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R o b u st M ultivariab le  C ontrol o f  In d u str ia l 
P ro d u ctio n  P rocesses: A  D iscre te -T im e  

M u lti-O b jectiv e  A pproach

Ghassan Ali Murad

A b stra c t

This thesis considers a number of important practical issues in the synthesis of discrete
time robust controllers for industrial processes. The work focuses on the control of an 
“unknown” SISO process (the IFAC 1993 benchmark), the design of robust model-based 
controllers for a MIMO industrial production process (a glass tube production process), 
and the design of robust MIMO controllers having integrated control and diagnostic 
capabilities.

The industrial case studies presented are realistic in the sense that their control prob
lems do frequently arise in engineering situations. Explicit state-space formulae for 

-based one degree-of-freedom (1-DOF) and two degrees-of-freedom (2-DOF) robust 
controllers are derived. They provide robust stability with respect to left coprime factor 
perturbations, and for the 2-DOF case, a degree of robust performance in the sense of 
making the closed-loop system follow a desired reference model. Robust controllers for 
the “unknown” plant are designed using and optimization techniques. Explicit 
closed-loop performance is obtained by designing the weighting function parameters 
using numerical optimization techniques in the form of the method of inequalities.

Methods for designing 7^°°-based controllers that can be directly implemented in the 
Internal Model Control (IMG) scheme are presented. Explicit state-space formulae for 
7f°°-based IMG 1 -DOF and 2-DOF robust controllers which provide robust stability and 
robust performance with respect to left coprime factor perturbations, are derived.

A technique for discrete-time model reduction is presented, with two illustrative ex
amples. The technique is used in a detailed study of the identification and control of 
the glass tube production process. The production process, especially for large tube 
measures, is ill-conditioned and contains large time delays. The model of the process 
reflects the transfer of two process inputs (mandrel pressure and drawing speed) to the 
tube dimensions (wall thickness and diameter). The models obtained from advanced 
multivariable identification are used for the design of robust IMG controllers for the 
process. The robust performance of the controller is demonstrated and a comparison is 
made with the present control system.

Finally, a framework for synthesizing robust controllers which have both control and 
actuator failure detection capabilities is presented. Simulation results for a MIMO 
design example are presented which demonstrate the feasibility of this integrated design 
approach.
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C h a p ter  1

In tro d u ctio n

1.1 G en era l In trod u ction

In the process industry numerous types of processes are being controlled and monitored 

to produce manufactured products within desired specifications. The main task of the 

control engineer, with the aid of appropriate sensors, controllers and actuators, is to 

improve the performance of the plant or process. A block diagram of a general control 

system is shown in Figure 1 .1 . Since the sensor signals affect the particular plant to be

Signals affecting the process

Actuator
Signals

Diagnostic
Signals

Process 
to be 

Controlled

Robust
Controller

Sensor
Signals

Command
Signals

Figure 1.1: A General Control System.

controlled via the controller and the actuators, the control scheme shown in Figure 1 .1



Chapter 1. Introduction 2

is called a closed-loop system. If the control scheme has no sensors and only generates 

actuator signals from the command signals alone, it is called an open-loop system. 

Finally, a system that has no actuators and produces only operator display signals by 

processing sensor signals alone, is sometimes called a monitoring or a diagnostic system.

The great flexibility of software-based control algorithms has made possible the synthesis 

of highly sophisticated controllers, including model-based controllers, which can control 

single-input single-output (SISO) systems with better robustness margins than simple 

controllers, and can solve complex multi-input multi-output (MIMO) control problems. 

In addition to improved control, additional functions such as adaptation and failure 

diagnosis can also be handled by modem algorithms as will be seen later. The need 

for these functions is strong in manufacturing and the process industries where there 

are ever increasing demands to improve quality and flexibility of production. In this 

thesis, a framework for synthesizing robust controllers, robust model-based controllers, 

and an integrated robust controller-diagnostic pair is presented and studied in detail. 

Industrial case studies are used to evaluate these functions and some important issues 

on model reduction and multivariable identification will also be addressed.

The presentation is entirely in discrete-time. The motivation behind this is that most 

new controllers are now implemented digitally. A natural approach to the discrete-time 

problem is to transform it into a continuous-time one via the bilinear transformation 

s = to design a continuous-time controller and then to transform back to discrete

time via the inverse map z =  However, although this procedure is valid, a number 

of disadvantages have been noted in [41]:

1) The bilinear transformation cannot be used for time-varying problems.

2 ) Since properness is not preserved by the bilinear transformation, special care 

needs to be taken to avoid nonproper controllers.

3) Although the bilinear transformation will lead to controller formulae for the 

discrete-time synthesis problem, there are theoretical advantages to be gained 

from a solution in natural coordinates.

With these in mind we propose to work primarily in discrete-time.
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1 .2  A n  O verv iew  o f  R ob u st C ontrol

After almost 15 years of development to produce more sophisticated yet realistic con

trol methods, robust control has gained a high level of acceptance with applications in 

a  range of industrial practices. In general, controllers differ in complexity and effec

tiveness. Simple controllers such as proportional plus derivative plus integral (PID) are 

widely used in industrial applications and their adjustment requires just a simple model 

of the dynamic behaviour of the plant to be controlled [119, 5]. A major draw back in 

the design of PID controllers, however, is that there is no direct incorporation of model 

uncertainty in the synthesis which inevitably limits the robustness of the closed-loop 

system.

Researchers in the 1930's and 1940’s developed methods suitable for SISO systems [9, 

80]. The designed controllers were expected to be insensitive to plant/model mismatch 

and perform well enough under unmeasured disturbances. However, extensions of these 

SISO methods to MIMO systems were found to be inadequate. In general, MIMO 

systems are difficult to control due to the presence of interaction. The problem is often 

further complicated by the presence of large time delays and process non-linearities. 

Several approaches have appeared in the control literature in recent years that overcome 

many of these MIMO difficulties. In the 1960’s more sophisticated control methods such 

as optimal control theory (i.e Linear Quadratic Guassian - LQG) were developed. LQG 

could nicely handle MIMO systems, but was sometimes sensitive to small perturbations, 

leading to poor performance and possibly instability if implemented on a real plant. This 

demonstrated the need to directly incorporate model uncertainty into the controller 

design procedure so that robust controllers could be synthesized. Motivated by this 

need to address uncertainty in a systematic way, the H°° problem was formulated by 

[117]. This problem was then further developed by many researchers, and has proved 

to be an effective framework for analyzing robustness and a powerful tool for control 

system design under unstructured uncertainty. The structured uncertainty problem, 

originally formulated in [17], has further highlighted the differences between MIMO 

systems and SISO systems and has led to the analysis and design of MIMO systems 

using structured singular value analysis and synthesis, also known as /x-analysis and 

synthesis. Controllers synthesized via these sophisticated design methods were first
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used in aerospace systems, and are now being introduced into other industrial systems.

7i°° control is a frequency domain theory and it has been shown in [13, 30, 92] that 

important frequency domain problems in control system design can be formulated as 

H°°-optimization problems. Such problems include for example the minimization of the 

sensitivity transfer function in a minimax approach, and the optimization of robustness 

for unstructured uncertainty. Mathematically speaking, the 7i°° control problem is to 

minimize a weighted infinity norm of some closed-loop transfer function or a combination 

of transfer functions over a set of controllers satisfying the internal stability requirement. 

The set of stabilizing controllers was first parameterized by Youla et al in [113]. With 

this Youla parameterization and some inner-outer factorizations, the -optimization 

problem can be simplified to a general distance problem [1 2 ] and in special cases, the 

general distance problem becomes the Nehari extension problem [74]. This special case 

is also known as the one-block distance problem, the most general case being a four-block 

problem. The first method available to solve the general four-block distance problem 

was proposed by [19] where the method resulted in high-order controllers compared 

to the plant order. A more elegant method introduced by [37] and [22] solves the 

problem in a suboptimal sense and only requires the solution to two Riccati equations 

for each level of optimality, 7 . An attractive property regarding this solution is that it 

synthesizes suboptimal controllers with the same order as the plant. The situation has 

been further simplified by [62] where for a particular design problem optimal controllers 

can be synthesized without performing any iterations on the optimality level 7 .

1.3  C o n tr ib u tio n  an d  S u m m ary o f  th e  T h esis

A common aim in the process industry is to increase the levels of automation in pro

duction processes which must be highly flexible. Good control strategies are there

fore essential. In turn good control strategies require a good understanding of the dy

namic behaviour of the processes under consideration. However, with the aid of existing 

advanced identification techniques and emerging control methods, good mathematical 

models can be derived and advanced control strategies designed to further improve the 

performance and flexibility of industrial processes. The aim of the present study is:
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1) To present some useful and improved methods for tuning and designing weight

ing functions in Id? and 71°° optimization methods.

2) To present an approach which enables the direct design of robust internal 

model-based controllers in the framework of robust control theory.

3) To present an approach which enables the design of integrated controls and 

diagnostics in the framework of robust control theory.

4) To present a direct discrete-time model reduction approach suitable for reduc

ing non-minimal high-order controllers.

5) To design and test a SISO control system and a MIMO control system on 

industrial case studies in order to asses the newly presented methods.

Details of the mathematical notation used, together with preliminary results pertaining 

to basic system theory, discrete-time algebraic Riccati equations, coprime factorization, 

and internal stability and well-posedness are given in Appendix A. The chapter contents 

can be summarized as follows:

C h a p te r  2 -  In this chapter, an overview will be given on robust control. Well known 

results on discrete-time Tf^-optimal control, 7f“ -optimal control, and /^-synthesis will 

be summarized. The majority of these results will be extensively applied in Chapter 4.

C h a p te r  3 -  In this chapter, robust control using normalized coprime factor plant 

descriptions is investigated. There are two contributions. The first is to formulate, in a 

one degree-of-freedom (1-DOF) setting, the discrete-time problem of robust stabilization 

with respect to uncertainty in a normalized left coprime factorization of the plant. The 

steps are analogous to those in [106], where the problem was first formulated with respect 

to uncertainty in a normalized right coprime factorization. Suboptimal and optimal 

controllers are derived. The second contribution is to formulate, in a two degrees-of- 

freedom (2-DOF) setting, the discrete-time robust stablization problem with respect to 

uncertainty in a normalized left coprime factorization. Only suboptimal controllers are 

derived. The continuous-time problem was investigated by [47] and [108]. This second 

contribution has already been presented at the American Control Conference [9 3 ] and 

both contributions form part of a Journal paper under preparation.
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C h a p te r  4 -  In this chapter, the robust control techniques discussed in Chapters 2 

& 3 will be applied to an “unknown” industrial plant, namely the IFAC 1993 bench

mark problem proposed by [39]. These control techniques, which can also be cast as 

analytical optimization design methods, generally have weights which are adjusted by 

the designer in order to get a good design. This adjustment is often by trial and error 

and can be time consuming. To circumvent this problem, it is advantageous to com

bine analytical and numerical methods so that numerical search techniques, such as the 

method of inequalities (MOI) [115], can be used to find good weighting parameters for 

the analytical optimization problem. The main contribution is to describe how MOI 

can be combined with the various analytical optimization design methods discussed in 

Chapters 2 & 3 in order to provide a powerful multi-objective mixed optimization con

troller design method. Its application to the “unknown” industrial plant is described 

in detail. The majority of this work have been presented at the IFAC World Congress 

1993 [85], in [109], and published in Automatica [8 6 ] and the International Journal of 

Control [110].

C h a p te r  5 -  In this chapter, internal model control (IMC) concepts for stable plants 

are presented and some background material given in [67] will be summarized. We will 

only consider MIMO systems and show how the IMC can be implemented. However, 

more detailed developments of IMC controller design will not be discussed; they can be 

found in [67]. The main contribution is to present a framework to directly synthesize 

robust IMC controllers using 7f°°-optimization methods. The H°° methods used include 

the 1-DOF and 2-DOF loop shaping approaches with coprime factor uncertainty. For 

the 1 -DOF case, suboptimal and optimal IMC controllers are derived, and for the 2- 

DOF case only a sub optimal IMC controller is derived. The latter approach will be 

presented at the European Control Conference [71] and the majority of the work of this 

chapter is being prepared for submission to a Journal for consideration.

C h a p te r  6  -  In this chapter, discrete-time model reduction is considered. A sophis

ticated approach towards the design of high-order discrete-time controllers, especially 

high-order IMC controllers, is given by 'H? and H°° optimization techniques. The de

signed controllers, using these techniques, may be more complex than it would be rea

sonable to implement. In some cases such controllers can also be non-minimal resulting
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in numerical difficulties when common model reduction algorithms are used. The main 

contribution is to propose a direct discrete-time model reduction approach. The ap

proach will be based on combining existing numerical algorithms resulting in a reliable 

approach with numerical robustness for computing a balanced singular perturbational 

approximation of a stable state-space system that might be close to being non-minimal. 

The algorithm can be used for unstable systems by applying it separately to the factors 

in a normalized coprime factorization as proposed by [63]. The continuous-time results 

given in [63] will be extended and formulated in a discrete-time setting in this chapter. 

The majority of the work in this chapter is being prepared for submission to a Journal 

for consideration.

C h a p te r  7 -  In this chapter, a detailed case study on the application of advanced 

multivariable identification to a glass tube production process will be presented. In this 

process the dimensions of the tube, wall thickness and diameter., are directly influenced 

by two process inputs, mandrel pressure and drawing speed (Figure 7.1). The response 

of the process to changes in the inputs can only be measured after a rather long period 

of time compared to the process dynamics. This large time delay is caused by the fact 

that no sensors are available for measuring the dimensions at high temperature, hence 

measurement is only possible at much lower temperatures. For the control of such a 

process, a good model is required, especially as the time delays in the measurements 

are of the order of the process dynamics, if not higher. So for accurate control of the 

tube dimensions, a good mathematical model is required. The main contribution is to 

directly apply existing advanced multivariable identification schemes [6 , 27, 81, 4 4 ] to 

real identification data extracted from identification experiments carried out on the glass 

tube production process. The proposed identification procedure used in this chapter 

was presented at the Third Philips Conference on Applications of Systems and Control 

Theory [26].

C h a p te r  § -  In this chapter, the main contribution is to present a detailed case study 

on the application of robust IMC control (using the techniques from Chapter 5) to the 

glass tube production process (using the models from Chapter 7). In the study the 

open-loop behaviour of the production process is analyzed and a comparison with the 

present control system is discussed. A design procedure which combines the proposed
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IMC design approach with the method of inequalities (MOI) is described. Finally, 

detailed results are given of the proposed control system applied to the production 

process. Earlier controller design results were presented at the IFAC World Congress 

1993 [70], the European Control Conference 1993 [72], and in [73]. Some of the latest 

results were presented in [71] and [26].

C h a p te r  9 -  In this chapter, the design problem of integrated controls and diagnostics 

is considered. The foundation for such an approach was presented in [77] where it 

was proposed to use a four degrees-of-freedom (4-DOF) controller. This controller has 2 

types of input and 2 types of output (rather than one of each). The additional controller 

output is viewed as a diagnostic output (see Figure 1.1) which is monitored to detect 

and isolate failures in the sensors or actuators. The main contribution is to formulate a 

design approach to integrate controls and diagnostics in the now standard robust control 

theory framework. This enables the synthesis of the 4-DOF controller in a single step 

approach. The majority of the results in this chapter have been submitted to the IFAC 

World Congress 1996 for consideration.

C h a p te r  10 -  In this chapter, general conclusions are drawn together with suggestions 

for future work.
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R o b u st C ontrol S y s tem  D esig n

2.1  In tro d u ctio n

The aim of this chapter is to introduce and summarize some well known results on H? & 

7i°°-optimal control, and jU-synthesis. The presentation of this chapter serves two main 

purposes: First, most of the main results on and p will be extensively applied

in Chapter 4. Second, some of the H°° results will be needed in Chapters 3, 5  and 9. 

The theory of Linear Quadratic Guassian (LQG) control (a special problem of 7 ^)  has 

been analyzed in more detail in [4, 54, 53]. State-space solutions of the discrete-time 

problem were first derived in [49, 58, 96]. The results presented in this chapter 

follow those from [49]. An extensive discussion of the /^-analysis and synthesis can be 

found in [17, 20, 21, 7, 82] for the continuous-time case. The discrete-time analogues 

can be found in [14].

The organization of this chapter is as follows. Section 2.2 will introduce the 'H? and H°°- 

optimal control problem. In Section 2.3, the complete solution to the Ti? control problem 

is presented. In this section, it will be shown that the LQG problem is a special case 

of the 'H? problem. In Section 2.4, the complete solution to the control problem is 

presented. In this section, different representations of modelling errors are introduced, 

various design objectives and solutions are formulated, and the robust performance 

problem is discussed. Finally, a summary is given in Section 2.5.
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2 .2  and  O p tim a l C ontrol

and 7i°° controller synthesis enables the desired frequency response characteristics 

to be optimally shaped. Since the 2-norm and oo-norm are intimately related to the sin

gular values, robustness considerations are simply incorporated into the control design. 

Additionally, results obtained by several authors [41, 22, 4, 91, 57, 62, 38] make the 

computation of Ti? and H°° controllers in an interactive design environment a reality.

2.2.1 Standard Regulator Problem

There are many ways in which feedback design problems can be cast as and 

optimization problems. It is very useful therefore to have a standard problem formu

lation into which most problems may be manipulated. Such a general formulation is 

shown in Figure 2.1, and is known as the standard regulator problem [19]. The system

12

22

Figure 2.1: Standard Regulator Problem.

is described as

tut
=

to*

(2.1)

(2.2)
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with the state-space realization of P  is

11

A B 2

p  = Cl Dll D\2
C2 D 21 D22

(2.3)

The signals are: ut the control variables, yt the measured variables, wt the exogenous 

signals, and e* the control objectives. The closed-loop transfer function matrix from Wk 

to ek is given by the linear fractional transformation [87, 8 8 ]

where

e* =  P](P, %)«;&

P,(P, K) =  P » +  PnR"(I -  P«iir)-'P2

(2.4)

(2.5)

The standardized plant P  includes the plant model, all weighting matrices and the in

terconnection structure for the particular problem being solved. The standard regulator 

problem is then:

• Find all realizable controllers K  which stabilize the closed-loop and achieve the 

oo-norm objective

||P,(P,AT) | U < 7

for some 7  > 0 .

By cansidering the dimensions of Wjk, ut, et and yt, three special cases of the standard

problem can be identified. If P12 and P21 are square, then the standard problem is called 

a 1-block problem. For a sensible control problem, P12 will be either a tall or square 

matrix, and will be either fiat or square. If Pi2 or P;i is square, but not both, then 

the standard problem is called a 2-block problem. If neither Pu  nor P21 is square, then 

the standard problem is called a 4-block problem.

2.2.2 Problem  Definition

Let the following assumptions be made on (2.3):
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A l) (A, B2) is stabilizable and (C2 , A) is detectable.

A2) D i2 has full column rank and there exists a matrix Dx such that [ D u  D± ] 

is unitary.

D21
A3) D21 has full row rank and there exists a matrix Dj. such that _ is unitary. 

A4) The matrix
A - g j 'Z  Ba 

Cl Dia

has full column rank for all 0 G [—w, 7c).

A5) The matrix
A - e ^ ' '!  Bi

C% D21

has full row rank for all ^ G [—tt, tt).

A6 ) D 22 is equal to zero.

A l is necessary and sufficient to guarantee the existence of stabilizing controllers. A2 

indicates that all the control signals are penalized. A3 is the dual of A2. A4 and A5

guarantee the existence of solutions to certain Riccati equations. In the case where

D^Ci =  0, A4 can be replaced by assuming that (Ci, A) has no unobservable modes on 

the unit circle. Similarly, if =  0, A6 can be replaced by assuming that (A, B i) has

no uncontrollable modes on the unit circle. The assumption D 22 =  0 is not necessary 

but introduced for simplicity. It implies that there is no direct transmission from the 

control input to the measured output.

2.3  Ti^-Optim al C ontrol

2.3.1 The -O ptim al Control Problem

Consider the system

Xk+i =  Axk +  Buk 

yt = Czt + But (2 .6)



Chapter 2. Robust Control System Design 13

with the Tip X Um  transfer function matrix

G(z) =  D +  C (z l -  (2.7)

Suppose the system (2.6) is driven by white noise of unit intensity,

(2.8)

The expected output power is then given by

I lim Jrz  üfyjfcl =  B  < In

— I l  G II; (2.9)

The T f -norm can also be expressed in terms of the singular values of the transfer

function matrix G as

/  1 " \ 1/2
(2 .10)

where n =  min{np,Tint}. Thus by minimizing the 2-norm, the output power of the 

system due to a unit intensity white noise input is minimized.

The standard regulator problem is then [42]:

•  Find a controller Kopt 6  K, such that

II P}(P, % ^) II, <  II P,(P, AT) II, (2.11)

V G AC, where AC denotes the set of all controllers which achieve internal stability

of the closed-loop.

This is known as the -optimization problem. The standardized plant P  includes all 

weighting matrices, the plant model and the interconnection structure associated with 

the type of problem being solved.
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2.3.2 T h e  L Q G  P ro b lem

An important special case of the -optimal control is that of the LQG regulator, which 

is considered by the following stochastic system

Xk+i =  Axk + Buk + Wp*

(2.12)

where Uk is a control input, Wp̂  and u,* are the process and measurement noise inputs 

which have constant power spectral density matrices W  and F , respectively. They are 

also taken to be white, uncorrelated and of unit intensity

Wp/
[ ] L I O'

1 0 I
Sk-T (2.13)

and yk is the vector of measurements. A feedback controller is desired such that the 

performance measure

is minimized, where Q > 0  and R > 0 .  This is known as the LQG cost function which 

is the sum of the steady-state mean-square weighted state and the steady-state 

mean-square weighted actuator signal

The framework of the LQG problem can be cast as follows [11]. The weighted plant 

state Xk and actuator signal u* can be extracted as the regulated output, e.g.

R^Uk
The exogenous input consists of the process and measurement noises, which are repre

sented as

(2.15)

top/

F&
tot (2.16)

with wt a white noise signal. So the f  matrix can be set up as the transfer function

matrix from Wk and wttoe& and yk. This is easily seen to be given by

®fc+i

et

yt

A TF& 0

0 0 0

0 0 0

c 0 F& 0

z t 

lOt 

tit j

(2.17)
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This is shown in Figure 2.2. Since Wk is a white noise signal, the LQG cost is simply

process
noise

measurement
noise

et

Figure 2.2; Standard Regulator LQG Problem, 

the variance of e*, which is given by

Jlqg II2 (2.18)

B i O '
D j i  =

D g i I

A standard assumption for the LQG problem is that the plant is controllable from each 

of Uk and Wk, observable from each of and yk, and in order to satisfy the full column 

and row rank assumptions on Dig and Dgi, the weights used for the actuator signal and 

the sensor noise, R  and V, need to be >  0. The following extra assumptions are made:

A 7 ) D ^ [ C i  Di2] =  [0 f ]

A8)

A9) Dll =  0

It follows from these assumptions that A4 reduces to the condition that (Ci,A)  has no 

unobservable modes on the unit circle, and A5 reduces to the condition that 

has no uncontrollable modes on the unit circle. Assumption AT is quite common in the 

LQG literature and amounts to assuming that there is no cross term in the formula for 

II et lia and the penalty on the control input is normalized. Assumption A8 is the dual 

of assumption AT and is analogous to the standard assumption in the Kalman filtering
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problem that the process noise and the measurement noise are uncorrelated and that 

the measurement noise is non-singular and normalized. Assumption A9 implies that 

there is no direct transmission from the exogenous input Wk to the regulated output e*. 

The extra assumptions made require the definition of a scaled control input UkR~^ and 

a scaled measurement vector V~^yk- This gives the scaled P  matrix, P, as

ek

L v - i s J

A 0 PR-&

0 0 0

0 0 0 I

y -& c 0 I 0

wt

UjkjR-

(2.19)

W ith the above assumptions in force, there is a unique controller that minimizes the 

LQG objective. The two symplectic pairs of matrices, Pg and Jg, are defined as

A o \  / f  P g p r
H i  ;= (2.20)

(2.21)
0 

- B iP f  \ 0  A

Since (A, Pg) is stabihzable and (Ci, A) has no unobservable modes on the unit circle, 

it follows that Hi  E dom(RIC)  (see Appendix A). Also, since (Cg, A) is detectable and 

(A, P i) has no uncontrollable modes on the unit circle, it follows that Jg G dom(RIC). 

For the LQG set up of (2.19), (2 .2 0 ) and (2.21) may be rewritten as

A 0 \  / 7  PP-IP^'

- Q  7 / ' \ 0  A^
A^ o \  / 7  

- l y  7 / ' \ 0  A

then X  satisfies the control algebraic Riccati equation

(2.22)

(2.23)

A^Jf(7 4- PP-"P^%)-^ A -  % 4- Q =  0

and Y  satisfies the filter algebraic Riccati equation

A y ( 7  4 - c ^ y - ^ c y ) - "  A^ -  y  -n ly  =  o

(2.24)

(2.25)

Equations (2.24) and (2.25) may also be recognized as the LQ control and Kalman 

filter Riccati equations, with X  and Y  being their unique positive definite solutions,
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respectively. Furthermore, define

Ac =  +  (2.26)

F  =  (2.27)

The inverse of Rc exists, since it is positive definite and F  may be rewritten as

F  =  A (2.28)

Also, define

A/ =  (7 +  V-&CyC^y-^) (2.29)

P  =  -A y c ^ y -^ p ;^  (2 .3 0 )

The inverse of R /  also exists and H  may be rewritten as

p  =  - A ( 7 + y c^ y -" c )-" y c^ y -&  (2 .3 1 )

Both (2.28) and (2.31) are similarly recognized as the LQ optimal feedback and the

Kalman filter gain matrices, respectively. The matrices F  and P  exist, and the closed- 

loop is internally stable, provided the systems with state-space realizations (A,P,Q&) 

and (A, W&,C) are stabilizable and detectable.

By reversing the input and output scaling, the familiar LQG optimal controller is given 

by

A

where

A -  pp-^p^% F -  p y c ^ y - ^ c p y c ^ y -^

-p-^p^% F 0
(2.32)

F  =  (7 4-PP-^P^% )-iA (2.33)

P  = A(f4-yC^y-"C)-" (2.34)

with the following main properties:

1) The state-feedback is a constant gain.

2) The filter is an observer.
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3) The gains are obtained as solutions to two Riccati equations.

4) The controller has a separation structure.

5) The controller has the same degree as the plant.

The basic LQG controller scheme is shown in Figure 2.3 [4]. This has the desired 

structure of a two degrees-of-freedom compensator scheme. For the full-order state

Controller K  =
Plant

Estimator

Figure 2.3: The Basic LQG Controller Scheme, 

estimator case, the state equations are

The transfer function matrix of the controller, linking

(2.36)

=  +  +  j^] +  [T 0] =  [F i(z) Fz(z)] (2.36)

There is no guarantee in the LQG theory that the controller of (2.35) and (2.36) will be 

open-loop stable. But if the controller is open-loop stable, then it can be implemented 

with the controller acting as a pre-Slter and the controller F ; acting as a feedback

controller.
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2 .4  H °°-O ptim al C ontrol

2.4.1 M odel Uncertainty Structures

Allowing for modelling errors which may be caused by slowly varying parameters, non

linear effects, unmodelled dynamics and the like when designing for linear MIMO con

trollers, have received considerable attention. In classical feedback design, the problem 

of model uncertainty is dealt with by defining stability margins by means of gain and 

phase margins. Furthermore, stability is only maintained through the phase margin 

at the unity gain cross-over frequency. But by using unstructured uncertainty, a much 

broader frequency range which is of interest for robust control, can be included within 

the model uncertainty. By unstructured uncertainty, we mean that the only available 

knowledge about the uncertainty is that:

1) It can be represented by an unknown stable transfer function matrix A.

2) The magnitude of a possible perturbation is bounded by a frequency dependent 

magnitude bound that is

(2.37)

Figure 2.4 gives some possible representations of unstructured uncertainty that can be 

used in the design process [18]. For all cases, G and A represent the nominal model 

and the uncertainty, respectively. Each configuration will generate a class of linear time 

invariant systems centred on G, in which the true process Gt will lie.

•  For the additive uncertainty,

Ga =  G +  a  and P  =

• For input multiplicative uncertainty,

G A = G{I + A) and P  =

• For output multiplicative uncertainty,

G A =  (7 +  A)G and P

0  I  

J  G

0  Z 

G G

0  G 

Z G

(2.38)

(2.39)

(2.40)
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Additive

O utput M ultiplicative

Input Multiplicative

Inverse Output M ultiplicative

Figure 2.4; Model Uncertainty Representation. 

• For inverse output multiplicative uncertainty,

GA =  (Z +  A)-^G a n d f (2.41)

2.4.2 The 'R°°-Optimal Control Problem

The 77°° specification of performance objectives can be cast as follows. Consider the 

prototype control configuration in Figure 2.5. From the loop diagram,

y* = (7 + GK)-"dt +  (7 +  G7ir)-^G%(rt -  n&)

The tracking error yk — r* is given by

I/t -  rt =  (7 +  GA")-Xdt -  rt) -  (7 +  G%)-̂ G7Tn& 

The two transfer function matrices

S' =  (7 +  G%)-" and r  =  (7 +  G7T)-"GK

(2.42)

(2.43)

(2.44)

clearly play an important role in the loop. They are called the sensitivity and com

plementary sensitivity matrices, respectively. S is the inverse of the so-called return
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Tfc-reference
O

et-@rror
K

Ujfe-control G o

disturbance 

I/k-output

O

Tik sensor 
noise

Figure 2.5: A Prototype Feedback System.

difference matrix I  +  G K, whilest T  is the inverse of the so-called inverse return differ

ence I  +  (GK)~^ . It is often desired to track references and reject disturbances, that is 

(Vk — rk) is required to be small and the effect of on yk should also be small.

A signal may be said to be small if it doesn’t have much energy. The energy of a signal 

Cfe is defined by

k=0
1

Thus to make tracking errors small, it is required that

(2.45)

(2.46)

for some e >  0. Assuming there is no sensor noise, y* -  =  S{dk — r&). In order to

ensure (2.46), one needs to know the energy gain of the system. The oo-norm is the 

worst case energy gain

max ■

maxâ fS(e^ )̂l (2.47)
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Equation (2.47) relates the oo-norm problem to singular values: for scalar systems, the 

oo-norm is the peak of the Bode magnitude plot. It follows from the definition that

II %/t -  r t  lia <  II ^  IL II (ft -  r t  lia (2 .4 8 )

Therefore, by making

II < 7  (2 .4 9 )

for some 7  >  0, the objective (2.46) is ensured for all disturbances such that

II dk — r& lia < — (2.50)

The smaller 7  is made, the larger the disturbance energy the system will tolerate. 

From (2.45), we notice that all frequencies contribute to the energy equally - it is not 

possible to discriminate between high frequency and low frequency energy. To do this,

a frequency weighting is introduced. E  #  is a low-pass filter, then

II lia <  ^  (2.51)
for some 6 >  0, describes a class of signals of high energy content at high frequency 

(since low frequency energy is attenuated by the low-pass filter # ) .  Similarly, jj ||

describes a class of signals with high energy content at low frequency.

Tracking and disturbance attenuation objectives are typically most important at low

frequency, so for some low-pass filter Wi known as a frequency weight, it is desired that

I % ( y t  -  r&) 11̂  <  e (2 .5 2 )

This will be achieved by requiring

| | # ^ S ' | | ^ < 7  (2 .5 3 )

Sensor noise influences the system via the complementary sensitivity matrix T. To 

ensure sensor noise, usually a high frequency signal, is attenuated, it is required that, 

for some low-pass weight W2

< 7  (2 .5 4 )
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The H°° specification of robustness objectives can be cast as follows. In control 

theory, one explicitly takes into account the fact that the model is not an accurate 

representation of the true system. A design is based on the model, and then implemented 

on the true system, which may be nonlinear, time-varying, or otherwise different from 

the model. This fact needs to be taken into account. The preservation of loop properties 

despite model uncertainty is known as robustness. The basic robustness definition can 

be stated as follows:

• Suppose the nominal model and the system have the same number of unstable 

poles, and that the controller makes the nominal loop stable. The actual loop will 

be stable provided the relative model error A satisfies

II AT ||oo< 1 (see Figure 2 .6 )

Figure 2.6: Relative Error Representation.

As with signals, one needs to be able to frequency shape the error, since at some 

frequencies the model will be more accurate than at others. Suppose one thinks of the 

model being less accurate at high frequency, and choose a low-pass filter W2 so that

II I L  ^  ^
is a reasonable description of the relative model error. Then one needs to ensure

||T&T'T||^<1 (2.56)

for stability to be guaranteed. The relative error can be represented in other ways (as

shown in Section 2.4.1), depending on the plant and on the designer’s objective.
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2.4.3 T he H°° M ixed Sensitivity Problem

It was seen that performance and robustness objectives for feedback systems can be 

posed as norm constraints on the sensitivity and complementary sensitivity ma

trices. In order to achieve multiple objectives, e.g., performance and robustness, one 

needs to take both into account. One way of doing this is the so-called mixed sensitivity 

problem:

• Find a controller K  such that the loop is stable and

To maximize performance, 7  should be made as small as possible.

Objectives, such as sensitivity and complementary sensitivity, can be approximated as 

constraints on the open-loop singular values - the singular values of GK.

The standard H°° regulator problem is then:

•  Find all realisable controller K  which stabilize the closed-loop and achieve the 

infinity norm objective

I I W J f ) I L < 7  (2.58)

This is known as the W°°-optimization problem. The standardized plant P  includes all 

weighting matrices, the plant model and the interconnection structure associated with 

the type of problem being solved.

2.4.4 Solution to  the Control Problem  

All Stabilizing Controllers

Suppose K  in the standard control configuration has the following state-space realization

' i p

c D
(2.59)
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A O' 'Pa O' 7 - Î ) ' “1 ' 0 c '
A — +

0 Â 0 P —P 22 I Ca 0

then together with the state-space realization of the standard augmented plant P, the 

system A-matrix for the standard control configuration is given by [19]

(2.60)

where the matrix inverse exists under the assumption that the system is well-posed. 

The standard control configuration is therefore internally stable if Â  is stable.

Under the assumption that P » is stabilizable and detectable, it is well-known that 

the set of all stabilizing controllers for P  in the standard control configuration can 

be parameterized by adding stable dynamics Q E %'H°° to an observer-based state- 

feedback stabilizing compensator for P  as shown in Figure 2.7, where F  and H  are 

the state-feedback and observer constant gain matrices, respectively. Mathematically, 

the set of all stabilizing controllers can be characterized in terms of the left and right 

coprime factorizations of P22 , usually referred to as the Youla parametrization [113]. 

All stabilizing controllers of P  in the standard control configuration are given by

FT =  ( y  4- MQ)(% 4 - FfQ)-" 

=  (% 4-Q IV )-X ÿ +  0 M) (2.61)

for any stable Q, where (N,M,lV,M,X,y,%,ÿ) are matrices and satisfy the

double Bezout identity

r -ÿ i  FM y i Ff o'
, U  x |  = lo / ]

The M odel-M atching Problem

Consider the standard control configuration shown in Figure 2.7, where the input and 

output vectors of —Q are denoted as yi^ and respectively. Also, —Q here can be

interpreted as a stable compensator to be designed. Let T  =

according to the input and output vectors and
.« 1*. .yi*.

be partitioned
P21 T2 2 .

respectively, with the
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Dai

Di O  K>

Di

Daa

Pi Cl
(z7 -  A)-i

Pa Ca Q -« — I/t

(z7 -  A)

\ z l  — A

Figure 2.7: The Set of all Stabilizing Controllers.
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following realization [29]:

27

A  -f- B 2F  —B 2F P i P 2

S 0  A -1- P C ; B\ +  HD 21 0

Cl D u F  —D u F Dll D »

0  C2 D21 0

(2.63)

where F  and H  have been chosen so that (A  +  B 2F) and (A + HC 2) are stable. Prom 

(2.63), it is clear that T22 is identically zero, and therefore the transfer function from 

Wk to Cjfc, when K  is stabilizing, is given by

F](P, %) =  F](T, -Q )  =  Tn -  T laW i (2.64)

for some Q € The parameterization for stabilizing K  has transformed the transfer

function from Wk to e&, which is nonlinear in K , to an affine function in Q. The standard 

problem

is therefore equivalent to the affine optimization

(2.6S)

(2.66)

This is called a model-matching Problem [19, 12].

Consider a standard 1 -block model-matching problem, in which Tu  and T21 are square. 

The constant matrices F  and H  in (2.63) can be chosen so that T12 and are inner 

and co-inner respectively, that is

=  7 and =  7 (2.67)

Therefore, because the £°°-norm is invariant under multiplication by a square inner 

matrix, pre- and post-multiplication in (2 .6 6 ) by %  and %  results in the problem

(2.68)

where

7Z =  TTzTiiT;! (2.69)
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This is a Nehari problem where the objective is to find the closest Q to iî. Q is of course 

an element of TZH°°, whereas R  is generally an element of TZC°°. By construction R  can 

be made completely unstable.

The 1-block problem arises when the number of external inputs, n̂ ,, is equal to the 

number of measurements, Uy, used by the controller, and when the number of regulated 

variables, n,, is equal to the number of control inputs to the plant, (the requirement 

that Uy =  riu is not necessary). For example, the sensitivity minimization problem

nun _ II || (2.70)K—stabthztng II Iloo

and the robust stabilization problem

II ^  I L
fall into this category.

For a 2-block problem, which arises when T u  is square and Tai is nonsquare (T12 non

square and T21 square), the corresponding distance problem is

R i i  —  (

R21
(2.72)

mmQçnn«> (2.73)

The 2-block problem arises when either ri2 > and =  %, or n«, > Uy and 712 =  

Typical 2-block minimization problems are those with a combination of sensitivity and 

complementary sensitivity functions.

For a 4-block problem, which arises when both Tu  and T21 are nonsquare, the corre

sponding distance problem is

R i i  —  Q  R u

JÎ21 R 22

The 4-block problem arises when > Uy and n, > A method for solving this 

problem may be found in [19] and [52].

S ta te-S pace  Solution

Contrary to the (LQG) problem, the controller will not be optimal, however, for 

practical purposes we will be content with a suboptimal solution which in some cases
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is more useful. The assumptions A1-A8 still hold. A state-space representation of P  is 

given by

Zk+l =  A lt  +  +  DgU*

fife =  CiXk +  DiilÛ uiorst,. +  DuUk

Do

J o

Lets define the following two symplectic pairs of matrices

-C fD ^D lC i j y ' \ 0  A:-
A:r C fC 2 -7 - 'C ^ C i

and the two algebraic Riccati equations

X » =  A ^X „.[/ +  ( B , B j - 7 - “S ,B f ) X „ ] '' .4  +  CÎ'Dj.i5ÎC 

i'oo =  A Y „ [ I+ iC ^ C 2 -^ - ^ C J C ,)Y J j ' ' + B i i ) l b x B l

If Doo € dom(PJC), Joo € dom(P7C), %oo =  jR7C(Doo), and =  AfC(Joo), then

can define the gain matrix Foo and the gain matrix Too as

F

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

Cl
, R  =

- 7 'Jn . 0 -
, and R  =

- f A .  O'
0  7 0  7

F:oo :=  (Zoo: Zoo,) =  ATLC^(D +  C};oC^)-"

where

B =  [S i S a ] , C

Suppose that (S  +  S^XooS) has a J,:.,*. factorization [40] given by

S-HS^XooS

then it follows that the following identities hold

= J + S^XooS,

rTT TTl.111 I21 —7m. 0 Til 0 '

. 0  2 S , . 0 .Tn T u.

(2.79)

(2.80)

(2.81)

(2.82)

D^%ooDi

2 ^ 2 2 1  + 7 ^ 7 -g fX o o S i (2.83)
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Also define Zoo := I  — j  ^YooXoo- Next, the set of auxiliary variables are defined. We 

assume that the problem is normalized so that 7  =  1 . Let E  be any matrix that satisfies

E ^E  = I - l f , T u  (2.84)

N
E D I E D I  

T,^Dl

Define
'D ll Di3

, D21 N%2
M 2 := C2 +  D21F001

Doo := 7 +  M2y«Z-:^M ^

Wo, :=  7 -D iiX ^ -X i2 M 3 y ,o Z -:rM ^ r-"X ^  (2 .8 6 )

There exists a stabilizing controller such that || P/(P, D ) ||^  < 1 if, and only if, the 

following three conditions hold;

1) Soo has no eigenvalues on the unit disc, Xgo > 0, and (S  +  S^Xg^S) has a

Jn„,n„ -factorization.

2) Joo has no eigenvalues on the unit disc, Foo > 0, and (R  -(- CYooC^) has a 

Jne.nj-factorization.

3) The spectral radius condition p(XooYoo) <  1 is satisfied.

Given the above, all rational admissible controllers are given by Fi{K, Q) with Q € 

II QII <  1 and K equal

À D i D 2

D l lC l D 12

0 2 D 21 0

where

K (2.86)

(2.87)

D 12 is any matrix satisfying 

D iaD ^ -  'T-i
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D21 is any matrix that satisfies

% %  =  U-^ -  (2.89)

The rest of the matrices defining K  are given by

D2 =  Z ^{B 2  + L ooiD2i )D\2 

B l  =  — +  P 2 D 1 2  D l l  

C2 =  —D2i(C '2 +  D 2iFooj)

Cl =  F c ,+ D n % C 3

A = A 4- DFx) + (v2 (2.90)

The central suboptimal controller Kcentrai equal

^central
5 A  +  B F o o  +  B 1 D 2 1 C 2 — •2 0̂0^ Z 0 0 2  +  B 2 D Î 2  D l l

F 0 0 2  +  D 1 1 D 2 1  C 2 D l l

(2.91)

For the case where 7  7  ̂1, (2.91) is calculated via 7 -iteration using the bisection method 

[1 0 ]. Given a high and low value of 7 , the bisection method is used to iterate on the 

value of 7  to approach the optimal Ti°° control design.

2.4.5 R obust Performance

In this subsection a review of the methods for analyzing the stability and performance 

properties of interconnected systems subject to norm-bounded structured uncertainty is 

briefly covered, together with the synthesis of the final suboptimal controller. Any linear 

interconnection of inputs, outputs, and uncertainty perturbations can be rearranged to 

fit the interconnection structure of Figure 2.8 [17].

Some important design problems cannot be formulated as H°° problems. In particular, 

the problem of achieving robust performance, namely the maintenance of performance 

objectives - not merely stability - in the presence of unmodelled perturbations, is one 

such problem. The solution to this problem requires the minimization of the so-called 

structured singular value, of a transfer function matrix M ,  and this can be very

different from â(At).
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Figure 2.8; General Interconnection with Norm-bound Structured Uncertainty.

As in Section 2.2, P  describes a plant augmented with all the weighting functions 

on the inputs and outputs used to scale the norm-bounds to 1 . AT is a controller 

mapping the measurements, y*, to the plant control inputs, u^. A% is the norm-bounded 

structured uncertainty perturbation, and the mapping Wrobk erot* characterizes the 

uncertainty model being used. The mapping Wperfi, —» p̂er/i, characterizes the desired 

performance. The objective is to check if a controller, K , achieves robust performance, 

where robust performance is defined as achieving stability and performance over the 

entire set of norm-bounded perturbations. Hence, robust performance is achieved if K  

stabilizes PL(P,Ai),VAi 6 B A i and ||P;,(P;(P,Ar),Ai)||^ < 1, VA  ̂ G B A i, where 

B A i =  {A G A l : ÿ(A) < 1 } [7].

A matrix function ju will now be discussed which can be used to analyze the stability 

and performance properties of the interconnection structure in Figure 2.8. Define A4 =  

jFi(P,K). Note that all of the matrices in Figure 2.8 are functions of a frequency 

parameter 6. The loop from eperu tOper/* will now be closed with a complex full block 

and define the matrix function p at a single frequency 0q. Referring to Figure 2.9 - P , 

K , and A at 0q will be evaluated. It will be assumed that Wrobk and erobk are of equal 

dimensions ui, and similarly that Wper/* and are of equal dimensions ng. If this 

is not the case then augmentation of the rows or columns of P}(P, AT) by zeros will be 

used to force the previous conditions.
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T̂Oblf

Figure 2.9: General Interconnection for ^-Analysis and Synthesis.

Let Fi be the number of complex full blocks in the uncertainty perturbation Ai. Then 

the set A i is defined as

A i =  {A i : Ai =  diag (At^,..., A&̂  ̂), At̂  € t =  1,..., (2.92)

where =  n j . Now the robust performance block structure can be defined by

augmenting the uncertainty perturbation A% by a complex full block

A  =  {A  : A =  diag ( Ai , A 3) ,Ai  e  A i , A 2 EC"''''''}

p can now be defined on the robust performance block structure A as

f  m n  ^{CT(A(e^^°)) : det{I + ~  0 }

0 if no A satisfies det(J +  Af(e^̂ ®)A(e-^^®)) =  0

(2.93)

(2.94)

Now with the previous definitions in mind, a precise definition of robust performance 

can be made

-4=^ A'A2 ( ^ ( '^ ( e '^ ) , A i ) ) < l (2.95)AieBAj

where /%^g(.) =  â(.) because of the block structure of Ag.

If PAi{A4iï{e^^°)) < 1 and M(e^^°) is stable, then there are no A% E B A i which can 

destabilize Fu(A4(e-^^®), A(e^^®)) and if PA2(-^td(A4(e^^°), A i)) < 1 then performance is
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achieved at $o since || A i) || < 1 VAi E B A i Hence, the above demon

strates the equivalence of < 1 and robust performance.

In the sequel it will be useful to establish an upper bound for p. With this in mind the 

following set is defined

P  =  {D  E A  : P  =  diag ( d j , . . . , ,  A,,),d, E d, >  0, t =  1 ,...,Fi} (2.96)

where P  is a set of diagonal, positive matrices whose structure matches that of the plant 

perturbation. It is clear from (2.93) and (2.96) that elements of P  and A commute. 

The upper bound for p  can now be written as

(2.97)

The following algorithm [7] will be used to find a controller satisfying p a ( M)  < 1. It 

is assumed that the weighted open-loop plant with the uncertainty and performance 

blocks (Figure 2.9) is given by P.

A lgorithm  (D-K  iteration)

z =  — 1 

do a: =  æ -I-1 

if  z =  0 then  

Fk =  f

Ko =  arg i ^ _  I I W o ,^ )  
K stabilising

else

D , =  a rg ^ ( r (D f ;(P ,_ i ,% ,_ i)D -^ )

O' 0  '
= Px—l

0 4. 0 Fm.
=  arg ipf. . ||F}(F^,A')

K stabilising
end

untU  -  11^,(/>.-„ < to i
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It is noted that the controller is computed as the argument (arg) of the infimum (inf) 

in the above algorithm to mean that Kq and Kx are some minimizers of || Pi(Pq,K) ||^  

and II Pf(Pr, A") ||^ , respectively. The computation of the P-scalings yield a matrix 

of frequency varying data points, since they are computed as the argument of the 

infimum. The multiplication of the D-scahngs implied in the algorithm is done before 

the frequency varying data is fit to a transfer function. This prevents the states of the 

P-scalings from accumulating in each iteration of the algorithm.

Since the oo-norm of the scaled system is norm non-increasing, the D — K  iteration 

will converge in a finite number of iterations. However, there is no a priori guarantee 

that the algorithm will converge to a global minimum. Suppose it converges on the 

iteration. If ||P i(Fv , FCjv) ll̂ o < 1, then pa{^i(P ^K n)) < 1, and achieves robust 

performance. If pa{^i{P i K n))  ^  1 then the performance and uncertainty weights must 

be adjusted to either restrict the uncertainty or decrease the performance level and the 

D — K  iteration tried again.

2 .5  S u m m ary

In this chapter an extensive treatment of the main state-space results regarding the "W 

and problem have been presented, together with some well known results on the 

robust performance problem. The material was presented in order to use and apply 

these results in conjunction with other chapters.



C h ap ter  3 

R o b u st C on tro l w ith  N orm alized  C op rim e F actor  

P ertu rb a tio n s

3.1 In tro d u ctio n

In Chapter 2, different ways for incorporating model uncertainty in the design procedure 

were discussed. The representation of the model set was given in terms of a nominal 

model and an additive model uncertainty or a multiplicative model uncertainty. These 

uncertainty representations are handicapped by the condition on the number of right- 

half plane poles. In addition, there can exist undesirable pole-zero cancellation between 

the nominal model and the 7i°° controller [94]. In this chapter, an alternative way 

of incorporating model uncertainty in the design procedure is presented. It involves 

representing the uncertainty as unknown stable transfer function matrix perturbations 

acting additively one on each of the elements of a particular right or left coprime fac

torization of the nominal plant model. This was first suggested in [105, 104]. There are 

no restrictions on the number of right-half plane poles and no pole-zero cancellations 

arise between the fï°° controller and the nominal model for this representation of model 

uncertainty.

Various researchers, as in [62, 35] have thoroughly investigated this type of uncertainty 

representation. In [62] a parameterization of all controllers achieving suboptimal and 

optimal bounds was derived. A closed formula for the optimal bound was also derived, 

all with respect to uncertainty of a normalized left coprime factorization of the nominal 

plant model, in a continuous-time setting. In [106] the analogous discrete-time problem
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was formulated with respect to uncertainty of a normalized right coprime factor plant 

description. The aim of this chapter is to follow similar steps to those in [106] to for

mulate the analogous discrete-time problem with respect to uncertainty of a normalized 

left coprime factor plant description, and to derive explicit state-space formulae for sub- 

optimal and optimal controllers. Also, explicit state-space formulae for an 7f°°-based 

two degrees-of-freedom (2-DOF) robust controller will be derived. It will be shown that 

such a controller will provide robust stability against uncertainty of a normalized left 

coprime factor plant description and a high degree of good performance in the sense 

of making the closed-loop system match a pre-specified reference model. This problem 

was first investigated, in the continuous-time case, by [47] and [108].

The chapter is organized as follows. Section 3.2 introduces two special control problems 

which show that the parameterized closed-loop map decomposes into two natural com

ponents: State-feedback and Output Estimation. In Section 3.3, the 1-DOF normalized 

left coprime factor design approach is formulated. In Section 3.4, the 2-DOF normalized 

left coprime factor design approach is also formulated. Finally, a summary will be given 

in Section 3.5.

3.2  S p ecia l C on trol P ro b lem s

3.2.1 H°° Full Inform ation Control

The full information problem describes the situation (Figure 3.1) where the controller 

K  has access to both the present dynamic state of the generalized plant f , and 

the current disturbance input Wk- The relationship between full information control, 

game theory and J-lossless factorizations is well documented for the discrete-time case 

in [107, 58]. Here, the J-lossless factorization results of [40], and the 1 -DOF and 2-DOF 

design methodologies are invoked to parameterize H°° full information controls and the 

associated discrete-time H°° control Riccati equation for the case where D u ^  0. It is 

well-known [107] that the general system for the full information problem is described 

by the equations

zt+i =  4- Dgut
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Figure 3.1: Full Information Control Structure.

Cfc =  C\Xk +  DiitTfc +

The above is associated with J-lossless coprime factorization of [40] defining

( 3 . 1 )

A B

C D

A B l

C l D \2 ( 3 . 2 )

0 I 0

( 3 . 3 )

and

4  0

0 -7 ^ 4  J

The latter will simply be denoted by J . The Full Information Control problem may 

be defined as follows: Given a performance level 7 , find all possible controllers such 

that K ) < 7 . This objective has the following interpretation: Find a control law 

Uk =  Kyk such that

sup (II e* 112-7^11 wt II2 ) < 0 ( 3 . 4 )

W ith this interpretation, we can view the Full Information Control problem as a 

game with as the opponent and u& as the minimizing input. The cost functional

associated with the game Riccati difference equation is given by
N - l

Fo =  ^  (ct ct -  7̂ U7̂ ")&) +
fc=0

( 3 . 5 )

The terminal state weighting is included in the cost functional to prevent the state 

vector from possibly becoming unbounded as IV tends to infinity. Introducing Lagrange
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multipliers A&, one can write

^  =  53 “  7 t̂üfctüfe) — 2Af^_i(xfc+i — Axk — B\Wk — Saitfc)] +  xJfPffXN (3.6)
&=o

Assuming the pair (Ci, A) has no unobservable poles on the unit circle, that is the term 

D 12C1 = 0 , the terminal state weighting Pjv can be made zero and the expression given 

by (3.6) may be re-written as

k=0

et
[«I — 2 A|’̂ .i(xfc+i — Axk — B<j>k)

.tot_
and

et ' Cl B n D\2

.Wt_ 0 I 0

Zt'

=  [C B ]
%t

, Wt

.Mt.
in which case

%) =  5 3  J ( C x t  -I- -  2 A ^ i(x t+ i -  A x t  -
fc= 0

The Euler-Lagrange equations

a K  
a ^ t

lead as iV is made infinite, to the following discrete-time Riccati equation

Aoo = A^%ooA-|.C:^JC-(C^JD +  A^%ooB)(D^JD + B^A««g) 

x (P ^JC  + B^AooA)

This can be re-arranged to give the following expression

%oo =  A^XooA -I- J C  -  F ^ (D ^  J D  4-

where

P  =  (D^ JD  -H JC  -k B^XooA)

The term ( D^ J D + B^XooB) may be factorized [107], with W

JD  +
0

■j 0  ■ Wki TVi/

0  - 7 V W21 0

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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The terms of W  are found by solving the two Cholesky factorizations

+  (3.15)

[(B ^D n  +  B^%c,B2)(B ^ B n  +  B^%,.B 2 ) -X B ^ B n  +  B ^X ^B i) 

- B ^ B n  +  7^7 -  B f  XooBi] (3.16)

and then

The expression given in (3.13) may be re-written as 

p  =  W ^ - V T T - ^ ( lF jC 4 -B^Xc,A)

(3.17)

0

0

L2
(3.18)

where Ti =  (D^Ci +  B^Xo^A) and T; =  (B ^ Q  +  B^%o«A), Bi =  and

£,2 =  (—7 ~^1^ 2l ^ r i - f - 7 ~^W2’̂ ^Wi^W{^^r2) . The following theorem summarizes the 

results on the full information problem.

T h eo rem  3.2.1 [107] Given 7  such that

- 7 " ; A B^XooBi + B ^D n  -  (B ^ B ^  + Br%ooB2 )(B ^D n + B^AccBz)-" 

(B^Bn + Bl% coBi)<0

where Xoo =  > 0 satisfies (3.11), all internally stabilizing finite dimensional linear

time-varying (FDLTV) controls Uk that satisfy ||P (P ,X ) ||^  <  7  are generated by

Mt =  — +  7H^^6{7W^iWt A 7Z,2Xt} (3.19)

where 0 (z ) is a stable causal FDLTV operator on [0,X -  1] and || 8 (z) ||go <  7 "̂ .

The central full information control law, obtained by setting 0(z) =  0, is given by

(3.20)

(3.20) will guarantee a norm less than 7  when both the states Xk and the disturbance 

input Wk are available for feedback.
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3.2 .2  D istu rb an ce  Feedforw ard P ro b lem

In the event that the state x* and the disturbance w* are not available, an observer can 

be used to recover full information concerning the plant P , by reconstructing Xk and Wk 

from the output signal The measurement available to the controller is

Pk =  C2Xk +  D2lWk +  D22Uk (3.21)

When I?2i is square, this equation can be inverted, and an estimate of Wk obtained in 

terms of Vk and an estimate of x*. The problem is called disturbance feedforward, 

since in the case Cg =  0, just the disturbance is measured.

The observer will be designed so that its state vector x*, which will be an estimate of 

P ’s true state x&, will evolve according to the following equation

x*+i =  Axt +  BiWt A Baut (3.22)

where Wk is the observer estimate of Wk with D 22 =  0 , given by

iDt =  (y* — Cgxt) (3.23)

Substituting for in (3.23) leads to the following equation for the disturbance estima

tion error

— tot =  B^C2(x& -  x t) (3.24)

Also, subtracting (3.22) from x*+i =  Ax& A BiWk A Bgu* and substituting from (3.24), 

one obtains

(x — x)t+i =  (A — B iI)2i^C2)(x — x)k (3.25)

which describes the propagation of the state estimation error. If Xo =  x^, then (3.25) 

shows that the observer state will be identically equal to P ’s state vector Xfc for all fc, and 

hence Wk =  Wk for all t ,  that is the observer will be able to reconstruct full information 

concerning P  from y*. Re-arranging these equations, the observer dynamics can be 

expressed as

®fc+i =  (A — B\D2iC2)xk A BiBj/yfc A B2U& (3.26)
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It is now possible to incorporate the observer with a suboptimal full information control 

law for [ P ii P i2 ], which was obtained from (3.20). The controller separation structure 

is shown in Figure 3.2. So by substituting the estimated state Xk and disturbance Wk for 

the actual values in the suboptimal full information control law of (3.20), the following 

Certainty Equivalence control is obtained

(3.27)

Controller

Observer
Full

Information
Control

Figure 3.2: Controller Separation Structure.

3.3  7 i° °  1 -D O F  N o rm a lized  C op rim e Factor D esig n  A pproach

A state-space construction for the normalized left coprime factorization and right co

prime factorization can be obtained in terms of the solution to the two standard semi- 

definite algebraic Riccati equations

P P r ^ g ^ - P  +  $ P $ ^ - $ P C ^ Z f Z 2C P $ ^ =  0

respectively, where Z JZ 2 =  (%  +  C PC ^)“ ,̂ Z i Z f  =  (P i -t- B^QB)~^,

P  =  P ^  and Q =  are both the non-negative definite stabilizing solutions,

(3.28)

(3.29)
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P i =  ( f  +  Pz =  ( f  +  and $  =  (A -  PPT^D^'C). In detail, if

P  =  -(A P C ^ +  PD ^)(P, +  CPC^)-^

P  =  - ( P i  +  P ^ Q P )- \P ''Q A  +  D^C)

then

P  =  Z2C (z Z -A ;f ) - 'P g  +  Z2D 

M  =  Z3C ( z f - A g ) - ^ P  +  Z2

43

(3.30)

(3.31)

(3.32)

(3.33)

is a normalized left coprime factorization of G, where A h  =  {A + HC) and B h  =  

(P  +  P D ), and

G X zf -  A p)-^PZi +  D 2 i 

Z i+ P ( z f - v 4 F ) - ip Z i (3.35)

is a normalized right coprime factorization of G, where A f =  (A +  B F ) and Cp =  

(G +  DF). Za and Zi may be determined by performing a Cholesky Decomposition on

Z/2 Z/2

Z iZ f

(Pa 4- G f  G^)-" 

(P i +  P^Q P)-^

(3.36)

(3.37)

respectively.

3.3.1 R obust Stabilization o f Left Coprime Factorization

A perturbed plant transfer function may be written as 

GA =  (M  +  A jiÿ)-X P+A ;») (3.38)

In (3.38), the uncertainty associated with G is represented in terms of unknown stable 

transfer function perturbations acting additively one on each of the elements N  and M  

of a left coprime factorization of G. This is clearly shown in Figure 3.3. The loop 

equations for Figure 3.3 can be written as

G

K '

= I

(I

( I - G P ) - i M - i ( f - P G ) - i p  

( f  -  G P )-^G P
(3.39)
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O -

Figure 3.3: Left Coprime Factor Problem Formulation.

which is represented by an upper linear fractional transformation shown in Figure 3.4, 

where A =  [Ajÿ Ajgj. Each transfer function element in M(z)  =  ̂ ^

is stable provided FT is an internally stabilizing controller. The closed-loop transfer 

function from r& to e* shown in Figure 3.4 is given by

F A) =  Mÿ2 +  M aiA(J — M nA) ^Mia (3.40)

By the small gain theorem, the perturbed system in Figure 3.4 is guaranteed to be 

internally stable for a stable A, if || Mu ||^ < 1 . Hence, synthesizing an internally

stabilizing K  which minimizes || M n  ||^  corresponds to achieving optimal robust stabi

lization against left coprime factor perturbation.

Mil Mia

Mai Maa

Figure 3.4: Left Coprime Factor Problem Formulation.
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Substituting for K  from (2.61) (with Q replaced by $) into M n  gives

TKl _  ̂ r y l  I'M!
M n =  (^ -1 ^ ^ - ) -^ =  +  g (3.41)

The problem of finding K  which provides optimal robust stabilization can be converted 

into an optimal Hankel norm approximation problem [62]. Since (JV, M ) is normalized,
"M l

. Invoking the norm preserving properties of
-M'

is an all-pass extension for 

all-pass transfer function matrices, it follows that

Rii +  ^

where

Mr

—

M ■ y

IV %

(3.42)

(3.43)

(3.43) can be re-expressed as follows

Ap B - H

R n  = F I F 0

D I

(3.44)

which may also be written as

Aii(z) =  Z r '[ - B ^ ( z - V - A ^ ) - X F ^ f  +  C ^ C F )(z f-A f)-" H

- ( f  -k D 3 'C f ) ( z f  -  ) - " H  +  (3 .4 5 )

Writing the Q Riccati equation as

F ^ F  ■+• CpCp = z(z  ̂J  — A^)Q  -k A ^Q (zI  — Ap) (3.46)

it follows that

H n ( z )  =  Z ^ ^  (3 .4 7 )

Provided Ap  is invertible, Rn{z) has the following state-space realization

(Ap^C^ -  QH)Zp"
(3.48)
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The eigenvalues of Ap are the stable generalized eigenvalues of the following symplectic 

pencil

SQ(À) =
$  ^

- A
V  AAP^A^'

0
(3.49)

in which case, R n  is anti-stable. The optimal Hankel norm approximation results of 

[36] yields

2

=  1  +  11 A n ||^  =  l +  Am..(WcTVo)
All +  ^

- I
(3.50)

where Wc and Wo are the controllability and observability Grammians of An, satisfying 

the Lyapunov equations

=  (A p ^ C ^ -Q A )(Z fZ 2)-^(Cf.A p"-A :^Q ) (3.51)

W o-A p 'W ,A p^ = (Ap"A)(ZiZn(B''Ap^) (3.52)

Equations (3.51) and (3.52) can be solved explicitly in terms of the non-negative definite 

Riccati equations P  and Q, that is

- W  +  fQ )  

.P ( f  +  QA)-:

(3.53)

(3.54)

Equation (3.53) can be proved by direct calculation of (3.51), and (3.54) can be proved 

by following Theorem 2  in [106]. Substituting (3.53) and (3.54) into (3.50), the lowest

achievable (optimal) value of 7 o is given by

7o =  ( l +  A„,_(AQ)):/' (3.55)

3.3.2 Controller Formulae

Attention is now turned to the realization of suboptimal and optimal controllers which 

will provide some level of robust stability with respect to uncertainty of normalized left 

coprime factor plant description.
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Suboptim al Controllers

47

A generator of all controllers achieving

%
(J -  G K )-W - (3.56)

where 7  >  7 o can be obtained directly from the game theoretic formulae for suboptimal 

discrete-time 7i°° controllers derived in [58, 107].

The following general regulator formulation is now employed

P(z)

and P  has the following state-space realization

■ 0 / •
f l l P a

G
Pu

G

(3.57)

A S i S ; '

Cx S n S 12

C2 D 21 D22

A s

0 0 I

C D

C Z f ' D

(3.58)

Lemma 3.3.1 K  internally stabilizes Fi{P,K) and || .F}(f, FT) ||^  < 7  if, and only if, 

K  internally stabilizes the transfer function matrix M{z) in (3.39) and

FT'

I
(M  -  IVFT)- < 7

P roof

For P(z) given by (3.57), Fi{P ,K ) = (M  — NK)~^. If M (z) is stable, then so is

(M  — N K )  Conversely, Fi{P,K) stable => M u stable =» M n N  stable. 

This implies the stability of M. ■

A state-space realization of the central suboptimal controller for the 1-DOF control 

configuration under consideration will now be derived. We start with the following 

theorem.

Theorem  3.3.1 For the standardized plant described by (3.58) and satisfying assump

tions A l, A2, A4 and AS with D 21 square, we have the following results:
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1) There exist an internally stabilizing suboptimal controller K (z)  such that 

II A ) II <  7  if, and only if,

i) 7 >  7o.

ii) - 7 ^  +  < 0

where

Xoo =  > 0 satisfies (3.11).

2) When the conditions of part (1 ) are satisfied, the internally stabilizing sub- 

optimal controller Ff(z) satis^dng || p (P , K) ||̂  ̂ < 7  has the following state- 

space realization

X A
(f  + PC^

where Obx  = ( I  + SS^Xoo)

P roof

Part 1 (i): Straightforward.

Part 1 (ii) is a consequence of Theorem 3.2.1 and (3.58).

Part 2 : Lets consider the following observations. From (3.58) we have:

•^12-^11 ~  0; h)i2Ci =  0, D12D12 =  I

Now from (3.19) we have

(3.60) =*. =  

(3.16) = >  =  (D^Di2 +  A^XooA2)"'BrXooPi

(3.60) = >  =  (z +  AfXooB2)"'g^XooBi

Also, from (3.19) we have

(3.59)

(3.60)

(3.61)
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(3.60)

(3.15)=$. =  +

(3.60)=$. =  +  (3.62)

The central suboptimal control law given in (3.27) can now be written as

( 3 .6 1 )6 ( 3 .6 2 )  = $ .u %  =  - ( f  +  B ^ X c .B 2 ) " 'B ^ X o o A z k  

-  ( l  +  B^XooBiiDk

=  -(7+ B ^X «,B 2)" 'B ^X oo(A zk  +  Biu;k)

(3.23) = $ . =  -  (Z +  BfXooBg)"' BfXoo [Az^ +  (yt -  CiZt)]

=  - ( z  +  BrX «,B 2)" 'B fX c ,

X [(A -  i t  +

=  CkZt +  D&yt (3.63)

where

Ck =  - ( Z  +  BfX«,B2)"'B^X,.(A-BiDPi"C2) (3.64)

D& =  - ( z  +  B^XcoB2)"'BfX«,BiD;^' (3.65)

Now substituting for u% from (3.63) in (3.26), the observer dynamics can be written as

ik+i =  (A — Xk + BiD^iVk +  B; (CkXk +  DkVk)

=  (A -B iD ;^"C 2 +  B2C k)zk+ (B iD M "+ B 2D t) |/t  

=  A&Zk +  Bkyk (3.66)

where

Afe =  A  — B 1D 2 1 C2 -b B2Ck (3.67)

B* =  BiD^^^+BiBt (3.68)

From (3.58), (3.64) becomes

Ck =  - ( z  +  B^XooB)"'B^Xoo(A +  B C 2)

=  -  (Z +  B ^X ooB )B ^X oo(A  -  ABC:^(Z +  C f  C^)-^C)

=  -B^^Xoo (Z +  BB^X,^) A(Z +  f  C^C)-" (3.69)
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and (3.65) becomes

D t =  - (Z  +  B^XooB)-^B^XooB

=  -B^Xoo(T +  BB^Xoo)-^A(Z +  P C ^ C )-^ f

Using (3.58), (3.64), and (3.65), (3.67) and (3.68) can be rewritten as

At =  ( f  +  BB^Xco)-"A(Z +  fC ^C )-"

Bk =  (Z +  BB:r_Y^)-^A(Z +  BC^C)-^BC^

This completes the proof.

50

(3 .7 0 )

(3 .7 1 )

(3 .7 2 )

O ptim al Controllers

The controller realization (3.59) becomes degenerate as 7  approaches the optimal value 

of (3.55). This is accompanied by Xoo being unbounded in the limit. Since [62]

Xco =  7'Q (7" -  1) -  P Q )- ' (3.73)

the controller dynamics become after substituting (3.73) in (3.59)

%k+i =  BB-^A (Z +  zk +  BB-"A (z +  f  BC^yk (3.74)

Uk =  (Z +  BC ^'C )"' Zk -  7 'B ^ Q B -U  (z +  BC^^k (3.76)

where

B =  [ ( 7 3 - i ) Z - B Q ] " ' (3.76)

A =  [ ( f - l ) Z - B Q  +  7 ^BB^Q]"' (3.77)

Clearly, when 7  =  7 *, the left null spaces of the matrices A& and Bk intersect and 

the realization of (3.59) contains r  uncontrollable modes at the origin, r  being the 

multiplicity of (3.55). These can be removed in the following manner. First, a singular 

value decomposition of B  is performed as follows

2  O'

0 0

I f
(7 J - 1 K - P Ç (3.78)

Then the state transition equation given in (3.74) becomes
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Second, the uncontrollable modes can then be removed via the singular state transfor

mation from Xk to (k

Xk =  UiCk (3.80)

leading to a realization for the reduced-state-order central optimal controller

K,opt
E l f  A  ( l  +  P C ^ C )  ^ Z I f  A -^ A  (Z +  P C ^ C )   ̂P C ^

- 7 ^ A ^ Q A - :A  (Z +  P G ^ C ) " ' - 7 ^ A ^ Q A - iA  (Z  +  P G ^ C ) " ' P G ^
(3.81)

3 .3 .3  A n H°° Loop Shaping D esign Procedure (LSDP)

In practical design applications, an effective method is to reshape the plant frequency 

response in order to meet the closed-loop performance requirements. This loop shaping 

can be done by the following design procedure [62]:

1 ) Using a pre-compensator, Wj, and/or a post-compensator, Wj, the singular 

values of the nominal system G, are modified to give a desired loop shape. The 

nominal system and weighting functions Wi and W2 are combined to form the 

shaped system, G „ where

G. =  W2 GW1 (3.82)

It is assumed that Wi and W 2 are such that G, contains no hidden unstable 

modes.

2) A feedback controller, K , is synthesized which robustly stabilizes the normal

ized left coprime factorization of G„ with a maximum stability margin e^ai, 

where 6 ^ 0 1  =

3) The final feedback controller, K , is then constructed by combining the H°° 

controller Koo, with the weighting functions Wi and W2 such that

X  =  WiAcoWz (3.83)

It can be shown that the final controller does not significantly alter the specified loop 

shape provided a sufficiently small value of 7 0  is achieved.
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For a tracking problem, the reference signal is generally fed between Koo and Wi, so 

that the closed-loop transfer function between the reference r& and the plant output y* 

becomes

4 4  =  (^ -  G(z)K {z))- 'G (z)W i (z )K „(I)W 2(I), (3.84)r\z)

where the reference is connected through a gain Koo(I)W2 (I) where

^oo(7)W;i(/) =  hm (3.85)

to ensure unity steady-state gain.

3 .4  H ° °  2 -D O F  D esig n  A pproach

The objectives in control system design usually refer to internal stability of the control 

system, disturbance rejection, measurement noise attenuation, insensitivity to parame

ter variations, and reference signal tracking. These objectives may be achieved by one 

or 2-DOF schemes, but reference signal tracking often dictates the use of a 2-DOF con

troller. The philosophy of the 2-DOF scheme is to use a feedback controller K 2 to meet 

the requirements of internal stability, disturbance rejection, measurement noise atten

uation, and sensitivity minimization. A prefilter K i, is then applied to the reference 

signal, which optimizes the response of the overall system to the command input.

Sometimes for a 2-DOF controller design, a natural framework to adopt is that of an 

infinite-time model following task where the plant is forced to track, for example, a step 

response to a specified model. It may be for instance, that a flexible wing aircraft (the 

plant) is required to perform (after connection of feedforward and feedback control) in 

the same manner as a rigid body aircraft (the reference model). This approach was first 

proposed and developed for the continuous-time in [47], where in this 2-DOF framework, 

the feedback controller and prefilter are designed together in a single step via an H°° 

optimization framework. The feedback controller is used to meet the robust stability 

and disturbance rejection specifications, while the prefilter is used to shape the desired 

time responses of the closed-loop system, that is, it forces the plant model output to 

follow a reference model.
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3.4.1 The 2-DOF Design Configuration

The 2-DOF configuration (Figure 3.5) includes a model matching problem in addition to 

the robust stability maximization problem outlined in Section (3.3). The controller K  is 

partitioned as K  = [Ki K 2 ], where Ki is the prefilter and K 2 the feedback controller. 

Mo(z) is a reference model chosen to have ideal time-domain response characteristics, 

which the closed-loop system is desired to follow. G, =  GWi =  M~^JV is the shaped 

plant. For the 2-DOF configuration, we assume that the plant has no post-compensation 

as part of the weighting (i.e. W2 = I). We shall later consider (Chapter 8 ) the case 

where W 2 may also be used in shaping the plant.

Figure 3.5: 2-DOF Design Configuration.

The problem is now formulated as a standard 'H'^-optimization problem such that the 

oo-nomi of the transfer function matrix .^(F, AT) relating ut, yt, e* to r&,

( 7  - ( 3 . 8 6 )

p ( 7 - G . F T 2 ) - : M - :

is minimized. The (1,2) partition of (3.86) is associated with robust stability optimiza

tion and the (2,1) partition with model-matching. The aim is thus to provide robust
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model following in addition to robust stability in the face of the coprime factor un

certainty. The (1,1) partition can interpreted as limiting actuator use when following 

references. The parameter p is a scaling used to emphasize the (2,1) partition of (3.86), 

thus emphasizing the model-matching part of the problem.

To set the problem in an -optimization framework, we shall first put it into the 

standard regulator form shown in Figure 2.1. As shown in the figure, Wk was the 

vector of all exogenous signals and e* was the vector of all signals to be minimized, 

Uk was the vector of control signals and y* was the vector of measurements available 

to the controller. For the 2-DOF case, to* =  I .riT and

Vk = l^k VkV- This is all apparent from the choice of the transfer function matrix 

(3.86) we seek to minimize. The generalized plant P  is then given by

r t '
P ii  P ii

et = ^t

^t . « t .

0 0

0

-/M :, 

p f 0

0  M - 1

I

Gs

pGs

0

G.

rk

(3.87)

Let the shaped plant G,(z) and the reference model Mo{z) have state-space realizations
A. Bs

c . 0
and Mo

g ' Ao

Co 0
respectively, with being stable. A state-

space realization for (3.87) is then given by

Dll

Dai

0

- 1

- 1

(3.88)
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The state vector Xk of P  can be partitioned as ])^, where a:** is the state of

the shaped plant Gs and Xô  the state of the reference model Mo- Note that we have 

assumed the shaped plant G, to be strictly proper.

3.4.2 T he  2 -D O F  C on tro lle r F orm ulae an d  S tru c tu re

A state-space realization of the central suboptimal controller for the 2-DOF control 

configuration under consideration will now be derived. We start with the following 

theorem.

T h eo rem  3.4.1 For the standardized plant described by (3.88) and satisfying assump

tions A l, A2, A4 and A6  with Dgi square, we have the following results:

1 ) There exist an internally stabilizing suboptimal controller K (z)  such that 

II .Fi(P, FT) ||g(, <  qr if, and only if,

i) 7 > ^ ( 1 + P ‘) A „„[(Z ,Z f)-'].

U) +  D [,D n -  B fX „ B 2 (I  + B lX ^ B iY ^ B ^ X ^ B ^  < 0

where

Xoo =  > 0 satisfies (3.11).

2) When the conditions of part (1) are satisfied, the internally stabilizing sub- 

optimal controller Fr(z) satis^ng || .F)(P,X) Ĥo <  7 has the following equa-

tions

^'*+1 =  -  a^(yk -  C . z .J  -I-

®Ofc+i ~  AoXô . -f- BoCk

‘̂ k — OsB J[X ooh(As + HCs)Xsf. + XoouAoXo .̂

ANooiiBoCk — XooiiHyk] (3.89)

where O, =  - ( f  +  B rX oo»B ,)-\ 

P roof
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Part 1 (i): A necessary condition [48] for the existence of an internally stabilizing
0 01

suboptimal controller K (z)  is that 7  > a(Dj^Du). Choosing =

To
th a t [Di2 D±] is unitary. This implies that DTDh =

0  pzr^

I  0  will ensure 

0

and â{D'^Dii)

yO- + P^) ^max [{^2^1) ]̂- Part 1 (ii) is a consequence of Theorem 3.3.1 and (3.88). 

Part 2 : Lets consider the following observations. From (3.88) we have:

D ^ D n  =  0 , D ^ ; C i = 0 ,  =  f  (3 .9 0 )

The solution Xoo of the discrete Riccati equation can be partitioned conformally with

A  =
Aj 0

; that is Xoo = -^0012

0

%oo = [B f 0 ]
^OOll

^0021

^0 0 1 2

-^0022 .

. We can thus write from (3.88)

.-^0021 -̂ 0022 .

and

=  0 ] = B lX ^ „ B .
-A 0021 -̂ 0022 _ . .

so that (3.64) becomes

=  - ( /  +  S f X „ „ B ,) ' ' [ B f X „ „ ( ^  +  irC.) B fX „ „ A ,l

— [ ̂ *11 Gki2 ]

(3.91)

(3.92)

(3.93)

Similarly substituting for BjXoo and Bf’XooBa from above and for B i and D21 from 

(3.88) in (3 .6 5 ) ,  we get

_ r n r^r n 1
D ,  = - ( /  + B fX „ ..B ,)“ [BJX „.. B j x „ „ ]

-1

' 0 p f 0

Bo 0 . 0

=  - ( i  + B fX .„„B ,)"  [IB J-X ^^B . - B jX ^ ^ ,H

— [ Dfcj, Dki2 ] (3.94)
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Using (3.88) and (3.93), (3.67) can be written as

[ Cku ]

As + HCg + BgCkn BgCki2 

0  Ao
Similarly for Bk substituting from (3.88) and (3.94) into (3.68), we have 

0

57

A. +  B C , 0  ■ B.
Ak = +

0 Ao 0

(3.95)

' p i 0 -1
-f-

D.'

0 0

(3.96)

.̂ Ok+l . .^°k .

+
'A '

.y&.
(3.97)

Bo 0

- B  +  B,D&,

. 1 2 ,  0

Using Ak and B* from above, the observer dynamics (3.26) can be written as

A, +  B C , +  B,Ct,, B.Ct,

0  Ao

. l 2 o 0

where we have split the observer state vector into the estimated state of the shaped 

plant Gs, and the state Zg* of the reference model Mg. Recall that the measurement % 

available to the controller consists of the scaled reference input 0k and the plant output 

yk (as can be seen from (3.87)), and hence y* has been replaced above by [0][ Vk]^-

Using 0k = RTk (see Figure 3.5), we can re-write the observer state equation as

(3.98)

^Sk+l A .-H B G ,+ B ,C t,, BsCkx2

. ̂ , * + 1 . 0 Ao .

+
Bo 0

The controller output equation (3.63) can be written as
.y&.

— [G&H Ckx + [pDku ]
r&'

,^°k . .y&.
(3.99)

(3.98) and (3.99) give a state-space realization of the suboptimal controller that is 

stabilizing and norm-bounding for the generalized plant of (3 .8 8 ).

The controller state equation (3.98) can also be written as

A ,-k B C , O '
+

0  Ao

- H  0

0  Bo
. r t .

(3.100)
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which shows clearly the controller structure. This completes the proof. ■

It is seen that the controller consists of an observer for the shaped plant Gg, which 

provides an estimate for the state z** of G,; H  being the observer gain. The 

observer is driven by the input and output of G„ and y*, respectively. Also included 

in the controller dynamical equation is the state update equation of the reference model 

Mg. The model runs autonomously inside the controller, its state Xĝ  being driven by 

the reference input r^. Recall that the generalized plant P  given in (3.88) has the state 

vector f ' . The controller has information regarding some of the states of P ,

i.e., the ones corresponding to the reference model. These states are thus used directly 

-  they need not be estimated. An observer, it turns out from (3.100), is constructed 

only for the estimation of the states of the shaped plant Gg.

The controller output equation (3.99) consists of a generalized state feedback that uses 

both the plant state estimate, and the reference model state. It is remarked here that 

in general, H°° suboptimal control problems cannot be solved by an observer-state 

feedback combination alone -  a worst case disturbance estimate will also be used to 

generate the control. In the 2-DOF case under consideration however, it is the special 

structure of the generalized plant P  (D21 square), that enables the controller to be 

written simply as an observer plus a state feedback. The controller structure is shown

cascaded with K  = [Ki FCg]
Ak

to yield the final controller

[WiXi W1 X 2 W2 ] (3.101)

In addition, for perfect steady-state tracking, the pre-filter Ki is scaled so that the 

steady-state gain from the reference to the output becomes unity.

3.5 S u m m ary

In this chapter, a complete treatment was given of robust controller design for normal

ized left coprime factor plant description. The presentation had two main aims: The 

first was to re-formulate the work of [106] for the discrete-time normalized left coprime 

factorization using similar steps, and to derive central controllers with suboptimal and
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Shaped Plant

State-Estim ator

Reference M odel

Figure 3.6: 2-DOF Controller Structure.
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optimal bounds. The second was to formulate the 2-DOF normalized coprime factor 

design approach of [47] in discrete-time, and to analyze in more detail, the structure 

of the resulting 2-DOF suboptimal controller. Explicit state-space formulae for the 

controller were derived. This 2-DOF controller which achieves robust stability and 

model following requires the solution of only one indefinite Riccati equation, and its 

final structure consists of a combined state-estimator/state-feedback coupled with an 

explicit reference model.

In the next chapter, we shall demonstrate the robust control methods presented in 

Chapter 2  and this chapter on a SISO industrial case study.



C h ap ter  4

R o b u st M u lti-O b jectiv e  C on tro l o f  an  U n k n ow n  

In d u str ia l P lan t

4 .1  In trod u ction

The previous two chapters motivated the use of discrete-time H°° optimization as a 

method for designing robustly stabilizing controllers by incorporating several types of 

model uncertainty in the design procedure. In this chapter we are going to apply these 

methods to an “unknown” industrial plant (the IFAC 1993 benchmark).

The specifications for the IFAC 1993 benchmark control problem, Robust and Adaptive 

Control of an Unknown Industrial Plant [39] include stringent closed-loop performance 

requirements for a plant with parameters known only within a certain range. This means 

that a design method which explicitly considers closed-loop performance is desired. The 

method of inequalities (MOI) is a general-purpose, multi-objective design procedure in 

which closed-loop performance can be explicitly included in the design objectives. Most 

control problems, such as the IFAC 1993 benchmark, have significant plant uncertainty, 

and hence require robustness. This can be provided by use of a number of analytical 

optimization techniques. Thus, both explicit closed-loop performance and robustness 

can be obtained by combining the MOI with analytical optimization techniques. This 

can be simply done by using the MOI to design the weighting functions required for 

the practical implementation of analytical optimization methods, such as the Linear 

Quadratic Gaussian (LQG) problem or -optimization problems. This provides a 

powerful design framework for control system design problems such as the IFAC 1993
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benchmark problem.

The aim of this chapter is to present designs for the problem achieved by the use of the 

MOI with several analytical optimization methods covered in Chapters 2 & 3. It also 

includes results for simple PID controllers designed using the MOI. The chapter also 

includes details of the combining of the various analytical optimization methods with 

the MOI.

Section 4.2 states the benchmark problem and gives the specifications and the linear 

models used for controller design. In Section 4.3, the method of inequalities (MOI) is 

described along with a summary of the moving boundaries process (MBP), which is the 

numerical search algorithm used by the MOI. In section 4.4 , a description is given of 

the design methods used and how they can be combined with the MOI; the methods 

include PI/PID  controllers, an LQG method, the H°° mixed-sensitivity problem, the 

LSDP and a 2-DOF LSDP extensions. Finally, the designs obtained for the benchmark 

problem using the various approaches are presented in Section 4.5. A gain adaptive 

scheme is also presented which improves the performance of the system at the most 

difficult operating conditions. Finally, a summary is given in Section 4.6.

The benchmark is talcen from [39] and can be briefly described as follows: One of the 

loops in a local company in Australia is a time-varying single-input single-output pro

cess. Depending on various production conditions, the loop operates at three different 

stress levels, with higher stress levels inducing larger time variations. The set-point to 

the loop is a square wave varying between -fl and - 1  with a period of 2 0  seconds.

Until recently, the company was not aware of this loop’s impact on product quality and 

has operated a simple unity gain controller.

New research results, however, have convincingly shown that the final product quality is 

directly linked to zero steady-state tracking error (modulo high frequency noise) and fast 

rise times. Thereby the plant output must remain within -1.5 and -|-1.5 at all times, 

otherwise damage is immediate. But it is actually preferable if the output remains
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between -1 .2  and 4-1 .2  most of the time.

Unconfirmed spy reports claim that a competing company is succeeding in running the 

loop with rise times of 2 or 3 seconds and fast settling. So now the management of 

the local company would like to know if such performance, or possibly even better, can 

indeed be achieved.

4.2.1 Specifications

For each stress level, design a controller to achieve as fast a rise time as possible, subject 

to the following conditions:

1) The plant output must be within -1.5 and 4-1.5 at all times.

2) Zero steady state tracking error (modulo high frequency noise).

3) It is preferable if under/overshoot is around 0.2 most of the time (occasional 

large over/undershoots are acceptable as long as the output is within db 1 .5 ).

4) Fast settling time.

5) Plant input saturates at -5.0 and 4-5.0.

The set-point may be pre-filtered.

4.2.2 S im ulation

The design is simulated via an accessible “black box” simulation code. The code for the 

supplied unity feedback controller is replaced with the final designed controller. The 

following points must be observed:

1) Due to noise and parameter variations, the response will be different every 

time the program is run (larger variations at higher stress levels).

2 ) A representative picture of the variations is achieved if the plant is simulated 

over at least 300 seconds.
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3) The variations can be achieved by either simulating over a 300 second period, 

or by simulating several times over equivalently shorter periods. The latter is 

recommended for convenience.

4) The final design should be simulated by running the program at least 15 times 

over a 20 seconds period and plotting the 15 output curves on top of each other 

on a window scaled from 0  to 2 0  seconds on the horizontal and from -1 .5  to 

+1.5 on the vertical axis. This should be done separately for each of the three 

stress levels, yielding a  total of three windows with 15 curves each.

4.2.3 Linear M odels and Open-Ioop Analysis 

The nominal transfer function G(s) of the plant is given by

A%-%s +  l ^ d
+  wg)(T,a +  1 )

where

Ti =  5, Tg =  0.4, Wo =  5, C =  0.3, K  = 1

The transfer function of the plant for each stress level is also given by (4.1) with the 

following parameter variation intervals:

Stress Level a n a?!: SüJq %
1 ±&20 ±045 ±1.60 ±0T0 0

2 ±&30 ±0T0 ±2.60 ±0T6 ±0.16

3 ±0.30 ±0.16 ±& æ ±0T6 ±0.60

For stress level 1, the variations of the parameters are uniformly random within the 

indicated limits and the changes coincide with step changes in the set-point. For stress 

levels 2 & 3, the variations of the parameters are sinusoidal with indicated amplitudes 

and random phase changes. The complete transfer function Gt{s) of the plant for each 

stress level is given by

Gt{s) = K{ — T2S +  1)Wq
[g: +  2(w os +  wg)(Z^6 +  1) (s2 +  2(gwgs +  w |)(7 ]«s +  l)(2 ^ a  +  1)

(4.2)

where

I f 0.6
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The time domain open-loop responses for all stress levels are shown in Figure 4.1, where 

the dashed line indicates stress level 1 , the dotted line indicates stress level 2 , and the 

solid line indicates stress level 3. Also, the frequency domain open-loop responses for 

all stress levels are shown in the same figure, where the solid line indicates the complete 

transfer function and the dotted line indicates the nominal transfer function. The figure 

clearly indicates the high variations in static gains for stress levels 2  & 3 .

4 .3  A n  In tro d u ctio n  to  th e  M eth od  o f  In eq u a lities

Performance specifications for control and other engineering systems are frequently given 

in terms of algebraic or functional inequalities, rather than in the minimization of some 

objective function. For example, a control system may be required to have a rise time of 

less than 1 second, a settling time of less than 5 seconds, and an overshoot of less than 

10%. In such cases, it is obviously more logical and convenient if the design problem is 

expressed explicitly in terms of such inequalities.

4.3.1 The M ethod o f Inequalities (MOI)

The method of inequalities (MOI) [115] is a computer-aided multi-objective design ap

proach, where desired performance is represented by such a set of algebraic inequalities, 

and where the aim of the design is to simultaneously satisfy these inequalities. The 

design problem is expressed as

<̂ i(p) < Ei for * =  1 , . . . ,  n (4.3)

where e,- are real numbers, p E V  is a real vector (pi,P 3 , . . .  ,p ,) chosen from a given 

set P  and are real functions of p. The functions are the objective functions, the 

components of p  represent the design parameters and e, are the design goals which are 

chosen by the designer and represent the largest tolerable values of The aim is the 

satisfaction of the set of inequalities in order that an acceptable design p is reached.

Each inequality <f>i{p) < e, of the set of inequalities (4.3) defines a set Si of points in the

q-dimensional space W  and the co-ordinates of this space are p i,p 2 , . . .  ,p ,, so

=  {p : <̂ (̂p) < e j . (4.4)
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Open-loop step resptmses — All stress levels
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The boundary of this set is defined by ^,(p) =  e, . A point p G "R® is a solution to the set 

of inequalities (4.3) if, and only if, it lies inside every set Si, i =  1 ,2 ,...  ,n  and hence 

inside the set S  which denotes the intersection of all the sets Si,

=  P i «Si ( 4 . 5 )
*=1

S  is called the admissible set and any point p in 5  is called an admissible point denoted 

p«. The objective is thus to find a point p such that p E S . Such a point satisfies the 

set of inequalities (4.3) and is said to be a solution. In general, a point p, is not unique 

unless the subset 5  is a point in the space W .  In some cases, there is no solution to the 

problem, i.e. «9 is an empty set. It is then necessary to relax the boundaries of some 

of the inequalities, i.e. increase some of the numbers until an admissible point p, 

exists.

For control system design, the functions <f>i{p) may be functionals of the system step re

sponse, for example the rise time, overshoot or the integral absolute error, or functionals 

of the frequency response, such as the bandwidth. Until recently, in applications of the 

MOI, the design parameter p parameterized a fixed controller with a particular struc

ture. However, in more recent applications [111, 72], p has parameterized the weighting 

functions required in -optimization problems.

They can also represent measures of system stability, such as the maximum real part of 

the closed-loop poles. Additional inequalities which arise from the physical constraints

of the system can also be included, to restrict for example, the maximum control signal. 

In practice, the constraints on the design parameters p which define the set V  are also 

included in the inequality set, e.g. to constrain the possible values of some of the design 

parameters, or to limit the search to stable controllers only.

The actual solution to the set of inequalities (4.3) may be obtained by means of nu

merical search algorithms, such as the moving boundaries process (MBP) [115]. The 

principles behind the MBP are described later. The procedure for obtaining a solution 

is interactive, in that it requires supervision and intervention from the designer. The de

signer needs to choose the dimension of the design parameter vector p and initial values 

for the design parameters. The progress of the search algorithm should be monitored, 

and, if a solution is not found, the designer may either change the starting point, amend
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the size of the design vector, or relax some of the bounds e. Alternatively, if a solution 

is easily found to improve the quality of the design, the bounds could be tightened or 

additional design objectives could be included in (4.3).

4.3.2 An Algorithm  for Solving MOI

The moving boundaries process (MBP) algorithm can be used to numerically solve the 

inequalities (4.3). At each iteration, the process seeks to improve all the indices with 

unsatisfied bounds while keeping the other bounds satisfied.

The MBP proceeds from an arbitrary initial point to an admissible point, i.e. any point 

in the set S , in an iterative way. Let p* denote the value of p at the tth  move. 5* is a set 

formed by the inequality <f>i{p) < ^,(p^) with a boundary 4i(p) =  <̂ «(p*')- A step is taken 

from the point p* to a trial point p*. If for every i = 1 ,2 ,.. .  ,m , the boundary defined 

by ^j(p) =  ^t(p*) is closer, or no further away from, the boundary of S^, then the point 

p* is accepted and becomes the new point p*+^. After a sufficient number of successful 

steps, the boundary of coincides with the boundary of S{ for every i =  1 , 2 , . . .  ,m , 

and the problem is solved. Thus

S ‘ =  PI'S? (4.6)
«=1

* =  l , 2 , . . . , m  (4.7)

* _  f Ei if^ i(p ^ )< E i, * =  l , 2 , . . . , m
(4.8)

A step is taken from p* to a trial point p*. This point is a success and we set p*+̂  =  p^ 

if, and only if,

i =  l , 2 , . . . , m  (4.9)

If any of the inequalities (4.9) do not hold, another trial point is made from p* until 

a success occurs. When all the strict inequalities (4.9) hold, the boundaries of the set 

5 ^ + 1  would have moved closer to the boundaries of S. The process is terminated when,

after a sufficient number of successful steps, the boundaries of converged to those of

«S, i.e. when

% =  1,2, . . . , m (4.10)
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The original MBP [115] used the search scheme in [90] to generate trial points. Searches 

are conducted in a set of orthogonal directions, the descent directions being adjusted to 

maintain a  direction of steepest descent.

An alternative scheme [79] uses a modified simplex method [75] for the search scheme. 

The following formulation makes all indices with unsatisfied bounds equally active at 

the start of each iteration; at the tth  iteration, the following minimax problem is solved:

minmM * = 1 ,2 ,. . . ,m and p € ?* j (4.11)
" ' I yi -  J

where

 ̂ (4.12)

^ ! = ( ^ * ‘) (4.13)
[ if <̂ i(p*) < Ei

and S is set to a small positive number.

The MBP using both search schemes has been implemented in MATLAB and both are 

used for the designs for the IFAC 1993 benchmark problem presented in Section 4.4.

4 .4  P ro p o sed  D esig n  M eth o d s U sin g  M O I for M u lti-O b je ctiv e  

C on tro l

4.4.1 P I /P ID  Controller D esign

The MOI can be used to find satisfactory controller parameters for fixed controllers, 

such as a PI or a PID controller in the simple feedback configuration shown in Figure 

4.2.

For a PI controller, with p = (pi,pa), the controller is parameterized as

^(P, (4.14)

and for a PID controller, with p =  (pi,P2 ,P3 ,P4 ), as
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o G
y*

Figure 4.2: PI/PID  Scheme.

The MBP can be implemented to find values of p which satisfy the inequalities (4.3). 

However, in general, if the closed loop system is unstable, the closed loop performance 

indices <f> cannot be calculated, and no gradients exist to assist the search algorithm 

improve the values of <f>. Hence, the search must be conducted in two stages; the first is 

to find a stability point, and the second is to find a solution to (4.3).

If (for a SISO system), y,(p, k) is the time response from which the functionals (ft are 

calculated; then, from [115], a point p is a stability point if, and only if, the limit

oo) =  y,(p, t )  (4.16)

exists and is finite. A different inequality set is thus required for the first stage to enable 

the MBP to yield a stability point. From [115], such an inequality is

m ^ | A i ( p ) | < l  V Ai(p)€A(p) (4.17)

where A denotes the set of all finite poles A, of the system closed loop transfer function. 

The MBP is used to solve (4.17), the first stage of the parameter search, and hence 

yield a stability point. The definition of a stability point can be extended for MIMO 

systems.

The design problem is thus stated as follows:

P ro b lem

Stage 1 For the system of Figure 4.2, find a controller K{p) such that

4)(p) <  1 (4.18)

where

ÿo(p) =  I Ai(p)| (4.19)
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Stage 2 Find a K(p)  such that

^<(p) < for * =  1 , . . . ,  m (4.20)

where ^i(p) are performance functionals of the closed-loop system, and e, are real 

numbers representing desired bounds on .

D esign Procedure

A design procedure to solve the above problem is:

1 ) Define the plant G, and define the functionals

2) Define the values of e,

3) Define the structure of the controller K(p), e.g. a PI controller as in (4.14). 

Bounds should be placed on the values of p,- to ensure that K{p) is imple- 

mentable and to prevent undesirable pole/zero cancellations.

4) Define initial values of p,-.

5) Implement the MBP to find a K{p) which satisfies inequality (4.18), i.e. locate 

a stability point. If no solution is found, try again with different initial values 

of p, or change the structure of the controller K{p).

6 ) From a stability point, implement the MBP to find a K{p) which satisfies 

inequality (4.20), i.e. locate an admissible point. If a solution is found, the 

design is satisfactory. H no solution is found, relax one or more of the bounds 

£i, change the initial values of p  by returning to step (4) or change the structure 

of the controller by returning to step (3).

4.4.2 W eighting Param eter D esign for the LQG

The quality of performance of the closed-loop system using the LQG design approach

depends on the choice of:

1 ) The state and actuator signal weighting matrices Q and A, respectively.
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2) The process and measurement noise covariance matrices W  and V, respec

tively.

These weighting matrices, which appear explicitly in the problem formulation and final 

controller, are considered to be “tuning parameters” and are usually adjusted by the 

designer (using trial and error with experience and good insight) until a satisfactory 

design is obtained.

From the performance measure of (2.14), the weighting matrices of the LQ optimal 

feedback problem are given by

Q =  C^QcC and N  =  Pcinxn (4.21)

where Qc is a non-negative definite symmetric matrix given as Qc = diag (gcu • • ■ , 9 cr) 

and A is a positive definite symmetric matrix. The parameters , Çcr and pc are

the tuning parameters. Similarly, the weighting matrices of the Kalman filter problem 

are given by

W  = B Q fB ^  and V  =  pjinxn (4.22)

where Q/ is a non-negative definite symmetric matrix given as Q/ =  diag (gy,, . . . ,  g/^) 

and y  is a positive definite symmetric matrix. The parameters g /j,. . . , g/  ̂ and p/ are 

the tuning parameters. So the weights Q, i2, W, and V  effectively represent the design 

parameters. By formulating the problem as in the MOI with the weights as the design 

parameters, the weighting parameter “tuning” is automated, and the control system 

can be designed for explicit closed-loop performance in both the time and frequency 

domains. The design problem is now stated as follows:

Problem  

For the system of Figure 2.2, find a (Qc, pc, Qy, Py) with (Qc, Qy) > 0 and (pc, py) > 0
such that

^t(Qcî Pci Qy ? Py) ^  for i =  1 , . . .  m, (4.23)

where <^t(Qc,Pc,Qy,Py) are functionals of the closed-loop system, Si are real numbers 

representing desired bounds on It should be noted that the pair (A ,B ,Q fC ) and 

{A, B Q j, C) are assumed to be be stabilizable and detectable.
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D esign P ro c e d u re

A design procedure to solve the above problem is:

1) Define the plant G and the functionals (/){.

2) Define the values of £%.

3) Define initial values of Pc, Qf, and pf. Bounds should be placed on the 

design parameters to ensure that (Qc, Qy) >  0 and (pc, Py) >  0.

4) Implement the MBP to find a (Qc, Pc, Qy,Py) which satisfies inequality (4.23). 

If a solution is found, the design is satisfactory. If no solution is found, either 

relax one or more of the bounds £j, or try again with different initial values 

by repeating step (3).

5) W ith satisfactory weighting matrices Q, R, W , and V,  a satisfactory controller 

is obtained from (2.32).

4.4.3 W eighting  P a ra m e te r  D esign for th e  M ixed Sensitiv ity  P ro b lem

The quality of performance of the closed-loop system using the H°° mixed sensitivity 

design problem, where the weighted cost function of (2.57) is minimized over the set of 

all stabilizing feedback controllers K , depends on the choice of the weighting functions 

Wi and W2 which are chosen to tailor the solution to meet the design specifications. 

The approach which was adopted here for the choice of the discrete-time frequency- 

dependent weighting function was to select it in the s  — domain and then use a bilinear 

transformation z =  where T is the sampling time, to convert to the z — domain.

The selection of frequency-dependent weights in design is problem specific and 

therefore it is difficult to provide a definitive set of rules for building and modifying the 

weights. The general guide lines may be stated as follows:

1) Use only stable and diagonal weights.

2 ) Restrict the diagonal elements to be minimum phase, real rational functions.
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Usually in the H°° mixed sensitivity design problem, for stopband shape adjustment,

Wi is typically chosen to be a high-gain low-pass filter given by

^  ^  (4.24)
(s -h Ws )

W 2 is typically chosen as a high-pass filter given by

I&2 _  i^ ( ^  W5) ^  (4.25)
(sd-tog)

in order to achieve robust stability with respect to high frequency model uncertainties. 

Finding suitable parameters w = (wi, wg, 103, W4 , tog, wg) for the frequency-dependent 

weights W  = (TFi, W2) can be cumbersome and time consuming. Hence, the mixed

sensitivity design approach can be incorporated with the method of inequalities to

provide a more efficient and sensible way in selecting the weighting parameters, also to be 

known as the design parameters, in order to satisfy some set of closed-loop performance 

inequalities. The design problem is now stated as follows:

Problem

For the weighted system of (2.74), find a TÛ =  (Wi, W2) such that

? ( ^ )  < &Y (4.26)

and

^ i ( ^ )  < Ei for i =  1 , . . . ,  m (4.27)

where 'y{W) is the suboptimal value of 7  satisfying (2.58), ^« (#) are functionals of the 

closed-loop system, 6 y, and e,- are real numbers representing desired bounds on 7  and 

<f>i, respectively. #  is a pair of fixed order weighting functions with a real parameter 

vector w.

D esign Procedure

A design procedure to solve the above problem is:

1) Define the plant G, and define the functionals <f>i.
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2) Define the values of e-y and Si.

3) Define the form and order of the weighting functions Wi and W2 (e.g., (4.24) 

& (4.25)). Bounds should be placed on the values of the parameters w to 

ensure that Wi and W2 are stable and minimum phase to prevent undesirable 

pole/zero cancellations. The form of the weighting functions should initially 

be a low-pass filter for Wi and a  high-pass filter for W 2.

4) Define initial values of w.

5) Implement the MBP to find a w which satisfies inequalities (4.26) and (4.27). 

If a solution is found, the design is satisfactory. If no solution is found, either 

increase the order of the weighting functions, relax one or more of the bounds

or try  again with different initial values of w.

6 ) W ith satisfactory weighting functions Wi and Wg, a satisfactory controller is 

obtained from (2.91).

4.4.4 W eighting Param eter D esign for the LSDP

In the LSDP, the weighting functions are chosen by considering the open-loop response

of the weighted plant, so effectively the weights Wi and W2 are the design parameters.

This means that the design problem can be formulated as in the method of inequalities,

with the weighting parameters used as the design parameters p to satisfy some set of

closed-loop performance inequalities. The design problem is stated as follows:

Problem

For the system of Figure 3.3 with a plant weighted with W , find a W  such that

7o(W) < e, (4.28)

and

^i(W ) < £i for t =  1 , . . . ,  m (4.29)

where

?o(W) =  , ÿ f . .
K stabilizing

(4.30)
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and are functionals of the closed-loop system, £, are real numbers representing

desired bounds on 7 0  and 4>i respectively, and W  = (Wi, Wg), a pair of fixed order 

weighting functions with real parameters w =  (10%, wg,. . . ,  Wg).

D esign P ro c e d u re

A design procedure to solve the above problem is:

1 ) Define the plant G, and define the functionals 4>i.

2) Define the values of e.y and g,

3) Define the form and order of the of weighting functions Wi and Wg. Bounds 

should be placed on the values of Wi to ensure that Wi and Wg are stable and 

minimum phase to prevent undesirable pole/zero cancellations. The order of 

the weighting functions, and hence the value of g, should initially be small.

4) Define initial values of ic, based on the open-loop frequency response of the 

plant.

5) Implement the MBP in conjunction with (3.81) and (3.55) to find a W which 

satisfies inequalities (4.28) and (4.29). If a solution is found, the design is 

satisfactory. If no solution is found, either increase the order of the weighting 

functions, relax one or more of the bounds s.y and Si, or try again with different 

initial values of w.

6 ) W ith satisfactory weighting functions Wt and Wg, a satisfactory controller is 

obtained from (3.83).

4.4.6 W eighting  P a ra m e te r  an d  P re filte r Design for th e  LSD P

The procedure described in the previous section results in a 1-DOF control scheme. 

Improved performance for tracking systems may be obtained by including a pre-filter 

on the reference input. The proposed approach consists of adding a pre-filter Kp to 

a controller synthesized using the normalized coprime factor approach, as shown in 

Figure 4.3. The pre-filter is parameterized with a sub-set of the design parameters.
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whilst the controller K  is the solution to the weighted normalized coprime factor ap

proach already described, with the weightings parameterized with the remaining design 

parameters. Note that the prefilter is scaled so that the closed-loop transfer function 

( I  — GIC)~^GWiKp is the unit matrix at steady state.

Figure 4.3: The 2-DOF Scheme using a Pre-filter. 

The 2-DOF design problem is now stated as follows:

P ro b lem

For the system of Figure 4.3, find a (W, Kp) such that 

and

(4.31)

jiTp) <  for % =  1 , . . . ,  m (4.32)

where 7 o(îF) is as in (4.30), <f>i(W,Kp) are functionals of the 2-DOF closed-loop sys

tem, €~f, Si are real numbers representing desired bounds on jq and respectively, 

W  =  (Wi, W2) is a pair of fixed order weighting functions with real parameters w = 

{wi,W2, . . .  ,u)g) and Kp is a pre-filter with a fixed structure and order and with real 

parameters p =  (p i,P ),...,P r).

D esign P ro c e d u re

A design procedure to solve the above problem is:

1) Define the plant G, and define the functionals
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2) Define the values of and e,

3) Define the form and order of the weighting functions Wi and Wg. Bounds 

should be placed on the values of W{ to ensure that Wi and Wg are stable and 

minimum phase to prevent undesirable pole/zero cancellations. The order of 

the weighting functions, and hence the value of q, should initially be small.

4) Define the form and order of the pre-filter Kp. Bounds may be placed on the 

values of pi if desired. The order of the pre-filter transfer function, and hence 

the value of r, should initially be small.

5) Define initial values of W{ based on the open-loop frequency response of the 

plant. Define initial values of p,-.

6 ) Implement the MBP in conjunction with (3.81) and (3.55) to find a W  and Kp 

which satisfy inequalities (4.31) and (4.32). If a solution is found, the design is 

satisfactory. If no solution is found, either increase the order of the weighting 

functions, relax one or more of the bounds or try again with different initial 

values of w and p.

7) With satisfactory weighting functions Wi and Wg, a satisfactory feedback 

controller is obtained from (3.83).

4.4.6 W eighting P a ra m e te r  D esign for th e  2-DOF LSD P

The quality of performance of the closed-loop system using the 2-DOF design approach, 

based on a given sensible reference model to follow, primarily depends on two design 

parameters;

1 ) The weighting functions Wi and Wg which are used to shape the open-loop 

plant.

2) The scalar weighting parameter p given in (3.86).

Although closed-loop time domain specifications can be incorporated into the design 

through the desired reference model, finding suitable values for the parameters of the
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weighting function pair W  = (Wi, Wg) and for the parameter p such that the behaviour 

of the closed-loop system closely mimics that of the reference model with a good stability 

margin can be difficult, cumbersome and time consuming. Hence, a design methodology, 

using the 2-DOF approach based on model-following combined with the normalized 

coprime factor design procedure, can be incorporated with the method of inequalities 

to provide a more efficient and powerful design procedure.

The design problem is now stated as follows:

P ro b lem

For the system of Figure 3.5, find a (W,p) such that

To(W") < (4.33)

7i(W,p) < (4.34)

and

4>i{W, p) < Bi for i = I , . . .  ,m  (4.35)

where 7 o(W) can be calculated using (3.55), j i{W,p)  is the suboptimal value of 7  

achieved by the H°° algorithm, and p) are functionals of the closed-loop system,

Syo, £yi, and e, are real numbers representing desired bounds on 7 0 , 7 1 , and respec

tively. p is a scalar weighting parameter and W is a weighting function pair (Wi, Wg), 

each of fixed order with real parameters w = (wi,wg,. . . ,  w,).

D esign P ro ced u re

The aim is to design a controller which ensures robust stability and robust performance. 

The procedure is:

1 ) Define the plant G and the functionals çij.

2) Define the values of and Si.

3) Select the structure and order of the loop shaping weight W for the open-loop 

plant G. Bounds should be placed on the parameters Wi to ensure that W is 

stable and minimum phase.
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4) Select the desired range for the scalar weighting parameter p of the 2-DOF 

problem in (3.86). The value of p should be > 1.

5) Select a simple model Mq which reflects the desired closed-loop system step 

response specifications. This is usually a diagonal matrix of first or second- 

order lags. The speed of response of the ideal model must be realistic, or the 

closed-loop system will have poor robust stability properties and the controller 

will produce excessive control signals.

6 ) Select the initial values o fw S z p .

7) Implement the MBP in conjunction with (3.98), (3.99),and (3.55) to find a 

W  and p which satisfies inequalities (4.33), (4.34), and (4.35). If a solution 

is found, the design is satisfactory. If no solution is found, either increase the 

order of the weighting function, relax one or more of the bounds ê , and 

£j, or try  again with different initial values of w k  p.

8 ) With a satisfactory p and weighting functions W, a satisfactory controller is 

obtained firom (3.101).

4 .5  C on tro ller  D e s ig n  and S im u lation  R esu lts

In this section, the designs for the IFAC 1993 benchmark problem are described. The 

designs were completed using the 6  approaches described in Section 4.4, including p- 

synthesis. The MOI was used to find the best design parameters for all the approaches 

except the p synthesis approach, where computational limitations precluded this. The 

closed-loop performance functionals used to formulate the problem are defined in Section 

4.5.1, along with the necessary prescribed bounds on the functionals. The results of the 

designs are presented in Section 4.5.2. The time-varying simulations for all the designs 

are presented; from these the worst overshoot, undershoot and rise time values are 

measured and presented in tables. The rise time is defined for this purpose as the time 

for the output to go from 4-0 .8  to -0 .8 .
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4.5.1 C losed-Loop P erfo rm an ce  Functionals and  D esign C rite ria

A set of closed-loop performance functionals i = 1 ,2, . . . ,5},  are defined

based on the design specifications given in Section 4.2.

The performance functionals <f>i{Gj,p),i  = 1 ,2 , . . . ,  5 are calculated from the closed-loop 

time responses of the linear system to a reference step input of 4-1 with system initial 

conditions corresponding to a steady reference of —1 , where Gj  is a full time-invariant 

plant model at one of the vertices of the hyper-cube formed from the plant parameter 

ranges. The performance functionals <i>i{Gj,p) -  <j>h{Gj,p) are measures of overshoot, 

undershoot, rise time, settling time, and control effort, respectively. If y s { G j , p , t )  is 

the plant output response, and the plant input response, the functionals are

defined as

(4 .3 6  

(4 .3 7

<f>3 {Gj,p) =  m i n t  such that %/,(Gj,p,t) =  0 .8  (4.38

<f)^{Gj^p) =  max t such that |Pa(Gj,p,t) — 1| =  0 .0 6  (4.39

« ^ s(G j,p )  =  m ^ | u , ( G ; , p , t ) |  (4 .4 0

The performance was calculated from linear time-invariant closed-loop responses for 6  

plants, Gj{j =  1 ,. . .  ,6) with their parameters at the extremes of the parameter ranges, 

using the complete transfer function (4.2). The controllers were synthesized using the 

nominal plant model transfer function (4.1). The aim was to find design parameters 

which satisfied the inequalities for all 6  extreme plants.

From (4.3) and (4.36) -  (4.40), the design criteria are

f o r  t  =  l , . . . , 5 ,  j = l , . . . , 6 . (4 .4 1 )

From the specifications given in Section 4.2, the undershoot, overshoot and control signal 

specifications are rigid, so bounds £1 ,6 2  and £5 were fixed at 1 .2 , 1 .2  and 5 , respectively. 

The rise time and settling time specifications are less rigid, so £3 and £4  were increased 

or reduced depending on the stress level to obtain the best design. The “spy” reported
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that rise times of 2 -  3 seconds were reported, so £3 was kept between these figures for 

stress levels 1  & 2 .

4.5.2 R esu lts  o b ta in ed  for all S tress Levels 

S tress Level 1

The results of the time varying simulations for the various methods are shown in Fig

ures 4.5 -  4.10. The approximate overshoot, undershoot and rise time values of the 

simulations are tabulated in Table 4.1.

All the designs met the specifications given in Section 4.2. The performance of all the 

designs are similar, except for the FI controller which had a slightly greater undershoot 

than the other designs.

D esign max. abs. max. abs. max. rise

M eth o d overshoot undershoot time (sec)

P + I 1 .1 1.4 2.6

LQG 1 .1 1.26 2.7

Mixed Sensitivity 1.25 1.3 2.6

1-DOF LSDP 1 .1 1.25 2.7

Prefilter + LSDP 1.2 1.26 2.6

2-DOF LSDP 1.15 1.26 2.6

p synthesis 1.2 1.3 2.2

Table 4.1: Simulation Performance - Stress Level 1

P I  C on tro lle r -  This controller

%(s) =  2.30 +
0.52

(4.42)

met the performance requirements, although the undershoot was quite high. A PID 

controller with a better performance than the PI controller was not found.

LQ G  C on tro lle r -  This controller designed with the weighting parameters 

Qc =  40.08, Qf =  1 .0 , Pc =  1 .0 , and pf = 1 .0  x 1 0 “^ (4.43)
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met all the performance specifications. The undershoot bound was slightly exceeded in 

the simulations.

7{°° (m ixed sensitivity) Controller -  This controller designed with the weighting 

functions

and

met the performance specifications. The overshoot and undershoot bounds were slightly 

exceeded in the simulations.

1-DO F LSDP Controller -  This controller with a weighting function

Wk(s) =  3 . 3 3 + ^ ,  (4.46)

and W2 =  1 met all the performance specifications. The undershoot bound was slightly 

exceeded in the simulations.

LSD P Controller w ith PreFilter -  The performance functionals for the 1-DOF 

LSDP design were marginally improved upon by the inclusion of a prefilter. This im

provement was not evident in the simulations, and thus they are not included.

2-DO F LSDP Controller -  This controller designed with a weighting function

W2 =  1, p =  1.0, and Mo(s) =  met all the performance specifications. The

undershoot bound was slightly exceeded in the simulations.

p Controller -  The p-synthesis design met all the performance specifications. The 

undershoot bound was slightly exceeded in the simulations.

Stress Level 2

The simulation results are shown in Figures 4.11 -  4.16. The approximate overshoot, 

undershoot and rise time values of the simulations are tabulated in Table 4.2. The 

designs did not manage to meet the rise time specification of 2  -  3  seconds given in 

Section 4.2.
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The PID controller which had greater rise time than the other designs, and the p- 

synthesis resulted in a lower rise time, but at the expense of greater overshoot and 

undershoot. The other designs had comparable performance.

D esign max. abs. max. abs. max. rise

M ethod overshoot undershoot time (sec)

PID 1.1 1.26 6.0

LQG 1.2 1.3 3.6

Mixed Sensitivity 1.26 1.3 3.6

1-DOF LSDP 1.1 1.16 4.0

2-DOF LSDP 1.2 1.17 3.7

p synthesis 1.4 1.37 2.7

Table 4.2: Simulation Performance - Stress Level 2

P ID  Controller -  A good PI controller was not found. The PID controller

= 1.311 + ^ +
6 1 +  12.92s

gave better results, but with a rise time slower than for other methods. 

LQG Controller -  This controller designed with the weighting parameters

Qe =  38.08, Q/ =  1.217, pc =  0.818, and p/ =  2.823 x 10"^

(4.48)

(4.49)

met almost all the performance specifications. The rise time and undershoot bound 

were slightly exceeded in the simulations.

H°° (m ixed sensitivity) Controller -  This controller designed with the weighting 

functions
12.30 X lO-^s +  0.221Wi(s)

and
(s +  0.445)(s +  0.6304 x 10"«) (4.50)

(4.51)s +  400

met almost all the performance specifications. The rise time together with the overshoot 

and undershoot bounds were slightly exceeded in the simulations.
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1 -D O F L SD P Controller -  This controller designed with a weighting function

W^(s) =  1.941 +  ^ : ^  (4.52)

and Wg =  1 met all the performance specifications. The undershoot bound was slightly 

exceeded in the simulations.

LSDP Controller with PreFilter -  The performance functionals for the 1-DOF 

LSDP design were marginally improved upon by the inclusion of a prefilter. This im

provement was not evident in the simulations, and thus they are not included.

2 -D O F L SD P Controller -  This controller designed with a weighting function

W 2 =  1, p =  1.0, and Mo{s) = met almost all the performance specifications. The 

rise time was slightly exceeded in the simulations.

p  Controller -  The p-synthesis design met almost all the performance specifications. 

The overshoot and undershoot bounds were exceeded in the simulations, but the im

portant bound of 1.5 was not. The rise time was shorter than for the other designs, but 

at the expense of the overshoot and undershoot.

Stress Level 3

The simulation results are shown in Figures 4.17 -  4.22. The approximate overshoot, 

undershoot and rise time values of the simulations are tabulated in Table 4.3. The 

designs were well outside the rise time specification of 2 -  3 seconds given in Section 4.2, 

although, using the MOI, the most important specification of maintaining the output 

to within the absolute value of 1.5 could be guaranteed, this could not be done with 

the p-synthesis approach. Performance was improved considerably by including a gain 

adaptive scheme (discussed later), although this very occasionally resulted in outputs 

above the absolute value of 1.5.

P ID  Controller -  A satisfactory PID controller was not found. The best controller 

was

=  0 . 8 1 6 + ^ + ^ ^  (4.54)
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Design

M ethod

max. abs. 

overshoot

max. abs. 

undershoot

max. rise 

time (sec)

PID 1.1 1.25 > 1 0

LQG 1.25 1.18 > 10

Mixed Sensitivity 1.15 1.2 > 10

1-DOF LSDP 1.3 1.25 10

Prefilter +  LSDP 1.3 1.3 9

2-DOF LSDP 1.1 1.16 10

Adaptive 1.3 1.3 6.6

Table 4.3: Simulation Performance - Stress Level 3

This had a very long rise time and settling time.

LQG Controller -  For the LQG method, weighting parameters which satisfied per

formance specifications were not found. The best weighting parameters were

Qc  =  28.07, Q f  = 1.659, Pc = 0.590, and p/ =  5.079 x 1 0 " (4.55)

which did not satisfy the rise time and settling time performance specifications.

H°° (m ixed sensitivity) Controller -  Weighting functions for a satisfactory mixed 

sensitivity controller were not found. The best weighting functions

10.69 X 10-^6 + 0.157Wi(s) =

and

(a +  0.6356)(a +  0.5304 x 10-«) 

61.5a +  240Wg(a)
a +400

(4.56)

(4.57)

gave a very long rise time in the simulations.

1-DOF LSDP Controller -  Satisfactory weighting functions for the 1-DOF LSDP 

were not found. The best weighting functions

3.244a^ +  1.844a +1.662
a(1.570a2 +  1.666a +  1)

and Wg =  1, resulted in very long rise times.

(4.58)



Chapter 4. Robust Multi-Objective Control of an Unknown Industrial Plant 87

LSD P Controller w ith PreFilter -  The rise time for the 1-DOF LSDP design was 

marginally improved upon by the inclusion of a prefilter. The resulting weighting func

tions were
3.390a^ 4- 1.760a 4-1.627

and W 2 = 1, and the prefilter was
a(1 .4 5 9 a3 4 - 1.817a 4- 1 )

0.579a^ 4- 1.092s 4-1 
 ̂ 0.127s: 4-0.647s 4-1

(4.59)

(4.60)

2-D O F LSDP Controller -  The best 2-DOF LSDP controller had weighting functions

420(s 4- 0.0342)Wi(s) (4.61)
s(148s4-l)

W 2 = 1, p = 1.2, and Mo(s) =  (2.8s+i) • The rise time specification was greatly exceeded 

in the simulations.

p Controller -  A sensible p controller was not found.

Figure 4.4: Adaptive Scheme.

A daptive Gain Schem e -  The performance of the system at stress level 3 can be 

improved by implementing the adaptive gain scheme shown in Figure 4.4. The plant 

gain is estimated by comparing the output of the plant yu with the output of the nominal 

plant ym*- Thus the plant input becomes =  (ynk/yt)«t- As parameters other than 

the plant gain vary, and because there is significant measurement noise, the extra gain 

VnklVk was limited to 0.75 < yn^/yk < 16. This scheme was implemented with the 

mixed sensitivity 7i°° controller of stress level 3 and resulted in improved performance, 

as shown in in Figure 4.23, with a rise time of between about 3.5 and 5.3 seconds, and 

with occasional overshoot above 1.2, and which very rarely would be above 1.5.
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Compensated Plant Output - Stress Level 1
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Figure 4.5: Simulations - Stress Level 1 - P-t-I Controller. 
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Figure 4.6: Simulations - Stress Level 1 - LQG Controller.
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Compensated Plant Output - Stress Level 1
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Figure 4.7: Simulations - Stress Level 1 - 7f°°  (Mixed Sensitivity) controller.
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Figure 4.8: Simulations - Stress Level 1 - 1-DOF LSDP.
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Compensated Plant Output - Sress Level 1
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Figure 4.9: Simulations - Stress Level 1 - 2-DOF LSDP Controller. 
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Figure 4.10: Simulations - Stress Level 1 - p Controller.



Chapter 4. Robust Multi-Objective Control of an Unknown Industrial Plant 91

Compensated Plant Output - Stress Level 2
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Figure 4.11: Simulations - Stress Level 2 - PID Controller.

Compensated Plant Output - Stress Level 2
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Figure 4.12: Simulations - Stress Level 2 - LQG Controller.
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Compensated Plant Output - Stress Level 2
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Figure 4.13: Simulations - Stress Level 2 - (Mixed Sensitivity) controller.

Compensated Plant Output - Stress Level 2
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Figure 4.14: Simulations - Stress Level 2 - 1-DOF LSDP.
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Compensated Plant Output - Stress Level 2
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Figure 4.15: Simulations - Stress Level 2 - 2-DOF LSDP Controller.

Compensated Plant Output - Stress Level 2
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-0.5

Figure 4.16: Simulations - Stress Level 2 - p Controller.
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Conqiensated Plant Output - Stress Level 3
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Figure 4.17: Simulations - Stress Level 3 - PID Controller.

Compensated Plant Output - Stress Level 3
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Figure 4.18: Simulations - Stress Level 3 - LQG Controller.
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Compensated Plant O u ^ u t - Stress Level 3

1
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-1.5

Figure 4.19: Simulations - Stress Level 3 - "W°° (mixed sensitivity) controller.

Compensated Plant Output - Stress Level 3

Time - Seconds

Figure 4.20: Simulations - Stress Level 3 - 1-DOF LSDP.
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-0.5  -

Compensated Plant Output - Stress Level 3
“! 1------------

Time - Seconds

Figure 4.21; Simulations - Stress Level 3 - LSDP with Pre-filter.

Con^iensated Plant Output - Stress Level 3

Time - Seconds

-0.5 -

Figure 4.22; Simulations - Stress Level 3 - 2-DOF LSDP.
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Compensated Plant Output - Stress Level 3
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Time - Seconds
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Figure 4.23: Simulations - stress level 3 (mixed sensitivity) controller - (adaptive 

gain).

4 .6  S u m m a r y

In this chapter, we considered the IFAC 1993 benchmark and it was shown that the MOI 

combined with the 7^°°-optimization methods provided fixed controllers which achieved 

good robust performance for stress levels 1 & 2. The performance at stress level 3 was 

less satisfactory, but some improvement was obtained with the variable gain adaptive 

scheme, although at the expense of some robustness.

The formulation of the problem using the MOI maices the various trade-offs between 

the different performance requirements a simple matter, and can ensure that the rigid 

performance constraints are met.

The MOI provides an easy and effective method of designing the weighting functions 

for an analytical optimization problem. The "^-optimization methods gave better 

robustness than the LQG or the PID controller methods.



Chapter 4. Robust Multi-Objective Control of an Unknown Industrial Plant 98

Because of the large parameter variations at stress level 3, it appears to be very diffi

cult to obtain the required performance in terms of rise and settling times with fixed 

controllers. It is our hope that the “spy” observed the competitor’s plant being run at 

stress level 1 .



C h ap ter  5

R o b u st In tern a l M o d e l-B a sed  C on troller  D esign

5.1 Introduction

In this chapter Internal Model Control (IMC) is presented for MIMO, discrete-time 

systems. We will show that the IMC scheme allows a controller design procedure, 

using the 'H°° optimization methods presented in Chapters 2 & 3, where good control 

performance and robust stability can be enhanced in a direct manner in the synthesis 

approach.

For stable plants, the parameterization of all stabilizing controllers has quite a long 

history. [78] used it to transform the closed-loop system into an open-loop one, and it 

was used in the same way by [117]. It is often referred to as the Q-parametrization and 

is very closely related to what the process control community calls IMC. The origin of 

the IMC scheme was provided by [31], where a process model placed in parallel with 

the real process is considered to be the main characteristic of the IMC scheme. The 

Smith predictor [95] also contains a process model in parallel with the real process. The 

advantages of such a scheme can be explained as follows. Consider the block diagram 

shown in Figure 5.1. The control system includes the two blocks labelled Q (the IMC 

controller) and Gm (the model). The control system has two inputs, r* (the set-point) 

and (the process output) and one output, Uk (the process input). The effect of 

the parallel path with the model is to subtract the effect of the process input from the 

process output. If for the moment the model is assumed to be a perfect representation 

of Gp (the process), then the feedback signal is equal to the influence of disturbances
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(dk) and is not affected by the action of the process input. Hence, the control system 

is in effect open-loop and the usual stability problems associated with feedback will 

disappear. The overall control system is stable if, and only if, the process and the IMC 

controller are both stable.

Regardless of what design technique is used, controllers are always designed based on 

information about the dynamic behaviour of the process. The accuracy of this infor

mation varies and is never perfect. Moreover, the dynamic behaviour of the process is 

time-varying and the changes are not fully captured in the models. Hence, it is most 

desirable that the IMC controller be insensitive to this kind of model uncertainty. The 

aim of this chapter is to formulate several approaches to directly synthesize, in an 7i°° 

setting, a robust IMC controller.

The organization of this chapter is as follows. Section 5.2 describes the principle of 

internal model control. In Sections 5.3, 5.4, and 5.5, three different approaches to di

rectly synthesize robust IMC controllers are described and analyzed. The first approach 

(Section 5.3) is based on linear quadratic-implicit model following [6 ]. The second ap

proach (Section 5.4) is based on synthesizing an IMC controller in a 1-DOF setting, 

and within this approach, two different design methods are presented, the weighted 1 , 

2 and 4-block problem and the normalized left coprime factor design procedure. In the 

latter, suboptimal and optimal IMC-based controllers are derived. The third approach 

(Section 5.5) is based on synthesizing an IMC controller in a 2 -DOF H°° setting via ex

plicit model following and a coprime factor design framework. Also, explicit state-space 

formulae are derived for the precise structure of this controller. The controller struc

ture is shown to comprise an observer, an on-line step response model, and a generalized 

state-feedback law. Such a combination results in a controller achieving, simultaneously, 

robust stability and robust model following. Finally, a summary is given in Section 5.6.

5.2  T h e  I n te r n a l  M o d e l C o n tro l  (IM C ) S c h e m e

The Internal Model Control (IMC) scheme will be introduced, for stable systems only. 

It is frequently used as an alternative to classical feedback schemes. A comprehensive 

treatment on the IMC can be found in [67] and the references therein, these include
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[32, 6 6 , 33, 34, 24, 89]. The block diagram of the IMC loop is shown in Figure 5.1. Here 

(?p represents the real plant. In general Gp is not known exactly. The nominal model of 

the process, which is represented by Gm, is available. The signal dk represents the effect 

of disturbances on the process output yp^. The measurement of is corrupted by the 

measurement noise n^. The controller Q determines the value of the control signal Uk- 

The control objective is to keep yp  ̂ close to the set-point r^. For the sake of simplicity.

Figure 5.1: Internal Model Control Scheme.

exact knowledge of the output is assumed (n* =  0). The complete control system 

which may be implemented through computer software or analog hardware is contained 

in the dotted box in Figure 5.1. It includes the plant model Gm explicitly in addition 

to the controller Q, and so the control scheme is referred to as Internal Model Control, 

or IMC for short. The feedback signal is

dk — (Gp — Gm)^k +  dk (6.1)

If the model is exact (Gp = Gm) and there are no disturbances (dk =  0 ), then the 

model output and the process output ŷ * are the same and the feedback signal dk is 

zero. Thus the control system is open-loop when there is no uncertainty (i.e. no model 

uncertainty and no unknown inputs dk). This demonstrates that for stable processes 

feedback is only necessary because of uncertainty. The feedback signal dk expresses the 

uncertainty in the process.
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The IMC scheme also demonstrates how to combine the advantages of feedback with 

those of feedforward. Assuming that Gp = Gm and ^  0, it is clearly seen that 

dk = dk- Therefore, the IMC scheme of Figure 5.1 can be re-drawn as a model-matching 

problem (feedforward problem) as shown in Figure 5.2.

.Jr-
Q Cm

Figure 5.2: An Equivalent IMC Scheme.

5.2.1 Stability Conditions for IMC

In order to test for internal stability, the transfer functions between all possible system 

inputs and outputs are examined. From the block diagram of Figure 5.3, there are

three independent system inputs and outputs. The independent inputs r*, and « 2*

are chosen together with independent outputs Uk and If there is no model 

error (Gp =  Gm), then the inputs and outputs are related through the following transfer 

function matrix

GmQ (F-GmQ)Gm Gmirr*'
Q —QGm 0 uij, (5.2)

GmQ —GmQGm Gm. .^ 2*.

The following theorem follows trivially by inspection.

Vpk

=

.yntfc .

T h eo rem  5.2.1 [67] Assume that the model is perfect (Gp =  Gm)- Then the IMC 

scheme in Figure 5.3 is internally stable if, and only if, both the plant Gp and the 

controller Q are stable. ■

It is clear from (5.2) that the implementation of the IMC scheme is only suitable for 

controlling stable processes. This is because the IMC system is effectively operating in
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Figure 6.3: IMC Scheme for Deriving Internal Stability Conditions.

open-loop when there is no uncertainty, and since the stabilization of open-loop unstable 

systems requires feedback, the IMC scheme cannot be applied in this case.

It can be argued that the lack of model uncertainty is an artificial assumption. Un

certainty gives rise to feedback, and thus it could be possible to stabilize an unstable 

system with IMC. However, in any practical situation, it is unacceptable to rely on 

model uncertainty for stability [67]. It should be stated that the IMC scheme can still 

be used for unstable processes during the design [67].

In the case of a stable process, it is clear from (5.2) that internal stability is guaranteed 

by a stable controller. So the class of internally stabilizing controllers for the IMC 

scheme with a stable process is equal to the set of all stable transfer function matrices of 

appropriate dimensions. Furthermore, from the closed-loop transfer function matrices, 

it is clear that a perfect input-output behaviour can be accomplished, if it is possible 

to choose Q = G ' ^ . This is an important property of the IMC scheme. It can be stated 

that all eSects which restrict the invertibility of a stable process are exactly the efiects 

that limit the performance of the controlled process. This relation between closed-loop 

performance and invertibility of the process is much more direct than the relation with 

high gain in the unit feedback case.
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5.2.2 Relationship o f  IM C w ith Standard Unit Feedback

The manipulations necessary to transform the block diagram in Figure 5.1 into the one 

in Figure 5.4 leave the signals u* and unaffected. Combining the two blocks Q and 

Gm in Figure 5.4 into one block K  then the standard unit feedback control system is 

obtained with

K  =  (6.3)

On the other hand, if two blocks of Gm are added to the standard unit feedback system

Figure 5.4: Alternate Representation of the IMC Scheme.

as shown in Figure 5.5, the signals Uk and yp  ̂ also remain unaffected. The IMC scheme 

follows with

(5.4)

Hence, in the way the outputs Uk and respond to inputs r* and dk, the standard 

unit feedback scheme and the IMC scheme are entirely equivalent and the controllers 

K  and Q are related through (5.3) and (5.4), respectively. If we consider the case that 

the real plant Gp is stable and exactly equals the plant model Gm'

1 ) Then assuming that the IMC scheme in Figure 5.1 is internally stable, the 

equivalent standard unit feedback scheme in Figure 5.4 is internally stable 

because the internal signals Uk and are unaffected by the transformation.
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Figure 5.5: Alternate Representation of the IMC Scheme.

2) Then assuming that the standard unit feedback scheme in Figure 5.4 is inter

nally stable, transfer function matrix (5.2) is stable and therefore Q defined 

by (5.4) is stable. Thus, the equivalent IMC scheme is internally stable.

5.2.3 Performance of IM C

For the IMC scheme in Figure 5.1 the following transfer functions relating inputs and 

outputs are easily found

(6.5)

The sensitivity function S{z) relates the external inputs r& and dk to the error =

4- (Gp — Gm)Q)"^(dt — r*) =  5(z)(dt — rt) (5.6)

The complementary sensitivity function T{z) is found by subtracting S{z) from unity 

=  GpO(f +  (Gp -  G,»)Q)-:rt =  T(z)rt (5.7)

When Gp =  Gm, (5.6) and (5.7) reduce to

5"(z) =  f —GmQ (5.8)

T(z) GmQ (5.9)



Chapter 5. Robust Internal Model-Based Controller Design 106

The classification of asymptotic closed-loop behaviour that defines “system type” is 

given by

Type m : "  GmQ) =  0; 0 < t  <  m (5.10)

The following are then obtained from (5.10)

T y p e l:  ^ G m Q  =  I  (511)

Type 2 : lim GmQ =  /  and lim ^(GmQ) =  0 (5.12)z—►! 2—►! dz

Thus, in order to track asymptotically constant inputs with zero steady-state error, the 

controller gain has to be the inverse of the model steady-state gain. The expressions 

(5.11) and (5.12) are necessary and sufficient for tracking steps and ramps with zero 

steady-state error, respectively, even when model error is present.

In some cases, the IMC controller Q is detuned to reduce its aggressiveness by augment

ing it with a low-pass filter Fip in a simple manner to give Q =  QFip. In [33] they state 

that a first-order filter of the form

^p(:') =  0 < a / <  1 (5.13)

may be used to stabilize the closed-loop system for a given plant/model mismatch. The 

filter constant a /  is given by

a / =  e (5.14)

where T is the sampling period and r /  is the filter time constant. The filter time constant 

can serve as a tuning parameter. So adjusting the parameters of Fip is equivalent to 

adjusting the speed of the closed-loop response, that is with a good model, a high speed 

of response can be demanded from the system; but when the knowledge about the model 

is poor, then the speed of response has to be decreased. Thus, a suitable compromise 

must be found between robustness and dynamic performance. However, it is possible 

for the parameters of Fip to be left for on-line adjustment.

Until now the discussion has been restricted to the nominal case. The behaviour of the 

process was completely described by the model behaviour. This however will never be 

the case in real life. Inevitably, there will be a difference between the nominal model and 

the real process, the so-called modelling error or perturbation, which is unknown. In the
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IMC scheme, this modelling error can be usually expressed as an additive uncertainty 

Gp = Gm +  Aa- The modelling error can be represented in other ways (Chapter 2 ), but 

only the additive case will be discussed here. In general, an upper bound or some sort 

of structure is usually assumed on the uncertainty. If the additive perturbation Aa is

present, the signal dk of (5.1) will not be equal to the disturbance dk anymore, that is

dk will contain an additional term due to the modelling error

=  AgUt +  (ft (5.15)

The influence of this additive perturbation will also have to be taken into account in 

the output signal as

=  (Gm +  Aa)ut 4- (ft (5.16)

Based on the above observations, the feedforward scheme in Figure 5.3 can be adapted 

to the perturbed case as shown in Figure 5.6.

Figure 5.6: An Equivalent IMC Scheme with Additive Perturbation.

From this controller scheme, the signals of u t and are obtained as

= Q (f +  A aQ )-X rt-(ft) (5.17)

P p k  —  G m Q f k  +  (F — G m Q ) < i k  +  G m Q { I  +  AoQ)~  ̂AoQ(rt — d k )

=  (Aa +  Gm)Q(F +  AaQ)-"rt +  (F -  GmQ)(F +  AaQ)-'(ft (5.18)

From Figure 5.6, equations (5.17) and (5.18), it is seen that the feedforward scheme

of Figure 5.3 has become a feedback scheme due to the feedback of Ao around the
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Q. Therefore, internal stability of the control scheme is completely determined by 

( I  +  AaQ)“ .̂ That is, the stability of the loop, due to some permissible perturbation, 

is guaranteed with a stable controller if, and only if

|det [F +  Aa(e^')Q(e^')] | >  0 , g 6 [-ir, ,r) (6.19)

Since Q is stable and Ag is also stable by assumption, the control scheme becomes 

unstable only if one or more of the characteristic loci of —QAa encircles the point —1 ; 

a well known result from the generalized Nyquist theorem. Now, if A(QA*) is any 

eigenvalue of QAa, then

|A ( Q A g ) |  <  X Q A g )  <  â ( Q A g )  ( 5 . 2 0 )

and so no encirclement of —1 can occur if || QAa ||^  < 1. Now

II L < | | Q | L | | A . L  (5.21)

and therefore there is no encirclement of — 1 if

ÿ(Q) < [^(Ag)]-" (5.22)

The expression given in (5.22) can be regarded as a sufficient condition for stability of

the loop. If an upper bound on the uncertainty â ^Ag(e^^)l < |fg(e^^)| is known, the

following condition is an alternative to (5.22)

^  [Q ]  <  ( 5 . 2 3 )

If both good tracking of r* and good disturbance rejection are important in addition to 

the robust stability requirement, and if the dynamic characteristics of the two inputs 

Tk and dk are substantially different, it is advantageous to introduce the 2 -DOF IMC 

configuration as shown in Figure 5.7. The 2-DOF IMC scheme enables the separate 

design of the set-point behaviour of the closed-loop process from that of disturbance 

rejection. To see this, the 2-DOF IMC scheme of Figure 5.7 is analyzed in the following 

way. The effects of r t  and dk on are described by

Vpk — Gp{14- Q2{Gp — Gm)) ^Q\rk 4- (F — (?mQ2)(F 4- (Gp — Gm)Q2)~^dk (5.24)
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Figure 5.7: 2-DOF IMC Scheme.

For Gp = Gm, (5.24) becomes

Vpk — GmQlfk +  ( /  — GmQ2)dk (5.25)

From (5.25) it is seen that, at least for the nominal case, the design of the controller 

which is designed for set-point tracking, is independent of the controller Q, which 

designs for disturbance rejection. To ensure Type 1 behaviour, the controller Qi should 

be statically equal to the inverse of the model Gm- This is easily seen from the output 

equation yp̂  = GmQirk- From the final value theorem, it is required that Q i{l) = 

G „.(l)-:.

5.3 A Linear Quadratic - Implicit Model Following Approach

Consider the MIMO control system shown in Figure 5.8 [6 ]. The state-space of the real 

process is given by

~  ■̂ p̂ Pk "b BpUjc 

Vpk ^p^Pk *b DpUk

%/k =  (ft +  Vp* (5.26)
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Figure 5.8: IMF Controller Implemented in the IMC Scheme. 

The state-space of the process model is given by

y^k — Cm^nik 4~ BffiUji (5.27)

The dynamics of the process model are modified with a state-feedback controller F

— Ur* -  FZm* (5.28)

where F  is designed via the following method:

Implicit M odel Following (IM F) via Optim al Control 

Given the system in (5.27) and the model

®njc+i ~  (5.29)

we want to find the control law ut such that y»,* —» in*. Define the performance index

k = 0
(5.30)
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where R  is positive definite and Q is positive semi-definite. If the plant is controllable 

and the model is stable, the performance index is finite. Appropriate substitution in 

the performance index yields

W u W u

. "k .
(5.31)

where

— (CmAm — AmCm)̂ Q(CmAm ~ Â Cm)

= (Cm̂ m)̂ Q(CmAm ~ Â Cm)
= (CmBm)̂ QCmBm + B (5.32)

It is assumed that the initial condition of the state, z(0) =  Xo, is determined by Gaus

sian white noise with intensity } =  I. Minimizing the performance index over

sequences of the process model inputs Uk, yields the standard LQ  problem

min y i  I X: 
t=o

Wii W i/
(5.33)

subject to closed-loop stability. This problem is known to have a solution of the form 

Uk = Fxm^, where F  is determined by

F = Am + TFu) (5.34)

where P  is the positive definite solution of the Riccati equation

Am -  f  + TFii -  (A ^f Bm + W»)(;^22 + B^BBm)-XA^f Bm + TF»)"" = 0 (5.35)

The state-space realization for the controlled process is given by

Am +  Bm.F
(5.36)

C m + D m f

Since no demands on the input-output behaviour were considered in the optimization, 

the closed-loop behaviour will generally not be statically decoupled. Hence, to ensure 

static decoupling of the closed-loop, the realization of (5.36) is pre-multiplied with a 

static decoupler, Si„„, which happens to be the inverse of the steady-state of (5.36)

1 - 1=  (Cm -h B m r)(f  -  Am -  BmF)':Bm +  D, (5.37)
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and the final closed-loop realization yields

Am +  BmF B,nBinv
_C m +D m F DmBifiv

112

(S.38)

The dynamics of the process considered between the input and the output will 

be modified accordingly, if the process and the model have the same input-output be

haviour. The difference between the measured and simulated output signals may be 

considered to be an estimate for the process output noise dk, the expression given in 

(5.1). The resulting error signal, when dk is compared with r* is

— dk (5.39)

This error signal may be filtered by a low-pass filter (?/ as shown in Figure 5.8. The 

function of this filter is to:

1) Prevent the sensor noise from contaminating the control signal u*.

2) Make the control scheme robust with respect to small modelling errors and to 

the changing characteristics of the process.

The controller could also be used as a dynamic compensator of the form Q(z) with 

state-space realization

s Am +  BmF B jn ,S x n v

F B in v
Q(z)

Hence, the final IMC controller may be expressed as

Q/imu(z) =  Q(z)G/(z)

(5.40)

(5.41)

5.4 An 1-DOF Design Approach

5.4.1 Traditional 7ï°° D esign Formulation for IMC

The general structure of all stabilizing controllers given by (2.61) is depicted in Figure 

5.9 [61]. This particular controller structure can be used if the plant Gp is unstable,
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■-1

f  0 ■ I  O' ' f  o '

_—Gm I .Gm 0  z

Figure 5.9: General Structure of Stabilizing Controllers (Q G

but can be stabilized by YX ~^. The structure is re-drawn in Figure 5.10. Suppose the 

plant is stable, then one can take N  =  Gm, where Gm is the nominal model of the plant, 

M  = I , Y  =  0 and X  =  J. In this case the Bezout identity becomes

(5.42)

and Figure 5.10 may be re-drawn as shown in Figure 5.11 which has a controller structure 

that can be used for stable systems. Also, (2.61) simplifies to K  = Q{14- GmQ)~^, from 

which one obtains Q = K { I  — GmK)~^, which is precisely the IMC controller discussed 

in Section 5.2. So for stable systems, Figure 5.9 is identical to that of Figure 5.1, which 

represents the IMC scheme. From these observations, it can be deduced that:

1) The IMC controller design may be based on minimizing the following 

criterion function

II 0 )  II00 (5 .4 3 )

where J^i(Pimc, Q) has the form

PliPimcQ) — Pimcii Q(f +  fimczzQ) ^Pimc2i (5.44)
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2 ) For the IMC scheme all nominal criteria will lead to a model matching problem. 

This means that the transfer function matrix î mcaa i® equal to zero, so the 

criterion function will be given by

(5.46)

Q

Figure 5.10: Controller Structure if the Plant is Unstable.

yi, Q

0 I

I Gm

Figure 5.11: Controller Structure if the Plant is Stable.

In unity feedback schemes, the spedûcations on the properties of the process are de-

manded in open-loop (i.e. one demands large gain at low-frequency for performance
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and small gain at high-frequency for robustness), but in the IMC scheme, the demands 

are directly put on the closed-loop transfer function matrix. This is seen from the fact 

that the criterion matrix Q )  is itself a closed-loop transfer function matrix. Ex

cept for the choice of the criterion function itself, one has the possibility to specify the 

demands by weighting both the input and the output of the criterion matrix. Suppose 

the criterion matrix is given by

litncii Pimcii QPimc2i (5.46)

then it is possible to weight both the input and the output by Wf and Wg, respectively 

as

The following is obtained for the standard augmented plant

Pim c  —
0

w , o'

0  z 0

(5.47)

(5.48)

'nr. j i . o' ■ p. p.tm cii ■* tmci2 o '

_ Timc2i 0 0  z . Pimc2i 0 0  z

To ensure stability the weights are chosen to be stable and minimum phase. This is due 

to the fact that the original criterion matrix, after the design, will be expressed as

(5.49)

Next, some examples on H°° problems in the IMC scheme will be presented. 

Sensitivity M inim ization -  1-Block Problem

Consider the IMC scheme shown in Figure 5.12. A plausible design objective is to find 

an internally stabilizing IMC controller Q which minimizes the worst-case excursion of 

the output signal y* resulting from any disturbance dk, and this could be achieved by 

solving the minimization problem

Since it is required that

Q) =  =  B/,(z -  GpQ)ty,

(5.50)

(5.51)
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Figure 5.12: The 1-block and 2-block Problem in the IMC Scheme, 

it can be deduced that

Rimcii ~  Pim,ci2

The state-space realization for this formulation is given by

-WoGp, P%mc2i — Wij P%mc22 — 0

■̂Wo

Dwo

Ap OnXm Bp

-Cp 1-m.Xm. —Dp

OrXn ImXm OmXr

■̂Wi Rwi

Dyji

(5.52)

(5.53)

with {Ap, Bp, Cp, Dp) being the state-space realization of the plant Gp with dimensions 

n x n , m x r ,  m x n a n d m x r ,  respectively, and(A,uo,^w„C'w«,Du,.)

being the state-space realization of input and output weightings, respectively. For the

1 -block problem, the plant Gp is restricted to being square.

M ixed Perform ance and R obustness Objective -  2-Block Problem

Looking again at Figure 5.12, suppose the objective is to obtain good disturbance re

jection and to maintain stability in the presence of unstructured additive uncertainty 

perturbations. That is, to keep both the sensitivity S  and the IMC controller Q small
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in magnitude. This could be achieved by solving the minimization problem

mm

Since it is required that 

it can be deduced that

P im c i

' WpS-IV: '

0
5 Pimci2 — 5 Pimc2i — Pimc22 — 0  

The state-space realization for this formulation is given by

.Atuo

A p B p

— C p I m x m — D p

Orxn Orxm

Orxn -fjnXm OmXr

Avu B,,, '

(5.54)

(5.55)

(5.56)

(5.67)

The size of the IMC controller Q will always be greater than the size of the classical 

feedback controller K . This can be easily seen from the expression given by (5.4) where 

its clear that size(Q) =  size(if) -|- size(Gm), but by directly synthesizing an IMC 

controller to solve the 1-block or 2-block problem, we have size(Q) =  size(ür). This 

can also be seen from the state-space realization given by (5.53) and (5.57).

The 4-Block Problem

Consider the IMC scheme shown in Figure 5.13. This approach considers not only 

output perturbations as in the 2-block problem but also input perturbations. In this 

case the minimization problem is

This gives rise to designs with improved robustness properties, particularly at the control 

inputs, but can mean that performance can be degraded slightly. Since it is required 
that

nun (5.58)

(5.59)
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Figure 5.13: The 4-block Problem in the IMC Scheme, 

it can be deduced that

0  0

P f m c i ,  -

, fimcaa =  0

The state-space realization for this formulation is given by

S -4ti,o

Dwo

A p OnXn OnXm B p Onxr

Onxn A p Onxr Onxm B p

C p - C p D p —D p

Orxm Orxn Ofxm Orxm I r x r

Om xn I m X m D p OmXr

(6.60)

B^,

Dyji
(5.61)

For this particular problem the size of the IMC controller Q will always be equal to that 

given by (5.4). This can be seen from the state-space realization given by (5.61).

The state-space realizations given by (5.53), (5.57) and (5.61) can be passed to standard 

H°° algorithms, where the solution is based via 7 -iteration on solving two algebraic 

Riccati equations.
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5.4.2 A n IM C Formulation and Controller Synthesis o f the Normalized  

Coprime Factor D esign Procedure

The 1 -DOF design approach proposed here is simply based on extending the Normal

ized Coprime Factor Design Procedure covered in Chapter 3 to the IMC scheme. The 

configuration used for the 1-DOF IMC design is shown schematically if Figure 5.14. It 

should be noted that in the design process:

1 ) The real plant Gp is equal to the plant model Gm-

2 ) Gm is pre- and/or post-multiplied by firequency-dependent weights Wi and/or 

W2 , resectively, for the purpose of loop-shaping, that is Gm, =  W^GmWi.

p#

Figure 5.14: 1 -DOF IMC Design Configuration.

The IMC design objective is to robustly stabilize the IMC scheme shown in Figure 5.14. 

This is possible if, and only if, (Gp,,Q) is internally stable and

Simple algebra from Figure 5.14 shows that

<

-

. 1/t.

(5.62)

(5.63)
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The 1-DOF IMC controller Q can be interpreted as K { I —Gp,K) as shown in Section 

5.2. Setting the problem up in the standard regulator framework gives

which by defining

Pimcn p.tmci2

. Pimcji PimC22 .

■ 0 I

Gp.

G p .- G

and Gm. =

gives the following realization for P„

(5.64)

(6.65)

■̂Ps Onxn D p .

A Da Onxn OnXm Dm.

Cl D ll Di2 = OmXn Omxn OmXOT ItXt

Ca Dgi D22 Cp. OrnXn OjnXr

. Gp. —Cm. D p ,  ~  D m .

(5.66)

The model (Am,,Bm„Cm,) with dimensions n x n, n x r and m x n, respectively, may 

be replaced by (4p,,Bp„CpJ , since Gp, =  Gm, by assumption.

5.4.3 Controller Formulae

Suboptimal and optimal IMC controllers will now be realized providing some level of 

robust stability with respect to uncertainty of normalized left coprime factor plant 

description.

Suboptim al Controllers

A generator of all controllers achieving

_(f +  G p ,Q )M -\
< 7 (6.67)
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where 7  > 7 0  of (3.55) can be obtained directly from the game theoretic formulae for 

suboptimal discrete-time H°° controllers derived in [58, 107]. A state-space realization 

of the central suboptimal controller for the 1 -DOF control configuration under consid

eration will now be derived. We start with the following theorem.

T h eo rem  5.4.1 For the standardized plant described by (5.66) and satisfying assump

tions A l, A2, A4 and A6  with Dai square, we have the following results:

1 ) There exist an internally stabilizing suboptimal IMC controller Q(z) such 

that II P((Pime, Q) llgo <  7 if, and only if,

i) 7 > 70-

ii) - 7 V  +  -  D^%ooDa(f 4- < 0

where

Xoo = > 0 satisfies (3.11).

2) When the conditions of part (1) are satisfied, the internally stabilizing sub- 

optimal IMC controller Q{z) satisfying j| Pi{Pimc, Q) IL < 7  has the following

state-space realization
[ A

D ,_
where

An -

and

ObxiiAp,Opc

-Pp.Pp,^ooiiOBXnAp,Opc -Dp.B^Xooi,Oa%i,Ap,OfcPC^Cp. + Ap,

ObXu OpcPCj^

-Dp. Ap.OfcFC^

D, = + {l + P C lC ^ ,y"  p e l

where Ob x ,̂ =  ( / + and O re =  ( / +  P C J.C ,.)" ',

P ro o f

Part 1 (i) and Part 1 (ii) where proven in Theorem 3.3.1.

(5.68)

(5.69)

(5.70)

(5.71)
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Part 2 : The solution Xoo of the discrete Riccati equation can be partitioned conformally 

with
A_ n 1

that is Xa
■Ap. 0

0 ■̂Pa

Xooil Xooi2

X 0022

Conjecture 5.4.1 It is noted, after many computational observations, that X<, 0

and X 0022 =  0  are both solutions, and the solution Xoo can be partitioned conformally 

as X"oo —
Xooii 0

0 0

Following similar steps as in the proof of Part 2 of Theorem 3.3.1, equations (5.68) to 

(5.71) can be easily derived. ■

O ptim al Controller

The controller realization (5.68) to (5.71) becomes degenerate as 7  approaches the op

timal value of (3.55). This is accompanied by Xooi, being unbounded in the limit. 

Since

X.O» =  7 'Q (7 ' -  1) -  F Q )- ' (5.72)

the controller dynamics become after substituting (5.72) in (5.68) to (5.71) and following 

similar steps as in Section 3.3.2, the reduced-state-order central optimal IMC controller

will have a state-space realization given by where

- 7 ^D p ,g ^ Q R -% .0 pcPC^Cp. +  Ap,

B V lR - 'A ,,O p c P C l
(5.73)

(5.74)
- l lB ,.B lQ R -^ A ,.O p c P C l  

C „  =  [ — ,lB lQ R -^ A ^ .O p c U , I - Ÿ .B lQ R - 'A „ O p c P C lC „  ] (5.75)

and

a , .  =  - 7 lB lQ R - 'A , .0 p c P C l (5.76)



Chapter 5. Robust Internal Model-Based Controller Design 123

5 .5  A n  2 -D O F  D e s ig n  A p p ro a c h

It is a trivial result that all 1-DOF stabilizing controllers can be generated as a subset 

of all 2-DOF controllers. So the theory for the class of all stabilizing 1-DOF controllers 

can be a special case for the class of all 2-DOF controllers [103].

5.5.1 2-D O F C ontro llers

Consider also a coprime factorization in 1ZH°

■ 0  ■
Gm =

Gm =

=

1 as

0

5m

I

0

0

Consider a proper stabilizing 2-DOF controller for (5.77) as

A" =  [X i X :] 

with coprime factorizations in as

x  =  [o r ] y - ^  =
f  0  

0

such that the following Bezout identity is satisfied

[0 U]

F 0 U ' "M 0

0 I 0 0 I

-IV 0 M . .;v 0

■J 0 O'

= 0 I 0

. 0 0 I .

and that

j((Q ) =  _ ( y  +  Q;v)-X [f -  QM)

(5.77)

(5.78)

(5.79)

(5.80)

(5.81)

(6.82)

is the class of all proper stabilizing 2-DOF controllers for (5.77) characterized in terms 

of arbitrary

Q =  [Qi (5.83)
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As a consequence, the class of all stabilizing controllers R(Q ) of (5.82) for (5.77) can 

be partitioned as

"7 0
:% i(Q) X 2(Q )] =  _ ( F  +  Q1V)- [ 0  Qa:

0 M
=  [(F  +  Q3lV)-:Qi _ ( y  +  Q ,jV )-i([/_Q 2M )] (5.84)

K the nominal plant Gm is stable, then one can take N  =  Gm, M  = I , U = Q and 

F  =  J. In this case (5.84) simplifies to

[Xi(Q) K2 (Q)] =  [ ( f  +  Q3Gm)-'Qi ( I + Q Æ ) - '^ ) ]

from which the 2-DOF IMC controller is obtained as

[Q i(X ) Qa(X)] =  [(7-% 3G m )-"X i ( f -X iG m )-" ^ ,]

(6.85)

(5.86)

and can then be directly implemented as shown previously in Figure 5.7 (except for a 

sign change, negative-feedback convention was used in Figure 5.7, and positive-feedback 

convention for the controller is used here).

5.5.2 A n IM C Formulation and Controller Synthesis o f the 2-DOF Design  

Approach

The 2-DOF IMC approach proposed here allows the feedback controller and prefilter to 

be designed together in a  single step via an H°° optimization framework. The feedback 

controller is used to meet the robust stability and disturbance rejection specifications, 

while the prefilter is used to shape the desired time responses of the closed-loop system, 

that is to force the plant output to follow a reference model.

The configuration used for the 2-DOF design is shown schematically in Figure 5.15, 

which is the IMC formulation of the 2 -DOF design approach. The control signal is 

given by

(5.87)

in which Qi and are the IMC prefilter and IMC feedback controller, respectively. 

The signals r* and ÿk are the reference variable and the measured variable, respectively.



Chapter 5. Robust Internal Model-Based Controller Design 126

Figure 5.15: 2-DOF IMC Design Configuration.

Using similar arguments to those in Chapter 3, the purpose of the prefilter is to ensure 

that

I I  G p . Q i  —  M o  l l g ^  <  I f  ( 6. 88)

and the transfer function Mo{z) will also represent some desired closed-loop transfer 

function explicitly chosen by the designer to introduce time-domain specifications into 

the design process. Simple algebra from Figure 5.15 shows that

Qi
=

Gp^Qi — Mo (I  -f Gp,Q2 )Mp

(6.89)

The 2-DOF IMC controller Qt and Q2 can be interpreted as (I  — K 2Gp,)~^Ki and 

( f  — respectively.

Setting the problem up in the standard regulator framework gives

I/& r*'
P im cii Pimc\2

p .
Pimc22

Tk _«k.
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Setting

Mo
’ A o

C o 0

0 0

0

-M ,

I 0

0

Ap,

. Gp. 0

I

Gp,

Gp,
0

Go, — Go

and Gm. =

rt

L«t

(5.90)

Cn,. 0
(6.91)

with Mo chosen to be stable and invertible, a state-space realization for (6.90) gives

’ A

Cl D n D\2

.C2 D21 D22

A p, O n x n O n x n o OnXTo Bp,

O nX n ■Am, On X no O nX fo OnX m Bm ,

O jioX n O noX n Ao OnoXm OnoX m

O m X n O m X n O m X no Om Xro O m Xm I m X r

Cp, O m x n O m X no OmXTo O m X r

Cp, O m X n —Co O m X ro z r ^ OmXr

O m x n O rnX n O m x n o I toXTo O roX m O m X r

1. G p . —G m , O m x n o Om Xro Z f : D p, -  D m ,

(5.92)

The model (Am„Bm„Cm,) has dimensions n x n, n X r and m x n, respectively, and 

the target model {Ao, Bo, Co) has dimensions Uo x n^, Uo x r* and m* x n*, respectively. 

The states of Gp, or Gm, will be denoted by and the states of Mo will be denoted 

by Zo*.

2-DO F IM C Controller Structure

Using similar arguments to those in Chapter 3, a suboptimal full information control

law for [ Pi, can be incorporated with an observer, since D21 is square. A

state-space realization of the suboptimal internally stabilizing IMC controller for the

2-DOF control configuration under consideration will now be derived. We start with 

the following theorem.

Theorem  5.5.1 For the standardized plant described by (6.92) and satisfying assump

tions A l, A2, A4 and A6  with D21 square, we have the following results:
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1) There exists an internally stabilizing suboptimal controller Q{z) such that 

II 0 )  IL  < 7  if, and only if,

i) 7 > ^2 [(Z^ZJ)-'].

ii) - t V  +  -  B f X ^ B , ( I  +  < 0

where

Xoo = X ^  > 0 satisfies (3.11).

2) When the conditions of part (1) are satisfied, the internally stabilizing sub

optimal controller Q{z) satisfying || Pi{Pime, Q) Iloo < 7 has the following equa

tions

ŝfc+i ~  Ap,Xs,, — H{yk — Cp,Xsj,) +  Rp,^k 

^ 0)t+i ~  AoXoj, "t" Bo^k

c+i — Ap,Xs,, 4- Bp,U)^

Gp,•Bp.[Aqcjj(Ap. -}- HCp,)xg,^ -j- Aqojj.ffC7p,

(6.93)+XooisBork — JTooijBÿfc]

where Op, =  - ( f  4- B^%(%„iBp,)-^.

P ro o f

Part 1 (i) and Part 1 (ii) where proven in Theorem 3.3.2.

Part 2 : The solution Xoo of the discrete Riccati equation can be partitioned conformally

with
-Ap, 0 0 Xooii X0012 X 0013

A  = 0 Ap, 0 , that is Xoo = Xo02l X 0022 X 0023

0 0 Ao -^0032 -^0033

C o n jec tu re  5.5.1 It is noted, after many computational observations, that X 0012 =  0,

: 0 ; and X 0032 =  0  are all solutions, and the solution XooXo 0 , Xoo,, =  0 , Xo
0 X 0 0 1 3

can be partitioned conformally as Xoo = 0 0 0

X 0031 0 X 0033
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We can thus write from (5.92)
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= B I  0]

■̂OOll 0  .X̂OO]

0 0 0

XTooüi 0  Xoo,

(5.94)

and

^ p .
B fX ^ B , =  |B^_ B l  0] 0 0 0 ^p.

.X 0031 0 X 0033. . 0 .

(5.96)

SO that (3.64) becomes

C, =  - [ l + B l X , , „ B , ) ' ' [ B l X „ , „  0 B lX „ ,, \ { A - B ^ D ^ iC ^ )
^P. +  ■H’C'p, 0  ■

/  +  Bj,AT„..B,.) 0 B jX „ . . l 0 Ap^ 0

0 0 Ao.

=  +  B lX ^ „ H C „

=  r Cgjj Cgi2 Cgi3 ] (5.96)

Similarly substituting for BjXoo and B 2 X 00B 2 from above and for Bi and D21 from 

(5.92) in (3.65), we get

D, = +  0  B JX » ..]

0
7 0

0  0
0

.B . 0  .

=  - ( /+ B J ,A :„ „ B ,.)" '[B J X „ „ B , -B lX „ .„ H ]

— [ ̂ 911 ^913 ] (5.97)

Using (5.92) and (5.96), (3.67) can be written as

Ap, +  HCp, BCp. 0 ■ Bp.-

A , = 0 0 + Bp,

0 0 A<5 . . 0 .

Î11 ^912 9̂13

A». +  ^ ('P, +  ^P .Q l: HCp^ 4- -Bp.Ugij

-®Ps^îll -4pj +  Bp̂ Cq̂ 2 913
0 0 A,

(5.98)
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Similarly for Bg substituting from (5.92) and (5.97) into (3.68), we get 

0  -B Z f"
i u

0  0  . +  B .. fD,», D.

0B ,

0
-1 Bp.

+ Bp.

. 0
Bgj2

Bp, Bgj2 (5.99)

B , 0

Using Ag and Bg from above, the IMC controller dynamics, using (3.66), can be written 

as

A p.+B C p, +  Bp.C„, B C p.+B p,C ,3, Bp.C,

Bp, Cgjj Apj +  Bp, Cgj2

0 0
Bp.Bol, —H  +  B„,Dg

=

. ̂ Ofc+l .

B p .C „ /

Bp.G„, ^Sk

Ao

+ Bp,Bgj, Bp,Bgj2 (5.100)

Bo 0

where we have split the controller state vector into the estimated state of the shaped 

plant Gp,, the state of the shaped plant Gp,, and the state of the reference model 

Mo. Equation (5.100) may be re-written as

.̂ Ok+1 .

Ap.-hBGp, BGp 0

+

0 Ap, 0

0 0 Ao.
Bp. Bp.Bg,, - B  +  Bp.

Bp. Bp,Bgjj Bp.Bg,

0 B , 0

r t

.%/t.

(5.101)

where the controller output equation u% from (3.63) can be written as

. 5̂11 9̂12 9̂13 . Xsk "h [ Bgii Bgjj ]

-̂ Ok .

(5.102)

(5.101) and (5.102) give a state-space realization of the suboptimal IMC controller that 

is stabilizing and norm-bounding for the generalized plant of (5.92). This completes the 

proof. ■

The overall structure of the 2-DOF IMC controller is depicted in Figure 5.16.
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Figure 5.16: 2-DOF Controller Structure.
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5.6 Summary

In this chapter, it was shown that for the IMC scheme all nominal criteria will lead to a

model matching problem, and methods for directly synthesizing robust IMC controllers 

in an H°° setting were formulated. These include, for the 1-DOF case, the weighted
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1-block, 2-block and 4-block problems together with the normalized left coprime factor 

design procedure. For the latter, explicit state-space formulae representing the IMC 

suboptimal and optimal controllers have been derived.

For the 2-DOF case, the principle of explicit model following and the coprime factor 

design framework have been used to synthesize a 2-DOF IMC controller. As in the 

1-DOF case, explicit state-space formulae representing the IMC controller have been 

derived. This 2-DOF IMC controller which achieves robust stability and model following 

requires the solution to one Riccati equation and its final structure consists of a combined 

observer/ state-feedback coupled with an explicit model. This controller will be designed, 

in a later chapter, for a MIMO industrial problem (a glass tube production process).



C h ap ter  6

A  D irec t A p proach  to  D iscre te -T im e  M od el 

R ed u ctio n

6.1 Introduction

This chapter is concerned with discrete-time model reduction via order-reduction of a 

discrete-time coprime factor representation of a given model or controller. Balanced 

singular perturbational approximation will be considered rather than balanced trun

cation for reasons to be explained later in the chapter. Numerical issues will also be 

considered.

For discrete-time systems, balanced representations were first introduced in [6 8 , 69] for 

the synthesis of minimum round-off noise, fixed point digital filters, where the problem 

of finding optimal word length to compromise between storage and quantization efficien

cies was considered. In control systems terminology, storage and quantization effects 

correspond to controllability and observability properties, respectively. The best trade

off between high controllability with low observability and low controllability with high 

observability is provided by internally balanced representations. The states of such rep

resentations are balanced between controllability and observability. Thus they represent 

a convenient structure for model reduction since those states having weak controllability 

and observability can be neglected without causing any imbalance in controllability or 

observability properties of the remaining states.

Until now, most model-reduction techniques applied to discrete-time plants are ap
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proached indirectly by mapping the discrete-time model to the continuous-time domain 

via the bilinear transformation discussed in Chapter 1. Also, most techniques that re

quire balancing are strictly limited to stable and minimal systems. Moreover, balancing 

is intrinsically badly conditioned for systems with nearly uncontrollable and/or nearly 

unobservable modes. The model-reduction approach presented here can be used directly 

to balance and residualize, via singular perturbational approximation, a non-minimal 

stable/ unstable discrete-time plant. A model-reduction method suggested by [1 0 0 , 97] 

can directly be used to compute a balanced singular perturbational approximation start

ing with either minimal or non-minimal discrete-time systems.

High-order discrete-time controllers are normally synthesized using the IMC approach 

presented in Chapter 5 and the robust design methods presented in Chapters 2 & 3. 

This is a major disadvantage for designing H°° based controllers. The aim of this 

chapter is to propose a discrete-time model reduction approach in order to alleviate the 

problem of implementing unnecessarily high-order controllers. This approach combines 

the algorithm of [56] for computing state-space balancing transformations directly from 

the state-space realization, and the algorithm of [45] for computing the solution of 

the real discrete-time non-negative definite Lyapunov equation. The combination of 

both algorithms results in a reliable method with enhanced numerical robustness for 

computing a balanced singular perturbational approximation of a stable state-space 

system that may be arbitrarily close to being unobservable and/or uncontrollable. The 

algorithms can then be enhanced in the normalized coprime factor model-reduction 

procedure of [63] which extends system balancing and truncation to unstable plants, 

giving a more reliable and powerful discrete-time model reduction approach that is 

capable of producing, in a direct manner, a good reduced-order discrete-time model.

The organization of this chapter is as follow. Preliminaries which include system bal

ancing and discrete-time model reduction are briefly introduced in Section 6.2. Section

6.3 describes the state-space balancing transformation and the solution of the Lyapunov 

equation for the Cholesky factor. Section 6.4 describes the coprime factor model reduc

tion procedure with main results extended to discrete-time systems, together with the 

proposed direct discrete-time model reduction algorithm, and Section 6.5 demonstrates 

the proposed algorithm on two industrial examples. Finally, a summary is given in
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Section 6.6.

6 .2  D iscre te -T im e  M o d e l R ed u ctio n

Consider a stable discrete-time system given by

®̂ :+l — AXji 4" Btlfi

yt =  (6.1)

where A is n x n, S  is n x m, and C is p x n. The pair (A ,B )  and (C,A)  are as

sumed to be controllable and observable, respectively. The associated controllability 

and observability Grammians of the system are

W; =  (6.2)
k=0

1^0 =  (6 3)
fe=0

The system balancing is based upon the simultaneous diagonalization of the positive 

definite Grammians which is done by using a suitably chosen state similarity trans

formation [65]. Applying a non-singular transformation Xk = Txk, the system will be 

transformed to

rjk+i =  .Âzjk +  Êuk 

yt =  C zt (6.4)

where Â  =  T~^AT, Ê  =  T~^B  and C =  CT.  The corresponding Grammians of the 

transformed system are expressed as =  T~'^Wc{T~'^Y and Wo =  T'^WoT. The eigen

values of the matrix A  are invariant under similarity transformation, but the eigenvalues 

of Wc and Wo are not. The transformation x* =  Txk for which the matrices Wc and

Wo are both diagonal is called a contragradient transformation. Since the matrix Wc is

symmetric and positive definite, it may be reduced to

(6.6)

where is an orthogonal matrix and Eg is a diagonal matrix with positive entries, and

because of the positive definiteness of the matrix

(V;E,)^T»;(KZc) (6.6)
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it is possible to find another orthogonal matrix U such that

=  E' (6.7)

where S is a diagonal matrix with positive entries. Now it is easy to check that the

expression

71 =  %E,[TE-' (6.8)

defines a family of contragradient transformations with

(6.9)

The diagonal elements of S are the positive square roots of the eigenvalues of the product 

WcWo since

=  E" (6.10)

These elements are referred to as second-order modes and they are invariant under state 

similarity transformations.

The following three values of I, namely 1 =  0, |  and 1 are of special interest and corre

spond to:

1 =  0 Wc = I  Wo =  —» input-normal coordinates
1 .

1 =  -  Wc =  E  Wo =  E  —» internally balanced coordinates

1 =  1 Wc =  E^ Wo =■ I  — output-normal coordinates

The most interesting of these is the contragradient transformation for 1 =  | .  The 

diagonal elements of E are called the Hankel singular values.

Let âi be the Hankel singular values of the controllability and observability Grammian

S. It is assumed that the state variables have been permuted so that < 5-,, i =

1 , . . . ,  n - 1  and that the Grammian S  of dimension n x n is partitioned in the format S  = 
"E l 0 "

where E% and Eg are diagonal matrices of dimensions r  x r  and n — r x n  — r,
0 Eg
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respectively. Then the balanced system can be partitioned as
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X i An A i 2 3:1
+

Bl"

k + l Agi Ag2_ .3^2. k . ^ 2 .

vk =  [Cl Cg] (6.11)

where A n, is r  x r. Let Ui and u, be the minimum norm (£^-norm) functions that drive 

the state from the origin to [(x^(oo))t 0)]^ and [0 (xg (oo))* respectively, in the

time interval [0, oo]. It was shown in [65] that

âr ||(z3(oo))&||gII ^2 Ha ^_______ _________
II «1 111 "  ^r+i II (a:i(oo))k lia

If âr ôr+1 and ui and ttg have the same norms, it follows that

II (a:3(oo))k lia C  II (%i(oo))& ||,

(6.12)

(6.13)

In other words, the part (xg)k of the state is much less affected by the input than the 

part (xi)k.

Similarly, let yi and yg be the zero input responses of the outputs from the initial 

conditions [ (x f (0))t 0 ]^ and [ 0 (x f (0))* ]^, respectively. Then

1/2 111 <  II I/i lia (6.14)

if ô'r dr+ 1 and || (xi(0))t ||g =  || (xg(0))k ||g. This means that the (xg)* part of the 

state affects the output much less than the (x i)t part.

It seems reasonable to assume that the (xg)& part of the state does not affect the input- 

output behaviour of the system very much if cr̂ +i <  âr- This observation suggests 

that the subsystem {A n,j5i,C i} be called the strong subsystem and the subsystem 

{Agg,Bg,Cg} be called the weak subsystem. However, it was emphasised in [28] that 

the subsystems {Au,Bi,Ci}, % =  1,2 are not internally balanced, as in the case of 

the continuous-time counterpart, and the submatrices S,, i =  1,2 are not balanced 

Grammians of the subsystems. These conditions prevent the direct extension of the 

continuous-time results of [65] to discrete-time systems. A good low-order approxima- 

tion of the original system can be represented, as suggested in [28], by the singular
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perturbational low-order approximation {Â, B, C, jD}, with

À = A l l A i 2 (I  — A 22)  ̂Agi 

Ê  = S i 4-Aig(J — Agg) ^Sg 

C = Cl 4- Cg(J — Agg) ^Agi

S  =  C g(f-A 2g)-"Sg (6.15)

Lem m a 6.2.1 Let G{z) =  C { z I—A)~^B be asymptotically stable and minimal with n- 

states. Let G{z) be in balanced coordinates with the following balanced Grammian S = 

diag(âi,âg, ...,ân) and Hankel singular values di > dg > ... > > 0. Let r < n  and

partition S  =  diag(Si,Eg), where Ei =  d lag (â i,...,â r) and Eg =  d lag(âr+ i,...,cr*). 

Let G dt(z)  =  Ci{zl — Aii)~^Bl be the r-state reduced order model obtained by directly 

truncating the balanced realization of G{z) to r  states. Let Cgp^(z) =  Ô (zI—Â)~^ê+£> 

be the r-state reduced order model obtained by singular perturbational approximation 

of the balanced realization of G(z). Let GsPAn(^) = G{zl -  A)“^S be another r- 

state reduced order model obtained by the singular perturbational approximation of 

the balanced realization of G{z). Then

1) G m {z)  is not in balanced coordinates, [84, 28].

2) Gsfa(^) is in balanced coordinates with balanced Grammian S i, [28].

3) If dr > âr+i then Gdt(z) is asymptotically stable and minimal, [84].

4) If dr > dr+i then Gspa{z) is asymptotically stable and minimal, [28].

5) | |C ( z ) - C r T ( z ) L < 2 t r [ E g ] , [ l ] .

6) II C(z) -  Cgfx(z) L  <  2 tr[Eg], [1, 59].

7) II C(z) -  C sf^ .(z) IL  <  4 tr[Eg], [1, 59].

8) | |C ( z ) |L < 2 t r [ E ] ,  [1].

9) If G{z) is coinner (inner), then Gspa{z) is also coinner (inner), [101].
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An indirect approach to reduce a discrete-time model is as follows [2]:

1) The discrete-time state-space system { A ,B ,C j  is mapped to the continuous

time state-space system (É ,F ,  G ,Ê }  using the bilinear transformation with

Ê  =  ( f -k A ) -X A -f )

F  =  V^(f +  A )-^g 

6  =  V5C(f4-A)-^

R  =  +  (6.16)

2) The continuous-time state-space system { Ê ,F ,G ,É }  is transformed into a 

balanced state-space system {E ,F ,G ,f f} .  This realization is a balanced re

alization with the same observability and controllability Grammians as its 

corresponding balanced discrete-time state-space system [36]. As a conse

quence both realizations have the same Hankel singular values and the same 

McMillan degree.

3) The ordered balanced realization is then partitioned as

(6.17)

'E ll E i2 Xi"
4“

'F i '

.E g i E22 .^2. F2 .

y =  [Cl Cg] +  f fu

4) The reduced-order continuous-time state-space system is then mapped to the 

discrete-time system {A, B, C, D}  using the bilinear transformation. The cor

responding balanced reduced-order discrete-time system is obtained (see Ap

pendix B) with

À — (7 4- T'ii)(7 — F ii) 

A =  V ^ ( f - E i i ) - iF l

Ù =  V^Gi(Z -  E ii)- i

All — A u i l  +  Âgg)"^Âgi 

Ê i  — Â ig (f -h Âg2)"^jBg 

Cl — (^2(7 +  Â22)"^Âgl 

D — 0 2 ( 7  4- Âgg)"^ Ag

(6.18)

5) To guarantee that the DC gain of the reduced-model will be right, the obtained 

balanced continuous-time state-space system {E, F ,G ,È }  is approximated via
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singular perturbational low-order approximation as follows
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F

G

Fi — È 12Ê 22 A  

G\ — G2Ê 22 F 21 

Æ -  A (6.19)

The corresponding reduced-order discrete-time system {Â ,È ,C ,D }  is then 

obtained using the bilinear transformation which in fact has the following 

singular perturbational low-order approximation structure (see Appendix B)

Â = A\i + Â i2 {I — Â 22)

B  =  Èi + Â i2{I — Â 22) ^A  

ô  =  Cl -4- — Â22)

D  =  H  A C2{I — Â 22)  ̂A  (6.20)

L em m a 6.2.2 Let G(z) = C {zI—A)~^B+D  be a balanced system with a low frequency 

gain expressed by (letting z =  1) =  C (f -  A)"^g 4- D, and a high hequency gain

expressed by (letting 2  =  -1 )  Hgain =  - C ( I  -|- A)~^B 4- D. Then

1) The reduced discrete-time system given in step 5 will always retain the low 

frequency gain.

2) The reduced discrete-time system given in step 4 will always retain the high 

frequency gain.

P roof

Lgain = C{I — A)~'^B 4- D  can b e  rewritten as

= ' + a

= [Cl C2 ]
. W — -^22 J 

I  —Ai2(I  — A22)~^
0 /

I  0 J 0 I  — A ll —A ^

{ I —A22)~^A21 I, .—{I — A22)~̂  A21 I, . - A 21 I  — A2 2 .
I  A i2 ( / — A22)  ̂

0 I
Bt'

.^2.
4-D
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— {Cl + C2{,I — A%2)~^ A21 C2 ]
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I  Ai2(/ — A22) ^
0 7

B i  +  A i2 ( 7  — A22)~^B2^

J — (All + Ai2 (/— A22)~^A2i ) 0

0 {I — A22)

+ 7)

7 — All —A12

. -  A21 7 -  A2 2 .
7 o r - ^

( 7  — A a 2 ) " ^ A a i  7.

:Cr Ca]

+ D

- 1

+ D

( 7  -  A r ) - ^  0 - 1

0 ( 7  — A g a ) " ^ .
= [Cr Ca]

=  C r ( 7 - A T r '^ r  +  C a(7-A M )-^B 2 +  D 

= Cr(7-AT)-^Br + 7)r

Part 2 can be proven in a similar manner. This completes the proof.

6 .3  A  S ta te -S p a ce  B alan cin g  T ransform ation

A method for computing a balancing transformation is given as follows [55]:

1) Compute the Grammians from the discrete Lyapunov equations

(6.21) 

(6.22)

2) Applying the Cholesky decomposition, the controllability Grammian is repre

sented as

( 6 . 2 3 )

where Lc is a lower triangular matrix. The observability Grammian is then 

transformed to the matrix L^WoLc which is reduced to the diagonal form

y ^ ( L r W , L c ) P  =  E '  ( 6 . 2 4 )

This reduction is done by the QR decomposition method for symmetric ma

trices. Now it is easy to verify that

r  =

is a  balancing transformation such that

( 6 . 2 6 )

(6.26)
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3) The matrices of the balanced system are given by

Â =  T-^AT =  (6.27)

A =  (6.28)

C =  c r  =  (6.29)

A disadvantage of the above balancing algorithm is that the computation of the Gram

mian through (6.21) and (6.22) requires the evaluation of the matrices B B ^  and C^C  

which may not be positive definite due to some rounding errors making the computation 

of a full rank Cholesky factor impossible. An algorithm suggested by [45] (which will 

be explained in more detail later) can be applied to circumvent the problem of find

ing a unique Cholesky factor. The method suggests finding the Cholesky factor of the 

solution of a Lyapunov equation without explicit determination of the solution. This 

possibility was exploited in the algorithm of [56] which proceeds in the following way. 

The decompositions

Wc =  LcEl and (6.30)

are found by the Hammerling algorithm [45], where the matrices Wc and Wo are not 

actually formed. The Hankel singular values in terms of Lo and Lc are

=  x y \ L , L l U L l )

= (6.31)

This shows that the singular values of L^Lc are the positive square roots of the eigen

values of the product WgWc, i.e. the second-order modes of the system. Using the 

singular value decomposition of the product L^Lc such that

(6.32)

the balancing transformation matrix is determined as

r  =  and (6.33)

So the new balanced state-space matrices are given by

Â =  r-"AT =  (6.34)
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A =  (6.35)

C =  C T =  0 1 = ^ 2 -" / ' (6.36)

L em m a 6.3.1 The system {A, A, C} is a balanced realization of the discrete-time sys

tem {A ,g , C}.

P ro o f

By considering (6.22), substituting for Wo from (6.30), pre- and post-multiplying by 

and LcV, respectively, we obtain

-  y ^ L ^ W ^ L c P  =  -y ^ L ^ C ^ C A P  (6.37)

Substituting for L^Lc and L^Lo from (6.32) gives

y ^ L ^ A L ^ y  -  E'  =  - y C ^ C L c ^  (6.38)

Proceeding in a similar manner for (6.21) by pre- and post-multiplying by and

LoU^ respectively we obtain

(6.39)

Substituting for L^Lc and Xfl-o from (6.32) gives

-  2^ =  -(/''L ^gg^L .E T  (6.40)

(6.34) implies that

Pre-multiplying by 2^/^, and post-multiplying by 2^/^ and gives

2i/2^T2i/2[^T =  y^L fA ^L , (6.42)

which implies that

=  2^/'Â^2Â2^/^ (6.43)

(6.36) can be re-expressed as

C2"/" =  C L ,y  (6.44)
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which implies that

Substitution of (6.43) and (6.45) into (6.38) gives 

Pre- and post-multiplying (6.46) by 2"^/^ gives

Â^2Â -  2  =

Proceeding in a similar manner by substituting into (6.39) gives

Â2Â^ -  2  =  -A A ^
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(6.46)

(6.46)

(6.47)

(6.48)

It is therefore shown that the discrete system transformed by T  and T   ̂ given in (6.34),

(6.35), and (6.36) is in balanced form with Grammians equal to 2. ■

Lemma 6.3.2 Let the internally balanced asymptotically stable system {Â, A, C} and 

the Grammian 2  be partitioned conformally as

2 i 0 ^

0 2]

where A n  and 2 i are r  x r matrices. Then the slow singular perturbational approxi

mation {Â, A, C, D} given by

Â11 Â1 2 ' Ai"
A = , A =

À21 Â2 2 .
(6.49)

A

A

c
A

Âix -f- Âia(7 — Â22)

Al H- Ài2{I — Â22)  ̂A2 

C l 4- Ca(7 — Â 22)

C2{I — À 22) ^Ag (6.60)

and the fast singular perturbational approximation {Â32, A a,^;} of the system (6 .4 9 ) 

will each define an internally balanced system with Grammians 2 i and 2a, respectively.

P roof

Let ^ 1

formally as

7 Âia(7 — Â22) ^
and S2 =

- 7  Â ^ ,(7 -Â T )-i-

0 7 0 7

Â i Â 1 2 ' ' 2 i  0 ' À fi 4 i ' 2 i  0 ' A i '

Â 21 Âaz. 0 2a ^ 2 . 0 2a_

. Partition (6.48) con- 

B f  B J] (6.61)
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Pre- and post-multiply (6.51) by S\ and 5 f , respectively. After some algebra, the (1,1) 

block of the final expression will be given by

-  2 i =  (6.62)

with (Â, A) as defined in (6.50), and the (2,2) block will be given by

AzEaÂg; -  2a =  -AaA^ (6.63)

Proceeding in a similar manner for (6.47) by partitioning it conformally as (6.61) and 

pre- and post-multiplying by Sa and S^, respectively, we obtain

Â^2iÂ  -  2 i =  (6.64)

with (Â, C)  as defined in (6.50), and

-'^22^2^22 — 2a =  —C2 C2 (6.55)

From the balanced Lyapunov equations of (6.52), (6.63), (6.64) and (6.66), it is clear that 

the slow and fast singular perturbational approximations are both internally balanced 

with Grammians 2% and 2a, respectively. ■

Solving the Lyapunov Equation for the Cholesky Factor

In some applications it is necessary to solve the Lyapunov equation

(6.66)

Since C^C  is non-negative definite, the above Lyapunov has a unique non-negative 

solution for X .  Using the Cholesky decomposition, X  can be factorized as

% =  (6.67)

where y  is an upper triangular matrix. In solving (6.56), it is preferable to find the 

Cholesky factor Y  via C rather than C^C  for the following reasons. First, when X  is 

positive definite, its condition number with respect to inversion is

cond(X) = con<F(Y) (6.58)
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That is why X  may be more ill-conditioned than V. Second, if it is possible to find Y  

directly from C, the loss of accuracy associated with the computation of C ^C  will be 

avoided. The equation

-  (y ^ y ) =  (6.59)

can be solved directly for Y  by the method of [45]. This method is based on the

Bartels-Stewart algorithm and involves the reduction of the matrix A  into real Schur

form

S =  (6.60)

where U is orthogonal and S  is upper triangular. Let the QR decomposition of the 

matrix C  be
g

0
where Q is orthogonal and R  upper triangular. According to (6.61)

(6.61)

(6.62)

so that R  is a Cholesky factor of C^C. Pre- and post-multiplying (6.59) by U'^ and U\ 

respectively, gives

^ r^ T (yT y)^ ^  -  U ^(y^y)C =  (6.63)

From (6.60), A = U517^, and (6.63) may be rewritten, by substituting for A  and using 

(6.62), as

g^C^(yry)[TR -  g ^ (y ^ y )c  =  (6.64)

which may be re-arranged as

^^(ÿ^y)R -  ÿ:^ÿ =  -R ^R  (6.65)

where Y  and R are upper triangular matrices that satisfy

y ^ y  =  u ^ ( y ' 'y ) u  (6.66)

R^R =  U^(R^R)U (6.67)

The matrices Ÿ  and R  can be found as the Cholesky factors of (6.66) and (6.67), respec

tively. It is noticed that it is not necessary to form the matrix U^{RFR)U explicitly.
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since RU  can be formed and R  is found as an upper triangular matrix of the QR de

composition of RU. After Ÿ  is found, the matrix Y  is obtained in a similar manner 

from ŸU ^.  Equation (6.65) can be solved by a forward substitution for the elements 

of Ÿ  without forming R^R .  To summarize, the method of [45] provides a method for 

solving equation (6.56) directly for the Cholesky factor, without the loss of accuracy 

associated with forming C^C.

6.4 Coprime Factor M odel Reduction

Most model reduction techniques require the original model to be stable. In the coprime 

factor model reduction procedure, the coprime factors are reduced. Since the coprime 

factors of any system are always stable, the method is applicable to unstable as well as 

stable systems. The procedure is:

1) Write G, the transfer function to be reduced (with degree n) as G =  M~'^N.

2) Let the Hankel singular values of [iV M ] be âi > da > ... > > 0 and 

define S  =  diag(di, da,..., d„). Since the factorization is normalized, we have 

that J  >  Ê, so 1 > dj. r  <  n is then picked such that d, > d^+i. A balanced 

singular perturbational approximation can be performed in the usual way on 

[N  M ] to obtain a reduced order representation of the form [Nr ], or of 

the form [ Nr„ Mr„ ] with the same feedthrough (D) term as that of [IV M  ].

3) Form the reduced-order transfer function Gr (with degree r) by Gr =  M~^Nt- 

Here, G, is in fact a normalized left coprime factorization.

We now extend the continuous-time results given in [63] to their discrete-time counter

part.

Lem m a 6.4.1 [107] Suppose {A, g ,  C} is minimal, and let H  =  -APC'^{I+CPC^)~^  

with P  as the unique positive definite solution to the algebraic Riccati equation

APA^ -  P  -  APC^(7 4- CPG^)-^CPA^ 4- =  0

then (3.32) and (3.33) gives a normalized left coprime factorization. ■
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L em m a 6.4.2 Given a realization {A ,B ,C } .  Suppose i f  =  —A P C ^(I  +  CPC^)~^ 

with P  the solution to the algebraic Riccati equation

APA^ -  P  -  A P C ^(i +  CPC^)-^CPA ^ +  g g ^  =  0

and Â = A  -h B C  has eigenvalues inside the open unit disc. Suppose further that

(6.68)
Â g g

0

is minimal. Then

1) P is the controllability Grammian for (6.68) and so is positive definite,

2) either

i) {A, B, C} is minimal, or

ii) there exists a non-zero vector x  and a complex number A so that A ^x  =

Xx, B ^x  =  0, À P x  =  jP x ,  and |A| > 1.

P roof

It is clear that the algebraic Riccati equation can be rewritten as

ÂPÂ^ -  P  +  g g ^  4- g g ^  =  0 (6.69)

which implies that P  is the controllability Grammian for the controllable, stable pair

{Â,[B B ]}

and hence is positive definite. This proves part 1.

Observability of {Z2C À}  implies the observability for {C, A}. This can be shown by 

a simple PBH (Popov-Belevitch-Hautus) test. Now suppose {A, g }  is uncontrollable

so there exists a non-zero vector x  such that A ^x  = Xx and B ^x  =  0. Rewriting the

algebraic Riccati equation as

ÂPA:^ _  P  +  g g r  =  0  (6 JO)

and post-multiplying this by z, we can conclude that |  is an eigenvalue of À  with a

non-zero eigenvector Px. Hence |A| > 1 since Â has eigenvalues inside the open unit

disc. This proves part 2. ■
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g A 4 -g C g  g

ZaC 0 Z:

L em m a 6.4.3 Let {A, B ,C }  be minimal. Suppose À = A-i-HC  has eigenvalues inside 

the open unit disc with H  =  —A P C ^{I  +  CPC^)~^ and P  as the positive solution to 

the algebraic Riccati equation

-  P  -  APC^(7 +  CPC^)-"CPA^ + =  0

Then the Hankel singular values of

[A  M ]

are strictly less than one.

P ro o f

The proof of this lemma uses a well-known result from Hankel operator theory [29]. 

L em m a 6.4.4 [29] Let

II 7Z(z) -  ( z )  L  =  II ^  L  =  (6.71)

where di(.) denotes the maximum Hankel singular value, and X(z) € Then there

exist vectors g{z) and f{z )  € RhP  independent of X{z)  such that

[R(z) -  %(z)] ^(z) =  d i(R ")/(z ^) (6.72)

The proof of Lemma 6.4.3 is then as follows. It is well known that

II M ] | | ^ < | | [ N  M ] L

Also if the pair [N  M ]  are normalized, then j) [iV M ] ||^  =  1.

(6.73)

Suppose that || [iV M ] j|^ =  1, then from Lemma 6.4.4, there exists g{z), f ( z )  € TZ7P 

such that

^(z) =  /( z  \ (6.74)
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r jV 'l
that is, R =  „ and AT =  0 in Lemma 6.4.4. But, one of the main requirements for

a coprime factorization is that there exist Î7, V G such that U*N* +  V*M* =  I.

Pre-multiplying (6.74) by [U* V*] yields

^y(z) =  [[P  y ] / ( z - ' )  (6.75)

which is a  contradiction as the right-hand side of (6.75) ^ Tlhf. This contradiction 

implies || [iV M ] ||g ^  1, which is equivalent to saying that the maximum Hankel 

singular value is always less than one. Hence, the Hankel singular values of [ iV M  ] 

are strictly less than one, which completes the proof. ■

C o n jec tu re  6.4.1 [101] Let [N  M ] be the normalized left coprime factors of the n- 

state full order model G. Also let [ Nr Mr ] be the r-state reduced order model obtained 

by singular perturbational approximation of the balanced realization of [IV M  ]. Then 

[Nr Mr] is left coprime and normalized. ■

Lem m a 6.4.5 Let [N  M ] be the normalized left coprime factors of the model G.

Let [N  M  ] be in balanced coordinates with the following balanced Grammian 2 =  

d i a g ( c r i , d 2 , . . . , ô - „ )  and Hankel singular values di > 5% > ... > >  0. Let r < n and

partition 2  =  d i a g ( 2 i , Ë 2 )  where 2 i  =  d i a g ( d i , . . . , d r )  and Ê 2  =  d i a g ( d r + i , . . . , d n ) .  

Let [ Nr Mr ] be the r-state reduced order model obtained by singular perturbational

approximation of the balanced realization of [IV M ] to r  states. Let [Nm Mr„ ] be

the r-state reduced order model obtained by singular perturbational approximation of 

the balanced realization of [IV M ]  with the same feedthrough (D) term, to r  states. 

Then the frequency error bounds in Conjecture 6.2.1 apply:

||[lV -lV r M - M r ] | L < 2 t r [ 2 2 ]  (6.76)

II [ A  -  Ar. M  -  M ,. ] L  < 4 tr[22] (6.77)

this time in terms of 2a, the diagonal matrix of the neglected Hankel singular values of 

[IV M].

P roof
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This lemma follows immediately from Conjecture 6.4.5 and the Ti°° error bound for 

balanced singular perturbational approximations derived in [1, 59]. ■

L em m a 6.4.6 Let [N  M ] be the normalized left coprime factors of the model G. Let 

[N  M  ] be in balanced coordinates with balanced Grammian 2  =  d lag(d i,da,..., d„) 

and Hankel singular values di >  da > ... > d„ > 0. Let r < n and partition 2  =  

d iag (2 i,2 a ) where 2 i =  d iag(d i,...,d r) and 2a =  diag(dr+i,...,d„). Let [iV̂  Mr] 

be the r-state reduced order model obtained by singular perturbational approximation 

of the balanced realization of [ iV M  ] to r  states. Let M~^ be the r-state reduced order 

model of M~^. Let Gr be the r-state reduced order model of G obtained by forming 

Gr =  Then

G -  Gr ||„  <  I Af-> L ( 2  trl£ ,l) || M-'- (6.78)

P roof

We have G  — G r  = M ~ ^ N  — M ~ ^ N r  which can be expressed, after some algebra, as

I
G — Gr

-G r
Mr

— ÂL

This implies that

G - G r L <  M - : JV — N r  M  —  M r M :
M r

Wr

Since the pair {Nr, Mr) are normalized,
Mr

JVr
1. By using the inequality given

by (6.76), the inequality given by (6.78) will result. This can be regarded as a useful 

indication of how many states can be removed without extensively changing the input- 

output properties of G. ■

Proposed D iscrete-tim e M odel Reduction Algorithm

Problem ; Given G(z) with the state-space {A ,B ,C }  of degree n, stable/unstable, 

non-minimal with dimension p x n, find an approximant G r ( z )  with the state-space 

{Ar, Hr, Gr, Dr} of degree r < n.
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Algorithm

1) Obtain a normalized left coprime factorization (JV, M ) of G(z).

2) Perform the following state-space balancing algorithm on [JV M]. The co- 

prime factors JV and M  can be formed using (3.32) and (3.33).

i) Compute the Cholesky factors of the Grammians by the method proposed 

by [45].

ii) Compute the singular value decomposition of the product of the Cholesky 

factors given in (6.32).

iii) Form the balancing transformations using (6.33).

iv) Form the balanced state-space matrices using (6.34), (6.35) and (6.36).

3) Apply the singular perturbational approximation technique on the balanced 

[JV jÿf] to obtain [JV, Mr]- Suppose that the slow singular perturbational 

approximation of the following realization

[JV JkflA

has been performed such that

g A -k g C g  g

0 Z:

A -h g C g g balanced
residualized Â Al Aa

ZiC 0 Z] C Al Az
[JVr Jlfr

Then Nr and Mr are also left coprime and normalized.

4) Construct and use Gr(z) = M~'^Nr as an approximant to G{z).

jicijV r A

(6.79)

(6.80)

g Â -  A3A 2 AzAf:
X

i Al

- A r ' c A ;' C A l

Â 0 Al
AgAr'c Â -  AiAr^c A3A1
A^'c -A ;"c A3'Al
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Â 0 Ai

0 Â -A 2A 2 'C B2D1 — j

0 - A r ' c

Â -  AgD r'c B2D1 -  Bi

A r'A i
(6.81)

which is a state-space realization of the approximant.

6.5 Numerical Examples

Two examples are presented to validate the model-reduction approach presented in 

this chapter. The first example arises from the design of a controller for a glass tube 

production process, and the second example arises from the design of a controller for a 

high performance aero-engine, both using discrete-time ?7°°-optimization.

Exam ple 1 -  The controller is for a 2-input 2-output glass tube production process 

model. It has 32 states and it is non-minimal. The Hankel singular values of [JV M]  

for this controller are given in Table 6.1. A good place to truncate this model is at 12 

states. The singular values of the error function

Ell(z) =  [ JV(z) -  JVi3(z) Jij(z) -  Jifi3(z) ]

are shown in Figure 6.1, with a maximum value of 2.1311 x 10“ .̂ The singular values 

of the error function £ 12(2 ) = G{z) — Gi2(z) are shown in Figure 6.2, with a maximum 

value of 1.5650 x 1 0 “®. Finally, the singular values of both the high and reduced-order 

controller are shown in Figure 6.3.

Exam ple 2 -  The controller is for a 3-input 3-output high performance aero-engine 

model. It has 30 states and it is non-minimal. The Hankel singular values [JV M]  

of this controller are given in Table 6.1. A good place to truncate this model is at 13 

states. The singular values of the error function

E2i(z) =  [ JV(z) -  JVis(z) J(7(z) -  Jifi3(z) ]

are shown in Figure 6.4, with a maximum value of 1.4948 x 10“ .̂ The singular values 

of the error function ^ 22(2 ) =  G{z) — 6 1 3 (2 ) are shown in Figure 6.5, with a maximum
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value of 1.6548 x 10 ®. Finally, the singular values of both the high and reduced-order 

controller are shown in Figure 6.6.

Exam ple 1 Example 2

1) 4.2482e-01 17) 9.8594e-06 1) 4.0694e-01 16) 2.8708e-05

2) 2.5171e-01 18) 3.6020e-06 2) 3.2597e-01 17) 8.0369e-07

3) 9.6639e-02 19) 2.2974e-06 3) 2.4179e-01 18) 3.8852e-07

4) 8.0217e-02 20) 1.5802e-06 4) 1.3627e-01 19) 2.0525e-07

5) 3.4282e-02 21) 1.2674e-06 5) 8.3641e-02 20) 3.7137e-08

6) l.G642e-02 22) 5.6427e-07 6) 6.8822e-02 21) 1.2298e-08

7) 6.841 le-03 23) 1.5936e-07 7) 5.5705e-02 22) 2.1012e-09

8) 6.2274e-03 24) 6.4077e-08 8) 3.3439e-02 23) 4.3942e-12

9) 2.5324e-03 25) 1.9548e-08 9) 1.7371e-02 24) 6.3541e-13

10) 1.4173e-03 26) 8.3475e-09 10) 6.0502e-03 25) 1.5454e-14

11) 6.9009e-04 27) 6.3176e-10 11) 4.1995e-03 26) 8.1517e-17

12) 2.8681e-04 28) 3.8663e-10 12) 1.4436e-03 27) 1.0166e-18

13) 9.0396e-05 29) 6.9527e-ll 13) 2.6330e-04 28) 4.2545e-29

14) 6.9483e-05 30) 1.4107e-ll 14) 7.4916e-05 29) 3.5347e-31

15) 3.9909e-05 31) 1.2590e-24 15) 3.2171e-05 30) 8.4547e-32

16) 1.5268e-05 32) 1.5765e-25

Table 6.1: Hankel Singular Values.
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Singular Values of [N-Nr. M-Mr]
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Figure 6.1: Singular Values of the Error Function Ett{z). 
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Figure 6.2: Singular Values of the Error Function E i2(z).
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Figure 6.3: Singular Values of the Full and Reduced-order Controller. 
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Figure 6.4: Singular Values of the Error Function E2i{z).
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Singular Values of [G - Gfr]
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Figure 6.6: Singular Values of the Full and Reduced-order Controller.
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6.6 Summary

In this chapter, a comprehensive treatment of discrete-time model reduction was pre

sented with two main aims: The first was to describe two algorithms that can be used 

for the reliable computation of the balanced realization of a stable state-space model. 

By combining the two algorithms, assumptions about the controllability or observability 

of the original system can be dispensed with, since the Cholesky factors of the Gram

mians can be computed directly, given the state-space realization. The second was to 

combine the two algorithms together with a model-reduction approach based on nor

malized firactional representations thereby extending the continuous-time results of [63] 

to the discrete-time analogous.

The model-reduction approach was demonstrated successfully on two different exam

ples. In Chapter 8, high-order IMC controllers will be synthesized for a glass tube 

production process with large time-delays. Such high-order controllers can be numeri

cally ill-conditioned for performing model order-reduction. The proposed approach of 

this chapter will prove to be numerically reliable in finding low-order controllers in the 

case study of Chapter 8.



C h ap ter  7

R o b u st P ro cess  Id en tifica tion  o f  a  G lass T ube  

P ro d u c tio n  P ro cess

7.1 Introduction

This chapter is concerned with applying advanced identification to a MIMO industrial 

production process, in this case a glass tube production process. The process will be 

described in detail in order to provide an understanding of the dynamic behaviour. 

The treatment of data and design experiments which are relevant to the multivariable 

identification approach will be briefly described, but the main attention will be focused 

on the application of the identification approach in terms of the accuracy of the identified 

models.

Mathematical modelling of processes from experimental data is regarded as the field of 

system or process identification, and it is defined in [114] as follows: System identifica

tion is the determination, on the basis of input and output data, of a system (model) 

within a specified class of systems (models), to which the system under test is equivalent 

(in terms of a criterion). From this definition, it follows that the experimental modelling 

of a process can be divided into the following entities [27, 60]:

1) Data: Input-output data is recorded and treated from specially designed iden

tification experiments and pre-processing stages in order to make the measured 

data well informative about the properties of the process of interest.

2) M odel Set: The mathematical properties of the model together with the
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availability of a priori knowledge, engineering intuition and insight have to be 

invoked to select a set of candidate models and an error criterion to define the 

accuracy of the models.

3) Param eterization: Within the selected set of models, the parameterization 

involves issues like selecting a suitable model structure and an appropriate 

model order.

4) Optimization: The identification method based on optimization defines the 

construction of the best model within the parameterized model set.

5) M odel Validation: This is the process where the final judgement of the 

model quality is given. This relates the model behaviour to the a priori 

knowledge, the observed data which is independent of the data set used for 

the identification and its intended use.

Many different types of industrial processes do require some sort of control in order 

to meet the product specifications. In the last decade model-based multivariable con

trol systems have been increasingly applied to industrial production processes. The 

application of these control systems can significantly reduce the tolerance of important 

product and process specifications and the transition times of the controlled process. 

To further improve the control system, the dynamics of a process should be accurately 

known. Both accurate models and knowledge of the corresponding model errors (due to 

process perturbations) are necessary for robust control system design. This knowledge 

can be obtained by advanced identification techniques. The designed robust controller 

then guarantees a certain performance for all systems within the identified uncertainty 

bounds. The aim of this chapter is to identify, with the aid of existing methods for data 

pre-treatment and advanced multivariable identification, a nominal model for a glass 

tube production process (operating at three working conditions) suitable for control 

system design.

The organization of this chapter is as follows. Section 7.2 gives a description of the 

glass tube production process. In Section 7.3, the main features of the advanced multi- 

variable identification techniques will be briefly introduced; these include the Minimal
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Polynomial Approach [27], the Subspace State-Space Approach [81], The Robust Con

trol Oriented Approach [44]. In Section 7.4, the preliminary experiments for collecting 

a priori information are briefly outlined and analyzed, together with the pre-treatment 

of the measured data. In Section 7.5, the problem related to the final identification 

experiment which is for model estimation and model validation is discussed. Finally, a 

summary will be given in Section 7.6.

7.2 Description of the Process

In a special glass factory of Philips Lighting in the Netherlands, glass tubes are manu

factured on so-called SQ (Sulvanian Quartz) furnaces. The main part of this process is 

outlined schematically in Figure 7.1. Glass is manufactured from very pure sand. After 

various processing and purification stages, the level of impurities in this sand is so low 

that it can be used as raw material of the glass tube. The sand is melted by indirect 

electrical heating, which yields sintering at the transition between the sand and the 

molten glass, and fiows down through a spout where a mandrel is accurately positioned. 

Under pressure, gas is led through the hollow mandrel. The glass tube is pulled down 

due to gravity and supported by a drawing machine.

Shaping of the tube takes place at, and just below the end of the mandrel. The shape of 

the tube is determined by two output variables : the wall thickness and the diameter as 

a function of time. In the production process, 4 wall thickness (North, South, East and 

West) and 2 diameter (North/South and East/West) sensors measure the tube quality. 

Thus, the longitudinal shape of the tube is characterized by two important parameters, 

which will be taken as outputs to be controlled:

1) Average tube diameter (D).

2) Average tube wall thickness (W).

Both these outputs are influenced by many process conditions, which are all candidates 

for controlling inputs. These are:

1) Mandrel gas pressure.
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Mandrel pressure
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Melting vessel pressure
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/  Mandrel 

y /  Melting vessel
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Wall thickness East

^ —  Drawing machine 

/ —  Drawing speed

Figure 7.1: The Glass Tube Production Process.
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2) Drawing speed.

3) Power applied to the furnace (temperature of the glass).

4) Melting vessel pressure.

5) Composition of the raw materials.

Preliminary process measurements have indicated that the shaping of the tube over the 

largest frequency range with the shortest time delays, was most directly influenced by 

two process conditions [6]:

1) Mandrel pressure (MP).

2) Drawing speed (DS).

Consequently these variables are taken as the controlling inputs.

The shaping part of the glass tube production process is a distributed parameter system. 

Shaping of the tube takes place when the glass has a relatively low viscosity. A physical 

model of the shaping part of the process may be obtained from two coupled partial 

difference equations:

1) First, there is a partial difference equation describing the flow of the glass 

from the mandrel to form a tube with specific dimensions as a function of 

mandrel pressure and drawing speed. In this difference equation the viscosity 

is an important position-dependent parameter. The viscosity is a non-linear 

function of temperature.

2) Second, there is a partial difference equation describing the temperature of the 

glass as a function of the power input. The velocity of the glass as a function of 

time and position is an important parameter in this partial difference equation.

Physical modelling of the process to describe the shaping of the tube in detail and over 

the full range of all possible operating points (determined by various diameter and wall 

thickness values), is very complex with many uncertain parameter values. For control
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system design, however, it is often sufficient to have a model that describes the input- 

output behaviour of the process in the vicinity of its operating points. It is clear that 

the input-output behaviour of the tube process cannot be described exactly by a linear, 

lumped parameter model. Nevertheless, an attempt has been made to find a model 

that describes the process dynamics with sufficient accuracy for controller design. For 

this modelling, an advanced multivariable identification technique was applied. The 

model obtained was a set of linear, time-invariant difference equations which was con

sidered to be a suitable approximation of the partial difference equations at that point 

of application where shaping of the tube takes place most frequently.

Shaping of the tube is a real MIMO process (Figure 7.2), and strong interactions between 

the different inputs and outputs exist:

1) An increase in the mandrel pressure results in an increase in diameter and a 

decrease in wall thickness.

2) An increase in the drawing speed results in a decrease of both diameter and 

wall thickness.

MP

DS

Ô -

o

G. G nz-'': Gigz-"^
w

D

Figure 7.2: Open-loop Configuration of the Glass Tube Production Process.

The actuators of the mandrel pressure Go, and the drawing speed Go, are pre-controlled 

by PID controllers, Ci and Ga, respectively. The inputs and ug that directly affect 

the process are fed back and control action is undertaken, if these measured inputs differ 

from their set-points. Also, there are time delays =  1,2,3,4) in each element of

the transfer function matrix shown in Figure 7.2. This is because the dimensions of the 

tube can only be measured when the glass has considerably cooled down.
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Three different operating points were measured and taken to represent for the whole 

working range of the production process which includes more than 60 different operating 

points. For each of the 3 selected operating points, a state-space model is derived. The 

measurement signals are first pre-processed (Section 7.4); that is, the main obvious 

properties are removed from the measured data (delay, offset, low-frequency trends, 

etc.). This enables the identification algorithms to concentrate on the dynamic part of 

the process. Table 7.1 lists the selected measure for each of the three operating points. 

Because of the limited space, only the data for Measure 1 will be used for the analysis

Tube Measure Diameter (mm) Wall thickness (mm)

1 13 1

2 20 1

3 30.5 1.56

Table 7.1: Glass Tube Dimensions.

of model estimation.

7.3 Identification by Advanced Multivariable M ethods

7.3.1 A M in im al Polynom ial A pproach

This identification approach [27] is based on minimizing the sum-squared prediction 

errors. In the classical approach for multivariable systems, however, structural indices 

are required for the polynomial model parameterization, which are very hard to estimate 

in practice. This problem can be avoided by adopting a minimal polynomial model 

structure. For this model structure, the structure estimation problem reduces to an 

order selection problem. In this way, a well known minimization criterion is formulated. 

In addition, it is possible to include specific structure knowledge as zero transfers, static 

gain optimization for predefined reference values, and to use multiple data sets for the 

model estimation, if data of several experiments are available. A clear disadvantage 

results from the fact that the solution is obtained by iterative non-linear optimization 

which is not guaranteed to converge to a globally optimum solution. Local minima of the
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objective criterion and sensitivity to initial estimates are among the main drawbacks.

7.3.2 A  S tate-S pace A pproach

This identification approach [81] is viewed as the better alternative to polynomial identi

fication methods based on observability and/or controllability indices. This is especially 

true for high-order multivariable systems, for which it is not trivial to find a parameter

ization. W ith this approach, the a priori parameterization can be avoided. The order 

of the system is determined through the inspection of the dominant singular values of 

a matrix that is calculated during the identification. The state-space matrices are not 

calculated in their canonical forms (with a minimal number of parameters), but as full 

state-space matrices and is therefore simple to use. Another major advantage is that 

the algorithms are one shot algorithms (no iterations) which are therefore fast because 

no non-linear optimization is involved. A disadvantage of this method, however, is that 

there is no criterion for which these models are optimal.

7.3.3 A  R o b u st C ontro l O rien ted  A pproach

This identification approach [44] is a two step method. The first step estimates uncer

tainty intervals of the frequency response of the system based on stochastic assumptions 

about the noise. In the second step, a nominal model is estimated on the basis of the 

uncertainty intervals using curve fitting techniques in the frequency domain. This ap

proach provides very accurate models of the process. A major advantage is that bounds 

for the model errors are obtained in the frequency domain describing the model accuracy 

which can also be used for H°° control design. Computational complexity is, however, 

a clear disadvantage of this identification approach.

7.3.4 A n In te g ra te d  Identifica tion  A pproach

A user-friendly and efficient identification shell for industrial purposes can now be real

ized by combining the advantages of each of the developed identification methods:
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1) In itia lization : The State-Space approach provides accurate models in mini

mum time and it is easy to use.

2) O ptim ization : The Minimal Polynomial approach can be used to optimize 

the initial State-Space model and fix the static gains to the reference values 

for multiple data sets.

3) B ounds: Model error bounds required for ?ï°° control system design can be 

computed with the Robust Control Oriented approach which also indicates 

the model accuracy.

7.4 Data Pre-processing and Identification Experiments

7.4.1 P re-p rocessing  o f th e  Identifica tion  D ata

For the different identification experiments (Section 7.4.2), the following collected input 

and output signals are processed:

1) Diameter (North/South) (mm)

2) Diameter (East/West) (mm)

3) Wall Thickness (North) (mm)

4) Wall Thickness (South) (mm)

5) Wall Thickness (West) (mm)

6) Wall Thickness (East) (mm)

7) Drawing Speed (m/s)

8) Mandrel Pressure (mmHgO)

The pre-processing of the collected process data involves the following steps [118]:

o P eak  Shaving: This is required to reduce the effects of spikes (peaks due to e.ÿ. 

loose contacts, power failure, cross-talk between cables etc.) on measured process 

signals. In industrial practice, spikes are often induced in the sensors and the long 

leads from the sensors to the measuring equipment. The spikes may have a large 

influence on the identification results and therefore have to be removed.
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o T rend  C orrection : This is generally required as the measured process signals 

often show slow drifts or variations. In general, trends and drifts may a have a 

bad influence on the estimation results. They do not average out because of their 

low frequency behaviour and they will cause considerable bias of the model. This 

type of disturbance can be easily compensated for by simply applying feedback 

control. Hence, if the model is used for control design, there is no need to model 

this part of the signal.

0  D a ta  R eduction : The collected input and output signals may be reduced from 

8 to 4 signals. This is done by averaging the two measured diameters 1) & 2) and 

averaging the four measured wall thicknesses 3), 4), 5) & 6).

o D elay C orrection : This is required for model estimation in order to avoid iden

tifying relatively high-order models. The time delays can be compensated for by 

simply shifting the input and output signals relative to each other. One of the 

signals is used as a reference and the remaining signals are shifted in time in order 

to compensate the delays.

o D a ta  D ecim ation: This is the last step of the pre-processing stage and is also 

known as sample rate reduction. This step is necessary because redundancy has 

been built into the data by sampling faster than necessary. If there is noise energy 

in the high frequency band beyond the range of interest, the input and output 

signals are filtered with a low-pass Butterworth filter to cut it off.

7,4.2 Identification  E x p erim en ts  

S ta ircase  E x p erim en t

This type of experiment [118] is directed to test the range of linearity of the process, to 

find the static gains, and to have a rough estimation of the largest time constant. The 

estimate of the largest time constant is required to define the duration of an experiment 

directed to parameter estimation. Staircase test signals are applied to the selected 

process inputs. The time interval of one stair should allow the process to reach its 

steady-state.
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For the glass tube production process, a data set of 16200 samples (mandrel pressure) 

and 33200 samples (drawing speed) were collected. An oversampling ratio of 20 was 

chosen for data pre-processing. Figure 7.3 shows a staircase test at the mandrel pressure 

and drawing speed. Clearly, the control inputs of the mandrel pressure and drawing 

speed were changed with block shaped orthogonal test signals of various amplitude levels 

balanced around nominal levels. Each block was kept at a constant level for at least 3 

minutes with 2 or more amplitude levels both above and below the nominal level. The 

figure also shows the measured process outputs, average output diameter and average 

wall thickness. From these plots, it is clear that the glass tube production process 

behaves statically linear. Figure 7.4 shows the non-linear effects. In this figure, the 

steady-state values of the process, for each interval and input-output pair, are plotted 

with an asterisk. A Ist-order polynomial is fitted (solid line) to the measured steady- 

state values. Clearly, all the points can be approximately connected. Therefore, the 

system is approximately statically linear. The slopes of the plots are the estimated 

static gains listed in Table 7.2. The plus and minus signs stem from the physical nature

Mandrel pressure Drawing speed

Wall thickness -0.0229 -6.0477
Diameter 0.3112 -65

Table 7.2: Static Gains.

of the inputs and outputs: An increase in mandrel pressure will cause a decrease (-) in 

wall thickness and an increase (4-) in diameter; an increase in drawing speed will cause 

a decrease (-) in both wall thickness and diameter.

F ree-R u n  E x p erim en t

In this type of experiment [118] none of the inputs are activated. The process is simply 

running in open-loop. The outputs of the process should then be measured over a long 

period of time until the statistical properties of the measured output signals show no 

significant change. The main purpose of this experiment is to determine the standard 

deviations and the bounds of the noise on the measured inputs and outputs.
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Figure 7.3: Staircase Experiment.
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Figure 7.4: Static Non-linearity Test.

For the glass tube production process, measurements were taken of the average wall 

thickness and average output diameter without changing the drawing speed and man

drel pressure from their nominal values. The experiment covered about 45 minutes 

production time. This resulted in a data set of 15000 samples. An oversampling ratio 

of 10 was chosen for data pre-processing. Figure 7.5 shows the process input and out

put signals and the corresponding auto-correlation functions. Clearly, the measurement 

noise for the mandrel pressure is white, but the drawing speed is correlated. The peaks 

in this signal correspond to the rotation frequency of the measurement wheel. The 

auto-correlation functions of the wall thickness and diameter show the colouring of the 

output noise.

W hite N oise Experim ent

This experiment [1 1 8 ]  involves the application to the process inputs of a set of mutually 

independent Pseudo Random Binary Noise Sequence (PRBNS) test signals of proper 

length and high clock frequency. The length of the PRBNS test signal should at least
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be 5-10 times the largest time constant estimated from the staircase experiment.. The 

clock frequency is determined on the basis of the staircase signal responses. The am

plitudes of PRBNS signals are determined by the already estimated range of linearity 

for each input. The main purpose of this experiment serves for time delay estimation, 

model estimation, and model validation.

For the glass tube production process, PRBNS test signals were applied simultaneously 

to both the mandrel pressure and drawing speed. The experiment was planned to cover 

at least 45 minutes production time. This resulted in a data set of 15000 samples. 

An oversampling ratio of 10 was chosen for data pre-processing. Since the diameter 

sensors are located at different heights, the relative delay between the two diameter 

readings must be calculated before the average diameter signal is constructed. The 

time delay which corresponds to the peak value in the cross-correlation (Figure 7.6) 

between the North/South and East/W est diameter signals defines this relative delay. 

The wall thickness sensors are installed at the same height, so the relative delay between 

the sensors are almost negligible.

From this experiment, the next step is to estimate the process time delays. They are 

determined by computing the cross-correlations between all the input and output sig

nals as shown in Figure 7.6. The estimated process time delays are listed in Table 7.3. 

Finally, for model identification the first 700 samples were selected for the estimation 

data and the remaining data samples for the model validation. The input-output es

timation data has been scaled to unit standard deviation and is shown in Figure 7.7.

Mandrel pressure Drawing speed

Wall thickness 60 50

Diameter 30 20

Table 7.3: Time Delays (samples).
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7.5 M odel Estim ation and Validation

For model estimation, the integrated identification approach discussed in Section 7.3 

was followed. An initial model using the state-space approach was first calculated. The 

order of the model was selected based on the singular value decomposition of block 

Hankel matrices which can be built from the process input-output signals [81]. This 

is clearly shown in Figure 7.8. The next step is to optimize the initial model using 

the minimal polynomial approach. One of the major requirements for this approach 

is that the process input-output data is scaled in such a way that the white noise 

sequences disturbing the process have equal variance [27]. In order to obtain a model 

which is suitable for controller design and to obtain a white prediction error, a Box- 

Jenkins model structure [60] has been adopted. A 6-th  order process model and a 2 -n d  

order noise model were selected. Figure 7.9 shows the computed auto-correlation of the 

prediction error for the process outputs. This clearly indicates that the prediction error 

is almost white, since it is almost completely within the confidence intervals.
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Standard deviation <7= <7,

Wall thickness 0.1820 0.1795

Diameter 0.1896 0.2069

Table 7.4: Model Validation.

For model validation, the prediction errors for both data sets, estimation and validation 

are shown in Figure 7.10. The prediction errors have been scaled to a normalized 

value by dividing by the standard deviation of the corresponding output. The standard 

deviations of these normalized prediction errors for both the estimation (o-g) and the 

validation ((r«) data set are listed in Table 7.4. This validation using an independent data 

set shows very clearly that a good accurate model of the glass tube production process 

has been obtained in the defined operating point. Another indication of the model 

accuracy is shown is Figure 7.11, where the cross-correlations between the prediction 

errors and the process inputs are computed. It is clear from this figure that no clear 

correlation is present.

Finally, a further indication of the model accuracy is shown in Figure 7.12. In this figure 

the magnitude plots of the process model are compared with the estimated spectra of 

the process input-output data for each transfer. The 6 -th order process model can 

accurately describe the dynamical behaviour of the glass tube production process. This 

minimal polynomial model of order n =  6 can then be converted into a state-space 

representation of order n.m in(nu,ny), where nu and ny are the number of process 

inputs and outputs, respectively. To realize the smallest possible state-space system, a 

controller canonical form is selected [118]. A 12-th order state-space model was obtained 

for Measures 1 & 2, and an 8 -th order model for Measure 3. The singular values for all 

measures are shown in Figure 7.13.
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7.6 Summary

In this chapter, the principle of advanced multivariable process identification was briefly 

introduced and applied to an industrial glass tube production process. The problem of 

experiment design together with the principle of data pre-treatment were discussed and 

shown to be the most crucial steps towards extracting good and reliable information 

about the process dynamics, and towards repairing the data so as to avoid the problems 

of high frequency disturbances, spikes and outliers, low frequency disturbances such as 

drifts and offsets, and the numerical values of different inputs and outputs which are 

not in the same order of magnitude in the model estimation and validation steps. In the 

next chapter the identified models will be used for the design of robust IMC controllers.



C h ap ter  8

A p p ly in g  R ob u st IM C  C ontrol to  a  G lass T ube  

P r o d u c tio n  P ro cess

8.1 Introduction

Robust control system design is receiving considerable attention in the process industry 

due to the growing demands on the high quality of products and on the ease of flexibility 

towards changeovers. The old strategies based on classical control have proven to be 

inadequate for multivariable process control where a high degree of interaction exists 

between the inputs and outputs. Scalar techniques are only useful for primary single

input single-output (SISO) control, and hence more advanced control methodologies are 

necessary. In addition to the latter, novel control schemes are also being studied. The 

IMC scheme is the most popular scheme (over the classical feedback structure) in the 

process industry and the advantages of such a scheme were justified in Chapter 5.

The aim of this chapter is to demonstrate, on the basis of the different models derived 

from advanced multivariable identification, that a well performing and industrially ap

plicable robust MIMO control system can be designed. The MIMO industrial process 

control problem will be the shaping part of the glass tube production process of which 

the description and the identification of this process has been discussed in Chapter 7. 

A mixture of time domain performance specifications and robust stability specifications 

are desired to be met. In order to satisfy both requirements, the 2-DOF IMC approach 

formulated in Chapter 5, together with the method of inequalities (MOI) discussed in 

Chapter 4, is applied. Both Type 1 and Type 2 controllers will be designed for three
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operating points.

Notable attempts for designing controllers for the glass tube production problem can be 

found in [6, 81, 44]. In [6], Type 1 IMC controllers were designed via linear quadratic- 

implicit model following control (a model reference type of control system) as discussed 

in Chapter 5, but the controllers were designed for tube sizes (measures) that differ from 

the present ones. In [81], Type 1 multivariable PID controllers were designed. The FID 

parameters were tuned using a multi-objective optimization tuning algorithm that can 

provide a solution when different measures of quality are considered simultaneously and 

trade-offs are inevitable; however, this design approach failed to synthesize a satisfactory 

PID controller for large measures (3rd operating point). In [44], a Type 1 (1-DOF) 'H°° 

controller was designed based on the normalized right coprime factor design procedure 

proposed by [62].

The organization of this chapter is as follows. In Section 8.2 a detailed design study 

of the glass tube production process will be presented. Section 8.3 motivates the pro

posed control system design approach by comparing it with the results obtained from 

the present control system proposed in [6]. Section 8.4 outlines the controller design 

procedure used to synthesize the controllers. Section 8.5 presents the simulation results 

obtained from the proposed control system. Finally, a summary is given in Section 8.6.

8.2 Glass Tube Design Study

8.2.1 A n Overview o f the Control Problem

Each furnace in the glass tube production process is equipped with a MIMO control 

device which is used for controlling the wall thickness and external diameter of tubes. 

When these glass tubes are used in the production of gas-discharge lamps, the internal 

diameter is very important since the volume of gas to be filled in the lamp very much 

determines the characteristics of the lamp.

It is not possible to measure the internal diameter directly. Two external diameter 

sensors placed vertically on top of each other and four wall thickness sensors each 

displaced by 90 degrees with respect to each other are used for measuring the dimensions
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of the glass tube. It is possible to deduce the internal diameter from the average of two 

external diameters and the average of four wall thicknesses. This process takes account 

of the fact that it is not possible for these dimensions to be measured at the same time.

The glass tube production process is presently used for the production of well over 

300 different product types. Specifications of these products differ quite significantly 

and some of these products have to meet stringent specifications, which are beyond 

the limits of what can be realized at present. The specifications are on the external 

diameter and on the wall thickness of the tubes. Currently, the whole range of products 

is produced with a few very robust IMC schemes. These control systems do not perform 

well enough to enable production of the new products with narrow tolerances. High 

performance control systems have to be designed to enable production of these new 

products; however, these newly designed control systems have to be sufficiently robust 

to cope with model inaccuracies encountered over production runs.

The objective of this case study is to design and test three IMC controllers for control

ling the average external diameter and the average wall thickness for tubes with three 

different measures which are used for the production of gas-discharge lamps.

8.2.2 O pen-L oop A nalysis o f th e  P rocess

As discussed in Chapter 7, a PRBNS experiment has been carried out on the production 

process in order to obtain the required data for system identification. After performing 

some preliminary signal processing on the raw data, the desired output signals, average 

wall thickness and average external diameter, were constructed. The pre-processed data 

has then been used to estimate linear discrete-time state-space models of the process 

at three desired operating points using advanced multivariable identification, where 

a nominal model was identified for each operating point, mainly by using the Minimal 

Polynomial approach (MPI). Other models were also identified using the Subspace State- 

Space approach (N4SID), and the Robust Control Oriented approach (ROOM). Two 

extra models were identified for each operating point using N4SID. Table 8.1 lists the 

information needed regarding the state-space models. Figures 8.1-8.4 show the open- 

loop step responses of the outputs and the frequency response characteristics for all
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Figure 8.3: Open-loop frequency response characteristics.
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Order of State-Space Models

Identification Measure 1 Measure 2 Measure 3

Approach No With No With No With

Delays Delays Delays Delays Delays Delays

MPI 12 24 12 27 8 49

N4SID 10 20 7 22 3 44

ROOM 22 32 18 33 18 59

Table 8.1: Model Information.

three measures. The time responses are pre-multiplied with the inverse steady-state. 

These responses clearly indicate that overshoot, oscillatory characteristics, and high 

coupling have to be eliminated.

One important commonly used index of plant controllability is the condition number 

Ka, which is the ratio of the largest to the smallest singular value. It is a measure 

of the relative difference between the strength and weaknesses of the system [15]. In 

terms of the process control problem, a large condition number indicates that it will be 

impractical, if not possible, to satisfy the entire set of control objectives, regardless of the 

control method used. In the physical sense, the condition number represents the ratio of 

the maximum and minimum open-loop decoupled gains of the system. A large condition 

number indicates that the relative sensitivity of the various multivariable dimensions 

is quite different. From a practical point of view, it means that at least one direction, 

in terms of all the sensors, is either too weak or too strong to be effectively controlled. 

Applying a multivariable control strategy that attempts to control the system in the 

direction of poor sensitivity may well result in a multivariable performance that is 

unsatisfactory even in those directions in which the sensitivity is good.

The condition numbers for the glass tube production process are listed in Table 8.2. 

These numbers show, on a relative basis, how much more difficult it will be to control the 

tube dimensions at the 3rd operating point than it would be to control the dimensions 

at operating points 1 & 2. However, it is difficult to assign condition numbers that 

separate the well behaved process from the poorly behaved process and the difficult to
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Measure Ka

1 20.987

2 46.317

3 451.218

Table 8.2: Process Condition Number.

control process from the impossible to control process. A process might have a good 

condition number but have singular values too low or too high for good control.

The dynamics of the process are also very important in determining the ultimate diffi

culty of controlling a multivariable system. In [15] it has been noted that if a process has 

very well behaved dynamics and little noise in the sensor signals, it might be practical to 

attempt to control the system with a high condition number. If, on the other hand, the 

dynamics are poor (i.e. significant time delays), it might not be possible to successfully 

control the process with a low condition number. In general, the magnitude of the con

dition number cannot be used to make a final judgement on the multivariable problem, 

but it is a good first-pass screening. If the process characteristics are poorly behaved 

at steady-state, the situation is likely to get worse as other aspects of the problem are 

considered.

It is clear from Table 8.1 that the time delays have a relatively strong effect on the 

dynamics of the process, especially at the 3rd operating point. This can exert severe 

limitations on the so-called dynamic resilience, which is defined in [46] as: the quality of 

the regulatory and the servo behaviour which can be obtained for a plant (i.e. the final 

closed-loop performance). For a MIMO process, the analyses of dynamic resilience on 

the basis of time delays is not at all obvious. This is because not only the magnitudes 

of the time delays are important, but also their distribution within the transfer function 

matrix. Table 8.3 lists the time delays of each element of the transfer function matrix for 

the glass tube production process, where MP and DS are the process inputs (Mandrel 

Pressure and Drawing Speed), WT and CD are the process outputs (Wall thickness and 

Outer Diameter).

It was shown in [46] that the IMC scheme is very useful for the analysis of dynamic
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Tube Measure

1 2 3

MP DS MP DS MP DS

WT 10 8 20 18 S2 50

OD 6 4 12 10 26 24

Table 8.3: Process Time Delays (in seconds).

resilience. As shown in Chapter 5, the input and output transfer function in the absence 

of plant/model mismatch is given by

Vpk — GpQrk + {I — GmQ)dk (8.1)

where perfect control can be achieved by selecting Q{z) = Gp(z)"^. However, perfect 

control cannot be achieved if

1) Gp(z) contains time delays, and/or

2) Gp(z) contains transmission zeros outside the unit circle.

Even in the absence of those problems, it is undesirable to select the perfect controller 

since

1) its use may result in rippling behaviour of the control signals, resulting in

output oscillations owing to the presence of transmission zeros of Gp{z) close

to the unit circle, and

2) a system equipped with a perfect controller is very sensitive to modelling 

errors.

To overcome the difficulties associated with perfect control, the approach that may be 

adopted [33] is to split the process transfer function matrix into two parts according to 

the factorization

Gp(z) =  G+(z)G_(z) (8.2)



Chapter 8. Applying Robust IMC Control to a Glass Tube Production Process 189

where accommodates any time delays such that is realizable. If G-{z)~^

is also stable, then Q(z) is selected according to Q{z)  =  If Gp{z)  contains

transmission zeros outside the unit circle, then will not be stable, in which case

a further factorization will have to be carried out.

To determine G+{z),  the multiple time delays must be factored out [46]. When the 

transfer function matrix contains unequal time delays, a diagonal factorization matrix 

G+(z) may be selected according to

G+(z)= diag (8.3)

with

Tj = m ax m ^(0 ,f{ j) , j  =  1, ... , r  (8.4)

where z^*>+^g',j(z) are elements of the process inverse matrix Gp(z)“  ̂ such that fl'ÿ(z) are 

semi-proper. A ratio of polynomials gij{z) that is semi-proper in z is one in which the 

order of the numerator gij(z)  is less than or equal to the order of its denominator. For 

the glass tube production process problem, the 3rd operating point will be considered 

as an illustrative example. Let Gp(z)  be given by

Gp(z)
'gn(z)

The inverse of (8.5) is 

Gp(z)"^ =

Thus,

^ll(z)ÿM(z) -  ^12(z)g2l(z)
z^922(z) -Z^^9l2(z)

- z ^ ÿ 2 i(z) z"ÿn(z)

(8.6)

(8.6)

fil =  25, fi2 =  12, fgi =  24, T2 2  =  11 

Ti =  max [max(0,25), max(0,24)] =  25 

T2 =  max [max(0,12), max(0,11)] =  12

and

G+(z) (8.7)
Z -"  0

0 z ^ ^
The significance of this result is that for a dynamically decoupled output the best re

sponse that can be achieved for the closed-loop system, no matter what type of controller 

is used, will have a time delay of 25 samples (50 seconds) in the wall thickness and 12 

samples (24 seconds) in the diameter.
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8.2.3 D esign Specifications

The aim of the 2-DOF IMC design approach is to produce a controller (of two parts) 

which will meet typical robust performance and robust stability specifications on the 

basis of a nominal model taken from a bank of models around the same operating 

point. The time-domain specification is given in terms of a step response requirement 

and translated into a set of inequalities which must be met by the controller for all the 

models. It is required that the process signals satisfy the following constraints:

1) Closed-loop stability.

2) The wall thickness to a step demand r(t) (t-minutes)
0.2

0
satisfies

Measure |«l(f),U2(f)|

1 < 0.2, Vf >  0.18, Vf >  1.10 < 0.08, Vf <20

2 < 0.2, Vf > 0.18, Vf >  1.80 < 0.08, Vf < 30

3 < 0 j ,  W >  0.18, Vf >  2.50 < 0.08, Vf < 70

3) The diameter to a step demand r(t)
0

1.0
satisfies

Measure |ui(i),U3(f)|

1 <OjTVf < 1.0, Vf > 0.90, Vf >  1.10 < 2

2 <04ÜVf < 1.0, Vf > 0.90, Vf > 1.80 < 3 ^

3 <OjÜVf <  1.0, Vf > 0.90, Vf >  2.60 < 13

The main design objectives to be achieved by the IMC controller can be stated as 

follows:

1) The designed IMC based-control system has to be robustly stabilizable with 

respect to model inaccuracies encountered over production runs, that is about 

the desired and slightly different operating points.
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2) Good product changeover properties. Changeover should be realized within 

a pre-defined time without excessive overshoot and undershoot, that is the 

process outputs (diameter and wall thickness) should follow step command 

inputs of the controlled process to a specified accuracy. Zero steady-state 

error and low interaction is also desired.

3) Good disturbance rejection properties in the sense that a trade-off between 

maximum bandwidth and amplification of the noise outside the bandwidth is 

desired, and good rejection of slow trends at very low frequencies where Type 

2 control is required.

4) The control signals should be within reasonable limits and should be as smooth 

as possible. Fast variations in these signals are undesirable.

8.3 A Comparison w ith the Existing Control System

The purpose of this section is to compare the IMC design methods discussed in Chapter 

5 (Section 5.3 and Section 5.5). The design methods will be applied to the glass tube 

production process. It will be demonstrated that the design method of Chapter 5 

(Section 5.5) produces IMC controllers which give better robust performance.

In December 1989, the various identification experiments discussed in Chapter 7 were 

performed on the production process at two different operating points (Measure 1 and 

Measure 2), resulting in linear discrete-time state-space models. A multivariable iden

tification approach formulated by [6] was used to identify the state-space models. The 

nominal model was chosen from Measure 1. Philips used the design approach of Chapter 

5 (Section 5.3) to  synthesize an IMC controller, whereas the new IMC controller was 

synthesized using the design approach of Chapter 5 (Section 5.5). In both designs the 

same nominal model was used. Figures 8.5-S.6 demonstrate the nominal and robust 

performance of the Philips’ controller. They show the closed-loop output responses to a 

set-point change of 0.2 from 0 —» 13 minutes, in wall thickness, and a set-point change of 

1.0 from 13 25 minutes, in diameter. The nominal and perturbed closed-loop systems

are stable. For a set-point change in wall thickness, there is 55% interaction in diameter
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for the nominal case. For the perturbed case, there is 55% interaction with regards 

to Measure 1, and over a 100% interaction with regards to Measure 2. Figures 8.7-8.8 

demonstrate the nominal and robust performance of the new controller. The nominal 

and perturbed closed-loop systems are stable. For a set-point change in wall thickness, 

there is at least 10% interaction in diameter for the nominal case. For the perturbed 

case, there is 15% interaction with regards to Measure 1, and 70% interaction with 

regards to Measure 2. For a set-point change in diameter, the interaction on the wall 

thickness for both, the nominal case and the perturbed case, with regards to Measures 1 

& 2 and with both controllers, is small. The new controller clearly demonstrates better 

robust performance.

In July 1992, new identification experiments were carried out on the same process. The 

Isf operating point slightly differs from the 1st operating point of the 1989 process. 

So, to further test the robust performance of the control system, both IMC controllers 

were tested on the new identified models. Figures 8.9-8.10 demonstrate the robust 

performance of the Philips’ controller. The perturbed closed-loop systems are stable. 

For a set-point change in wall thickness, the amount of interaction in diameter ranges 

from 30% to 90%. Figures 8.11-8.12 demonstrate the nominal and robust performance 

of the new controller. The perturbed closed-loop systems are stable. For a set-point 

change in wall thickness, the amount of interaction in diameter ranges from 10% to 

40%. For a set-point change in diameter, the interaction on the wall thickness with 

both controllers, is small. Again, the new controller clearly demonstrates better robust 

performance. Figures 8.13-8.14 give the corresponding control requirements for the set- 

point changes. The magnitudes of the control signals are all within acceptable limits. 

It is clear that the new IMC controller produces non-aggressive control signals and low 

gain at high frequencies.

Plots of the sensitivity and complementary sensitivity are shown in Figures 8.15-8.16. 

As would be expected, the new IMC controller performs well here. Figure 8.17 shows 

that the new IMC controller is much more robust to the presence of high frequency 

additive and output multiplicative uncertainties than the Philips’ IMC controller.
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8.4 Controller Design Procedure

In this section we present the design procedure followed to synthesize the Type 1 & 2 

IMC controllers.

Problem

For the system of Figure 8.18, find a (Wi, W2 ) such that

(8.8)

(8.9)

for i =  1,2, ...,10 ; =  1,2,..., 5 (8.10)

where plants Gp- are the perturbed models shown in Figure 8.18, and (Wi, W2 ) are the 

loop-shaping weights with real parameters =  (w i,^;,...,^ ;,), also shown in Figure 

8.18. The functionals defined in (8.10) are defined based on the design specifications 

given in Section 8.2; that is the functionals (f>i to ^ 1 0  on the measures of the step response 

specifications on both the process measured outputs and control signals. The design

Final 2-DOF IMC ControHer

Figure 8.18: 2-DOF IMC Controller Implementation.

procedure comprises of the following main steps:

1) Define the nominal model Gm, the perturbed models G,^ , and the functionals
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2) Define the values Cŷ , and

3) Select the structure and order of the loop-shaping weights (Wi, W2) for the 

open-loop process Gm- Bounds should be placed on the parameters w} to 

ensure that (Wi, W2) are stable and minimum phase. Analyzing the singular 

values of the open-loop process Gm indicated the need for higher low firequency 

gain to achieve good tracking and disturbance rejection at these firequencies. 

The weighting function Wi shall thus contain integral action. A stable approx

imation of an integrator is chosen due to the stability condition of the IMC 

scheme. Extra poles are introduced to reduce the roll-off rate at the cross

over frequency. The desired (Wi, W2) in Figure 8.18 were given the following 

structure

Wi
r wl 

(s+U)|)(s+tu| ) 0
, W 2 =

0  '

0
id

(s+«;|)(s+tu|) J 0

For Type 2 control W\ was augmented with double integral action, (stable 

approximations thereof) and the desired (Wi, W2 ) in Figure 8.18 for Type 2 

control were given the following structure
r ti/Ks+wj) 0 0

Wi =
(s+u/|)(s+ti;J )(s+«;| ) 

0
, W: =

0(s+tü|)(s+u;|)(s+i<;|(,) j ( ^ , )  J
The zero in W\ is chosen to moderate the effect of the double integrator. Both 

weighting functions are selected in continuous-time and then discretized, using 

the bilinear transformation described in Chapter 4, before cascading it with 

the discrete process model.

4) A desired reference model Mo is selected for the closed-loop system. Again 

the reference model is selected in continuous-time as
0

Mo (ts+1) 
0 TS+l) .

The controlled outputs are thus desired to behave as simple first-order lags 

with no interaction. The reference model was discretized using ZOH, and the 

state-space realization of the generalized plant constructed.

5) The MBP, described in Chapter 4, is then implemented in conjunction with 

(3.55), (5.100), and (5.102) to find a (Wi, W2) which satisfies inequalities (8.8),
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(8.9) and (8.10). If a solution is found, the design is satisfactory. If no solution 

is found, either the order of the weighting functions is increased, one or more 

of the bounds and e, increased, or the process is repeated with different

initial values of w^.

6) The IMC controller Q =  [Q% Qa] is cascaded with the weights (W i,# 2) 

forming the final 2-DOF IMC controller

The pre-filter WiQi is then scaled to achieve perfect steady-state model match- 

ing.

O u tp u t
Delays

R obustness
Filter

Integrator

Figure 8.19: An IMC Type 2 Control Scheme.

The present IMC Type 2 control scheme is shown in Figure 8.19. The integrator block is 

explicitly included to provide Type 2 control so that when a slow trend disturbance (i.e.
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a slow ramp type disturbance) occurs at dk, the time constant of the explicit integrator 

is tuned until the trend is completely rejected. The main disadvantage of such a scheme 

is that the tracking performance will be degraded, and the only way to avoid this is to 

make sure that there are no set-point changes occurring during the rejection of the slow 

trend.

Since the Type 1 IMC controller was designed based on a nominal model excluding 

time delays, the block labelled “output delays” was tuned to match the delays of the 

real process. This had the advantage of designing IMC controllers with no delays in 

the nominal model, provided the time delays are not dominant. For the glass tube 

production process it was possible, for Measure 1 and Measure 2, to use a nominal model 

excluding time delays to design a 2-DOF IMC controller. An “output delay” block was 

augmented with the nominal model Gm shown in Figure 8.18 and was successfully timed 

to maintain robust stability and good performance. Since the time delays for Measure 

3 were very dominant, the scheme of Figure 8.18 went unstable.

8.5 Sim ulation Results

A set of closed-loop performance functionals

^i(Gp^,Gm,W,Q), * =  1,2,...,10, i  =  l,2 ,... ,5  (8.11)

are defined based on the design specifications given in Section 8 .2 . Functionals to ^lo 

are measures of the step response specifications. Functionals and <f>s are measures of 

the overshoot; (f>2 and are measures of rise time; ^4 , ^ 5 , 4>s and ^ 1 0  are measures of 

the control signal; and <f>z and are measures of the interaction. Denoting the process 

outputs and control signals of the closed-loop system with a plant Gp at a time t to a 

reference step command r ( t )  by ([ n  r ;  ]', and ([ n  rg  ]', respectively, for 

* =  1,2. The step response functionals are

= m ^ y i ( [ 0 .2  0 ] , t )  (812)

<^3 =  - r ^  1/1 ([0.2 (8.13)

<^3 =  m ^ ya([0 .2  0 ]',t) (8.14)

<^4 =  m ^ |u i([0 .2  (8.15)
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^5 =  meoc |u2 1jO.2 0] ,t) | (8.16)

=  mæcyi ( 0 1 .0]',t) (8.17)

^7 =  — min y2t>tr ([0 (8.18)

=  max J/2 ( 0 1 .0]',t) (8.19)

=  mæc |«i 1)o  1.0]', t ) | (8.20)

<f>10 =  max \u2 1 1.0 ]',t ) | (8.21)

The performance was calculated from linear time-invariant closed-loop responses for the

perturbed plants Gpj, all including time delays. The controller was synthesized using a 

desired nominal model Gm. (with delays). The aim was to find design parameters which 

satisfied the inequalities for all perturbed plants.

8.5.1 M easu re  1

The weighting functions and the desired reference model used to form the final Type 1

controller are given by
1.5

( s + 1 0 - 6 ) ( s + 2 0 )

0

0
0.5

15 0 ■

, 1^2 =
0 1.5 (16s + 1 ) '

( s + 1 0 -« ) ( s + 3 0 )  J
For the final Type 2 controller, the weighting functions and the desired reference model 

used are given by
r i .5(s+io-2) 0

0 .5 (s + 10 - 2)

r i5f«+o.i) 0
1 .5 (s+ 0 .1 )

Wi = ( s + 1 0 -6 )2 ( s + 2 0 )

0
(«+!)

0( s+ 1 0 -6 )2 ( s + 3 0 )  J ( s+ 1 )  J
(25s +  1)'

The results of the time response simulations are shown in Figures 8.20-8.21. The Type

1 design met the performance specifications given in Section 8.2; however, the Type

2 design almost met all the specifications. The settling time was slightly slower. The 

sensitivity functions of both designs are shown in Figure 8.21.

8.5.2 M easu re  2

The weighting functions and the desired reference model used to form the final Type 1 

controller are given by
3.5 0 

0.58
(s + 10 - 6)(s + 45 ) j

13 0

0 1.077
, Mo =

(20s 4-1)'
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For the final Type 2 controller, the weighting functions and the desired reference model 
used are given by

Wi =
3 .5 (s+ lQ -^ >

0 0.58(s+10-Z) 
(#+10 )̂'(,+43%

r 1 3 ( ,+ 0 .1 )  
(*+1)

0

0
1.077(8+0.1)

(*+1)
5 Mo - (33a+1)

The results of the time response simulations are shown in Figures 8.22-8.23. The Type 

1 design met almost all the performance specifications. The interaction was slightly 

exceeded. The Type 2 design didn’t  meet all the specifications. The rise and settling 

times were slower, and the interaction was slightly exceeded. The sensitivity functions 

of both designs are shown in Figure 8.23.

8.5.3 M easu re  3

The weighting functions and the desired reference model used to form the final Type 1 

controller are given by

.13------  0
Wi = ( s + 1 0 - 6 ) ( s + 2 0 )

0 0.62
(,+10- 4)(*+45) J

’7 0

0 1.072
, M ,=

1
(40a + 1 )

For the final Type 2 controller, the weighting functions and the desired reference model 

used are given by

Wi =
1 8 (5 + 1 0 -^ )

(8+10-̂ )̂ (g+20)
0 0 .6 2 (8 + 1 0 -^ )  

(8+10-®)-^ (8+45)

7(,+0 .1)
(«+!)

0

0
1.072(8+0 .1)
" ( ^ 1 )

, Mo = (58a 4-1)

The results of the time response simulations are shown in Figures 8.24-8.25. The Type 1 

and Type 2 designs met almost all the performance specifications. The interaction was 

slightly exceeded, and the rise and settling times were slightly slower. The sensitivity 

functions of both designs are shown in Figures 8.25.

Information regarding the orders of the final Type 1 and Type 2 IMC controllers for 

all tube measures are tabulated in Table 8.4. Using the model reduction approach of 

Chapter 6, lower-order controllers were obtained with performance indistinguishable 

from the high-order controllers. Figures 8.26-8.28 show the process output responses 

due to a slow trend disturbance for all measures.
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Tube

Measure

Order of 2-DOF IMC Controllers

Type 1 Type 2

High-order Low-order High-order Low-order

1 58 15 66 20

2 64 15 72 20

3 108 18 116 20

Table 8.4: Controller Information.

The IMC controllers were also validated on their ability to suppress noise. The noise 

sequence was extracted from the freerun experiment described in Chapter 7. This 

noise sequence was then fed to the sensitivity function. The results for small measures 

(Measure 1) and large measures (Measure 3) are summarized in Table 8.5. The first two 

columns show the standard deviation of the noise in closed-loop. The last two columns 

contain the percentage improvement. The noise level for the open-loop process was 

0.0058 mm for the wall thickness (WT) and 0.0508 mm for the diameter (D). Figures 

8.30 and 8.31 show the output responses of the process (due to the noise sequence) for 

Measures 1 & 3. The solid line represents the open-loop response and the dashed line 

represents the closed-loop response.

Tube

Measure

Noise Level Improvement

WT (mm) D (mm) WT(%) D(%)

1 0.0041 0.0177 29 65

3 0.0056 0.0309 3 39

Table 8.5: Noise Suppression.
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8 .6  S u m m a r y

In this chapter 2-DOF IMC controllers have been designed for the glass tube produc

tion process at 3 different operating points.The IMC controller configuration considered 

appears to provide satisfactory designs for the production process. It is believed that 

the framework possesses desirable properties, yielding potentially good levels of perfor

mance. The combination of the 2-DOF IMC approach with the method of inequalities 

for formulating realistic problems to design explicitly for closed-loop performance and 

robust stability, is seen to provide a more flexible design procedure.

Significant low frequency trends had to be attenuated drastically, while some signifi

cant disturbances were present just outside the attainable bandwidth of the closed-loop 

system. Based on this knowledge. Type 1 and Type 2 controllers were designed. The 

Type 2 controller rejected the low frequency trends without excessive noise amplifica

tion outside the bandwidth; however, this controller was more sensitive to model errors 

compared to the Type 1 controller.

For all measures, the closed-loop responses from wall thickness set-point to diameter 

output were extremely sensitive to model errors. This can be understood from the rela

tive large difference in gain between the diameter and the wall thickness in combination 

with the decreasing influence of the mandrel pressure on the process outputs. For Mea

sure 3, problems have been encountered in the controller design because of the large time 

delays and of the large interaction between the wall thickness and the diameter. For 

Measure 1, the designed controller was also implemented on the models from Measure 

2 with a large loss of performance in the interaction between the wall thickness and the 

diameter as shown in Figure 8.29. This was mainly due to the sensitivity of the process 

static gains when operating over a larger production range. Finally, their was no need 

to augment the final IMC controllers with a low-pass filter, as discussed in Chapter 5, 

in order to find a compromise between robustness and dynamic performance.



C h ap ter  9 

A  R o b u st D e sig n  A p proach  to  In tegra ted  C ontrols  

and  D ia g n o stic s

9.1 Introduction

This chapter is concerned with the design of integrated control and diagnostic systems. 

The four degrees-of-freedom (4-DOF) controller configuration will be introduced as a 

framework for addressing some interaction issues between a control system (control 

module) and a failure detection system (diagnostic module). This approach was first 

proposed in [77]. A robust control framework will be developed which will enable the 

design of an integrated control-diagnostic 4-DOF controller having both control and 

actuator failure detection capabilities.

In addition to robust stability of a system in the face of model uncertainty, robustness to 

loop failures which is sometimes called the integrity of the system, is also an important 

property of a multivariable feedback design. Also, the detection of failures is the subject 

of increased development because of the increasing demands on reliability and safety. 

An integrated approach to controls and diagnostics via the 4-DOF controller has been 

formulated in [77]. This controller has 2-vector inputs, 2-vector outputs and 4-matrix 

parameters. The additional controller output can be used to detect sensor and actuator 

failures, thereby providing the controller with diagnostic capabilities, in addition to its 

control capabilities. So, in this approach, the control and diagnostic modules of a reliable 

control system are designed together, instead of independently, thereby accounting for 

the interactions which occur between these two modules.
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In the design of a Reliable Control System, two separate system modules are usually 

considered and designed independently: The Control Module and the Diagnostic Mod

ule. The fundamental problem with this approach is that the interactions which occur 

between these two modules are not accounted for, which may lead to the following 

disadvantages [77]:

1) A Diagnostic Module designed for an uncontrolled plant may not perform 

satisfactorily with the controlled plant.

2) A Diagnostic Module designed for a controlled plant may not perform sat

isfactorily due to inherent limitations imposed on the achievable diagnostic 

performance during the design of the control module.

To appreciate the undesirable effects of interaction between the control and diagnostic 

modules, consider the block diagram depicted in Figure 9.1, where the transfer func

tion matrices G, K,  and F  are representative of the Plant, Control Module, and the 

Diagnostic Module, respectively. The objectives of this control system are to:

Figure 9.1: A Hypothetical Control System.

1) Control the plant.

2) Diagnose sensor failures.
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(1) is talcen to mean the tracking of references and rejection of the disturbance dk 

at the plant output yk, and (2) is taken to mean the tracking, or identification of, the 

sensor failures fk at the diagnostic output. With Tab denoting the transfer function 

matrix from signal to signal bk, (1) and (2) require, respectively, that %y — I  and 

Tdy,  and T f z  — I  be small in an appropriate sense. However, since T f z  = F .Tdy ,  these 

objectives are clearly seen to be in conflict with one another. Also, since Tfy =  Tdy — I, 

achievement of the control objective may actually increase the critical nature of the 

diagnostic objective relative to the overall objective of reliable control, thus revealing 

the presence of interactions between the Control and Diagnostic Modules. Hence, the 

integrated design of the Control and Diagnostic Modules is necessary to achieve overall 

satisfactory control-diagnostic performance.

Notable attempts at formulating different synthesis methods for this control-diagnostic 

problem can be found in [77, 25, 98]. [77] proposes a four step design procedure where 

each controller parameter is synthesized independently. [25] introduces a design method 

whereby a nominal control module is synthesized with robust stability in an C°° frame

work, and then designs the diagnostic module on the resultant closed-loop. Finally, [98] 

proposes a single step design procedure for synthesizing the 4-DOF controller. They 

employ the results from 7i°° and yU-synthesis for the design of integrated control and 

diagnostic systems with the following properties:

1) The plant output signal tracks reference commands and is insensitive to actu

ator failures.

2) The diagnostic output signal is large only when an actuator failure has oc

curred.

3) Properties (1) and (2) hold in the presence of a bounded uncertainty.

The aim of this chapter is to introduce and formulate a systematic approach towards 

the synthesis of the 4-DOF controller that guarantees some level of robust control and 

diagnostic performance in the face of uncertainty by employing the results of 

optimization with the following main properties:
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1) The plant output signal tracks reference commands and is insensitive to actu

ator failures.

2) The diagnostic output signal tracks actuator failures (abrupt and slow ramp 

type failures) as suggested by [77].

3) Properties (1) and (2) hold in the presence of a bounded coprime factor un

certainty.

The organization of this chapter is as follows. In Section 9.2, different types of actu

ator and sensor failure models are introduced. Section 9.3 formulates the control and 

diagnostic design objectives by introducing and motivating the 4-DOF controller. Sec

tion 9.4 shows how the 4-DOF controller can simply be a special case of the standard 

regulator framework and how its parameterization is compatible with that of the Youla 

parameterization. Section 9.5 shows that by using the results from T f -optimal control, 

an optimal control module and an optimal diagnostic module can be designed separately. 

Section 9.6 formulates a design procedure for the integrated control and diagnostic. A 

suboptimal 4-DOF controller is synthesized in a single step approach via robust H°° 

control using a normalized coprime factor plant description. A design example will be 

presented to support the design approach. Finally, a summary will be given in Section 

9.7.

9 .2  T y p es  o f  Failure M o d els

Two general classes of failures are considered here: actuator and sensor failures. It 

is thought that it is possible to model the failure of actuators and sensors as additive 

signals appearing at appropriate places in the model. Consider the plant depicted in 

Figure 9.2.

9.2.1 A ctuator Failure

Let Udk be the ideal output of the actuator when no failures are present, that is u =  «fc. 

Let Uk represent the actual output of the actuator. Then

ttk =  -I- dk (9.1)
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actuator 
error

sensor
error

PLA N T O

Figure 9.2: System with Sensor and Actuator Failure Models.

where Ok is the actuator error; it is a time-varying vector with elements By ap

propriate choice of one can capture various failure modes of the i-th channel of 

the actuator. For example, if the i-th actuator freezes at its zero position, producing 

no output at all, then Oi* =  — ; if there is a bias 6,,̂ , that is a drift in the correct 

output, then a,-̂  =  6,-̂ . Two types of bias failure may occur, a step failure or a ramp 

type failure. Another type of failure occurs when the %th actuator is stuck at a constant 

value It). ; then . Multiple failures can be captured in the above setting by

specifying several elements of Cfc to be non-zero.

9.2.2 Sensor Failure

Sensor failures are modelled in the same way. Let and yk represent the sensor ideal 

or true output and the actual output, respectively. Then

=  %/d* +  St (9.2)

where s t is the sensor error; it is a time-varying vector with elements representing 

sensor failures. Complete failure of the i-th sensor can be modeled by setting 5,-̂  =  —u* , 

bias failures 6,̂  by setting , and failures where the sensor is stuck at a constant

value ki)̂  by setting — y^̂ .̂ Again, both single and multiple sensor failures can

be modeled using this formulation.

9 .3  C o n tro l  a n d  D ia g n o s tic  D e s ig n  O b je c tiv e s

Consider the following block diagram depicted in Figure 9.3. Any plant-controller inter-
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Signal
Definition Examples

e * Untilized plant output. Sensor,actuator,and process states.

Vpk Utilized p l a n t  output. Ideal sensor outputs.

Uk Manipulated plant input. Actuator inputs.

d t Unmanipulated plant input. Disturbances,initial conditions, m a n u a l  controls.

« d » Unutilized controller output. Controller states.

Ueh Utilized controller o u t p u t . I d e a l  actuator inputs.

% Manipulated controller input. Sensor outputs.

W e . Unmanipulated controller input. Commands,initial conditions, d i s t u r b a n c e s .

Exogenous inputs. Noise,interference, loading, etc.

Table 9.1: Signals.

connection can be represented in terms of this control system interconnection structure 

while preserving the distinction between the plant and the controller. Table 9.1 lists 

the definitions and the interpretations of the various signals [77].

A block diagram of the 4-DOF controller is illustrated in Figure 9.4. The 4-DOF

^21

^12 A-n

Figure 9.3: Control System Interconnection Structure with 4-DOF Controller.
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controller can be thought of as a control/diagnostic module; there are no restrictions 

imposed on the structure of this control and diagnostic module. In addition, with K  the 

2 x 2  block-matrix comprised of K u , K n , 1^21, and K 22, the 4-DOF controller depicted 

in Figure 9.4 can be viewed as an operator, represented by K , which maps commands 

and measurements into actuator commands and diagnostics. Since K u , K i2, K 21, and 

K 22 are unrestricted, K  is unrestricted, and thus the set-up is completely general. The 

roles of the various controller parameters are summerized in Table 9.2 [77].

Actuator
CommandsCommanda

M easurem ents
D iagnostics

Figure 9.4: The 4-DOF Controller.

In the block diagram depicted in Figure 9.3, will be used to detect sensor and/or 

actuator failures. These failures can be modelled using riâ  and in much the same 

way Hat, and are used to model sensor and actuator noise. The idea is to regard 

and Usi, as deviations from ideal sensor and actuator behaviour, respectively, where 

here ideal means unfailed and noiseless. To distinguish between noise and failures, we 

may write

(9.3)

and

— /sfc +  ^sk (9-4)

and deûne as failures and as noise. Let us consider the block diagram

depicted in Figure 9.5. The nominal system transfer function matrices in terms of K



Chapter 9. A  Robust Design Approach to Integrated Controls and Diagnostics 221

Parameters
Principal Roles

K 22 Determines the effects of uncertainties occurring in the form of 

plant modelling errors, noise, and disturbances. It also determines 

noise/disturbance rejection and robust stability characteristics, con

trol efforts, and both control and diagnostic sensitivities.

2Tii Determines nominal control/diagnostic interaction.

2C31 Determines control command following, nominal response character

istic, and control effort.

2Ti3 Determines nominal diagnostics in the absence of control.

Table 9.2: Roles of the Design Parameters.

Figure 9.5: Figure 9.3 Re-drawn.

can be easily derived, and they are given by

=  ( f  -  =  ( /  -  2%,^ =  - ( 2  -

2:,,, =  (2 -  G2ir23)-\ 2;,,., =  ATn +  ^ 1 2 (2  -  GfTg

2^130(2  -  2T32G ) - \  2 ; , . ,  =  2:13(2 -  0 2 :3 3 ) - ',  2 :k , =  2Ti3(2 -  0 2 :3 (9.6)
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The diagnostic objective is to mean follow, or identify fk at ed̂  where fk = ^  *

Implicit in this is the need to reject, or attenuate at all other system inputs and to 

account for plant modelhng errors. So, in the face of plant modelling errors, the aim 

is to achieve closed-loop stability, and also make -  2, 2^,^, 2̂ .»̂ , 2^*^, and 2̂ ,̂  

small in an appropriate sense.

The control objective is to mean follow, or track Wĉ  at the plant output with 

reasonable control effort Implicit in this objective is the need to reject rjâ , and dk 

at yp^, with reasonable Ufc. Since failures which can be satisfactorily compensated for by 

the control need not be diagnosed, and vice versa, the remaining system inputs, fa^, ,

are not considered in the control objective. So, in the face of plant modelling errors, the 

aim is to achieve closed-loop stability, and also make 2^,,, -  2, 2^%,, T„.„p, and 2k%, 

small, subject to the constraints on the size of 2^,*,, Tdu,, 2^.«,, and Tr,,u, • A multitude 

of inherent limitations and tradeoffs are clearly exposed in the above nominal system 

transfer function matrices. Those pertaining only to the control objective are discussed 

in [23], so the concentration will be on those pertaining to the diagnostic objective and 

control-diagnostic interaction. As an example, the following two remarks are stated 

[77]:

Rem ark 9.3.1 Since 2},,^ = Tn,ea =  Tde ,̂ simultaneous sensor failure diagnosis and 

disturbance rejection requires appropriate frequency shaping of this transfer function 

matrix to exploit differences in disturbance and sensor failure frequency content. Thus, 

sensor diagnostic performance and disturbance rejection performance must be traded 

off against one another in accordance with transfer function limitations. ■

Rem ark 9.3.2 Since = 2̂ .«d =  ifi2<j(2 — iC22<?)~' =  Tn,e^G =  it is clear

that sensor diagnostic performance and actuator diagnostic performance must be traded 

off against one another. ■

If it wasn’t for the fact that nominal performance, nominal diagnostic performance, 

and control-diagnostic interaction have to be traded off against one another, the blocks 

of Table 9.2, taken in order, would constitute a completely systematic 4-step design 

process for the 4-DOF controller. Though not completely systematic, this 4-step design
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procedure is still a useful conceptual path for 4-DOF controller design where it has been 

successfully apphed in the following references [77, 112, 99].

9.4 The Four Degrees-O f -Freedom Controller

9.4.1 A  G eneralized  R eg u la to r F ram ew ork

Consider the following block diagram depicted in Figure 9.6. which represents the two

P22 : Pii

^ 2 1 P21

eik

J)T22 K 21

2̂ 12

Figure 9.6: Control System Interconnection Structure.

equations:

P21 P22 K 21 K 22

. « t.
By straightforward manipulation, the transfer function matrix 

by

Fi2(T -  ^ 22^ 22)-" JiTn P ii +  fi2^22(Z  -  f22Kz:)-"P2i
which may be re-written as

where

=  A l +  A2K(7 -  A2Â^)-'Al
. _

0 0  ■ I 0 ■ ■j 0  ■ 0 0  ■
A l = , A 2 = 5 A l = , A 2 =

0 f n . 0 A 2 . 0 P2 1 . 0

(9.6)

IS given

(9.7)

(9.8)

(9.9)
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and

K
^11

Hence, the transfer function from 

tional map Ti{P,K) ,  where P  =

_ tut .

(9.10)

can be represented as a linear frac- 

So, the block diagram of Figure 9.6 can
P21 P »

be redrawn as the block diagram depicted in Figure 9.7 below. This shows that all the 

inputs (outputs) are inputs (outputs) of the reconfigured system P  and the closed-loop 

systems of Figures 9.6 and 9.7 are equivalent. Hence,the problem is well-posed in the

Pii P 1 2

A l A :

^ 2 2 ^21

^ 1 2

Figure 9.7: Equivalent 4-DOF Controller Interconnection Structure.

sense that an 7i°°-synthesis problem can be posed to find a controller K  which achieves 

internal stability and solves min^ |  P i(P , K)  jj .

9.4.2 The Com patibility o f the 4-DOF Controller Param eterization w ith  

the Youla Param eterization

The transfer function matrices P  and K  in Figure 9.7 are assumed to be proper. Let 

e* =  , wt =  , y& =  , and =  (911)
Wc*' yt tft

, tût = , ÿt = , and Uk =
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Then the block diagram of Figure 9.7 represents the two equations

and ûk =  (9.12)

By adding the following two fictitious external signals ni* and to fit and ÿ*, respec

tively, where

r n 1 r n 1
(9.13)

Ct A l A 2 ' tUk

.ÿ&. .Â1 Â2. fit.

■ 0 ■ ■ 0 ■
fil. = and Û2. =

the system is well-posed if the transfer function matrix from 

proper [19]. This results in the equations

&k =  fii* +  +  Â"ÿk

ÿt =  Aitük 4- Aafit

and these in turn imply that

( f  -  Â"A2)ût =  fil. -H Â"AiTÛt 4- % .

tut

fiz.

ûk exists and is

(9.14)

(9.15)

Thus, well-posedness is equivalent to the condition that ( I  — K P 22)  ̂ exists and is
J

proper, which implies that
;

that ( I  — p 22K)~^ exists and is proper.

exists and is proper, which also implies

Rem ark 9.4.1 For ( I  — K P 22) to be invertible, (J — K 22P22) must be invertible since

(I  — K 22P22) K 12P22
( f -A - f ia ) -"  =  (7 - ^ 22^ 22)-

0

This is equivalent to saying that the system is well-posed if, and only if, ( I  — K 22p 22)~^ 

exists and is proper. So, to analyze stability, we only need to consider the P22 partition 

of A

Let P22 = N 22M 22 = ÂI22 ^ 22- Then P22 may be written as

Â2
0 0 0 0 V 0

_0 0  JV23 _0
(9.16)
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Let P22 and K  have the fractional representations P22 = 

A  =  DV-" =  y such that

Z  - È M 22 V o '

_ —Mj22 M 2 2 . .ZÜ2 Z . 0 f

and

(9.17)

where

Æ 22

and so on.

0 0 ■J 0 ■ 0 o' I o '

JV22
,M32 =

M 22 _
, z =

0 0 0 0 V
(9.18)

Theorem  9.4.1 [61] Let Kg = ILoY^^ = V_̂  he such that (9.18) holds. For any 

Q E 1171°° (that is, for any realizable, stable Q of compatible dimensions), where

Qii Qi2 

.Qai Q2 2 .

define

Q

U. — ÎLo +  M ^2Q 

Z  =  Z ,  +  Æ22Ô 

È  =

Z  =  Z . +  0 & 2

Then U V~'̂ =  Z  and K  =  U V ~̂  =  Z  is a stabilizing controller for P 22 =  

M .2 2 M .2 2  —  A i - j  Æ22 ±n22'

Q (9.19)

The above theorem implies that all stabilizing controllers K  can be parameterized in 

terms of a stable

Qii Qx2 

.Q21 Q22

That is, an expression for the controller's transfer function matrix .K in terms of .KTo 

and Q can be obtained:

Â" =  (IL +  M22Q)(Zo +  Æ22Ô)-' (9.20)

After some mathematical manipulation we get the following expression for K  as

Â: =  K, +  z : ' w + Z l'Æ ziQ )-'!!-' (9.2i)



K (9.22)
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Hence, by paxtioning Q as in (9.19) and substituting the coprime factorization of Az and 

K o  given in (9.16) and (9.18) into (9.21), K  can be parameterized as a set of all proper 

controllers achieving internal stability, in terms of the factorization of Az, resulting in 

Q l l  — Q i2{Vo  +  1^22Q22)~^ K 22Q 21 Q u iV o  +

{Vo +  Q 22^22)~^Q 21 (U o +  M 22Q 22){V o +  _

where Q u ,  Q 1 2 , Q21, and Q 22  range over 17.71°°, and K  has a similar controller param

eterization to the one derived in [76].

It is interesting to note that the expression obtained for the 4-DOF controller which is 

given by (9.22) is restrictive. Although the controller is an internally stabilizing one, 

the parameters K u ,  K 1 2 , and K 21 are not guaranteed to be stable as required. If a 

given plant is unstable and non-minimum phase, the unstable zeros will be contained in 

the parameter N 22 as unstable zeros and the inverse function (Vo 4- in each

term might include unstable poles as a result. Also the parameter K  might also contain 

unstable zeros if the plant is unstable, which increases the criticalness of the problem 

even more. But, if the plant is stable and minimum phase, then K u , K u , and K 21 can 

be guaranteed to be stable.

From the above argument, we can conclude that such a parameterization is not suitable 

for physical implementation. Figure 9.5 may be re-arranged, after some algebra and 

block diagram manipulation, to the following physically implementable control system 

as shown in Figure 9.8. It is clear that all the unstable poles (if any) will be located 

in the feedback-loop, so all the designer has to do is to properly choose the stable Q  

transfer function matrix to achieve the control and diagnostic objectives. Two major 

drawbacks about this re-configuration:

1) The controller will be considered a black box controller, that is the knowledge 

of each individual parameter will be completely lost and indistinguishable.

2) Since 1/,,^ =  Q 12M ,  Q 12 is constrained to be stable, and M  contains the 

unstable poles of G in the form of right-half plane zeros, it follows that the 

unstable poles of G must be contained in Tf,e^ in a stable closed-loop system. 

Thus, the requirement of closed-loop stability imposes fundamental limitations 

on the achievable sensor diagnostic performance, and also, since 2},,^ =  Q uN ,
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the requirement of closed-loop stability imposes fundamental limitations on 

the achievable actuator diagnostic performance for non-minimum phase plants.

- 1

Figure 9.8: A Physically Implementable Reliable Control System.

9 .5  H ^-O ptim al C on tro l and D iagn ostics

In this section, the problem of designing an optimal controller which provides good

nominal plant output regulation and good nominal failure tracking characteristics is

considered. From the control system configuration shown in Figure 9.6, let the state-
[ 1 [ 1space realization of the transfer function matrix that maps —» be given

Ly&j
by

Ac
p  = Cc, 0 Dc,,

0

(9.23)
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where Wk = and ÿk =
to t , . y t .

. Recalling Chapter 2, assumptions A1-A7 and A9 

still hold. Let the equations for the diagnostic module Pdiag be given by

AdXdif Bdi'^k 4" Bdi^dk 

4- Ddi2 d̂k

^dk+i

Xdk (9.24)

This implies that the state-space realization of the diagnostic transfer function matrix 

Zd̂  IS given bythat maps
tdk

diag
g Ad Bd2

0 B̂ di2
(9.25)

Amalgamating the control and diagnostic realizations of (9.23) and (9.25), the following 

control-diagnostic interconnection structure is obtained via the following state-space 

realization
A Br ^ 2

Cl 0 A 2

Ô2 D ll 0

(9.26)

The system matrices for (9.26) are given by

Cl

Ac 0 '
,B i =

Be,' ' 0 Bo,'
A = =

_0 Ad. .Bd, 0 .

Cc2 0 ], Di2 =
0 D

D,di2
, D 21 =  Dc

The optimal controller given in (2.32) can be re-written as

Kept

where

g Â 4- BaF 4- f  C2 - I

F 0
(9.27)

F  = - ê ' ^ X [ I  + È^B'^X)  ' i  (9.28)

L =  - ( i ÿ C j  +  B .i> r ,)( / + C ,ÿ C f)"  (9,29)

and (Â ,y )  are, respectively, the solutions to the control and filter algebraic Riccati 

equations given by

i x  ( /  +  i  -  X +  C?-C. =  0 (9.30)
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and

( i - b , d [ A ) r ( i  + c A r } - '  { À - È A l c . y - ÿ  + è , { i - ù l b l ) i f  = o

(9.31)

By partitioning X  conformally with À, that is X  

as the following coupled equations

■All A i2
(9.30) can be written

A f (A iiZ ii +  A 12Z21) Ac — All +  =  0

AJ (A22Z22 +  A^Zia^ Ad — A 22 +  Cj^Cdi = 0

AJ (A ii2i2 +  A 12Z22) Ad — Ai2 =  0

(9.32)

(9.33)

(9.34)

where

Z,2 =  - ( 7  +  B ^ f l ;X n )" 'B „ B jX „ Z 2 2  (9.36)

Z21 =  -Z 22B j,B jX j(j+ B „B jX n )‘ ‘ (9.37)

Z 2 2  -  [ ( 7 + B j . B 3; X 22)  - B , .B ^ X S ( 7  +  B ^ B ;X n ) ' 'B ^ B ;X . 2l " '  (9.38)

It follows immediately from (9.34) to (9.38) that A12 = 0 is a solution to (9.34), and

(9.32) and (9.33) can be re-written as

A r A n ( / - k B c B ;A n ) " 'A c - A i i - k C ;C c  =  0

Aj A 22 ( /  4- BjgD^Azaj Ad — X 22 4- =  0

(9.39)

(9.40)

This implies that A n and A 22 can be solved independently, and (9.28) can be re-written

F  =
0  B l X , , { l + B ^ B l X , , y ' A ,

b ; X u ( /  +  b . ,b J x „ ) ' ' ^  0

"I'll y i2
Also, by partitioning Ÿ  conformally with A, that is Ÿ  

written as the following coupled equations
î2 ^2

(9.41) 

(9.31) can be

B i i y n I 4 i ^ - } i i  +  Tyii =  0 (9.42)
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R i i R 1 2

R 2 1 R 2 2

■ F i i

W n W 1 2
W 2 1

R i\Y \2R^2  ~  Yi2 +  +  R\iYiiV \2R̂ 2  +  W12) =  0

B22k22-R^ —122+ [(-R2iFii +  +  %2-R^) +  R2lY\2l^2 +  ^ 22] =  0

where

A c - B c % C c  0 

—B diD ^C q Ad
■ ( /  +  c j c ^ r n ) " '  -  ( / + c j c « y „ ) “'

0 f

fl*  [ l  -  B J B* ( I  -  D l^D „ ,)  B l

It follows immediately from (9.42) to (9.44) that the solution to Fn is independent of 

both, the l i 2 term and any of the diagnostic terms. Equation (9.29) can be re-written

9.43)

9.44)

9.45)

9.46)

9.47)

(9.48)
( A , r „ c j  - fB ^ D j,)  ( I + C „ y „ c j ) '  

( x ^ y ^ c j  +  B ^ B ; .)  ( / + c « y „ c ; ) ‘

For the optimal Ti? solution, the optimal control module and the optimal diagnostic 

module are independent of each other, provided the interconnection structure described 

by (9.26) is considered. Hence, when a nominal model is considered, designing the 

control and diagnostic modules simultaneously is equivalent to designing them indepen

dently.

9.6 'H°°-Optimal Control and Diagnostics

In this section, the problem of designing, in a single step approach, an -suboptimal 4- 

DOF controller that robustly provides control and diagnostic objectives simultaneously 

in the face of coprime factor uncertainty is considered.

To motivate the need for synthesizing the 4-DOF controller in a single step using a 

robust synthesis method such as optimization, the following block diagram shown 

in Figure 9.9 is considered. Suppose it is desired to track actuator failures (n,^) and 

reject step commands applied to the reference signal {wc^) at the diagnostic output 

(cj*). The diagnostic output is given by

— Yyjcea'̂ Ck +  7n,ed(̂ Sfc +  {G -|- A)Ug^) (9.49)
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Figure 9.9: Control-Diagnostic Configuration with Additive Uncertainty.

where the perturbed transfer function matrices and Tn̂ ea are given by

(9.50)

(9.51)

where ( I  — (G + A )if22)~  ̂ is the perturbed sensitivity function Tdyp. In the nominal

case, K u  and R 12 can be designed separately, such that TL 0 and 7% I,
respectively. But according to (9.50) and (9.51) this suggests that additive model un

certainty will prohibit such a design, and these objectives will conflict with the control 

objectives, such as tracking of step commands and rejecting disturbances.

9.6.1 R obust Synthesis o f the 4-DOF Controller

The approach proposed here allows the control parameters (K u  and R 22) and the diag

nostic parameters (K u  and K u )  to be designed together in a single step via an extension 

of the -optimization framework covered in Chapter 3. For the control module, the 

feedback controller (R 22) is used to meet the robust stability and disturbance rejection 

specification, while the pre-filter (ÜC21) is used to shape the desired time responses of the 

closed-loop system. For the diagnostic module, the diagnostic controller (K u)  is used 

to robustly track actuator failures (step or ramp type failures), while the diagnostic 

controller (R n ) rejects step commands applied to the reference signal. The intercon

nection structure used for the 4-DOF design is shown in Figure 9.10. The control signal
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11

Figure 9.10: Control-Diagnostic Design Configuration under Coprime Factor Uncer- 

tainty.

is given by

fit = [^ 2 1  %22

and the diagnostic signal is given by

Simple algebra from Figure 9.10 shows! that

«k = '^nayp̂ 2 1  — Mo TriaVp

^11 +  ^laZ^yp^Zl

. T%. [%ii +  JiTgi]

(9.52)

(9.63)

(9.54)
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The (1,1) partition in (9.54) is associated with the control objective discussed in Chapter 

3. The (1,1) element of the (2,2) partition is associated with the diagnostic objective. 

By appropriate choice of the weighting function Wq, i f  12 will be designed such that the 

diagnostic output tracks an actuator abrupt failure or a slow ramp type failure. Finally, 

the (2,1) element of the (2,1) partition is also associated with the diagnostic objective. 

By appropriate choice of the weighting function Wi., K n  will be designed such that the 

transfer function Twcej is made robustly small.

Setting the problem up in the standard regulator framework, the standard augmented 

plant will be given by

Wc*

Tla* (9.56)

L Uk

where G =  M~'^N is the desired shaped plant (Chapter 3). A state-space realization for 

(9.55) can be easily derived, and may be passed to standard H°°-algorithms, resulting 

in a suboptimal 4-DOF controller.

9.6.2 D esign E xam ple

The following example is taken from [50], where the purpose is to demonstrate how the 

4-DOF controller can be designed using the proposed single step approach to integrated 

controls and diagnostics. In this design example the diagnostics are required to detect, 

isolate and identify actuator failures.

The plant considered in this example is a jet engine. It has 3-inputs and 3-outputs, 

is stable and minimum phase, and has poles at —4.8 ±  Bj, —10.5, and —78.7. Further 

information on this model may be found in [64]. The control and diagnostic requirements 

are as follows:

' Uk ' • 0 0 f 0 I -

%/k 0 G 0 G

Ck —Mo G 0 G

= 0 0 -W . I 0

Gr* 0 0 0 w : 0

Wc. I 0 0 0 0

. I/k . . 0 G 0 G.

1) C on tro l O bjectives: In tracking step commands at the plant output, there
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should be zero steady-state error and less than 10% interaction. Also, the 

tracking bandwidth should be at least 5 rad/s. For robust stability, the maxi

mum singular value of 7 ,̂%, should begin to roll-off at 10 rad/s  and should be 

down —20 dB  at 30 rad/s.  It should also have good low frequency disturbance 

rejection.

2) Diagnostic Objectives: The diagnostic map 7 k .s h o u ld  be approximately 

I  and Twoea should be small up to a bandwidth of 10 rad/s,  that is the di

agnostic output must track actuator failures and reject step commands when 

the respective signal spectral content is concentrated below 10 rad/s.

D esign procedure

The design procedure comprises of the following main steps:

1) Analyzing the singular values of the open-loop nominal model G indicated the 

need for higher low frequency gain to achieve good tracking and disturbance 

rejection at these frequencies. The weighting function W  should thus contain 

integral action. Extra poles are introduced to reduce the roll-off at the cross

over frequencies. The desired W  was chosen to become (s+xo-̂ )(s+3o)-̂ 3 - The 

weighting function is selected in continuous-time and then discretized before 

cascading it with the discretized nominal model. The sampling time used to 

discretize the nominal model was Ts = 0.02 seconds [64].

2) G W  is next aligned at the approximate desired closed-loop bandwidth of 10 

rad/s.  The align gain t .  is the approximate real inverse of the system at 

the specified frequency. The cross-over is thus adjusted accordingly. The pre- 

compensator can now be expressed asWg = Wka. It is discretized, using the 

bilinear transformation discussed in Chapter 4, and then cascaded with G.

3) A desired reference model Mq is then selected for the closed-loop system. The 

reference model is selected in continuous-time as and then discretized. 

The controlled outputs are thus desired to behave as simple first order lags 

with no interaction.
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4) To meet the diagnostic objectives, the desired weighting functions were se- 

lected as Wk =  and Wk =  and then discretized. The

state-space realization of the generalized plant (9.55) is then constructed.

5) 7 -iterations are performed, and a suboptimal controller achieving 7  =  4.355 

is obtained.

6) The 4-DOF controller is cascaded with the weight Wg, and the following con

troller parameters ifn ,  K n  and ifai were scaled to achieve the steady-state 

requirements. The Final 4-DOF controller was of order 32. By using the 

model reduction technique proposed in Chapter 6, a 13 state controller was 

obtained, with performance indistinguishable from the 32nd order controller.

Control Simulation R esults

Figure 9.11 shows the open-loop shaped plant GW^. Figures 9.12-9.13 present the maps 

Trfÿp and the input complementary sensitivity function Hi =  K 22G{I — TfgaG)"^ which 

show that the design has good low frequency disturbance rejection characteristics and 

the desired robust stability requirements have been achieved, respectively. Figure 9.14 

shows that the tracking of step commands at the plant output with less than 10% 

interaction has been achieved.

Diagnostic Sim ulation R esults

Figure 9.15 shows the command and actuator failures. As shown in the figure, a step 

command is first applied to channel 2, a step or abrupt failure then occurs in actuator 1, 

and finally a slow ramp type failure occurs in actuator 3. The response of the diagnostic 

output under these conditions is shown in Figure 9.16. As can be seen from the figure, 

the step command is rejected with a small enough amplitude from the diagnostic output, 

and this output tracks nicely the actuator failures. Figure 9.17 shows the frequency 

response of the map 7^,,^ and Figure 9.18 shows the frequency response of the map 

Tŵ ea- Both figures show that 7 .̂=  ̂ % I  and 7k,.ed small over the desired bandwidth.
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9o7 Summary

In this chapter, a comprehensive treatment of the design of integrated control and 

diagnostic modules has been presented. The 4-DOF controller has been systematically 

parameterized in a single step approach. It was shown that the design can be approached 

using standard advanced multivariable control methods. For the nominal case, the 

control and diagnostic modules can be designed separately using 7^^-optimal control. 

However, since the diagnostic objective will limit the achieved performance in the face 

of uncertainty, robust 7i°° control theory was employed such that both modules can be 

designed simultaneously and frequency dependent weights used to reflect the sometimes 

conflicting objectives.
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C on clu sion s and  F uture W ork

10.1 Concluding Remarks

In this thesis, a number of important practical issues on robust controller design for 

SISO and MIMO processes have been studied. We began by presenting some well 

known results on 'H? and control. Then the normalized coprime factor design 

procedure was investigated, and we formulated the discrete-time problem with respect 

to uncertainty in a normalized left coprime factor plant description. Suboptimal and 

optimal controllers were derived. A suboptimal controller was also derived for the 2- 

DOF framework. The strength of this 2-DOF framework is that the controller provides 

a degree of robust performance in the sense of making the closed-loop system match a 

pre-defined reference model in addition to its ability to provide robust stability against 

coprime factor uncertainty.

An industrial case study, based on an “unknown” plant (the IFAC 1993 benchmark) 

operating at 3 different stress levels, was then considered. The robust control methods 

discussed in Chapters 2 & 3, also known as analytical optimization methods, were 

combined with the MOI and applied to the benchmark to give fixed controllers which 

achieved good robust performance for stress levels 1 & 2. The performance at stress 

level 3 was less satisfactory, but some improvement was obtained with a variable gain 

adaptive scheme, although at the expense of some robustness.

Methods for synthesizing robust controllers that can be directly implemented in the 

Internal Model Control (IMC) scheme were formulated. First, the IMC scheme was
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reviewed in the context of the Youla parameterization of all stabilizing controllers. We 

then showed how to put various design methods into the IMC scheme. These 

methods included 1-DOF and 2-DOF 7i°° designs. Explicit state-space formulae for an 

H°° IMC based controller were derived. These included suboptimal and optimal IMC 

controllers for the 1-DOF case and a suboptimal IMC controller for the 2-DOF case, all 

in a coprime factor design framework.

We also presented a model reduction approach for reducing discrete-time stable/unstable 

non-minimal state-space systems. The approach combined existing algorithms resulting 

in a reliable method for computing a balanced singular perturbational approximation 

of a stable state-space system which may be close to being non-minimal. The approach 

circumvented the computation of possibly ill-conditioned balancing transformations. 

The algorithm was then used in a normalized coprime factor model reduction procedure 

which can be used for the reduction of stable as well as unstable systems. The proofs 

of the existing continuous-time results were directly extended to their discrete-time 

counterpart.

A MIMO industrial process, a glass tube production process was then introduced. Its 

physical behaviour was carefully studied, and mathematical models derived in state- 

space form using existing advanced identification methods. It was shown how to com

bine a variety of identification methods into an industrially applicable identification 

procedure. The application to the MIMO production process indicated that the com

bined identification approach gave good results and provided accurate low-order models 

for use in MIMO control schemes. The application of robust IMC control to the produc

tion process then followed. The design of a MIMO IMC control system was discussed 

in detail. The responses of the process output without the MIMO controller showed 

an unacceptable degree of interaction and a lot of overshoot. The responses of the 

controlled process were smooth, fast reacting and first-order. Both Type 1 and Type 

2 IMC controllers were designed with predictable responses. Robustness was obtained 

within the accuracies of the different models, suggesting that the designs were reliable 

for practical implementation. However, problems were encountered for the larger mea

sures because then the time delays became more dominant. Also, the sensitivity to 

process static gains increased the interaction between the wall thickness and the diam
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eter for incorrect estimates or when operating over a larger process range. Finally, the 

standard deviation of both the wall thickness and diameter were reduced considerably 

for small measures and reduced marginally for large measures.

An existing but relatively new theoretical foundation for an integrated approach to the 

design of controls and diagnostics was further developed. With a 4-DOF controller 

and a standard regulator framework, it was shown how to design the controls and 

diagnostics together using robust control theory. The main strength of this approach is 

that the 4-DOF controller can be synthesized in a single step approach into which model 

uncertainty is directly incorporated. This has the advantage of improving diagnostic 

performance when the plant is uncertain. Finally, with this approach the interactions 

that do occur between the control and diagnostic modules can be minimized to some 

extent.

10.2 Suggestions for Future Work

The robust control system design framework developed and studied in this thesis, and 

the industrial case studies suggest further research in the following areas:

R obust Adaptive Control -  This concerns the integration of robust control and 

adaptive schemes. This particular problem was motivated in Chapter 4. It was shown 

that the main problems in designing a controller for the “unknown” plant (IFAC 1993 

benchmark) arose at stress level 3 where the gain variation was such that some adaptive 

control was required. Some improvement was obtained but at the expense of robustness. 

This motivates the need of robust adaptation schemes and controllers that incorporate 

both robust and adaptive schemes.

IMC Control for U nstable System s -  The main reasons behind extending the 

IMC to open-loop unstable systems is that, firstly the stability of the IMC controller 

Q shown in Figure 5.1 (Chapter 5) does not guarantee the stability of the closed-loop 

system when the plant Gp is unstable, and secondly designing the controller for robust 

stability can be more difiBcult. That is, when the plant is stable the controller can be 

easily detuned, but when the plant is unstable there is a limit to how much the controller 

can be detuned. In this case, some controller gain is needed just to stabilize the system.
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This is demonstrated in Figure 10.1.

243

U nstable Plant

N ew  Stable Plant G.

Figure 10.1: An IMC Scheme for Unstable Systems.

Moving to unstable systems, the IMC scheme of Figure 5.1 for control system imple

mentation has to be abandoned. An alternative scheme is shown in Figure 10.2 where 

its clear that when Gp =  Gm (no plant/model mismatch) it simplifies to the classical 

feedback scheme. The main advantage of this scheme is that the IMC controller will 

include the nominal model Gm of the unstable plant, unlike the scheme shown in Figure 

10.1. Furthermore, the restriction of having only stable parameters in the scheme is 

removed. We believe that designing the controller parameters Qi and Qa of Figure 10.2 

in a single step approach is worthy of further investigation.

D iscrete-tim e M odel Reduction -  This concerns the derivation of the following 

two error bounds: Firstly, a tight bound for the model error for the coprime factor 

order reduction of discrete-time systems based on balancing. The error bound given 

for G — Gr = M “ îV — M~^Nr in Chapter 6 by (6.78) is very weak and simple (too
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Figure 10.2: Proposed IMC Scheme for Unstable Systems.

conservative). Secondly, a reduced-order stability bound for the controller reduction 

error, of the suboptimal 2-DOF H°° controller derived in Chapter 3  and of the subop- 

timal 2-DOF IMC based controller derived in Chapter 5, to guarantee closed-loop 

stability and to minimize the performance degradation when controUer-order reduction 

is performed. We believe that the search for such bounds is therefore a worthy area for 

future research.

Control o f the Glass Tube Production Process -  This concerns the possibility of 

controlling the glass tube production process via the IMC scheme with one fixed gain 

controller over a larger process range, that is for example, controlling Measure 1 and 

Measure 2 with a single controller. It was shown in Figure 8.29 (Chapter 8) that the 

static gains of the process become more sensitive and therefore will increase the coupling 

between the wall thickness and the diameter when moving from Measure 1 to Measure 2 

with a controller originally designed for Measure 1. A possible solution to this problem 

can be gain scheduling to ensure correct process static gains, or alternatively on-line 

adaptation of the process static gains. Finally, combining adaptation with the IMC 

scheme to obtain an adaptive IMC scheme is worthy of further investigation.

Integrated Controls and Diagnostics -  This concerns the possibility of synthesizing 

the 4-DOF controller, in a single step approach, such that the diagnostic output iden

tifies sensor and actuator failures. The framework presented in Chapter 9 will enable
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the diagnostic output to identify actuator failures only. We believe that the diagnostic 

module must have the ability to distinguish between sensor failures and actuator fail

ures. Finally, the development of a reconfiguration module, which is simply a controller 

reconfiguration strategy that allows the control performance to be maintained in the 

presense of failures, is very crucial and a worthy subject for future research.



A p p e n d ix  A

P re lim in a ry  M a th em a tica l B ackground

In this appendix a brief review is given on some useful definitions and well known results 

of discrete time linear time-invariant systems that may be necessary to understand 

the theoretical contents of this thesis. Section A.l lists a table of standard notations 

together with their definitions. Section A.2, on basic system theory, includes transfer 

function matrices in state-space form, operations on linear systems, controllability and 

observability, and all-pass transfer function matrices. Section A.3 reviews the discrete

time algebraic Riccati equation (DARE), and some issues on solving the DARE are 

discussed. In section A.4, some definitions on coprime factorization are given. Finally, 

a definition of stability, including well-posedness and internal stability are presented.

A .l Nom enclature

Notation Meaning

z A Complex variable. Given F  € define F{z) =  FkZ~^

as the Z-transform of F . z = yields the frequency response.

s Laplace operator.

Tt Field of real numbers.

Space of m-component real vectors.

•^pxm Space of p X m matrices with real elements.

R  Space of all real-rational transfer function matrices.

C Field of complex numbers.
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Space of m-component complex vectors.
Qpxm Space of p X m matrices with complex elements.

Inverse of a matrix A.

A' Complex Conjugate Transpose of a matrix A.

Transpose of a matrix A.

rank(A) Rank of a matrix A.

det(A) Determinant of a matrix A.

tr(A) Trace of a matrix A.

diag(A) Matrix A is diagonal.

Spectral radius of a matrix A.

Amo®(A), ÀTOtn(A) Maximum, minimum eigenvalue of a matrix A.

d(j4), g (A) Maximum, minimum singular value of a matrix A.

di *--(& Ikuibdanigularvalue.

A > 0 Matrix A  is positive definite.

A >  0 Matrix A  is semi-positive definite.

G(z) Transfer function matrix.

G*{z) G^(z~^), the reciprocal transpose.

deg(G) Degree of G(z), i.e. the number of states of G{z).

V  The open unit disc.

Lebesgue space with appropriate dimensions essentially 

bounded on the unit circle.

Hardy space of complex valued functions analytic in D

bounded on the unit circle.

The Hilbert space of square integrable complex valued functions 

on the unit circle that have analytic continuation in the unit disc. 

H i  Complementary part of H^ having analytic continuation outside

the unit disc.

H£°° Real rational subspace of £°°.

HH°° ,7lHx Real rational subspace of H°° ,'RHjf.

II G(z) I I H ° °  norm of (y(z).

II G(z) 11; H  ̂ norm of G(z).
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I I  I I  jf Hankel norm of G(z).

%(A) Symbol for the range of a matrix A. 

m x  m  identity matrix.

A.2 Basic System  Theory  

A .2.1 Transfer Functions

Consider the linear time-invariant difference equation described by

Z&+1 =  Azt 4- Bu&

=  Cz& -I- Dut (A .l)

where z& E Tf* is the state, u& E is the input and y* E W  is the output. The

A, B, C and D  are appropriately dimensioned real matrices. The system described by 

(A .l) is given the notation

G s A B

C D
(A.2)

The pulse response of the system is given by

I D for k = 0
Gt =  { (A.3)

CA^-^B /or & > 0

and the Z-transform, resulting in a transfer function given by

G(z) =  C (zf -  A)-:' B 4- B  (A.4)

A .2 .2 Controllability and Observability

A system is controllable [51] if there always exists an input that takes the states from 

any initial condition to any prespecified final state in finite time.

Theorem  A.2.1 The following are equivalent:

1) (A, B) is controllable.
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2) The matrix [B A B  A^B  • • • has full row rank equal to n.

3) The matrix [A — XI B] has full row rank equal to n for all A € C.

4) The eigenvalues of A +  B F  can be freely assigned by suitable choice of F.

The pair (A, B) is stabilizable if there exists an F  such that A +  B F  is stable.

A system is observable [51] if an initial condition can be exactly determined from ob

serving the output for some finite time.

Theorem  A .2.2 The following are equivalent:

1) (A, C) is observable.

2) The matrix [ - - - (A " -if  (.T ]T column

rank equal to n.

A - A / '
3) The matrix has column rank equal to n for all A € C.

4) The eigenvalues of A -|- JEfC can be freely assigned by suitable choice of H.

The pair (A, C) is detectable if there exists an H  such that A + H C  is stable.

The degree of a controllable and observable realization (i.e. minimal realization) will 

be referred to as the McMillan degree.

A .2.3 All-Pass Transfer Function M atrices

The conjugate system of (A.4) is defined as

G '(z) =  G^(z-^) =  B ^ (z -V  -  A ^)-'C ^ 

and a realization for G* is given by

g A-:r

-  B^^A-:rcr

(A.5)

(A.6)
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provided A  ̂ exists. The following lemma gives suÆdent conditions for a discrete

transfer function matrix to be all pass.

L em m a A .2.1 [106] Given G{z) =  C {zl — A)~^B +  D  such that

+  =  ;

B ^C  +  B^^QA =  0 

Q -A ^ Q A  =

then G*G = I. Similarly, if

B ZF +  CPC:^ =  f  

B B ^ +  A PC^ =  0 

P -A P A ^  =  BB^

(A.7)

(A.8)

then GG*

A .3  T h e  D isc re te -T im e  A lgeb ra ic  R icca ti E q uation  

A .3.1 Sym plectic  M atrices

An extensive discussion of the discrete-time algebraic Riccati equation can be found in 

the following references [83, 49, 8, 107]. A pair of matrices BigBg E

symplectic if the following equation is satisfied

where

" 0 7'

- 7  0

Let S  denote the symplectic pair [Bi,Ba] where

■ A 0 7 B
Si — and B; =

- Q 7 0 A^

(A.9)

(A.IO)

(A..11)

with Q =  and R  = R^.



Appendix A. Preliminaxy Mathematical Background 251

A complex number ^  is a generalized eigenvalue of 5  if there exist a vector x such that

SiX =  0 S2X (A.12)

Equivalently, 0 is a root of the polynomial det (Si — AS2).

In the case where the pair S  has no generalized eigenvalues inside the unit circle, then it 

has n generalized eigenvalues inside the unit disc. Let %_(S) denote the n-dimensional 

spectral subspace associated with the generalized eigenvalues inside V. This subspace 

can be represented as the span of the principal eigenvectors associated with each gen

eralized eigenvalue. Stacking up these vectors gives

%_(S) =  %

where % i,% 2  € By definition it follows that

5i

where T  € C"** satisfying p{T) < 1 . If Xi is non-singular, then

=  S 2

Xi ■ 7  ■
=  %

X : X r \

(A.13)

(A.14)

(A.15)
i-2 J * J

A .3.2 The Riccati Operator

If exists, then a function Ric(.) that maps the symplectic pair S  to the matrix 

X  =  can be defined. S is said to be in the domain of Ric, denoted by dom{Ric)

if

1) S has no generalized eigenvalues on the unit circle.

2) exists.

3) (7 +  7ZX) is invertible. 

In this case Bic(S) =  X.

T heorem  A.3.1 [14] Let S  € dom{Ric) and X =  Ric{S). Then the following state

ments hold
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1) X  =  X^.

2) X  satisfies the discrete Riccati equation

X  =  A^X(7 +  jRX)-"A +  Q

3) The matrix (J +  RX)~'^A  is stable.

252

(A.16)

If A  ̂ exists, then it is possible to work with the symplectic matrix S  = 8 2 ^ 8 1  given 

by

A +  BA-^Q -B A -^

-A -^ Q  A-^

and it satisfies 8 ^ J 8  = J.

(A.17)

T heorem  A .3.2 [43] If S in (A.17) has no eigenvalues on the unit circle and [A, B] 

is stabilizable, then the discrete-time algebraic Riccati equation (A.16) has a unique 

solution X  such that the continuous-time algebraic Riccati equation

A^X 4- XÂ -  X B X  4 -0  =  0 (A.18)

is satisfied. This can be achieved by performing the following transformation

B  =  (B 4 -7 ) -X ^ -7 )  
Â -B "

- 0  A?
(A.19)

where H  is a Hamiltonian matrix [3]. Also, H  has no eigenvalues on the imaginary axis, 

because 8  has no eigenvalues on the unit circle. ■

A .4  C op rim e F actoriza tion

An extensive discussion of coprime factorization can be found in the following references 

[102, 103, 104, 62]. Here we present some basic definitions. Firstly, necessary and 

sufficient conditions for two matrices to be right and left coprime are given in the 

following two definitions.
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D efin ition  A .4.1 Suppose N ,M  £ have the same number of columns. Then

N , M  are right coprime if, and only if, there exists U ,V £ 1tH°° such that

VM +  =  7 (A.20)

D efinition  A .4.2 Suppose M , N  £ %H°° have the same number of rows. Then M , N  

are left coprime if, and only if, there exists U ,V £ TIH°° such that

M y  +  =  7 (A.21)

It is possible to represent any real-rational, proper transfer function in terms of a pair 

of asymptotically stable, real-rational, proper transfer function which are right or left 

coprime. This is called a right or left coprime factorization, and is defined next, together 

with normalized right and left coprime factorization.

Definition A.4.3 The pair (N ,M ), where N ,M  £ constitutes a normalized

right coprime factorization of G £ R  if, and only if,

1) M  is square, det(M) ^  0.

2) G =  B M -i.

3) M are right coprime.

4) -I- M 'M  =  7. m

Definition A.4.4 The pair (M ,N ), where M,JV € constitutes a normalized

left coprime factorization of G E 72 if, and only if,

1) M is square, det(M) 0.

2) G =  M -iB .

3) M, N  are left coprime.

4) -h MM* =  g
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A .5  In tern a l S ta b ility  and W ell-P osed n ess

It is common in control system analysis to be concerned with input-output stability. A 

system is input-output stable if the output response to a bounded input signal is also 

bounded. However, a stronger notion of stability, is that of internal stability [16], which 

precludes the possibility of any unbounded signals existing in a closed-loop system. The 

condition of internal stability will be given in terms of the following framework shown 

in Figure A .l [19]. The inputs and outputs of Figure A.l are related as follows

Figure A.l: Diagram for Internal Stability Definition.

I  —P\2  0

0 I

0 -1^2 f

' ' f i i 0 0 ■

= 0 I K

0 0 .

(A.22)

Definition A .5.1 The feedback loop in Figure A .l is internally stable if the system 

mapping [ to [ is stable, or equivalently, the system map

ping [ to [ ]  ̂ is stable. 0

Definition A .5.2 The feedback loop of Figure A .l is internally stable if, and only if,
-1

e (A.23)
I

—P22 I
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For certain controllers, the 2 x 2  block matrix in (A.23) may not be proper, though 

and FT are. This means that for some inputs the algebraic loop cannot be

solved and the feedback loop is said to be ill-posed. If either P22 or K  is strictly proper, 

then the feedback loop is assured to be well-posed.

Definition A .5.3 In the case of state-space systems, the feedback loop of Figure A .l 

is well-posed if ( I  — P2%K)~^ can be represented as a state-space system. If P22 and K  

are the transfer function matrices of state-space systems, well-posedness is equivalent 

to det{I — P22{e^^)K(e^^)) ^  0 when ê = —tt. ■

An important stability result is based on what is called the Small Gain Theorem [116].

This theorem provides a sufficient condition for the stability of the feedback loop in

Figure A.l.

Theorem  A .5.1 Let P22 :  ̂ and K : £ ^  —» £^ be stable operators of bounded

£^-gain and assume that the closed loop system is well-posed. Then the closed loop 

system is stable if

l | f : : L I |A : |L < l  (A.24)
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P r o o f o f  R e su lts  from  C h ap ter  6

B . l  P r o o f  o f  (6 .1 8 )  

Lemma B.1.1 Let

Gr fui Fi

Gi B
(BT)

be a balanced continuous-time reduced-order model. Then by using bilinear transformation 

(defined in Chapter 1), the balanced discrete-time reduced-order model Gr is given by

Gr
Â i i  — Â i 2 { I  4- 422)~ ^Â 21 È i  — 4 i 2 ( /  4" 4 2 2 )

C \  — € 2 ( 1  +  4 2 2 ) “  ̂Â 21 D - ( : '2 ( f 4 - 4 2 2 ) - ^ . B 3
(B j)

Proof

The state-space realization for the balanced continuous-time model is given by

P l i P 12 P i '

P 21 P 23 F2

. Ga B

By using the bilinear transformation, the JS-matrix will be given by

Pli P12 V + 4 ii 4 i2 — 1 4 ii — I  4i2

.P21 P2 2 . . 421 I  + 422. .  421 422 — I .

where by applying the inverse of a block matrix,
1 4- Âii Â12 

Â21 1 4- Â2 2 .

(B.3)

(B.4)

can be re-written as

( /  4- A l l  — Â 12Â 22  Â 2 1 )  ^ — { 1 4- A l l  — Â 12Â 22 À 2 i ) ~ ^ Â 12À .

- { 1 4- Â 22 — -421 Â x 2 ) ~ ^ Â . 2 i Â î l  ( /  4- Â 22 — Â 2 l A ^ i  Â l2 )~ ^
(B.5)
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where Â22 = (f + Â22) and An = (J+  Ân). Now En  can be expressed as

P ii =  ( I  + 4 i i  — 412A22 Â2i)~^(Âii — / )  — ( /  +  Â11 — Âi2^23 4 21)  ̂

X4i2422 421

= (J + 4 ii — 4 i2 4 ^4 2 i ) [̂—2J + j  + 4 ii — 4%24^42i]

= ( /  + 4 ii — 4 i2 4 ^ 421 ) ^ i~ f + 4 ii — 4i2^22 4 2 1 )

For the P-matrix, we have
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Pi
=  V 2

7 +  4 n 4 i2 — 1
P i'

. Â21P2 . 7 4* 422.

Now Pi can be expressed as

Pi =  ’'/2 {1 4* 4 i i  — 4i2(J +  4 .22) ^42i) — 4 i2 ( /  +  422) ^^2)

For the G-matrix, we have

f  + 4.11 4i2 1 ^

. 421 I  + 422
[Gi G2] = V2[Ci C2 ]

Now Gi can be expressed as

Gi = V^(Ci — (̂ 2 (7  + 422)~^42i)(7 + 4 ii — 4i2(7 + 422)~^42i)“  ̂

For the B-matrix, we have

B = D - [ C i  & ]
7 4- 4 ii 4 i2 — 1 Pi

. 421 7 4- 422. .Pa.

( B .6 )

( B . 7 )

( B . 8 )

( B .9 )

( B . I O )

( B . l l )

By using the bilinear transformation to map (B.l) to the discrete-time state-space system 

(4r, Br, Cr, î>r). We obtain the following: For the Â-matrix

where

4r = (7 + P ii) (7 -P n )-"

(I  — Pii)  ̂ — [7 + 2(7 -I- 4 ii — 4i2(7 -I- 4 .22) ^42i)~^ — 7]' 

=  2 ( 7  +  4 i i  — 4 i 2 ( 7  4- 4 2 2 ) " ^ 4 2 i )

( B . 1 2 )

( B . 1 3 )

and

(7 4- P ii) — 27 — 2(7 4-4 ii — 4i2(7 4-Â22) ^42i) ^

= 2(4ii — 4i2(7 4- Â22) ^421) ( 7  4- 4 n  — 4 i 2 ( 7  4- 4.22)~^42i)~^ (B.14)
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We then have, from (B.12)

For the A-matrix, we have

At = 4 ii  — Âi2(/ + 4.22)~^421 

Br = V 2(7-E n)-^F l

= È\ — 4 2̂ ( 7  + 4 2 2 )

For the Cr-matrix, we have

Cr = V 2 C i(7 -E n )-i

= Cl — Ca(7 + 4 2 2 ) ^421

For the Dr-matrix, we have

A  = P  + C i(7 -B ii) -^ f i

(B.15)

( B .1 6 )

( B .1 7 )

P - [ C i  C2 I
7 +  4 i i  4 i2 —1 Pi"

. 421 7 + 422. .Pa.
+ (Cl — <7 2 (7  + 4 2 2 ) ^4ai)

7 +  4 i i  4 i 2 — 1 Pi

. 43 1  7 +  4 3 3 . .Pa.

x (7  +  4 i i  — 4i2(7  +  4 2 2 ) ^4ai) ^(Bi — 4ia(7  +  vîgg) ^Bg)

P  -  [Cl C2 ]

r B
x[7  —4 1 2 ( 7  + 4 2 2 )”^

(7 + 4 ii — 4i2(7 + 4 2 2 ) ^42i)'

PaJ

P  -  [Cl C2 ]
7 +  4 i i 4i3 -1 Pi

. 421 7 +  422. .^a.

+ [Ci C2 ]

=  D  — £"2 (7  +  4 3 2 )"  ̂P 2

This completes the proof.

7 + 4 i i 4i3 ' — 1 0 0 ' P i'

. 421 7 + 422. .0 7 + 4 2 2 . .^a.

( B .1 8 )

B .2 P roo f o f (6.20)

Lemma B.2.1 Let

Gr
Pii -  E12E22 E21 Pi -  P iaP^ 'P i
Gi -  G3PM^Pai P-G3PM 'P2

(B.19)
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4n + 4i2(7 — 433) "̂ 421 Êi + 4i2(7 — 4 .22) ^B2

Cl + (72(7— 422)~̂ 421 D + (̂ 2 (7  — 422)~^B2

be a balanced singular perturbational low-order approximation of a continuous-time model. 

Then by using the bilinear transformation described in Chapter 1), the balanced singular per

turbational low-order approximation of a discrete-time model Gr is given by

Cl + Ca(7 — 422)~^421 D + C2{I — Â22)~^B2 

Proof

From (B.4), we have

Pi2 = (7 +  4 i i  — 4 i2 ( / + Â22) ^4gi) ^4i2 — (7 + 4 ii  — 4i2(7 + j422)~^42i)~^ 

X4i2(7 + 422)~^(422 — 7)

= 2(J +  4 ii)  ^4i2(7 + Â2 2  — 4 3 1 ( 7  + 4 ii)  ^4i2)~^ (B.21)

E21 = —(7 + 4 . 3 3  — 4 3 1 ( 7  + 4ii)~^4i2)“^42i(7 +  4 ii)~ ^ (4n  — I)

+ ( I  +  4,22  — 4 2 1  ( 7  +  4 i i )  ^ 4 i 2 )  ^431  

=  2(7 + 4 3 3 ) 4̂ 3 1 ( 7  + 4 ii  — 4i2(7 + 4 .2 2 ) ^42i)  ̂ (B.22)

and

P 22 —(7 + 4.22 — 421(7 +  4 i i ) “^4i2)~^42i(7 + 4n)~^4i2 

+(7 +  4.22 — 4 3 1 ( 7  +  4 ii)  ^4i2) ^ ( 4 3 3  — 7)

= (7 +  4 . 2 2  — 421 (7 +  4 ii)  ^4i2) ^(—7 + 4 . 2 2  — 421 (7 + 4n)"^4 i2)

=  7  — 2 ( 7  +  Â 32 — 4 3 1 ( 7  +  4 i i )  ^ 4 i2 ) ~ ^  ( B .2 3 )

From (B.7) and (B.9), we have

F 2 =  v ^ ( 7  +  4 2 2  ~  4 2 i ( 7 + 4 i i )  ^ 4 i 2 )  ^ ( —4 2 i ( 7  + 4 n )  ^ B i  +  B 2 ) ( B .2 4 )

and

G2  = 'v^(—Ci(7 + 4 ii)  ^4i2 +  C2)(7 + 4.22 — 42i(7 +  4 .1 1 ) (B.25)

respectively. For the 4r-matrix, we have

4r = (7 + Bn -  Bi3BM"B3i)(7 -  Bn + Bi2BM"B3i)-^ (B.26)
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where

E12E22 — 2(1 + Â11) ^Â\2{I +  422 — 421 (7 + 4 ii)  ^4i2) ^

x(7 +  422 — 421 (7 +  4 i i )“^4 i2)[(7 + 422 — 4gi(7 + 4 n )  ^4 n ) — 27]“^

= 2(7 + 4 ii)  ^4 i2(—7 +  422 — 421 (7 + 4 n ) “^4i2)~^

= 2(—7 + 422 — 421(7 + 4 ii) ^4i2)~^42i (7 + 4n)~^ (B.27)

(7 -  Bn + Bi2B ^ B 2i)"^ = B, where

Ê = (7 — 7 + 2(7 + 4 ii — 4i2(7 + 4 3 2 ) ^42i) ^

+4(7 +  4 n )  ^4i2(—7 +  4 3 3  — 42i(7 + 4 n )  ^4i2)  ̂

x (7 +  4 .2 2 ) ^42i(7 + 4 i i  — 4i2(7 +  422)~^42i)~^)~^

= —(7 +  4 n  — 4 i 2(7 + 422)~^42i)

x[7 +  2(7 +  4 ii  — 413(433 — 7) ^42i) 4̂12(433 — 7) ^(422 + 7) ^42i]~^

= g(7 + 4 n  — 4 i2(7 + 422)~^42i)

x(7 +  4 n  — 4i2(422 — 7)~^(422 +  7 — 27)(7 + 4 3 3 )"^ 4 3 1 )"^

x (7 +  4 n  — 4 i2(422 — 7) ^42i)

= g(7 + 4 n  — 4 1 3 ( 4 3 3  — 7)~^42i) (B.28)

(7 + Bn — EX2E22 B21) = È, where

B  =  7  +  ( J  +  4 n  — 4 i 2 ( 7  +  4 2 2 ) ^ 4 2 i )  ^ (—7  +  4 n  — 4 i 2 ( 7  +  4 3 2 ) ^ 4 2 i )

—4(7 + 4 n  — 4i2(7 +  422)~^42i) ^4i2(7 + 4 3 2 )”  ̂

x (—7 + 422 — 4 3 1 ( 7  +  4 n ) “^4i2) ^42i(7 + 4n)~^

= ( 7 + 4 ii  — 4 i 2(7 +  422)~^42i )~^

x[(24ii — 24i2(7 + 422)~^4.2i) — 44i2(7 + 4 3 3 )“  ̂

x (—7 + 4 . 3 2  — 4 .3 1 ( 7  +  4ii)~^4i3)“^42i(7 + 4n)~^]

= 2(7 + 4 ii  — 4i3(7 +  4 3 3 ) 4̂ 3 1 ) ^

x [(4 n  — 4i2(7 + 4 .3 2 ) 4̂ 3 1 ) — 24i2(432 + 7)"^(433  — 7)~  ̂

x4.3i(J + 4 ii — 4 1 2 ( 4 3 3  — 7)“^42i)~^]

= 2(7 + 4 n  — 4i3(J +  4 3 3 ) 4̂ 3 1 ) ^

x[(7 + 4 ii — 4 .1 3 (7  + 4 .22) ^421 ) — I  — 24i2(432 + J)~^(422 — 7)~^ 

x42i(7 + 4 n  — 4i3(4.22 — 7)~^43i)~^]
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= 2(J + All ~ 4ig(7 + Â22) ^42i)  ̂

x[J + All — 4i2(7 + 4 2 2 )"^ Â21

—(J + All — Âi2(7 + Â22) ^42i)(/ + All — 4i2(Â22 — I) ^Â2l)

= 2 — (J + All ~ 4i2(A22 — I) ^A2i)

= 2 Jj .11 — J i 2( J 22 — 7)”^Â2ij [7  + All — J i 2( J 22 — 7)” Ĵ 21] (B.29)

From (B.26), the Jr-matrix will be given by

J r  = All + J i a (7 — 4 2 2 )"^ J 21 (B.30)

For the Br-matrix, we have

A  =  V 2 ( 7  -  B n  +  B i 2 B M ^ B 2 i ) - \ B i  -  B i g B ^ ^ B i )  ( B . 3 1 )

where (fk -  P iaP» fa) = f , and

F  = V^[(7 + All — 4i2(7 + J 22) ^42i) ^(Bi — 4 i g (7 + 422)~^P2)

+Bi2B22^(7 + J 22 — J a i(J ii  + 7) ^4i2)~^(42i(4ii + 7)~^Bi — Bg)]

= \/2(J + All — 4i2(422 + 7) ^Jgi) ^[Bi — 4i2(7 + J 22) ^B2 + 24i2(7 + 4 3 2 )”  ̂

x (—/  + J 22 — 42i(4ii + 1) ^4i2) ^(42i(4ii + — Bg)]

= y/2{I + All — 4i3(422 + 7)~^42i)“ [̂[7 + 24i3(7 + Aga)"^

x(—7 + Â22 — 4gi(4n + 7)“^4i3)~^42i(7 + 4 n )“^]Bi — [4i2(7 + Agg)"^

+ 24 i g (7 +  J g g )  (̂—7 +  J 3 2  —  42i ( 4 i i  +  7) ~ ^ 4 i 3)  ^ j B g ]

=  v ^(7 +  A l l  —  J i a ( J 2 2  +  7)  ^ A g i )  [̂(7 +  A n  —  4 i g ( 4 g 2  +  7) " ^ 4 g i )  
x (7 +  A l l  —  J i 2 ( 4 2 2  —  7)  ^ 4 2 i ) ~ ^ B i  —  (7 +  A n  —  4 i g ( 4 2 g  +  J ) ~ ^ 4 3 i )  
x (7 +  A l l  —  4 1 2 ( 4 3 2  —  7)  ^ J g i )  ^ 4 i 3(423 —  I ) ~ ^ È 2 ]

= V2(7 +  All — 4i3(422 — 7) ^Jgi) ^(Bi — 4 i 2(A22 — 7)“^B3) (B.32)

From (B.31), the B^-matrix will be given by

Br = Bi + 4 i2(7 — Agg) ^Bg (B.33)

For the Cr-matrix, we have

C r  =  V 2( G i  -  G g B ^ B 2 i ) ( 7  -  B n  +  B n B ^ B g i ) " ^  ( B . 3 4 )
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where Gi -  GgB^Bgi = G, and

G = ^^(Gi — Gg(7 + Jgg)"^4gi)(7 + All — Jig(Jgg + 7) ^Âgi) ^

—'^ [(~ C i(7  + Â ii)“ ^Âi2 + G2)(7 + Â2 2  — Â2i(Âii + 7) ^Âig) 

x (—7 + Â22 — ÂgiCÂii + 7) ^Âia) ^(7 + Â22 — Â2i(Ân + 7) ^Âia) 

x2(j + Â22)~^Â2i(7 + Âii — Âl2(Â22 + 7)“^42l)~^

= V [̂Gl — ^2(7 + Â22)~̂ Â21 — 2(—Gi(7 + Âii) ^Âi2 + C2 )

x(J + Â22 — Â2l(Âii + J) ^Âlg) ^(—7 + Â22 — Â2l(Âll + 7) ^Âlg) ^

x(7 + Â22 — Â2l(Âll + 7)~^Âi2)~^(7 + Â22)~^Â2i](7 + Âii — Âig(Âg2 + 7)“^Â2i)“^

= v^[C”i — (7 2 ( 7  + Â22)~^Â2i — 2(—C'i(7 + Â n) ^Âi2 + Gg)

x (—7 + Âgg — Â2l(Âii + I)~^Âi2 ) ^(7 + Â22) ^Â2i](7 + Ail — Ai2(Â22 + 7)“^Agi)“  ̂

= •\Æ[C'i[7 + 2(J + An) ^Ai2(—7 + A22 ~ A2i(Aii + / )  ^Aig) ^(7 + A22) ^Agi]

—Ga[(7 + A2 2 )~^Agi + 2(—J + A22 — A2i(Aii + I)~^Âi2)~̂

X(Ag2 + 7)~^A2i]](7 + An — Ai3(Ag3 + I ) ~ ^ Â 2i)~^

= ‘\/2[C 'i(7+An — Ai2(A22 — 7) ^A2i) ^(7 +  An — Ai2(Ag2 +  7) ^A2i)

—CgCAgg — 7) ^Agi(7 + An — Ai2(Aa2 — 7) ^Agi) ^

x(7 + An — Ai2(Ag2 + 7) ^A2i)(7 + An — Ai2 (Ag2 + 7) ^Agi) ^

= \ f % C \  — (v2 (A2 2  — 7) ^Agl)(7 + An — Ai2(A22 — 7) ^A2i)  ̂ (B.35)

From (B.34), the Cr-matrix will be given by

Cr = Cl + C3(7 -  A22)-U31 (B.36)

For the Dr-matrix, we have

Dr = (P  -  GaB^'Pz) + (Gi -  G2BM^B3i)(7 -  Bn + Pi2% ^P3i)-"(fi -  

= [D -  C(7 + A)-^B -  2(-Ci(7 + A n)-U i2 + Cg)

x(7 + A2 2 — A2 i(A ii + 7) ^Ai2 ) ^(—7 + Agg — A2 i(Aii + I)  ^Aig)  ̂

x(7 + A22  — A2 i(A ii + / )  ^Aig)(7 + Agg — A2i(A ii + 7)~^Aig)  ̂

x(—Agi(J + An) ^Bi + Bg)] + )/2(Ci — Cg(A22 — 7)“^Agi) 

x(7 + An — Ai2(Ag2 — 7)“^A2i)~^-(7 + An — Aig(A22 — 7)"^ Agi)

Xy/2{I  + All — Ai2(A22 — 7) ^Agi) ^(Bi — Aig(A22 — I )~^B2)

— [B ~  C(7 + A) ^B — 2(Ci(7 +  An) ^Aig — C2){I + Agg — A2 i(A n + 7)"^Aig)"^
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x(—J  + Â22 — Â2i(Âii +  J) Â̂i2)~̂(Â2i(7 +   B2)]
+(C i — C2(Â22 — I)  ^Â2i)(J +  A ll — Ai2(Ag2 — I)  ^A2i)~^(Bi — Aig(A22 — B2 )

— [B ~ [Ci(J + All — Ai2(A22 + I)~^Â2l)~^Bi

—(72(7 +  A22 “  AglCAii +  J) ^Ai2) ^A2i(7 +  A ii) ^Bi 

—<7i(7 + All) Âi2(7 + A22 — AgiCAii + 7)“̂ Ai2)“̂ B2 

+<72(7 + A22 — A2i(Aii + 7) Âi2)~̂B2]
—2(<7i(7 + All) Âi2 — C 2 ) ( I  + A22 — Agi(Aii + 7)“̂ Ai2)~̂ 
x(—7 + A22 — A2i(Aii + 7) Âi2)~̂(A2i(7 + Aii)”̂ Bi — Ê 2 ) ]

+(C i — C2(A.22 ~  7) ^A2i )(7 +  All — Aig(A22 — 7) ^A2i ) ^(Bi — Ai2(Ag2 — 7)"^%)

=  D A C2{I — Â22)~^B2 (B.37)

This completes the proof. ■
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