rough surfaces, showing the effect o f  

rough surfaces
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5 .7  Comparison o f Numerical and Stochastic 

Results

It is perhaps a worthwhile exercise to attempt a comparison between the 

contact results obtained by the present numerical model with an existing 

stochastic model. The use of a plane-strain contact model corresponds to the 

case of infinitely long asperities orthogonal to the profile ( i . e.  having an 

infinite degree of anisotropy). Bush, Gibson and Keogh (hereafter referred to 

as BGK) (1979) have studied the contact of strongly anisotropic rough 

surfaces, and therefore provide a suitable model for comparison. In their 

analysis they modelled the surface as parabolic ellipsoids having a Gaussian 

distribution of heights. They derived the following expressions for the 

variation of contact area and normal load f . :

(5.33)

where:

5 = (5.34)

‘02
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t  = 04777 _ (5^6)
1 -  1.3211

t /  = / T T p  (5^7)

and KA) is the complete elliptical integral of the first kind given by

n/2

K(k) = f  ------- ^ --------  (5.38)
0 ( l - t^ s m ^ (p )^

The longitudinal ridge rough surfaces used in the comparison are 

generated numerically to have 1000 sampling points with

Unfortunately a direct comparison with these expression is not possible as the 

case for infinitely long asperities is indeterminate. To overcome this difficulty 

two values of y have been assumed 0.1 and 0.01 in Equation (5.35), 

corresponding to two different degrees of anisotropy. To obtain a rough 

comparison value of , the second moment of the power spectral density 

function, was calculated by Appendix B. This value was then substituted for 

in Equation (5.34).

Table 5.2 shows the results calculated from the above stochastic model 

together with the corresponding values calculated from the least squares line 

through the numerical results. The numerical results are consistently higher 

than the stochastic results calculated for y = 0.01. However, in view of the 

many assumptions involved in both the random-process theory approach and
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the numerical technique, the agreement is encouragingly good.

Table 5.2 Results comparing numerical and stochastic values of fyW,

/A , ( N / pm" )

Parameters

( pm )

BGK model Numerical model

y = 0.1 Y = 0.01 y = 0

a  = 0.2 , A; = 20 3.877x10"* 2.571x10"* 3.293x10"*

a =  0 3  , Xl = 20 5.817x10"* 3.858x10"* 4.416x10"*

a  = 0.4 , = 20 7.754x10"^ 5.144x10"^ 6.832x10"*

a =  0.2 , = 30 2.581x10-* 1.711x10"* 2.425x10"*

o  = 0.2 , — 40 1.934x10"* 1.282x10"* 2.021x10"*

The effect of varying the sampling interval on the load-contact area 

relationship has also been investigated. The surfaces used in the 

comparison is first generated numerically to have 1000 sampling points 

with two sets of sampling interval size: Ax = and Ax = 1/21^. Table 

5.3 gives the simulated results comparing the numerical and stochastic 

values of f s h o w i n g  the effect of changing the sampling interved. As 

can be seen from the results, the stochastic model predicts decreasing 

values of PJA^ as the sampling interval increases, which agrees with the 

trend observed from the numerical results. This means that the predicted 

area of real contact increases with increasing sampling interval. This is
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caused by the lose of information on the small scale asperities. For a 

particular asperity contact at a large sampling interval, a large continuous 

contact is predicted; for a smaller sampling interval the equivalent region 

may well consist of a number of smaller asperity contacts, thus reducing 

the predicted contact area.

Table 5.3 Results comparing numerical and stochastic values of PJA^ 

showing the effect of sampling interval

Roughness parameters 

a  = 0.3 pm 

X* = 30 pm

(j,; ( N / p m " )

BGK model 

y=OOI

Numerical model

Y = 0

A I = 3.375x10"* 4.287x10-^

A 1=  Ax = 1/2X; 5.552x10"^ 6.186x10"^

The contact boundary condition defined by Equation (4.13) has been 

examined point by point for all of test cases, the results show that there is 

no distortion of solutions in the contact simulation of rough surfaces by 

using the numerical solution technique of the variational method.

The ability of the numerical model to analyze the contact of rough 

surface profiles is also confirmed. The model uses the actual digitized 

rough surface profiles produced by NSRRS and can yield important results 

about the gap geometry in the deformed state, which is an important

1 2 9



information for the leakage analysis of static sealed joints. The model is 

also capable of yielding results about the real pressure distribution and the 

real contact area, and predicting contact parameters such as the mean 

contact area and the mean contact pressure etc ., where these will all vary 

with applied load, material properties and surface rough surfaces. 

Comparison with an existing stochastic contact model for highly anisotropic 

rough surfaces has been attempted. The results obtained form the 

stochastic and numerical models show an encouraging agreement 

considering the many differences between the two techniques.
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Three-dimensional Nwnerical Model 
for the Elastic Contact of Rough 
Surfaces

6.1 Introduction

The two-dimensional numerical model presented in Chapter 5 can 

provide information about the contact situation at the interface of sealed joints 

with longitudinal roughness. However, for sealed joints having the general 

rough surface forms, a three-dimensional numerical model is needed to 

provide such quantitative information in three dimensions. In this chapter, a 

three-dimensional numerical model for the elastic contact of rough surfaces is 

developed on the basis of the Boussineq force-displacement relationship, 

which is widely used in a general numerical solution for elastic body contact 

problems by Hartnett (1980) amongst others. The contact characteristic of 

rough surfaces, in which contact can occur in a random manner, is considered 

by introducing two index matrices to record the position of contacting and
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non-contacting points respectively. The numerical solution technique based 

on the variational principles, which has been widely used in the rolling contact 

problem by Kalker (1990), is also applied in the contact of rough surfaces.

6.2 Statement o f Contact Problem

6.2.1 Constrains and Assumptions

Except for the assumption of plane strain, the constraints and 

assumptions used in the two-dimensional numerical contact model are still 

valid to develop a numerical contact mode for the frictionless, three- 

dimensional contact problems of elastic bodies, i.e;

(1) The contact between two bodies is linear elastic;

(2) The contact conditions allow the use of half space solutions;

(3) The elastic contact area is completely contained within the geometric 

overlap region, as shown in Figure 4.1;

(4) Relative horizontal strains and displacements are ignored, i.e frictionless 

contact.

(5) The contact between two bodies satisfies the boundary condition 

defined by Equation (4.13).
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6 . 2 . 2  Generalized Boussinesq Solution

To correlate the displacement field u with the contact pressure field p  

inside the contact region Q„, the contacting bodies are considered as elastic 

half-spaces, which has been shown to be an acceptable approximation (Singh

and Paul 1974). For points on the frictionless surfaces of the bodies, u and 

p  are related by integrating the Boussinesq solution for a normal point load, 

which leads to the following equation (Timoshenko 1951):

u^(x,y) =

(f = 1, 2)

Thus, the total displacement of any point on the surfaces can

be expressed by:

= f  f  

0 .

where the elastic parameter Æ, is defined by
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K  = (6.3)
It Tt E

6.3 Numerical Method

The general numerical method for the solution of half-space contact 

problems has been illustrated by the two-dimensional contact model presented 

in Chapter 5. For three-dimensional contact problems, the procedure is very 

similar save that the contact area must be divided into elements of area over 

which a pressure function acts.

Similar types of traction element to those described in two-dimensional 

problems may be used in the solution of three-dimensional problems. The 

column of uniform traction in three-dimension is often to be preferred 

although a wide range of possible traction elements are available for use in the 

such numerical method. Uniform pressure elements have been employed in 

the analysis of smooth contact by Hartnett (1980) and de Mul et al. (1986). 

The contact of rough surfaces has also been analyzed with uniform pressure 

elements by Xian and Zheng (1991). The uniform pressure element will also 

be chosen to develop a three-dimensional numerical model of rough surface 

contact in this Chapter.

134



6.3.1

CHAPTERS.

Contact Pressure Element Equation

The effect of a uniform pressure action a rectangular area 2a x 2b has 

been analyzed in detail by Love (1929). The deflexion of a general point (x,y) 

on the surface is given by:

|(x+a)ln (y+b) +{(y+ b f +(% + j)4^  

(y -b )+ {(y  - b f + ( x + a f } ^

+ (y+ b )h i

(x-a)ln

(y-b)hL

(%+a)+{(y+6)^+(%+a)4^ 

(%-a)+{(y+6)^

(y -6) +{(y -6)^+ (% -a )^  
(y+ b) +{(y+ b f +(x-a)^)^

(x-a ) +{(y-b)^+(x-aŸW  

(x+a) +{(y-b)^+(x+o)4^

(6.4)

By introducing an influence function C(x, y) representing the deflection 

at point (x , y) because of a unit uniform pressure on the surface, the 

Equation (6.4) can be rewritten as:

w(^,y) = C(x,y) X f (6.5)

where:
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=  (k f )
tiE

|(x+a)ln (y +b) +{(y+6)^+(x+a)¥^

(y+6)lm

(y -b )  +{(y - b Ÿ + { x + d fW

(x+a) + {(y+ bf+ (x+ af}^ ^  

(%-a) +{(y+6)^+(x-a)^

+ (x-a)In

+ (y - b )h i

(y -6 )+ { (y -6 )^+ (x -a)^
(y+ b) +{(y+ b f+ (x  -a Ÿ Y ^  

(x -a )  + {(y-b)'^ + (x-aŸ W

(x+a) + { (y -b f+ (x + a fY ^

(6.6)

6.3.2 Formulation of Numerical Solution

To get the formulation of the numerical solution, the contact boundary 

is discretized into rectangular elements, as shown in Figure 6,1. Since the 

distribution pressure over each element is assumed to be constant with the use 

of the linear elastic theory, the total vertical displacement on the surface of the 

bodies due to all element pressures is given by:

V ^  ^  ~'ijkl k=l 1=1
f = 1, 2, 

;  = 1, 2, M

(6.7)

where Q  is defined as influence coefficient representing the deflection of 

element centre ( f , because of a unit uniform pressure on element (X, /).
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Figure 6.1 Discretization o f the contact boundary

In order to determine the influence coefficients defined by Equation 

(6.6), for the case o f the contact o f two elastic bodies the elasticity o f another 

body can be taken into account by replacing (1- v^)/nE by the elastic 

parameter defined in Equation (6.3). Substituting the distance x = x and 

y  = ÿ  in Equation (6.6), the influence coefficients can be determined 

by:
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^ ijk l |(x+a)ln

(y+i>)ln

+ (x-û)ln

( y -b ) \n

(y+b) +{(y+ b f + ( x + a f ) ^  

( ÿ - b )  + { f y -b f + (^ + a f } ^

(x+a) + { f y + b f + ( x + a f ^  

(%-o)+{(y

(ÿ-b) +{(y-6f -t-(x-g)¥^ 

(y+b)+{(y+b)^+ (x -a )¥ ^

(x -a )  +(x-g)^F^

(%+a)+{(y-6)^+(%+a)^

(6.8)

Where ( x , ÿ  ) are the coordinate locations of the centre of element (  k  , I )  

with respect to the centre of element ( i , j  ) , shown as in Figure 6.1.

Considering displacements for all points on the surfaces. Equation (6.7) 

represents a set of (M^ x My)  ̂ simultaneous equations which may be 

expressed in matrix form thus;

( « ) = [ C ] ( ;, ) (6.9)

where ( « ) is the vector of surface displacements, [ C ] is the matrix of 

influence coefficients defined by Equation (6.8) and ( /? ) is the vector of 

contact pressures. The matrix of influence coefficients is square and 

symmetric ( as x = | t  - / | and ÿ  = | / - y |, therefore = C*, ̂  ).
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The set of linear simultaneous Equations (6.9) that relate displacements 

to pressures has the same formulation as in general smooth body contact 

problems. For the smooth body case, the values of fx , to be used to 

calculate the influence coefficient would show progressive variation, however 

for rough surface cases, this progressive variation is not valid because the 

contact of rough surfaces can occur in a random manner. Thus, the numerical 

solution of rough and smooth contact problems by using discretized traction 

elements has been seen to be conceptually straightforward, except for the 

special treatment adopted for the contact of rough surfaces.

The treatment adopted for the contact of rough surfaces that divides the 

surface displacements into two parts: the displacement of contact elements and 

the displacement of non-contact elements in two-dimensional numerical 

contact model, is still valid in three-dimensional numerical contact model, 

provided two index matrices /(fjO (f = 7 , 2 , y = 7,2,...,M y and 

(f = 7,2,..., y = 7,2,...,A^-Afy have been set to record the position of

contacting elements and non-contacting elements respectively.

From the analysis above, we can also see that the numerical procedure 

of the contact problems in three-dimensional case by using discretized traction 

elements is very similar to in two-dimension case. However, the need to work 

in terms of relative displacements in two-dimensional case is removed since 

no arbitrary constant is present in expressions for the displacement due to 

pressure acting over an area of a three-dimensional half-space.
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6.33 Quadratic Programming Formulation

Substituting Equation (6.9) correlating the displacement u and the 

pressure p  for the contacting elements into Equation (5.22), the numerical 

formulation of the solution can be given by:

jf/, M'y M', M'y

Min! r  .  A P,ib,j * - ' £ ' £ ' £ ' £ Pii Pu
(-1 ^  (-1 y - i t - i  M

Subject to: p̂ j > 0

(6.10)

where is constant depending upon the form and size of the pressure

element. For a uniform pressure element having a shape of rectangle, the 

value of is equal to the surface area of the element, i.e Â  ̂= 2a><2b.

Through solving the quadratic programming problem defined by 

Equation (6.10), the displacement and size of elements in contact and the 

contact pressure will be determined uniquely. Then the displacements for the 

non-contacting elements can also be determined by using Equation (6.9), 

where the values of , ÿ) to be used to calculate the influence coefficient 

Cp/ is the distance between the contacting and non-contacting elements.

With a few minor modifications, the algorithm and computer program 

developed in two-dimensional numerical contact model has been applied to 

three-dimensional numerical contact model, called as 3DNECM. For three-
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dimensional contact problems, the displacement ôfx.y) is given by:

6.4 Numerical Examples

6.4.1 Contact of Two Elastic Smooth Spheres

To verify the computer program and confirm the accuracy of the

present model, the contact of two elastic smooth spheres has been studied. 

The numerical results are compared with analytical Hertzian solution for the 

following conditions:

Ey = Ej = 200 GEo , Vy = Vj = 0.3 

Ey = mm , J = 0.07 mm

Two element sizes used for numerical calculations are = 0.01 xQ.01 

( mm  ̂) and = 0.05x0.05 ( mm  ̂).

The analytical expressions for the contact size r ( the radius of contact 

circle), the compression Ô and the pressure distribution are ( Johnson 1985):

j. _ I \ (6.12)
\ 4E^ /
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p = = ‘ ^ A - z t r >

p W  = p ™ , { i - ( f f  («-«5)

The real contact area ratios of numerical results and Hertzian solution 

are calculated:

= 1.012295 = 1.057193

where (W Jyŷ  is the real contact area from Hertzian solution, fv4^y, (X are

real contact area from numerical solution for element pressure size = 

0.01x0.01 ( mm^) and A^ = 0.05x0.05 ( mm^) respectively.

The pressure distribution from the numerical solution for A^ = 

0.01x0.01 ( mm^) is plotted in Figure 6.2. Figure 6.3 shows the comparison 

of pressure distribution, where the pressure distribution p(xj is normalised by 

the theoretical maximum pressure given by Equation (6.14). From the 

comparison, it is evident that the numerical model yields fairly accurate 

pressure distribution in the region where the pressure gradient is small. The 

accuracy can be improved by using a finer grid size. The real contact ratios 

of numerical results and Hertzian solution also shows that the numerical 

contact model used to calculated real contact area gives reasonable results.
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Figure 6.3 Comparison o f pressure distribution for the contact o f smooth 

spheres
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6.4.2 Contact of Rough Surfaces

The three-dimensional numerical contact model has been applied to the 

contact analysis of rough surfaces for Case 2. A series of test cases were 

studied. Since the model uses the actual digitized surface topography, it can 

yield the results about the real pressure distribution and the deformed shape. 

Two of simulated results about the distribution of the contact pressure have 

been plotted in Figure 6.4, where the two rough surfaces used are same 

statistics parameters ( a and X*) but are generated by simulation with different 

surface forms. As can be seen from Figure 6.4, local pressure can vary from 

asperity to asperity; even if the rough surfaces have same statistics parameters, 

the distribution of contact pressure would have the different form. According 

to the boundary contact condition defined by Equation (4.13), the contact 

points corresponds to those points having non-zero contact pressure, whereas 

the non-contacting points corresponds to those points having zero contact 

pressure. Therefore, the simulated result of the distribution of contact pressure 

implies the contact situation at the interface, which provides important 

information for the simulation analysis of leakage of static sealed joints.

The program 3DNECM can also be applied to predict contact 

parameters such as the mean contact area and the mean contact pressure etc., 

where these will vary with applied load, material properties and surface 

roughness. The relationship between the real area of contact and applied load 

is great interest to the leakage analysis of static sealed joints. Two of the 

simulated results have been plotted in Figure 6.5, showing the effect of rough 

surfaces. As can be seen from Figure 6.5, the variation of contact area is
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Eq)proximately linear, the variations away from this being attributed to the

random nature in which new contacts can be formed.
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Figure 6.4 Pressure distribution for the contact o f  rough surfaces
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6 . 5  Comparison o f Numerical and Stochastic 

Results

To confirm the ability of the analysis to deal with the contact of rough 

surfaces, it is necessary to compare the present contact model with the 

existing stochastic models. The comparison of stochastic models for the 

contact of rough surfaces had been done by McCool (1986). He suggested 

that the GW model would give good order of magnitude estimates of the 

number of contacts, real contact area fraction and nominal pressure that result 

at a given separation of a rough and a smooth flat plane. Therefore, the GW 

model is chosen as a suitable model for comparison.

In order to compare, McCool related the three parameters of the GW 

model, i.e. the assumed constant radius of the spherical summits, o;, the 

standard deviation of the summit height (assumed to be Gaussian) and 

the area density of summits, to the three spectral moments ntg, and 

of rough surfaces. He shown that the real contact area for the GW model at 

a given mean plane separation depends only on the bandwidth parameter a, 

defined as:

a = (6.16)
Mg

and the ratio /  A„ of the contact area to the apparent area is given by:
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= 0.0640(a -  0.8968)'/  ̂ f i ( — i (617)

where Fj(t) is the integral

fi(f) = /  (% - f) $(%) dk (6.18)

and was evaluated using tables by McCool, where ^ x )  is standard normal 

density function.

With the same substitutions, the expression for PJA„ in the GW model 

is reduced by McCool to;

^  = 0 .0 3 3 3 E / m ^ ( a - 0 .8 9 6 8 ) ^ F ^ ( — ) (6.19)

where is the integral

F ^ i t )  = J  (x -  t ) ^  $(;:) dx (6.20)
t

and is tabulated by McCool.

The computer simulated rough surfaces used in comparison are 

isotropic having 50 x 50 sampling points with the sampling interval Ax = Ay 

= k*. For the rough surfaces used in the comparison, the bandwidth
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parameters and the second moment of the power spectral density function 

were calculated by Appendix B. and were tabulated in Table 6.1.

Table 6.1 Bandwidth parameters and second moment of PSD

Roughness parameters

a  .

Bandwidth parameter 

a

Second moment of PSD

a  = 0.2 = 20 2.14267 1.44x10"^

a = 0.3 ^, = 20 2.14267 3.24x10"*

O = 0.4 = 20 2.14267 5.75x10"*

a = 0.2 = 30 2.14267 6.39x10'^

<j = 0.2 = 40 2.14267 3.61x10'^

Table 6.2 gives the values of from the GW model and the

present numerical model, which are both calculated from the least squares 

through the calculated results and simulated results. The numerical results are 

consistently higher than the stochastic results. No straightforward explanations 

were found. However, when considering the differences between the two 

analysis techniques, the agreement is generally encouraging.
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Table 6.2 Results comparing numerical and stochastic values of PJA^

Roughness parameters 

( pm )

f . / A .  ( N / ^ u n " )

GW model Numerical model

a  = 0.2 , = 20 0.707x10-^ 1.031x10:*

a  = 0.3 , A* = 20 1.061x10'^ 1.108x10'^

a  = 0.4 , /i;) = 20 1.415x10'^ 1.802x10'^

a  = 0.2 , yi; = 30 0.472x10'^ 0.665x10'^

(Z = 0.2 , yi;; = 40 0.354x10'^ 0.631x10'^

The effect of altering the pressure element size on the load-contact 

area relationship has also been studied. The size of pressure element size 

dependents on the sampling interval. The isotropic rough surfaces used in 

comparison are generated to have 50 x 50  grid points with two sets of 

sampling interval: Ax = Ay = X and Ax = Ay = MIX*. The parameters in 

GW model were calculated and were tabulated in Table 6.3.
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Table 6.3 Parameters used in GW model

Parameters Sampling interval Ax = Ay

A)/ = = A)/ = 1/2

r /A : 50.0 50.0

r./A: 1.0 0.5

0.575954 0.754875

0.271872 0.962516

0.268905 3.363759

a 2.095367 2.740842

Table 6.4 gives the results comparing the numerical and stochastic 

values of /A, showing the effect of changing the pressure element 

size. As can be seen from the results, the stochastic model predicts 

decreasing values of P^ /A, as the pressure element size increases, which 

agrees with the trend observe from the numerical results. This means that 

the predicted area of real contact increases with increasing sampling 

interval. This is caused by the lost of information on the small scale 

asperities. For a particular asperities contact at a large sampling interval, a 

large continuous contact is predicted; for a smaller sampling interval the 

equivalent region may well consist of a number of smaller asperity 

contacts, thus reducing the predicted contact area.
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Table 6.4 Results comparing numerical and stochastic values of f / A ,  

showing the effect of the sampling interval

a  = 0.3  pm 

A* = 30 pm

f  g /A, ( N / mm^ )

GW model Numerical model

Ax' = 1/2 1.691x10':* 2.092x10'^

A x' = A* 0.923x10'^ 1.214x10'^

The contact boundary condition defined by Equation (4.13) has been 

examined point by point for all of test cases, the results show that there is 

no distortion of solutions in the contact simulation of rough surfaces by 

using the numerical solution technique of the variational method.
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6.6 Conclusions

The numerical solution technique based on variational principles has 

been applied successfully to the elastic contact of three-dimensional real rough 

surfaces. The computer algorithm and program in FORTRAN have 

completed, and have been applied to a series of test cases. The simulated 

results have confirmed that there is no difficulty in the convergence of the 

solution. The application of the variational method eliminates the iteration 

involved in the Matrix Inversion Method for cases of frictionless contact. This 

facility known as a warm start in the E04NAF routine also leads to significant 

saving in computational effort when solving a sequence of related problems. 

Therefore, the program has the characteristics of good robustness as well as 

higher efficiency.

To verify the computer program and confirm the accuracy of the 

present model, for the contact of two smooth spheres, the numerical results are 

compared with the theoretical Hertzian results. The comparison shows that the 

numerical model produces excellent agreement with the Hertzian theory. The 

accuracy of the numerical model can be improved by using a finer element

The analysis ability of the numerical model to the contact of rough 

surface profile is also confirmed. The model uses the actual digitized rough 

surface profiles produced by NSRRS and can yield important results about the 

real contact situation at interface, which make a good condition to develop a 

simulation model of leakage. The model is also capable of yielding results
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about the real pressure distribution and the real contact area, and predicting 

contact parameters such as the mean contact area and the mean contact 

pressure etc., where these will all vary with applied load, material properties

and surface roughness. Therefore it may be applied to a variety of contact 

problems. Comparison with an existing stochastic contact model for isotropic 

rough surfaces has been attempted. The results obtained form the stochastic 

and numerical models show an encouraging agreement considering the many 

differences between the two techniques.
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CHAPTER 7.
Prediction of Leakage Probability and 
Criteria for Identifying Reliability of 
Static Sealed Joints

7.1 Introduction

Although perfect sealing may be the general aim, in practice for 

apparently identical seals in the same application, some may seal while some 

not. This is due to random variations between apparently identical situations. 

This thesis concentrates on the effects of random surfaces, but a full analysis 

of seal reliability would also include variability of materials, loading, etc. 

Therefore, the important of the reliability of sealed joints cannot be 

overemphasized. It is the most reasonable to apply the statistical concepts in 

discussing sealing reliability. However, the statistical analysis of leakage by 

computer simulation is much simpler and more economic than by experiments. 

The result o f variation in parameters that would affect the sealing performance 

can be studied without costly and length experimental efforts.
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The numerical simulation model of random rough surfaces presented 

in Chapter 3 and the numerical elastic contact model of rough surfaces 

presented in chapter 5 and chapter 6 reveal the effect of the random properties 

of rough surfaces on the contact state, hence this facilitates the leakage 

simulation of surface-related random phenomena. In this chapter, the 

simulation model for the leakage analysis of static sealed joints will be 

developed. The relationship between the leakage probability and the applied 

load, which is of great interest to the designers of static sealed joints, will be 

predicted by the leakage simulation model. Furthermore, the contact area 

criterion for identifying the reliability of static sealed joints will also obtained, 

which provides a simple, inexpensive and useful criterion to evaluate the 

effects of rough surfaces, material properties and applied load on the sealing 

reliability of static sealed joints.

7.2 Theoretical Background - Percolation Theory

Percolation theory provides an insight into leakage simulation. What 

is percolation? Stauffer (1985) have described it in "Introduction to 

fercoZoffoM as:

"Imagine a large array of squares as shown in Figure 7.1 (a). We 

imagine this array to be so large that any effects from its boundaries are 

negligible. Physicists call such as an array a square lattice, mathematicians 

denote it by i f ;  common sense identifies it with a big sheet of ruled paper. 

Now a certain fraction of squares are filled with a big dot in the centre,
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whereas the other squares are left empty, as in Figure 7.1 (b). We now define 

a cluster as a group of neighbour squares occupied by these big dots; these 

clusters are encircled in Figure 7.1 (c). From this picture we see that squares 

are called neighbours if they have one side in common but not if they only 

touch at one comer. Physicists call squares with one common side "nearest 

neighbour sites on the square lattice", whereas squares touching at one corner 

only are "next nearest neighbours". All sites within one cluster are thus 

connected to each other by one unbroken chain of nearest neighbour links 

from one occupied square to a neighbour square also occupied by a big dot. 

The graphical "cluster" explanation through Figure 7.1 (c) seems more 

appropriate for our purposes here than a precise mathematical definition. 

Percolation theory now deals with the number and properties of these 

clusters."

"How are the dots distributed among the squares in Figure 7.1 (a). One 

may assume that the dots love to cling together, or that they hate each other 

and try to move as far away from each other as possible. But the simplest 

assumption is that they ignore each other. Then the occupation of the squares 

is random, that is each square is occupied or empty independent of the 

occupation status of its neighbours. We call as the concentration of a 

system, i.e the probability of a site being occupied by a big dot; that means 

that is we have N  squares and N  is a very large number, then p^N  of these 

squares are occupied, and the remaining (1-pJN  of these squares are empty. 

This case of random percolation is what we concentrated on here:

EacA j/fe a very forge /office if occopW roWom/y w/fA /?ro6o6f//fy
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Cmstas

Figure 7.1 Definition of percolation and its cluster.

p̂ , independent o f its neighbours. Percolation theory deals with the clusters 

thus formed, in other words the groups o f  neighbouring occupied sites. "

"In such an infinite square lattice, there would be a critical value of the 

concentration, defined as the percolation threshold p^„ , where for the first 

time one cluster extends from top to bottom and from left to right of the 

system, the cluster is called as percolating cluster. Furthermore, for all p>Pco 

one has a cluster extending from one side of the system to the other, whereas 

for all p<Pco 110 such infinite cluster exists. The value of percolation 

threshold p ^  dependent upon the shape of lattice. Table 7 .1 lists the selected 

percolation thresholds for two-dimensional and three-dimensional lattices. In 

all cases, only nearest neighbours form clusters and no correlations are
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allowed between different sites."

Table 7.1 Selected percolation thresholds for two- and three-dimensional 

lattices

Lattice Percolation threshold

Honeycomb 0.6962

Square 0.5928

Triangular 0.5000

Diamond 0.4280

Simple cubic 0.3117

Percolation theory (Stauffer 1985) only really considered cases where 

each points was statistically independent of all others, whereas in the contact 

of rough surfaces, there is a certain correlation between points. However, we 

expect that this may not affect the principle conclusions. That is that there 

would be a critical value of the proportion of points in contact and that all 

maps below that value would leak and all those above it would form a seal. 

This is the motivation for the simulation analysis of leakage of static sealed 

joints.
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7.3 Simulation Analysis o f Leakage of Static 

Sealed Joints

7.3.1 Simulation Model of Static Sealed Joints

The simulation model for static sealed joints is shown in Figure 7.2, 

considering a sealed joint with base area . Assume L fy  is large

enough to include a large number of asperities and to be representative of the 

surfaces but small enough to be handled economically in the computer. The 

simulation model has been used by Pair and Cheng (1978) for determining 

effects of three-dimensional roughness on the pressure flow.

Some other assumptions used to develop a simulation method for the 

leakage analysis of static sealed joints are presented;

(1) Leakage occurs by fluid flow at the interface and not through the

material and the seal formed by the contact between surfaces is defined 

by zero-leakage;

(2) The sealed surfaces are geometrically perfect on the large scale; the

surfaces are nominally flat and the surface planes in contact are

parallel; the only divergences from the plane are superficial roughness 

with Gaussian statistics;

(3) The material properties are uniform throughout the material;
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'Xiiiw fiV i Ou

Contacting spots

No flow No flow

F igu re  7.2 Simulation model for static sealed joints
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(4) The applied load acted the sealed surfaces will not vary with time.

The zero-leakage means that leakage paths at the interface are 

effectively blocked and no fluid appears on the outer edge of the sealing 

surfaces over a prescribed period of time. The use of a zero-leakage criterion 

in conjunctions with a map of discrete contacting and non-contacting points 

provides a practicable means of looking at a sealing problem. It only 

guarantees that leakage paths, if they exist, are smaller than a certain size, but 

it make it is possible to use the simulated method to analyze the leakage of 

static sealed joints.

A simulation of the fluid flow in a leaking joint would be more 

complex and is beyond the scope of this thesis and would still be limited by 

hand to be conducted in terms of a finite set of points or elements.

7.3.2 Production o f  Contact Map

When two surfaces are in contact, the roughness provides a path 

through which fluid flow may take place. The leakage route is inevitably 

affected by the way in which the surface roughness asperities are deformed 

when the two surfaces are loaded together. The contact analysis of rough 

surfaces can provide important information about the contact situation at the 

interface.
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In order to make use of the advantage of the numerical simulation, the 

sealed surfaces are discretized into a number of area elements AxÂy, whose 

centres are the sampling points in the numerical simulation of random rough 

surfaces and the numerical contact model of rough surfaces. Therefore the 

surfaces and their contacts can be modelled by a series of discrete points and 

a chain of such points in contact implies a seal. The leakage path is a passage 

such that non-contacting points connect the inside of sealing surface to 

outside. The information about the contact situation at the interface is 

recorded in a map consisting of contacting and non-contacting points. Such 

a map is called a contact map. The three-dimensional numerical model for the 

elastic contact of rough surfaces presented in Chapter 6 can produce such 

contact maps. According to the condition of boundary contact defined by 

Equation (4.13), the contact points correspond to those points having non-zero 

contact pressure, whereas the non-contacting points correspond to those points 

having zero contact pressure. Therefore, the simulated result of the 

distribution of contact pressure really implies a contact map.

For a given applied load and rough surface characteristics, the contact 

map obtained is unique to the real topography, which can vary from surface 

to surface. Therefore the leakage analysis based on the contact maps can 

reveal the random properties of rough surfaces and model the possible 

variation between rough surfaces which have the same statistical properties, 

but a different detailed form. Furthermore, the production of contact maps 

make it is possible to analyze leakage of static sealed joints using the leakage 

paths instead of the leakage clearance.
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7.3.3 Computer Check o f  Leakage Paths

The contact map itself, however, does not provide the readily 

information whether leakage occurs or not on it. Therefore, for a given 

contact map, the leakage paths should be checked on these assumptions;

(1) Fluid flow between two individual elements of the contact map is only 

in the row or column direction and not across a diagonal;

(2) A flow path consists of non-contacting points that are adjacent;

(3) A leakage path is one that connects the top of the contact map to the 

bottom;

(4) A blocked flow path contributes nothing to the fluid leakage.

After the production of a contact map, we may analyze it by eye or by 

computer. If trying to do this visually, we will presumably make some errors 

in a larger contact map. Therefore, we expect that a computer could do this 

for us, which is a effective and accurate method. We now explain how to 

teach the computer to do that for us.

The computer algorithm to determine whether leakage paths exist or not 

on a given contact map has been devised by the author. The algorithm is that 

all non-contacting points within the same flow path are given the same label, 

and different labels are given to non-contacting points belonging to different
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flow paths. Then the flow paths connect throughout the sealing surface if the 

same label appears in both the first and the last row, and fluid flow may take 

place. Therefore the joint is considered as leaking. The analysis is carried out 

row by row, and only two adjacent rows, i.e ith and (/+l)th, need to be written 

in the program for each time analysis. The ith row is one at which the 

leakage path has been checked and that all contact information obtained from 

the previous analysis is recorded in it. The information is how many flow 

paths appearing in the first row have reached at the current row and if there 

is not one, which means that the leakage paths have been effectively blocked 

and the check should be stopped; otherwise the leakage may take place and 

further check should be done. Then the (/+l)th row is written in the program 

as a new row to be analyzed. The procedure continues until all rows have 

been checked.

The advantage of the algorithm is that Eillows the simulation analysis

of large contact maps without having to store the whole contact map. Thus 

computer memory can be saved so that larger systems can be simulated. The 

computer program based on the algorithm, called CCLP, has been written by 

the author in FORTRAN. The accuracy of the program is verified with 

manual solutions for artificial contact maps. Two simulated results of leakage 

paths are presented in Figure 7.3 for both contact maps having 20 x 20 

sampling points and the contact ratio of 42%, where zero presents contact 

points while non-zero for non-contacting points. For this typical pattern of 

contact showed in Figure 7.3(a), since the number of leakage paths is zero, all 

leakage paths are blocked effectively, hence sealing has formed, while for the 

one shown in Figure 7.3(b), the number of leakage paths equals to 1, hence
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leakage paths exist and sealing does not occur.

Row I I 2 0 6 5 0 0 8 i'O 10 0 O' 0 '::r* 0 16 17 18 0 0
Row 2 1 2 3 0 : 5 6 7 8 go 0 11 12 13 14 15 16 0 18 19 20
Row 3 1 2 0 4 0 : 0 0 8 9 10 0 12 13 14 6 ] 0 17 ; 0 : 0 20
Row 4 1 2 0 4 nëSii 6 7 8 0 10 11 12 13 p 0*1 16 17 ^0 19 0
Row 5 0 2 0 4 5 6 7 8 9 10 0 12 13 0 15 16 17 ; 0 0 20
Row 6 ’ 0 'K: ; 0 4 5 6 0 8 9 10 11 12 0 14 15 16 17 18 19 20
Row 7 1 2 0 0 5 0 7 8 9 10 11 0 0 14 15 16 0 18 19 20
Row 8 0 0 0 0 : 0 0 0 9 0 0 0 13 14 1-0 i 0 0 18 19 0 ^
Row 9 I 2 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Row 10 ro 0 3 4 5 6 0 8 9 0 11 12 13 0 15 16 17 18 19 20
Row II I 2 3 4 5 : 0 7 8 9 10 11 12 13 14 16 01:' 18 19 20
Row 12 1 ! 0 3 4 0 6 é - 8 0 10 0 0 0 1 0 \ !-0j 16 17 0 0 20
Row 13 1 3 lo" : 0"" 6 6 9 0 0 0 0 '"o'l i'-'O : 16 0 0 ' 0 0
Row 14 I 0 ^ 3 4 0 ; 6 0 8 9 10 0 . 12 13 0 1 0 , 16 17 18 0 20
Row 15 1 0 3 0 5 6 Ù 8 9 10 11 0 13 14 15 16 17 18 19 20
Row 16 I 2 3 4 0-1 6 7 8 9 0 11 12 13 0 15 0 17 0 , 0 20
Row 17 1 0 0 0 ; 0 0 0 0 0 0 0 13 p  ! 0 : 0 0 0 19 20
Row IS I 2 3 4 5 0 7 0 9 0 0 0 0 14 15 0 0 18 19 20
Row 19 : 0 2 0 : 0 5 6 7 0 9 0 0 0 13 14 , 0 iN 0 18 0 20
Row 20 ! 0 ;[0 3 4 O'*'- 0 0 0 9 0 0 0 0 ."61 16 0 0 0 0

Result 0 : 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 0 0

NUMBER OF LEAKAGE PATHS = 0 AT ITERATION 1

Figure 7.3 Results o f computer check o f leakage paths for typical patterns 
o f contact, where the contact map have 20 x 20 sampling points 
and the contact ratio is 42%.
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Row 1 &0: 2 3 4 0 0 7 8 9 0 11 12 13 14 15 16 0 18 19 20
Row 2 1 2 ' 0 4 5 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Row 3 1 2 0 0 ; s ? 7 8 9 0 0 0 13 14 15 16 17 0■■ À  . 0 20
Row 4 ^ o / 0 0 o ' 0 0 7 0 9 10 0 0 0 14 15 0 17 0 : 0 0
Row 5 2 3 4 5 6 0 8 0 09 11 12 0 i 0 15 16 0 i 0^ 0 20
Row 6 0 0 O ' 4 0 oy 7 10:, 0 0 0 0 0 0 0 ; 16 17 : 0 0 0
Row 7 1 2 3 4 6 0 8 9 11 12 13 14 15 16 : O ' ” 18 19 20
Row 8 0 2 0 0, P ! O  ' : 0 0 0 0 0 0 0 14 15 0 17 18 19 20
Row 9 1 2 3 4 q 6 0 8 9 10 0 12 13 14 15 0 17 0 19 20
Row 10 1 4 0 0 0 ; 8 0 10 0 12 : 0 0 0 1 16 0 0 1 0 0
Row 11 1 0 3 0 6 7 8 9 0 11 12 0 0 15 16 0 18 19 20
Row 12 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 16 17 18 19 20
Row 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 17 18 19 20
Row 14 1 0 0 O f " y h * 7 8 9 0 'o 12 13 01 15 i ' O 0

* 0 19 20
Row 15 1 0 3 4 5 7 0.  * 9 10 11 .0 0 0 i 15 0 10 18 19 0
Row 16 1 : 0 3 0 0 6 0 0 ■ 0 0 0 12 0 14 0 j 16 17 18 19 20
Row 17 1 3 0 0 ,„P:i 7 8 : 0 : 0 11 12 0 0 1 15 0 yo:. 18 go 0
Row 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Row 19 1 0 0 Ê 6 *0 8 0 ^ . 0 0 12 :»0-‘ 14 15 0 17 0 0 20
Row 20 0 2 3 0 0 6 7 0 0 : 0 0 ; 12 13 0 1 0 0 ,  0 18 0 0

Result 0 - - S ' 0 0 ; ï ; A : 6 7 0 0 0 0 12 13 0 0 0 ; t . O - i i » 0
NUMBER OF LEAKAGE PATHS = 1 AT ITERATION 43

Figure 7.3 (continued) Results o f computer check o f leakage paths for 
typical patterns o f contact, where the contact map have 20 x 20 
sampling points and the contact ratio is 42%.
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Therefore, identifying a joint for which sealing occurs or not in the 

condition of zero-leakage aims to check if the leakage paths at the interface 

have been effectively blocked. The computer check of leakage paths along 

with the numerical simulation of random rough surfaces and the numerical 

contact model of rough surfaces make it is possible to develop a simulation 

method for the leakage analysis o f static seal joints. Figure 7.4 shows the 

simulation procedure for the leakage analysis of static sealed joints.
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7.4 Prediction o f Leakage and Sealing Probability

7.4.1 Simulation Procedure of Prediction of Leakage 
Probability

As can be seen from the numerical simulation of random rough 

surfaces, for each set of values of RMS height a  and correlation length X*, 

there are an infinite number of possible different surfaces, which demonstrates 

the characteristics of random surfaces. The random characteristics result that 

for same sealed joints under identical operating conditions, some may leak 

while some not. Because of this, it is appropriate to apply statistical concepts 

in discussing seal reliability. The following two statistics have been applied 

to the reliability analysis of static sealed joints; they are the leakage 

probability and the sealing probability Pg .

The simulation analysis of leakage, as described in Figure 7.4, makes 

it possible to predict the leakage probability of static sealed joints. Individual 

simulation analysis of leakage will show a typical pattern of contact at which 

sealing occurs or not. Large number of repeated simulation of the same 

problem will give the leakage probability for such a seal under the given 

applied load. Thus, the leakage probability of static sealed joints is defined 

by:

n,
P t = —  (7.1)

"s
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where is a population and is the number of failure seals in a

population. (Note, "population" here is used in the statistical sense of a 

number of nominally identical sealed joints subjected to identical operating 

conditions.)

The sealing probability Pg is related to the leakage probability P  ̂ by:

= 1 -  (7.2)

Figure 7.5 shows the simulation procedure for the prediction of leakage 

probability of static sealed joints.
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CO

No Any leakage path?

Yes (Leakage)

NoI -  n

Yes

I - I + l

Set initial vabcK

Numerical simulation of 
ramkm rough surface

Calculate leakage probability

Contact analysis of 
rough suiÂces

Figure 7.5 Simulation procedure for the prediction of leakage probability
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7.4.2 Leakage Probability-v-Load Relationship

To prevent leakage of static sealed joints, a certain level of contact 

stress must be maintained between two sealed surfaces. Therefore, the 

relationship between the leakage probability and the applied load is o f great 

general interest to the designers of static sealed joints. With only a few minor 

modifications to the original simulation procedure of prediction of leakage 

probability, as show in Figure 7.5, we can predict the variation of leakage 

probability as a function of applied load.

A dimensionless contact load P including the face contact pressure 

and material properties can be obtained by normalizing the applied load in the 

form;

^  ^ An

Where A„ is the nominal contact area, which is much larger than the real 

contact area, E' is the equivalent elasticity modulus given by Equation (4.1) 

and P^ is the applied load. In the following analysis, we will study the 

effect o f the dimensionless contact load on the leaking probability and the 

sealing reliability of static sealed joints. The numerical contact model of 

rough surfaces used to produce the contact map in analysis is three- 

dimensional model and the number of simulation iteration is set to be 100.
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7.4.2.1 Effect of Rough Surfaces

Random isotropic rough surfaces with Gaussian statistics, as considered 

in this section, may be characterized by two statistical parameters: the RMS 

height, a, and the correlation length, X*. The first parameter is a measure of 

the deviation of the surface from smooth, the correlation length measures the 

rate of change of roughness along the surface. From the contact analysis of 

rough surfaces in Chapter 6, the contact state is related to the two parameters. 

In practice, the two parameters themselves, however, will affect the contact 

properties and hence sealing performance. In the following, we will study 

how variations in either the RMS height or in the correlation lengths affect the 

leakage probability and hence reliability of static sealed joints.

The isotropic random rough surfaces used in the analysis are generated 

by using the computer simulation program NSRRS to have 50x50 sampling 

points with the sampling interval of Ax = Ay X*, which has been used in 

the leakage analysis by Thomas 1973. The effect of RMS height a  and 

correlation length X* on the leakage probability has been studied for values of 

RMS height a = 0.1, 0.3 and 0.5 pm and for different values of correlation 

lengths X* = 20, 30, 40 and 50 pm. The data results representing leakage 

probability-v-applied load relationship have also been tabulated in Table B.l 

~ Table B.4 in Appendix C.

Figure 7.6 presents the predicted variation of leakage probability as a 

function of dimensionless contact load, showing the effect of RMS height a, 

where the set of rough surfaces are generated by simulation for the condition:
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three values o f RMS height; a=  0.1, 0.3 and 0.5 gm at the correlation length 

X* = 20 |im. The sealing probability can be obtained by the relationship 

defined in Equation (7.2). Figure 7.7 shows the variation o f sealing 

probability as a function o f load for the same surface parameters as Figure 7.6. 

As can be seen form Figure 7.6 and Figure 7.7, for a given leakage probability 

or sealing probability, the required load will increase as the RMS height 

increases. In other words, the leakage probability increases or the sealing 

probability decreases as the RMS height increases at a given load.
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Figure 7.6 Predicted variation o f leakage probability as a function o f load, 

showing the effect o f RMS height a
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Figure 7.7 Predicted variation o f sealing probability as a function o f load, 

showing the effect o f RMS height a

A simple model may illuminate the problem. For contact between a 

plane and a peak with spherical symmetry, Hertzian theory gives the load at 

each contact point as (Greenwood and Williamson 1966);

P ,  =
' 3

(7.4)

where /? is the radius o f curvature o f the peak which is contacting and â 

is the indentation o f the peak. As the RMS height is increased, for a fixed 

value o f the correlation length, the radius o f curvature o f any peak will 

decrease. However, the height o f that peak will increase, leading to a greater 

absolute indentation d, for a given value o f the mean separation. Each 

contacting peak will therefore be able to support a greater load, (see Equation 

(7.4)) and will suffer greater indentation before adjacent peaks come into
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contact. The mean surface separation therefore increases, contact occurs at 

fewer points and the real contact area is reduced as the RMS height increases, 

hence the leakage probability will increase or the sealing probability will 

decrease.

Furthermore, three distinct regions are apparent in Figure 7.6 and 

Figure 7.7. In the middle portion of simulated results, the probability variation 

is an approximated linearity and is very sensitive to small changes in load; 

while at two ends, the probability is insensitive to variation in the load, 

although there is an approximated linearity between normal load and real 

contact area obtained in Chapter 6. No straightforward explanation were 

found.

To study the effect of correlation length on sealing performance, the 

RMS height is kept constant but the correlation length will vary. Figure 7.8 

and Figure 7.9 summarize the results, representing the predicted variation of 

leakage probability and sealing probability as a function of dimensionless 

contact load for different values of correlation length X* = 20, 30 and 40 pm 

at the values of RMS height a  = 0.5 pm.
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Results show that for a given leakage probability or sealing probability, 

the required load will decrease as the correlation length increases, which 

means that for a given load the leakage probability decreases with increasing 

correlation length, whereas the sealing probability increases. In other words, 

the longer the main structure of a surface, the more easily it will deform 

elastically. At first sight this seems contrary to common experience. Surely 

an asperity of large radius of curvature will be more resistant to deformation 

than a smaller one? A simple model presented by Thomas (1973) may 

illuminate the problem. Consider a rectangular array of asperities of equal 

radius of curvature P and equal height h, whose centres are separated by 

a distance X* , as shown in Figure 7.10. By simple geometry, «  X*̂  if  h 

«  X*. Also, for a given nominal pressure the load per asperity is 

proportional to X*̂ . If the asperities deform elastically against a plane 

surface, the Hertzian equation relates and the mean plane separation

A by:

- ( - t f P p W  (T5)

whence

-A «

i.e. as X7 increases the surfaces come closer together; in other words, the 

increase in strength of individually asperities with their size is more than offset 

by the decrease in their number.
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Figure 7.10 Surface model to show relation separation and correlation length 

at constant normal stress

7 .42.2 Effect of Simulation Parameters

As can be seen from the analysis above, the variation of leakage 

probability as a function of load is predicted by numerical simulation based 

on finite contact maps. Changing the sampling interval and number of 

sampling points would affect the size of contact map, hence the predicted 

results of leakage probability. In the following, the effect of sampling interval 

and number of sampling points on the relationship between leakage probability 

and load are studied.
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7.4.2.2.1 Effect of Sampling Interval

In the numerical simulation of random rough surfaces, the sampling 

interval will vary as a result of choosing different values of and n ,̂ 

defined as in Equation (3.13). The sampling interval would decrease with 

increasing values of and hence more fine structure of roughness can 

be revealed. Furthermore, the correlation degree of the surface heights at 

neighbouring grid points is related to the sampling interval. As can be seen 

from Figure 3.1, the correlation of the surface heights at neighbouring grid 

points increases as the sampling interval decreases. Choosing % = = 1,

the sampling interval is equal to the correlation length and the surface heights 

at neighbouring grid points have a correlation of only 0.1; while choosing 

= »y = 2, the sampling interval is equal to the half of the correlation length 

and the surface heights at neighbouring grid points have higher correlation.

The effect of the sampling interval on the leakage probability -v- 

applied load relationship has been investigated, where the random rough 

surfaces used in comparison are generated for two sets of sampling intervals: 

n  ̂= riy=  1, i.e the sampling interval Ax = A y ^  X* and riy=  2, i.e the 

sampling interval Ax = Ay = 1/2 X*. The simulated results of leakage 

probability and sealing probability have been presented in Figure 7.11 and 

Figure 7.12 for the following condition: a  = 0.3 pm, X* = 40 pm and 50x50 

sampling points. As can be seen from Figure 7.11 and Figure 7.12, the 

variation of leakage probability or sealing probability with the load is sensitive 

to varying the sampling interval. There is one apparent explanation at least
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for why it is the case. This reason is that the value o f /A^ would increase 

as the sampling interval decreases, which means that for a given load the 

predicted area o f real contact would decrease with decreasing the sampling 

interval, thus the leakage paths are not easy blocked by the contacting 

asperities, hence the probability o f leakage would increase.
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Figure 7.11 Predicted variation o f leakage probability as a function o f load, 

showing the effect o f sampling interval
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Figure 7.12 Predicted variation o f sealing probability as a function o f load, 

showing the effect o f sampling interval

7.4.2.2.2 Effect o f Number o f Sampling Points

The simulation analysis o f  leakage probability above is based on the 

contact maps with a finite number o f sampling points. Therefore, it is 

important to see the effect o f number o f sampling points in contact maps on 

the variation o f leakage probability. The computer simulated rough surfaces 

used in the comparison are for the following condition: a  = 0.5 pm, X* = 20 

pm and Ax = Ay = X , i.e. = fty= 1. Three sets o f number o f sampling 

points used are: 50*50, 30*30 and 20*20. The simulated results o f leakage 

probability and sealing probability have been presented in Figure 7.13 and 

Figure 7.14. As can be seen from Figure 7.13 and Figure 7.14, the predicted 

variation o f leakage probability and sealing probability with load is relative to
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the number o f sampling points in contact map, and the curves o f probability 

would become slightly steeper as the number o f sampling points is increased, 

which agrees with the trend observe from the percolation theory. And the 

curves o f  probability would be smoother as the number o f sampling points 

increases.
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Dim ensionless contact load - P. I AnE'

Figure 7.13 Predicted variation o f leakage probability as a function o f load, 

showing the effect o f number o f sampling points
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Figure 7.14 Predicted variation o f sealing probability as a function o f load, 

showing the effect o f number o f sampling points

7.5 Criteria for Identifying Sealing Reliability o f  

Static Sealed Joints

7.5.1 Relationship between Sealing Reliability and Sealing 

Probability

To evaluate the effects o f important parameters ( i.e. surface 

characteristics, applied load and mechanical properties o f the mating faces) on 

the sealing reliability, criteria for identifying the sealing reliability o f  static 

sealed joints should be obtained. As can be seen from the prediction o f  

leakage probability o f static sealed joints, the lower the expected leakage
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probability, the larger the required applied load and the smoother the required 

sealed surfaces. The lower the leakage probability the more reliable the sealed 

joints. Therefore the sealing probability or the leakage probability is an 

important influence factor in determining the criteria for identifying the sealing 

reliability of static sealed joints. It is important for the design of sealed joints 

to take account not only of the reliability of the seal, but also of the costs of 

joints etc..

The failure probability of 5%, 1% and 0% is used to identifying the 

reliability of sealed joints by Summers-Smith (1988). A 5% failure 

probability means that from a sample population of sealed joints, if there are 

only less than or equal to 5 percent sealed joints which leakage occurs the 

sealed joints are considered as reliability. Static sealed joints are widely used 

in many fields. Therefore, the value of failure probability will depend very 

much on the characteristics of the sealed product and the environment in 

which the sealed joints is operating. As a general rule it may be said that the 

value of failure probability should be as low as possible, for high technology 

applications, dangerous chemicals, nuclear radiation etc., because the failure 

of sealed joints applied in such environments may imply a dangerous accident.
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1 . 5 . 2  Criteria for Identifying Sealing Reliability of Static 
Sealed Joints with Isotropic Surfaces

What can be used for the criteria for identifying sealing reliability? 

From the introduction of percolation theory in Section 7.2, we know that there 

is the percolation threshold for infinite systems. If one knows the 

concentration of a system, one can predict whether percolation phenomena in 

the system occurs or not according to the condition: for all percolating

clusters are formed, whereas for all Pe<Pco such a percolating cluster 

exists. In finite systems, there is not such a sharply defined threshold, which 

has been observed in the prediction of leakage probability above. However, 

we still expect to find a criteria used to identify the sealing reliability.

The contact map in the leakage analysis can be considered as a finite 

square lattice, as shown in Figure 7.1. Each square is either occupied by the 

non-contacting points or it is empty for all contacting points. Therefore, the 

proportion of non-contacting points on a contact map is equivalent to the 

concentration p^ defined in percolation theory by (Stauffer 1985). The 

contact area ratio equals numerically to (J-pJ and the leakage paths may be 

considered as the percolating clusters. From the leakage analysis above, we 

also observe that the leakage probability is relative to the real contact area; the 

larger the real contact area, the more easily the leakage paths at the interface 

are blocked, hence the leakage probability would decrease with increasing the 

real contact area. The following section discusses whether there is a 

consistent relationship between the contact area ratio and whether or not a seal 

occurs. If yes, then the contact area ratio may be used for the criteria to
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identify the sealing reliability of static sealed joints.

Table 7.2 gives the values of average contact ratio for different values 

of sealing probability: Pg = 95%, 99% and 100%, where the average contact 

area ratio is calculated by averaging the values over all these different 

sequences of leakage simulations at a given leakage probability. The data 

listed in Table 7.2 comes from the simulated results of leakage probability 

presented in Table B. 1(a) ~ Table B. 1(d), which shows the effect of roughness 

parameters on the average contact area ratio, where the rough surface are 

generated having the sampling points of 50*50 and the sampling interval of 

Ax = Ay = X*. As can be seen from Table 7.2, the difference among the 

average contact ratio for a given sealing probability Pg is surprisingly small. 

The mean values of average contact ratio at a given confidence level (i.e the 

sealing probability) are listed in Table 7.3 and the error of one standard 

deviation above and below the mean are calculated about ±0.17%. Therefore, 

the results confirm that using the contact area ratio as the criteria for 

identifying the reliability of static sealed joints is reasonable.
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Table 7.2 Average contact area ratio for different values of sealing

probability, showing the effect o f rough surfaces^

Roughness

parameters

(pm)

Average contact area ratio

f g = 95% f g = 99% fg=100%

<7 = 0.1, X*= 20 0 398 0.412 0.421

<7 = 0.3, /I = 20 0 396 0.416 0.423

<7 = 0.5, = 20 0399 0 412 0420

a  =  0.1, X*= 30 0.401 0 410 0.419

a  = 0.3, X*= 30 0 395 0415 0.422

(7 = 0.5, /I = 30 0 398 0.414 0.424

* = 0  1 , / ^ 4 0 0.400 0.416 0 423

a  = 0.3, X*= 40 0 397 0.413 CT421

* = 0 5 , 4  = 40 0 396 0 415 0.420

*  = 0.1, 4  = 50 0 399 0 410 0.419

*  = 0.3, 4  = 50 0402 0 413 0 422

* = 0 5 , / = 5 0 0397 0411 0.420

twhere the rough surfaces are generated to have the sampling points of 50*50 and the 

sampling interval of Ax = Ay = A*.
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Table 7.3 Contact ratio criteria for different values o f sealing probability

Sealing probability Pg Contact ratio criteria

95% 0 398

99% 0.413

10094 0421

The effect of sampling interval on the average contact ratios has 

been investigated. The average contact ratios coming from the simulated 

results listed in Table B.2 are listed in Table 7.4 for different values of 

sampling interval: Ax = Ay = and Ax = Ay = 1 / 2 where the rough 

surfaces used are generated to have 50*50 sampling points and the 

roughness parameters of o = 0.3 pm, = 40 pm. The simulated results 

show that for a given sealing probability the average contact ratios for 

smaller interval intervals are consistently higher than for larger sampling 

intervals. The results may present the trend that the average contact ratio 

would increase as the correlation degree of the surface heights increase, i.e 

the sampling interval decrease. However, the increment in contact area 

ratio with decreasing the sampling interval is slight although the predicted 

variation of leakage probability and sealing probability with load is very 

sensitive to the variation of the sampling interval. The errors of above the 

mean of the average contact ratio listed in Table 7.4 are about ± 4%. Since 

the leakage analysis is dealing with a surface discretized into a finite 

number of sampling points, the sampling interval should be chosen 

carefully so that any required degree of sealing can be predicted in practice.
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Table 7.4 Average contact area ratio for different values o f sealing

probability, showing the effect o f sampling interval^

Sampling

interval

Average contact area ratio

fg  = 95% f g = 99% fg  =100%

Ax = Ay = 0.397 0.413 0.421

1 Ax = Ay = MIX* 0.403 0.417 0.428

fwhere the rough surfaces are generated to have 50*50 sampling points and the roughness 

parameters of o = 0.3 pm and A = 40 pm.

Stochastic contact models have demonstrated that the real area of 

contact is virtually independent of the nominal area of contact, for example 

Greenwood and Williamson (1966) show that the load-v-area results 

obtained for a nominal surface area of lOcm^ are almost identical to those 

obtained for Icm^. Similar conclusions have been obtained in the 

numerical contact models by Webster (1986). What is the effect of 

changing the number of sampling points on the average area ratio related to 

the sealing probability? Table 7.5 presents the results showing the effect of 

number of sampling points on the average contact ratio for three sets of 

number of sampling points: 50*50, 30*30 and 20*20, where the rough 

surfaces are generated to have o = 0.3 pm, X* = 40 pm and Ax = Ay = 

X*. The simulated results show this trend that for a given sealing 

probability the contact maps with larger number of sampling points would 

predict a slight lower values of average contact ratio than ones with smaller 

ones. Comparing the value of average contact ratio 0.421 obtained from
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finite system of 50*50 sampling points with the value of 0.4072 ( i.e (1- 

0.5928) listed in Table 7.1) obtained from infinite system, we expect that it 

would not lead to larger predicted errors to apply the contact ratio criteria 

derived from finite number of sampling points for general sizes of static 

sealed joints.

Table 7.5 Average contact area ratio for different values of sealing 

probability, showing the effect of number of sampling pointsf

Number of 

sampling points

Average contact area ratio

f  g = 95 % f  g = 99 % fg  =100 %

50*50 0.399 0.412 0.420

30*30 0.402 0.411 0.421

20*20 0.405 0.422 0.438

twhere the rough surfaces are generated to have the roughness parameters of o = 0.3 pm and 

A* = 40 pm and the sampling interval of Ax = Ay = 4*.

The analysis above shows that the reliability of static sealed joints 

dependents very much on the contact area ratio, hence using the contact 

ratio criteria for identifying the reliability of static sealed joints is 

reasonable and does not lead to larger predicted errors.
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7.5.3 Effect o f  Surface Anisotropy on Contact Ratio 

Criteria

For the static sealed joints with isotropic rough surfaces, the contact 

ratio criteria for identifying the sealing reliability has been obtained above. 

How about the effect of surface anisotropy on the contact ratio criteria?

The effect of surface anisotropy on the contact ratio criteria has been 

investigated, showing the effect of surface anisotropy on the sealing reliability. 

The anisotropic rough surfaces used are generated to have an infinite degree 

of anisotropy, i.e two-dimensional longitudinal ridges in the direction of fluid 

flow. Thus, identifying a joint with longitudinal ridges in the direction of 

fluid flow for which sealing occurs or not in the condition of zero-leakage is 

simplified to check if the mean gap at the interface equals to zero. The zero 

mean gap means that all leakage paths are blocked effectively and leakage 

cannot take place. Instead of three-dimensional numerical contact model for 

the isotropic rough surfaces in leakage simulation, the two-dimensional model 

is used to provide required information for surfaces with an infinite degree of 

anisotropy. The simulated results of average contact ratio obtained from the 

surfaces with an infinite degree of anisotropy for different values of sealing 

probability are presented in Table 7.6, where the rough surfaces are generated 

by numerical simulation to have 1000 sampling points and the sampling 

interval of Ax = À*
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Table 7.6 Average contact ratio obtained from surfaces with an infinite 

degree of anisotropy for different values of sealing probability

Roughness

parameters

(pm)

Average contact ratio

f  g = 95 % f  g = 99 % fg  =10 0 %

a  = 0.2, X*= 20 0.910 0.970 1.00

*  = 0.3, 30 0.870 0.950 1.00

Comparing the values of average contact ratio in Table 7.6 for the 

anisotropic surfaces with ones in Table 7.2 for isotropic ones, the contact 

ratio criteria would increase apparently with the degree of surface 

anisotropy. Therefore, the surface anisotropy is an important parameter for 

the sealing performance, and to insure a good performance of a static 

sealed joint, it may be more important to control and inspect the surface- 

finish profile across the direction of fluid flow than in the direction of fluid 

flow.

Pair and Cheng (1978) has also demonstrated that the surface 

anisotropy would affect the pressure flow factor, which are obtained by 

comparing the average pressure flow in a rough bearing to that of a smooth 

bearing. The results show that for surfaces having larger correlation 

lengths in the direction of fluid flow, the pressure flow factor is greater 

than 1; while larger correlation lengths in the transverse direction of flow 

yield pressure flow factor smaller than 1. The flow factors are a function
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of h /a  and would approach to 1 asymptotically as h/a, where h is the 

nominal file thickness (compliance) defined as the distance between the 

mean planes of rough surfaces. But as h /a  decreases below 3, the flow 

factors become very sensitive to the directional properties of the surface 

roughness. When the flow factors is applied for estimating the mean flow 

in static sealed joints, the effect of surface anisotropy on the sealing 

performance have similar conclusion as same as leakage simulation.
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7.6 Conclusion

The simulation model for the leakage analysis of static sealed joints has 

been developed based on the percolation theory in this chapter. It consists of 

the numerical simulation of random rough surfaces and the numerical elastic 

contact model of rough surfaces along with the computer check of leakage 

paths. By introducing the concept of contact map, we can describe the 

leakage phenomenon by leakage path instead of leakage clearance. The 

assumption of zero-leakage is reasonable in light of the complexity of leakage 

probability and also make it is possible to use the simulation method to 

analyze the leakage of static sealed joints. The leakage simulation model 

reveals the effect of random properties of rough surfaces on the sealing 

performance and makes it possible to apply the statistical concepts in 

discussing the sealing reliability of static sealed joints. By the simulation 

method, the result of variation in parameters that would affect the sealing 

performance can be studied without costly and length experimental efforts.

The relationship between the leakage probability and the applied load, 

which is of great general interest to the designers of static sealed joints, has 

be predicted by the leakage simulation model. The simulated results show that 

the variation of leakage probability with the load is nonlinear about P i < \  0%, 

which will be preferred for practical design, although there is an approximate 

linearity between real contact area and applied load. The variation region of 

leakage probability dependents very much on the roughness parameters: RMS 

height a  and correlation length X*. For a given leakage probability, the 

required load will increase as the value of RMS height a  increases or the
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value of correlation length X* decrease. The influence of variables such as 

the sampling interval and the number of sampling points has been examined 

and the simulated results suggest that the sampling interval should be chosen 

carefully so as to predict the required degree of sealing and the smoother 

variation of probability is achieved with larger number of sampling points.

To evaluate the effects of important parameters on the sealing 

reliability, criteria for identifying the sealing reliability of static sealed joints 

have been set. The simulated results of leakage confirm that using the contact 

area ratio as the criteria for identifying the reliability of static sealed joints is 

reasonable and it would seem does not lead to larger prediction errors, 

although it is derived from certain simulation conditions such as the sampling 

interval of Ax = Ay = X* and the finite size of contact maps. The values of 

contact ratio criteria depend on the confidence level of reliability prediction, 

the higher the confidence level, the larger the value of contact ratio. The 

effect of surface anisotropy on the sealing reliability has been investigated. 

Comparing the isotropic rough surfaces with the anisotropic ones, the contact 

ratio criteria would increase apparently. Therefore, the surface anisotropy is 

an important parameter for the sealing performance, and to insure a good 

performance of a static sealed joint, it may be more important to control and 

inspect the surface-finish profile across the direction of fluid flow than in the 

direction of fluid flow.

The contact ratio criterion provide a simple, inexpensive and useful tool 

to evaluate the effects of rough surfaces, material properties and applied load 

on the sealing reliability of static sealed joints. However, the drawback of
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this method is the tedious effort required to obtain the contact ratio criteria 

through computer simulation. But once they are obtained correctly, they can 

be utilized to determine the effects of rough surfaces, material properties and 

applied load on the sealing reliability of static sealed joints.

In order to be of practical use, experimental work is required to 

evaluate its validity.
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Simnnary and Further Work

8.1 Conclusion

8.1.1 Overall Conclusions

Leaking, friction and wear of seals are concerns for machine designers 

and user everywhere. Although perfect sealing may be the general aim, in 

practice for apparently identical seals in the same application, some may seal

while some not. This is due to random variations between apparently identical 

situations. Therefore, the important of the reliability of sealed joints cannot 

be overemphasized.

Some previous of work has been done to consider the effect of rough 

surfaces on the sealing performance of static sealed joints (Rathbun 1963; 

Tsukizoe and Hisakado 1965; Mitchell and Rowe, 1967/1969; Thomas 1973; 

Shimomura, Hirabayshi and Nakajima 1989; Etsion and Front 1994), and 

several surface criteria have been proposed for the effectiveness of such seals. 

The mean gap or clearance between two sealed surfaces has been considered
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as the main factor controlling the fluid flow, therefore, they have concentrated 

their attention on analysing the effect of surface roughness on the mean gap 

or clearance based on two-dimensional individual asperity models or stochastic 

contact models. All of these researches have achieved certain successes but 

also with some limitations on each of the solution methods.

The existing work deals only with average properties and cannot 

therefore model the possible variations of surface-related random phenomena. 

Up to now, there is not a paper in the published literature about the reliability 

analysis of static sealed joints. The lack of a reliable model that predicts the 

effects of influential parameters (i.e surface roughness, material properties and 

applied load) on the sealing reliability of static sealed joints necessitates the 

use of tests. This may be a tedious procedure and can not satisfy the need 

that market competition produces for faster product development.

All of these facts provide the motivation for the current research work. 

The computer simulation model for the leakage analysis of static sealed joints 

has been developed firstly based on the percolation theory in this thesis. The 

leakage simulation model consists of the numerical simulation model of 

random rough surfaces, the numerical elastic contact model of rough surfaces 

and the computer check of leakage paths, therefore the computer algorithms 

and programs corresponding to these have also been developed in FORTRAN. 

The features of the leakage simulation model can be concluded as follows:

(1) It reveals the effect of random properties of rough surfaces on the 

sealing performance and makes it possible to apply statistical concepts
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in discussing the sealing reliability of static sealed joints;

(2) It provides much simpler and more economic tool for the statistical 

analysis of leakage by computer simulation than by experiments. Thus 

the result of variation in parameters that would affect the sealing 

performance can be studied without costly and length experimental 

efforts;

(3) It makes it possible to describe the leakage phenomenon more 

accurately using the leakage path model instead of the clearance 

between surface centre-lines, because the pockets or blocked passages 

contribute nothing on the fluid leakage;

(4) It eliminates the need for individual asperity model of rough surfaces, 

because the actual digitized surface profile is used directly, this is the 

most reasonable in light of the complexity of the leakage problem.

The relationship between the leakage probability and the applied load, 

which is of great general interest to the designers of static sealed joints, has 

been predicted by the leakage simulation model. The simulated results show 

that the variation of leakage probability with the load is nonlinear about < 

10%, which will be preferred for practical design, although there is an 

approximate linearity between real contact area and applied load. The 

variation of leakage probability depends very much on the roughness 

parameters: RMS height a  and correlation length X*. For a given leakage 

probability, the required load will increase as the value of RMS height a
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increases or the value of correlation length X* decrease.

The contact ratio criteria which is relative to the confidence level of 

reliability prediction has been obtained. Although the criteria is derived from 

certain simulation conditions, the effects of simulation variables such as the 

sampling interval and the number of sampling points show that it would seem 

to show that it does not lead to larger prediction errors. The effect of surface 

anisotropy on the sealing reliability has been investigated. Comparing the 

isotropic rough surfaces with the anisotropic ones, the contact ratio criteria 

would increase apparently. Therefore, the surface anisotropy is an important 

parameter for the sealing performance, and to insure a good performance of 

a static sealed joint, it may be more important to control and inspect the 

surface-finish profile across the direction of fluid flow than in the direction of 

fluid flow.

The contact ratio criteria provide a simple, inexpensive and useful tools 

to evaluate the effects of rough surfaces, material properties and applied load 

on the sealing reliability of static sealed joints. However, the drawback of 

this method is the tedious effort required to obtain the contact ratio criteria 

through computer simulation. But once they are obtained correctly, they can 

be utilized to determine the effects of rough surfaces, material properties and 

applied load on the sealing reliability of static sealed joints.

In order to practical use, experimental work is required to evaluate its 

validity.
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8.1.2 Numerical Simulation of Random Rough Surface

It is considered that numerical simulation of rough surfaces is an 

important tool for analysing the effecting of surface roughness on many 

engineering problems. However, the subject has received very little attention 

compared with the measurement of rough surfaces in the published literature 

so far. The only exception is Lai and Cheng's work (1985), which describes 

the computer simulation of rough surfaces having Gaussian height distribution 

and bilinear autocorrelation function. The bilinear autocorrelation is only an 

approximation to the exponential autocorrelation which is typical in many 

applications. By introducing an autocorrelation function matrix in Chapter 3, 

the simulation algorithm can, in principle, be extended to deal with the general 

form autocorrelation function.

The numerical simulation algorithms for randomly generating Gaussian 

surfaces with predetermined statistical parameters (i.e RMS height a  and 

correlation length .4") has been devised and the computer program called 

NSRRS in FORTRAN has been developed in Chapter 3. The numerical 

simulation model has been verified through a series of comparisons. The 

close agreement between the theory and simulation validates the use of this 

procedure for numerical simulation of random surfaces.

Randomly generating rough surfaces by numerical simulation is much 

simpler and more economic than measurement. The simulation model can 

substitute surface measurements by artificially creating rough surfaces, so that 

the result of variation in surface parameters (i.e a  and i )  that affect the seal
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reliability can be studied without costly and length experimental efforts. For 

each set of statistical parameters, many surface forms can be obtained by only 

changing the seed values of random number generators. It reveals the random

properties of rough surfaces and also facilitates the simulation of surface- 

related random phenomena.

8.1.3 Numerical Contact Models o f Rough Surfaces

Stochastic models for the contact of rough surfaces are numerous, they 

have been refined over many years. However, these models yield important 

results about the average properties of the contact of rough surfaces, but the 

information about the real pressure distribution and the deformed shape is lost 

due to the type of approach adopted, which are important results for the 

simulation analysis of leakage. Numerical contact models use the actual 

digitized surface profiles and can provide important information about the 

contact situation at the interface. Therefore, the numerical contact model 

provides a suitable model for simulation analysis of leakage. Some numerical 

models have been developed to deal with the contact of two elastic or three 

elastic bodies by Webster and Sayles (1986), Xian and Zheng (1991), Lee and 

Cheng (1992). The numerical contact models have achieved certain successes 

in some applications. Applying these existing numerical models to the leakage 

simulation analysis, the main problem is the numerical solution method. The 

numerical solution method used widely in the numerical contact models of 

rough surfaces is one called as Matrix Inversion Method described by Johnson 

(1985). Although Matrix Inversion method is straight forward and simple for
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the numerical solution in some applications, the iteration to obtain a fully 

consistent solution and the distortion of solutions for larger systems limit this 

approach to be unacceptable in simulation analysis of leakage, where the 

accuracy of solution and the speed of solution procedure are concerns for us. 

Clearly it might be advantageous to use an alternative method of solution.

A powerful alternative method of numerical solution is called as 

variational method based on variational principles (Johnson 1985), which has 

been applied to non-Hertzian contact problems by Kalker (1990) amongst 

others. The variational method has also been applied successfully the cases 

of frictionless contact of rough surfaces in Chapter 5 and Chapter 6. The 

computer algorithm and programs called 2DENCM and 3DENCM in 

FORTRAN based on the numerical solution technique of variational method 

have been developed for two-dimensional and three-dimensional numerical 

elastic contact of rough surfaces. The programs 2DENCM and 3DENCM 

can offer the following main advantages:

(1) No iteration is involved for cases of frictionless contact where only the 

normal pressure needs to be determined; this facility known as a warm start 

for quadratic programming routine E04NAF, can lead significant saving in 

computational effort when solving a sequence of related problems, thus the 

efficiency of solution procedure is considerably improved;

(2) There is good computational convergence and robustness, thus the 

distortion of solutions is eliminated;
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(3) With only simple rewriting to the pressure constraint, i.e. 3Y > p^> Q 

(Lee and Cheng 1992), thus the plastic deformation on the high asperity peaks 

are easily taken account into the present contact model without any 

modification of original program ENCM, leading to an approximate elastic- 

perfectly-plastic contact model.

To confirm the accuracy of program ENCM, a series of test cases has 

been studied. Comparison with existing stochastic contact models (BGK 

model for two-dimensional contact and GW model for three-dimensional 

contact) has been attempted. The results obtained for the stochastic and 

numerical models show an encouraging agreement considering the many 

difference between the two techniques.

8.1.4 Computer Check o f  Leakage Paths

The computer algorithm for the computer check of leakage paths has 

been devised and the computer program called CCLP has been developed in 

FORTRAN in Chapter 8. The program CCLP along with the numerical 

simulation of random rough surfaces and the numerical contact model of 

rough surfaces make it is possible to develop a simulation method for the 

leakage analysis of static sealed joints. The accuracy of the program is 

verified with manual solutions for smaller contact maps. The features of 

program CCLP can be concluded as follows.
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( 1 ) It provides an effective and accurate method for determining a typical

pattern of contact at which sealing occurs or not;

(2) It not only provides the information if any leakage path exists or not 

for a given contact map, but also calculates the number of leakage 

paths, thus the width of leakage paths can be calculated by multiplying 

the element width by the number of leakage paths;

(3) It allows the simulation analysis of large contact maps without having 

to store the whole contact map, thus computer memory can be saved 

so that larger systems can be simulated.

8.2 Suggestions for Further work

The research contained in this thesis has provided an overall simulation 

procedure for the reliability analysis of static sealed joints. However, 

additional research is always required to enable improvements or refinements 

to the studied topics and enlargements to the practical applications. This 

section gives a suggestion for further work, resulting from this research, which 

are outlined within the following three topics.

8.2.1 Numerical Simulation o f Random Rough Surfaces

The random rough surfaces considered in the numerical simulation

2 0 7



CHAPTERS.

model are ones with Gaussian height distribution. This is because linear 

transformation required for the desired autocorrelation function on independent 

Gaussian random variables result in Gaussian variables, while most non- 

Gaussian random variables do not have this property. The linear 

transformation also would change the probability density of the input matrix. 

However, the simulation algorithm can, in principle, be extended to deal 

surfaces with non-Gaussian height distribution provided additional relations 

can be obtained to relate the probability density of the input matrix and the 

desired probability density of the roughness heights.

The effect of linear transformations on the probability density function 

of a random variable can be analyzed by utilizing its characteristic function.

The Fourier transform of the probability density function of a random variable 

is called the characteristic function of the random variable (Davenport 1970). 

Therefore the generation of roughness heights with non-Gaussian density 

functions may present more complicated problems.

8.2.2 Numerical Contact o f Rough Surfaces

There are many possible improvements to the present numerical contact 

model. Some are listed below:

(1) If the numerical contact model used in the leakage analysis is extended 

to include such as the case where one of the bodies has an elastic surface 

layer, as shown in Figure 8.1, the reliability of static sealed joints with gasket
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may be analyzed.

Sealed sui&ce E j, v,

EWÜC Imyw (gasket) B j, v.

Sealed sutfoce E ,, v.

Figure 8.1 Contact model of layer elastic bodies with rough surfaces

The contact problem of layered structures has been of considerable 

interest in various fields of science and engineering. The Integral transforms

are the usual mathematical tool employed in the contact analysis of layered 

structures and many publications exist in the literature dealing with two and 

three-dimensional layered elastic bodies subject to normal and transverse 

surface pressure loading (Chen 1971, Chiu and Hartnett 1983, King and 

Sullivan 1987, Cole and Sayles 1992).

(2) Elastic deformations of sealed surfaces interact with plastic deformation 

in a complex way. With a minor modifications of the contact pressure 

constrains by setting a ceiling on their contact pressure at the material 

hardness value or three times the uniaxial yield strength, i.e. JT > > 0, as
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done in two-dimensional contact model by Lee and Cheng (1992), the plastic 

deformations on the high asperity peaks are taken into account and a crude 

three-dimensional model of plasticity may be included. Although the 

proposed method is not an accurate model for plastic contact it should 

reproduce the main features of a mixed elastic-plastic contact model.

(3) The computer program could be installed on a more powerful computer, 

many of its limitations being due to the relatively small amount of computer 

memory available, so that an area of more reasonable size can be analyzed.

8.2.3 Reliability Analysis of Static Sealed Joints

There are many further studies that can be done. Some are listed

below:

(1) To prevent leakage, a certain level of contact stress must be maintained 

between sealed surfaces. The contact pressure was assumed to be static in this 

thesis. However, it is important to realise that this contact stress will vary 

with time. This time effect arise form several sources:

changes of fluid pressure and temperature, with associated flange 

distortions;

creep in highly stressed regions of the bolts and flanges, 

stress relaxation in the gasket material;
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This variation of contact stress will affect the sealing performance. 

Therefore, the effect of variation of contact stress on the reliability of static 

sealed joints should be taken into account.

(2) The contact ratio criteria listed in Table 7.3 is derived for a certain 

simulation conditions. In order to practical use, more simulations are required 

to obtain more accurate value of contact ratio criteria , such as:

(a) the relationship between the contact ratio criteria and the 

sampling interval;

(b) the relationship between the contact ratio criteria and the surface 

anisotropy;

(c) the effect of plastic deformation on the contact ratio criteria;

(d) the effect of gasket material on the contact ratio criteria;

(e) the effect of system pressure and environmental pressure on the

contact ratio criteria;

(f) the effect of fluid viscosity on the contact ratio criteria.

(3) In order to practical use, experimental work is required to evaluate its 

validity.
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APPENDIXA.
Quadratic Programming Routine - 
E04NAF

E04NAF is designed to solve the quadratic programming (QP) 

programm - the minimization of a quadratic function subject to a set of linear 

constrains on the variables. The problem is assumed to be stated in the 

following form:

Minimizel + —x^H x

'  (A.1)

Subject to  : I ^ i  u

where c is a constant n-vector and H  is a. constant n x n symmetric 

matrix: Note that H  is the Hessian matrix (matrix of second partial

derivatives) of the quadratic objective function. The matrix A is w x «, 

where m may be zero; A is treated as a dense matrix.

The constraints involving A will be called the general constraints. 

Note that the upper and the lower bounds are specified for all the variables
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and for all the general constraints. The form of Equation (A .l) allows full 

generality in specifying other types of constraints. In particular, an equality 

constraint is specified by setting /, =

E04NAF allows the user to provide the indices of the constraints that 

are believed to be exactly satisfied at the solution. This facility, known as a 

warm start, can lead to significant saving in computational effort when solving 

a sequence of related problems.
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APPENDIXB.
Calculation of Bandwidth Parameter

Lai and Cheng (1985) have derived the expression for the calculation 

of bandwidth parameter after the long- and short-wavelength cutoffs.

In order to defined the bandwidth parameter, moments of power 

spectrum density (PSD) are needed. Nth moment of PSD is defined as

(B 'l)

Assuming exponential autocorrelation function,

(B.2)

the corresponding PDS is

i((r)exp(-*tr)dr

=

It l+(pt)^ 

214

(B.3)



Because of the long- and short-wavelength cutoffs, 4Kh) is modified as

«0 P
(Ki) = -j It l+(P*:)^

0 otherwise

(B.4)

where

=

-

2 it

2 n
Xu

(B.5)

is long-wavelength cutoff and is short-wavelength cutoff.

Accordingly, the zero, second and fourth moment of PSD are obtained

as:

— 2m,
Wn = ° tan"^ p * | t .

w ,

— 2m,
— 2 (pt-tan-^pk)

k=k,

2*0

itP*
- ( p t p - p k  +tan

(B.6)
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and bandwidth parameter is

« = (B.7)
m-

By setting

Xf = 2 r , , X. = 2r  ̂ , A' = 2.3 p (B.8)

where r, is the width of the normal region analyzed and r, is sampling 

interval.
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APPENDIX c.
Simulated Results of Leakage 
Probability of Static Sealed Joints

Table C. 1 (a) Predicted variation of leakage probability as a function of 
load, showing the effect of rough surfaces^

Leakage
probability

Dimensionless contact load -

a  = 0.1 pm 
A' = 20 pm

a = 0.3 pm 
A' = 20 pm

a  = 0.5 pm 
A* = 20 pm

100 0.000769 0.002482 0.004042

100 0.000851 0.002728 0.004251

100 0.000935 0.002852 0.004464

99 0.000977 0.002978 0.004673

98 0.001019 0.003105 0.004883

95 0.001062 0.003232 0.005308

91 0.001105 0.003361 0.005523

87 0.001148 0.003493 0.005741

74 0.001192 0.003626 0.005961

61 0.001237 0.003759 0.006183

42 0.001281 0.003894 0.006406

22 0.001326 0.004029 0.006630
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10 0.001371 0.004166 0.006856

5 0.001417 0.004302 0.007084

3 0.001462 0.004439 0.007312

1 0.001508 0.004577 0.007541

0 0.001554 0.004715 0.007771

0 0.001600 0.004853 0.008002

0 0.001647 0.004993 0.008235

interval of àx  = ày  = X*.
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Table C l (b) Predicted variation o f leakage probability as a function of

load, showing the effect of rough surfacesf

Leakage
probability

Dimensionless contact load - f  ̂  /  A f l '

a  = 0.1 pm 
A' = 30 pm

<7 = 0.3 pm 
A* = 30 pm

a = 0.5 pm
A = 30 pm

100 0.000486 0.001771 0.002564

100 0.000513 0.001853 0.002700

100 0.000540 0.002019 0.002976

99 0.000568 0.002104 0.003256

98 0.000595 0.002189 0.003397

95 0.000623 0.002275 0.003539

91 0.000651 0.002362 0.003682

87 0.000679 0.002450 0.003827

74 0.000708 0.002628 0.003974

61 0.000736 0.002717 0.004122

42 0.000765 0.002808 0.004270

22 0.000795 0.002989 0.004420

10 0.000824 0.003172 0.004571

5 0.000854 0.003264 0.004722

3 0.000884 0.003356 0.004875

1 0.000914 0.003448 0.005027

0 0.000944 0.003540 0.005181

0 0.000973 0.003727 0.005335

0 0.001005 0.003914 0.005490
have 50 % 50 sampling pomts and sampling

interval of = dy = A".
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Table C l (c) Predicted variation of leakage probability as a function of 
load, showing the effect of rough surfaces^

Leakage
probability

Dimensionless contact load - f  * /  ̂ 4^'

<7 = 0.1 pm 
A = 40 pm

<7 = 0.3 pm
A = 40 pm

a = 0.5 pm 
A = 40 pm

100 0.000385 0.000968 0.001296

100 0.000426 0.001007 0.001362

100 0.000467 0.001086 0.001495

99 0.000488 0.001165 0.001563

98 0.000510 0.001205 0.001630

95 0.000531 0.001246 0.001699

91 0.000552 0.001287 0.001767

87 0.000574 0.001328 0.001837

74 0.000596 0.001411 0.001908

61 0.000618 0.001495 0.001978

42 0.000641 0.001578 0.002050

22 0.000663 0.001663 0.002122

10 0.000686 0.001748 0.002194

5 0.000708 0.001791 0.002267

3 0.000731 0.001834 0.002340

1 0.000754 0.001877 0.002413

0 0.000777 0.001920 0.002487

0 0.000802 0.001964 0.002561

0 0.000823 0.002008 0.002635

where the rough surfaces used are generated to have 50 x 50 sampling points and sampling 
interval of Âx = ây  = A*.
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Table C. 1 (d) Predicted variation o f leakage probability as a function of

load, showing the effect o f rough surfacesf

Leakage
probability

Dimensionless contact load -

0 = 0.1 pm 

A' = 50 pm
<7 = 0.3 pm 
A = 50 pm

<7 = 0.5 pm 
A = 50 pm

1 0 0 0.000308 0.000553 0.001538

1 0 0 0.000324 0.000626 0.001703

1 0 0 0.000357 0.000700 0.001869

9 9 0.000391 0.000775 0.001953

98 0.000408 0.000852 0.002038

95 0.000425 0.000932 0.002123

91 0.000442 0.001014 0.002209

87 0.000459 0.001096 0.002296

74 0.000477 0.001181 0.002385

61 0.000495 0.001267 0.002473

42 0.000512 0.001353 0.002562

22 0.000530 0.001441 0.002652

10 0.000548 0.001530 0.002742

5 0.000567 0.001621 0.002833

3 0.000585 0.001712 0.002925

1 0.000603 0.001804 0.003016

0 0.000622 0.001897 0.003109

0 0.000640 0.001990 0.003201

0 0.000659 0.002085 0.003294
fwhere the rough surfaces used are generated to have 50 x 50 sampling points and sampling 
interval of Ax = Ay = A".
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Table C.2 Predicted variation o f leakage probability as a function o f load,
showing the effect o f sampling intervalf

Leakage probability Dimensionless contact load - P ^ / AJE'

Ax = = 7/2 A' Ax = à y  = X"

100 0.002139 0.000968

100 0.002373 0.001007

100 0.002611 0.001086

99 0.002731 0.001165

98 0.002852 0.001206

95 0.002974 0.001246

91 0.003098 0.001287

87 0.003222 0.001328

74 0.003347 0.001411

61 0.003474 0.001495

42 0.003603 0.001579

22 0.003734 0.001663

10 0.003865 0.001748

5 0.003999 0.001791

3 0.004133 0.001834

1 0.004268 0.001877

0 0.004403 0.001920

0 0.004539 0.001964

0 0.004677 0.002008
fwhere the rough surfaces usai are generated to have 50 x so sampling points and roughness
parameters of o =  0.3 pm and X' = 40 pm
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Table C.3 Predicted variation of leakage probability as a function o f load,
showing the effect o f number o f sampling pointsf

Dimensionless 
contact load

Leakage probability - (  % )

sampling points 
50 X 50

sampling points 
30 X 30

sampling points
20 X 20

0.004042 100 100 100

0.004251 100 100 100

0.004464 100 100 99

0.004673 99 99 97

0.004883 98 96 95

0.005308 95 93 88

0.005523 91 86 84

0.005741 87 83 72

0.005961 74 76 70

0.006183 61 54 57

0.006406 42 38 46

0.006630 22 31 31

0.006856 10 13 22

0.007084 5 8 12

0.007312 3 2 6

0.007541 1 1 4

0.007771 0 0 I

0.008002 0 0 0

0.008235 0 0 0

and the roughness parameters of o = 0.5 pm and X' = 20 pm.
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