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Abstract 

We use certain theoretical measures with absolute precision to uncover a microproduction 

function with the correct functional form and unique coefficients and error term. This function is 

not misspecified when its observed dependent variable is rewritten algebraically in terms of the 

sum of the products of observed regressors with measurement errors and time-varying 

coefficients and the error term with certain components. These coefficients are the sums of the 

appropriate partial derivatives and formulas for excluded-variable and measurement-error biases. 

The partial derivatives can be estimated without these biases.    

 

Keywords: Microproduction function, Correct functional form, Cambridge-Cambridge capital 

controversy, Measurement error, Sufficient set of an excluded regressor.  
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1. Introduction 

The use of aggregate production functions in macroeconomics, including in growth models and Dynamic 

Stochastic General Equilibrium (DSGE) models (see Woodford, 2003) and its related literature, such as real 

business cycle (RBC) (see Kydland and Prescott, 1982) and new Keynesian models (see Clarida, Gali and 

Gertler, 1999) remains pervasive despite the extremely demanding conditions that need to be satisfied to 

ensure the existence of those functions.1 As pointed out by Fisher (2005, p. 490), “even under constant 

returns, the conditions for aggregation are so very stringent as to make the existence of aggregate 

production functions a non-event.” However, as Fisher (2005, p. 490) went on to argue, these conditions 

do not apply to the estimation of microproductions. Nevertheless, the estimation of microproduction 

functions also presents considerable difficulties. Estimates of the marginal products of the factor inputs of 

microproduction functions are dependent on the correct specification of the underlying microproduction 

function itself. Yet, the correct specification is rarely, if ever known, so that the estimated coefficients and 

the error terms of microproduction functions employed in the literature are not likely to be unique. By 

uniqueness of the coefficients and the error terms we mean that these are invariant to changes in the 

relationships between the independent variables and the error term of an equation with no changes in the 

equation itself and its dependent and independent variables.2  

A second problem also confronts the specification of microproduction functions, which also leads to 

nonunique coefficients and error terms. A key argument contained in every production function is capital 

input. Indeed, the quantity of capital is closely associated with the two broad theories of distribution and 

relative prices that have been developed in the literature -- the classical and the neo-classical theories. 

Classical economists argued that the determinants of labor remuneration could be studied separately 

                                                           
1
 Felipe and Fisher (2003) survey the relevant literature. 

2
 See Basmann (1988, p. 73). For example, the relationship between the independent variable xt and the error term εt  is 

changed when the equation yt = β0 + β1xt + εt is changed to yt = β0 + (β1 + a) xt + (εt - axt). Here (β0, β1) and εt are not 

invariant. To make them invariant we have to have an additional equation relating εt to xt with the correct functional 

form. See Swamy and Hall (2012, Appendix).  
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from those of non-labor remunerations. The latter remunerations were considered to be what was left-

over -- that is, the surpluses of outputs -- after wages were accounted for; hence, this theory of 

distribution is called the “surplus” method. The neoclassical theory uses supply and demand functions 

based on the “substitutability” of factors of production.3 This substitutability would in turn result from the 

existence of alternative methods of production of each commodity and the choice made by consumers 

among different goods (see Garegnani, 1990, p. 1). The issue of the validity of these respective theories 

formed the core of the Cambridge-Cambridge capital controversy (hereafter, Cambridge controversy), 

which raged from the 1940s through the 1970s. Yet, an important, but unresolved, issue in the Cambridge 

controversy debate concerns the difficulty of measuring capital independently of the distribution of 

output among factors of production -- for a detailed description of how this difficulty of capital 

measurement arises in the two theories, see Gareguani (1990). As Gareguani (1990) showed, the issue of 

how to measure capital needs to be resolved before deriving the marginal products of the factors of 

production under the neoclassical set-up. However, the measurement of capital itself has been a highly 

contestable issue in the literature, even with respect to microproduction functions. 

As indicated above, two key problems surround the estimation of microproduction functions. First, the 

problem of unknown functional form needs to be dealt with. Second, the problem of measuring capital 

independently of the distribution of output among the factors of production also needs to be addressed. 

In what follows, we account for both of those problems and are, therefore, able to specify 

microproduction functions with unique coefficients and error terms. The problem of unknown functional 

form is dealt with by rewriting a given microproduction function with unknown functional form as an 

exact linear-in-variables but nonlinear-in-coefficients equation where the slope coefficients are equated to 

the respective partial derivatives (with unknown functional forms) of the microproduction function. The 

                                                           
3
 See, for example, Moro (2012), McDonald and Zhang (2012), Photphisutthiphong and Weder (2012), and Laing, Li, 

and Wang (2013).   
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problem of measuring capital independently of the distribution of output among the factors of production 

is dealt with by treating capital as an immeasurable factor. Effectively, we treat capital as an omitted 

variable. By so doing, we are able to derive omitted-variable biases, and extract these biases from the 

total coefficient of labor to derive a bias-free estimate of the marginal product of labor. Specifically, we 

address the problems stemming from heterogeneous capital goods by treating different kinds of capital 

goods as separate immeasurable factors of production. 4We argue that a re-specification of neoclassical 

microproduction function so that specification biases are separated from the correct partial derivatives of 

that function can take us a considerable distance in resolving some of the issues raised in the detailed 

debate leading to the Cambridge controversy. 

Models used in this paper do not assume a given technology. Different technology bases of time series 

of cross-sectional data are maintained in this paper without explaining away any “contrary” empirical tests 

by advocates on either side of the debate. According to Sraffa (1961, pp. 305-306), “Theoretical measures 

require absolute precision. Any imperfections … were not merely upsetting, but knocked down the whole 

theoretical basis. … The work of J. B. Clark, Böhm-Bawerk and others was intended to produce pure 

definitions of capital, as required by their theories. If we found contradictions … these pointed to defects 

in the theory.” To follow Sraffa, we first use certain measures with absolute precision to build a theoretical 

model and then insert appropriate measurement errors at the right places in this model. It is easy to solve 

the unknown functional-form problem, as we show in this paper. Since our knowledge of real-world 

economic relations is incomplete and our measurements on economic variables are imperfect, we cannot 

avoid excluded-regressor and measurement-error biases. We first account for them with absolute 

precision and then propose a method to estimate the biases; the method also removes these biases 

from the estimates of quantities affected by those biases (see Swamy and Tavlas, 2005, 2007). 

                                                           
4
 Here “immeasurable” means “not measurable independent of distribution”. 
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The remainder of the paper is divided into three sections. Section 2 develops the methods of resolving 

the problems of spurious correlations, unknown functional forms, excluded regressors and measurement 

errors associated with the neoclassical microproduction functions. These methods help us remove 

unavoidable specification biases from the neoclassical microproduction functions. Section 3 develops 

methods for obtaining consistent estimates of the several features of bias-corrected neoclassical 

microproduction functions. Section 4 concludes. 

 

2. Accounting for all Unavoidable Specification Biases in Microproduction Function  

2.1 Microproduction function: This function can be written as  

 * * * * *

1 1, 1,( ,..., , ,..., )
itcit cit cit K cit Kcit L city f x x x x                                                                              (1) 

where c indexes different commodities produced by the U.S. firms using different technologies, i 

indexes firms, t indexes time, *

city  is the ith firm’s output, and *

1citx , …, *

1,itL citx   are the inputs 

used by the ith firm to produce *

city . Let t = 1, …, T  and let i = 1, 2, …, tn  indicating the 

variable number of firms owing to entry and exit. A firm’s attempt to maximize output by 

assigning the use of its various factors to different techniques of production results in the 

dependence of maximized output only on the total amounts of such factors. This dependence can 

be written as a functional relationship of the form given in equation (1). This line of argument 

has been used by Felipe and Fisher (2003, p. 210) to show that the existence of a production 

function at the firm level is guaranteed. However, differentiability will not be guaranteed.  

 In what follows, the subscript c is suppressed for simplicity of presentation and the 

symbol (.)itf  is shorthand for the function on the right-hand side of (1); the function is defined 

only for nonnegative values of the input and output levels. The functional form of (1) is 
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unknown. For t = 1, …, T  and i = 1, …, tn ,  data on ( * * *

1 1,, ,...,it it K ity x x  ) are available but they 

may contain measurement errors. To represent these errors, we use the notation: ity  = *

ity  + *

0it , 

jitx  = *

jitx  + *

jit , j = 1, …, K-1, where the variables without an asterisk are the observables, the 

variables with an asterisk are the unobservable true values and the *

jit ’s are measurement and 

other errors. Data on ( *

Kitx , …, *

1,itL itx  ) are assumed no to be available. Consequently, these 

variables play the role of excluded regressors. We call 1 1,( ,..., )it K itx x   the included regressors.  

 We can treat (1) as the real-world relationship between inputs and outputs if it is 

expressed in terms of unique coefficients and error term without misspecifying its true functional 

form. (See Section 2.10 below; That section also defines the term: uniqueness.)    

2.2 Economic regularity conditions: The question that arises here is whether a measure derived 

from model (1) is economically meaningful if it does not satisfy certain regularity conditions 

(such as increasing and concave in inputs) stated in Diewert (1971, pp. 484-485, Condition I). To 

answer this question, let us add a nonunique error term to Diewert’s production function. Doing 

so gives  

ity  = 1 1( , ..., )it it K ,itx x   + it                                                                                                        (1a) 

where 1 1( , ..., )it it K ,itx x   = 
1 1

1/2 1/2

1 1

( )
K K

jj jit j it

j j

h a x x
 

 

 

  = 1(.)h  excludes ( *

Kitx , …, *

1,itL itx  ), jja   = j ja     0 

are constant coefficients, 1(.)h  is a continuous, monotonically increasing function which tends to 

plus infinity and has 1(0)h  = 0, and it  is the error term arbitrarily added to 1(.)h  to account for 

the net effect of excluded regressors on ity . For now, let us ignore measurement errors. To 

estimate model (1a) by nonlinear least squares, we need to make six assumptions, as provided in 

Greene (2008, pp. 286-7). These assumptions, however, are false because it  is equal to ity  - 
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1 1
1/2 1/2

1 1

( )
K K

jj jit j it

j j

h a x x
 

 

 

  which is not distributed with mean zero independently of 1(.)h . Even though 

1(.)h  satisfies the regularity conditions in Diewert, when combined with it  it does not do so. 

This situation arises because it  is arbitrary. Indeed, any assumption we might make about it  is 

arbitrary, yielding arbitrary results. In other words, when ity  equals 1(.)h , it is a quadratic 

function of the square roots of the included regressors and it satisfies Diewert’s regularity 

conditions for k-1 regressors. What about omitted regressors? These are dealt with by adding it . 

There is, however, no reason why it  should satisfy the regularity conditions. Also, if it  has a 

large variance, then ψit is a crude approximation to ity .   

 To deal with these problems, let us change the above argument a bit. Delete it  from (1a) 

and include ( *

Kitx , …, *

1,itL itx  ) in 1(.)h . Doing so gives        

*

ity  = 
1 1

*1/2 *1/2

1 1

( )
it itL L

it ith a x x
 

 

 

  = 2 (.)h                                                                                             (1b)  

Diewert (1971) showed that this function satisfies the regularity conditions. Note that equation 

(1b) does not contain any excluded regressors -- it contains a complete set of arguments, while 

satisfying Diewert’s regularity conditions. Nevertheless, we do not know the functional form of 

equation (1b). To deal with the problem of unknown functional form, we re-write equation (1b) 

as   

*

ity  = *

0it  + 
1

* *

1

itL

it itx 




                                                                                                                  (1c) 

where *

it  = 2 (.)
*

it

h

x




 if *

itx  is continuous and = 2 (.)
*

it

h

x




 with the right sign if *

itx  is discrete and 
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the values of all the regressors of (1b) other than *

itx  are held constant,   is the first difference 

operator, and 0

*

it  = 2 (.)h  - 
1 * *

1

itL

it itx 


 .  

We develop below a method of estimating model (1c). Thus, estimation of (1b) is not 

difficult. The real problem is with the chosen functional form of 
1 1

*1/2 *1/2

1 1

it itL L

it ita x x
 

 

 

 , the 

quadratic form in the square roots of inputs. This functional form is restrictive. Also, assuming 

the constancy of the coefficients a   in (1b) can amount to misspecifying the true functional 

form of (1). If we replace a   in (1b) by the time-varying coefficients ( ita  ), then (1b) may not 

satisfy the regularity conditions. In any case, the functional form of (1b) with or without constant 

coefficients is more restrictive than that of (1) and hence (1b) can have an incorrect functional 

form. A measure derived from a production function with the regularity conditions incorporated 

is not economically meaningful if it has an incorrect functional form. What (1b) implies is that 

there is a possibility that any production function forced to satisfy the regularity conditions has 

an incorrect functional form. When the functional form of the real-world production function is 

unknown, we cannot be sure that any production function satisfying the regularity conditions has 

the correct functional form and is unique. We call this the first problem with models (1a) and 

(1b). If the real-world production functions always satisfy the regularity conditions, then there is 

no need to impose them on (1). In this case, we have no problem.            

 In the econometrics literature, quantile approaches, non-parametric approaches, 

polynomials, etc., are used to estimate (1) whenever its functional form is unknown. The 

problem with these approaches is that they approximate (1) with models that have non-unique 

coefficients and error terms.                                                   
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2.3 Solution to the unknown functional form problem: The starting point for everything we do is 

based on a fundamental theorem which states that one way to represent any real-world relation, 

whatever its true functional form, is by a linear-in-variables model with time-varying 

coefficients. Thus we write    

*

ity  = * *

0 0it itx   + 
1

* *

1

K

jit jit

j

x 




  +
1

* *
itL

git git

g K

x 




                                                                                    (2) 

with *

0itx  = 1  i, t. We can go from (1) to (2) in many different ways. Not all of them assign 

unique coefficients to (2). The coefficients of (2) can be unique if we go from (1) to (2) by 

defining that for 1,..., itL  - 1,    

*

it  = 
(.)it

*

it

f

x




 if *

itx  is continuous and = 
(.)it

*

it

f

x




 with the right sign if *

itx  is discrete                (2a)                                                                                                                                        

and all the regressors of (1) other than *

itx  are kept constant,   is the first difference operator, 

and  

0

*

it  = (.)itf  - 
1 * *

1

K

jit jitj
x



   - 
1 * *itL

git gitg K
x



                                                                                  (2b)            

is the intercept. The coefficients on the continuous regressors of (2) are unique, as we show 

below. Equation (2) is true for all possible production functions and so with this equation we do 

not have to make any specific assumption about the functional form of the real-world 

microproduction function in (1). We adopt definitions (2a, b) because they do not misspecify the 

true functional form of (1). The advantage of equation (2) and definitions (2a, b) is that they are 

correct even when the true functional form of (.)itf  is unknown.
5
 Note that the partial derivative 

of 
*

ity  with respect to 
*

jitx  implied by model (1a) or (1b) is not the same as 
*

jit  in (2a), even 

                                                           
5
 If we knew a production function that satisfied the regularity conditions and had the correct functional form almost 

surely, then we would have used it in place of equation (1). This action would not require any change in our 

subsequent arguments.  
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when (1a)’s or (1b)’s error term has mean zero and is independent of its regressors. We call this 

the second problem with models (1a) and (1b). Previously, researchers attempted to estimate the 

partial derivatives of 1(.)h  using (1a), but not the coefficients (2a) on the *

jitx ’s in (2).         

 It can be easily verified that with definitions (2a, b), equation (2) is exact. This equation 

is nonlinear if its coefficients are nonlinear, even though it is linear in variables. By construction, 

the coefficients of (2) differ among individual firms at a point in time and through time.
6
 

Therefore, (2) hypothesizes different capital intensities across firms and differs from 

Samuelson’s (1962) model based on the assumption of equal factor proportions in all industries.  

2.4 Elimination of spurious correlations: Consider (2) again. It is known that the regressors, 

* *

1 1,,...,it K itx x  , are the genuine causes of *

ity  if the statistical correlation between *

ity  and each of 

* *

1 1,,...,it K itx x   does not disappear when we control for all relevant pre-existing conditions (see 

Skyrms 1988, p. 59). A formal statement of this condition is: The vector ( * *

1 1,,...,
itit L itx x  ) of 

regressors in (1) has genuine causal influence on *

ity  if ( * *

1 1,,...,
itit L itx x  ) and *

ity  are dependent in 

any context, if 
*

jitx  with j   itL  is a potential cause of ( * *

1 1,,...,
itit L itx x  ) (per Pearl’s (2000, p. 55, 

Definition 2.7.1) definition, if 
*

jitx  with j   itL  and *

ity  are dependent given the context of (1), 

and if 
*

jitx  with j   itL  and *

ity  are independent given the context of (1) and ( * *

1 1,,...,
itit L itx x  ) (see 

Pearl 2000, p. 55).
7
 Thus, the dependence between 

*

jitx  with j   itL  and *

ity  is eliminated when 

we control for all relevant pre-existing conditions by including (
* *

1 1,,...,
itit L itx x  ) in (1).  

                                                           
6
 There is nothing wrong with definition (2a) of the *

it ’s that change with the inputs of production in (2) when 

these *
it  are functions of the inputs (see Proposition 1 below).    

7
 It follows from Pearl (2000, Definition 2.7.1) that potential causes cannot be defined by identifying exogenous, 

endogenous and equilibrium variables. Models with these variables reported in the literature have rarely, if ever, 
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Typically, production decisions are made by simultaneously determining inputs and 

outputs, in which case the assertion that the inputs have a genuine causal influence on the outputs 

violates the principle that causes should precede their effects in time.
8
 In such cases, the 

conditions prevailing before the production decisions are made constitute the pre-existing 

conditions. But the problem here is that in the context of (1), we do not have the complete list of 

all the relevant pre-existing conditions and do not know how to represent them. The included 

variables, * *

1 1,,...,it K itx x  , may not be adequate to control for all the relevant pre-existing 

conditions. Therefore, we assume that some of ( *

Kitx , …, *

1,itL itx  ) in (1) represent all the relevant 

pre-existing conditions. To allow this assumption to be true, we keep the variables ( *

Kitx , …, 

*

1,itL itx  ) and their number ( itL K ) unspecified. We also allow this number to depend on i and t. 

This practice is different from the usual econometricians’ practice of including the nonunique 

error terms in their models to represent the net effect of excluded regressors on the respective 

dependent variables, as explained above in our discussion of (1a).       

2.5 Measurement problems: There are major measurement problems with capital. Usually, the 

term capital refers to a collection of heterogeneous goods. All these goods (i) are the produced 

outputs of some firms, (ii) are used as inputs for further production, and (iii) depreciate over 

time. If the quantity of a factor cannot be defined before determining the factor shares in an 

output (or distribution) and relative prices, then it is not possible to use a theory that allows the 

determination of distribution and relative prices only after the methods of production and the 

factor endowments of the economy are known (see Garegnani 1990, pp. 9-10). Consider, for 

example, a case where a measure of the amount of capital varies with the rate of profits. There is 

                                                                                                                                                                                           
unique coefficients and error terms and hence are misspecified. It is shown below that the regressors of (2) are 

correlated with their coefficients and such correlations prevent these regressors from being exogenous.      
8
 We are grateful to one of the referees for pointing out this circumstance to us.  
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a problem here if, as in neoclassical theory, this rate of profits is itself supposed to be determined 

by the amount of capital being used. Thus, there is circularity in the neoclassical economists’ 

argument. This problem underlies the importance of measuring capital independently of 

distribution. This requirement gives rise to major measurement problems, as shown by 

Garegnani (1990). In econometric practice, capital is usually measured in value terms by treating 

capital as a single factor of production. Unfortunately, the value of capital goods is not invariant 

to changes in distribution (see Garegnani 1990, p. 10). This problem is inevitable if capital is 

treated as a single factor of production.  

Let us now see whether we get any problem if each kind of capital good is used as a 

separate input in production function (1). Garegnani (1990, p. 11) showed that this treatment 

takes the physical composition of the initial capital endowment as given. This datum contradicts 

the condition of an equilibrium physical composition of the capital stock, expressed under free 

competition in terms of the equality in the effective rates of return over the supply prices of the 

capital goods. Such contradictions do not arise when excluded-variable and measurement-error 

biases are correctly treated using the models with the correct functional forms and unique 

coefficients and error terms as representations of the real-world relations.              

2.6 Sraffa’s method: A measure of the amount of capital is produced by reducing all machines to 

a dated labor. For example, a machine manufactured in period t can be treated as the labor and 

commodity inputs used in its production multiplied by the rate of profits;
9
 and these commodity 

inputs can be further reduced to the labor inputs that produced them in t - 1 plus the commodity 

inputs multiplied by the rate of profits; and so on, until the non-labor component was reduced to 

a negligible amount. Obviously, this measure of a machine still includes the rate of profits. The 

effect of this measure is to reverse the direction of causation implied by neoclassical economics, 

                                                           
9
 We are using Sraffa’s definition of the rate of profits. See Sraffa (1960).  
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according to which an increase in the amount of machines employed causes a fall in the rate of 

profits due to diminishing returns. The nature of Sraffa’s method is that a change in the rate of 

profits would change the measured amount of machines in highly nonlinear ways. Therefore, 

Sraffa’s measure of capital would change with income distribution even if capital did not change 

physically, so the production function involving Sraffa’s measure of capital is not technical.   

2.7 Definitions: Our way out of these difficulties is to treat the services provided by different 

kinds of capital as different factors of production that cannot be measured independently of 

distribution. We assume that some of ( *

Kitx , …, *

1,itL itx  ) in (2) represent these immeasurable 

factors. The dependent variable of model (1) is the output produced by the ith firm in period t. 

The variable *

1itx  is labor reduced to homogeneous units by stating it in terms of hours of the 

same skill and intensity. Usually, data on these homogeneous units of labor are not available. In 

this case, we use 1itx , a measure of labor in man-hours, as a proxy for 1 1 1

* *

it it itx x v  . The 

remaining arguments of the function in (1) represent other factors of production. With these 

definitions, we avoid some of Sraffa’s criticisms (discussed below) by not letting the 

microproduction function in (1) relate the flow variable, output, to the stock variable, capital. 

Proposition 1: If (.)itf  in (1) is nonlinear, then each coefficient of (2) can be a function of all of 

the regressors *

1itx , …, 
*

1,itL itx  .  

The proof is immediate.  

 The consequences of this proposition are that (i) the coefficients of (2) are functions of its 

regressors and (ii) the technically different microproduction functions in (2) may not be 

additively separable in factors.        
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Proposition 2: Suppose that (.)itf  exists. Then the coefficient on a regressor of (2) defined in 

(2a) is unique and exact unless the regressor is discrete, in which case the coefficient is a discrete 

approximation.  

The proof follows from (1) and (2a).                                                                                                        
 

2.8 Reswitching and its implications: Let a technique be a particular physical capital/labor ratio, 

as in Cohen and Harcourt (2003, p. 202). Then a technique of production is cost-minimizing at 

low and high rates of profit, but another technique is cost-minimizing at intermediate rates.
10

  

Robinson (1953-54) and Sraffa (1960) introduced the phenomena of reswitching to deny a 

simple (monotonic) nonincreasing relationship between capital intensity and the rate of profits, a 

relationship the neoclassical production and distribution (NPD) theories rely on. Samuelson 

(1966) provided examples of the phenomena of reswitching.  

Proposition 3: Equation (2) can produce the phenomena of reswitching.  

Proof: Equation (1) is about the direct production of each of the goods produced in the economy. 

In Section 2.7, we have clarified how different kinds of capital goods are represented in (1). The 

premises of (1) are consistent with the presence of many heterogeneous capital goods and 

various capital intensities across firms. Even though we have not shown how to derive the wage-

profit rate frontiers from model (1), its nonlinearities imply that such frontiers are nonlinear and 

may cross over each other more than once, which means that for a low rate of profits one may 

choose a capital-intensive technique. As we consider higher and higher values of the rate of 

profits, the technique with lower capital intensity may be chosen, and for still higher rates of 

profits the original technique of higher capital intensity may be chosen again (see Petri 2004, p. 

220). Under these circumstances, the demand curve for capital is not always downward sloping. 

                                                           
10

 Put differently, reswitching can be defined as “the discovery that production techniques that had been excluded at 

lower levels of the rate of profits might “come back” as [we consider higher and higher values of] the rate of profits 

…” (Pasinetti and Scazzieri, 2008, p. 677).  
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The conditions under which reswitching occurs are given in Petri (2004, Chapter 6). These 

conditions involve the variables that are not introduced in this paper. Unless we do so we cannot 

provide a complete proof of Proposition 3. However, it is obvious that if any of Petri’s conditions 

imply misspecification of the functional forms of the real-world production functions, then the 

phenomena of reswitching are unreal. For example, in one of Petri’s (2004, p. 207, [6.1]) 

equations used to show the occurrence of the phenomena of reswitching, a matrix of technical 

coefficients of nonlabor inputs and a vector of technical coefficients of labor inputs in the 

production of goods appear. If the phenomena of reswitching are such that they can only occur 

when these technical coefficients imply the correct functional forms of the underlying production 

functions, then the production function in (1) is compatible with reswitching. This is because the 

production function in (1) has the correct functional form.   

The result of choosing a capital-intensive technique for both low and high rates of profit 

runs contrary to the neoclassical theory of value and income distribution. This is Sraffa’s and 

Robinson’s criticism. We have introduced the definition of reswitching to show that this 

criticism does not apply to (1). Felipe and Fisher (2003, p. 220) pointed out that the phenomena 

of reswitching only appear paradoxical to anyone who believes that aggregate factors are related 

to aggregate output satisfying the properties that one expects of microproduction function (1).  

2.9 A model with nonunique coefficients and error term   

Proposition 4: If the usual practice of treating the net effect 
1

* *
itL

git git

g K

x 




  on *

ity  of excluded 

regressors as the error term is followed, then model (2) will have non-unique coefficients on its 

included regressors and non-unique error term. Excluded regressors ( *

Kitx , …, 
*

1,itL itx  ) are also not 

unique.  



18 
 

Proof: For simplicity, set K = 2 and itL  = 3 so that there is only one included regressor and one 

excluded regressor in (2). Treat the effect 2 2

* *

it itx   of excluded regressor 2

*

itx  on *

ity  as the error 

term, denoted by itu . The operations of adding and subtracting the term 1 2

* *

it itx   on the right-hand 

side of equation (2) do not change the equation and its dependent variable and included regressor 

but change the coefficient on the included regressor, excluded regressor, and the error term. 

Thus, under the conditions of Proposition 4, the coefficients on the included regressors, excluded 

regressors, and the error term in (2) are not unique; for further discussion, see Swamy and Hall 

(2012).  

Proposition 4 shows that the coefficients and error term of model (1a) and the coefficients 

of (1b) are not unique. The same is true of the coefficients and error terms of DSGE and RBC 

models.
11

 For consistent estimation of these models, the assumption that their included regressors 

are independent of their respective error terms is needed. The consequence of the non-uniqueness 

of their error terms is that this assumption can be shown to be false by making a change in one or 

more of their coefficients and making the offsetting change in their respective error terms in the 

constant coefficients case. A model with this property cannot be a real-world relationship or a 

correctly specified model. We call this the third problem with models (1a) and (1b). Any 

assumption about non-unique error terms is arbitrary and gives arbitrary results.  

2.10 A model with unique coefficients and error term  

Uniqueness: The coefficients and error term of a model are unique if it is impossible to change 

them without changing the model equation, its dependent variable, and included regressors and 

non-unique otherwise.     

                                                           
11

 Proofs of these statements are given in Swamy and Hall (2012). 
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There can be functional relationships among the regressors of (2). These relationships 

between each of excluded regressors ( *

Kitx , …, *

1,itL itx  ) and the included regressors 
1

* *

1,( ,..., )
it K itx x   

can be written as:     

 
*

gitx  = 
*

0git  + 

1
* *

1

K

jit jgit

j

x




     (g = K, …, 1itL  )                                                            (4)                                                                                                                                                                                                                                                                 

where 

*

*

*

git

jgit

jit

x

x






 keeping the included regressors other than *

jitx  constant if *

jitx  is continuous 

and = 

*

*

git

jit

x

x




 with the right sign if *

jitx  is discrete and *

0git  = *

gitx  - 
1 * *

1

K

jit jgitj
x 



 .  These 

definitions do not misspecify the true functional form of equation (4) which is exact. Here again 

we are relying on the theorem which states that any non-linear equation with unknown functional 

form can be represented by a time-varying coefficient model. We do not necessarily observe 

excluded variables, or even know what they are, but we do know that if the relationships between 

these variables and the included ones exist, then they can be written in the form of (4). Without 

using these auxiliary regressions it is not possible to derive a model with unique coefficients and 

error term, as shown by Swamy and Hall (2012).    

Proposition 5: Each coefficient of equation (4) can be a function of all of its regressors.  

The proof is analogous to that of Proposition 1.      

Substituting the expression on the right-hand side of the equality sign in (4) for 
*

gitx  in (2) 

gives       

 *

ity  = *

0it  + 
1

* *

0

itL

git git

g K





   + 
11

* * * *

1

( )
itLK

jit jit jgit git

j g K

x


 

                                                            (5)  
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Note that the intercept *

0git  of equation (4) is the portion of the excluded variable *

gitx  remaining 

after the effect 
1

* *

1

K

jit jgit

j

x




  of the included regressors on it has been removed from it. It can be 

seen from equation (5) that in conjunction with the included regressors, * *

1 1,,...,it K itx x  , these 

portions, *

0git , g = K, …, 1itL  , of excluded regressors are at least sufficient to determine *

ity  

exactly. This proves that the variables *

0git , g = K, …, 1itL  , form “sufficient sets” of excluded 

regressors (see Pratt and Schlaifer 1988). It should also be noted that the coefficients, *

0it , *

1it , 

…, *

1,itL it  , as well as the coefficients of equation (4) have the correct functional forms. 

Therefore, the second term 

1
* *

0

itL

git git

g K





   on the right-hand side of the equality sign in (5) is a 

function of sufficient sets of excluded regressors with the correct functional form. Pratt and 

Schlaifer (1988, p. 34) show that it is correct to take this function as the error term of model (5). 

This error term is different from the log of tA  shown in Petri (2004, p. 330). The error term of 

model (1a) is not a function of ‘sufficient sets’ of excluded regressors with the correct functional 

form and hence the model is misspecified, giving rise to a further problem.  

The second term 
1 * *itL

jgit gitg K




   of the coefficient of 

*

jitx  in (5) arises as a result of 

excluding 
*

gitx , g = K, …, itL  - 1, of (2) from (5). It is for this reason that the term 

1 * *itL

jgit gitg K




   is called “excluded-variables bias”. When we are given that 

*

gitx , g = K, …, itL  

- 1, are the regressors excluded from (5), this bias is unique.
12

 Model (1a) does not account for 

                                                           
12

 Griliches’ (1977) method of correcting for excluded-variable biases is incorrect because it is based on models with 

nonunique coefficients and error terms.  
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the excluded-variables bias and has nonunique coefficients and error terms. We call this the fifth 

problem with this model.     

In the coefficient of 
*

jitx  in (5), the component 
*

jit  is separated from the excluded-

variables bias 
1 * *itL

jgit gitg K




   component. Hence 

*

jit  is called the bias-free component.  

Proposition 6: The coefficients and error term of model (5) are unique.  

Proof: See Swamy and Hall (2012) and Pratt and Schlaifer (1984).    

This proposition can be false if the 
*

it ’s in (5) are replaced by the *

it ’s in (1c) because the 

functional form of (1b) is restrictive.        

2.11 Accounting for measurement errors: The set of observable counterparts ( 1itx , …, 1,K itx  ) of 

the unobservable regressors * *

1 1,( ,..., )it K itx x   is divided into two subsets, denoted by 1S  and 2S . 

All the observable regressors that take the value zero with probability zero are included in 1S  

and the remaining observable regressors that take the value zero with positive probability are 

included in 2S .
13

 To set up model (5) for estimation, we write it as     

      
1

0

1

K

it it jit jit

j

y x 




                                                                                                       (6)  

where the dependent variable and the regressors are observable and the coefficients are not the 

same as the first K coefficients of (2), since we have excluded some regressors from (2) and 

introduced measurement errors into the included regressors to obtain (6). We now display the 

exact relationships between the coefficients on the included regressors in (2) and the coefficients 

of (6) which we can estimate. These relationships are    

                                                           
13

 This assignment simply allows us to deal with both continuous and discrete regressors. 
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2

1 1
* * * * * * * *

0 0 0 0 ( )
it itL L

it it git git it jit jit jgit git

g K j S g K

v       
 

  

                                                          (7)  

 jit  = 

* 1
* * *(1 )( )

itL
jit

jit jgit git

g Kjit

v

x
  





   if jitx  1S      

                   = 
1

* * *( )
itL

jit jgit git

g K

  




  if jitx  2S                                                                                    (8)  

 With the exception of the components (i) 0it , (ii) 
2

1
* * * *( )

itL

jit jit jgit git

j S g K

v   


 

   , and (iii) 

* 1
* * *( )( )

itL
jit

jit jgit git

g Kjit

v

x
  





   containing measurement errors, we have already interpreted all the 

components of the coefficients of model (6). The interpretation of (i) is: the measurement error in 

the dependent variable *

ity , that of (ii) is: the sum of measurement-error bias components of the 

coefficients of jitx  2S , and that of (iii) is: measurement-error bias component of the coefficient 

of jitx  1S .  

 To recapitulate, first following Sraffa (1961) we have used certain unobservable 

measures with absolute precision to build the theoretical model in (5). Next, we have inserted the 

appropriate measurement errors at the right places in (5) to obtain (6). Since our knowledge of 

the real economic relations is not complete and our observations on their variables are not 

perfect, we cannot avoid some specification biases. Yet, we have accounted for them with 

precision. In the next section, we use the appropriate method to estimate these specification 

biases and remove them from the estimates of the coefficients of (6). 

3. Estimation of Model (6) 

So far, we have not made any parametric assumptions. We have displayed in (2) a 

representation of the real-world microproduction function which is shown to be valid, and 
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displayed in (6) its form that can be estimated. We then showed exactly what the relationship 

between (2) and (6) is. To a large extent, we have covered most of the difficulties raised in the 

capital controversy which essentially resulted from a theoretical debate, and shown how a 

microproduction function may be specified to overcome these difficulties. We now go a little 

beyond the controversy to discuss how such a function can be consistently estimated.   

Simultaneous estimation of jit  and its components is the only superior method that can 

provide good estimates of the components of jit  in (7) and (8). To perform this estimation, we 

need to make a parametric assumption regarding the relationship between the coefficients of (6) 

and their observable drivers. Here, it should be noted that any method of decomposing jit  will 

not give good estimates of its components unless the correlations between the regressors and 

jit ’s of (6) are taken into account. To take such correlations into account, we assume      

Assumption I: For j = 0, 1, …, K – 1,  

 
1

0

p

jit hit jh jit

h

z  




                                                                                                            (9) 

where 0itz  = 1   i and t, the hitz  are called “the coefficient drivers”. It is assumed that 

conditional on these coefficient drivers, the jit ’s are distributed with means zero and are serially 

and contemporaneously correlated, as in Swamy, Tavlas, Hall and Hondroyiannis (2010).  

Assumption II: The regressors of model (6) are conditionally independent of their coefficients 

given the coefficient drivers.  

Assumption III: For each j, the p coefficient drivers in (9) are grouped into three sets, denoted 

by 1 jitA , 2 jitA , and 3 jitA , such that for j = 0, 
1 jit

hit jhh A
z 

 , 
2 jit

hit jhh A
z 

 , and 

3 jit
hit jh jith A

z  


  + 
2 3

( )
jit

hit jh jitj S h A
z  

 
   have the same sign, magnitude, and the same 
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cross-sectional and temporal movements as *

0it , 
1 * *

0

itL

git gitg K
 



 , and 

2

1* * * * *

0 ( )
itL

it jit jit jgit gitj S g K
v   



 
   , respectively; for j 1S , 

1 jit
hit jhh A

z 
 , 

2 jit
hit jhh A

z 
 , and 

3 jit
hit jh jith A

z  


  have the same sign, magnitude, and the same cross-sectional and temporal 

movements as *

jit , 
1 * *itL

jgit gitg K
 



 , and 

*
1* * *( )( )

itL jit

jit jgit gitg K
jit

v

x
  




  , respectively; for 2j S , 

1 jit
hit jhh A

z 
  and 

2 jit
hit jhh A

z 
  have the same sign, magnitude, and the same cross-sectional 

and temporal movements as *

jit  and 
1 * *itL

jgit gitg K
 



 , respectively, during estimation and 

forecasting periods.  

This assumption requires that the number p be much larger than 3. Assumption I says that 

each coefficient of (6) essentially consisting of three components is a linear function of a set of 

observable drivers. For each (j, i, t), Assumption III specifies three groups of drivers and 

establishes a connection between the components of the coefficient and the three groups of 

drivers. These groupings can be different for different coefficients and can vary across i and over 

time. The three groups chosen for a coefficient on a nonconstant regressor divide its cross-

sectional and time variations into three types, one type coming from the true non-linearity in the 

corresponding coefficient of (2) and the other two types coming from excluded regressors and 

measurement errors, respectively. Having made this assumption, it is then possible to remove the 

bias movements from the total variations in the coefficients of (6) and attempt to get back to the 

first K coefficients in (2). Computational details of separating the estimates of the *

jit ’s from 

those of the rest of the components in (8) are provided in Swamy, Mehta, Tavlas and Hall 

(2013).         
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Substituting the expression on the right-hand side of the equality sign in (9) for jit  in (6) 

gives  

 
1 11 1

0 0

0 1 0 1

( )
p pK K

it hit h jit hit jh it jit jit

h j h j

y z x z x   
  

   

                                                                (10)  

Swamy, Tavlas, Hall and Hondroyiannis (2010) show that the estimators of the coefficients and 

the predictors of the errors of model (10) given by an iteratively rescaled generalized least 

squares (IRSGLS) method have desirable sampling properties.  

 Under Assumption III, the coefficients and error terms of model (10) have the correct 

interpretations. This model gives good fits and does not give perfect or over fits to data on its 

variables. The ‘Shaikh critique’ is reproduced in Petri (2004, pp. 330-332). Even though Shaikh 

and Petri (2004, pp. 324-340) criticized aggregate production functions, some of their criticisms 

can also be applied to microproduction functions. Such criticisms do not apply to the model in 

(5)-(10). Comparing the production functions Shaikh criticized with the model in (5)-(10) shows 

that his critique is aimed at the real production-function man who uses production functions that 

have incorrect functional forms and nonunique coefficients and error terms with no realistic 

meanings. The model in (5)-(10) is not that type of production function.  

3.1 Elimination of excluded-variable and measurement-error biases: Under Assumptions I-III, 

the components of the coefficients of model (6) that are devoid of incorrect functional-form, 

excluded-variable and measurement-error (specification) biases are  

 *

jit    
1

( )
jit

hit jhh A
z

   (j = 1, …, K – 1)                                               (11)                                                                                                                                                                                        

where the symbol   means ‘approximately equal to’. This approximation arises when it is not 

possible to satisfy Assumption III exactly. An estimate, denoted by 
*ˆ
jit , of 

*

jit  is given by 

1

ˆ( )
jit

hit jhh A
z

   where jh̂  is the IRSGLS estimate of jh .  



26 
 

The marginal product of a factor: Let *

j itx   be any one of the inputs *

jitx , j = 1, …, K-1. Then 

the marginal product ( j itMP  ) of *

j itx   is the rate of change of its total product with respect to 

variations of its quantity holding all the regressors *

jitx , j = 1, …, K-1, other than *

j itx   constant. It 

follows from Assumptions I-III that this marginal product without containing specification biases 

is equal to *

j it  which is approximately equal to 
1

( )
j it

hit j hh A
z 


 :    

 j itMP     
1

(
j it

hit j hh A
z


  )                                                                                               (12)  

where substitutability between the inputs is assumed. This assumption may not hold, as we show 

below.  

 Let j itMP   denote an estimate of j itMP   obtained by replacing the  ’s in (12) by their 

IRSGLS estimates. In (12), we can get the exact partial derivative if the correct functional form 

of (.)itf  in (1) is known. The situations where this condition holds exactly are rarely, if ever, 

obtained. The marginal product in (12) of an input is estimated under the assumption of 

substitutability between the inputs.      

The output elasticity of a factor:  

 

*

*

j it

j it

it

x
MP

y



 ,                                                                                                                   (13)  

an approximate estimate of which is 
j it

j it

it

x
MP

y


 .         

The rate of technical substitution (RTS): Let 
*

j itx   and 
*

j itx   be any two of the inputs 
*

jitx , j = 1, 

…, K -1. Let the partial derivatives 
*

j it   and 
*

j it   of (.)itf  in (1) with respect to 
*

j itx   and 
*

j itx   be 

denoted by j itMP   and j itMP  , respectively. Then the slope of the tangent at a point on the 
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isoquant is the rate at which *

j itx   must be substituted for *

j itx   in order to maintain the 

corresponding output level. This slope is      

 j j itRTS    = /j it j itMP MP                                                                                                     (14)  

An estimate of j j itRTS    is /j it j itMP MP  . We have already pointed out above that the assumption 

of substitutability between the inputs involved in (14) may not hold. We discuss this point further 

below.            

Elasticity of substitution: The proportionate rate of change of the input ratio *

j itx  / *

j itx   divided 

by the proportionate rate of change of the ratio /j it j itMP MP   (or the rate at which substitution of 

*

j itx   for *

j itx   takes place along the isoquant) is  

 j j    = 

* *log( / )

log( / )

j it j it

j it j it

d x x

d MP MP

 

 

                                                                                              

                    = 

* *

* * 2 2

( )

(2 )

j it j it j it j it j it j it

j it j it j j it j it j it j it j j it j it j j it

MP MP MP x MP x

x x f f f f f f f

     

           



 
                                                                      (15)                                                                   

where j itf   = *

j it , j itf   = *

j it ; j j itf    and j j itf    are the second direct partial derivatives of (.)itf  

in (1); and j j itf    and j j itf    are the second cross partial derivatives of (.)itf .   

 We cannot find the derivatives of a function without knowing its functional form. For this 

reason, we cannot apply the second formula in (15) to (.)itf . However, we can obtain an 

approximate estimate 
log( / )

log( / )

j it j it

j it j it

x x

MP MP

 

 




, where   is the first difference operator, of the first 

formula in (15) if the derivatives in this formula exist. These derivatives may not exist.  

The phenomena of reswitching have destroyed some economists’ belief in factor 

substitution mechanism and “thus [in] the [very] foundation … of the supply-and-demand 
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approach to distribution” (see Petri 2004, pp. 10-16, 221-222). In Samuelson’s (1966) example 

of reswitching, two different techniques, labeled ‘a’ and ‘b’, are considered. At different values 

of an interest rate (or a rate of profits) along any discrete downward-sloping segment of the 

demand for capital (per unit of labor) the value of “capital” is different for a physically 

unchanging technique. Changes in the value of “capital” for a physically unchanging technique 

arise from inventory revaluations of the same physical stock due to new capital goods prices. 

Also, in the same example at lower values of the interest rate, the cost-minimizing technique 

“switches” from a to b and then “reswitches” back to a due to differences in the physical stock of 

capital goods (see Cohen and Harcourt 2003, pp. 202-203). This result implies that, given the 

technical production coefficients, the relationship between the rate of profits (or rate of interest) 

and the price of a commodity relative to that of another commodity need not be monotonic, as 

pointed out by Sraffa (see Petri 2004, pp. 210-211). Furthermore, the demand for capital may be 

either negative or positive with respect to an interest rate, with extreme equilibrium distributive 

values like zero wages or zero interest rate (Garegnani 1970; Lazzarini 2008, p. 12). All this is to 

say that there are situations where the derivatives in the first formula of (15) do not exist. Our 

finding is that these derivatives can exist if the conditions under which reswitching occurs are 

unreal, assigning wrong functional forms to (1) and do not exist otherwise.         

Proposition 7: The price of the services of a factor of production, say the j th, will be equal to 

its marginal value product at least approximately if its employer has the ability to obtain an 

approximate estimate of its marginal value product in (12) and has the willingness to pay the 

factor its approximate marginal value product.  

The proof is immediate.  
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 In a personal correspondence, Harcourt (2011) pointed out that “Basically the theoretical 

arguments [involved in the Cambridge controversy] are concerned with the conceptual base of 

two competing visions of how capitalism works, and especially about the processes of 

accumulation and distribution. The mainstream builds on an (Irving) Fisherian base where the 

consumer is king and drives the system along through lifetime consuming and saving decisions. 

The alternative is classical, Marxian, Keynesian, Kaleckian whereby the capitalist class … 

dominate[s] and profit-making and accumulating are ends … [and] ways of life. The origin of 

profits is to be found by the creation of the potential surplus in the sphere of production and its 

realisation in the sphere of distribution and exchange by the accumulating and saving 

behaviour principally of the capitalist class. That is where the meaning of capital comes in in the 

two strands, with measurement a corollary. As it is a doctrinal debate, if it is possible to show 

that fundamental conceptual conjectures do not go through even in the most abstract and ideal 

circumstances (that is what the capital theory results showed) then empirical testing is beside the 

point because the conjectures and inferences from the abstract models are not in a form for 

empirical testing.”  

 Proposition 7 questions either vision of how capitalism works. The consumer may over 

pay for the goods and services he buys, since he has no idea of the prices corresponding to 

normal profits to the capitalist class. This class obtains normal profits if it charges the consumer 

the prices for the goods and services corresponding to normal profits and pays for its employees 

their marginal value products. Proposition 7 shows that this may not happen.  

 Proposition 7 is based on the correct conceptual base of how capitalism works. Model (1) 

is the most abstract model. It is incorrect to say that empirical testing is beside the point because 

the conjectures and inferences based on model (1) are empirically testable via model (10). 
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Several economists pointed out that theory without measurement and measurement without 

theory are the two extremes and should be avoided.  

 Sraffa argued that only empirical work could be approximate but theory had to be 

precise. We agree with the modified statement that theory can get as precise as model (5) and 

only empirical work based on Assumptions I-III is approximate. Model (5) does not suffer from 

incorrect functional-form biases but suffers from excluded-variable biases. Model (6) does not 

suffer from incorrect functional-form biases but suffers from excluded-variable and 

measurement-error biases. Proposition 7 is a value-free objective social science. Temporal 

aggregation of model (2) produces biases from collapsing the long period into the short period. 

This paper shows the relevance of Cambridge controversy for econometric practice; for an 

alternative or perhaps a complementary view, see Harcourt (2007).      

Homogeneous production functions and their properties: The function (.)itf  in (1) is 

homogeneous of degree   if  

 * *

1 1,( ,..., )
itit it L itf x x    = 

* *

1 1,( ,..., )
itit it L itf x x                                                                                      (16)                                                                                                                                                                          

where   is constant and   is any positive real number. If (.)itf  is homogeneous of degree  , 

returns to scale are increasing, constant, or decreasing according as 

  1.    

Unfortunately, equation (5) may not be homogeneous even if (.)itf  is homogeneous.    

Proposition 8: (i) According to Euler’s theorem, if (.)itf  in (1) is homogeneous of degree one 

and if the firm were to pay the suppliers of each input its marginal physical product, then total 

output would be just exhausted. (ii)  In the case where (.)itf  is not linear homogeneous, what 

exhaust total output are the terms on the right-hand side of (5).  
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Proof: While a proof of Proposition 8(i) is given in microeconomic textbooks, the equality of the 

left- and right-hand side quantities of (5) proves Proposition 8(ii).   

The capitalist class can acquire the output shares of the first, second, and fourth terms on 

the right-hand side of (5).      

Total factor productivity (TFP): The ratio of *

ity  to a function of inputs given by (5) is 

 TFP = 
*

1 11
* * * * * *

0

1

( )
it it

it

L LK

git git jit jit jgit git

g K j g K

y

x    
 

  

   
                                                                (17)                                                                                                                                                

where the denominator is the same as the right-hand side of (5) without its intercept. An 

important advantage of this denominator is that it is devoid of incorrect functional-form and 

measurement-error biases. The function of inputs used by others in the denominator of their TFP 

ratio suffers from both these biases (see Blazek and Sickles 2010). Another important advantage 

of the measure in (17) is that it considers all relevant inputs including excluded inputs.
14

 Under 

Assumptions I-III, an approximate estimate of (17) is 

TFP  = 

20 1 1 2 2 1 2

0
ˆ ˆ ˆ ˆ ˆ( ) ( )

it jit jit jit jit

it

hit h jit hit jh hit jh jit hit jh hit jh

h A j S h A h A j S h A h A

y

z x z z x z z    
      

         
       (18) 

where the ̂ ’s are IRSGLS estimates.
15

   

4. Conclusions  

Without misspecifying their functional forms we derive the new representations of 

microproduction functions that are not subject to the criticisms of neoclassical production 

                                                           
14

 This advantage is also not possessed by the TFP measures described in Blazek and Sickles (2010). 
15

 Equation (1b) satisfies the regularity conditions but can have an incorrect functional form. This can act as a 

counterexample to the proposition that a regression equation will have the correct functional form and unique 

coefficients and error term whenever it satisfies the regularity conditions. Replacing the 
*

it ’s in (17) by the 
*

it ’s 

in (1c) introduces incorrect functional form biases into (17). Furthermore, the estimates of the partial derivatives of 

1(.)h  in (1a) are useless, since they are based on a bunch of false assumptions.           
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functions made by Sraffa, Robinson, Garegnani and Fisher, among others. These new functions 

allow capital and labor to be heterogeneous and allow different firms producing physically 

homogeneous outputs to have different capital intensities. Our treatment of heterogeneous capital 

is not subject to the criticisms of Sraffa, Robinson and Garegnani. Within the framework of the 

new functions, reswitching of techniques can occur, provided the conditions under which they 

occur do not misspecify the functional forms of the real-world production functions. The new 

functions are not subject to spurious correlations and allow for excluded regressors. The new 

representations of the microproduction functions have unique coefficients and error term. 

Whenever substitutability between factors of production is possible, the formulas for the 

marginal product of a factor, the rate of technical substitution, and elasticity of substitution 

derived in this paper are not subject to incorrect functional forms, excluded-variable and 

measurement-error biases. We have also derived a new formula for total factor productivity that 

does not contain measurement-error biases.   
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