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Abstract We examine planetary period oscillations (PPOs) observed in Saturn’s magnetospheric magnetic
field data from the time of Saturn’s equinox in 2009. In particular, we focus on the time period commencing
February 2011, when the oscillations started to display sudden and unexpected changes in behavior at
~100-200 day intervals. These were characterized by large simultaneous changes in the amplitude of the
northern and southern PPO systems, together with small changes in period and jumps in phase. Nine
significant abrupt changes have been observed in the postequinox interval to date, commencing as the Sun
started to emerge from a long extended solar minimum. We perform a statistical study to determine whether
these modulations in PPO behavior were associated with changes in the solar and/or upstream solar wind
conditions. We report that the upstream solar wind conditions show elevated values of solar wind dynamic
pressure and density around the time of PPO behavioral transitions, as opposed to before and after these
times. We suggest that abrupt changes in PPO behavior may be related to significant changes in the size of
the Saturnian magnetosphere in response to varying solar wind conditions.

1. Introduction

Saturn is the only planet within our solar system that has, at least by all measurements to date, a near-perfectly
axisymmetric magnetic field [e.g., Burton et al., 2010]. Despite this, however, oscillations with a period near the
~11h planetary period are observed throughout Saturn’s magnetosphere. Such modulations are observed in
the magnetic field, Saturnian kilometric radiation (SKR), plasma parameters, energetic particle fluxes, and asso-
ciated neutral atom emissions, as well as auroral ultraviolet, infrared, and radio emissions [e.g., Warwick et al.,
1981, 1982; Desch and Kaiser, 1981; Gurnett et al., 1981, 2007, 2010a; Sandel and Broadfoot, 1981; Sandel et al.,
1982; Carbary and Krimigis, 1982; Espinosa and Dougherty, 2000; Krupp et al., 2005; Cowley et al., 2006; Kurth
et al., 2007; Southwood and Kivelson, 2007; Carbary et al., 2007, 2008a, 2008b; Zarka et al., 2007; Andrews et al.,
2008; Nichols et al., 2008, 2010a, 2010b; Burch et al.,, 2009; Provan et al., 2009a, 2009b; Clarke et al., 2006; Badman
et al, 2012; Lamy et al., 2013]. Those oscillations were first observed in Voyager measurements of the SKR emis-
sions, around the time of Saturn’s northern hemisphere spring equinox [Kaiser et al., 1980]. Desch and Kaiser
[1981] reported a dominant oscillation with a period of 10h 39m 24+75s (10.6567 = 0.0019 h) (subsequently
modified to 10.6562 h in Davies et al. [1983]) which was used to define the International Astronomical Union
System lll rotation period. Radio polarization measurements indicate that this oscillation was observed in emis-
sions from Saturn’s northern hemisphere. Desch and Kaiser [1981] also reported a second oscillation, consider-
ably weaker but still statistically significant, with a period of 10.69 h. Provan et al. [2014] tentatively attributed
this second period to emissions from the southern hemisphere.

Cassini observations of SKR emissions and magnetic field oscillations have demonstrated that there are indeed
two planetary period oscillation (PPO) systems present, one related to each hemisphere, which rotate about the
planetary axis with slightly different periods [Kurth et al,, 2008; Gurnett et al., 2009a, 2009b; Andrews et al., 2010b].
The PPO periods determined from the SKR and magnetic field data sets are, in general, in very close agreement,
as reported by Andrews et al. [2010b, 2012] and Provan et al. [2014]. SKR observations made by the Ulysses
spacecraft in 1997 detected periods that were not constant and varied by 1% from the Voyager values
[Galopeau and Lecacheux, 2000]. Cecconi and Zarka [2005] attempted to explain the slow variability, and possible
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multiplicity, of Saturn’s radio period by modeling the role of the Kelvin-Helmholtz instability on the SKR source
and the influence of the observed sawtooth variations in solar wind speed on the local time position of the
source. Cecconi and Zarka [2005] also studied the role of noise in the SKR phase modulation by the solar wind
speed. The existence of these small variations was confirmed by radio measurements from the Cassini space-
craft [Gurnett et al., 2005]. Gurnett et al. [2009a, 2010b] suggested that such variations might be driven by sea-
sonal variations in solar UV flux resulting in the modulation of ionospheric conductivity. Higher conductivity in
the sunlit summer hemisphere would increase the strength of the field-aligned currents thereby increasing the
coupling of the polar hemisphere with the plasma disk. This would result in slower PPO periods in the summer
hemisphere compared with the winter hemisphere. According to Gurnett et al. [2009a], this solar illumination
picture would require a reversal of the SKR rotation rates in the two hemispheres at Saturn’s equinox.

In section 3, we will present a summary of the PPO periods from the time of Voyager until the time of writing
(early 2015), presenting data from Voyager, Ulysses, and Cassini. It is clear from these results that the periods
of the PPOs have not crossed as predicted by the solar illumination picture, as previously reported by Andrews
et al. [2012]. However, a number of abrupt changes in the phases, periods, and amplitudes of the two oscilla-
tions have been observed with a cadence of 100-200 days, as reported by Provan et al.[2013]. Further, Provan
et al. [2011] reported unexplained behavior of the PPO oscillations observed within Saturn’s near-equatorial
core (L < 12 R,) magnetosphere between 2004 and 2006, observing short-term (pass-to-pass) variation of the
magnetic phase common to all field components, consistent with pass-to-pass variations in the PPO periods.
Similar observations have previously been reported by Zarka et al. [2007], who reported fluctuations in the
SKR period with a characteristic timescale of 20-30 days associated with variations in the solar wind velocity.
When considering which factors may be influencing the behavior of the PPO periods, it is worth noting that it
is not just Saturn’s seasons that have changed during the 11 year long Cassini mission but that solar activity
has also been strongly varying. A Saturnian season (e.g., a northern or southern spring/summer) lasts for
~15years, while a solar cycle has an approximate duration of 11 years, so the seasonal and solar effects are
changing on similar timescales. The initial Cassini mission, from 2004 to 2007, occurred in the late declining
phase of the solar cycle. The mission then continued during the extended solar minimum occurring from
2007 to 2010. An increase in solar activity was observed to commence in 2011.

Previous results have demonstrated changes in the behavior of the SKR associated with the solar wind. Desch
[1982] analyzed data from Voyager 1 and 2 to establish that Saturn’s radio emissions underwent extreme
fluctuations in the radio energy on a timescale of days to weeks. Correlation coefficients of ~0.6 were
determined at lag times of 0-1 days between the arrival at Saturn of high-speed solar wind streams and
the onset of increased radio emissions. Desch and Rucker [1983] reported that fluctuations in SKR power were
best correlated with solar wind ram pressure variations. Using a 170 day analysis interval, they also reported a
close correlation with solar wind density and fluctuations in SKR emissions and a weaker correlation with
solar wind speed. It is worth noting that such fluctuation in SKR emissions will be associated with the occur-
rence of Saturn “auroral storms.” These storms have been reported by Meredith et al. [2014] to have a typical
cadence of ~5 days, thus occurring more frequently than the changes in behavior of the PPOs.

As mentioned above, Zarka et al. [2007] reported fluctuations in the SKR period with a characteristic timescale of
20-30days associated with variations in the solar wind velocity. Badman et al. [2008] demonstrated how emitted
SKR power increased when the solar wind was compressed and also presented two case studies demonstrating
reduction in emitted SKR power during times of reverse solar wind shocks. They also reported that the pulsing of
the SKR during these disturbed intervals was not significantly altered relative to that during nondisturbed intervals.

Kimura et al. [2013] presented a long-term correlation analysis between SKR, solar EUV flux, and propagated solar
wind parameters, where they focused on variations with timescales in excess of several weeks. The study was per-
formed during southern hemisphere summer from 2004 to 2010 during the declining phase of the solar cycle.
They reported positive correlations between solar wind dynamic pressure and peak EUV flux density in both hemi-
spheres. They concluded that the northern and southern SKR were “in phase” with each other in terms of the solar
wind response, suggesting possible simultaneous responses of northern and southern SKR sources to global solar
wind compression. In contrast, they reported an “antiphase” relationship between the southern and northern SKR
and the solar EUV flux, attributing this to seasonal variations in the solar illumination of each hemisphere.

Here we examine the origin of the ~100-200 day PPO variations discovered by Provan et al. [2013] and, in view
of previous discussion of solar wind dependency of SKR modulations, will examine whether these could also
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(a)

Figure 1. Sketch showing the spatial structure of (a) N and (b) S mag-
netic field oscillations as blue (Figure 1a) and red (Figure 1b) lines. The
oscillations are shown in the principal meridian of the perturbation at
some instant, where the vertical axis represents the spin (and mag-
netic) axis of the planet. The black dashed lines show the quasi-static
“background” magnetospheric field, with closed field lines at lower
latitudes (gray region) and open field lines at high latitudes (clear
region) mapping into the N (S) polar regions. This perturbation field
pattern then rotates approximately rigidly about the axis at the N (S)
PPO period, giving rise to magnetic field oscillations at that period at a
fixed point. In the equatorial region the perturbation field takes the
form of a rotating quasi-uniform field with additional north-south
components such that the field lines form arches with apices pointing
to the north (south). In the northern (southern) high-latitude region
the perturbation instead has the form of a planet-centered rotating
transverse dipole, whose instantaneous direction is indicated by the
large blue (red) arrow, having the same direction as the equatorial
quasi-uniform field [from Andrews et al., 2010b; Provan et al., 2011].

have a solar wind or solar origin, noting that
the onset of the PPO variations occurred in
concert with an increase in solar activity.
First, we will present a brief overview of the
characteristics of the PPOs observed in the
magnetic field data at Saturn.

2. Overview of the Form and
Theoretical Analysis of Magnetic
Field Oscillations

Below we summarize the form of the PPO
magnetic systems previously reported in
other publications [see, e.g., Andrews et al.,
2008, 2010a, 2010b, 2012; Provan et al,
2011, 2013]. There are two magnetic pertur-
bation systems which take the form of per-
turbation field loops, one closing over the
northern (N) pole and the other over the
southern (S) pole. The forms of the perturba-
tion field loops are sketched in Figure 1. The
blue loops in Figure 1a and the red loops in
Figure 1b indicate the perturbation fields of
the N and S systems, respectively, in their
principal magnetospheric meridian planes
at some instant of time. The black dashed
lines indicate the near-axisymmetric unper-
turbed magnetospheric field, with closed
lines in the equatorial region (gray) and open
lines extending into the tail at high latitudes
(clear). Both loops pass through the equator-
ial “core” magnetosphere (L < 12R,), where
they form quasi-uniform magnetic fields.
The N (S) field perturbation then closes over
the N (S) polar region, forming quasi-dipolar
magnetic fields. The perturbation fields out
of these planes can be pictured to a first
approximation simply by displacing the
loops directly into and out of the plane of
the figure. These two field patterns then
rotate independently about the planetary
spin axis at the periods of the southern and
the northern systems, respectively.

It is possible to distinguish between N and
S oscillations, and between core (quasi-
uniform) and polar (quasi-dipolar) oscillations,
based on their polarization characteristics.
As can be seen in Figure 1, for purely S
oscillations the radial (r) and colatitudinal
(@) components are in phase, while for
purely N oscillations the r and § components
are in antiphase with each other. This applies
to both the equatorial quasi-uniform and
the polar quasi-dipolar oscillations. However,
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Table 1. Polarization Characteristics of Northern and Southern PPOs
Southern Core Oscillations Northern Core Oscillations
Corer Core 0 Core ¢ Corer Core ¢ Core ¢
%s=0° Y6s=0° Yps=90° Hv=0° | yan=180° | 3,,=90°
6 and r in- @ in 6 and r in @ in
i - phase lagging Corer - anti-phase lagging
i |z e
rand 6 in- @ in rand 6 in @ in
Core 0 phase - lagging Core @ | anti- phase - leading
765=0° qu\j}?{ﬁt;re 7ov=180° qu\z)lvciltrlellt;re
r in leading 6 in r in leading 0 in
Core ¢ quadrature leading - Core ¢ quadrature lagging -
=90° with ¢ quadrature —9()° with ¢ quadrature
Yos with ¢ Yon~= with ¢

Southern Polar Oscillations

Northern Polar Oscillations

Polar r Polar 0 Polar ¢ Polar r Polar 6 Polar ¢
%s=0° Yo=0° Yps=90° #n=0° Yon=180° Yon=-90°
6 and r in- @ in 6 and r in @ in
Polar r = phase leading Polar r - anti-phase leading
7%s=0° quaq:ﬁture #n=0° qujv(iitrlallt;lre
with 7
rand @ in- @ in rand 6 in @ in
Polar 6 phase - leading Polar 0 anti- phase = lagging
75s=0° quaq:ﬁt;re 7on=180° quaqtrl?t;re
wi wi
r in lagging 6 in r in lagging 0 in
Polar ¢ quadrature lagging - Polar ¢ quadrature leading -
¥ =-90° with ¢ quadrature Fon=-90° with ¢ quadrature
& with ¢ ¢ with ¢

for quasi-uniform oscillations for either system the ¢ component is in lagging quadrature with r, while for the
quasi-dipolar oscillations for either system the ¢ component is in leading quadrature with r, thus leading directly
to the quasi-uniform and quasi-dipolar form of these fields. The polarization characteristics of the purely northern
and purely southern PPOs are described in Table 1, which also presents, y;s n, the difference in phase between the
r component and component i, where i=r, 8, and ¢, such that by definition y,s=0°and y,5=0°. For further expla-
nation of the polarization of the northern and southern oscillations, see Provan et al. [2009a].

The N and S PPO-related magnetic field perturbations can then be expressed, for spherical polar field
component i=(r, 8, ¢), referenced to the planetary spin and magnetic axes, as an “m=1" rotating field of
the following form:

B,‘ = Bos"N,'COS(CDg(t) —Q— l//iS,N(t)) = BOS"N,'COS(CDSVN(t) — QD) (1)
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In these expressions @y is the phase of the guide oscillation whose period, of 10.68 h, has been selected to be
close to the period of the oscillations, y;s n(t) is the phase of the oscillations with respect to the N or S guide
phase, Oy, s(t) = Dy(t) — ;s y are the phases of the N or the S PPO perturbations, Bys v are the amplitudes of
the N or S oscillations, and ¢ is azimuth measured from local noon.

The corresponding periods are given by 360

NS = dTNs’ (2)
()

where the phases are expressed in degrees.

Andrews et al. [2008] have described how ; is determined for each of the three components of the magnetic
field on an orbit-by-orbit basis by a cross-correlation analysis between the observed oscillations and an oscilla-
tion at a guide period selected to be close to the period of the oscillations. The y; phases are then plotted versus
time, relative to a suitable guide phase, in the S and N format. This involves subtracting the difference in the
polarization angle between the r and 8 components and the r and the ¢ components (as described by y;s y pre-
sented in Table 1) from the @ and the ¢ components (see Figures 3d and 3e introduced below). If only the north-
ern or the southern oscillations are present, the three components of the southern or northern formatted
phases should then all have the same values (within errors), equal to the phase of the r component. Andrews
et al. [2012] reported that within the northern or southern polar region only the pure northern or southern oscil-
lations are observed, within 10% amplitude measurement uncertainty. However, Provan et al. [2011] reported
that within the core region organized “jitter” of the phases occurs due to both oscillations being simultaneously
present, where they constructively and destructively interfere at the beat period of the two oscillations, leading
to more complex phase and amplitude relationships of the combined oscillations [Andrews et al., 2012; Provan
et al., 2013]. The superposition of the two oscillations within the core regions can be described by

Bi(p,t) = Boi(t)cos(®i(t) — @) = Bonicos(Pn(t) — ¢ — 7;y) + Bosicos(Ds(t) — ¢ — ;) 3)

This superposition is then dependent on the beat phase of the two oscillations and the relative amplitude of
the two oscillations. The amplitude ratio of the northern to southern oscillations for component i is

k = Boni/Bosi, (4)

where this ratio is assumed to be the same for each field component. If k < 1, then the southern oscillations
are dominant within the core region, while if k> 1, the northern oscillations are dominant. If k=1, the two
oscillations have equal amplitude within the core. The beat phase of the oscillations is defined by

ADg(t) = Dy(t) — Ds(t), (5)
the beat period being given by 5(t) = 360/(dAdg/dt) for AD(t) expressed in degrees.

The superposition of these two oscillation results in phase jitter between the r and 8 components and
between the ¢ and § components, as described by Andrews et al. [2012] for the southern oscillation by

2ksinA®D

(6)
Andrews et al.[2012] showed how the N and S phases, @y s(t), periods 7y,s(t), and amplitude ratios k can then
be calculated by piecewise linear fits to the S and N format data employing successive sets of 25 data points
typically spanning ~200 days. Each fit is taken to define the phase and period of the S and N system oscilla-
tions at the center time of the data set employed. The sequence of such values obtained from data sets
shifted one data point at a time, typically separated by ~10 days, with linear interpolation between, is then
taken to define these quantities over time. While this procedure was successfully applied by Andrews et al.
[2012] to Cassini data observed up to early 2011, it was deemed inappropriate to apply this technique to data
observed after this time due to the abrupt changes in the PPO behavior. For data observed between 2011
and mid-2013, Provan et al. [2013] simply employed piecewise linear fits to the individual intervals containing
near-steady oscillation properties. Here this analysis has been extended through to the end of 2014 as
detailed in section 4. It is worth noting that Provan et al. [2013] demonstrated that five-parameter fits (two
linear phases and k) to 150 day segments of phase data evaluated every 50 days show essentially similar
results to the results provide by Andrews et al. [2012].
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Figure 2. Plots showing (a) the planetocentric latitude of the Sun at Saturn (deg), (b) the daily sunspot number, and (c) the PPO rotation periods (in hours) derived
from Voyager, Ulysses, and Cassini measurements as indicated. The vertical dotted lines indicate Saturn’s seasons, specifically the northern and southern summer
solstices where the solar latitude is maximum and minimum, respectively, and the equinoxes where the latitude passes through zero. The northern and southern
PPO periods determined from the Voyager and Cassini data are shown by the blue and red lines, respectively, while the Ulysses data are shown by purple dots since
the corresponding hemisphere remains undetermined from direct measurement of their polarization.

3. Summary of Previous Observations

Figure 2 presents a summary of observational knowledge of the S and N PPO periods from the time of
Voyager until the end of 2014. Figure 2a presents the planetocentric latitude of the Sun at Saturn, exhibiting
the changing seasons. The figure encompasses slightly more than one Saturn year, from vernal equinox
(March 1980) during the Voyager era to autumnal equinox (November 1995) spanned by the Ulysses data
and southern summer and vernal equinox (August 2009) again during the Cassini era. Figure 2b presents
the daily number of sunspots from the OMNI website (http://omniweb.gsfc.nasa.gov) clearly exhibiting varia-
tions with the solar cycle. Both solar activity and solar illumination change over time. The Voyager spacecraft
arrived at Saturn when the Sun was at solar maximum during Saturn’s northern hemisphere spring equinox in
1980. Both the Ulysses and the Cassini observations commence during the declining phase of one solar cycle
and continue through the rising phase and maximum of the following solar cycle. However, Ulysses’ first
observations were made during northern hemisphere summer, while Cassini’s initial observations were made
during southern hemisphere summer. Much of the detailed analysis in this paper will focus on the observa-
tions made during the northern spring equinox of 2009 when the solar cycle was in an extended minimum
and after this time when solar activity started to increase again.

Figure 2c presents the PPO periods (hours), where we have combined the results of analyses of SKR data from
the Voyager approach interval in 1980 [Desch and Kaiser, 1981], Ulysses remote sensing during 1993-2002
[Galopeau and Lecacheux, 2000; Gurnett et al., 2010b], and Cassini observations from planetary approach in
2003-2004 (horizontal red bar) [Gurnett et al., 2005]. The periods from Cassini approach and in situ observa-
tions from 2004 to 2014 have been determined from magnetic field observations as has previously described
above, although here the analysis has been extended to the end of 2014 to include the most recent data.
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The southern period is shown in red and the northern period in blue. The Ulysses data are shown in purple,
since its hemisphere of origin is not known.

The periods show a strong seasonal dependence. When PPOs were first observed in the Voyager data, over one
Saturnian year ago, the two periods were fairly close with a northern period of ~10.65 h and a southern period of
10.69 h. When Ulysses first started observing SKR in 1993, almost half a Saturnian year later, the spacecraft
observed two well-separated periods. The two periods then started to converge a year prior to autumnal equinox
and appear to meet approximately a year after the 1995 southern vernal equinox. As the hemisphere of origin of
the oscillations is not known, it is not possible to identify whether the two periods crossed or whether they simply
converged and then diverged again, but it is clear that when Cassini arrived at Saturn in 2004 during southern
hemisphere summer, the two periods were well separated with a northern period of ~10.55 h and a southern
period of ~10.75h. The two periods continued to diverge, with the southern period commencing a sharp
decrease approximately a year prior to the 2009 southern autumnal equinox. The two periods come to their clo-
sest value approximately a year after equinox. After this, it was generally anticipated that the two periods would
cross, but this did not happen. Instead, since 2011, the two periods have remained fairly stable. The southern per-
iod has remained consistently longer than the northern period, with the southern period being ~10.69 h and the
northern period ~10.63 h. These periods are very similar to the Voyager observations made during Saturn’s last
postvernal equinox period. However, since 2011, there has been a new and unusual behavior of the oscillations,
with the two oscillations presenting large jumps in amplitude, with associated small jumps in period and phase
that will be discussed below. This unusual behavior commenced around the time that solar activity started to
increase after a long extended minimum, as evidenced by an increase in the number of sunspots.

4, Magnetic Field Oscillations in the Postequinox Interval

Figure 3 presents the periods, amplitude ratio, and phases of the oscillations observed from the equinox in
August 2009 up to and including Rev 212, which ended in February 2015. This plot thus covers data from
t=2049 to t=4077 days (where t=0 is 00:00 UT on 1 January 2004). Start of year markers are shown at the
top of the plot (red) together with Cassini Rev markers (black) plotted at each periapsis and numbered every
10 Revs. The top bar identifies orbit-type based on Cassini's trajectory, with near-equatorial orbits shown in blue
and highly inclined orbits shown in green. Following Andrews et al. [2012] and Provan et al. [2013, 2014], the
equatorial orbits commencing just prior to equinox are labeled E1 to E4, and the series of polar orbits starting
at Rev 176 are labeled F1 and F2. The second bar presents the new interval identifiers 1-9, demarked by vertical
dashed lines also labeled from 1 to 9 identifying the times of nine PPO boundaries (see below). Figure 3a then
shows the latitude of spacecraft periapsis (degrees) for each Rev (black dots), plotted at the time of periapsis,
together with the latitude range of each Rev (vertical bars). Figure 3b presents the PPO periods (in hours) deter-
mined from the magnetic field oscillations; the N (S) period is shown in blue (red). Figure 3c presents the N/S
amplitude ratio “k” of the oscillations within the core region of Saturn’s magnetosphere (equation (4)). In the
lower half of this panel the scale is linear in k from zero to unity, while in the top half of the panel the scale is
linear in 1/k from unity to zero (i.e., k from unity to infinity). It is only possible to determine k for equatorial orbits
where both oscillations are observed and for inclined orbits that also pass through the core magnetosphere.

Figures 3d and 3e present the phases of the oscillation in the S format (; — y;5) (N format (y; — y;5)), deter-
mined on a Rev-by-Rev basis as described in section 2. For the radial (r), colatitudinal (¢), and azimuthal phase
(p) components, the phases are shown in red, green, and blue, respectively. Phases observed within the core
magnetosphere are shown as filled circles, and phases observed within the S or N polar region are shown as
open circles. The phases are plotted with respect to a guide phase with a similar period as the oscillations, the
chosen S (N) guide period is 10.69 h (10.64 h).

Figure 3 demonstrates that in the postequinox interval there exist a number of abrupt transitions in the ampli-
tude of the oscillations together with apparent smaller jumps in period and phase [Provan et al., 2013]. These
have a cadence of ~100-200 days, with nine transitions having been observed between the beginning of
2011 and the end of 2014. They are identified as occurring between one periapsis Rev and the next, except
for boundary 8 where suitable N data were not available for Rev 206 and the boundary was then identified as
occurring between Rev 205 and Rev 207. In the postequinox interval the periapsis of two Revs are typically
separated by ~17-30days, and we define the transition times to occur at the midtime between the times
of two such periapsis. In previous papers [e.g., Andrews et al., 2012; Provan et al., 2013], these intervals have
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Figure 3. Plot showing PPO characteristics derived from magnetic field data throughout the Cassini mission versus time in days, from the equinox at 11 August 2009
(t=2049) to 1 March 2015 (t=4077) (with periods shown to the end of 2014, t =4017). Start-of-year and Cassini Rev markers are shown at the top of the plot. The
top bar shows the interval identifiers based on Cassini's trajectory consisting of near-equatorial orbits (blue bars) and highly inclined orbits (green bars), with the
intervals labeled from E to F. The second bar presents interval identifiers defined by the rapid transition in PPO behavior. The intervals are labeled 1-9, demarked by
vertical dashed lines also labeled from 1 to 9 marking the times of nine PPO boundaries. (a) Latitude of spacecraft periapsis (degrees) for each Rev (black dots),
plotted at the time of periapsis, together with the latitude range of each Rev (vertical bars). (b) Rotation periods for the southern (red line) and northern (blue) PPOs.
(c) The north/south magnetic oscillation amplitude ratio k (equation (4)), where in the lower half of the panel the scale is linear in k from zero to unity, while in
the upper half it is linear in 1/k between unity and zero (corresponding to k values between unity and infinity as indicated on the right side of the panel). (d) Magnetic
oscillation phase data (y; — y;5) plotted in southern format relative to a core region guide phase corresponding to a fixed period of 10.69 h where red, green, and blue
data correspond to the r, 6, and ¢ field components, respectively, while solid circles indicate phases derived from core region data and open circles indicate phases
derived from southern polar magnetic field data. (e) Magnetic oscillation phase data (y; — y;n) plotted in northern format, relative to a core region guide phase
corresponding to a fixed period of 10.64 h, where solid circles indicate phases derived from the same core region phase data as in Figure 3d and open circles indicate
phases derived from northern polar magnetic field data. Two full cycles of phase are plotted in the vertical axis of Figures 3d and 3e, with each data point being
plotted twice. The black lines in Figures 3d and 3e show the southern and northern PPO phases, respectively, based on fits to these data.

been labeled based both on Cassini’s trajectory combined with sequentially increasing numbers identifying
the PPO boundaries. For example, the start of F2 occurred at the second PPO transition observed when
Cassini is engaged in a series of polar orbits. However, with an ever increasing number of boundaries, this sys-
tem has become rather unwieldy and here we have therefore introduced a new simplified nomenclature
which is independent of Cassini’s trajectory. The first PPO transition time demarked the start of interval E2
in the old nomenclature. Before this time the periods and the phases were believed to change slowly over
time as presented in Andrews et al. [2008] and Provan et al. [2009a]. We here define this first PPO transition
as boundary 1, with interval 1 spanning the time period just prior to the 2009 equinox until boundary 1.
For simplicity the next interval is now called interval 2 with the interval ending at boundary 2. The next seven
boundaries and intervals are all labeled sequentially, and all nine intervals are identified in the second bar at
the top of Figure 3. The boundaries are labeled with numbers within black boxes, and all boundary times are
presented in Table 2.
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Table 2. Times of the PPO Boundaries (Where t=0 Is 00:00 UT on 1 January 2004)

Rev Before Rev After Time of Periapsis Time of Periapsis Boundary Boundary Time

Boundary Boundary Boundary Before Boundary (t) After Boundary (t) Time () (Year, Month, Day)
1 144 145 2587.12 2607.57 2597.35 2011,2,10

2 151 152 2769.34 279117 2780.25 2011, 8,12

3 163 164 3008.90 3026.71 3017.80 2012, 4,5

4 172 173 3189.62 3213.38 3202.50 2012,10,7

5 180 181 3319.23 3332.53 3325.88 2013,2,7

6 192 193 3451.25 3463.21 3457.23 2013, 6, 19

7 199 200 3622.97 3655.48 3639.21 2013,12,18
8 205 207 3819.30 3883.241 3851.27 2014,7,18

9 210 211 3994.88 4026.75 4010.82 2014, 12, 24

At the time of Saturn’s equinox in August 2009, the N and S oscillations had approximately equal amplitudes
within Saturn’s core magnetospheric region with k ~ 1. Boundary 1 occurred in mid-February 2011 (t = 2597 days).
It was characterized by a sharp resumption of southern amplitude dominance, with k~ 0.32, which was unex-
pected during the northern spring condition. Boundary 2 occurred toward the middle of 2011 and introduced
strong northern dominance for the first time in this data set with k> 5. During this time no S oscillations were
detectable in the equatorial magnetic data, such that no S phase or southern period is shown in the figure.
The lack of detectability of a separate southern oscillation in equatorial data is indicative that its amplitude
is more than 5 times less than that of the observed northern oscillations as reported by Provan et al. [2013].
Boundary 3 occurred at the start of Rev 164 in 2012, where for the first time in these data, the core region
amplitudes in all three field components were sufficiently low (~0.2-0.4 nT) that no phases could reliably
be determined. Over the following Revs, the amplitudes then recovered to more normal values such that
phases can once more be determined. During interval 4 the amplitude of the southern oscillations increased
and the amplitude of the northern oscillations decreased with respect to interval 3. However, the northern
oscillations were still dominant in the equatorial plane with k~ 1.5. Unexpectedly, weak south dominance
resumed in late 2012 and continued to at least mid-2013 with k ~ 0.8 for intervals 5 and 6. Due to the inclined
nature of the trajectories after this time, equatorial observations were no longer possible and so amplitude
ratios could not be determined.

During interval 8 the southern polar oscillations demonstrated unusual polarization behavior. As outlined in
section 2, in the southern polar region we expect to observe a quasi-dipolar field with the azimuthal field
component in leading quadrature with the radial and colatitudinal components. However, during interval
8, although the radial and colatitudinal phase components remained in phase, the azimuthal phase values
were approximately in phase with the radial and colatitudinal phases. This is an unexpected discovery and
will be explored in a subsequent paper. The period of the southern oscillations for interval 8 was therefore
only determined from the r and 6 component values. Further, it has not been possible to determine a
northern period for interval 8 due to the scattered northern phase values. We believe that this is due to
the nature of Cassini’s trajectory on these Revs, with periapsis close to the planet in the southern hemisphere
while apoapsis is in the northern hemisphere and predicted to be located beyond Saturn’s bow shock on
many Revs. The observed oscillations would then include a significant radial phase delay, with signatures
of magnetopause and bow shock crossings also present within the magnetic field data. By interval 9, which
ended in December 2014, the northern period was ~10.64 h and the southern period was ~10.68 h. Thus,
overall the two PPO periods remained fairly stable over intervals 1 to 9, albeit with abrupt changes in
southern period associated with abrupt changes in the relative amplitudes.

5. Solar and Solar Wind Data

In Figure 4 we present solar and solar wind data from the 2009 equinox (t = 2049 days) until 1 March 2015
(t=4077 days). Figure 4a again presents the PPO period as in Figure 3b, with the times of the nine boundaries
marked with dashed black lines. Figures 4b-4e present propagated solar wind data determined using a one-
dimensional MHD propagation of the solar wind measurements from 1 AU to Saturn using observations from
the two STEREO spacecraft and OMNI near-Earth solar wind data. The propagation method is described in
Tao et al. [2005]. In this plot, and throughout the paper, we have amalgamated the three propagated solar wind
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Figure 4. Plots show solar and solar wind data from the equinox at 11 August (2009) (t=2049) to 1 March 2015 (t = 4077).

2500 3000 3500 4000
t/days

Start-of-year and Cassini Rev markers are shown at the top of the plot. The top two bars present the interval identifiers as

in Figure 3. Labeled vertical dashed lines mark the times of the nine PPO boundaries. (a) Rotation periods for the southern (red
line) and northern (blue) PPOs as in Figure 3b. (b-e) Propagated solarwmd data with Figure 4b presenting solar wind dynamic
pressure Pgyn, (nPa), Flgure 4c the solar wind proton density np, (cm ™

radial velocity V, (kms™

OMNIWEB website; and (i) the time of X-class flares and their classification. For data sources see acknowledgments.
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measurements so that only measurements from the spacecraft with the smallest longitudinal separation
from Saturn are considered. Figure 4b shows solar wind dynamic pressure, Figure 4c the solar wind proton
density, and Figure 4d the y component of the interplanetary magnetic field (IMF), B, where the x axis points
radially outward from the Sun in the equatorial plane, the z axis points northward, and the y axis completes the
orthogonal triad. In Tao's propagation model the B, component of the magnetic field is assumed to be zero and
the B, component small and constant. Figure 4e presents the solar wind velocity in the radial direction, V,.
Figures 4f-4i present solar indices (no time delays have been added to these plots), where Figure 4f presents
the daily 10.7 cm solar radio flux index (F; ;) from the OMNI website. Figure 4g shows the daily mean irradiance
from diode 1 from the TIMED/SEE XUV photometer system from ~0.1 to 7 nm (http://lasp.colorado.edu/lisird/
see/level2/2_xps.html). Figure 4h presents the daily sunspot number, as in Figure 2b, also from the OMNI
website, and Figure 4i presents the time of X-class flares and their classification from the GOES satellite
(ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/).

Both the solar and the propagated solar wind data presented in Figure 4 show the expected variation over
the course of a solar rotation (~27 days). However, this study will primarily focus on longer-term variations
in the solar activity as the transitions in PPO behavior have a cadence of ~100-200 days. We note that this
is considerably longer than both the 10-30 day SKR variations noted by Zarka et al. [2007] and the ~5 day
typical cadence of Saturn auroral storms estimated by Meredith et al. [2014]. In particular, we will examine
whether changes in the PPO behavior are associated with enhanced solar radiation emitted during an
unusually powerful solar flare and/or a solar wind disturbance. An example of a solar wind disturbance would
be a coronal mass ejection (CME) which triggers an interplanetary shock [see, e.g., Prangé et al., 2004; Prise
et al.,, 2015]. It is clear that both solar flares and CME often occur together [e.g., Greenstadt, 1965], although
each can take place in the absence of the other. This can make it difficult to untangle whether it is solar flare
or the shock that may be perturbing the PPO characteristic. However, if a flare and a CME occur simulta-
neously, then their propagation time to Saturn will help identify a possible driver, as solar radiation takes
~80 min to reach Saturn, while an interplanetary shock will take around a month which is the approximate
time of a solar rotation [see, e.g., Prangé et al., 2004; Prise et al., 2015]. This also means that the errors in time
associated with predicting the arrival time of a shock are much larger than the errors in determining the arri-
val time of enhanced solar radiation associated with a solar flare on the same system. Based on the solar wind
observations by the Ulysses spacecraft at ~5 AU from the Sun, Tao et al. [2005] estimated that the arrival pre-
diction error of the MHD simulation is at most 2 days for an Earth-Sun-observer angle less than 60°. A statis-
tical analysis by Zieger and Hansen [2008] of the propagated upstream solar wind data from 1 AU near Earth to
10 AU estimated the accuracy of shock arrival times to be as high as 10-15 h within £75 days from apparent
opposition during years with high recurrence index (so when Earth and the spacecraft were separated by less
than +75° in longitude). The error estimates from Zieger and Hansen [2008] and Tao et al. [2005] were calcu-
lated when they used only one Earth-based solar wind monitor. For this study we use solar wind measure-
ments both from an Earth-based monitor and also from the two STEREO spacecraft, significantly increasing
the number of days for which the solar wind monitor is within a conducive narrow angular range of Saturn.

From a visual inspection of Figure 4 we note that there are clear increases in solar indices coinciding with the
commencement of the change in PPO behavior (at the time of the first PPO boundary). Below we will present
a statistical study of the solar wind and solar conditions associated with the nine boundaries. First, we will
present a case study of boundary 3, allowing an abrupt change in PPO behavior and associated solar activity
to be examined in detail.

6. Case Study of Boundary 3

Here we present a case study of boundary 3, separating intervals 3 and 4. Boundary 3 occurs between periapsis
on Rev 163 (t=3008.9 days) and periapsis on Rev 164 (t =3026.71 days), such that the boundary time is identi-
fied as t=3017.8+ 10days (5 April 2012). Interval 3 is the first interval during which the N oscillations are
dominant within the equatorial core region (k>5), and no S oscillations were detectable within the core region.
During interval 4 the N dominance continues but to a lesser extent (k~ 1.56), though both the N and the S
oscillations are suppressed at the start of interval 4. The trajectories for these Revs 163 and 164 are almost identical,
both being near equatorial, Figure 5 presents the trajectory for Revs 163-165. The orbits are projected onto
Saturn’s equatorial plane using KSMAG coordinates where the Z axis is aligned with Saturn’s magnetic and
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Figure 5. Cassini’s trajectory for (a) Rev 163, (b) Rev 164, and (c) Rev 165 projected onto Saturn’s equatorial X-Y plane in KSMAG coordinates. The orbits are color
coded to show the plasma regions observed, namely, the solar wind (green), hot solar wind (light green), magnetosheath (red), and magnetosphere (blue). The
position of Cassini at 3 day intervals is shown on the plots with solid black circles, and these times are presented on the plots. Overplotted are related magnetopause
locations determined from the model of Kanani et al. [2010] and the bow shock location from Masters et al. [2008]. Specifically, in Figure 5a the blue line shows the
magnetopause boundary for Pyyp, =0.015 nPa while the dashed black line shows the bow shock location for Pyyp, = 0.03 nPa. In Figure 5b the pink line shows the
magnetopause location for Pgyn, = 0.15 nPa, while the dashed black line shows the bow shock location for Pgy, = 0.1 nPa. In Figure 5c the magnetopause boundary is
presented as a dotted green line at its minimum possible standoff distance for Pgyn =0.0027 nPa. (d) A summary of the position of the magnetopause boundaries
during Revs 163-165 for Pyy, =0.015 nPa Rev 163 (blue), P4y, =0.15 nPa Rev 164 (pink), and Py, = 0.0027 nPa Rev 165 (green).

rotational axis, the X-Z plane contains the Sun, and Y completes the right-hand set. Revs 163-165 are
near-equatorial Revs, and so we only present the orbit trajectory in the X-Y plane. The trajectories are
color coded to show different regions identified on the basis of Cassini Plasma Spectrometer/electron spec-
trometer (CAPS/ELS) plasma electron data and magnetic field data, where green corresponds to the solar
wind, light green to “hot solar wind,” red to the magnetosheath, and blue to the magnetosphere. Modeled
magnetopause boundaries [Kanani et al., 2010], congruent to the observed locations, are overplotted as a
solid blue line in Figure 5a, a solid pink line in Figure 5b, and a dotted green line in Figure 5¢, with all three
boundaries being presented in Figure 5d. Modeled bow shock locations [Masters et al., 2008] are overplotted
in Figures 5a and 5b with dashed black lines. The identification of the different plasma regimes and magne-
topause and bow shock boundaries are described below.

Figure 6 presents Cassini data from a few days prior to periapsis on Rev 163 to a few days after periapsis on Rev
164. The two periapses are labeled at the top of the plot. Figure 6a shows the electron spectrogram color coded
according to the scale on the right covering the energy range 0.6 eV to 28 keV obtained by the ELS sensor of the
Cassini Plasma Spectrometer [Young et al., 2004]. Figures 6b-6g show magnetic field data obtained by the
Cassini fluxgate magnetometer [Dougherty et al.,, 2004], specifically three pairs of panels showing residual
and filtered data for each of the radial (r), colatitudinal (#), and azimuthal (¢) spherical polar field components
referenced to Saturn’s spin and magnetic axis. The upper panel of each pair shows 1 min residual field data with
the internal field of the planet subtracted using the “Cassini SOI” model [Dougherty et al., 2005]. The lower panel
of each pair shows the filtered residual data, where we have used band-pass filters between periods of 5 and
20h. It is from the ELS data, in conjunction with the magnetic field data, that we have identified the different
plasma regimes. These regimes are color coded in the bar at the top of the plot using the same region identi-
fiers introduced for Figure 5. The solid black lines demark the two intervals of observations from Saturn’s core
magnetosphere from which core phases were determined for Rev 163 and Rev 164, as shown in Figure 3.

Rev 163 demonstrates the strong northern dominance of the oscillations, with the r and & components in
antiphase and the r component in leading quadrature with the ¢ component. Rev 164 is then very unusual
in showing only small oscillations to be present in all three field components. As a consequence, the phase
data in all three components are deemed to be unreliable, as described by Provan et al. [2013]. Clearly, the
change in PPO behavior occurs between periapsis on Rev 163 and periapsis on Rev 164, such that at the time
boundary 3 is defined as t=3017.8 days (5 April 2012), which is the midtime between these two periapses.

In order to gain a greater understanding of the magnetospheric, solar and solar wind conditions associated
with this change in behavior, Figure 7 presents data from the start of Rev 162 to the end of Rev 165. Figure 7a
presents the CAPS/ELS data, while Figures 7b-7g show the residual and the filtered residual magnetic field
data for the r (Figures 7b and 7c), € (Figures 7d and 7e), and ¢ (Figures 7f and 7g) components. Figure 7h
presents the solar wind dynamic pressure which has been propagated to Saturn as described in section 5,
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Figure 6. Plot of Cassini plasma electron and magnetic field data from 5 days prior to periapsis for Rev 163 (22 March 2012,
t=3003 days) to 5 days after periapsis on Rev 164 (19 April 2012, t = 3031 days). The two periapses are labeled at the top of
the plot. The top bar indicates the different plasma regimes, color coded as in Figure 5. (a) Electron spectrogram color
coded according to the scale on the right and (b—g) three pairs of magnetic field data panels for the radial (r), colatitudinal
(0), and azimuthal (p) spherical polar field components referenced to the planet’s spin and magnetic axis (nT). The upper
panel in each pair shows the residual field component with the Cassini SOl model of the planetary field subtracted, while
the lower panel shows this residual component band pass filtered between periods of 5 and 20 h. The solid vertical black
lines demark the two intervals of data from Saturn’s core magnetosphere (dipole L < 12 R,) for Revs 163 and 164 whose
analysis yields the core phases for these two Revs. The dashed black line indicates the time of boundary 3.

while Figure 7i shows the daily mean irradiance in XUV from TIMED, as in Figures 4b and 4g, respectively. The
top bar identifies the different plasma regimes, in the same format as Figures 5 and 6. At t ~ 3018 days Cassini
abruptly starts to observe hot solar wind, suggestive of a solar wind disturbances reaching Saturn’s magne-
topause boundary. Figure 7h demonstrates that between periapsis on Rev 163 and periapsis on Rev 164 there
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Figure 7. (a—g) Cassini plasma electron and magnetic field data as in Figure 6, here from the start of Rev 162 (1 March 2012, t = 2982 days) to the end of Rev 165
(11 May 2012, t=3053 days). The top bar shows the different plasma regimes, color coded as in Figures 5 and 6. (h and i) The propagated solar wind dynamic
pressure and the daily mean irradiance in XUV. The dashed black and white line demarks the time of boundary 3.

are four clear peaks in the predicted solar wind dynamic pressure signaling the arrival of four solar wind
compression events at Saturn’s magnetopause. After the fourth compression event the solar wind dynamic
pressure falls to extremely low values.

Saturn and Earth were in opposition on t=3027 days (15 April 2012); hence, any interplanetary shock should
successively encounter Earth and then Saturn when propagating radially outward. Prangé et al. [2004]
presented a case study of an interplanetary shock propagation which took approximately a month to propa-
gate from the Sun to Saturn at a time of opposition (i.e., propagating ~10 AU at ~600 km s~ '). It was reported
(for example, in the NOAA weekly report http://www.swpc.noaa.gov/) that four large flares were observed
between t=2986 and 2991 days (5-10 March 2012), and all four flares were associated with earthward direc-
ted CMEs. One of the four flares was a massive 5.4 X-ray flare which occurred on t=2988 days (7 March 2012),
as also presented in Figure 4i. These are likely the four solar wind compressions that are predicted to arrive at
Saturn between the periapsis of Rev 163 and the periapsis of Rev 164.

In Figure 8 we explore these large flares, in particular the 5.4 X-ray flare, and demonstrate how these impinge on
the Saturnian environment. Figure 8a shows solar flare activity observed on t =2988 days (7 March 2012) by the
SWAP EUV telescope on board the PROBA2 spacecraft (http://proba2.oma.be/data/SWAP) [Seaton et al., 2013].
PROBA2 is in a Sun-synchronous Earth orbit. Figure 8b shows the GOES X-ray flux from t=2984-2991 days
(3 to 10 March 2012). The GOES satellites are in geosynchronous orbits and provide measurements of solar
X-rays in the 0.1-0.8 nm and 0.05-0.4 nm passbands (http://www.swpc.noaa.gov/products/goes-x-ray-flux).
The GOES data were plotted using the website http://www.polarlicht-vorhersage.de/goes_archive. The four
large flares are clearly visible in the data. Figure 8c presents the location of the Sun, the Earth (green circle),
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Figure 8. (a) Solar flare activity observed on 7 March 2012 (t = 2988 days) by the SWAP telescope on board the PROBA2 spacecraft in Sun-synchronous orbit around
Earth; (b) the GOES X-ray flux from 3 to 10 March 2012 (t = 2984-2991 days); (c) the location of the Sun, the Earth (green circle), the STEREO spacecraft (red and blue
circles), and Jupiter and Saturn in the X-Y helio-ecliptic plane on 7 March 2012 (t = 2988) from STEREO Science Center (http://stereo-ssc.nascom.nasa.gov/where.
shtml); and (d) the magnetic field measurements from 3 to 14 March 2012 (t = 2984-2995) from the ACE spacecraft at the L1 Lagrange point. The approximate times
of the four CMEs are identified on the plot with dashed black lines.

the STEREO spacecraft (red and blue circles), and Jupiter and Saturn in the X-Y helio-ecliptic plane on t = 2988 days
(7 March 2012) plotted using http://stereo-ssc.nascom.nasa.gov/where.shtml. Earth and Saturn are separated
by ~38° on this day (with their angular separation ranging from ~42° to ~35° from 3 to 10 March 2012). Figure 8d
presents the ACE magnetic field measurements from t =2984-2995 days (3 to 14 March 2012); the succession of
four CMEs is clearly observable in the magnetic field data, and their approximate times are identified on the plot
with dashed black lines.

The four solar wind compressions that are predicted to arrive at Saturn between the periapsis of Rev 163 and
the periapsis of Rev 164 occur contemporaneously with a marked reduction in the size of Saturn’s magneto-
sphere. The trajectory data that are presented in Figure 5 are color coded to show the various magneto-
spheric regions. We also show the modeled magnetopause [Kanani et al., 2010] and bow shock [Masters
et al., 2008] boundaries. The magnetopause boundaries are presented in blue for Rev 163, pink for Rev
164, and green for Rev 165. The magnetopause boundary for Rev 163 corresponds to a dynamic pressure
of Payn=0.015nPa, corresponding to the magnetopause location observed both on Rev 163 inbound and
Rev 163 outbound. The position of the bow shock corresponds to Pgy,=0.03 nPa. For Rev 164 both the
magnetopause and the bow shock boundaries have moved sharply inward, demonstrating a significant com-
pression of the Saturn’s magnetosphere. This is observed contemporaneously with the four high dynamic
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Figure 9. Percentage occurrence histograms of (a) solar wind dynamic pressure, (b) solar wind density, (c) IMF |By|, and (d)
solar wind V,, for eight PPO boundaries for three separate time intervals spanning 10-60 days before the PPO boundary
(blue line), 10 days before to 10 days after the PPO boundary (red line), and 10-60 days after the boundary (green line). The
mean value of the data within each interval is indicated by a color-coded arrow in the top of the plot. The parameters
are shown on a log scale with log spaced data bins.

pressure events arriving at Saturn. The magnetopause boundary is consistent with Py, =0.15 nPa, while the
bow shock location is calculated for Py, = 0.1 nPa. The peak-propagated solar wind dynamic pressure for Rev
164 is Pyyn, = 0.16 nPa. After periapsis on Rev 164 the propagated solar wind dynamic pressure falls to very low
levels. It can be seen that Saturn’s magnetosphere expands sharply with Cassini remaining within the mag-
netosphere throughout the 164/165 apoapses. In Figure 5c¢ the position of the magnetopause during Rev 165
is shown at its minimum standoff distance consistent with Pgy, <0.0027 nPa, drawn as a dotted line.
Figure 5d presents a summary of the position of the magnetopause boundaries during Revs 163-165,
showing how the standoff distance of the subsolar magnetopause varies by at least 15 R; between Rev 163
and Rev 165 as Saturn’s magnetosphere first rapidly contracts and then expands.

In conclusion, boundary 3 occurs at a time of rapid and significant changes in the size of Saturn’s magneto-
sphere, observed contemporaneously with the arrival of solar wind compressions and expansions at Saturn’s
magnetopause. In the following section we will present a statistical study to examine whether this may be
more generally the case over all the PPO boundaries examined in this study.

7. Statistical Study

We have performed a superposed epoch analysis on the propagated solar wind data from 2 months prior to
each PPO boundary until 2 months after. Unfortunately, because boundary 9 occurred on the t=4010.8 days
(24 December 2014), and we only have propagated solar wind data up to the end of 2014, boundary 9 has not
been included in this analysis. For each of the remaining eight boundaries the solar wind data have been
divided into three separate intervals (a) from 60 to 10 days prior to each boundary, (b) from 10days prior
to each boundary to 10 days after, and (c) from 10 to 60 days after each boundary. Considering the solar wind
conditions over a 20 day period centered on a PPO boundary allows for the uncertainties associated with
identifying the boundary times. As these times are defined as the midpoint between two periapses which
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Figure 10. Percentage occurrence histograms of (a) the total XUV solar irradiance, (b) the Fyq 7 index, and (c) the sunspot
number for the PPO boundaries 1-8. The format is similar to Figure 9, although here each parameter is shown on a linear
scale with linearly spaced data bins.

are separated by ~20 days, their uncertainty is +10 days. Considering intervals of 60 days on either side of a
particular boundary generally means that it will not include related conditions around adjacent boundaries,
such that the data for each are separated.

Figure 9 presents normalized histograms showing the percentage distributions of (a) solar wind dynamic
pressure, (b) solar wind density, (c) IMF |B,|, and (d) solar wind V, for the three time intervals. The data are
presented on a logarithmic scale with log space data bins. Data observed 10 to 60 days before each boundary
are shown in blue, data observed 10 days prior to 10 days after each boundary are shown in red, and data
observed 10-60 days after each boundary are shown in green. The mean value of the data for each binned
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time interval is indicated by a color-coded arrow at the top of the plot. Inspection of Figure 9 clearly demon-
strates that the histograms for the solar wind dynamic pressure, solar wind density, and IMF |B,| are displaced
toward larger values for the days centered on the PPO boundaries, as opposed to the data observed before or
after each boundary. This is also clearly indicated by the mean values of the parameters. Figure 9d demon-
strates that the solar wind velocity, V,, has very similar distributions and mean values before, during, and after
the boundaries. Thus, solar wind density, rather than the solar wind velocity, appears to be the key parameter
in enhancing the solar wind dynamic pressure during the PPO boundaries.

Figure 10 presents a similar analysis performed for the solar indices shown in Figure 4. We present percen-
tage occurrence histograms of (a) the XUV irradiance, (b) F107 index, and (c) sunspot number. Here the data
are presented on a linear scale. The solar indices observed during the PPO boundaries do not present a mark-
edly different behavior in comparison to the solar indices observed 60-10days before the boundaries.
However, all three indices are enhanced after the PPO boundaries. This might indicate an increase in solar
activity prior to a forthcoming PPO boundary. All in all, the solar wind events associated with the PPO bound-
aries revealed by the case study in section 6 and the superposed epoch study presented here thus appear to
be initiated in the ~30 day propagation interval prior to the emergence of new solar active regions that give
rise to enhancements in the X-ray and radio flux and sunspot numbers in the following interval, as can be
seen to be often, if not invariably, the case in Figure 4.

8. Summary and Conclusions

In this paper we have studied abrupt changes in the behavior of the PPOs identified in the postequinox inter-
val. We have presented evidence that the amplitudes and periods of the PPOs are, at least in part, controlled
by conditions external to the Saturnian system by demonstrating that the sharp change in their characteris-
tics appears to be associated with abrupt variations in the size of the Saturian magnetosphere associated with
the arrival of interplanetary shocks at Saturn’s magnetosphere. Further, we report that while such modula-
tions in PPO behavior are associated with enhanced values of solar wind dynamic pressure and solar wind
density, they are not associated with discernibly enhanced values of solar wind speed, indicating that the
solar wind density appears to be the key parameter in influencing changes in PPO behavior. We further report
that all three indices of solar activity considered in this paper, sunspot number, XUV radiation, and the F;¢
index, show similar values before and during the PPO boundaries but demonstrate enhanced values in the
interval 10-60 days after the PPO boundaries. The PPO boundaries are separated ~100-200 days. It therefore
seems likely that this enhanced solar activity heralds the emergence of new solar active region, resulting in
the enhanced solar wind density and dynamic pressure which are observed during the PPO boundaries.

There have been previous reports of correlations between variations in SKR period and power with solar
wind parameters. Zarka et al. [2007] reported a correlation between short-term (<1 month) variations in
SKR period with solar wind velocity and suggested a probable similar relationship for longer-term
(>1 month) variations. Desch and Rucker [1983, 1985] reported a strong relationship between solar wind
density and emitted SKR power. However, this report was concerned with variations with cadence of
~5-10 days which is the typical cadence of Saturn auroral storms estimated by Meredith et al. [2014]. The
observations of Zarka et al. [2007] were made during the declining phase of the solar cycle when the solar
wind had a high recurrence index due to the prevalence of corotating interacting regions. The study by
Desch and Rucker [1983] and the one presented here were both performed during a time of increased solar
activity when CMEs would be prevalent in the solar wind. Our results demonstrate the importance of taking
into account the nature of the solar wind on solar cycle timescales when considering the relationship
between the solar wind and the Saturnian magnetosphere.

Next, we will consider how changes in solar wind density may be affecting the PPOs. Hunt et al. [2014] have
reported PPO modulations of the southern hemisphere field-aligned current system. Further work by Hunt
et al. [2015] provided the first evidence of interhemispheric PPO-related field-aligned currents, as previously sug-
gested by Southwood and Kivelson [2007]. Badman et al. [2015] reported a solar wind compression impacting on
Saturn’s magnetosphere, describing an enhancement in the northern hemisphere field-aligned currents at the
time of this solar wind compression. The results presented in this paper raise the possibility that the field-aligned
currents are modified by the expansion and contraction of the Saturnian magnetosphere in response to solar
wind compressions and expansions—resulting in modification in the amplitudes and the periods of the PPOs.
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This paper suggests several new avenues of further research. The first is that although we present evidence
that the solar wind density is associated with changes in the behavior of the PPOs, it is clear from Figure 4 that
not all increases in density are related to changes in the behavior of the PPOs. It is possible that since we are
propagating the solar wind over 10 AU, there are times when the model does not fully reflect the behavior of
the solar wind at Saturn. It is also likely that a second unknown parameter is involved that also influences how
susceptible Saturn’s PPOs are to modulation of the solar wind density. It is undoubtedly true that Saturn’s
magnetospheric dynamics is influenced by several different drivers. Kimura et al. [2013] suggested that at
Saturn solar wind variations on solar cycle timescale affect the long-term magnetosphere-ionosphere cou-
pling process on top of the baseline of the seasonal variations. This would seem to agree with the results
presented here where we have observed a seasonal cause of the north-south asymmetry in the PPO periods
seemingly associated with solar illumination and the abrupt changes in PPO behavior associated solar wind
compressions and expansions. Interplay between different drivers may explain the previous results of Provan
et al. [2013], who reported that while postequinox PPO transitions occur simultaneously in the two hemi-
spheres, they often result in variations that are in antiphase in the two hemispheres, especially for the ampli-
tude variations. For example, at boundary 1 the southern amplitude and period increase while the northern
amplitude and period decrease. At boundary 2 the southern amplitude decreases sharply while the northern
amplitude increases. Interestingly, at boundary 3 both the northern and the southern amplitudes are initially
suppressed. As these abrupt changes are related to large-scale variation in the size of the Saturnian magneto-
sphere, this begs the question as to why such a seemingly global Saturnian event does not consistently lead
to changes in PPOs behavior that are in phase between the two hemispheres, e.g., the amplitudes of the
PPO oscillations increasing or decreasing simultaneously in both the northern and southern hemispheres.
Seasonal variations in Saturn’s atmosphere between the planet’s two hemispheres may be one possible
explanation for such antiphase responses and will be an avenue for further research.

References

Andrews, D. J,, E. J. Bunce, S. W. H. Cowley, M. K. Dougherty, G. Provan, and D. J. Southwood (2008), Planetary period oscillations in Saturn’s
magnetosphere: Phase relation of equatorial magnetic field oscillations and SKR modulation, J. Geophys. Res., 113, A09205, doi:10.1029/
2007JA012937.

Andrews, D. J.,, S. W. H. Cowley, M. K. Dougherty, and G. Provan (2010a), Magnetic field oscillations near the planetary period in Saturn’s
equatorial magnetosphere: Variation of amplitude and phase with radial distance and local time, J. Geophys. Res., 115, A04212,
doi:10.1029/2007JA014729.

Andrews, D. J., A. J. Coates, S. W. H. Cowley, M. K. Dougherty, L. Lamy, G. Provan, and P. Zarka (2010b), Magnetospheric period oscillations at
Saturn: Comparison of equatorial and high-latitude magnetic field periods with north and south SKR periods, J. Geophys. Res., 115, A12252,
doi:10.1029/2010JA015666.

Andrews, D. J., S. W. H. Cowley, M. K. Dougherty, L. Lamy, G. Provan, and D. J. Southwood (2012), Planetary period oscillations in Saturn’s
magnetosphere: Evolution of magnetic oscillation properties from southern summer to post-equinox, J. Geophys. Res., 117, A04224,
doi:10.1029/2011JA017444.

Badman, S. V., S. W. Cowley, L. Lamy, B. Cecconi, and P. Zarka (2008), Relationship between solar wind corotating interaction regions and the
phasing and intensity of Saturn kilometric radiations bursts, Ann. Geophys., 26, 3641-3651.

Badman, S. V., et al. (2012), Rotational modulation and local time dependence of Saturn’s infrared H3+ auroral intensity, J. Geophys. Res., 117,
A09228, doi:10.1029/2012JA017990.

Badman, S. V., et al. (2015), Saturn’s auroral morphology and field-aligned currents during a solar wind compression, Icarus, doi:10.1016/
jicarus.2014.11.014, in press.

Burch, J. L, A. D. DeJong, J. Goldstein, and D. T. Young (2009), Periodicity in Saturn's magnetosphere: Plasma cam, Geophys. Res. Lett., 36,
L14203, doi:10.1029/2009GL039043.

Burton, M. E,, M. K. Dougherty, and C. T. Russell (2010), Saturn’s internal planetary magnetic field, Geophys. Res. Lett., 37,1.24105, doi:10.1029/
2010GL045148.

Carbary, J. F,, and S. M. Krimigis (1982), Charged particle periodicity in the Saturnian magnetosphere, Geophys. Res. Lett., 9, 1073-1076,
doi:10.1029/GL009i009p01073.

Carbary, J. F., D. G. Mitchell, S. M. Krimigis, and N. Krupp (2007), Electron periodicities in Saturn’s outer magnetosphere, J. Geophys. Res., 112,
A03206, doi:10.1029/2006JA012077.

Carbary, J. F,, D. G. Mitchell, P. Brandt, C. Paranicas, and S. M. Krimigis (2008a), ENA periodicities at Saturn, Geophys. Res. Lett., 35,L07102,
doi:10.1029/2008GL033230.

Carbary, J. F., D. G. Mitchell, P. Brandt, E. C. Roelof, and S. M. Krimigis (2008b), Periodic tilting of Saturn’s plasma sheet, Geophys. Res. Lett., 35,
L24101, doi:10.1029/2008GL036339.

Cecconi, B., and P. Zarka (2005), Model of a variable radio period for Saturn, J. Geophys. Res., 110, A12203, doi:10.1029/2005JA011085.

Clarke, K. E., et al. (2006), Cassini observations of planetary-period oscillations of Saturn’s magnetopause, Geophys. Res. Lett., 33, L23104,
doi:10.1029/2006GL027821.

Cowley, S. W. H., D. M. Wright, E. J. Bunce, A. C. Carter, M. K. Dougherty, G. Giampieri, J. D. Nichols, and T. R. Robinson (2006), Cassini
observations of planetary-period magnetic field oscillations in Saturn’s magnetosphere: Doppler shifts and phase motion, Geophys. Res.
Lett., 33, L07104, doi:10.1029/2005GL025522.

Davies, M. E., V. K. Abalakin, J. H. Lieske, P. K. Seidelmann, A. T. Sinclair, A. M. Sinzi, B. A. Smith, and Y. S. Tjuflin (1983), Report of the IAU
Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1982, Celestial Mech., 29, 309-321.

PROVAN ET AL.

SOLAR WIND CONTROL OF PPOS 9542


http://dx.doi.org/10.1080/10407782.2012.672898
http://dx.doi.org/10.1080/10407782.2012.672898
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/
http://dx.doi.org/10.1029/2005JC003136
http://dx.doi.org/10.1029/2005GL023112
http://dx.doi.org/10.1002/qj.2063
http://www.polarlicht-vorhersage.de/goes_archive
http://www.polarlicht-vorhersage.de/goes_archive
http://dx.doi.org/10.1088/0950&hyphen;7671/27/2/306
http://stereo-ssc.nascom.nasa.gov/where.shtml
http://stereo-ssc.nascom.nasa.gov/where.shtml
http://dx.doi.org/10.1109/T&hyphen;AIEE.1946.5059235
http://dx.doi.org/10.1029/2012GL053055
http://dx.doi.org/10.1016/j.dsr2.2004.12.014
http://dx.doi.org/10.1038/ngeo362
http://dx.doi.org/10.1175/1520&hyphen;0485(1984)014<0318:DSFCMO>2.0.CO;2
http://dx.doi.org/10.1029/2004JC002817
http://dx.doi.org/10.1016/S1474&hyphen;7065(02)00078&hyphen;5
https://pds.jpl.nasa.gov/
https://pds.jpl.nasa.gov/
http://lasp.colorado.edu/lisird/see/level2/2_xps.html
http://lasp.colorado.edu/lisird/see/level2/2_xps.html
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/
http://omniweb.gsfc.nasa.gov/form/dx1.html
http://omniweb.gsfc.nasa.gov/form/dx1.html
http://stereo-ssc.nascom.nasa.gov/where.shtml
http://stereo-ssc.nascom.nasa.gov/where.shtml
http://stereo-ssc.nascom.nasa.gov/where.shtml
http://www.polarlicht-vorhersage.de/goes_archive/
http://www.polarlicht-vorhersage.de/goes_archive/
http://cdaweb.gsfc.nasa.gov/cgi-bin/eval3.cgi
http://cdaweb.gsfc.nasa.gov/cgi-bin/eval3.cgi
http://cdaweb.gsfc.nasa.gov/cgi-bin/eval3.cgi
http://proba2.oma.be/about/SWAP
http://proba2.oma.be/about/SWAP
http://amda.cdpp.eu
http://amda.cdpp.eu

@AG U Journal of Geophysical Research: Space Physics 10.1002/2015JA021642

Desch, M. D. (1982), Evidence for solar wind control of Saturn radio emission, J. Geophys. Res., 87, 4549-4554, doi:10.1029/JA087iA06p04549.

Desch, M. D., and M. L. Kaiser (1981), Voyager measurement of the rotation period of Saturn’s magnetic field, Geophys. Res. Lett., 8, 253-256,
doi:10.1029/GL008i003p00253.

Desch, M. D., and H. O. Rucker (1983), The relationship between Saturn kilometric radiation and the solar wind, J. Geophys. Res., 88,
8999-9006, doi:10.1029/JA088iA11p08999.

Desch, M. D., and H. O. Rucker (1985), Saturn radio emissions and the solar wind: Voyager-2 studies, Adv. Space Res., 15(4), 333-336.

Dougherty, M. K, et al. (2004), The Cassini magnetic field investigation, Space Sci. Rev., 114, 331-383, d0i:10.1007/511214-004-1432-2.

Dougherty, M. K, et al. (2005), Cassini magnetometer observations during Saturn orbit insertion, Science, 307, 1266-1270.

Espinosa, S. A, and M. K. Dougherty (2000), Periodic perturbations in Saturns magnetic field, Geophys. Res. Lett., 27, 2785-2788, doi:10.1029/
2000GL000048.

Galopeau, P.H. M., and A. Lecacheux (2000), Variations of Saturn’s radio rotation period measured at kilometer wavelengths, J. Geophys. Res.,
105, 13,089-13,101, doi:10.1029/1999JA005089.

Greenstadt, E. W. (1965), Interplanetary magnetic effects of solar flares: Explorer 18 and Pioneer 5, J. Geophys. Res., 70, 5451-5452,
doi:10.1029/J2070i021p05451.

Gurnett, D. A, W. S. Kurth, and F. L. Scarf (1981), Plasma waves near Saturn: Initial results from Voyager 1, Science, 212, 235-239.

Gurnett, D. A, et al. (2005), Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit, Science, 307, 1255-1259.

Gurnett, D. A, A. M. Persoon, W. S. Kurth, J. B. Groene, T. F. Averkamp, M. K. Dougherty, and D. J. Southwood (2007), The variable rotation
period of the inner region of Saturn’s plasma disk, Science, 316, 442-445, doi:10.1126/science.1138562.

Gurnett, D. A, A. Lecacheux, W. S. Kurth, A. M. Persoon, J. B. Groene, L. Lamy, P. Zarka, and J. F. Carbary (2009a), Discovery of a north-south
asymmetry in Saturn’s radio rotation period, Geophys. Res. Lett., 36, L16102, doi:10.1029/2009GL039621.

Gurnett, D. A, A. M. Persoon, J. B. Groene, A. J. Kopf, G. B. Hospodarsky, and W. S. Kurth (2009b), A north-south difference in the rotation rate
of auroral hiss at Saturn: Comparison to Saturn’s kilometric radio emission, Geophys. Res. Lett., 36, L21108, doi:10.1029/2009GL040774.

Gurnett, D. A, et al. (2010a), A plasmapause-like density boundary at high latitudes in Saturn’s magnetosphere, Geophys. Res. Lett., 37,
L16806, doi:10.1029/2010GL044466.

Gurnett, D. A, J. B. Groene, A. M. Persoon, J. D. Menietti, S.-Y. Ye, W. S. Kurth, R. J. MacDowell, and A. Lecacheux (2010b), The reversal of the
rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox, Geophys. Res. Lett., 37,
L24101, doi:10.1029/2010GL045796.

Hunt, G. J,, S. W. H. Cowley, G. Provan, E. J. Bunce, I. |. Alexeev, E. S. Belenkaya, V. V. Kalegaev, M. K. Dougherty, and A. J. Coates (2014),
Field-aligned currents in Saturn’s southern nightside magnetosphere: Subcorotation and planetary period oscillation components,

J. Geophys. Res. Space Physics, 119, 9847-9899, doi:10.1002/2014JA020506.

Hunt, G. J,, S. W. H. Cowley, G. Provan, E. J. Bunce, I. |. Alexeev, E. S. Belenkaya, V. V. Kalegaev, M. K. Dougherty, and A. J. Coates (2015),
Field-aligned currents in Saturn’s southern nightside magnetosphere: Field-aligned currents in Saturn’s northern nightside magneto-
sphere—Evidence for interhemispheric current flow associated with planetary period oscillations, J. Geophys. Res. Space Physic, 120,
doi:10.1002/2015JA021454.

Kaiser, M. L., M. D. Desch, J. W. Warwick, and B. Pearce (1980), Voyager detection of nonthermal emission from Saturn, Science, 209, 1238-1240.

Kanani, S. J., et al. (2010), A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument
Cassini measurements, J. Geophys. Res., 115, A06207, doi:10.1029/2009JA014262.

Kimura, T., et al. (2013), Long-term modulations of Saturn’s auroral radio emissions by the solar wind and seasonal variations controlled by
solar ultraviolet flux, J. Geophys. Res. Space Physics, 118, 7019-7035, doi:10.1002/2013JA018833.

Krupp, N., et al. (2005), The Saturnian plasma sheet as revealed by energetic particle measurements, Geophys. Res. Lett., 32, L20S03,
doi:10.1029/2005GL022829.

Kurth, W. S., A. Lecacheux, T. F. Averkamp, J. B. Groene, and D. A. Gurnett (2007), A Saturn longitude system based on a variable kilometric
radiation period, Geophys. Res. Lett., 34, L02201, doi:10.1029/2006GL028336.

Kurth, W. S, T. F. Averkamp, D. A. Gurnett, J. B. Groene, and A. Lecacheux (2008), An update to a Saturnian longitude system based on
kilometric radio emissions, J. Geophys. Res., 113, A05222, doi:10.1029/2007JA012861.

Lamy, L., R. Prangé, W. Pryor, J. Gustin, S. V. Badman, H. Melin, T. Stallard, D. G. Mitchell, and P. C. Brandt (2013), Multispectral diagnosis of
Saturn’s aurorae throughout a planetary rotation, J. Geophys. Res. Space Physics, 118, 4817-4843, doi:10.1002/jgra.50404.

Masters, A., N. Achilleos, M. K. Dougherty, J. A. Slavin, G. B. Hospodarsky, C. S. Arridge, and A. J. Coates (2008), An empirical model of Saturn’s
bow shock: Cassini observations of shock location and shape, J. Geophys. Res., 113, A10210, doi:10.1029/2008JA013276.

Meredith, C. J,, S. W. H. Cowley, and J. D. Nichols (2014), Survey of Saturn auroral storms observed by the Hubble Space Telescope:
Implications for storm time scales, J. Geophys. Res. Space Physics, 119, 9624-9642, doi:10.1002/2014JA020601.

Nichols, J. D., J. T. Clarke, S. W. H. Cowley, J. Duval, A. J. Farmer, J.-C. Gérard, D. Grodent, and S. Wannawichian (2008), Oscillation of Saturn’s
southern auroral oval, J. Geophys. Res., 113, A11205, doi:10.1029/2008JA013444.

Nichols, J. D., B. Cecconi, J. T. Clarke, S. W. H. Cowley, J.-C. Gérard, A. Grocott, D. Grodent, L. Lamy, and P. Zarka (2010a), Variation of Saturn’s UV
aurora with SKR phase, Geophys. Res. Lett., 37, L15102, doi:10.1029/2010GL044057.

Nichols, J. D., S. W. H. Cowley, and L. Lamy (2010b), Dawn-dusk oscillation of Saturn’s conjugate auroral ovals, Geophys. Res. Lett., 37,124102,
doi:10.1029/2010GL045818.

Prangé, R, L. Pallier, K. C. Hansen, R. Howard, A. Vourlidas, R. Courtis, and C. Parkinson (2004), An interplanetary shock traced by planetary
auroral storms, Nature, 432, 78-81.

Prise, A. J., L. K. Harra, S. A. Matthews, C. S. Arridge, and N. Achilleos (2015), Analysis of a coronal mass ejection and corotating interaction
region as they travel from the Sun passing Venus, Earth, Mars, and Saturn, J. Geophys. Res. Space Physics, 120, 1566-1588, doi:10.1002/
2014JA020256.

Provan, G, D.J. Andrews, C. S. Arridge, S. W. H. Cowley, S. E. Milan, M. K. Dougherty, and D. M. Wright (2009a), Polarization and phase of planetary
period oscillations on high latitude field lines in Saturn’s magnetosphere, J. Geophys. Res., 114, A02225, doi:10.1029/2008JA013782.

Provan, G., S. W. H. Cowley, and J. D. Nichols (2009b), Phase relation of oscillations near the planetary period of Saturn’s auroral oval and the
equatorial magnetospheric magnetic field, J. Geophys. Res., 114, A04205, doi:10.1029/2008JA013988.

Provan, G., D. J. Andrews, B. Cecconi, S. W. H. Cowley, M. K. Dougherty, L. Lamy, and P. M. Zarka (201 1), Magnetospheric period magnetic field
oscillations at Saturn: Equatorial phase “jitter” produced by superposition of southern and northern period oscillations, J. Geophys. Res.,
116, A04225, doi:10.1029/2010JA016213.

Provan, G, D. J. Andrews, S. W. H. Cowley, J. Sandhu, and M. K. Dougherty (2013), Planetary period oscillations in Saturn’s magnetosphere:
Abrupt and non-monotonic transition to northern oscillation dominance two years after equinox, J. Geophys. Res. Space Physics, 118,
3243-3264, doi:10.1002/jgra.50186.

PROVAN ET AL.

SOLAR WIND CONTROL OF PPOS 9543


http://dx.doi.org/10.1029/2005GL024826
http://amda.cdpp.eu
http://dx.doi.org/10.1126/science.1154580
http://dx.doi.org/10.1007/s10712&hyphen;011&hyphen;9119&hyphen;1
http://dx.doi.org/10.1029/2011GL048794
http://dx.doi.org/10.1029/2011GL048794
http://dx.doi.org/10.1029/95JC03721
http://dx.doi.org/10.1007/s00382&hyphen;010&hyphen;0950&hyphen;8
http://dx.doi.org/10.1175/JTECH&hyphen;D&hyphen;12&hyphen;00127.1
http://dx.doi.org/10.1175/1520&hyphen;0426(1992)009<0264:TALCE>2.0.CO;2
http://dx.doi.org/10.1175/1520&hyphen;0426(2001)018<0982:PAAOAI>2.0.CO;2
http://dx.doi.org/10.1175/2009JTECHO711.1
http://dx.doi.org/10.1175/JTECH&hyphen;D&hyphen;11&hyphen;00017.1
http://dx.doi.org/10.1007/s10236&hyphen;003&hyphen;0082&hyphen;3
http://dx.doi.org/10.1016/j.dsr2.2012.07.007
http://dx.doi.org/10.1029/2011JC007168
http://dx.doi.org/10.1038/nature02337
http://dx.doi.org/10.5270/OceanObs09.cwp.34
http://dx.doi.org/10.1175/2008JCLI2131.1
http://dx.doi.org/10.1038/nclimate1553
http://dx.doi.org/10.5270/OceanObs09.cwp.35
http://dx.doi.org/10.1175/2010JTECHO773.1
http://dx.doi.org/10.1029/2004EO190002
http://dx.doi.org/10.1016/j.dsr.2011.12.012
http://dx.doi.org/10.1029/2006GL027834
http://dx.doi.org/10.1016/j.dsr.2010.03.011
http://dx.doi.org/10.1029/2012GL052975
http://dx.doi.org/10.1029/2012GL052975
http://dx.doi.org/10.1016/0198&hyphen;0149(84)90093&hyphen;1
http://dx.doi.org/10.1029/2004GL020258
http://dx.doi.org/10.1016/j.jmarsys.2003.11.022
http://dx.doi.org/10.1029/2005GL025551

@AG U Journal of Geophysical Research: Space Physics 10.1002/2015JA021642

Provan, G., L. Lamy, S. W. H. Cowley, and M. K. Dougherty (2014), Planetary period oscillations in Saturn’s magnetosphere: Comparison of
magnetic oscillations and SKR modulations in the postequinox interval, J. Geophys. Res. Space Physics, 119, 7380-7401, doi:10.1002/
2014JA020011.

Sandel, B. R, and A. L. Broadfoot (1981), Morphology of Saturn’s aurora, Nature, 292, 679-682.

Sandel, B. R, et al. (1982), Extreme ultraviolet observations from the Voyager 2 encounter with Saturn, Science, 215, 548-553.

Seaton, D. B, et al. (2013), The SWAP EUV imaging telescope. Part I: Instrument overview and pre-flight testing, Sol. Phys., 286(1), 43-65.

Southwood, D. J., and M. G. Kivelson (2007), Saturn magnetospheric dynamics: Elucidation of a camshaft model, J. Geophys. Res., 112, A12222,
doi:10.1029/2007JA012254.

Tao, C., R. Kataoka, H. Fukunishi, Y. Takahashi, and T. Yokoyama (2005), Magnetic field variations in the Jovian magnetotail induced by solar
wind dynamic pressure enhancements, J. Geophys. Res., 110, A11208, doi:10.1029/2004JA010959.

Warwick, J. W., et al. (1981), Planetary radio astronomy observations from Voyager-1 near Saturn, Science, 212, 239-243.

Warwick, J. W., D. S. Evans, J. H. Romig, J. K. Alexander, M. D. Desch, M. L. Kaiser, M. Aubier, Y. Leblanc, A. Lecacheux, and B. M. Pedersen (1982),
Planetary radio astronomy observations from Voyager-2 near Saturn, Science, 215, 582-587.

Young, D. T, et al. (2004), Cassini Plasma Spectrometer investigation, Space Sci. Rev., 114, 1-112, doi:10.1007/511214-004-1406-4.

Zarka, P, L. Lamy, B. Cecconi, R. Prangé, and H. O. Rucker (2007), Modulation of Saturn’s radio clock by solar wind speed, Nature, 450, 265-267,
doi:10.1038/nature06237.

Zieger, B., and K. C. Hansen (2008), Statistical validation of a solar wind propagation model from 1 to 10 AU, J. Geophys. Res., 113, A08107,
doi:10.1029/2008JA013046.

PROVAN ET AL.

SOLAR WIND CONTROL OF PPOS 9544


http://dx.doi.org/10.5194/osd&hyphen;8&hyphen;291&hyphen;2011
http://dx.doi.org/10.5194/osd&hyphen;8&hyphen;291&hyphen;2011
http://dx.doi.org/10.1007/BF02110635
http://dx.doi.org/10.1016/0967&hyphen;0637(95)97154&hyphen;Z
http://dx.doi.org/10.1038/nature12238
http://dx.doi.org/10.1126/science.1110252
http://dx.doi.org/10.5194/acp&hyphen;11&hyphen;13421&hyphen;2011


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


